1
|
Rapheal E, Kitro A, Imad H, Hamins-Peurtolas M, Olanwijitwong J, Chatapat L, Hunsawong T, Anderson K, Piyaphanee W. Force of Infection Model for Estimating Time to Dengue Virus Seropositivity among Expatriate Populations, Thailand. Emerg Infect Dis 2025; 31:1149-1157. [PMID: 40439444 PMCID: PMC12123937 DOI: 10.3201/eid3106.241686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2025] Open
Abstract
Dengue is a major cause of illness among local populations and travelers in dengue-endemic areas, particularly those who stay for an extended period. However, little is known about dengue risk among expatriates and other long-term travelers. We used catalytic models of force of infection to estimate time to 60% dengue virus (DENV) seropositivity for a cross-section of expatriates living in Bangkok and Pattaya, Thailand. Our model adjusted for daily time spent outside, years not exposed to DENV, sex, living environment, and use of mosquito repellent, nets, long sleeves, and air conditioning. We estimated an adjusted annual force of infection of 0.014 (95% CI 0.003-0.054) per year spent in dengue-endemic areas (67.3 years to 60% seropositivity), below that of local populations. Our findings suggest that expatriates have a DENV exposure profile distinct from locals and short-term travelers and should likely be considered independently when developing vaccine and prevention recommendations.
Collapse
Affiliation(s)
- Erica Rapheal
- University of Minnesota School of Public Health, Minneapolis, Minnesota, USA (E. Rapheal); Chiang Mai University, Chiang Mai, Thailand (A. Kitro); Mahidol University, Bangkok, Thailand (H. Imad, J. Olanwijitwong, L. Chatapat, W. Piyaphanee); Osaka University, Osaka, Japan (H. Imad); University of California, San Francisco, California, USA (M. Hamins-Peurolas); US Army Medical Directorate of the Armed Force Research Institute of Medical Sciences, Bangkok (T. Hunsawong); SUNY Upstate Medical University, Syracuse, New York, USA (K. Anderson)
| | - Amornphat Kitro
- University of Minnesota School of Public Health, Minneapolis, Minnesota, USA (E. Rapheal); Chiang Mai University, Chiang Mai, Thailand (A. Kitro); Mahidol University, Bangkok, Thailand (H. Imad, J. Olanwijitwong, L. Chatapat, W. Piyaphanee); Osaka University, Osaka, Japan (H. Imad); University of California, San Francisco, California, USA (M. Hamins-Peurolas); US Army Medical Directorate of the Armed Force Research Institute of Medical Sciences, Bangkok (T. Hunsawong); SUNY Upstate Medical University, Syracuse, New York, USA (K. Anderson)
| | - Hisham Imad
- University of Minnesota School of Public Health, Minneapolis, Minnesota, USA (E. Rapheal); Chiang Mai University, Chiang Mai, Thailand (A. Kitro); Mahidol University, Bangkok, Thailand (H. Imad, J. Olanwijitwong, L. Chatapat, W. Piyaphanee); Osaka University, Osaka, Japan (H. Imad); University of California, San Francisco, California, USA (M. Hamins-Peurolas); US Army Medical Directorate of the Armed Force Research Institute of Medical Sciences, Bangkok (T. Hunsawong); SUNY Upstate Medical University, Syracuse, New York, USA (K. Anderson)
| | - Marco Hamins-Peurtolas
- University of Minnesota School of Public Health, Minneapolis, Minnesota, USA (E. Rapheal); Chiang Mai University, Chiang Mai, Thailand (A. Kitro); Mahidol University, Bangkok, Thailand (H. Imad, J. Olanwijitwong, L. Chatapat, W. Piyaphanee); Osaka University, Osaka, Japan (H. Imad); University of California, San Francisco, California, USA (M. Hamins-Peurolas); US Army Medical Directorate of the Armed Force Research Institute of Medical Sciences, Bangkok (T. Hunsawong); SUNY Upstate Medical University, Syracuse, New York, USA (K. Anderson)
| | - Jutarmas Olanwijitwong
- University of Minnesota School of Public Health, Minneapolis, Minnesota, USA (E. Rapheal); Chiang Mai University, Chiang Mai, Thailand (A. Kitro); Mahidol University, Bangkok, Thailand (H. Imad, J. Olanwijitwong, L. Chatapat, W. Piyaphanee); Osaka University, Osaka, Japan (H. Imad); University of California, San Francisco, California, USA (M. Hamins-Peurolas); US Army Medical Directorate of the Armed Force Research Institute of Medical Sciences, Bangkok (T. Hunsawong); SUNY Upstate Medical University, Syracuse, New York, USA (K. Anderson)
| | - Lapakorn Chatapat
- University of Minnesota School of Public Health, Minneapolis, Minnesota, USA (E. Rapheal); Chiang Mai University, Chiang Mai, Thailand (A. Kitro); Mahidol University, Bangkok, Thailand (H. Imad, J. Olanwijitwong, L. Chatapat, W. Piyaphanee); Osaka University, Osaka, Japan (H. Imad); University of California, San Francisco, California, USA (M. Hamins-Peurolas); US Army Medical Directorate of the Armed Force Research Institute of Medical Sciences, Bangkok (T. Hunsawong); SUNY Upstate Medical University, Syracuse, New York, USA (K. Anderson)
| | - Taweewun Hunsawong
- University of Minnesota School of Public Health, Minneapolis, Minnesota, USA (E. Rapheal); Chiang Mai University, Chiang Mai, Thailand (A. Kitro); Mahidol University, Bangkok, Thailand (H. Imad, J. Olanwijitwong, L. Chatapat, W. Piyaphanee); Osaka University, Osaka, Japan (H. Imad); University of California, San Francisco, California, USA (M. Hamins-Peurolas); US Army Medical Directorate of the Armed Force Research Institute of Medical Sciences, Bangkok (T. Hunsawong); SUNY Upstate Medical University, Syracuse, New York, USA (K. Anderson)
| | | | | |
Collapse
|
2
|
Santoso MS, Nara MBR, Nugroho DK, Yohan B, Purnama A, Boro AMB, Hayati RF, Gae EP, Denis D, Rana B, Hibberd ML, Sasmono RT. Investigation of severe dengue outbreak in Maumere, East Nusa Tenggara, Indonesia: Clinical, serological, and virological features. PLoS One 2025; 20:e0317854. [PMID: 39965014 PMCID: PMC11835340 DOI: 10.1371/journal.pone.0317854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 01/06/2025] [Indexed: 02/20/2025] Open
Abstract
BACKGROUND Dengue, an acute febrile disease caused by dengue virus (DENV) infection, is endemic to Indonesia. During early 2020, an outbreak of severe dengue occurred in Maumere, East Nusa Tenggara province, a region with low dengue endemicity with limited data on the characteristics of the circulating DENV. By 18 March 2020, 1396 cases were reported with 14 fatalities. Investigation was conducted to understand the cause and characteristics of the outbreak. METHODS Sera were collected from 133 patients with dengue-like symptoms through random sampling at TC Hillers Hospital, Maumere during outbreak between February and June 2020. Dengue was confirmed using NS1 and/or RT-PCR detection. Serological status was determined using IgG/IgM ELISA and plaque reduction neutralization test (PRNT). DENV serotyping and genome sequencing were performed to identify the DENV serotype and genotype. RESULTS We recruited suspected dengue patients attending the hospital during the outbreak. Dengue was confirmed in 72.2% (96/133), while 18.8% (25/133) were diagnosed as probable dengue. Children under 18 years old accounted for 85.1% (103/121) of dengue cases. Severe dengue accounted for 94.2% (81/86) of cases. Secondary infections made up 92.6% (112/121) of cases. Serotyping detected 87.3% (62/71) as DENV-3, 7.0% (5/71) as DENV-4, 2.8% (2/71) as DENV-1, and 2.8% (2/71) as DENV-2. Phylogenetic analysis revealed close evolutionary relationship of Maumere DENV to viruses from other Indonesian regions, especially Bali and Kupang. PRNT on DENV-3 secondary infections patients detected the presence of DENV-2 and DENV-4 neutralizing antibodies. CONCLUSION The severe dengue outbreak in Maumere is caused by DENV-3 introduced from nearby islands. The high proportion of secondary infections likely contributes to the severity of the disease. The high percentage of anti-dengue neutralizing antibodies for multiple serotypes and the high proportion of anti-dengue IgG in young children suggests a history of dengue transmission with a high infection rate in the area.
Collapse
Affiliation(s)
- Marsha S. Santoso
- Eijkman Research Center for Molecular Biology, National Research and Innovation Agency, West Java, Indonesia
- Exeins Health Initiative, Jakarta, Indonesia
| | - Mario B. R. Nara
- TC Hillers Hospital, Maumere, Sikka, East Nusa Tenggara, Indonesia
| | | | | | - Asep Purnama
- TC Hillers Hospital, Maumere, Sikka, East Nusa Tenggara, Indonesia
| | | | | | - Erlinda P. Gae
- TC Hillers Hospital, Maumere, Sikka, East Nusa Tenggara, Indonesia
| | | | - Bunga Rana
- Exeins Health Initiative, Jakarta, Indonesia
| | - Martin L. Hibberd
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - R. Tedjo Sasmono
- Eijkman Research Center for Molecular Biology, National Research and Innovation Agency, West Java, Indonesia
| |
Collapse
|
3
|
Huang AT, Buddhari D, Kaewhiran S, Iamsirithaworn S, Khampaen D, Farmer A, Fernandez S, Thomas SJ, Rodriguez-Barraquer I, Hunsawong T, Srikiatkhachorn A, Ribeiro dos Santos G, O’Driscoll M, Hamins-Puertolas M, Endy T, Rothman AL, Cummings DAT, Anderson K, Salje H. Reconciling heterogeneous dengue virus infection risk estimates from different study designs. Proc Natl Acad Sci U S A 2025; 122:e2411768121. [PMID: 39739790 PMCID: PMC11725863 DOI: 10.1073/pnas.2411768121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 11/23/2024] [Indexed: 01/02/2025] Open
Abstract
Uncovering rates at which susceptible individuals become infected with a pathogen, i.e., the force of infection (FOI), is essential for assessing transmission risk and reconstructing distribution of immunity in a population. For dengue, reconstructing exposure and susceptibility statuses from the measured FOI is of particular significance as prior exposure is a strong risk factor for severe disease. FOI can be measured via many study designs. Longitudinal serology is considered gold standard measurements, as they directly track the transition of seronegative individuals to seropositive due to incident infections (seroincidence). Cross-sectional serology can provide estimates of FOI by contrasting seroprevalence across ages. Age of reported cases can also be used to infer FOI. Agreement of these measurements, however, has not been assessed. Using 26 y of data from cohort studies and hospital-attended cases from Kamphaeng Phet province, Thailand, we found FOI estimates from the three sources to be highly inconsistent. Annual FOI estimates from seroincidence were 1.75 to 4.05 times higher than case-derived FOI. Seroprevalence-derived was moderately correlated with case-derived FOI (correlation coefficient = 0.47) with slightly lower estimates. Through extensive simulations and theoretical analysis, we show that incongruences between methods can result from failing to account for dengue antibody kinetics, assay noise, and heterogeneity in FOI across ages. Extending standard inference models to include these processes reconciled the FOI and susceptibility estimates. Our results highlight the importance of comparing inferences across multiple data types to uncover additional insights not attainable through a single data type/analysis.
Collapse
Affiliation(s)
- Angkana T. Huang
- Department of Genetics, University of Cambridge, CambridgeCB23EH, United Kingdom
- Department of Virology, Armed Forces Research Institute of Medical Sciences, Bangkok10400, Thailand
- Department of Biology, University of Florida, Gainesville, FL32611
| | - Darunee Buddhari
- Department of Virology, Armed Forces Research Institute of Medical Sciences, Bangkok10400, Thailand
| | - Surachai Kaewhiran
- Department of Disease Control, Ministry of Public Health, Nonthaburi11000, Thailand
| | - Sopon Iamsirithaworn
- Department of Disease Control, Ministry of Public Health, Nonthaburi11000, Thailand
| | - Direk Khampaen
- Department of Disease Control, Ministry of Public Health, Nonthaburi11000, Thailand
| | - Aaron Farmer
- Department of Virology, Armed Forces Research Institute of Medical Sciences, Bangkok10400, Thailand
| | - Stefan Fernandez
- Department of Virology, Armed Forces Research Institute of Medical Sciences, Bangkok10400, Thailand
| | - Stephen J. Thomas
- Microbiology and Immunology, State University of New York Upstate Medical University, Syracuse, NY13210
| | | | - Taweewun Hunsawong
- Department of Virology, Armed Forces Research Institute of Medical Sciences, Bangkok10400, Thailand
| | - Anon Srikiatkhachorn
- Department of Virology, Armed Forces Research Institute of Medical Sciences, Bangkok10400, Thailand
- Laboratory of Viral Immunity and Pathogenesis, University of Rhode Island, Kingston, RI02881
| | | | - Megan O’Driscoll
- Department of Genetics, University of Cambridge, CambridgeCB23EH, United Kingdom
| | | | - Timothy Endy
- Coalition for Epidemic Preparedness Innovations, Washington, DC20006
| | - Alan L. Rothman
- Laboratory of Viral Immunity and Pathogenesis, University of Rhode Island, Kingston, RI02881
| | | | - Kathryn Anderson
- Microbiology and Immunology, State University of New York Upstate Medical University, Syracuse, NY13210
| | - Henrik Salje
- Department of Genetics, University of Cambridge, CambridgeCB23EH, United Kingdom
| |
Collapse
|
4
|
Huang AT, Buddhari D, Kaewhiran S, Iamsirithaworn S, Khampaen D, Farmer A, Fernandez S, Thomas SJ, Barraquer IR, Hunsawong T, Srikiatkhachorn A, Dos Santos GR, O'Driscoll M, Hamins-Puertolas M, Endy T, Rothman AL, Cummings DAT, Anderson K, Salje H. Reconciling heterogeneous dengue virus infection risk estimates from different study designs. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.09.09.24313375. [PMID: 39314937 PMCID: PMC11419196 DOI: 10.1101/2024.09.09.24313375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Uncovering rates at which susceptible individuals become infected with a pathogen, i.e. the force of infection (FOI), is essential for assessing transmission risk and reconstructing distribution of immunity in a population. For dengue, reconstructing exposure and susceptibility statuses from the measured FOI is of particular significance as prior exposure is a strong risk factor for severe disease. FOI can be measured via many study designs. Longitudinal serology are considered gold standard measurements, as they directly track the transition of seronegative individuals to seropositive due to incident infections (seroincidence). Cross-sectional serology can provide estimates of FOI by contrasting seroprevalence across ages. Age of reported cases can also be used to infer FOI. Agreement of these measurements, however, have not been assessed. Using 26 years of data from cohort studies and hospital-attended cases from Kamphaeng Phet province, Thailand, we found FOI estimates from the three sources to be highly inconsistent. Annual FOI estimates from seroincidence was 2.46 to 4.33-times higher than case-derived FOI. Correlation between seroprevalence-derived and case-derived FOI was moderate (correlation coefficient=0.46) and no systematic bias. Through extensive simulations and theoretical analysis, we show that incongruences between methods can result from failing to account for dengue antibody kinetics, assay noise, and heterogeneity in FOI across ages. Extending standard inference models to include these processes reconciled the FOI and susceptibility estimates. Our results highlight the importance of comparing inferences across multiple data types to uncover additional insights not attainable through a single data type/analysis.
Collapse
Affiliation(s)
- Angkana T Huang
- University of Cambridge, Cambridge, UK
- Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
- University of Florida, Florida, USA
| | - Darunee Buddhari
- Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | | | | | | | - Aaron Farmer
- Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Stefan Fernandez
- Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | | | | | | | - Anon Srikiatkhachorn
- Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
- University of Rhode Island, USA
| | | | | | | | - Timothy Endy
- Coalition for Epidemic Preparedness Innovations, USA
| | | | | | | | | |
Collapse
|
5
|
Wilder-Smith AB, Wilder-Smith A. Determining force of infection for chikungunya to support vaccine policy development. THE LANCET. INFECTIOUS DISEASES 2024; 24:441-442. [PMID: 38342104 DOI: 10.1016/s1473-3099(24)00062-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 01/22/2024] [Indexed: 02/13/2024]
|
6
|
Ledien J, Cucunubá ZM, Parra-Henao G, Rodríguez-Monguí E, Dobson AP, Adamo SB, Castellanos LG, Basáñez MG, Nouvellet P. From serological surveys to disease burden: a modelling pipeline for Chagas disease. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220278. [PMID: 37598701 PMCID: PMC10440172 DOI: 10.1098/rstb.2022.0278] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 06/29/2023] [Indexed: 08/22/2023] Open
Abstract
In 2012, the World Health Organization (WHO) set the elimination of Chagas disease intradomiciliary vectorial transmission as a goal by 2020. After a decade, some progress has been made, but the new 2021-2030 WHO roadmap has set even more ambitious targets. Innovative and robust modelling methods are required to monitor progress towards these goals. We present a modelling pipeline using local seroprevalence data to obtain national disease burden estimates by disease stage. Firstly, local seroprevalence information is used to estimate spatio-temporal trends in the Force-of-Infection (FoI). FoI estimates are then used to predict such trends across larger and fine-scale geographical areas. Finally, predicted FoI values are used to estimate disease burden based on a disease progression model. Using Colombia as a case study, we estimated that the number of infected people would reach 506 000 (95% credible interval (CrI) = 395 000-648 000) in 2020 with a 1.0% (95%CrI = 0.8-1.3%) prevalence in the general population and 2400 (95%CrI = 1900-3400) deaths (approx. 0.5% of those infected). The interplay between a decrease in infection exposure (FoI and relative proportion of acute cases) was overcompensated by a large increase in population size and gradual population ageing, leading to an increase in the absolute number of Chagas disease cases over time. This article is part of the theme issue 'Challenges and opportunities in the fight against neglected tropical diseases: a decade from the London Declaration on NTDs'.
Collapse
Affiliation(s)
- Julia Ledien
- School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9RH, UK
| | - Zulma M. Cucunubá
- Departamento de Epidemiología Clínica y Bioestadística, Facultad de Medicina, Universidad Pontificia Javeriana, 110231 Bogotá, Colombia
| | - Gabriel Parra-Henao
- Centro de Investigación en Salud para el Trópico, Universidad Cooperativa de Colombia, 470002, Santa Marta, Colombia
- National Institute of Health, 111321 Bogotá, Colombia
| | - Eliana Rodríguez-Monguí
- Departamento de Epidemiología Clínica y Bioestadística, Facultad de Medicina, Universidad Pontificia Javeriana, 110231 Bogotá, Colombia
- Independent consultant to the Neglected, Tropical and Vector Borne Diseases Program, Pan American Health Organization (PAHO), Colombia
| | - Andrew P. Dobson
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA
| | - Susana B. Adamo
- Center for International Earth Science Information Network (CIESIN), Columbia Climate School, Columbia University, New York, NY 10025, USA
| | - Luis Gerardo Castellanos
- Department of Communicable Diseases and Environmental Determinants of Health, Pan American Health Organization (PAHO), Washington, DC 20037, USA
| | - María-Gloria Basáñez
- London Centre for Neglected Tropical Disease Research (LCNTDR) & MRC Centre for Global Infectious Disease Analysis (GIDA), Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London SW7 2AZ, UK
| | - Pierre Nouvellet
- School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9RH, UK
- London Centre for Neglected Tropical Disease Research (LCNTDR) & MRC Centre for Global Infectious Disease Analysis (GIDA), Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
7
|
Ashall J, Shah S, Biggs JR, Chang JNR, Jafari Y, Brady OJ, Mai HK, Lien LT, Do Thai H, Nguyen HAT, Anh DD, Iwasaki C, Kitamura N, Van Loock M, Herrera-Taracena G, Rasschaert F, Van Wesenbeeck L, Yoshida LM, Hafalla JCR, Hue S, Hibberd ML. A phylogenetic study of dengue virus in urban Vietnam shows long-term persistence of endemic strains. Virus Evol 2023; 9:vead012. [PMID: 36926448 PMCID: PMC10013730 DOI: 10.1093/ve/vead012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 10/31/2022] [Accepted: 02/15/2023] [Indexed: 02/17/2023] Open
Abstract
Dengue virus (DENV) causes repeated outbreaks of disease in endemic areas, with patterns of local transmission strongly influenced by seasonality, importation via human movement, immunity, and vector control efforts. An understanding of how each of these interacts to enable endemic transmission (continual circulation of local virus strains) is largely unknown. There are times of the year when no cases are reported, often for extended periods of time, perhaps wrongly implying the successful eradication of a local strain from that area. Individuals who presented at a clinic or hospital in four communes in Nha Trang, Vietnam, were initially tested for DENV antigen presence. Enrolled positive individuals then had their corresponding household members invited to participate, and those who enrolled were tested for DENV. The presence of viral nucleic acid in all samples was confirmed using quantitative polymerase chain reaction, and positive samples were then whole-genome sequenced using an amplicon and target enrichment library preparation techniques and Illumina MiSeq sequencing technology. Generated consensus genome sequences were then analysed using phylogenetic tree reconstruction to categorise sequences into clades with a common ancestor, enabling investigations of both viral clade persistence and introductions. Hypothetical introduction dates were additionally assessed using a molecular clock model that calculated the time to the most recent common ancestor (TMRCA). We obtained 511 DENV whole-genome sequences covering four serotypes and more than ten distinct viral clades. For five of these clades, we had sufficient data to show that the same viral lineage persisted for at least several months. We noted that some clades persisted longer than others during the sampling time, and by comparison with other published sequences from elsewhere in Vietnam and around the world, we saw that at least two different viral lineages were introduced into the population during the study period (April 2017-2019). Next, by inferring the TMRCA from the construction of molecular clock phylogenies, we predicted that two of the viral lineages had been present in the study population for over a decade. We observed five viral lineages co-circulating in Nha Trang from three DENV serotypes, with two likely to have remained as uninterrupted transmission chains for a decade. This suggests clade cryptic persistence in the area, even during periods of low reported incidence.
Collapse
Affiliation(s)
- James Ashall
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - Sonal Shah
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - Joseph R Biggs
- Department of Infectious Disease Epidemiology, Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - Jui-Ning R Chang
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - Yalda Jafari
- Department of Infectious Disease Epidemiology, Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - Oliver J Brady
- Department of Infectious Disease Epidemiology, Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
- Centre for the Mathematical Modelling of Infectious Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - Huynh Kim Mai
- Department of Microbiology and Immunology, Pasteur Institute of Nha Trang, Xương Huân, Nha Trang, 650000, Vietnam
| | - Le Thuy Lien
- Department of Microbiology and Immunology, Pasteur Institute of Nha Trang, Xương Huân, Nha Trang, 650000, Vietnam
| | - Hung Do Thai
- Department of Microbiology and Immunology, Pasteur Institute of Nha Trang, Xương Huân, Nha Trang, 650000, Vietnam
| | - Hien Anh Thi Nguyen
- National Institute of Hygiene and Epidemiology, 1 P. Yec Xanh, Phạm Đình Hổ, Hai Bà Trưng, Hà Nội, 100000, Vietnam
| | - Dang Duc Anh
- National Institute of Hygiene and Epidemiology, 1 P. Yec Xanh, Phạm Đình Hổ, Hai Bà Trưng, Hà Nội, 100000, Vietnam
| | - Chihiro Iwasaki
- Paediatric Infectious Diseases Department, Institute of Tropical Medicine, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Noriko Kitamura
- Department of Infectious Disease Epidemiology, Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
- Paediatric Infectious Diseases Department, Institute of Tropical Medicine, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Marnix Van Loock
- Janssen R&D, Janssen Pharmaceutica NV, Turnhoutseweg 30, Beerse B-2340, Belgium
| | - Guillermo Herrera-Taracena
- Janssen Global Public Health, Janssen Research & Development, LLC, 800 Ridgeview Drive, Horsham, PA 19044, USA
| | - Freya Rasschaert
- Janssen R&D, Janssen Pharmaceutica NV, Turnhoutseweg 30, Beerse B-2340, Belgium
| | | | - Lay-Myint Yoshida
- Paediatric Infectious Diseases Department, Institute of Tropical Medicine, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Julius Clemence R Hafalla
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - Stephane Hue
- Department of Infectious Disease Epidemiology, Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
- Centre for the Mathematical Modelling of Infectious Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - Martin L Hibberd
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| |
Collapse
|
8
|
Serology as a Tool to Assess Infectious Disease Landscapes and Guide Public Health Policy. Pathogens 2022; 11:pathogens11070732. [PMID: 35889978 PMCID: PMC9323579 DOI: 10.3390/pathogens11070732] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/10/2022] [Accepted: 06/16/2022] [Indexed: 01/27/2023] Open
Abstract
Understanding the local burden and epidemiology of infectious diseases is crucial to guide public health policy and prioritize interventions. Typically, infectious disease surveillance relies on capturing clinical cases within a healthcare system, classifying cases by etiology and enumerating cases over a period of time. Disease burden is often then extrapolated to the general population. Serology (i.e., examining serum for the presence of pathogen-specific antibodies) has long been used to inform about individuals past exposure and immunity to specific pathogens. However, it has been underutilized as a tool to evaluate the infectious disease burden landscape at the population level and guide public health decisions. In this review, we outline how serology provides a powerful tool to complement case-based surveillance for determining disease burden and epidemiology of infectious diseases, highlighting its benefits and limitations. We describe the current serology-based technologies and illustrate their use with examples from both the pre- and post- COVID-19-pandemic context. In particular, we review the challenges to and opportunities in implementing serological surveillance in low- and middle-income countries (LMICs), which bear the brunt of the global infectious disease burden. Finally, we discuss the relevance of serology data for public health decision-making and describe scenarios in which this data could be used, either independently or in conjunction with case-based surveillance. We conclude that public health systems would greatly benefit from the inclusion of serology to supplement and strengthen existing case-based infectious disease surveillance strategies.
Collapse
|
9
|
Bhatia S, Bansal D, Patil S, Pandya S, Ilyas QM, Imran S. A Retrospective Study of Climate Change Affecting Dengue: Evidences, Challenges and Future Directions. Front Public Health 2022; 10:884645. [PMID: 35712272 PMCID: PMC9197220 DOI: 10.3389/fpubh.2022.884645] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 04/26/2022] [Indexed: 11/30/2022] Open
Abstract
Climate change is unexpected weather patterns that can create an alarming situation. Due to climate change, various sectors are affected, and one of the sectors is healthcare. As a result of climate change, the geographic range of several vector-borne human infectious diseases will expand. Currently, dengue is taking its toll, and climate change is one of the key reasons contributing to the intensification of dengue disease transmission. The most important climatic factors linked to dengue transmission are temperature, rainfall, and relative humidity. The present study carries out a systematic literature review on the surveillance system to predict dengue outbreaks based on Machine Learning modeling techniques. The systematic literature review discusses the methodology and objectives, the number of studies carried out in different regions and periods, the association between climatic factors and the increase in positive dengue cases. This study also includes a detailed investigation of meteorological data, the dengue positive patient data, and the pre-processing techniques used for data cleaning. Furthermore, correlation techniques in several studies to determine the relationship between dengue incidence and meteorological parameters and machine learning models for predictive analysis are discussed. In the future direction for creating a dengue surveillance system, several research challenges and limitations of current work are discussed.
Collapse
Affiliation(s)
- Surbhi Bhatia
- Department of Information Systems, College of Computer Sciences and Information Technology, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Dhruvisha Bansal
- Symbiosis Institute of Technology, Symbiosis International (Deemed) University, Pune, India
| | - Seema Patil
- Symbiosis Institute of Technology, Symbiosis International (Deemed) University, Pune, India
| | - Sharnil Pandya
- Symbiosis Institute of Technology, Symbiosis International (Deemed) University, Pune, India
| | - Qazi Mudassar Ilyas
- Department of Information Systems, College of Computer Sciences and Information Technology, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Sajida Imran
- Department of Computer Engineering, College of Computer Sciences and Information Technology, King Faisal University, Al-Ahsa, Saudi Arabia
| |
Collapse
|
10
|
Biggs JR, Sy AK, Ashall J, Santoso MS, Brady OJ, Reyes MAJ, Quinones MA, Jones-Warner W, Tandoc AO, Sucaldito NL, Mai HK, Lien LT, Thai HD, Nguyen HAT, Anh DD, Iwasaki C, Kitamura N, Van Loock M, Herrera-Taracena G, Menten J, Rasschaert F, Van Wesenbeeck L, Masyeni S, Haryanto S, Yohan B, Cutiongco-de la Paz E, Yoshida LM, Hue S, Rosario Z. Capeding M, Padilla CD, Sasmono RT, Hafalla JCR, Hibberd ML. Combining rapid diagnostic tests to estimate primary and post-primary dengue immune status at the point of care. PLoS Negl Trop Dis 2022; 16:e0010365. [PMID: 35507552 PMCID: PMC9067681 DOI: 10.1371/journal.pntd.0010365] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 03/28/2022] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Characterising dengue virus (DENV) infection history at the point of care is challenging as it relies on intensive laboratory techniques. We investigated how combining different rapid diagnostic tests (RDTs) can be used to accurately determine the primary and post-primary DENV immune status of reporting patients during diagnosis. METHODS AND FINDINGS Serum from cross-sectional surveys of acute suspected dengue patients in Indonesia (N:200) and Vietnam (N: 1,217) were assayed using dengue laboratory assays and RDTs. Using logistic regression modelling, we determined the probability of being DENV NS1, IgM and IgG RDT positive according to corresponding laboratory viremia, IgM and IgG ELISA metrics. Laboratory test thresholds for RDT positivity/negativity were calculated using Youden's J index and were utilized to estimate the RDT outcomes in patients from the Philippines, where only data for viremia, IgM and IgG were available (N:28,326). Lastly, the probabilities of being primary or post-primary according to every outcome using all RDTs, by day of fever, were calculated. Combining NS1, IgM and IgG RDTs captured 94.6% (52/55) and 95.4% (104/109) of laboratory-confirmed primary and post-primary DENV cases, respectively, during the first 5 days of fever. Laboratory test predicted, and actual, RDT outcomes had high agreement (79.5% (159/200)). Among patients from the Philippines, different combinations of estimated RDT outcomes were indicative of post-primary and primary immune status. Overall, IgG RDT positive results were confirmatory of post-primary infections. In contrast, IgG RDT negative results were suggestive of both primary and post-primary infections on days 1-2 of fever, yet were confirmatory of primary infections on days 3-5 of fever. CONCLUSION We demonstrate how the primary and post-primary DENV immune status of reporting patients can be estimated at the point of care by combining NS1, IgM and IgG RDTs and considering the days since symptoms onset. This framework has the potential to strengthen surveillance operations and dengue prognosis, particularly in low resource settings.
Collapse
Affiliation(s)
- Joseph R. Biggs
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Ava Kristy Sy
- Department of Virology, Research Institute for Tropical Medicine, Manila, Philippines
- Dengue Study Group, Research Institute for Tropical Medicine, Manila, Philippines
| | - James Ashall
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Marsha S. Santoso
- Dengue Research Unit, Eijkman Institute for Molecular Biology, National Agency for Research and Innovation of the Republic of Indonesia, Jakarta, Indonesia
| | - Oliver J. Brady
- Department of Infectious Disease Epidemiology, Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, United Kingdom
- Centre for the Mathematical Modelling of Infectious Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Mary Anne Joy Reyes
- Department of Virology, Research Institute for Tropical Medicine, Manila, Philippines
- Dengue Study Group, Research Institute for Tropical Medicine, Manila, Philippines
| | - Mary Ann Quinones
- Department of Virology, Research Institute for Tropical Medicine, Manila, Philippines
- Dengue Study Group, Research Institute for Tropical Medicine, Manila, Philippines
| | - William Jones-Warner
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Amadou O. Tandoc
- Department of Virology, Research Institute for Tropical Medicine, Manila, Philippines
| | - Nemia L. Sucaldito
- Philippine Epidemiology Bureau, Department of Health, Manila, Philippines
| | | | - Le Thuy Lien
- Pasteur Institute of Nha Trang, Nha Trang, Vietnam
| | - Hung Do Thai
- Pasteur Institute of Nha Trang, Nha Trang, Vietnam
| | | | - Dang Duc Anh
- National Institute of Hygiene and Epidemiology, Hanoi, Vietnam
| | - Chihiro Iwasaki
- Paediatric Infectious Diseases Department, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | - Noriko Kitamura
- Paediatric Infectious Diseases Department, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | - Marnix Van Loock
- Janssen Global Public Health, Janssen Pharmaceutica NV, Beerse, Belgium
| | - Guillermo Herrera-Taracena
- Janssen Global Public Health, Janssen Research & Development, Horsham, Pennsylvania, United States of America
| | - Joris Menten
- Quantitative Sciences, Janssen Pharmaceutica NV, Beerse, Belgium
| | - Freya Rasschaert
- Janssen Global Public Health, Janssen Pharmaceutica NV, Beerse, Belgium
| | | | - Sri Masyeni
- Department of Internal Medicine, Faculty of Medicine and Health Sciences, Universitas Warmadewa, Denpasar, Bali, Indonesia
| | | | - Benediktus Yohan
- Dengue Research Unit, Eijkman Institute for Molecular Biology, National Agency for Research and Innovation of the Republic of Indonesia, Jakarta, Indonesia
| | - Eva Cutiongco-de la Paz
- Institute of Human Genetics, University of the Philippines, Manila, Philippines
- Philippine Genome Centre, University of the Philippines, Manila, Philippines
| | - Lay-Myint Yoshida
- Paediatric Infectious Diseases Department, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | - Stephane Hue
- Department of Infectious Disease Epidemiology, Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, United Kingdom
- Centre for the Mathematical Modelling of Infectious Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Maria Rosario Z. Capeding
- Dengue Study Group, Research Institute for Tropical Medicine, Manila, Philippines
- Institute of Human Genetics, University of the Philippines, Manila, Philippines
| | - Carmencita D. Padilla
- Institute of Human Genetics, University of the Philippines, Manila, Philippines
- Philippine Genome Centre, University of the Philippines, Manila, Philippines
| | - R. Tedjo Sasmono
- Dengue Research Unit, Eijkman Institute for Molecular Biology, National Agency for Research and Innovation of the Republic of Indonesia, Jakarta, Indonesia
| | - Julius Clemence R. Hafalla
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Martin L. Hibberd
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
- Institute of Human Genetics, University of the Philippines, Manila, Philippines
- Philippine Genome Centre, University of the Philippines, Manila, Philippines
| |
Collapse
|