1
|
Luo Y, Zhou S, Song Y, Huang WC, Wilding GE, Jablonski J, Quinn B, Lovell JF. Iterative selection of lipid nanoparticle vaccine adjuvants for rapid elicitation of tumoricidal CD8⁺ T cells. Bioact Mater 2025; 48:189-199. [PMID: 40046011 PMCID: PMC11880734 DOI: 10.1016/j.bioactmat.2025.01.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 01/19/2025] [Accepted: 01/21/2025] [Indexed: 03/09/2025] Open
Abstract
A challenge for cancer vaccines is to elicit immune responses of sufficient magnitude to control malignant tumor growth and spread. In this study, we iteratively screened a panel of 22 lipid-phase vaccine adjuvants in mice for the elicitation of neoantigen-specific CD8⁺ T cell responses, using an integrated peptide-lipid nanoparticle approach. CL401, a dual Toll-like receptor 2/7 (TLR2/7) adjuvant rapidly induced neoantigen-specific T cell responses and improved lymphatic drainage and uptake of the particle. Additional rounds of in vivo screening identified complementary adjuvants which targeted TLR4 (3D6A-PHAD adjuvant), TLR8 (motolimod), and inflammasome (QS-21) pathways and synergized to enhance cytokine secretion in antigen presenting cells and vaccine-elicited neoantigen-specific CD8⁺ T cells. Co-delivery of adjuvants and antigens led to effective immune responses which regressed large established tumors, synergized with immune checkpoint blockade, and inhibited lung nodules in an experimental metastasis model, without overt toxicity or reactogenicity. We conclude that iterative adjuvant screening, performed in mice in vivo, can identify useful adjuvant combinations that hold potential for therapeutic cancer vaccine research.
Collapse
Affiliation(s)
- Yuan Luo
- Department of Biomedical Engineering, State University of New York (SUNY) at Buffalo, Buffalo, NY, 14260, USA
| | - Shiqi Zhou
- Department of Biomedical Engineering, State University of New York (SUNY) at Buffalo, Buffalo, NY, 14260, USA
| | - Yiting Song
- Department of Biomedical Engineering, State University of New York (SUNY) at Buffalo, Buffalo, NY, 14260, USA
| | - Wei-Chiao Huang
- Department of Biomedical Engineering, State University of New York (SUNY) at Buffalo, Buffalo, NY, 14260, USA
| | | | - James Jablonski
- Department of Biomedical Engineering, State University of New York (SUNY) at Buffalo, Buffalo, NY, 14260, USA
| | - Breandan Quinn
- Department of Biomedical Engineering, State University of New York (SUNY) at Buffalo, Buffalo, NY, 14260, USA
| | - Jonathan F. Lovell
- Department of Biomedical Engineering, State University of New York (SUNY) at Buffalo, Buffalo, NY, 14260, USA
| |
Collapse
|
2
|
Wu H, Weng R, Li J, Huang Z, Tie X, Li J, Chen K. Self-Assembling protein nanoparticle platform for multivalent antigen delivery in vaccine development. Int J Pharm 2025; 676:125597. [PMID: 40233885 DOI: 10.1016/j.ijpharm.2025.125597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 04/07/2025] [Accepted: 04/12/2025] [Indexed: 04/17/2025]
Abstract
Nanoparticle vaccines can efficiently and repeatedly display multivalent antigens, thereby improving the targeted delivery of antigens and inducing more durable immune responses, making them an important representative of novel vaccines. The global COVID-19 pandemic has accelerated the development of nanoparticle vaccines, offering a promising solution for the prevention and control of infectious diseases. Currently, the development of nanoparticle vaccines involves the use of various types of nanoparticles, including liposomes, polymers, inorganic materials, and emulsions. Protein nanoparticles candidate vaccines are attracting increasing attention because of their unique antigen presentation methods and self-assembly characteristics during their development, leading to a broad consensus on their promising future. Naturally self-assembling protein nanoparticles, such as ferritin, enhance antigen presentation, which aids in the activation of both humoral and cellular immune responses. This has led to significant advancements in the study of hepatitis B virus. Meanwhile, some synthetically engineered protein nanoparticles, such as mi3, and I53-50, can induce higher antibody titers through chemical conjugation with the SpyTag-SpyCatcher system, thereby providing better immunoprotection and showing promising prospects in the prevention of H1N1 and H3N2 influenza virus infections. This article reviews the unique advantages of protein nanoparticles as antigen delivery platforms, progress made in immunological design mechanisms, advances in the application of related adjuvants in preclinical and clinical trials, and the performance of commonly used computationally designed protein nanoparticles in preclinical trials, with a particular emphasis on the progress in the application of cationic nanoparticle vaccines. The aim is to provide future researchers with effective adjuvant strategies and high-quality selections for computationally designed protein nanoparticles, thereby promoting the clinical trial process of protein nanoparticles vaccines.
Collapse
Affiliation(s)
- Hao Wu
- Zhejiang Chinese Medical University, Hangzhou 310053, PR China; Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, PR China
| | - Ruiqi Weng
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, PR China
| | - Jiaxuan Li
- Zhejiang Chinese Medical University, Hangzhou 310053, PR China
| | - Zhiwei Huang
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, PR China
| | - Xiaotian Tie
- Zhejiang Chinese Medical University, Hangzhou 310053, PR China
| | - Jianhua Li
- Zhejiang Key Laboratory of Public Health Detection and Pathogenesis Research, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, PR China.
| | - Keda Chen
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, PR China.
| |
Collapse
|
3
|
Song Y, Huang WC, Ivanochko D, Long C, Li Q, Zhou L, Julien JP, Miura K, Lovell JF. 50-Fold Adjuvant and 20-Fold Antigen Vaccine Dose Sparing from Nanoliposome Display of a Stabilized Malarial Protein Antigen. ACS NANO 2025; 19:10103-10112. [PMID: 40099532 DOI: 10.1021/acsnano.4c16865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Displaying soluble vaccine protein antigens onto the surface of adjuvanted nanoliposomes can enhance the magnitude of elicited antibody responses. In this study, we examine this approach with respect to dose sparing, for not only the antigen component but also the adjuvant dose in the vaccine. Using a structurally stabilized Pfs48/45 derived malarial protein as a model antigen, we confirmed the protein rapidly displayed on the surface of immunogenic liposomes containing cobalt porphyrin phospholipid (CoPoP; for antigen display via His-tag interaction) along with the immunostimulatory adjuvants monophosphoryl lipid A (MPLA) and QS-21. Mice were immunized with a fixed protein antigen dose with varying adjuvant doses to estimate the extent of adjuvant sparing. In mice vaccinated at a fixed protein antigen dose, liposome-bound Pfs48/45 achieved superior antibody IgG titers compared to the soluble (nonbound) form at all assessed adjuvant doses, reflecting MPLA and QS-21 adjuvant dose sparing of at least 50-fold. The primary driver of adjuvant sparing in these conditions was presentation of the antigen in a nanoparticle format, and potent responses were achieved even without co-delivery of antigen and adjuvant within the same particle, provided that adjuvant and liposome-displayed antigen were co-administered to the same injection site. By keeping the adjuvant dose fixed and varying the antigen dose in a comparable experimental design, ∼20-fold antigen dose sparing was observed with liposome display. This case study illustrates the potential of antigen-display nanotechnologies, such as CoPoP nanoliposomes, to achieve substantial adjuvant and antigen dose sparing, which could theoretically facilitate the deployment of future vaccines.
Collapse
Affiliation(s)
- Yiting Song
- Department of Biomedical Engineering, State University of New York at Buffalo, Buffalo, New York 14260, United States
| | - Wei-Chiao Huang
- Department of Biomedical Engineering, State University of New York at Buffalo, Buffalo, New York 14260, United States
| | - Danton Ivanochko
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute, Toronto, Ontario M5G 0A4, Canada
| | - Carole Long
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland 20852, United States
| | - Qinzhe Li
- Department of Biomedical Engineering, State University of New York at Buffalo, Buffalo, New York 14260, United States
| | - Luwen Zhou
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland 20852, United States
| | - Jean-Philippe Julien
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute, Toronto, Ontario M5G 0A4, Canada
| | - Kazutoyo Miura
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland 20852, United States
| | - Jonathan F Lovell
- Department of Biomedical Engineering, State University of New York at Buffalo, Buffalo, New York 14260, United States
| |
Collapse
|
4
|
Portilho AI, Hermes Monteiro da Costa H, Grando Guereschi M, Prudencio CR, De Gaspari E. Hybrid response to SARS-CoV-2 and Neisseria meningitidis C after an OMV-adjuvanted immunization in mice and their offspring. Hum Vaccin Immunother 2024; 20:2346963. [PMID: 38745461 PMCID: PMC11789737 DOI: 10.1080/21645515.2024.2346963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 04/15/2024] [Accepted: 04/20/2024] [Indexed: 05/16/2024] Open
Abstract
COVID-19, caused by SARS-CoV-2, and meningococcal disease, caused by Neisseria meningitidis, are relevant infectious diseases, preventable through vaccination. Outer membrane vesicles (OMVs), released from Gram-negative bacteria, such as N. meningitidis, present adjuvant characteristics and may confer protection against meningococcal disease. Here, we evaluated in mice the humoral and cellular immune response to different doses of receptor binding domain (RBD) of SARS-CoV-2 adjuvanted by N. meningitidis C:2a:P1.5 OMVs and aluminum hydroxide, as a combined preparation for these pathogens. The immunization induced IgG antibodies of high avidity for RBD and OMVs, besides IgG that recognized the Omicron BA.2 variant of SARS-CoV-2 with intermediary avidity. Cellular immunity showed IFN-γ and IL-4 secretion in response to RBD and OMV stimuli, demonstrating immunologic memory and a mixed Th1/Th2 response. Offspring presented transferred IgG of similar levels and avidity as their mothers. Humoral immunity did not point to the superiority of any RBD dose, but the group immunized with a lower antigenic dose (0.5 μg) had the better cellular response. Overall, OMVs enhanced RBD immunogenicity and conferred an immune response directed to N. meningitidis too.
Collapse
MESH Headings
- Animals
- Mice
- Immunoglobulin G/blood
- Neisseria meningitidis/immunology
- Female
- Antibodies, Viral/blood
- Antibodies, Viral/immunology
- COVID-19/prevention & control
- COVID-19/immunology
- SARS-CoV-2/immunology
- Adjuvants, Immunologic/administration & dosage
- COVID-19 Vaccines/immunology
- COVID-19 Vaccines/administration & dosage
- Immunity, Cellular
- Immunity, Humoral
- Mice, Inbred BALB C
- Meningococcal Infections/prevention & control
- Meningococcal Infections/immunology
- Spike Glycoprotein, Coronavirus/immunology
- Adjuvants, Vaccine/administration & dosage
- Aluminum Hydroxide/administration & dosage
- Aluminum Hydroxide/immunology
- Immunization/methods
- Antibody Affinity
- Antibodies, Bacterial/blood
- Antibodies, Bacterial/immunology
- Meningococcal Vaccines/immunology
- Meningococcal Vaccines/administration & dosage
- Immunologic Memory
- Th1 Cells/immunology
Collapse
Affiliation(s)
- Amanda Izeli Portilho
- Immunology Center, Adolfo Lutz Institute, São Paulo, Brazil
- Post-Graduate Program Interunits in Biotechnology, University of São Paulo, São Paulo, Brazil
| | - Hernan Hermes Monteiro da Costa
- Immunology Center, Adolfo Lutz Institute, São Paulo, Brazil
- Post-Graduate Program Interunits in Biotechnology, University of São Paulo, São Paulo, Brazil
| | | | - Carlos Roberto Prudencio
- Immunology Center, Adolfo Lutz Institute, São Paulo, Brazil
- Post-Graduate Program Interunits in Biotechnology, University of São Paulo, São Paulo, Brazil
| | - Elizabeth De Gaspari
- Immunology Center, Adolfo Lutz Institute, São Paulo, Brazil
- Post-Graduate Program Interunits in Biotechnology, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
5
|
Song Y, Dai CL, Shinohara M, Chyn Tung Y, Zhou S, Huang WC, Seffouh A, Luo Y, Willadsen M, Jiao Y, Morishima M, Saito Y, Koh SH, Ortega J, Gong CX, Lovell JF. A pentavalent peptide vaccine elicits Aβ and tau antibodies with prophylactic activity in an Alzheimer's disease mouse model. Brain Behav Immun 2024; 122:185-201. [PMID: 39142420 DOI: 10.1016/j.bbi.2024.08.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 06/19/2024] [Accepted: 08/11/2024] [Indexed: 08/16/2024] Open
Abstract
Amyloid-β (Aβ) and hyperphosphorylated tau protein are targets for Alzheimer's Disease (AD) immunotherapies, which are generally focused on single epitopes within Aβ or tau. However, due to the complexity of both Aβ and tau in AD pathogenesis, a multipronged approach simultaneously targeting multiple epitopes of both proteins could overcome limitations of monotherapies. Herein, we propose an active AD immunotherapy based on a nanoparticle vaccine comprising two Aβ peptides (1-14 and pyroglutamate pE3-14) and three tau peptides (centered on phosphorylated pT181, pT217 and pS396/404). These correspond to both soluble and aggregated targets and are displayed on the surface of immunogenic liposomes in an orientation that maintains reactivity with epitope-specific monoclonal antibodies. Intramuscular immunization of mice with individual epitopes resulted in minimally cross-reactive antibody induction, while simultaneous co-display of 5 antigens ("5-plex") induced antibodies against all epitopes without immune interference. Post-immune sera recognized plaques and neurofibrillary tangles from human AD brain tissue. Vaccine administration to 3xTg-AD mice using a prophylactic dosing schedule inhibited tau and amyloid pathologies and resulted in improved cognitive function. Immunization was well tolerated and did not induce antigen-specific cellular responses or persistent inflammatory responses in the peripheral or central nervous system. Antibody levels could be reversed by halting monthly vaccinations. Altogether, these results indicate that active immune therapies based on nanoparticle formulations of multiple Aβ and tau epitopes warrant further study for treating early-stage AD.
Collapse
Affiliation(s)
- Yiting Song
- Department of Biomedical Engineering, State University of New York at Buffalo, Buffalo, NY 14260, USA
| | - Chun-Ling Dai
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY 10314, USA
| | - Mitsuru Shinohara
- Department of Aging Neurobiology, Research Institute, National Center for Geriatrics and Gerontology, 7-430, Morioka, Obu, Aichi 474-8511, Japan
| | - Yunn Chyn Tung
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY 10314, USA
| | - Shiqi Zhou
- Department of Biomedical Engineering, State University of New York at Buffalo, Buffalo, NY 14260, USA
| | - Wei-Chiao Huang
- Department of Biomedical Engineering, State University of New York at Buffalo, Buffalo, NY 14260, USA; POP Biotechnologies, Buffalo, NY 14228, USA
| | - Amal Seffouh
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec H3A 0C7, Canada
| | - Yuan Luo
- Department of Biomedical Engineering, State University of New York at Buffalo, Buffalo, NY 14260, USA
| | | | - Yang Jiao
- Department of Biomedical Engineering, State University of New York at Buffalo, Buffalo, NY 14260, USA
| | - Maho Morishima
- Department of Neuropathology (the Brain Bank for Aging Research), Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, 35-2, Sakaecho, Itabashi-ku, Tokyo 173-0015, Japan
| | - Yuko Saito
- Department of Neuropathology (the Brain Bank for Aging Research), Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, 35-2, Sakaecho, Itabashi-ku, Tokyo 173-0015, Japan
| | - Seong-Ho Koh
- Department of Neurology, Hanyang University Guri Hospital, Guri-si, Gyeonggi-do 11923, Republic of Korea
| | - Joaquin Ortega
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec H3A 0C7, Canada
| | - Cheng-Xin Gong
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY 10314, USA.
| | - Jonathan F Lovell
- Department of Biomedical Engineering, State University of New York at Buffalo, Buffalo, NY 14260, USA.
| |
Collapse
|
6
|
Lovell JF, Miura K, Baik YO, Lee C, Choi Y, Her H, Lee JY, Ylade M, Lee-Llacer R, De Asis N, Trinidad-Aseron M, Ranola JM, De Jesus LZ. Interim safety and immunogenicity analysis of the EuCorVac-19 COVID-19 vaccine in a Phase 3 randomized, observer-blind, immunobridging trial in the Philippines. J Med Virol 2024; 96:e29927. [PMID: 39318203 DOI: 10.1002/jmv.29927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 08/29/2024] [Accepted: 09/07/2024] [Indexed: 09/26/2024]
Abstract
EuCorVac-19 (ECV-19) is a recombinant receptor binding domain (RBD) COVID-19 vaccine that displays the RBD (derived from the SARS-CoV-2 Wuhan strain) on immunogenic liposomes. This study compares the safety and immunogenicity of ECV-19 to the COVISHIELDTM (CS) adenoviral-vectored vaccine. Interim analysis is presented of a randomized, observer-blind, immunobridging Phase 3 trial in the Philippines in 2600 subjects, with treatment and biospecimen collection between October 2022 and January 2023. Healthy male and female adults who received investigational vaccines were 18 years and older, and randomly assigned to ECV-19 (n = 2004) or CS (n = 596) groups. Immunization followed a two-injection, intramuscular regimen with 4 weeks between prime and boost vaccination. Safety endpoints were assessed in all participants and immunogenicity analysis was carried out in a subset (n = 585 in ECV-19 and n = 290 in CS groups). The primary immunological endpoints were superiority of neutralizing antibody response, as well as noninferiority in seroresponse rate (defined as a 4-fold increase in RBD antibody titers from baseline). After prime vaccination, ECV-19 had a lower incidence of local solicited adverse events (AEs) (12.0% vs. 15.8%, p < 0.01), and solicited systemic AEs (13.1 vs. 17.4%, p < 0.01) relative to CS. After the second injection, both ECV-19 and CS had lower overall solicited AEs (7.8% vs. 7.6%). For immunological assessment, 98% of participants had prior COVID-19 exposure (based on the presence of anti-nucleocapsid antibodies) at the time of the initial immunization, without differing baseline antibody levels or microneutralization (MN) titers against the Wuhan strain in the two groups. After prime vaccination, ECV-19 induced higher anti-RBD IgG relative to CS (1,464 vs. 355 BAU/mL, p < 0.001) and higher neutralizing antibody response (1,303 vs. 494 MN titer, p < 0.001). After boost vaccination, ECV-19 and CS maintained those levels of anti-RBD IgG (1367 vs. 344 BAU/mL, p < 0.001) and neutralizing antibodies (1128 vs. 469 MN titer, p < 0.001). ECV-19 also elicited antibodies that better neutralized the Omicron variant, compared to CS (763 vs. 373 MN titer, p < 0.001). Women displayed higher responses to both vaccines than men. The ECV-19 group had a greater seroresponse rate compared to CS (83% vs. 30%, p < 0.001). In summary, both ECV-19 and CS had favorable safety profiles, with ECV-19 showing diminished local and systemic solicited AE after prime immunization. ECV-19 had significantly greater immunogenicity in terms of anti-RBD IgG, neutralizing antibodies, and seroresponse rate. These data establish a relatively favorable safety and immunogenicity profile for ECV-19. The trial is registered on ClinicalTrials.gov (NCT05572879).
Collapse
Affiliation(s)
- Jonathan F Lovell
- Department of Biomedical Engineering, University at Buffalo, Buffalo, New York, USA
| | - Kazutoyo Miura
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA
| | - Yeong Ok Baik
- EuBiologics, R&D Center, EuBiologics Co., Ltd., Seoul, Republic of Korea
| | - Chankyu Lee
- EuBiologics, R&D Center, EuBiologics Co., Ltd., Seoul, Republic of Korea
| | - YoungJin Choi
- EuBiologics, R&D Center, EuBiologics Co., Ltd., Seoul, Republic of Korea
| | - Howard Her
- EuBiologics, R&D Center, EuBiologics Co., Ltd., Seoul, Republic of Korea
| | - Jeong-Yoon Lee
- EuBiologics, R&D Center, EuBiologics Co., Ltd., Seoul, Republic of Korea
| | - Michelle Ylade
- National Institutes of Health, University of the Philippines Manila, Manila, Philippines
| | - Roxas Lee-Llacer
- Bicol Regional Training and Teaching Hospital, Albay, Philippines
| | - Norman De Asis
- Norzel Medical & Diagnostic Clinic, Cebu City, Philippines
| | | | | | | |
Collapse
|
7
|
Huang WC, Baker WS, Lovell JF, Schein CH. Displaying alphavirus physicochemical consensus antigens on immunogenic liposomes enhances antibody elicitation in mice. Virology 2024; 597:110152. [PMID: 38968676 DOI: 10.1016/j.virol.2024.110152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 05/18/2024] [Accepted: 06/20/2024] [Indexed: 07/07/2024]
Abstract
Cobalt-porphyrin phospholipid displays recombinant protein antigens on liposome surfaces via antigen polyhistidine-tag (His-tag), and when combined with monophosphorylated lipid A and QS-21 yields the "CPQ" vaccine adjuvant system. In this proof of principle study, CPQ was used to generate vaccine prototypes that elicited antibodies for two different alphaviruses (AV). Mice were immunized with computationally designed, His-tagged, physicochemical property consensus (PCPcon) protein antigens representing the variable B-domain of the envelope protein 2 (E2) from the serotype specific Venezuelan Equine Encephalitis Virus (VEEVcon) or a broad-spectrum AV-antigen termed EVCcon. The CPQ adjuvant enhanced the antigenicity of both proteins without eliciting detectable anti-His-tag antibodies. Antibodies elicited from mice immunized with antigens admixed with CPQ showed orders-of-magnitude higher levels of antigen-specific IgG compared to alternative control adjuvants. The ELISA results correlated with antiviral activity against VEEV strain TC83 and more weakly to Chikungunya virus 118/25. Thus, display of E.coli-produced His-tagged E2 protein segments on the surface of immunogenic liposomes elicits high levels of antigen-specific and AV neutralizing antibodies in mice with vaccination, while facilitating vaccine preparation and providing dose-sparing potential.
Collapse
Affiliation(s)
- Wei-Chiao Huang
- Department of Biomedical Engineering, University at Buffalo, Buffalo, NY, 14260, USA
| | - Wendy S Baker
- Department of Biochemistry and Molecular Biology, UTMB Galveston, 77555, USA
| | - Jonathan F Lovell
- Department of Biomedical Engineering, University at Buffalo, Buffalo, NY, 14260, USA.
| | - Catherine H Schein
- Department of Biochemistry and Molecular Biology, UTMB Galveston, 77555, USA; Institute for human infections and immunity, UTMB Galveston, 77555, USA.
| |
Collapse
|
8
|
Huang WC, Eberle K, Colon JR, Lovell JF, Xin H. Liposomal Fba and Met6 peptide vaccination protects mice from disseminated candidiasis. mSphere 2024; 9:e0018924. [PMID: 38904363 PMCID: PMC11287991 DOI: 10.1128/msphere.00189-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 05/16/2024] [Indexed: 06/22/2024] Open
Abstract
Epitopes from the Candida cell surface proteins Fba and Met6 are putative vaccine targets for invasive candidiasis. Here, we describe a Candida vaccine approach in which short peptides derived from Fba and Met6 are used in spontaneous nanoliposome antigen particle (SNAP) format. SNAP was enabled by the interaction of cobalt porphyrin phospholipid in liposomes with three histidine residues on the N-terminus of synthetic short peptide immunogens from Fba (F-SNAP), Met6 (M-SNAP), or bivalent Fba and Met6 (FM-SNAP). Liposomes were adjuvanted with synthetic monophosphoryl lipid and QS-21. In mice, immunization with F-SNAP, M-SNAP, or FM-SNAP induced antigen-specific IgG responses and mixed Th1/Th2 immunity. The duplex FM-SNAP vaccine elicited stronger antibody responses against each peptide, even at order-of-magnitude lower peptide dosing than a comparable adjuvanted, conjugate vaccine. Enzyme-linked immunosorbent spot analysis revealed the induction of antigen-specific, cytokine-producing T cells. Compared to F-SNAP or M-SNAP, higher production of TNFα, IL-2, and IFNγ was observed with re-stimulation of splenocytes from bivalent FM-SNAP-immunized mice. When vaccinated BALB/c mice were challenged with Candida auris, analysis of the fungal burden in the kidneys showed that SNAP vaccination protected from disseminated candidiasis. In a lethal fungal exposure model in A/J mice, F-SNAP, M-SNAP, and FM-SNAP vaccination protected mice from candidiasis challenge. Together, these results show that further investigation into the SNAP adjuvant platform is warranted using Fba and Met6 epitopes for a pan-Candida peptide vaccine that provides multifaceted protective immune responses. IMPORTANCE This study introduces a promising vaccine strategy against invasive candidiasis, a severe fungal infection, by targeting specific peptides on the surface of Candida. Using a novel approach called spontaneous nanoliposome antigen particle (SNAP), we combined peptides from two key Candida proteins, Fba and Met6, into a vaccine. This vaccine induced robust immune responses in mice, including the production of protective antibodies and the activation of immune cells. Importantly, mice vaccinated with SNAP were shielded from disseminated candidiasis in experiments. These findings highlight a potential avenue for developing a broad-spectrum vaccine against Candida infections, which could significantly improve outcomes for patients at risk of these often deadly fungal diseases.
Collapse
Affiliation(s)
- Wei-Chiao Huang
- Department of Biomedical Engineering, State University of New York at Buffalo, Buffalo, New York, USA
| | - Karen Eberle
- Department of Microbiology, Immunology & Parasitology, LSU Health Sciences Center New Orleans, New Orleans, Louisiana, USA
| | - Jonothan Rosario Colon
- Department of Microbiology, Immunology & Parasitology, LSU Health Sciences Center New Orleans, New Orleans, Louisiana, USA
| | - Jonathan F. Lovell
- Department of Biomedical Engineering, State University of New York at Buffalo, Buffalo, New York, USA
| | - Hong Xin
- Department of Microbiology, Immunology & Parasitology, LSU Health Sciences Center New Orleans, New Orleans, Louisiana, USA
| |
Collapse
|
9
|
Koornneef A, Vanshylla K, Hardenberg G, Rutten L, Strokappe NM, Tolboom J, Vreugdenhil J, Boer KFD, Perkasa A, Blokland S, Burger JA, Huang WC, Lovell JF, van Manen D, Sanders RW, Zahn RC, Schuitemaker H, Langedijk JPM, Wegmann F. CoPoP liposomes displaying stabilized clade C HIV-1 Env elicit tier 2 multiclade neutralization in rabbits. Nat Commun 2024; 15:3128. [PMID: 38605096 PMCID: PMC11009251 DOI: 10.1038/s41467-024-47492-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 03/27/2024] [Indexed: 04/13/2024] Open
Abstract
One of the strategies towards an effective HIV-1 vaccine is to elicit broadly neutralizing antibody responses that target the high HIV-1 Env diversity. Here, we present an HIV-1 vaccine candidate that consists of cobalt porphyrin-phospholipid (CoPoP) liposomes decorated with repaired and stabilized clade C HIV-1 Env trimers in a prefusion conformation. These particles exhibit high HIV-1 Env trimer decoration, serum stability and bind broadly neutralizing antibodies. Three sequential immunizations of female rabbits with CoPoP liposomes displaying a different clade C HIV-1 gp140 trimer at each dosing generate high HIV-1 Env-specific antibody responses. Additionally, serum neutralization is detectable against 18 of 20 multiclade tier 2 HIV-1 strains. Furthermore, the peak antibody titers induced by CoPoP liposomes can be recalled by subsequent heterologous immunization with Ad26-encoded membrane-bound stabilized Env antigens. Hence, a CoPoP liposome-based HIV-1 vaccine that can generate cross-clade neutralizing antibody immunity could potentially be a component of an efficacious HIV-1 vaccine.
Collapse
Affiliation(s)
| | | | | | - Lucy Rutten
- Janssen Vaccines & Prevention, Leiden, The Netherlands
| | | | | | | | | | | | - Sven Blokland
- Janssen Vaccines & Prevention, Leiden, The Netherlands
| | - Judith A Burger
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| | - Wei-Chiao Huang
- Department of Biomedical Engineering, University at Buffalo, Buffalo, NY, USA
| | - Jonathan F Lovell
- Department of Biomedical Engineering, University at Buffalo, Buffalo, NY, USA
| | | | - Rogier W Sanders
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| | - Roland C Zahn
- Janssen Vaccines & Prevention, Leiden, The Netherlands
| | | | - Johannes P M Langedijk
- Janssen Vaccines & Prevention, Leiden, The Netherlands.
- ForgeBio, Amsterdam, The Netherlands.
| | - Frank Wegmann
- Janssen Vaccines & Prevention, Leiden, The Netherlands.
| |
Collapse
|
10
|
Zhou S, Song Y, Luo Y, Quinn B, Jiao Y, Long MD, Abrams SI, Lovell JF. Identification of Enhanced Vaccine Mimotopes for the p15E Murine Cancer Antigen. CANCER RESEARCH COMMUNICATIONS 2024; 4:958-969. [PMID: 38506662 PMCID: PMC10986479 DOI: 10.1158/2767-9764.crc-23-0384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 01/23/2024] [Accepted: 03/13/2024] [Indexed: 03/21/2024]
Abstract
Mimotopes of short CD8+ T-cell epitopes generally comprise one or more mutated residues, and can increase the immunogenicity and function of peptide cancer vaccines. We recently developed a two-step approach to generate enhanced mimotopes using positional peptide microlibraries and herein applied this strategy to the broadly used H-2Kb-restricted murine leukemia p15E tumor rejection epitope. The wild-type p15E epitope (sequence: KSPWFTTL) was poorly immunogenic in mice, even when combined with a potent peptide nanoparticle vaccine system and did not delay p15E-expressing MC38 tumor growth. Following positional microlibrary functional screening of over 150 mimotope candidates, two were identified, both with mutations at residue 3 (p15E-P3C; "3C," and p15E-P3M; "3M") that better induced p15E-specific CD8+ T cells and led to tumor rejection. Although 3M was more immunogenic, 3C effectively delayed tumor growth in a therapeutic setting relative to the wild-type p15E. As 3C had less H-2Kb affinity relative to both p15E and 3M, 15 additional mimotope candidates (all that incorporated the 3C mutation) were assessed that maintained or improved predicted MHC-I affinity. Valine substitution at position 2 (3C2V, sequence: KVCWFTTL) led to improved p15E-specific immunogenicity, tumor rejection, and subsequent long-term antitumor immunity. 3C, 3M, and 3C2V mimotopes were more effective than p15E in controlling MC38 and B16-F10 tumors. T-cell receptor (TCR) sequencing revealed unique TCR transcripts for mimotopes, but there were no major differences in clonality. These results provide new p15E mimotopes for further vaccine use and illustrate considerations for MHC-I affinity, immunogenicity, and functional efficacy in mimotope design. SIGNIFICANCE The MHC-I-restricted p15E tumor rejection epitope is expressed in multiple murine cancer lines and is used as a marker of antitumor cellular immunity, but has seen limited success as a vaccine immunogen. An in vivo screening approach based on a positional peptide microlibraries is used to identify enhanced p15E mimotopes bearing amino acid mutations that induce significantly improved functional immunogenicity relative to vaccination with the wild-type epitope.
Collapse
Affiliation(s)
- Shiqi Zhou
- Department of Biomedical Engineering, State University of New York at Buffalo, Buffalo, New York
| | - Yiting Song
- Department of Biomedical Engineering, State University of New York at Buffalo, Buffalo, New York
| | - Yuan Luo
- Department of Biomedical Engineering, State University of New York at Buffalo, Buffalo, New York
| | - Breandan Quinn
- Department of Biomedical Engineering, State University of New York at Buffalo, Buffalo, New York
| | - Yang Jiao
- Department of Biomedical Engineering, State University of New York at Buffalo, Buffalo, New York
| | - Mark D. Long
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Scott I. Abrams
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Jonathan F. Lovell
- Department of Biomedical Engineering, State University of New York at Buffalo, Buffalo, New York
| |
Collapse
|
11
|
Sia ZR, Roy J, Huang WC, Song Y, Zhou S, Luo Y, Li Q, Arpin D, Kutscher HL, Ortega J, Davidson BA, Lovell JF. Adjuvanted nanoliposomes displaying six hemagglutinins and neuraminidases as an influenza virus vaccine. Cell Rep Med 2024; 5:101433. [PMID: 38401547 PMCID: PMC10982964 DOI: 10.1016/j.xcrm.2024.101433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 11/29/2023] [Accepted: 01/25/2024] [Indexed: 02/26/2024]
Abstract
Inclusion of defined quantities of the two major surface proteins of influenza virus, hemagglutinin (HA) and neuraminidase (NA), could benefit seasonal influenza vaccines. Recombinant HA and NA multimeric proteins derived from three influenza serotypes, H1N1, H3N2, and type B, are surface displayed on nanoliposomes co-loaded with immunostimulatory adjuvants, generating "hexaplex" particles that are used to immunize mice. Protective immune responses to hexaplex liposomes involve functional antibody elicitation against each included antigen, comparable to vaccination with monovalent antigen particles. When compared to contemporary recombinant or adjuvanted influenza virus vaccines, hexaplex liposomes perform favorably in many areas, including antibody production, T cell activation, protection from lethal virus challenge, and protection following passive sera transfer. Based on these results, hexaplex liposomes warrant further investigation as an adjuvanted recombinant influenza vaccine formulation.
Collapse
Affiliation(s)
- Zachary R Sia
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY 14260, USA
| | - Jayishnu Roy
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY 14260, USA
| | - Wei-Chiao Huang
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY 14260, USA; POP Biotechnologies, Buffalo, NY 14228, USA
| | - Yiting Song
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY 14260, USA
| | - Shiqi Zhou
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY 14260, USA
| | - Yuan Luo
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY 14260, USA
| | - Qinzhe Li
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY 14260, USA
| | - Dominic Arpin
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC H3A 0C7, Canada
| | - Hilliard L Kutscher
- POP Biotechnologies, Buffalo, NY 14228, USA; Department of Medicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14203, USA
| | - Joaquin Ortega
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC H3A 0C7, Canada
| | - Bruce A Davidson
- Department of Anesthesiology, University at Buffalo, State University of New York, Buffalo, NY 14203, USA.
| | - Jonathan F Lovell
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY 14260, USA.
| |
Collapse
|
12
|
Jin H, Ji Y, An J, Ha DH, Lee YR, Kim HJ, Lee CG, Jeong W, Kwon IC, Yang EG, Kim KH, Lee C, Chung HS. Engineering Escherichia coli for constitutive production of monophosphoryl lipid A vaccine adjuvant. Biotechnol Bioeng 2024; 121:1144-1162. [PMID: 38184812 DOI: 10.1002/bit.28638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/14/2023] [Accepted: 12/12/2023] [Indexed: 01/08/2024]
Abstract
During the COVID-19 pandemic, expedient vaccine production has been slowed by the shortage of safe and effective raw materials, such as adjuvants, essential components to enhance the efficacy of vaccines. Monophosphoryl lipid A (MPLA) is a potent and safe adjuvant used in human vaccines, including the Shingles vaccine, Shingrix. 3-O-desacyl-4'-monophosphoryl lipid A (MPL), a representative MPLA adjuvant commercialized by GSK, was prepared via chemical conversion of precursors isolated from Salmonella typhimurium R595. However, the high price of these materials limits their use in premium vaccines. To combat the scarcity and high cost of safe raw materials for vaccines, we need to develop a feasible MPLA production method that is easily scaled up to meet industrial requirements. In this study, we engineered peptidoglycan and outer membrane biosynthetic pathways in Escherichia coli and developed a Escherichia coli strain, KHSC0055, that constitutively produces EcML (E. coli-produced monophosphoryl lipid A) without additives such as antibiotics or overexpression inducers. EcML production was optimized on an industrial scale via high-density fed-batch fermentation, and obtained 2.7 g of EcML (about 135,000 doses of vaccine) from a 30-L-scale fermentation. Using KHSC0055, we simplified the production process and decreased the production costs of MPLA. Then, we applied EcML purified from KHSC0055 as an adjuvant for a COVID-19 vaccine candidate (EuCorVac-19) currently in clinical trial stage III in the Philippines. By probing the efficacy and safety of EcML in humans, we established KHSC0055 as an efficient cell factory for MPLA adjuvant production.
Collapse
Affiliation(s)
- Hyunjung Jin
- Chemical and Biological Integrative Research Center, Biomedical Research Division, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Yuhyun Ji
- Chemical and Biological Integrative Research Center, Biomedical Research Division, Korea Institute of Science and Technology, Seoul, Republic of Korea
- Department of Life Sciences, Korea University, Seoul, Republic of Korea
| | - Jinsu An
- Chemical and Biological Integrative Research Center, Biomedical Research Division, Korea Institute of Science and Technology, Seoul, Republic of Korea
- Division of Bio-Medical Science & Technology, KIST School, Korea National University of Science and Technology, Seoul, Republic of Korea
| | - Da Hui Ha
- V Plant 125, Wonmudong-gil, Dongsan-myeon, EuBiologics., Co., Ltd., Chuncheon-si, Gangwon-do, Republic of Korea
| | - Ye-Ram Lee
- V Plant 125, Wonmudong-gil, Dongsan-myeon, EuBiologics., Co., Ltd., Chuncheon-si, Gangwon-do, Republic of Korea
| | - Hye-Ji Kim
- V Plant 125, Wonmudong-gil, Dongsan-myeon, EuBiologics., Co., Ltd., Chuncheon-si, Gangwon-do, Republic of Korea
| | - Choon Geun Lee
- V Plant 125, Wonmudong-gil, Dongsan-myeon, EuBiologics., Co., Ltd., Chuncheon-si, Gangwon-do, Republic of Korea
| | - Wooyeon Jeong
- Doping Control Center, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Ick Chan Kwon
- Medicinal Materials Research Center, Biomedical Research Division, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Eun Gyeong Yang
- Biomedical Research Division, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Ki Hun Kim
- Doping Control Center, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Chankyu Lee
- V Plant 125, Wonmudong-gil, Dongsan-myeon, EuBiologics., Co., Ltd., Chuncheon-si, Gangwon-do, Republic of Korea
| | - Hak Suk Chung
- Chemical and Biological Integrative Research Center, Biomedical Research Division, Korea Institute of Science and Technology, Seoul, Republic of Korea
- Division of Bio-Medical Science & Technology, KIST School, Korea National University of Science and Technology, Seoul, Republic of Korea
| |
Collapse
|
13
|
Jiao Y, Huang WC, Chiem K, Song Y, Sun J, Chothe SK, Zhou S, Luo Y, Mabrouk MT, Ortega J, Kuchipudi SV, Martinez-Sobrido L, Lovell JF. SARS-CoV-2 Protein Nanoparticle Vaccines Formed In Situ From Lyophilized Lipids. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2304534. [PMID: 37849036 DOI: 10.1002/smll.202304534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/05/2023] [Indexed: 10/19/2023]
Abstract
The receptor binding domain (RBD) of the SARS-CoV-2 Spike (S) glycoprotein is an appealing immunogen, but associated vaccine approaches must overcome the hapten-like nature of the compact protein and adapt to emerging variants with evolving RBD sequences. Here, a vaccine manufacturing methodology is proposed comprising a sterile-filtered freeze-dried lipid cake formulation that can be reconstituted with liquid proteins to instantaneously form liposome-displayed protein nanoparticles. Mannitol is used as a bulking agent and a small amount of Tween-80 surfactant is required to achieve reconstituted submicron particles that do not precipitate prior to usage. The lipid particles include an E. coli-derived monophosphoryl lipid A (EcML) for immunogenicity, and cobalt porphyrin-phospholipid (CoPoP) for antigen display. Reconstitution of the lipid cake with aqueous protein results in rapid conversion of the RBD into intact liposome-bound format prior to injection. Protein particles can readily be formed with sequent-divergent RBD proteins derived from the ancestral or Omicron strains. Immunization of mice elicits antibodies that neutralize respective viral strains. When K18-hACE2 transgenic mice are immunized and challenged with ancestral SARS-CoV-2 or the Omicron BA.5 variant, both liquid liposomes displaying the RBD and rapid reconstituted particles protect mice from infection, as measured by the viral load in the lungs and nasal turbinates.
Collapse
Affiliation(s)
- Yang Jiao
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY, 14260, USA
| | - Wei-Chiao Huang
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY, 14260, USA
- POP Biotechnologies, Buffalo, NY, 14228, USA
| | - Kevin Chiem
- Texas Biomedical Research Institute, San Antonio, TX, 78227, USA
| | - Yiting Song
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY, 14260, USA
| | - Jingyu Sun
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC, H3A 0C7, Canada
| | - Shubhada K Chothe
- Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA, 16802, USA
| | - Shiqi Zhou
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY, 14260, USA
| | - Yuan Luo
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY, 14260, USA
| | - Moustafa T Mabrouk
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY, 14260, USA
| | - Joaquin Ortega
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC, H3A 0C7, Canada
| | - Suresh V Kuchipudi
- Department of Infectious Diseases and Microbiology, University of Pittsburgh School of Public Health, Pittsburgh, PA, 15261, USA
| | | | - Jonathan F Lovell
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY, 14260, USA
| |
Collapse
|
14
|
Lovell JF, Miura K, Baik YO, Lee C, Lee JY, Park YS, Hong I, Lee JH, Kim T, Seo SH, Kim JO, Song M, Kim CJ, Choi JK, Kim J, Choo EJ, Choi JH. One-year antibody durability induced by EuCorVac-19, a liposome-displayed COVID-19 receptor binding domain subunit vaccine, in healthy Korean subjects. Int J Infect Dis 2024; 138:73-80. [PMID: 37944586 DOI: 10.1016/j.ijid.2023.11.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/26/2023] [Accepted: 11/02/2023] [Indexed: 11/12/2023] Open
Abstract
OBJECTIVE EuCorVac-19 (ECV-19), an adjuvanted liposome-displayed receptor binding domain (RBD) COVID-19 vaccine, previously reported interim Phase 2 trial results showing induction of neutralizing antibodies 3 weeks after prime-boost immunization. The objective of this study was to determine the longer-term antibody response of the vaccine. METHODS To assess immunogenicity 6 and 12 months after vaccination, participants in the Phase 2 trial (NCT04783311) were excluded if they: 1) withdrew, 2) reported COVID-19 infection or additional vaccination, or 3) exhibited increasing Spike (S) antibodies (representing possible non-reported infection). Following exclusions, of the 197 initial subjects, anti-S IgG antibodies and neutralizing antibodies were further assessed in 124 subjects at the 6-month timepoint, and 36 subjects at the 12-month timepoint. RESULTS Median anti-S antibody half-life was 52 days (interquartile range [IQR]:42-70), in the "early" period from 3 weeks to 6 months, and 130 days (IQR:97-169) in the "late" period from 6 to 12 months. There was a negative correlation between initial antibody titer and half-life. Anti-S and neutralizing antibody responses were correlated. Neutralizing antibody responses showed longer half-lives; the early period had a median half-life of 120 days (IQR:81-207), and the late period had a median half-life of 214 days (IQR:140-550). CONCLUSION These data establish antibody durability of ECV-19, using a framework to analyze COVID-19 vaccine-induced antibodies during periods of high infection.
Collapse
Affiliation(s)
- Jonathan F Lovell
- Department of Biomedical Engineering, University at Buffalo, Buffalo, New York, USA.
| | - Kazutoyo Miura
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA
| | - Yeong Ok Baik
- Eubiologics, R&D Center, EuBiologics Co., Ltd., Chuncheon, Korea
| | - Chankyu Lee
- Eubiologics, R&D Center, EuBiologics Co., Ltd., Chuncheon, Korea
| | - Jeong-Yoon Lee
- Eubiologics, R&D Center, EuBiologics Co., Ltd., Chuncheon, Korea
| | | | - Ingi Hong
- International Vaccine Institute, Gwanak-gu, Seoul, Korea
| | - Jung Hyuk Lee
- International Vaccine Institute, Gwanak-gu, Seoul, Korea
| | - Taewoo Kim
- International Vaccine Institute, Gwanak-gu, Seoul, Korea
| | - Sang Hwan Seo
- International Vaccine Institute, Gwanak-gu, Seoul, Korea
| | - Jae-Ouk Kim
- International Vaccine Institute, Gwanak-gu, Seoul, Korea
| | - Manki Song
- International Vaccine Institute, Gwanak-gu, Seoul, Korea
| | - Chung-Jong Kim
- Department of Internal Medicine, Ewha Womans University, Seoul, Korea
| | - Jae-Ki Choi
- Department of Infectious Diseases, Bucheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jieun Kim
- Department of Internal Medicine, Hanyang University College of Medicine, Seoul, Korea
| | - Eun Ju Choo
- Department of Infectious Diseases, Soonchunhyang University Bucheon Hospital, Bucheon, Korea
| | - Jung-Hyun Choi
- Department of Infectious Diseases, Eunpyeong St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
15
|
Wang Z, Zhang B, Ou L, Qiu Q, Wang L, Bylund T, Kong WP, Shi W, Tsybovsky Y, Wu L, Zhou Q, Chaudhary R, Choe M, Dickey TH, El Anbari M, Olia AS, Rawi R, Teng IT, Wang D, Wang S, Tolia NH, Zhou T, Kwong PD. Extraordinary Titer and Broad Anti-SARS-CoV-2 Neutralization Induced by Stabilized RBD Nanoparticles from Strain BA.5. Vaccines (Basel) 2023; 12:37. [PMID: 38250850 PMCID: PMC10821209 DOI: 10.3390/vaccines12010037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/15/2023] [Accepted: 12/23/2023] [Indexed: 01/23/2024] Open
Abstract
The receptor-binding domain (RBD) of the SARS-CoV-2 spike is a primary target of neutralizing antibodies and a key component of licensed vaccines. Substantial mutations in RBD, however, enable current variants to escape immunogenicity generated by vaccination with the ancestral (WA1) strain. Here, we produce and assess self-assembling nanoparticles displaying RBDs from WA1 and BA.5 strains by using the SpyTag:SpyCatcher system for coupling. We observed both WA1- and BA.5-RBD nanoparticles to degrade substantially after a few days at 37 °C. Incorporation of nine RBD-stabilizing mutations, however, increased yield ~five-fold and stability such that more than 50% of either the WA1- or BA.5-RBD nanoparticle was retained after one week at 37 °C. Murine immunizations revealed that the stabilized RBD-nanoparticles induced ~100-fold higher autologous neutralization titers than the prefusion-stabilized (S2P) spike at a 2 μg dose. Even at a 25-fold lower dose where S2P-induced neutralization titers were below the detection limit, the stabilized BA.5-RBD nanoparticle induced homologous titers of 12,795 ID50 and heterologous titers against WA1 of 1767 ID50. Assessment against a panel of β-coronavirus variants revealed both the stabilized BA.5-RBD nanoparticle and the stabilized WA1-BA.5-(mosaic)-RBD nanoparticle to elicit much higher neutralization breadth than the stabilized WA1-RBD nanoparticle. The extraordinary titer and high neutralization breadth elicited by stabilized RBD nanoparticles from strain BA.5 make them strong candidates for next-generation COVID-19 vaccines.
Collapse
Affiliation(s)
- Zhantong Wang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (Z.W.); (Q.Q.); (T.B.); (L.W.); (M.C.); (D.W.); (S.W.)
| | - Baoshan Zhang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (Z.W.); (Q.Q.); (T.B.); (L.W.); (M.C.); (D.W.); (S.W.)
| | - Li Ou
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (Z.W.); (Q.Q.); (T.B.); (L.W.); (M.C.); (D.W.); (S.W.)
| | - Qi Qiu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (Z.W.); (Q.Q.); (T.B.); (L.W.); (M.C.); (D.W.); (S.W.)
| | - Lingshu Wang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (Z.W.); (Q.Q.); (T.B.); (L.W.); (M.C.); (D.W.); (S.W.)
| | - Tatsiana Bylund
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (Z.W.); (Q.Q.); (T.B.); (L.W.); (M.C.); (D.W.); (S.W.)
| | - Wing-Pui Kong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (Z.W.); (Q.Q.); (T.B.); (L.W.); (M.C.); (D.W.); (S.W.)
| | - Wei Shi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (Z.W.); (Q.Q.); (T.B.); (L.W.); (M.C.); (D.W.); (S.W.)
| | - Yaroslav Tsybovsky
- Vaccine Research Center Electron Microscopy Unit, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD 20701, USA
| | - Lingyuan Wu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (Z.W.); (Q.Q.); (T.B.); (L.W.); (M.C.); (D.W.); (S.W.)
| | - Qiong Zhou
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (Z.W.); (Q.Q.); (T.B.); (L.W.); (M.C.); (D.W.); (S.W.)
| | - Ridhi Chaudhary
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (Z.W.); (Q.Q.); (T.B.); (L.W.); (M.C.); (D.W.); (S.W.)
| | - Misook Choe
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (Z.W.); (Q.Q.); (T.B.); (L.W.); (M.C.); (D.W.); (S.W.)
| | - Thayne H. Dickey
- Host-Pathogen Interactions and Structural Vaccinology Section, Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (T.H.D.)
| | - Mohammed El Anbari
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (Z.W.); (Q.Q.); (T.B.); (L.W.); (M.C.); (D.W.); (S.W.)
| | - Adam S. Olia
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (Z.W.); (Q.Q.); (T.B.); (L.W.); (M.C.); (D.W.); (S.W.)
| | - Reda Rawi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (Z.W.); (Q.Q.); (T.B.); (L.W.); (M.C.); (D.W.); (S.W.)
| | - I-Ting Teng
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (Z.W.); (Q.Q.); (T.B.); (L.W.); (M.C.); (D.W.); (S.W.)
| | - Danyi Wang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (Z.W.); (Q.Q.); (T.B.); (L.W.); (M.C.); (D.W.); (S.W.)
| | - Shuishu Wang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (Z.W.); (Q.Q.); (T.B.); (L.W.); (M.C.); (D.W.); (S.W.)
| | - Niraj H. Tolia
- Host-Pathogen Interactions and Structural Vaccinology Section, Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (T.H.D.)
| | - Tongqing Zhou
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (Z.W.); (Q.Q.); (T.B.); (L.W.); (M.C.); (D.W.); (S.W.)
| | - Peter D. Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (Z.W.); (Q.Q.); (T.B.); (L.W.); (M.C.); (D.W.); (S.W.)
| |
Collapse
|
16
|
Nolan TM, Deliyannis G, Griffith M, Braat S, Allen LF, Audsley J, Chung AW, Ciula M, Gherardin NA, Giles ML, Gordon TP, Grimley SL, Horng L, Jackson DC, Juno JA, Kedzierska K, Kent SJ, Lewin SR, Littlejohn M, McQuilten HA, Mordant FL, Nguyen THO, Soo VP, Price B, Purcell DFJ, Ramanathan P, Redmond SJ, Rockman S, Ruan Z, Sasadeusz J, Simpson JA, Subbarao K, Fabb SA, Payne TJ, Takanashi A, Tan CW, Torresi J, Wang JJ, Wang LF, Al-Wassiti H, Wong CY, Zaloumis S, Pouton CW, Godfrey DI. Interim results from a phase I randomized, placebo-controlled trial of novel SARS-CoV-2 beta variant receptor-binding domain recombinant protein and mRNA vaccines as a 4th dose booster. EBioMedicine 2023; 98:104878. [PMID: 38016322 PMCID: PMC10696466 DOI: 10.1016/j.ebiom.2023.104878] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/18/2023] [Accepted: 11/02/2023] [Indexed: 11/30/2023] Open
Abstract
BACKGROUND SARS-CoV-2 booster vaccination should ideally enhance protection against variants and minimise immune imprinting. This Phase I trial evaluated two vaccines targeting SARS-CoV-2 beta-variant receptor-binding domain (RBD): a recombinant dimeric RBD-human IgG1 Fc-fusion protein, and an mRNA encoding a membrane-anchored RBD. METHODS 76 healthy adults aged 18-64 y, previously triple vaccinated with licensed SARS-CoV-2 vaccines, were randomised to receive a 4th dose of either an adjuvanted (MF59®, CSL Seqirus) protein vaccine (5, 15 or 45 μg, N = 32), mRNA vaccine (10, 20, or 50 μg, N = 32), or placebo (saline, N = 12) at least 90 days after a 3rd boost vaccination or SARS-CoV-2 infection. Bleeds occurred on days 1 (prior to vaccination), 8, and 29. CLINICALTRIALS govNCT05272605. FINDINGS No vaccine-related serious or medically-attended adverse events occurred. The protein vaccine reactogenicity was mild, whereas the mRNA vaccine was moderately reactogenic at higher dose levels. Best anti-RBD antibody responses resulted from the higher doses of each vaccine. A similar pattern was seen with live virus neutralisation and surrogate, and pseudovirus neutralisation assays. Breadth of immune response was demonstrated against BA.5 and more recent omicron subvariants (XBB, XBB.1.5 and BQ.1.1). Binding antibody titres for both vaccines were comparable to those of a licensed bivalent mRNA vaccine. Both vaccines enhanced CD4+ and CD8+ T cell activation. INTERPRETATION There were no safety concerns and the reactogenicity profile was mild and similar to licensed SARS-CoV-2 vaccines. Both vaccines showed strong immune boosting against beta, ancestral and omicron strains. FUNDING Australian Government Medical Research Future Fund, and philanthropies Jack Ma Foundation and IFM investors.
Collapse
Affiliation(s)
- Terry M Nolan
- Department of Infectious Diseases, University of Melbourne at the Peter Doherty Institute for Infection & Immunity, Melbourne, Australia; Murdoch Children's Research Institute, Melbourne, Australia.
| | - Georgia Deliyannis
- Department of Microbiology & Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Maryanne Griffith
- Department of Infectious Diseases, University of Melbourne at the Peter Doherty Institute for Infection & Immunity, Melbourne, Australia
| | - Sabine Braat
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Melbourne, Australia
| | - Lilith F Allen
- Department of Microbiology & Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Jennifer Audsley
- Department of Microbiology & Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Amy W Chung
- Department of Microbiology & Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Marcin Ciula
- Department of Microbiology & Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Nicholas A Gherardin
- Department of Microbiology & Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Michelle L Giles
- Department of Infectious Diseases, University of Melbourne at the Peter Doherty Institute for Infection & Immunity, Melbourne, Australia
| | - Tom P Gordon
- Department of Immunology, Flinders University and SA Pathology, Flinders Medical Centre, Bedford Park, Adelaide, Australia
| | - Samantha L Grimley
- Department of Microbiology & Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Lana Horng
- Department of Infectious Diseases, University of Melbourne at the Peter Doherty Institute for Infection & Immunity, Melbourne, Australia; Murdoch Children's Research Institute, Melbourne, Australia
| | - David C Jackson
- Department of Microbiology & Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Jennifer A Juno
- Department of Microbiology & Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Katherine Kedzierska
- Department of Microbiology & Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia; Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, Japan
| | - Stephen J Kent
- Department of Microbiology & Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Sharon R Lewin
- Department of Infectious Diseases, University of Melbourne at the Peter Doherty Institute for Infection & Immunity, Melbourne, Australia; Victorian Infectious Diseases Service, Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia; Department of Infectious Diseases, Alfred Hospital and Monash University, Melbourne, Australia
| | - Mason Littlejohn
- Department of Infectious Diseases, University of Melbourne at the Peter Doherty Institute for Infection & Immunity, Melbourne, Australia
| | - Hayley A McQuilten
- Department of Microbiology & Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Francesca L Mordant
- Department of Microbiology & Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Thi H O Nguyen
- Department of Microbiology & Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Vanessa Pac Soo
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Melbourne, Australia
| | - Briony Price
- Department of Infectious Diseases, University of Melbourne at the Peter Doherty Institute for Infection & Immunity, Melbourne, Australia; Murdoch Children's Research Institute, Melbourne, Australia
| | - Damian F J Purcell
- Department of Microbiology & Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Pradhipa Ramanathan
- Department of Microbiology & Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Samuel J Redmond
- Department of Microbiology & Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Steven Rockman
- Department of Microbiology & Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia; CSL Seqirus, Vaccine Innovation Unit, Parkville, Melbourne, Australia
| | - Zheng Ruan
- Department of Microbiology & Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Joseph Sasadeusz
- Victorian Infectious Diseases Service, Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia; Department of Infectious Diseases, Alfred Hospital and Monash University, Melbourne, Australia
| | - Julie A Simpson
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Melbourne, Australia
| | - Kanta Subbarao
- Department of Microbiology & Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia; WHO Collaborating Centre for Reference and Research on Influenza at the Peter Doherty Institute for Infection and Immunity, Australia
| | - Stewart A Fabb
- Monash Institute of Pharmaceutical Sciences, Parkville, Australia
| | - Thomas J Payne
- Monash Institute of Pharmaceutical Sciences, Parkville, Australia
| | - Asuka Takanashi
- Monash Institute of Pharmaceutical Sciences, Parkville, Australia
| | - Chee Wah Tan
- Duke NUS Medical School, Programme for Emerging Infectious Diseases, Singapore
| | - Joseph Torresi
- Department of Microbiology & Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Jing Jing Wang
- Department of Immunology, Flinders University and SA Pathology, Flinders Medical Centre, Bedford Park, Adelaide, Australia
| | - Lin-Fa Wang
- Duke NUS Medical School, Programme for Emerging Infectious Diseases, Singapore
| | | | - Chinn Yi Wong
- Department of Microbiology & Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Sophie Zaloumis
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Melbourne, Australia
| | - Colin W Pouton
- Monash Institute of Pharmaceutical Sciences, Parkville, Australia
| | - Dale I Godfrey
- Department of Microbiology & Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| |
Collapse
|
17
|
Mabrouk MT, Zidan AA, Aly N, Mohammed MT, Ghantous F, Seaman MS, Lovell JF, Nasr ML. Circularized Nanodiscs for Multivalent Mosaic Display of SARS-CoV-2 Spike Protein Antigens. Vaccines (Basel) 2023; 11:1655. [PMID: 38005987 PMCID: PMC10675430 DOI: 10.3390/vaccines11111655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/24/2023] [Accepted: 10/26/2023] [Indexed: 11/26/2023] Open
Abstract
The emergence of vaccine-evading SARS-CoV-2 variants urges the need for vaccines that elicit broadly neutralizing antibodies (bnAbs). Here, we assess covalently circularized nanodiscs decorated with recombinant SARS-CoV-2 spike glycoproteins from several variants for eliciting bnAbs with vaccination. Cobalt porphyrin-phospholipid (CoPoP) was incorporated into the nanodisc to allow for anchoring and functional orientation of spike trimers on the nanodisc surface through their His-tag. Monophosphoryl-lipid (MPLA) and QS-21 were incorporated as immunostimulatory adjuvants to enhance vaccine responses. Following optimization of nanodisc assembly, spike proteins were effectively displayed on the surface of the nanodiscs and maintained their conformational capacity for binding with human angiotensin-converting enzyme 2 (hACE2) as verified using electron microscopy and slot blot assay, respectively. Six different formulations were prepared where they contained mono antigens; four from the year 2020 (WT, Beta, Lambda, and Delta) and two from the year 2021 (Omicron BA.1 and BA.2). Additionally, we prepared a mosaic nanodisc displaying the four spike proteins from year 2020. Intramuscular vaccination of CD-1 female mice with the mosaic nanodisc induced antibody responses that not only neutralized matched pseudo-typed viruses, but also neutralized mismatched pseudo-typed viruses corresponding to later variants from year 2021 (Omicron BA.1 and BA.2). Interestingly, sera from mosaic-immunized mice did not effectively inhibit Omicron spike binding to human ACE-2, suggesting that some of the elicited antibodies were directed towards conserved neutralizing epitopes outside the receptor binding domain. Our results show that mosaic nanodisc vaccine displaying spike proteins from 2020 can elicit broadly neutralizing antibodies that can neutralize mismatched viruses from a following year, thus decreasing immune evasion of new emerging variants and enhancing healthcare preparedness.
Collapse
Affiliation(s)
- Moustafa T. Mabrouk
- Division of Engineering in Medicine and Division of Renal Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (M.T.M.)
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY 14260, USA;
| | - Asmaa A. Zidan
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA
| | - Nihal Aly
- Division of Engineering in Medicine and Division of Renal Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (M.T.M.)
- Botany and Microbiology Department, Faculty of Science, Alexandria University, Alexandria 21526, Egypt
| | - Mostafa T. Mohammed
- Division of Engineering in Medicine and Division of Renal Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (M.T.M.)
- Clinical Pathology Department, Minia University, Minia 61519, Egypt
| | - Fadi Ghantous
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA
| | - Michael S. Seaman
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA
| | - Jonathan F. Lovell
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY 14260, USA;
| | - Mahmoud L. Nasr
- Division of Engineering in Medicine and Division of Renal Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (M.T.M.)
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| |
Collapse
|
18
|
Walvekar P, Kumar P, Choonara YE. Long-acting vaccine delivery systems. Adv Drug Deliv Rev 2023; 198:114897. [PMID: 37225091 DOI: 10.1016/j.addr.2023.114897] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/27/2023] [Accepted: 05/18/2023] [Indexed: 05/26/2023]
Abstract
Bolus vaccines are often administered multiple times due to rapid clearance and reduced transportation to draining lymph nodes resulting in inadequate activation of T and B lymphocytes. In order to achieve adaptive immunity, prolonged exposure of antigens to these immune cells is crucial. Recent research has been focusing on developing long-acting biomaterial-based vaccine delivery systems, which can modulate the release of encapsulated antigens or epitopes to facilitate enhanced antigen presentation in lymph nodes and subsequently achieve robust T and B cell responses. Over the past few years, various polymers and lipids have been extensively explored to develop effective biomaterial-based vaccine strategies. The article reviews relevant polymer and lipid-based strategies used to prepare long-acting vaccine carriers and discusses their results concerning immune responses.
Collapse
Affiliation(s)
- Pavan Walvekar
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg, Gauteng, 2193, South Africa
| | - Pradeep Kumar
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg, Gauteng, 2193, South Africa
| | - Yahya E Choonara
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg, Gauteng, 2193, South Africa.
| |
Collapse
|
19
|
González-Martínez DA, González Ruíz G, Escalante-Bermúdez C, García Artalejo JA, Gómez Peña T, Gómez JA, González-Martínez E, Cazañas Quintana Y, Fundora Barrios T, Hernández T, Varela Pérez RC, Díaz Goire D, Castro López D, Ruíz Ramirez I, Díaz-Águila CR, Moran-Mirabal JM. Efficient capture of recombinant SARS-CoV-2 receptor-binding domain (RBD) with citrate-coated magnetic iron oxide nanoparticles. NANOSCALE 2023; 15:7854-7869. [PMID: 37060148 DOI: 10.1039/d3nr01109g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Several vaccines against COVID-19 use a recombinant SARS-CoV-2 receptor-binding domain (RBD) as antigen, making the purification of this protein a key step in their production. In this work, citrate-coated magnetic iron oxide nanoparticles were evaluated as nano adsorbents in the first step (capture) of the purification of recombinant RBD. The nanoparticles were isolated through coprecipitation and subsequently coated with sodium citrate. The citrate-coated nanoparticles exhibited a diameter of 10 ± 2 nm, a hydrodynamic diameter of 160 ± 3 nm, and contained 1.9 wt% of citrate. The presence of citrate on the nanoparticles' surface was confirmed through FT-IR spectra and thermogravimetric analysis. The crystallite size (10.1 nm) and the lattice parameter (8.3646 Å) were determined by X-ray diffraction. In parallel, RBD-containing supernatant extracted from cell culture was exchanged through ultrafiltration and diafiltration into the adsorption buffer. The magnetic capture was then optimized using different concentrations of nanoparticles in the purified supernatant, and we found 40 mg mL-1 to be optimal. The ideal amount of nanoparticles was assessed by varying the RBD concentration in the supernatant (between 0.113 mg mL-1 and 0.98 mg mL-1), which resulted in good capture yields (between 83 ± 5% and 94 ± 4%). The improvement of RBD purity after desorption was demonstrated by SDS-PAGE and RP-HPLC. Furthermore, the magnetic capture was scaled up 100 times, and the desorption was subjected to chromatographic purifications. The obtained products recognized anti-RBD antibodies and bound the ACE2 receptor, proving their functionality after the developed procedure.
Collapse
Affiliation(s)
- David A González-Martínez
- Facultad de Química, Universidad de La Habana, Zapata y G, Plaza de la Revolución, 10400, La Habana, Cuba.
- Department of Chemistry and Chemical Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4M1, Canada
| | - Gustavo González Ruíz
- Centro de Inmunología Molecular, calle 216 esq. 15, Atabey, Playa, 11600, La Habana, Cuba.
| | - Cesar Escalante-Bermúdez
- Centro de Inmunología Molecular, calle 216 esq. 15, Atabey, Playa, 11600, La Habana, Cuba.
- Laboratorio de Bioinorgánica, Departamento de Química General e Inorgánica, Facultad de Química, Universidad de La Habana, Zapata y G, Plaza de la Revolución, 10400, La Habana, Cuba
| | | | - Tania Gómez Peña
- Centro de Inmunología Molecular, calle 216 esq. 15, Atabey, Playa, 11600, La Habana, Cuba.
| | - José Alberto Gómez
- Centro de Inmunología Molecular, calle 216 esq. 15, Atabey, Playa, 11600, La Habana, Cuba.
| | - Eduardo González-Martínez
- Department of Chemistry and Chemical Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4M1, Canada
| | | | - Thais Fundora Barrios
- Centro de Inmunología Molecular, calle 216 esq. 15, Atabey, Playa, 11600, La Habana, Cuba.
| | - Tays Hernández
- Centro de Inmunología Molecular, calle 216 esq. 15, Atabey, Playa, 11600, La Habana, Cuba.
| | | | - Dayli Díaz Goire
- Centro de Inmunología Molecular, calle 216 esq. 15, Atabey, Playa, 11600, La Habana, Cuba.
| | - Diaselys Castro López
- Centro de Inmunología Molecular, calle 216 esq. 15, Atabey, Playa, 11600, La Habana, Cuba.
| | - Ingrid Ruíz Ramirez
- Centro de Inmunología Molecular, calle 216 esq. 15, Atabey, Playa, 11600, La Habana, Cuba.
| | - Carlos R Díaz-Águila
- Centro de Biomateriales, Universidad de La Habana, Avenida Universidad entre G y Ronda, Plaza de la Revolución, 10400, La Habana, Cuba
| | - Jose M Moran-Mirabal
- Department of Chemistry and Chemical Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4M1, Canada
- Centre for Advanced Light Microscopy, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4M, Canada
- Brockhouse Institute for Materials Research, McMaster University 1280 Main Street West, Hamilton, Ontario, L8S 4M1, Canada
| |
Collapse
|
20
|
Boley PA, Lee CM, Schrock J, Yadav KK, Patil V, Suresh R, Lu S, Feng MM, Hanson J, Channappanavar R, Kenney SP, Renukaradhya GJ. Enhanced mucosal immune responses and reduced viral load in the respiratory tract of ferrets to intranasal lipid nanoparticle-based SARS-CoV-2 proteins and mRNA vaccines. J Nanobiotechnology 2023; 21:60. [PMID: 36814238 PMCID: PMC9944789 DOI: 10.1186/s12951-023-01816-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 02/14/2023] [Indexed: 02/24/2023] Open
Abstract
BACKGROUND Unlike the injectable vaccines, intranasal lipid nanoparticle (NP)-based adjuvanted vaccine is promising to protect against local infection and viral transmission. Infection of ferrets with SARS-CoV-2 results in typical respiratory disease and pathology akin to in humans, suggesting that the ferret model may be ideal for intranasal vaccine studies. RESULTS We developed SARS-CoV-2 subunit vaccine containing both Spike receptor binding domain (S-RBD) and Nucleocapsid (N) proteins (NP-COVID-Proteins) or their mRNA (NP-COVID-mRNA) and NP-monosodium urate adjuvant. Both the candidate vaccines in intranasal vaccinated aged ferrets substantially reduced the replicating virus in the entire respiratory tract. Specifically, the NP-COVID-Proteins vaccine did relatively better in clearing the virus from the nasal passage early post challenge infection. The immune gene expression in NP-COVID-Proteins vaccinates indicated increased levels of mRNA of IFNα, MCP1 and IL-4 in lungs and nasal turbinates, and IFNγ and IL-2 in lungs; while proinflammatory mediators IL-1β and IL-8 mRNA levels in lungs were downregulated. In NP-COVID-Proteins vaccinated ferrets S-RBD and N protein specific IgG antibodies in the serum were substantially increased at both day post challenge (DPC) 7 and DPC 14, while the virus neutralizing antibody titers were relatively better induced by mRNA versus the proteins-based vaccine. In conclusion, intranasal NP-COVID-Proteins vaccine induced balanced Th1 and Th2 immune responses in the respiratory tract, while NP-COVID-mRNA vaccine primarily elicited antibody responses. CONCLUSIONS Intranasal NP-COVID-Proteins vaccine may be an ideal candidate to elicit increased breadth of immunity against SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Patricia A Boley
- Center for Food Animal Health, Department of Animal Sciences, The Ohio State University, 1680 Madison Avenue, Wooster, OH, 44691, USA
| | - Carolyn M Lee
- Center for Food Animal Health, Department of Animal Sciences, The Ohio State University, 1680 Madison Avenue, Wooster, OH, 44691, USA
| | - Jennifer Schrock
- Center for Food Animal Health, Department of Animal Sciences, The Ohio State University, 1680 Madison Avenue, Wooster, OH, 44691, USA
| | - Kush Kumar Yadav
- Center for Food Animal Health, Department of Animal Sciences, The Ohio State University, 1680 Madison Avenue, Wooster, OH, 44691, USA
| | - Veerupaxagouda Patil
- Center for Food Animal Health, Department of Animal Sciences, The Ohio State University, 1680 Madison Avenue, Wooster, OH, 44691, USA
| | - Raksha Suresh
- Center for Food Animal Health, Department of Animal Sciences, The Ohio State University, 1680 Madison Avenue, Wooster, OH, 44691, USA
| | - Songqing Lu
- Dynamic Entropy Technology LLC, Building B, 1028 W. Nixon St., Pasco, WA, 99301-5216, USA
| | - Maoqi Mark Feng
- Dynamic Entropy Technology LLC, Building B, 1028 W. Nixon St., Pasco, WA, 99301-5216, USA
| | - Juliette Hanson
- Center for Food Animal Health, Department of Animal Sciences, The Ohio State University, 1680 Madison Avenue, Wooster, OH, 44691, USA
| | - Rudra Channappanavar
- Department of Veterinary Pathobiology, Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Scott P Kenney
- Center for Food Animal Health, Department of Animal Sciences, The Ohio State University, 1680 Madison Avenue, Wooster, OH, 44691, USA.
| | - Gourapura J Renukaradhya
- Center for Food Animal Health, Department of Animal Sciences, The Ohio State University, 1680 Madison Avenue, Wooster, OH, 44691, USA.
| |
Collapse
|
21
|
Guan X, Yang Y, Du L. Advances in SARS-CoV-2 receptor-binding domain-based COVID-19 vaccines. Expert Rev Vaccines 2023; 22:422-439. [PMID: 37161869 PMCID: PMC10355161 DOI: 10.1080/14760584.2023.2211153] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 05/03/2023] [Indexed: 05/11/2023]
Abstract
INTRODUCTION The Coronavirus Disease 2019 (COVID-19) pandemic has caused devastating human and economic costs. Vaccination is an important step in controlling the pandemic. Severe acute respiratory coronavirus-2 (SARS-CoV-2), the causative agent of COVID-19, infects cells by binding a cellular receptor through the receptor-binding domain (RBD) within the S1 subunit of the spike (S) protein. Viral entry and membrane fusion are mediated by the S2 subunit. AREAS COVERED SARS-CoV-2 S protein, particularly RBD, serves as an important target for vaccines. Here we review the structure and function of SARS-CoV-2 S protein and its RBD, summarize current COVID-19 vaccines targeting the RBD, and outline potential strategies for improving RBD-based vaccines. Overall, this review provides important information that will facilitate rational design and development of safer and more effective COVID-19 vaccines. EXPERT OPINION The S protein of SARS-CoV-2 harbors numerous mutations, mostly in the RBD, resulting in multiple variant strains. Although many COVID-19 vaccines targeting the RBD of original virus strain (and previous variants) can prevent infection of these strains, their ability against recent dominant variants, particularly Omicron and its offspring, is significantly reduced. Collective efforts are needed to develop effective broad-spectrum vaccines to control current and future variants that have pandemic potential.
Collapse
Affiliation(s)
- Xiaoqing Guan
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Yang Yang
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, USA
| | - Lanying Du
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| |
Collapse
|
22
|
Zhou S, Luo Y, Lovell JF. Vaccine approaches for antigen capture by liposomes. Expert Rev Vaccines 2023; 22:1022-1040. [PMID: 37878481 PMCID: PMC10872528 DOI: 10.1080/14760584.2023.2274479] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 10/19/2023] [Indexed: 10/27/2023]
Abstract
INTRODUCTION Liposomes have been used as carriers for vaccine adjuvants and antigens due to their inherent biocompatibility and versatility as delivery vehicles. Two vial admixture of protein antigens with liposome-formulated immunostimulatory adjuvants has become a broadly used clinical vaccine preparation approach. Compared to freely soluble antigens, liposome-associated forms can enhance antigen delivery to antigen-presenting cells and co-deliver antigens with adjuvants, leading to improved vaccine efficacy. AREAS COVERED Several antigen-capture strategies for liposomal vaccines have been developed for proteins, peptides, and nucleic acids. Specific antigen delivery methodologies are discussed, including electrostatic adsorption, encapsulation inside the liposome aqueous core, and covalent and non-covalent antigen capture. EXPERT OPINION Several commercial vaccines include active lipid components, highlighting an increasingly prominent role of liposomes and lipid nanoparticles in vaccine development. Utilizing liposomes to associate antigens offers potential advantages, including antigen and adjuvant dose-sparing, co-delivery of antigen and adjuvant to immune cells, and enhanced immunogenicity. Antigen capture by liposomes has demonstrated feasibility in clinical testing. New antigen-capture techniques have been developed and appear to be of interest for vaccine development.
Collapse
Affiliation(s)
- Shiqi Zhou
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Yuan Luo
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Jonathan F Lovell
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY, USA
| |
Collapse
|
23
|
Ellis R, Weiss A. Human vaccines & immunotherapeutics: News November 2022. Hum Vaccin Immunother 2022; 18:2155378. [PMID: 36562712 PMCID: PMC9891674 DOI: 10.1080/21645515.2022.2155378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Ronald Ellis
- Editor-in-Chief, Biotech & Biopharma, Jerusalem, Israel
| | - Adam Weiss
- Acquisitions Editor, Taylor & Francis Group
| |
Collapse
|