1
|
Manik MC, Darai N, Rungrotmongkol T, Duan L, Harada R, Shigeta Y, Hengphasatporn K, Vangnai AS. Rationally designed antimicrobial peptides with high selectivity and efficiency against phytopathogenic Ralstonia solanecearum. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 976:179354. [PMID: 40209588 DOI: 10.1016/j.scitotenv.2025.179354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 04/03/2025] [Accepted: 04/03/2025] [Indexed: 04/12/2025]
Abstract
Ralstonia solanacearum, the causative agent of bacterial wilt, poses a global threat to agriculture, necessitating urgent and sustainable solutions as traditional methods lose efficacy. This study developed WRF-13, a synthetic antimicrobial peptide (AMP) designed to mimic natural AMPs, exhibiting potent antibacterial and anti-biofilm activity with high specificity against R. solanacearum. Mechanistic studies, including microscopy and computational analyses, demonstrated that WRF-13 disrupts the bacterial membrane. WRF-13 remained stable across a wide pH (5-8) and temperature (25-50 °C) range, essential for field applications, and showed no detectable toxicity to mammalian or plant cells at elevated concentrations. Greenhouse trials confirmed its efficacy in reducing bacterial wilt severity up to 65 %, highlighting its potential to protect crops from R. solanacearum infection. Overall, this study highlights WRF-13 as a targeted solution for managing bacterial wilt and advancing sustainable agriculture.
Collapse
Affiliation(s)
- Melvalia Cristin Manik
- Biotechnology Program, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Nitchakan Darai
- Futuristic Science Research Center, School of Science, Walailak University, Nakhon Si Thammarat 80160, Thailand; Drug and Cosmetics Excellence Center, Walailak University, Thasala, Nakhon Si Thammarat 80160, Thailand
| | - Thanyada Rungrotmongkol
- Program in Bioinformatics and Computational Biology, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand; Center of Excellence in Biocatalyst and Sustainable Biotechnology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand; Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Lian Duan
- Center for Computational Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Ryuhei Harada
- Center for Computational Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Yasuteru Shigeta
- Center for Computational Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Kowit Hengphasatporn
- Center for Computational Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan.
| | - Alisa S Vangnai
- Center of Excellence in Biocatalyst and Sustainable Biotechnology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand; Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
2
|
Adzavon KP, Zhao W, Khattak SN, Sheng W. Cholesterol-modified peptide nanomicelles as a promising platform for cancer therapy: A review. Int J Biol Macromol 2025; 311:143456. [PMID: 40274168 DOI: 10.1016/j.ijbiomac.2025.143456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 04/01/2025] [Accepted: 04/22/2025] [Indexed: 04/26/2025]
Abstract
Drug resistance, systemic toxicity, low solubility, and rapid clearance are common issues with chemotherapy drugs and other molecules used to treat cancer. The development of new therapeutic compounds and nanotherapy offers a solution to these issues. Therapeutic peptides have attracted great interest among these molecules due to their unique advantages, including low immunogenicity, efficient cellular internalization, deep tissue penetration, and low systemic toxicity. They have shown promise in cancer treatment by inducing apoptosis, necrosis, or cell lysis and promoting immunotherapy. In addition, peptides can deliver a range of cargoes, such as drugs, nucleic acids, imaging agents, and nanoparticles, and can specifically target cancer cells. However, problems such as their short half-life and low solubility limit their therapeutic use. Recent developments have addressed these constraints through structural alterations and nanoparticle formulations. In particular, cholesterol modification makes it possible for peptides to self-assemble into nanomicelles, which enhances their stability, half-life, and cell penetration. In this review, therapeutic peptides are presented as a versatile and successful cancer treatment option. The potential of cholesterol-modified peptide micelles as a reliable drug, nucleic acid, and imaging agent delivery system is also examined.
Collapse
Affiliation(s)
- Kodzo Prosper Adzavon
- College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Weijian Zhao
- College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Sameena Noor Khattak
- College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Wang Sheng
- College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China.
| |
Collapse
|
3
|
Zhang J, Chu A, Ouyang X, Li B, Yang P, Ba Z, Yang Y, Mao W, Zhong C, Gou S, Zhang Y, Liu H, Ni J. Rationally designed highly amphipathic antimicrobial peptides demonstrating superior bacterial selectivity relative to the corresponding α-helix peptide. Eur J Med Chem 2025; 286:117310. [PMID: 39864138 DOI: 10.1016/j.ejmech.2025.117310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/27/2024] [Accepted: 01/04/2025] [Indexed: 01/28/2025]
Abstract
De novo design of antimicrobial peptides is a pivotal strategy for developing new antibacterial agents, leveraging its rapid and efficient nature. (XXYY)n, where X represents cationic residues, Y denotes hydrophobic residues, and n varies from 2 to 4, is a classical α-helix template. Based on which, numerous antimicrobial peptides have been synthesized. Herein, we hypothesize that the amphipathy of this type of α-helix template can be further enhanced based on the principles of α-helical protein folding, characterized by a rotation occurring every 3.6 amino acid residues, and propose the highly amphipathic template XXYYXXYXXYYX (where X represents cationic residues and Y denotes hydrophobic residues). Accordingly, the amino acid composition and arrangement of the α-helix peptide (RRWF)3 are adjusted, yielding the highly amphipathic counterpart H-R (RRWFRRWRRWFR). The structure-activity relationship of which is further explored through the substitution of residues at positions 8 and 12. Notably, the highly amphipathic peptides exhibit enhanced antimicrobial activity and reduced hemolytic toxicity compared to (RRWF)3, resulting in superior bacterial selectivity. The most highly amphipathic peptide, H-R, demonstrates potent activity against biofilms and multidrug-resistant bacteria, low propensity for resistance, and high safety and effectiveness in vivo. The antibacterial mechanisms of H-R are also preliminarily investigated in this study. As noted, H-R represents a promising antimicrobial candidate for addressing infections associated with drug-resistant bacteria.
Collapse
Affiliation(s)
- Jingying Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, 730000, PR China
| | - Anqi Chu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, 730000, PR China
| | - Xu Ouyang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, 730000, PR China
| | - Beibei Li
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, 730000, PR China
| | - Ping Yang
- Institute of Pharmaceutics, School of Pharmacy, 2019RU066, Lanzhou University, Lanzhou, 730000, PR China
| | - Zufang Ba
- Institute of Pharmaceutics, School of Pharmacy, 2019RU066, Lanzhou University, Lanzhou, 730000, PR China
| | - Yinyin Yang
- Institute of Pharmaceutics, School of Pharmacy, 2019RU066, Lanzhou University, Lanzhou, 730000, PR China
| | - Wenbo Mao
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, 730000, PR China
| | - Chao Zhong
- Institute of Pharmaceutics, School of Pharmacy, 2019RU066, Lanzhou University, Lanzhou, 730000, PR China
| | - Sanhu Gou
- Institute of Pharmaceutics, School of Pharmacy, 2019RU066, Lanzhou University, Lanzhou, 730000, PR China
| | - Yun Zhang
- Institute of Pharmaceutics, School of Pharmacy, 2019RU066, Lanzhou University, Lanzhou, 730000, PR China
| | - Hui Liu
- Institute of Pharmaceutics, School of Pharmacy, 2019RU066, Lanzhou University, Lanzhou, 730000, PR China
| | - Jingman Ni
- Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College, No. 1 Xian Nong Tan Street, Beijing, 100050, PR China; Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, 730000, PR China; Institute of Pharmaceutics, School of Pharmacy, 2019RU066, Lanzhou University, Lanzhou, 730000, PR China.
| |
Collapse
|
4
|
Guo Y, Farhan MHR, Gan F, Yang X, Li Y, Huang L, Wang X, Cheng G. Advances in Artificially Designed Antibacterial Active Antimicrobial Peptides. Biotechnol Bioeng 2025; 122:247-264. [PMID: 39575657 DOI: 10.1002/bit.28886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 10/21/2024] [Accepted: 10/31/2024] [Indexed: 01/03/2025]
Abstract
Antibacterial resistance has emerged as a significant global concern, necessitating the urgent development of new antibacterial drugs. Antimicrobial peptides (AMPs) are naturally occurring peptides found in various organisms. Coupled with a wide range of antibacterial activity, AMPs are less likely to develop drug resistance and can act as potential agents for treating bacterial infections. However, their characteristics, such as low activity, instability, and toxicity, hinder their clinical application. Consequently, researchers are inclined towards artificial design and optimization based on natural AMPs. This review discusses the research advancements in the field of artificial designing and optimization of various AMPs. Moreover, it highlights various strategies for designing such peptides, aiming to provide valuable insights for developing novel AMPs.
Collapse
Affiliation(s)
- Ying Guo
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Muhammad Haris Raza Farhan
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Fei Gan
- Hubei Key Laboratory of Cell Homeostasis, College of Life Science, Wuhan University, Wuhan, China
- TaiKang Center for Life and Medical Science, Wuhan University, Wuhan, China
| | - Xiaohan Yang
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Yuxin Li
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Lingli Huang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, China
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Xu Wang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, China
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Guyue Cheng
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, China
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, China
| |
Collapse
|
5
|
Zheng L, Yang F, Wang C, Zafir M, Gao Z, Liu P, El-Gohary FA, Zhao X, Xue H. High-level biosynthesis and purification of the antimicrobial peptide Kiadin based on non-chromatographic purification and acid cleavage methods. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2025; 18:5. [PMID: 39819334 PMCID: PMC11736983 DOI: 10.1186/s13068-025-02607-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 01/08/2025] [Indexed: 01/19/2025]
Abstract
Antimicrobial peptides (AMPs) are renowned for their potent bacteriostatic activity and safety, rendering them invaluable in animal husbandry, food safety, and medicine. Despite their potential, the physiological toxicity of AMPs to host cells significantly hampers their biosynthetic production. This study presents a novel approach for the biosynthesis of the antimicrobial peptide Kiadin by engineering a DAMP4-DPS-Kiadin fusion protein to mitigate host cell toxicity and achieve high-level expression. Leveraging the unique properties of the DAMP4 protein, we developed a non-chromatographic purification method to isolate the DAMP4-DPS-Kiadin fusion protein with high purity. The instability of the D-P peptide bond under acidic conditions, combined with the thermal and saline stability of DAMP4, enabled efficient separation of Kiadin through acid cleavage and isoelectric precipitation, yielding Kiadin with 96% purity and a production yield of 29.3 mg/L. Our optimization of acid cleavage temperature, duration, and isoelectric precipitation conditions proved critical for maximizing the purification efficiency and expression levels of Kiadin. The biosynthesized Kiadin exhibited robust bacteriostatic activity against Escherichia coli, Pseudomonas aeruginosa, Acinetobacter baumannii, Bacillus cereus and Staphylococcus aureus. Notably, Kiadin demonstrated significant post-antibiotic effects by disrupting bacterial membrane integrity, inducing cytoplasmic leakage, and inhibiting biofilm formation in E. coli K88 and S. aureus Mu50, without cytotoxicity towards mouse macrophages. In vivo studies further confirmed Kiadin's exceptional therapeutic efficacy against abdominal infections caused by E. coli K88. The acid cleavage and non-chromatographic purification techniques developed in this study offer a cost-effective and efficient strategy for the high-purity production of AMPs.
Collapse
Affiliation(s)
- Liangjun Zheng
- Department of Animal Science and Technology, University of Northwest A&F, Yangling, 712100, Shaanxi, China
- Animal Disease-Resistant Nutrition, Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, 625014, China
| | - Fengyi Yang
- Department of Animal Science and Technology, University of Northwest A&F, Yangling, 712100, Shaanxi, China
| | - Chen Wang
- Department of Animal Science and Technology, University of Northwest A&F, Yangling, 712100, Shaanxi, China
| | - Muhammad Zafir
- Department of Animal Science and Technology, University of Northwest A&F, Yangling, 712100, Shaanxi, China
| | - Zishuo Gao
- Department of Animal Science and Technology, University of Northwest A&F, Yangling, 712100, Shaanxi, China
| | - Pilong Liu
- Department of Animal Science and Technology, University of Northwest A&F, Yangling, 712100, Shaanxi, China
| | - Fatma A El-Gohary
- Department of Hygiene and Zoonoses, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Xin Zhao
- Department of Animal Science, McGill University, Sainte-Anne-de-Bellevue, QC, Canada
| | - Huping Xue
- Department of Animal Science and Technology, University of Northwest A&F, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
6
|
Putri RA, Rohman MS, Swasono RT, Raharjo TJ. A novel synthetic peptide analog enhanced antibacterial activity of the frog-derived skin peptide wuchuanin-A1. J Biomol Struct Dyn 2025; 43:348-358. [PMID: 37968993 DOI: 10.1080/07391102.2023.2281633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 11/04/2023] [Indexed: 11/17/2023]
Abstract
In recent years, there has been a growing focus on the development of novel antibacterial compounds for clinical applications, such as antimicrobial peptide (AMP). Among the developed AMP, wuchuanin-A1, a coil-shaped bioactive peptide derived from Odorrana wuchuanensis frog skin, has been reported to exhibit antibacterial, antifungal, and antioxidant activity, but there are limited studies on its potential as an antibacterial agent. Therefore, this study aims to molecularly modify the sequence of wuchuanin-A1 to enhance its antibacterial properties. The interaction of both the native and analog peptide with bacterial inner membranes was initially assessed using computational methods. Specific amino acid substitutions were then used to enhance the modified peptide's antibacterial efficacy, followed by several preliminary tests to evaluate its activity. This study bridges the gap in exploring the potential of wuchuanin-A1 for antibacterial purposes, providing insights into the design of effective antimicrobial agents.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | | | | | - Tri Joko Raharjo
- Department of Chemistry, Universitas Gadjah Mada, Bulaksumur, Indonesia
| |
Collapse
|
7
|
Gagat P, Ostrówka M, Duda-Madej A, Mackiewicz P. Enhancing Antimicrobial Peptide Activity through Modifications of Charge, Hydrophobicity, and Structure. Int J Mol Sci 2024; 25:10821. [PMID: 39409150 PMCID: PMC11476776 DOI: 10.3390/ijms251910821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/04/2024] [Accepted: 10/07/2024] [Indexed: 10/20/2024] Open
Abstract
Antimicrobial peptides (AMPs) are emerging as a promising alternative to traditional antibiotics due to their ability to disturb bacterial membranes and/or their intracellular processes, offering a potential solution to the growing problem of antimicrobial resistance. AMP effectiveness is governed by factors such as net charge, hydrophobicity, and the ability to form amphipathic secondary structures. When properly balanced, these characteristics enable AMPs to selectively target bacterial membranes while sparing eukaryotic cells. This review focuses on the roles of positive charge, hydrophobicity, and structure in influencing AMP activity and toxicity, and explores strategies to optimize them for enhanced therapeutic potential. We highlight the delicate balance between these properties and how various modifications, including amino acid substitutions, peptide tagging, or lipid conjugation, can either enhance or impair AMP performance. Notably, an increase in these parameters does not always yield the best results; sometimes, a slight reduction in charge, hydrophobicity, or structural stability improves the overall AMP therapeutic potential. Understanding these complex interactions is key to developing AMPs with greater antimicrobial activity and reduced toxicity, making them viable candidates in the fight against antibiotic-resistant bacteria.
Collapse
Affiliation(s)
- Przemysław Gagat
- Faculty of Biotechnology, University of Wroclaw, Fryderyka Joliot-Curie 14a, 50-137 Wroclaw, Poland; (M.O.); (P.M.)
| | - Michał Ostrówka
- Faculty of Biotechnology, University of Wroclaw, Fryderyka Joliot-Curie 14a, 50-137 Wroclaw, Poland; (M.O.); (P.M.)
| | - Anna Duda-Madej
- Department of Microbiology, Faculty of Medicine, Wroclaw Medical University, Chalubinskiego 4, 50-368 Wroclaw, Poland;
| | - Paweł Mackiewicz
- Faculty of Biotechnology, University of Wroclaw, Fryderyka Joliot-Curie 14a, 50-137 Wroclaw, Poland; (M.O.); (P.M.)
| |
Collapse
|
8
|
Yu HH, Wu LY, Hsu PL, Lee CW, Su BC. Marine Antimicrobial Peptide Epinecidin-1 Inhibits Proliferation Induced by Lipoteichoic acid and Causes cell Death in non-small cell lung cancer Cells via Mitochondria Damage. Probiotics Antimicrob Proteins 2024; 16:1724-1733. [PMID: 37523113 PMCID: PMC11445356 DOI: 10.1007/s12602-023-10130-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/20/2023] [Indexed: 08/01/2023]
Abstract
Non-small cell lung cancer (NSCLC) is among the deadliest cancers worldwide. Despite the recent introduction of several new therapeutic approaches for the disease, improvements in overall survival and progression-free survival have been minimal. Conventional treatments for NSCLC include surgery, chemotherapy and radiotherapy. Except for surgery, these treatments can impair a patient's immune system, leaving them susceptible to bacterial infections. As such, Staphylococcus aureus infections are commonly seen in NSCLC patients receiving chemotherapy, and a major constituent of the S. aureus cell surface, lipoteichoic acid (LTA), is thought to stimulate NSCLC cancer cell proliferation. Thus, inhibition of LTA-mediated cell proliferation might be a useful strategy for treating NSCLC. Epinecidin-1 (EPI), a marine antimicrobial peptide, exhibits broad-spectrum antibacterial activity, and it also displays anti-cancer activity in glioblastoma and synovial sarcoma cells. Furthermore, EPI has been shown to inhibit LTA-induced inflammatory responses in murine macrophages. Nevertheless, the anti-cancer and anti-LTA activities of EPI and the underlying mechanisms of these effects have not been fully tested in the context of NSCLC. In the present study, we demonstrate that EPI suppresses LTA-enhanced proliferation of NSCLC cells by neutralizing LTA and blocking its effects on toll-like receptor 2 and interleukin-8. Moreover, we show that EPI induces necrotic cell death via mitochondrial damage, elevated reactive oxygen species levels, and disrupted redox balance. Collectively, our results reveal dual anti-cancer activities of EPI in NSCLC, as the peptide not only directly kills cancer cells but it also blocks LTA-mediated enhancement of cell proliferation.
Collapse
Affiliation(s)
- Hsin-Hsien Yu
- Division of General Surgery, Department of Surgery, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- Division of General Surgery, Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Luo-Yun Wu
- School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Pei-Ling Hsu
- Department of Anatomy, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, 80708, Taiwan
| | - Chu-Wan Lee
- Department of Nursing, National Tainan Junior College of Nursing, 78, Section 2, Minzu Road, West Central District, Tainan, 70007, Taiwan
| | - Bor-Chyuan Su
- Department of Anatomy and Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
9
|
Alharbi N, Shalash AO, Koirala P, Boer JC, Hussein WM, Khalil ZG, Capon RJ, Plebanski M, Toth I, Skwarczynski M. Cholesterol as an inbuilt immunoadjuvant for a lipopeptide vaccine against group A Streptococcus infection. J Colloid Interface Sci 2024; 663:43-52. [PMID: 38387185 DOI: 10.1016/j.jcis.2024.02.134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 01/21/2024] [Accepted: 02/17/2024] [Indexed: 02/24/2024]
Abstract
Peptide-based vaccines can trigger highly specific immune responses, although peptides alone are usually unable to confer strong humoral or cellular immunity. Consequently, peptide antigens are administered with immunostimulatory adjuvants, but only a few are safe and effective for human use. To overcome this obstacle, herein a peptide antigen was lipidated to effectively anchor it to liposomes and emulsion. A peptide antigen B cell epitope from Group A Streptococcus M protein was conjugated to a universal T helper epitope, the pan DR-biding epitope (PADRE), alongside a lipidic moiety cholesterol. Compared to a free peptide antigen, the lipidated version (LP1) adopted a helical conformation and self-assembled into small nanoparticles. Surprisingly, LP1 alone induced the same or higher antibody titers than liposomes or emulsion-based formulations. In addition, antibodies produced by mice immunized with LP1 were more opsonic than those induced by administering the antigen with incomplete Freund's adjuvant. No side effects were observed in the immunized mice and no excessive inflammatory immune responses were detected. Overall, this study demonstrated how simple conjugation of cholesterol to a peptide antigen can produce a safe and efficacious vaccine against Group A Streptococcus - the leading cause of superficial infections and the bacteria responsible for deadly post-infection autoimmune disorders.
Collapse
Affiliation(s)
- Nedaa Alharbi
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia; University of Jeddah, College of Science, Department of Chemistry, Jeddah, Saudi Arabia
| | - Ahmed O Shalash
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Prashamsa Koirala
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Jennifer C Boer
- School of Health and Biomedical Sciences, RMIT University, VIC 3083, Australia
| | - Waleed M Hussein
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Zeinab G Khalil
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Robert J Capon
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Magdalena Plebanski
- School of Health and Biomedical Sciences, RMIT University, VIC 3083, Australia
| | - Istvan Toth
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia; Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia; School of Pharmacy, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Mariusz Skwarczynski
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
10
|
Liang Q, Liu Z, Liang Z, Zhu C, Li D, Kong Q, Mou H. Development strategies and application of antimicrobial peptides as future alternatives to in-feed antibiotics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172150. [PMID: 38580107 DOI: 10.1016/j.scitotenv.2024.172150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/14/2024] [Accepted: 03/30/2024] [Indexed: 04/07/2024]
Abstract
The use of in-feed antibiotics has been widely restricted due to the significant environmental pollution and food safety concerns they have caused. Antimicrobial peptides (AMPs) have attracted widespread attention as potential future alternatives to in-feed antibiotics owing to their demonstrated antimicrobial activity and environment friendly characteristics. However, the challenges of weak bioactivity, immature stability, and low production yields of natural AMPs impede practical application in the feed industry. To address these problems, efforts have been made to develop strategies for approaching the AMPs with enhanced properties. Herein, we summarize approaches to improving the properties of AMPs as potential alternatives to in-feed antibiotics, mainly including optimization of structural parameters, sequence modification, selection of microbial hosts, fusion expression, and industrially fermentation control. Additionally, the potential for application of AMPs in animal husbandry is discussed. This comprehensive review lays a strong theoretical foundation for the development of in-feed AMPs to achieve the public health globally.
Collapse
Affiliation(s)
- Qingping Liang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Zhemin Liu
- Fundamental Science R&D Center of Vazyme Biotech Co. Ltd., Nanjing 210000, China
| | - Ziyu Liang
- Section of Neurobiology, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Changliang Zhu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Dongyu Li
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Qing Kong
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Haijin Mou
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China.
| |
Collapse
|
11
|
Nobakht MS, Bazyar K, Langeroudi MSG, Mirzaei M, Goudarzi M, Shivaee A. Investigating the Antimicrobial Effects of a Novel Peptide Derived From Listeriolysin S on S aureus, E coli, and L plantarum: An In Silico and In Vitro Study. Bioinform Biol Insights 2024; 18:11779322241252513. [PMID: 38765021 PMCID: PMC11100392 DOI: 10.1177/11779322241252513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 04/17/2024] [Indexed: 05/21/2024] Open
Abstract
Aims The emergence of antibiotic resistance is one of the most significant issues today. Modifying antimicrobial peptides (AMPs) can improve their effects. In this study, the active region of Listeriolysin S (LLS) as a peptidic toxin has been recognized, and its antibacterial properties have been evaluated by modifying that region. Methods After extracting the sequence, the structure of LLS was predicted by PEP-FOLD3. AntiBP and AMPA servers identified its antimicrobial active site. It was modified by adding arginine residue to its 3- and N-terminal regions. Its antimicrobial properties on Staphylococcus aureus, Escherichia coli, and Lactobacillus Plantarum were estimated. Findings The results of AntiBP and AntiBP servers demonstrated that a region of 15 amino acids has the most antimicrobial properties (score = 1.696). After adding arginine to the chosen region, the physicochemical evaluation and antimicrobial properties revealed that the designed peptide is a stable AMP with a positive charge of 4, which is not toxic to human erythrocyte cells and has antigenic properties. The results of in vitro and colony counting indicated that at different hours, it caused a significant reduction in the count of S aureus, E coli, and L Plantarum compared with the control sample. Conclusions Upcoming research implies that identifying and enhancing the active sites of natural peptides can help combat bacteria.
Collapse
Affiliation(s)
- Mojgan Sarabi Nobakht
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Microbiology, Faculty of Basic Sciences, Islamic Azad University, Sirjan, Iran
| | - Kaveh Bazyar
- Department of Clinical Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | | | - Mandana Mirzaei
- Department of Microbiology, Faculty of Science, Islamic Azad University, Karaj, Iran
| | - Mehdi Goudarzi
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Shivaee
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
12
|
Wang H, Yang Y, Wang S, Badawy S, Ares I, Martínez M, Lopez-Torres B, Martínez-Larrañaga MR, Wang X, Anadón A, Martínez MA. Antimicrobial sensitisers: Gatekeepers to avoid the development of multidrug-resistant bacteria. J Control Release 2024; 369:25-38. [PMID: 38508527 DOI: 10.1016/j.jconrel.2024.03.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 02/23/2024] [Accepted: 03/16/2024] [Indexed: 03/22/2024]
Abstract
The resistance of multidrug-resistant bacteria to existing antibiotics forces the continued development of new antibiotics and antibacterial agents, but the high costs and long timeframe involved in the development of new agents renders the hope that existing antibiotics may again play a part. The "antibiotic adjuvant" is an indirect antibacterial strategy, but its vague concept has, in the past, limited the development speed of related drugs. In this review article, we put forward an accurate concept of a "non-self-antimicrobial sensitisers (NSAS)", to distinguish it from an "antibiotic adjuvant", and then discuss several scientific methods to restore bacterial sensitivity to antibiotics, and the sources and action mechanism of existing NSAS, in order to guide the development and further research of NSAS.
Collapse
Affiliation(s)
- Hanfei Wang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yingying Yang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Simeng Wang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Sara Badawy
- MAO Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Pathology Department of Animal Medicine, Faculty of Veterinary Medicine, Benha University, Egypt
| | - Irma Ares
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), and Research Institute Hospital, 12 de Octubre (i+12), 28040 Madrid, Spain
| | - Marta Martínez
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), and Research Institute Hospital, 12 de Octubre (i+12), 28040 Madrid, Spain
| | - Bernardo Lopez-Torres
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), and Research Institute Hospital, 12 de Octubre (i+12), 28040 Madrid, Spain
| | - María-Rosa Martínez-Larrañaga
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), and Research Institute Hospital, 12 de Octubre (i+12), 28040 Madrid, Spain
| | - Xu Wang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China; MAO Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
| | - Arturo Anadón
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), and Research Institute Hospital, 12 de Octubre (i+12), 28040 Madrid, Spain.
| | - María-Aránzazu Martínez
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), and Research Institute Hospital, 12 de Octubre (i+12), 28040 Madrid, Spain
| |
Collapse
|
13
|
Fontanot A, Ellinger I, Unger WWJ, Hays JP. A Comprehensive Review of Recent Research into the Effects of Antimicrobial Peptides on Biofilms-January 2020 to September 2023. Antibiotics (Basel) 2024; 13:343. [PMID: 38667019 PMCID: PMC11047476 DOI: 10.3390/antibiotics13040343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/03/2024] [Accepted: 04/04/2024] [Indexed: 04/29/2024] Open
Abstract
Microbial biofilm formation creates a persistent and resistant environment in which microorganisms can survive, contributing to antibiotic resistance and chronic inflammatory diseases. Increasingly, biofilms are caused by multi-drug resistant microorganisms, which, coupled with a diminishing supply of effective antibiotics, is driving the search for new antibiotic therapies. In this respect, antimicrobial peptides (AMPs) are short, hydrophobic, and amphipathic peptides that show activity against multidrug-resistant bacteria and biofilm formation. They also possess broad-spectrum activity and diverse mechanisms of action. In this comprehensive review, 150 publications (from January 2020 to September 2023) were collected and categorized using the search terms 'polypeptide antibiotic agent', 'antimicrobial peptide', and 'biofilm'. During this period, a wide range of natural and synthetic AMPs were studied, of which LL-37, polymyxin B, GH12, and Nisin were the most frequently cited. Furthermore, although many microbes were studied, Staphylococcus aureus and Pseudomonas aeruginosa were the most popular. Publications also considered AMP combinations and the potential role of AMP delivery systems in increasing the efficacy of AMPs, including nanoparticle delivery. Relatively few publications focused on AMP resistance. This comprehensive review informs and guides researchers about the latest developments in AMP research, presenting promising evidence of the role of AMPs as effective antimicrobial agents.
Collapse
Affiliation(s)
- Alessio Fontanot
- Department of Medical Microbiology & Infectious Diseases, Erasmus University Medical Centre (Erasmus MC), Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands; (A.F.); (W.W.J.U.)
- Department of Pediatrics, Laboratory of Pediatrics, Erasmus University Medical Center Rotterdam, Sophia Children’s Hospital, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
| | - Isabella Ellinger
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Währinger Gürtel 18–20, 1090 Vienna, Austria;
| | - Wendy W. J. Unger
- Department of Medical Microbiology & Infectious Diseases, Erasmus University Medical Centre (Erasmus MC), Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands; (A.F.); (W.W.J.U.)
- Department of Pediatrics, Laboratory of Pediatrics, Erasmus University Medical Center Rotterdam, Sophia Children’s Hospital, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
| | - John P. Hays
- Department of Medical Microbiology & Infectious Diseases, Erasmus University Medical Centre (Erasmus MC), Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands; (A.F.); (W.W.J.U.)
| |
Collapse
|
14
|
Wan Alias WAS, Ismail N, Hasan HB, Nik Abdul Ghani NR, Abdulrazak MH, Hassan SA. Phytochemical Composition and Antimicrobial Efficacy of Salvadora persica Root Extracts Against Carbapenem-Resistant Acinetobacter baumannii. Cureus 2024; 16:e58660. [PMID: 38774172 PMCID: PMC11105968 DOI: 10.7759/cureus.58660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/20/2024] [Indexed: 05/24/2024] Open
Abstract
Background Carbapenem-resistant Acinetobacter baumannii (CRAB) are difficult to eradicate from the environment and are virtually immune to all antibiotics. Consequently, CRAB may culminate in severe outbreaks and fatal infections among people attending hospitals and nursing homes. Salvadora persica has been used as an herbal remedy and chewing sticks for dental cleansing. Evaluating S. persica's efficacy against CRAB may provide an alternative approach to treating CRAB infections in healthcare environments, considering its traditional application in dental hygiene. Employing S. persica as an herbal remedy could be a part of a more sustainable approach to control CRAB infections. Aim To investigate the phytochemical composition of S. persica and evaluate its antimicrobial properties. Materials and methods The roots were extracted by Soxhlet apparatus using n-hexane, chloroform, and methanol. Each extract was analyzed using gas chromatography-mass spectrometry (GCMS) and characterized using WN908.L and National Institute of Standards and Technology (NIST) libraries. The antimicrobial activity of each extract against CRAB was evaluated using a broth microdilution assay to determine the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC). Results The GCMS analysis of different solvent extracts of S. persica roots showed the presence of various phytochemical compounds such as steroids, phenolic compounds, fatty acids, alcohols, terpenoids, and vitamin E. Both chloroform and hexane extracts showed the most effective antimicrobial activity with a MIC value of 3.13 mg/mL and an MBC value of 12.50 mg/mL, respectively. Benzoic acid was the major phytochemical compound identified from S. persica extract. N-hexane, chloroform, and methanol extracts exhibited maximum antimicrobial activity due to the presence of active compounds in them. Conclusion Chloroform and hexane extracts showed the most potent antibacterial activities against CRAB.
Collapse
Affiliation(s)
- Wan Alif Syazwani Wan Alias
- Medical Microbiology and Parasitology, School of Medical Sciences, University Sains Malaysia, Kubang Kerian, MYS
| | - Norzila Ismail
- Pharmacology, School of Medical Sciences, University Sains Malaysia, Kubang Kerian, MYS
| | - Habsah B Hasan
- Medical Microbiology and Parasitology, School of Medical Sciences, University Sains Malaysia, Kubang Kerian, MYS
| | - Nik Rozainah Nik Abdul Ghani
- Conservative Dentistry and Endodontics, School of Dental Sciences, University Sains Malaysia, Kubang Kerian, MYS
| | - Mohammed H Abdulrazak
- Medical Microbiology and Parasitology, School of Medical Sciences, University Sains Malaysia, Kubang Kerian, MYS
| | - Siti Asma Hassan
- Medical Microbiology and Parasitology, School of Medical Sciences, University Sains Malaysia, Kubang Kerian, MYS
| |
Collapse
|
15
|
Chatupheeraphat C, Peamchai J, Luk-in S, Yainoy S, Eiamphungporn W. Synergistic effect of two antimicrobial peptides, BP203 and MAP-0403 J-2 with conventional antibiotics against colistin-resistant Escherichia coli and Klebsiella pneumoniae clinical isolates. PLoS One 2023; 18:e0294287. [PMID: 37972089 PMCID: PMC10653547 DOI: 10.1371/journal.pone.0294287] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 10/27/2023] [Indexed: 11/19/2023] Open
Abstract
Drug-resistant Enterobacterales infections are a great health concern due to the lack of effective treatments. Consequently, finding novel antimicrobials or combining therapies becomes a crucial approach in addressing this problem. BP203 and MAP-0403 J-2, novel antimicrobial peptides, have exhibited effectiveness against Gram-negative bacteria. In this study, we assessed the in vitro antibacterial activity of BP203 and MAP-0403 J-2, along with their synergistic interaction with conventional antibiotics including colistin, rifampicin, chloramphenicol, ceftazidime, meropenem, and ciprofloxacin against colistin-resistant Escherichia coli and Klebsiella pneumoniae clinical isolates. The minimal inhibitory concentrations (MIC) of BP203 and MAP-0403 J-2 against tested E. coli isolates were 2-16 and 8-32 μg/mL, respectively. However, for the majority of K. pneumoniae isolates, the MIC of BP203 and MAP-0403 J-2 were >128 μg/mL. Notably, our results demonstrated a synergistic effect when combining BP203 with rifampicin, meropenem, or chloramphenicol, primarily observed in most K. pneumoniae isolates. In contrast, no synergism was evident between BP203 and colistin, chloramphenicol, ceftazidime, rifampicin, or ciprofloxacin when tested against all E. coli isolates. Furthermore, synergistic effects between MAP-0403 J-2 and rifampicin, ceftazidime or colistin were observed against the majority of E. coli isolates. Similarly, the combined effect of MAP-0403 J-2 with rifampicin or chloramphenicol was synergistic in the majority of K. pneumoniae isolates. Importantly, these peptides displayed the stability at high temperatures, across a wide range of pH values, in specific serum concentrations and under physiological salt conditions. Both peptides also showed no significant hemolysis and cytotoxicity against mammalian cells. Our findings suggested that BP203 and MAP-0403 J-2 are promising candidates against colistin-resistant E. coli. Meanwhile, the synergism of these peptides and certain antibiotics could be of great therapeutic value as antimicrobial drugs against infections caused by colistin-resistant E. coli and K. pneumoniae.
Collapse
Affiliation(s)
- Chawalit Chatupheeraphat
- Center for Research Innovation and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Salaya, Nakhon Pathom, Thailand
| | - Jiratchaya Peamchai
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| | - Sirirat Luk-in
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| | - Sakda Yainoy
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| | - Warawan Eiamphungporn
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| |
Collapse
|
16
|
Li H, Niu J, Wang X, Niu M, Liao C. The Contribution of Antimicrobial Peptides to Immune Cell Function: A Review of Recent Advances. Pharmaceutics 2023; 15:2278. [PMID: 37765247 PMCID: PMC10535326 DOI: 10.3390/pharmaceutics15092278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/27/2023] [Accepted: 09/02/2023] [Indexed: 09/29/2023] Open
Abstract
The development of novel antimicrobial agents to replace antibiotics has become urgent due to the emergence of multidrug-resistant microorganisms. Antimicrobial peptides (AMPs), widely distributed in all kingdoms of life, present strong antimicrobial activity against a variety of bacteria, fungi, parasites, and viruses. The potential of AMPs as new alternatives to antibiotics has gradually attracted considerable interest. In addition, AMPs exhibit strong anticancer potential as well as anti-inflammatory and immunomodulatory activity. Many studies have provided evidence that AMPs can recruit and activate immune cells, controlling inflammation. This review highlights the scientific literature focusing on evidence for the anti-inflammatory mechanisms of different AMPs in immune cells, including macrophages, monocytes, lymphocytes, mast cells, dendritic cells, neutrophils, and eosinophils. A variety of immunomodulatory characteristics, including the abilities to activate and differentiate immune cells, change the content and expression of inflammatory mediators, and regulate specific cellular functions and inflammation-related signaling pathways, are summarized and discussed in detail. This comprehensive review contributes to a better understanding of the role of AMPs in the regulation of the immune system and provides a reference for the use of AMPs as novel anti-inflammatory drugs for the treatment of various inflammatory diseases.
Collapse
Affiliation(s)
- Hanxiao Li
- Luoyang Key Laboratory of Live Carrier Biomaterial and Anmal Disease Prevention and Control, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China; (H.L.); (J.N.)
| | - Junhui Niu
- Luoyang Key Laboratory of Live Carrier Biomaterial and Anmal Disease Prevention and Control, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China; (H.L.); (J.N.)
| | - Xiaoli Wang
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang 471023, China;
| | - Mingfu Niu
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China;
| | - Chengshui Liao
- Luoyang Key Laboratory of Live Carrier Biomaterial and Anmal Disease Prevention and Control, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China; (H.L.); (J.N.)
| |
Collapse
|
17
|
Shi S, Dong H, Chen X, Xu S, Song Y, Li M, Yan Z, Wang X, Niu M, Zhang M, Liao C. Sustained release of alginate hydrogel containing antimicrobial peptide Chol-37(F34-R) in vitro and its effect on wound healing in murine model of Pseudomonas aeruginosa infection. J Vet Sci 2023; 24:e44. [PMID: 37271512 PMCID: PMC10244133 DOI: 10.4142/jvs.22319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 04/09/2023] [Accepted: 04/25/2023] [Indexed: 06/06/2023] Open
Abstract
BACKGROUND Antibiotic resistance is a significant public health concern around the globe. Antimicrobial peptides exhibit broad-spectrum and efficient antibacterial activity with an added advantage of low drug resistance. The higher water content and 3D network structure of the hydrogels are beneficial for maintaining antimicrobial peptide activity and help to prevent degradation. The antimicrobial peptide released from hydrogels also hasten the local wound healing by promoting epithelial tissue regeneration and granulation tissue formation. OBJECTIVE This study aimed at developing sodium alginate based hydrogel loaded with a novel antimicrobial peptide Chol-37(F34-R) and to investigate the characteristics in vitro and in vivo as an alternative antibacterial wound dressing to treat infectious wounds. METHODS Hydrogels were developed and optimized by varying the concentrations of crosslinkers and subjected to various characterization tests like cross-sectional morphology, swelling index, percent water contents, water retention ratio, drug release and antibacterial activity in vitro, and Pseudomonas aeruginosa infected wound mice model in vivo. RESULTS The results indicated that the hydrogel C proved superior in terms of cross-sectional morphology having uniformly sized interconnected pores, a good swelling index, with the capacity to retain a higher quantity of water. Furthermore, the optimized hydrogel has been found to exert a significant antimicrobial activity against bacteria and was also found to prevent bacterial infiltration into the wound site due to forming an impermeable barrier between the wound bed and external environment. The optimized hydrogel was found to significantly hasten skin regeneration in animal models when compared to other treatments in addition to strong inhibitory effect on the release of pro-inflammatory cytokines (interleukin-1β and tumor necrosis factor-α). CONCLUSIONS Our results suggest that sodium alginate -based hydrogels loaded with Chol-37(F34-R) hold the potential to be used as an alternative to conventional antibiotics in treating infectious skin wounds.
Collapse
Affiliation(s)
- Shuaibing Shi
- The Key Lab of Veterinary Biological Products, Henan University of Science and Technology, Luoyang 471023, China
| | - Hefan Dong
- The Key Lab of Veterinary Biological Products, Henan University of Science and Technology, Luoyang 471023, China
- College of Animal Science and Technology /Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang 471023, China
| | - Xiaoyou Chen
- The Key Lab of Veterinary Biological Products, Henan University of Science and Technology, Luoyang 471023, China
- College of Animal Science and Technology /Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang 471023, China
| | - Siqi Xu
- The Key Lab of Veterinary Biological Products, Henan University of Science and Technology, Luoyang 471023, China
- College of Animal Science and Technology /Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang 471023, China
| | - Yue Song
- The Key Lab of Veterinary Biological Products, Henan University of Science and Technology, Luoyang 471023, China
- College of Animal Science and Technology /Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang 471023, China
| | - Meiting Li
- The Key Lab of Veterinary Biological Products, Henan University of Science and Technology, Luoyang 471023, China
- College of Animal Science and Technology /Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang 471023, China
| | - Zhiling Yan
- Jiaozuo Center for Animal Disease Prevention and Control, Jiaozuo 454003, China
| | - Xiaoli Wang
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang 471023, China
| | - Mingfu Niu
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China
| | - Min Zhang
- The Key Lab of Veterinary Biological Products, Henan University of Science and Technology, Luoyang 471023, China.
| | - Chengshui Liao
- The Key Lab of Veterinary Biological Products, Henan University of Science and Technology, Luoyang 471023, China
- College of Animal Science and Technology /Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang 471023, China.
| |
Collapse
|
18
|
Haidari H, Melguizo-Rodríguez L, Cowin AJ, Kopecki Z. Therapeutic potential of antimicrobial peptides for treatment of wound infection. Am J Physiol Cell Physiol 2023; 324:C29-C38. [PMID: 36409176 DOI: 10.1152/ajpcell.00080.2022] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Healing of cutaneous wounds is a fundamental process required to re-establish tissue integrity, repair skin barrier function, and restore skin homeostasis. Chronic wound infection, exacerbated by the growing development of resistance to conventional therapies, hinders the skin repair process and is a serious clinical problem affecting millions of people worldwide. In the past decade, the use of antimicrobial peptides (AMPs) has attracted increasing attention as a potential novel strategy for the treatment of chronic wound infections due to their unique multifaceted mechanisms of action, and AMPs have been demonstrated to function as potent host-defense molecules that can control microbial proliferation, modulate host-immune responses, and act as endogenous mediators of wound healing. To date over 3,200 AMPs have been discovered either from living organisms or through synthetic derivation, some of which have progressed to clinical trials for the treatment of burn and wound injuries. However, progress to routine clinical use has been hindered due to AMPs' susceptibility to wound and environmental factors including changes in pH, proteolysis, hydrolysis, oxidation, and photolysis. This review will discuss the latest research focused on the development and applications of AMPs for wound infections using the latest nanotechnological approaches to improve AMP delivery, and stability to present effective combinatorial treatment for clinical applications.
Collapse
Affiliation(s)
- Hanif Haidari
- Future Industries Institute and STEM Academic Unit, University of South Australia, Adelaide, South Australia, Australia
| | - Lucía Melguizo-Rodríguez
- Biomedical Group (BIO277), Department of Nursing, Faculty of Health Sciences, University of Granada, Granada, Spain
| | - Allison J Cowin
- Future Industries Institute and STEM Academic Unit, University of South Australia, Adelaide, South Australia, Australia
| | - Zlatko Kopecki
- Future Industries Institute and STEM Academic Unit, University of South Australia, Adelaide, South Australia, Australia
| |
Collapse
|
19
|
Chatupheeraphat C, Peamchai J, Luk-in S, Eiamphungporn W. Synergistic effect and antibiofilm activity of the antimicrobial peptide K11 with conventional antibiotics against multidrug-resistant and extensively drug-resistant Klebsiella pneumoniae. Front Cell Infect Microbiol 2023; 13:1153868. [PMID: 37113135 PMCID: PMC10126264 DOI: 10.3389/fcimb.2023.1153868] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 03/21/2023] [Indexed: 04/29/2023] Open
Abstract
Introduction Infections caused by drug-resistant Klebsiella pneumoniae are now a serious problem for public health, associated with high morbidity and mortality due to limited treatment options. Therefore, new antibacterial agents or a combination of agents as the first line of treatment are urgently needed. K11 is a novel antimicrobial peptide (AMP) that has demonstrated in vitro antimicrobial activity against several types of bacteria. Additionally, K11 has previously shown no hemolytic activity. Herein, the antibacterial activity, the synergistic action of K11 in combination with different conventional antibiotics and the antibiofilm activity of K11 against multidrug-resistant (MDR) and extensively drug-resistant (XDR) K. pneumoniae were investigated. Meanwhile, the stability and ability to induce the bacterial resistance of K11 were also tested. Methods Fifteen clinical isolates of MDR/XDR K. pneumoniae were used in this study. The minimum inhibitory concentration (MIC) of K11 against these isolates was determined by the broth microdilution method. In vitro synergy between K11 and antibiotics was evaluated using the checkerboard methodology. The antibiofilm activity of K11 against K. pneumoniae strong biofilm producers were explored by the crystal violet staining. The stability in different environments and resistance induction of K11 were evaluated by MIC determination. Results The MIC values of K11 against MDR/XDR K. pneumoniae isolates were 8-512 μg/mL. Intriguingly, the synergistic effects were clearly observed for K11 in combination with chloramphenicol, meropenem, rifampicin, or ceftazidime, whereas no synergy was observed when K11 was combined with colistin. Besides, K11 effectively prevented biofilm formation against K. pneumoniae strong biofilm producers in a concentration-dependent manner starting at 0.25×MIC and exerted an enhancing effect when administered in combination with meropenem, chloramphenicol, or rifampicin. Additionally, K11 demonstrated high thermal and wide pH stability along with good stability in serum and physiological salts. Significantly, K. pneumoniae showed no induction of resistance even after prolonged exposure to a sub-inhibitory concentration of K11. Conclusion These findings indicate that K11 is a promising candidate with potent antibacterial and antibiofilm activities without inducing resistance and acts synergistically with conventional antibiotics against drug-resistant K. pneumoniae.
Collapse
Affiliation(s)
- Chawalit Chatupheeraphat
- Center for Research and Innovation, Faculty of Medical Technology, Mahidol University, Nakhon Pathom, Thailand
| | - Jiratchaya Peamchai
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| | - Sirirat Luk-in
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| | - Warawan Eiamphungporn
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
- *Correspondence: Warawan Eiamphungporn,
| |
Collapse
|
20
|
Wang L, Liu H, Li X, Yao C. Assessment of New Strategies to Improve the Performance of Antimicrobial Peptides. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3691. [PMID: 36296881 PMCID: PMC9610275 DOI: 10.3390/nano12203691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/15/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
In this research, we constructed a novel engineered tripeptide modified with lipoic acid (LA-RWR), followed by crosslinking of lipoic acid to form nanoparticles (c-LA-RWR). LA-RWR was also modified with phenethylamine (PEA) on the C-terminus to achieve better antibacterial activities. The as-prepared c-LA-RWR and LA-RWR-PEA were effective against E.coli, S.aureus, C.albicans, and methicillin-resistant Staphylococcus aureus, with minimum inhibitory concentration values ranging from 2 to 16 µg/mL, which greatly improved the performance of LA-RWR. Similar antibacterial activities were demonstrated in anti-biofilm activity; there was no matter on the biofilm that was already established or forming. Moreover, c-LA-RWR/LA-RWR-PEA remarkably induced cytoplasmic membrane depolarization and outer membrane permeabilization, resulting in varying degrees of damage to the bacterial morphology, which were consistent with the results obtained via electron microscopy. Thus, our results show that c-LA-RWR/LA-RWR-PEA exhibited excellent efficacy against a variety of microorganisms with good biosafety, providing new strategies by which to improve the performance of antimicrobial peptides.
Collapse
Affiliation(s)
| | | | | | - Chen Yao
- Correspondence: ; Tel.: +86-138-1386-1022
| |
Collapse
|
21
|
Majura JJ, Cao W, Chen Z, Htwe KK, Li W, Du R, Zhang P, Zheng H, Gao J. The current research status and strategies employed to modify food-derived bioactive peptides. Front Nutr 2022; 9:950823. [PMID: 36118740 PMCID: PMC9479208 DOI: 10.3389/fnut.2022.950823] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 08/17/2022] [Indexed: 01/10/2023] Open
Abstract
The ability of bioactive peptides to exert biological functions has mainly contributed to their exploitation. The exploitation and utilization of these peptides have grown tremendously over the past two decades. Food-derived peptides from sources such as plant, animal, and marine proteins and their byproducts constitute a more significant portion of the naturally-occurring peptides that have been documented. Due to their high specificity and biocompatibility, these peptides serve as a suitable alternative to pharmacological drugs for treating non-communicable diseases (such as cardiovascular diseases, obesity, and cancer). They are helpful as food preservatives, ingredients in functional foods, and dietary supplements in the food sector. Despite their unique features, the application of these peptides in the clinical and food sector is to some extent hindered by their inherent drawbacks such as toxicity, bitterness, instability, and susceptibility to enzymatic degradation in the gastrointestinal tract. Several strategies have been employed to eliminate or reduce the disadvantages of peptides, thus enhancing the peptide bioactivity and broadening the opportunities for their applications. This review article focuses on the current research status of various bioactive peptides and the strategies that have been implemented to overcome their disadvantages. It will also highlight future perspectives regarding the possible improvements to be made for the development of bioactive peptides with practical uses and their commercialization.
Collapse
Affiliation(s)
- Julieth Joram Majura
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang, China
| | - Wenhong Cao
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang, China
- National Research and Development Branch Center for Shellfish Processing, Zhanjiang, China
- Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Zhongqin Chen
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang, China
- National Research and Development Branch Center for Shellfish Processing, Zhanjiang, China
- Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Kyi Kyi Htwe
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
| | - Wan Li
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang, China
| | - Ran Du
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang, China
| | - Pei Zhang
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
| | - Huina Zheng
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang, China
- National Research and Development Branch Center for Shellfish Processing, Zhanjiang, China
- Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Jialong Gao
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang, China
- National Research and Development Branch Center for Shellfish Processing, Zhanjiang, China
- Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| |
Collapse
|
22
|
Gbala ID, Macharia RW, Bargul JL, Magoma G. Membrane Permeabilization and Antimicrobial Activity of Recombinant Defensin-d2 and Actifensin against Multidrug-Resistant Pseudomonas aeruginosa and Candida albicans. Molecules 2022; 27:molecules27144325. [PMID: 35889198 PMCID: PMC9317813 DOI: 10.3390/molecules27144325] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 06/18/2022] [Accepted: 06/22/2022] [Indexed: 12/10/2022] Open
Abstract
Antimicrobial resistance requires urgent efforts towards the discovery of active antimicrobials, and the development of strategies to sustainably produce them. Defensin and defensin-like antimicrobial peptides (AMPs) are increasingly gaining pharmacological interest because of their potency against pathogens. In this study, we expressed two AMPs: defensin-d2 derived from spinach, and defensin-like actifensin from Actinomyces ruminicola. Recombinant pTXB1 plasmids carrying the target genes encoding defensin-d2 and actifensin were generated by the MEGAWHOP cloning strategy. Each AMP was first expressed as a fusion protein in Escherichia coli, purified by affinity chromatography, and was thereafter assayed for antimicrobial activity against multidrug-resistant (MDR) pathogens. Approximately 985 µg/mL and 2895 µg/mL of recombinant defensin-d2 and actifensin, respectively, were recovered with high purity. An analysis by MALDI-TOF MS showed distinct peaks corresponding to molecular weights of approximately 4.1 kDa for actifensin and 5.8 kDa for defensin-d2. An in vitro antimicrobial assay showed that MDR Pseudomonas aeruginosa and Candida albicans were inhibited at minimum concentrations of 7.5 µg/mL and 23 µg/mL for recombinant defensin-d2 and actifensin, respectively. The inhibitory kinetics of the peptides revealed cidal activity within 4 h of the contact time. Furthermore, both peptides exhibited an antagonistic interaction, which could be attributed to their affinities for similar ligands, as deduced by peptide–ligand profiling. Moreover, both peptides inhibited biofilm formation, and they exhibited no resistance potential and low hemolytic activity. The peptides also possess the ability to permeate and disrupt the cell membranes of MDR P. aeruginosa and C. albicans. Therefore, recombinant actifensin and defensin-d2 exhibit broad-spectrum antimicrobial activity and have the potential to be used as therapy against MDR pathogens.
Collapse
Affiliation(s)
- Ifeoluwa D. Gbala
- Molecular Biology and Biotechnology, Institute for Basic Sciences, Technology and Innovation, Pan African University, Nairobi P.O. Box 62000-00200, Kenya;
- Correspondence:
| | - Rosaline W. Macharia
- Centre for Biotechnology and Bioinformatics, University of Nairobi, Nairobi P.O. Box 30197-00100, Kenya;
| | - Joel L. Bargul
- Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology, Nairobi P.O. Box 62000-00200, Kenya;
- International Centre of Insect Physiology and Ecology, Nairobi P.O. Box 30772-00100, Kenya
| | - Gabriel Magoma
- Molecular Biology and Biotechnology, Institute for Basic Sciences, Technology and Innovation, Pan African University, Nairobi P.O. Box 62000-00200, Kenya;
- Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology, Nairobi P.O. Box 62000-00200, Kenya;
| |
Collapse
|
23
|
Zhang C, Yang M. Antimicrobial Peptides: From Design to Clinical Application. Antibiotics (Basel) 2022; 11:349. [PMID: 35326812 PMCID: PMC8944448 DOI: 10.3390/antibiotics11030349] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 02/27/2022] [Accepted: 03/04/2022] [Indexed: 02/06/2023] Open
Abstract
Infection of multidrug-resistant (MDR) bacteria, such as methicillin-resistant Staphylococcus aureus (MRSA), carbapenem-resistant Enterobacteriaceae (CRE), and extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli, brings public health issues and causes economic burden. Pathogenic bacteria develop several methods to resist antibiotic killing or inhibition, such as mutation of antibiotic function sites, activation of drug efflux pumps, and enzyme-mediated drug degradation. Antibiotic resistance components can be transferred between bacteria by mobile genetic elements including plasmids, transposons, and integrons, as well as bacteriophages. The development of antibiotic resistance limits the treatment options for bacterial infection, especially for MDR bacteria. Therefore, novel or alternative antibacterial agents are urgently needed. Antimicrobial peptides (AMPs) display multiple killing mechanisms against bacterial infections, including directly bactericidal activity and immunomodulatory function, as potential alternatives to antibiotics. In this review, the development of antibiotic resistance, the killing mechanisms of AMPs, and especially, the design, optimization, and delivery of AMPs are reviewed. Strategies such as structural change, amino acid substitution, conjugation with cell-penetration peptide, terminal acetylation and amidation, and encapsulation with nanoparticles will improve the antimicrobial efficacy, reduce toxicity, and accomplish local delivery of AMPs. In addition, clinical trials in AMP studies or applications of AMPs within the last five years were summarized. Overall, AMPs display diverse mechanisms of action against infection of pathogenic bacteria, and future research studies and clinical investigations will accelerate AMP application.
Collapse
Affiliation(s)
- Chunye Zhang
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65212, USA;
| | - Ming Yang
- Department of Surgery, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
24
|
Exploration of the Structure-Function Relationships of a Novel Frog Skin Secretion-Derived Bioactive Peptide, t-DPH1, through Use of Rational Design, Cationicity Enhancement and In Vitro Studies. Antibiotics (Basel) 2021; 10:antibiotics10121529. [PMID: 34943741 PMCID: PMC8698721 DOI: 10.3390/antibiotics10121529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/08/2021] [Accepted: 12/11/2021] [Indexed: 01/11/2023] Open
Abstract
Amphibian skin-derived antimicrobial peptides (AMPs) have attracted increasing attention from scientists because of their excellent bioactivity and low drug resistance. In addition to being the alternative choice of antibiotics or anticancer agents, natural AMPs can also be modified as templates to optimise their bioactivities further. Here, a novel dermaseptin peptide, t-DPH1, with extensive antimicrobial activity and antiproliferative activity, was isolated from the skin secretion of Phyllomedusa hypochondrialis through 'shotgun' cloning. A series of cationicity-enhanced analogues of t-DPH1 were designed to further improve its bioactivities and explore the charge threshold of enhancing the bioactivity of t-DPH1. The present data suggest that improving the net charge can enhance the bioactivities to some extent. However, when the charge exceeds a specific limit, the bioactivities decrease or remain the same. When the net charge achieves the limit, improving the hydrophobicity makes no sense to enhance bioactivity. For t-DPH1, the upper limit of the net charge was +7. All the designed cationicity-enhanced analogues produced no drug resistance in the Gram-negative bacterium, Escherichia coli. These findings provide creative insights into the role of natural drug discovery in providing templates for structural modification for activity enhancement.
Collapse
|
25
|
Shi S, Shen T, Liu Y, Chen L, Wang C, Liao C. Porcine Myeloid Antimicrobial Peptides: A Review of the Activity and Latest Advances. Front Vet Sci 2021; 8:664139. [PMID: 34055951 PMCID: PMC8160099 DOI: 10.3389/fvets.2021.664139] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 04/19/2021] [Indexed: 11/23/2022] Open
Abstract
Traditional antibiotics have made great contributions to human health and animal husbandry since the discovery of penicillin in 1928, but bacterial resistance and drug residues are growing threats to global public health due to the long-term uncontrolled application of antibiotics. There is a critical need to develop new antimicrobial drugs to replace antibiotics. Antimicrobial peptides (AMPs) are distributed in all kingdoms of life, presenting activity against pathogens as well as anticancer, anti-inflammatory, and immunomodulatory activities; consequently, they have prospects as new potential alternatives to antibiotics. Porcine myeloid antimicrobial peptides (PMAPs), the porcine cathelicidin family of AMPs, have been reported in the literature in recent years. PMAPs have become an important research topic due to their strong antibacterial activity. This review focuses on the universal trends in the biochemical parameters, structural characteristics and biological activities of PMAPs.
Collapse
Affiliation(s)
- Shuaibing Shi
- The Key Lab of Veterinary Biological Products, Henan University of Science and Technology, Luoyang, China
| | - Tengfei Shen
- The Key Lab of Veterinary Biological Products, Henan University of Science and Technology, Luoyang, China
| | - Yongqing Liu
- The Key Lab of Veterinary Biological Products, Henan University of Science and Technology, Luoyang, China
| | - Liangliang Chen
- The Key Lab of Veterinary Biological Products, Henan University of Science and Technology, Luoyang, China
| | - Chen Wang
- The Key Lab of Veterinary Biological Products, Henan University of Science and Technology, Luoyang, China
| | - Chengshui Liao
- The Key Lab of Veterinary Biological Products, Henan University of Science and Technology, Luoyang, China.,College of Animal Science and Technology/Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang, China
| |
Collapse
|
26
|
Klubthawee N, Aunpad R. A Thermostable, Modified Cathelicidin-Derived Peptide With Enhanced Membrane-Active Activity Against Salmonella enterica serovar Typhimurium. Front Microbiol 2021; 11:592220. [PMID: 33519729 PMCID: PMC7838546 DOI: 10.3389/fmicb.2020.592220] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 12/16/2020] [Indexed: 02/05/2023] Open
Abstract
Foodborne illness caused by consumption of food contaminated with Salmonella is one of the most common causes of diarrheal disease and affects millions of people worldwide. The rising emergence and spread of antimicrobial resistance, especially in some serotypes of Salmonella, has raised a great awareness of public health issues worldwide. To ensure safety of the food processing chain, the development of new food preservatives must be expedited. Recently, thermal- and pH-stable antimicrobial peptides have received much attention for use in food production, and represent safe alternatives to chemical preservatives. A 12-mer cathelicidin-derived, α-helical cationic peptide, P7, displayed rapid killing activity, against strains of drug-resistant foodborne Salmonella enterica serovar Typhimurium and its monophasic variant (S. enterica serovar 4,5,12:i:-) and had minimal toxicity against mouse fibroblast cells. P7 tended to form helical structure in the membrane-mimic environments as evaluated by circular dichroism (CD) spectroscopy. The action mode of P7 at the membrane-level was affirmed by the results of flow cytometry, and confocal, scanning and transmission electron microscopy. P7 killed bacteria through binding to bacterial membranes, penetration and the subsequent accumulation in S. enterica serovar Typhimurium cytoplasm. This induced membrane depolarization, permeabilization, and sequential leakage of intracellular substances and cell death. Except for sensitivity to proteolytic digestive enzymes, P7 maintained its inhibitory activity against S. enterica serovar Typhimurium in the presence of different conditions [various salts, extreme pHs and heat (even at 100°C)]. Moreover, the peptide is unlikely to induce bacterial resistance in vitro. Taken together, this study demonstrated that the membrane-permeabilizing P7 peptide has much potential as a new antimicrobial agent for use in food processing and preservation.
Collapse
Affiliation(s)
- Natthaporn Klubthawee
- Graduate Program in Biomedical Sciences, Faculty of Allied Health Sciences, Thammasat University, Pathum Thani, Thailand
| | - Ratchaneewan Aunpad
- Graduate Program in Biomedical Sciences, Faculty of Allied Health Sciences, Thammasat University, Pathum Thani, Thailand
| |
Collapse
|