1
|
Phillips KM, Lavere PF, Hanania NA, Adrish M. The Emerging Biomarkers in Chronic Obstructive Pulmonary Disease: A Narrative Review. Diagnostics (Basel) 2025; 15:1245. [PMID: 40428238 PMCID: PMC12110743 DOI: 10.3390/diagnostics15101245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2025] [Revised: 05/09/2025] [Accepted: 05/10/2025] [Indexed: 05/29/2025] Open
Abstract
The burden of chronic obstructive pulmonary disease (COPD) is increasing, especially for women in low-to-middle income countries. Biomarkers provide ever-increasing diagnostic precision for COPD and show promise for primary, secondary, and tertiary disease prevention. This review describes emerging applications for biomarkers in COPD, especially as they align with the Global Initiative for Chronic Obstructive Lung Disease (GOLD) emphasis on prevention, early diagnosis, and response to therapy. These biomarkers include blood eosinophils; IgE; C-reactive protein; fibrinogen; procalcitonin; interleukins 6, 8, and 33; tumor necrosis factor alpha; and soluble receptor for advanced glycated products (sRAGE). They have been used in various ways to identify COPD endotypes, predict exacerbations, predict mortality, and monitor the response to therapy. The fraction of exhaled nitric oxide (FENO) is increasingly studied in eosinophilic COPD endotypes and can be a diagnostic and predictive non-invasive biomarker. Imaging biomarkers, especially the quantitative computerized tomography (QCT) assessment of airway remolding, functional small airway disease, air trapping, lung function, and volume surrogates, all serve as non-invasive biomarkers for screening, early detection, and disease progression. Biomarkers facilitate all the phases of COPD care from detecting early airflow obstruction to predicting exacerbation and mortality. Biomarkers will be increasingly used as precise diagnostic tools to improve the COPD outcomes. The aim of this narrative review is to summarize the recent investigations in COPD biomarkers and their clinical applications.
Collapse
Affiliation(s)
| | | | | | - Muhammad Adrish
- Section of Pulmonary, Critical Care, and Sleep Medicine, Baylor College of Medicine, Houston, TX 77030, USA; (K.M.P.); (P.F.L.); (N.A.H.)
| |
Collapse
|
2
|
Xu Y, Li M, Bai L. Pulmonary Epithelium Cell Fate Determination: Chronic Obstructive Pulmonary Disease, Lung Cancer, or Both. Am J Respir Cell Mol Biol 2024; 71:632-645. [PMID: 39078237 DOI: 10.1165/rcmb.2023-0448tr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 07/30/2024] [Indexed: 07/31/2024] Open
Abstract
The concurrence of chronic obstructive pulmonary disease (COPD) and lung cancer has been widely reported and extensively addressed by pulmonologists and oncologists. However, most studies have focused on shared risk factors, DNA damage pathways, immune microenvironments, inflammation, and imbalanced proteases/antiproteases. In the present review, we explore the association between COPD and lung cancer in terms of airway pluripotent cell fate determination and discuss the various cell types and signaling pathways involved in the maintenance of lung epithelium homeostasis and their involvement in the pathogenesis of co-occurring COPD and lung cancer.
Collapse
Affiliation(s)
- Yu Xu
- Department of Clinical Oncology, Army Medical Center, and
| | - Mengxia Li
- Department of Clinical Oncology, Army Medical Center, and
| | - Li Bai
- Department of Respiratory and Critical Medicine, The Second Affiliated Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
3
|
Zhou Q, Chang C, Wang Y, Gai X, Chen Y, Gao X, Liang Y, Sun Y. Comparative analysis of lysophospholipid metabolism profiles and clinical characteristics in patients with high vs. low C-reactive protein levels in acute exacerbations of chronic obstructive pulmonary disease. Clin Chim Acta 2024; 561:119816. [PMID: 38885755 DOI: 10.1016/j.cca.2024.119816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/09/2024] [Accepted: 06/12/2024] [Indexed: 06/20/2024]
Abstract
BACKGROUND The precise role of lysophospholipids (LysoPLs) in the pathogenesis of acute exacerbations of Chronic Obstructive Pulmonary Disease (AECOPD) remains unclear. In this study, we sought to elucidate the differences in serum LysoPL metabolite profiles and their correlation with clinical features between patients with low versus high CRP levels. METHODS A total of 58 patients with AECOPD were enrolled in the study. Patients were classified into two groups: low CRP group (CRP < 20 mg/L, n = 34) and high CRP group (CRP ≥ 20 mg/L, n = 24). Clinical data were collected, and the LysoPL metabolite profiles were analyzed using Liquid Chromatography-Mass Spectrometry (LC-MS) and identified by matching with the LipidBlast library. RESULTS Nineteen differential LysoPLs were initially identified through Student's t-test (p < 0.05 and VIP > 1). Subsequently, four LysoPLs, LPC(16:0), LPE(18:2), LPC(22:0), and LPC(24:0), were identified by FDR adjustment (adjusted p < 0.05). These four lysoPLs had a significant negative correlation with CRP. Integrative analysis revealed that LPC (16:0) and LPC (22:0) correlated with less hypercapnic respiratory failure and ICU admission. CONCLUSION AECOPD patients with high CRP levels demonstrated a distinctive LysoPL metabolism profile, with LPC (16:0), LPE(18:2), LPC(22:0), and LPC(24:0) being the most significantly altered lipid molecules. These alterations were associated with poorer clinical outcomes.
Collapse
Affiliation(s)
- Qiqiang Zhou
- Department of Respiratory and Critical Care Medicine, Peking University Third Hospital, Beijing, China
| | - Chun Chang
- Department of Respiratory and Critical Care Medicine, Peking University Third Hospital, Beijing, China; Research Center for Chronic Airway Diseases, Peking University Health Science Center, Beijing, China
| | - Yating Wang
- Department of Respiratory and Critical Care Medicine, Peking University Third Hospital, Beijing, China
| | - Xiaoyan Gai
- Department of Respiratory and Critical Care Medicine, Peking University Third Hospital, Beijing, China; Research Center for Chronic Airway Diseases, Peking University Health Science Center, Beijing, China
| | - Yahong Chen
- Department of Respiratory and Critical Care Medicine, Peking University Third Hospital, Beijing, China; Research Center for Chronic Airway Diseases, Peking University Health Science Center, Beijing, China
| | - Xu Gao
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China
| | - Ying Liang
- Department of Respiratory and Critical Care Medicine, Peking University Third Hospital, Beijing, China; Research Center for Chronic Airway Diseases, Peking University Health Science Center, Beijing, China.
| | - Yongchang Sun
- Department of Respiratory and Critical Care Medicine, Peking University Third Hospital, Beijing, China; Research Center for Chronic Airway Diseases, Peking University Health Science Center, Beijing, China
| |
Collapse
|
4
|
Association of serum CC16 levels with eosinophilic inflammation and respiratory dysfunction in severe asthma. Respir Med 2023; 206:107089. [PMID: 36542961 DOI: 10.1016/j.rmed.2022.107089] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 12/01/2022] [Accepted: 12/10/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND There are knowledge gaps in the potential role of Club cell 16-kDa secretory protein (CC16) in severe asthma phenotypes and type 2 inflammation, as well as the longitudinal effect of CC16 on pulmonary function tests and exacerbation risk in epidemiological studies. OBJECTIVE AND METHODS To assess whether serum CC16 is associated with eosinophilic inflammation in patients with severe asthma. We also examined the effect of this protein on the annual decline in forced expiratory volume in the first second (FEV1) and the risk of exacerbation using a longitudinal approach. We recruited 127 patients with severe asthma from 30 hospitals/pulmonary clinics in Hokkaido, Japan. The least square means and standard error were calculated for T-helper 2 (Th2) biomarkers and pulmonary function test across CC16 tertiles at baseline. We did the same for asthma exacerbation and annual decline in FEV1 with 3 and 5 years' follow-up, respectively. RESULTS We found that serum CC16 was inversely associated with sputum eosinophils and blood periostin in a dose-response manner. Baseline CC16 and FEV1/forced vital capacity ratio were positively associated in adjusted models (p for trend = 0.008). Patients with the lowest tertile of serum CC16 levels at baseline had a -14.3 mL decline in FEV1 than those with the highest tertile over 5 years of follow-up (p for trend = 0.031, fully adjusted model). We did not find any association of CC16 with exacerbation risk. CONCLUSION Patients with severe asthma with lower circulatory CC16 had enhanced eosinophilic inflammation with rapid FEV1 decline over time.
Collapse
|
5
|
Sofíudóttir BK, Harders SMW, Lage-Hansen PR, Christensen R, Munk HL, Sorensen GL, Davidsen JR, Ellingsen T. Using thoracic ultrasound to detect interstitial lung disease in patients with rheumatoid arthritis: a protocol for the diagnostic test accuracy AURORA study. BMJ Open 2022; 12:e067434. [PMID: 36564119 PMCID: PMC9791457 DOI: 10.1136/bmjopen-2022-067434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
INTRODUCTION Pulmonary diseases are significant contributors to morbidity and mortality in patients with rheumatoid arthritis (RA). RA-associated interstitial lung disease (RA-ILD) may be prevalent in up to 30% and clinically evident in 10% of patients with RA. Feasible methods to detect concomitant ILD in RA are warranted. Our objective is to determine the diagnostic accuracy of thoracic ultrasound (TUS) for ILD in patients with RA with respiratory symptoms, by using chest high-resolution CT (HRCT) as the reference standard. Further, we aim to evaluate the diagnostic accuracy for the promising blood biomarkers surfactant protein-D and microfibrillar-associated protein 4 in the detection of ILD in this group of patients. METHODS AND ANALYSIS By use of a standardised 14 zone protocol patients suspected of having RA-ILD will undergo TUS as index test performed by a junior resident in rheumatology (BKS), who is certified by the European Respiratory Society in performing TUS assessments. Participants form a consecutive series of up to 80 individuals in total. The anonymised TUS images will be stored and scored by the junior resident as well as two senior rheumatologists, who have received training in TUS, and a TUS-experienced pulmonologist. HRCT will be used as the gold standard for ILD diagnosis (reference standard). The two basic measures for quantifying the diagnostic test accuracy of the TUS test are the sensitivity and specificity in comparison to the HRCT. ETHICS AND DISSEMINATION Data will be collected and stored in the Research Electronic Data Capture database. The study is approved by the Committees on Health Research Ethics and the Danish Data Protection Agency. The project is registered at clinicaltrials.gov (NCT05396469, pre-results) and data will be published in peer-reviewed journals.
Collapse
Affiliation(s)
- Bjørk Khaliqi Sofíudóttir
- Department of Rheumatology, PUlmo-REuma Clinic OUH (PURE), Odense University Hospital, Odense, Syddanmark, Denmark
- Section for Biostatistics and Evidence-Based Research, Parker Instituttet, Frederiksberg, Hovedstaden, Denmark
| | - Stefan M W Harders
- Department of Radiology, Odense University Hospital, Odense, Syddanmark, Denmark
| | | | - Robin Christensen
- Section for Biostatistics and Evidence-Based Research, Parker Instituttet, Frederiksberg, Hovedstaden, Denmark
| | - Heidi Lausten Munk
- Department of Rheumatology, Odense University Hospital, Odense, Syddanmark, Denmark
| | - Grith Lykke Sorensen
- Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, Odense, Syddanmark, Denmark
| | - Jesper Rømhild Davidsen
- South Danish Center for Interstitial Lung Diseases (SCILS) and PUlmo-REuma Clinic OUH (PURE), Department of Respiratory Medicine, Odense University Hospital, Odense, Syddanmark, Denmark
| | - Torkell Ellingsen
- Department of Rheumatology, PUlmo-REuma Clinic OUH (PURE), Odense University Hospital, Odense, Syddanmark, Denmark
| |
Collapse
|
6
|
Yan M, Ge H, Zhang L, Chen X, Yang X, Liu F, Shan A, Liang F, Li X, Ma Z, Dong G, Liu Y, Chen J, Wang T, Zhao B, Zeng Q, Lu X, Liu Y, Tang NJ. Long-term PM 2.5 exposure in association with chronic respiratory diseases morbidity: A cohort study in Northern China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 244:114025. [PMID: 36049332 PMCID: PMC10380089 DOI: 10.1016/j.ecoenv.2022.114025] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 06/15/2023]
Abstract
Several literatures have examined the risk of chronic respiratory diseases in association with short-term ambient PM2.5 exposure in China. However, little evidence has examined the chronic impacts of PM2.5 exposure on morbidity of chronic respiratory diseases in cohorts from high pollution countries. Our study aims to investigate the associations. Based on a retrospective cohort among adults in northern China, a Cox regression model with time-varying PM2.5 exposure and a concentration-response (C-R) curve model were performed to access the relationships between incidence of chronic respiratory diseases and long-term PM2.5 exposure during a mean follow-up time of 9.8 years. Individual annual average PM2.5 estimates were obtained from a satellite-based model with high resolution. The incident date of a chronic respiratory disease was identified according to self-reported physician diagnosis time and/or intake of medication for treatment. Among 38,047 urban subjects analyzed in all-cause chronic respiratory disease cohort, 482 developed new cases. In CB (38,369), asthma (38,783), and COPD (38,921) cohorts, the onsets were 276, 89, and 14, respectively. After multivariable adjustment, hazard ratio and 95% confidence interval for morbidity of all-cause chronic respiratory disease, CB, asthma, and COPD were 1.15 (1.01, 1.31), 1.20 (1.00, 1.42), 0.76 (0.55, 1.04), and 0.66 (0.29, 1.47) with each 10 μg/m3 increment in PM2.5, respectively. Stronger effect estimates were suggested in alcohol drinkers across stratified analyses. Additionally, the shape of C-R curve showed an increasing linear relationship before 75.00 μg/m3 concentrations of PM2.5 for new-onset all-cause chronic respiratory disease, and leveled off at higher levels. These findings indicated that long-term exposure to high-level PM2.5 increased the risks of incident chronic respiratory diseases in China. Further evidence of C-R curves is warranted to clarify the associations of adverse chronic respiratory outcomes involving air pollution.
Collapse
Affiliation(s)
- Mengfan Yan
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China; School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin 300070, China; Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin 300070, China
| | - Han Ge
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin 300070, China; Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin 300070, China
| | - Liwen Zhang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin 300070, China; Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin 300070, China
| | - Xi Chen
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin 300070, China; Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin 300070, China
| | - Xueli Yang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin 300070, China; Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin 300070, China
| | - Fangchao Liu
- Department of Epidemiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Anqi Shan
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin 300070, China; Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin 300070, China
| | - Fengchao Liang
- School of Public Health and Emergency Management, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xuejun Li
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin 300070, China; Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin 300070, China
| | - Zhao Ma
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin 300070, China; Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin 300070, China
| | - Guanghui Dong
- Department of Preventive Medicine, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Yamin Liu
- School of Medicine and Life Sciences, Shandong Academy of Medical Sciences, Jinan 250062, China
| | - Jie Chen
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang 110122, China
| | - Tong Wang
- School of Public Health, Shanxi Medical University, Taiyuan 030001, China
| | - Baoxin Zhao
- Taiyuan Center for Disease Control and Prevention, Taiyuan 030001, China
| | - Qiang Zeng
- Tianjin Center for Disease Control and Prevention, Tianjin 300011, China
| | - Xiangfeng Lu
- Department of Epidemiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Yang Liu
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
| | - Nai-Jun Tang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin 300070, China; Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin 300070, China.
| |
Collapse
|
7
|
Uysal P. Novel Applications of Biomarkers in Chronic Obstructive Pulmonary Disease. Biomark Med 2022. [DOI: 10.2174/9789815040463122010017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is an important health
problem and an increasing cause of morbidity and mortality worldwide. Currently,
COPD is considered a multisystem disease. Although it primarily affects the lungs,
structural and functional changes occur in other organs due to systemic inflammation.
It is stated that in patients with COPD, airway and systemic inflammatory markers are
increased and that these markers are high are associated with a faster decline in lung
functions. In recent years, numerous articles have been published on the discovery and
evaluation of biomarkers in COPD. Many markers have also been studied to accurately
assess COPD exacerbations and provide effective treatment. However, based on the
evidence from published studies, a single molecule has not been adequately validated
for broad clinical use.
Collapse
Affiliation(s)
- Pelin Uysal
- Department of Chest Diseases, Faculty of Medicine, Mehmet Ali Aydınlar University, Atakent
Hospital, Istanbul, Turkey
| |
Collapse
|
8
|
Chakrabarti A, Nguyen A, Newhams MM, Ohlson MB, Yang X, Ulufatu S, Liu S, Park S, Xu M, Jiang J, Halpern WG, Anania VG, McBride JM, Rosenberger CM, Randolph AG. Surfactant protein D is a biomarker of influenza-related pediatric lung injury. Pediatr Pulmonol 2022; 57:519-528. [PMID: 34842360 PMCID: PMC8792225 DOI: 10.1002/ppul.25776] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 08/30/2021] [Accepted: 11/26/2021] [Indexed: 02/03/2023]
Abstract
BACKGROUND Biomarkers that can risk-stratify children with influenza virus lower respiratory infection may identify patients for targeted intervention. Early elevation of alveolar-related proteins in the bloodstream in these patients could indicate more severe lung damage portending worse outcomes. METHODS We used a mouse model of human influenza infection and evaluated relationships between lung pathophysiology and surfactant protein D (SP-D), SP-A, and Club cell protein 16 (CC16). We then measured SP-A, SP-D, and CC16 levels in plasma samples from 94 children with influenza-associated acute respiratory failure (PICFLU cohort), excluding children with underlying conditions explaining disease severity. We tested for associations between levels of circulating proteins and disease severity including the diagnosis of acute respiratory distress syndrome (ARDS), mechanical ventilator, intensive care unit and hospital days, and hospital mortality. RESULTS Circulating SP-D showed a greater increase than SP-A and CC16 in mice with increased alveolar-vascular permeability following influenza infection. In the PICFLU cohort, SP-D was associated with moderate-severe ARDS diagnosis (p = 0.01) and with mechanical ventilator (r = 0.45, p = 0.002), ICU (r = 0.44, p = 0.002), and hospital days (r = 0.37, p = 0.001) in influenza-infected children without bacterial coinfection. Levels of SP-D were lower in children with secondary bacterial pneumonia (p = 0.01) and not associated with outcomes. CC16 and SP-A levels did not differ with bacterial coinfection and were not consistently associated with severe outcomes. CONCLUSIONS SP-D has potential as an early circulating biomarker reflecting a degree of lung damage caused directly by influenza virus infection in children. Secondary bacterial pneumonia alters SP-D biomarker performance.
Collapse
Affiliation(s)
| | - Allen Nguyen
- Biomarker Development, Genentech, Inc., South San Francisco, California, USA
| | - Margaret M Newhams
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Maikke B Ohlson
- Biomarker Discovery, Genentech, Inc., South San Francisco, California, USA
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Xiaoying Yang
- Biostatistics, Genentech, Inc., South San Francisco, California, USA
| | - Sheila Ulufatu
- Department of Safety Assessment, Genentech, Inc., South San Francisco, California, USA
| | - Shannon Liu
- Department of Safety Assessment, Genentech, Inc., South San Francisco, California, USA
| | - Summer Park
- Translational Immunology, Genentech, Inc., South San Francisco, California, USA
| | - Min Xu
- Translational Immunology, Genentech, Inc., South San Francisco, California, USA
| | - Jenny Jiang
- Biomarker Development, Genentech, Inc., South San Francisco, California, USA
| | - Wendy G Halpern
- Department of Pathology, Genentech, Inc., South San Francisco, California, USA
| | - Veronica G Anania
- Biomarker Development, Genentech, Inc., South San Francisco, California, USA
| | | | | | - Adrienne G Randolph
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Boston, Massachusetts, USA
- Departments of Anaesthesia and Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
9
|
Neumann JT, Weimann J, Sörensen NA, Hartikainen TS, Haller PM, Lehmacher J, Brocks C, Tenhaeff S, Karakas M, Renné T, Blankenberg S, Zeller T, Westermann D. A Biomarker Model to Distinguish Types of Myocardial Infarction and Injury. J Am Coll Cardiol 2021; 78:781-790. [PMID: 34412811 DOI: 10.1016/j.jacc.2021.06.027] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 06/07/2021] [Accepted: 06/09/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND Discrimination among patients with type 1 myocardial infarction (T1MI), type 2 myocardial infarction (T2MI), and myocardial injury is difficult. OBJECTIVES The aim of this study was to investigate the discriminative value of a 29-biomarker panel in an emergency department setting. METHODS Patients presenting with suspected myocardial infarction (MI) were recruited. The final diagnosis in all patients was adjudicated on the basis of the fourth universal definition of MI. A panel of 29 biomarkers was measured, and multivariable logistic regression analysis was used to evaluate the associations of these biomarkers with the diagnosis of MI or myocardial injury. Biomarkers were chosen using backward selection. The model was internally validated using bootstrapping. RESULTS Overall, 748 patients were recruited (median age 64 years), of whom 138 had MI (107 T1MI and 31 T2MI) and 221 had myocardial injury. In the multivariable model, 4 biomarkers (apolipoprotein A-II, N-terminal prohormone of brain natriuretic peptide, copeptin, and high-sensitivity cardiac troponin I) remained significant discriminators between T1MI and T2MI. Internal validation of the model showed an area under the curve of 0.82. For discrimination between MI and myocardial injury, 6 biomarkers (adiponectin, N-terminal prohormone of brain natriuretic peptide, pulmonary and activation-regulated chemokine, transthyretin, copeptin, and high-sensitivity troponin I) were selected. Internal validation showed an area under the curve of 0.84. CONCLUSIONS Among 29 biomarkers, 7 were identified to be the most relevant discriminators between subtypes of MI or myocardial injury. Regression models based on these biomarkers allowed good discrimination. (Biomarkers in Acute Cardiac Care [BACC]; NCT02355457).
Collapse
Affiliation(s)
- Johannes T Neumann
- Department of Cardiology, University Heart & Vascular Center, Hamburg, Germany; German Center for Cardiovascular Research, Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany; Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia.
| | - Jessica Weimann
- Department of Cardiology, University Heart & Vascular Center, Hamburg, Germany
| | - Nils A Sörensen
- Department of Cardiology, University Heart & Vascular Center, Hamburg, Germany; German Center for Cardiovascular Research, Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Tau S Hartikainen
- Department of Cardiology, University Heart & Vascular Center, Hamburg, Germany
| | - Paul M Haller
- Department of Cardiology, University Heart & Vascular Center, Hamburg, Germany; German Center for Cardiovascular Research, Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Jonas Lehmacher
- Department of Cardiology, University Heart & Vascular Center, Hamburg, Germany
| | - Celine Brocks
- Department of Cardiology, University Heart & Vascular Center, Hamburg, Germany
| | - Sophia Tenhaeff
- Department of Cardiology, University Heart & Vascular Center, Hamburg, Germany
| | - Mahir Karakas
- Department of Cardiology, University Heart & Vascular Center, Hamburg, Germany; German Center for Cardiovascular Research, Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Thomas Renné
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stefan Blankenberg
- Department of Cardiology, University Heart & Vascular Center, Hamburg, Germany; German Center for Cardiovascular Research, Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Tanja Zeller
- Department of Cardiology, University Heart & Vascular Center, Hamburg, Germany; German Center for Cardiovascular Research, Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Dirk Westermann
- Department of Cardiology, University Heart & Vascular Center, Hamburg, Germany; German Center for Cardiovascular Research, Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| |
Collapse
|
10
|
Dalgård C, Wang F, Titlestad IL, Kyvik KO, Vestbo J, Sorensen GL. Increased serum SP-D in identification of high-risk smokers at high risk of COPD. Am J Physiol Lung Cell Mol Physiol 2021; 320:L1005-L1010. [PMID: 33759571 DOI: 10.1152/ajplung.00604.2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Pulmonary surfactant protein D (SP-D) is an important component of the pulmonary innate immune system with the ability to dampen cigarette smoke-induced lung inflammation. However, cigarette smoking mediates translocation of SP-D from the lung to the blood, and serum SP-D (sSP-D) has therefore previously been suggested as marker for smoke-induced lung injury. In support of this notion, associations between high sSP-D and low lung function measurements have previously been demonstrated in smokers and in chronic obstructive lung disease (COPD). The present investigations employ a 12-yr longitudinal Danish twin study to test the hypothesis that baseline sSP-D variation has the capacity to identify smokers with normal baseline lung function who are at high risk of significant future smoke-induced lung function decline. We find that sSP-D is significantly increased in those with normal lung function at baseline who develop lung function decline during follow-up compared with those who stay lung healthy. Moreover, we demonstrate that it is the smoke-induced baseline sSP-D level, and not the constitutional level, which has capacity as biomarker, and which is linearly increased with the decline in lung function during follow-up. In conclusion, we here present first observation of increased sSP-D for identification of high-risk smokers.
Collapse
Affiliation(s)
- Christine Dalgård
- Divison of Clinical Pharmacology, Pharmacy and Environmental Medicine, Department of Public Health, and The Danish Twin Registry, University of Southern Denmark, Odense, Denmark
| | - Fang Wang
- Department of Respiratory Medicine, Qingdao Municipal Hospital, Qingdao, Shandong, People's Republic of China.,Department of Respiratory Medicine, Odense University Hospital, Odense, Denmark
| | - Ingrid Louise Titlestad
- Department of Respiratory Medicine, Odense University Hospital, Odense, Denmark.,Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Kirsten Ohm Kyvik
- Department of Clinical Research and The Danish Twin Registry, University of Southern Denmark, Odense, Denmark.,Odense Patient data Explorative Network, Odense University Hospital, Odense, Denmark
| | - Jørgen Vestbo
- Division of Infection, Immunity and Respiratory Medicine, University of Manchester, Manchester, United Kingdom
| | - Grith Lykke Sorensen
- Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
11
|
Contoli M, Morandi L, Di Marco F, Carone M. A perspective for chronic obstructive pulmonary disease (COPD) management: six key clinical questions to improve disease treatment. Expert Opin Pharmacother 2020; 22:427-437. [PMID: 33021128 DOI: 10.1080/14656566.2020.1828352] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
INTRODUCTION In 2011, the GOLD recommendations for the treatment of Chronic Obstructive Pulmonary Disease (COPD) introduced new clinical elements to classify the severity of the disease and to guide pharmacological choice. For the first time in the GOLD documents, treatment decision was no longer guided only by pulmonary function, but by a more complex combination of pulmonary function and clinical aspects. The recent versions of the GOLD recommendations introduce new aspects for the clinicians and pose new question for the management of the disease. In addition, inflammatory biomarkers and blood eosinophil levels, have been considered to guide treatment selection. AREA COVERED The evolution of disease management proposed by the GOLD document opens several areas of debate. A series of roundtable discussions among respiratory physicians took place in Italy to address key clinical questions. Particularly, the role of lung function and the use of biomarkers, the adherence to international guidelines and the possibility to personalize the pharmacological approach in COPD patients have been discussed, summarized and analyzed. EXPERT OPINION The authors believe that the development of a precision medicine approach tailoring the specific treatment for each patient is the goal of COPD management and may be achieved by considering the phenotypic classification of COPD patients.
Collapse
Affiliation(s)
- Marco Contoli
- Department of Morphology, Surgery and Experimental Medicine, Università Di Ferrara, Ferrara, Italy
| | - Luca Morandi
- Department of Morphology, Surgery and Experimental Medicine, Università Di Ferrara, Ferrara, Italy
| | - Fabiano Di Marco
- Department of Health Science, Università degli studi di Milano, Respiratory Unit, ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Mauro Carone
- Division of Pneumology, Istituti Clinici Scientifici Maugeri IRCCS, Pavia, Italy
| |
Collapse
|
12
|
Abstract
Introduction: Air pollution is linked to mortality and morbidity. Since humans spend nearly all their time indoors, improving indoor air quality (IAQ) is a compelling approach to mitigate air pollutant exposure. To assess interventions, relying on clinical outcomes may require prolonged follow-up, which hinders feasibility. Thus, identifying biomarkers that respond to changes in IAQ may be useful to assess the effectiveness of interventions. Methods: We conducted a narrative review by searching several databases to identify studies published over the last decade that measured the response of blood, urine, and/or salivary biomarkers to variations (natural and intervention-induced) of changes in indoor air pollutant exposure. Results: Numerous studies reported on associations between IAQ exposures and biomarkers with heterogeneity across study designs and methods. This review summarizes the responses of 113 biomarkers described in 30 articles. The biomarkers which most frequently responded to variations in indoor air pollutant exposures were high sensitivity C-reactive protein (hsCRP), von Willebrand Factor (vWF), 8-hydroxy-2′-deoxyguanosine (8-OHdG), and 1-hydroxypyrene (1-OHP). Conclusions: This review will guide the selection of biomarkers for translational studies evaluating the impact of indoor air pollutants on human health.
Collapse
|
13
|
Ambient particulate matter attenuates Sirtuin1 and augments SREBP1-PIR axis to induce human pulmonary fibroblast inflammation: molecular mechanism of microenvironment associated with COPD. Aging (Albany NY) 2020; 11:4654-4671. [PMID: 31299012 PMCID: PMC6660058 DOI: 10.18632/aging.102077] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 06/04/2019] [Indexed: 02/07/2023]
Abstract
Evidences have shown a strong link between particulate matter (PM) and increased risk in human mortality and morbidity, including asthma, chronic obstructive pulmonary disease (COPD), respiratory infection, and lung cancer. However, the underlying toxicologic mechanisms remain largely unknown. Utilizing PM-treated human pulmonary fibroblasts (HPF) models, we analyzed gene expression microarray data and Ingenuity Pathway Analysis (IPA) to identify that the transcription factor sterol regulatory element-binding protein 1 (SREBP1) was the main downstream regulator of Sirtuin1 (SIRT1). Quantitative PCR and western blot results showed that SIRT1 inhibited SREBP1 and further downregulated Pirin (PIR) and Nod-like receptor protein 3 (NLRP3) inflammasome after PM exposure. Inhibitors of SIRT1, SREBP1, and PIR could reverse PM-induced inflammation. An in silico analysis revealed that PIR correlated with smoke exposure and early COPD. Immunohistochemical analysis of tissue microarrays from PM-fed mouse models was used to determine the association of PIR with PM. These data demonstrate that the SIRT1-SREBP1-PIR/ NLRP3 inflammasome axis may be associated with PM-induced adverse health issues. SIRT1 functions as a protector from PM exposure, whereas PIR acts as a predictor of PM-induced pulmonary disease. The SIRT1-SREBP1-PIR/ NLRP3 inflammasome axis may present several potential therapeutic targets for PM-related adverse health events.
Collapse
|
14
|
Lin J, Li J, Shu M, Wu W, Zhang W, Dou Q, Wu J, Zeng X. The rCC16 Protein Protects Against LPS-Induced Cell Apoptosis and Inflammatory Responses in Human Lung Pneumocytes. Front Pharmacol 2020; 11:1060. [PMID: 32760279 PMCID: PMC7371929 DOI: 10.3389/fphar.2020.01060] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 06/30/2020] [Indexed: 01/11/2023] Open
Abstract
OBJECTIVE Our previous clinical study showed that low lung levels of CC16 strongly influence the occurrence and development of ARDS. The aim of the present study was to evaluate the therapeutic effect of rCC16 on LPS-induced inflammation in A549 cells and to determine its mechanism. METHODS Cell apoptosis and inflammation was induced by LPS stimulation. The cytotoxic effect of rCC16 was evaluated using the MTT assay. Cytokine levels were determined using enzyme-linked immunosorbent assays. The molecular mechanism of rCC16 was investigated by analyzing relevant signaling pathways. RESULTS The LPS treatment of A549 cells significantly decreased cell viability, increased the levels of the apoptotic proteins Bax, Bak and Cleaved Caspase-3, the secretion of inflammatory cytokines, and the expression levels of TLR4, p-NF/κB, MAPK proteins. While the levels of Bcl-2, p-AKT, p-mTOR, p-ERK1/2, NF/κB, p-AMPK, and p-p38 were significantly decreased in LPS-treated A549 cells. Our experimental results also confirmed that rCC16 inhibited LPS-induced apoptosis, promoted A549 cell proliferation by activating the PI3K/AKT/mTOR/ERK1/2 pathway, and inhibited the release of certain inflammatory factors, especially HMGB1, through dephosphorylation and inactivation of the TLR4/NF-κB/AMPK signaling pathways. CONCLUSION These results highlight the potential utility of CC16 as an important cytokine for the prevention or treatment of inflammation and show that CC16 may play an important role in the future clinical treatment of ARDS.
Collapse
Affiliation(s)
- Jinle Lin
- Department of Emergency Medicine, Shenzhen Baoan First People’s Hospital, Nanfang Medical University, Shenzhen, China
- Department of Respiratory and Critical Care Medicine, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Science, Guangzhou, China
| | - Jiemei Li
- Center Laboratory of Longhua Branch and Department of Infectious Disease, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - Min Shu
- Emergency Department, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
| | - Weigang Wu
- Center Laboratory of Longhua Branch and Department of Infectious Disease, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - Wenwu Zhang
- Department of Emergency Medicine, Shenzhen Baoan First People’s Hospital, Nanfang Medical University, Shenzhen, China
| | - Qingli Dou
- Department of Emergency Medicine, Shenzhen Baoan First People’s Hospital, Nanfang Medical University, Shenzhen, China
| | - Jian Wu
- Department of Respiratory and Critical Care Medicine, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Science, Guangzhou, China
| | - Xiaobin Zeng
- Center Laboratory of Longhua Branch and Department of Infectious Disease, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Medicine School of Shenzhen University, Shenzhen, China
| |
Collapse
|
15
|
Ryu MH, Lau KSK, Wooding DJ, Fan S, Sin DD, Carlsten C. Particle depletion of diesel exhaust restores allergen-induced lung-protective surfactant protein D in human lungs. Thorax 2020; 75:640-647. [PMID: 32467339 DOI: 10.1136/thoraxjnl-2020-214561] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 05/02/2020] [Accepted: 05/04/2020] [Indexed: 02/06/2023]
Abstract
RATIONALE Exposure to air pollution is linked with increased asthma morbidity and mortality. To understand pathological processes linking air pollution and allergen exposures to asthma pathophysiology, we investigated the effect of coexposure to diesel exhaust (DE) and aeroallergen on immune regulatory proteins in human airways. METHODS Fourteen allergen-sensitised participants completed this randomised, double-blinded, cross-over, controlled exposure study. Each participant underwent four exposures (allergen-alone exposure, DE and allergen coexposure, particle-depleted DE (PDDE) and allergen coexposure, and sham exposure) on different order-randomised dates, each separated by a 4-week washout. Serum and bronchoalveolar lavage (BAL) were assayed for pattern recognition molecules, cytokines, chemokines and inflammatory mediators. RESULTS In human airways, allergen-alone exposure led to accumulation of surfactant protein D (SPD; p=0.02). Coexposure to allergen and DE did not elicit the same increase of SPD as did allergen alone; diesel particulate reduction restored allergen-induced SPD accumulation. Soluble receptor for advanced glycation end products was higher with particle reduction than without it. In the systemic circulation, there was a transient increase in SPD and club cell protein 16 (CC16) 4 hours after allergen alone. CC16 was augmented by PDDE, but not DE. % eosinophils in BAL (p<0.005), eotaxin-3 (p<0.0001), interleukin 5 (IL-5; p<0.0001) and thymus and activation regulated chemokine (p=0.0001) were each increased in BAL by allergen. IL-5, SPD and % eosinophils in BAL were correlated with decreased FEV1. CONCLUSION Short-term coexposure to aeroallergen and DE alters immune regulatory proteins in lungs; surfactant levels are dependent on particle depletion. TRIAL REGISTRATION NUMBER NCT02017431.
Collapse
Affiliation(s)
- Min Hyung Ryu
- Air Pollution Exposure Laboratory, Department of Medicine, Vancouver Coastal Health Research Institute, The University of British Columbia Faculty of Medicine, Vancouver, British Columbia, Canada
| | - Kevin Soon-Keen Lau
- Air Pollution Exposure Laboratory, Department of Medicine, Vancouver Coastal Health Research Institute, The University of British Columbia Faculty of Medicine, Vancouver, British Columbia, Canada
| | - Denise Jill Wooding
- Air Pollution Exposure Laboratory, Department of Medicine, Vancouver Coastal Health Research Institute, The University of British Columbia Faculty of Medicine, Vancouver, British Columbia, Canada
| | - Shuyu Fan
- Air Pollution Exposure Laboratory, Department of Medicine, Vancouver Coastal Health Research Institute, The University of British Columbia Faculty of Medicine, Vancouver, British Columbia, Canada
| | - Don D Sin
- Centre for Heart Lung Innovation, St. Paul's Hospital, The University of British Columbia Faculty of Medicine, Vancouver, British Columbia, Canada
| | - Christopher Carlsten
- Air Pollution Exposure Laboratory, Department of Medicine, Vancouver Coastal Health Research Institute, The University of British Columbia Faculty of Medicine, Vancouver, British Columbia, Canada
| |
Collapse
|
16
|
Kokelj S, Kim JL, Andersson M, Runström Eden G, Bake B, Olin AC. Intra-individual variation of particles in exhaled air and of the contents of Surfactant protein A and albumin. PLoS One 2020; 15:e0227980. [PMID: 31978133 PMCID: PMC6980535 DOI: 10.1371/journal.pone.0227980] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 01/04/2020] [Indexed: 11/18/2022] Open
Abstract
INTRODUCTION Particles in exhaled air (PEx) provide samples of respiratory tract lining fluid from small airways containing, for example, Surfactant protein A (SP-A) and albumin, potential biomarkers of small airway disease. We hypothesized that there are differences between morning, noon, and afternoon measurements and that the variability of repeated measurements is larger between days than within days. METHODS PEx was obtained in sixteen healthy non-smoking adults on 11 occasions, within one day and between days. SP-A and albumin were quantified by ELISA. The coefficient of repeatability (CR), intraclass correlation coefficient (ICC), and coefficient of variation (CV) were used to assess the variation of repeated measurements. RESULTS SP-A and albumin increased significantly from morning towards the noon and afternoon by 13% and 25% on average, respectively, whereas PEx number concentration and particle mean mass did not differ significantly between the morning, noon and afternoon. Between-day CRs were not larger than within-day CRs. CONCLUSIONS Time of the day influences the contents of SP-A and albumin in exhaled particles. The variation of repeated measurements was rather high but was not influenced by the time intervals between measurements.
Collapse
Affiliation(s)
- Spela Kokelj
- Occupational and Environmental Medicine, School of Public Health and Community Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- * E-mail:
| | - Jeong-Lim Kim
- Occupational and Environmental Medicine, School of Public Health and Community Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Marianne Andersson
- Occupational and Environmental Medicine, School of Public Health and Community Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Gunilla Runström Eden
- Occupational and Environmental Medicine, School of Public Health and Community Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Björn Bake
- Unit of Respiratory Medicine and Allergy, Department of Internal Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anna-Carin Olin
- Occupational and Environmental Medicine, School of Public Health and Community Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
17
|
Kuzovlev A, Shabanov A, Grechko A. Nosocomial Pneumonia: An Update on Early Diagnosis and Prevention. CURRENT RESPIRATORY MEDICINE REVIEWS 2020. [DOI: 10.2174/1573398x15666190808111757] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Nosocomial pneumonia and nosocomial tracheobronchitis present a significant problem of anesthesiology and critical care medicine. This review presents the results of our own research on the usefulness of new molecular biomarkers in the early diagnosis of nosocomial pneumonia, as well as modern principles for its prevention. A promising direction for the early diagnosis of nosocomial pneumonia and its complications is the study of new molecular biomarkers, in particular, Club cell protein and surfactant proteins. Effective prevention of nosocomial pneumonia should be based on a complex of modern evidence-based methods.
Collapse
Affiliation(s)
- Artem Kuzovlev
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, Moscow, Russian Federation
| | - Aslan Shabanov
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, Moscow, Russian Federation
| | - Andrey Grechko
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, Moscow, Russian Federation
| |
Collapse
|
18
|
Stockley RA, Halpin DMG, Celli BR, Singh D. Chronic Obstructive Pulmonary Disease Biomarkers and Their Interpretation. Am J Respir Crit Care Med 2019; 199:1195-1204. [DOI: 10.1164/rccm.201810-1860so] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Robert A. Stockley
- Lung Investigation Unit, Medicine, University Hospitals Birmingham NHS Foundation Trust, Queen Elizabeth Hospital Birmingham, Birmingham, United Kingdom
| | - David M. G. Halpin
- Department of Respiratory Medicine, Royal Devon & Exeter Hospital, Exeter, United Kingdom
| | - Bartolome R. Celli
- Pulmonary and Critical Care Department, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts; and
| | - Dave Singh
- Medicines Evaluation Unit, University of Manchester, Manchester University NHS Foundation Hospital Trust, Manchester, United Kingdom
| |
Collapse
|
19
|
Gulen ST, Eryilmaz U, Yilmaz M, Karadag F. Left ventricular dysfunction in relation with systemic inflammation in chronic obstructive pulmonary disease patients. Korean J Intern Med 2019; 34:569-578. [PMID: 30360021 PMCID: PMC6506741 DOI: 10.3904/kjim.2017.366] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 05/04/2018] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND/AIMS Most important cause of mortality in chronic obstructive pulmonary disease (COPD) patients is known to be cardiovascular disease (CVD). The objective of the present study was to evaluate the echocardiographic parameters in COPD patients with or without pre-diagnosed CVD and to investigate the relationship between echocardiographic parameters and systemic inflammation markers. METHODS A total of 60 stable COPD patients (23 patients with CVD, group 1; 37 patients without CVD, group 2) and 21 healthy controls (group 3) were included in the study. Six-minute walking test (6MWT), COPD assessment test (CAT), and Body mass index, airflow Obstruction, Dyspnea, and Exercise (BODE) index results were recorded. High-sensitivity C-reactive protein (HsCRP), interleukin 8 (IL-8), fetuin-A, Clara cell protein (CCL-16), N-terminal pro-brain natriuretic peptide levels were studied in serum. Parameters of left and right ventricular systolic and diastolic function were measured by echocardiography. RESULTS Patients with COPD had higher levels of systemic inflammation markers and lower level of inflammation inhibitor fetuin-A. When three groups were compared, group 1 had lower 6MWT result. HsCRP was highest in group 2 while other inflammatory markers were similar in groups 1 and 2. Regarding echocardiographic parameters, left ventricular ejection fraction (LVEF) was lower and left ventricle end-diastolic diameter (LVED), left ventricle end-systolic diameter (LVES) diameters were higher in group 1. The aortic diameter was higher in COPD patients. Fetuin-A was correlated with diameter of aorta and LVES. LVEF, LVED, and LVES were found to be correlated with functional parameters of COPD cases. CONCLUSION In COPD, left ventricular functions are affected as well as right ventricle before prominent clinical findings of cardiac disease and these echocardiographic parameters correlate with functional parameters of COPD patients.
Collapse
Affiliation(s)
- Sule Tas Gulen
- Department of Chest Diseases, Adnan Menderes University School of Medicine, Aydin, Turkey
- Correspondence to Sule Tas Gulen, M.D. Department of Chest Diseases, Adnan Menderes University School of Medicine, Aydin 09100, Turkey Tel: +90-5056919099 Fax: +90-2564441256 E-mail:
| | - Ufuk Eryilmaz
- Department of Cardiology, Adnan Menderes University School of Medicine, Aydin, Turkey
| | - Mustafa Yilmaz
- Department of Biochemistry, Adnan Menderes University School of Medicine, Aydin, Turkey
| | - Fisun Karadag
- Department of Chest Diseases, Adnan Menderes University School of Medicine, Aydin, Turkey
| |
Collapse
|
20
|
Ti H, Zhou Y, Liang X, Li R, Ding K, Zhao X. Targeted Treatments for Chronic Obstructive Pulmonary Disease (COPD) Using Low-Molecular-Weight Drugs (LMWDs). J Med Chem 2019; 62:5944-5978. [PMID: 30682248 DOI: 10.1021/acs.jmedchem.8b01520] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Chronic obstructive pulmonary disease (COPD) is a very common and frequently fatal airway disease. Current therapies for COPD depend mainly on long-acting bronchodilators, which cannot target the pathogenic mechanisms of chronic inflammation in COPD. New pharmaceutical therapies for the inflammatory processes of COPD are urgently needed. Several anti-inflammatory targets have been identified based on increased understanding of the pathogenesis of COPD, which raises new hopes for targeted treatment of this fatal respiratory disease. In this review, we discuss the recent advances in bioactive low-molecular-weight drugs (LMWDs) for the treatment of COPD and, in addition to the first-line drug bronchodilators, focus particularly on low-molecular-weight anti-inflammatory agents, including modulators of inflammatory mediators, inflammasome inhibitors, protease inhibitors, antioxidants, PDE4 inhibitors, kinase inhibitors, and other agents. We also provide new insights into targeted COPD treatments using LMWDs, particularly small-molecule agents.
Collapse
Affiliation(s)
- Huihui Ti
- Key Laboratory of Molecular Target & Clinical Pharmacology, State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital , Guangzhou Medical University , Guangzhou 511436 , P. R. China
| | - Yang Zhou
- Key Laboratory of Molecular Target & Clinical Pharmacology, State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital , Guangzhou Medical University , Guangzhou 511436 , P. R. China.,Division of Theoretical Chemistry and Biology, School of Biotechnology , Royal Institute of Technology (KTH) , AlbaNova University Center , Stockholm SE-100 44 , Sweden
| | - Xue Liang
- Key Laboratory of Molecular Target & Clinical Pharmacology, State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital , Guangzhou Medical University , Guangzhou 511436 , P. R. China
| | - Runfeng Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital , Guangzhou Medical University , Guangzhou 510120 , P. R. China
| | - Ke Ding
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy , Jinan University , Guangzhou 510632 , P. R. China.,State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital , Guangzhou Medical University , Guangzhou 510120 , P. R. China
| | - Xin Zhao
- Key Laboratory of Molecular Target & Clinical Pharmacology, State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital , Guangzhou Medical University , Guangzhou 511436 , P. R. China.,School of Life Sciences , The Chinese University of Hong Kong , Shatin, N.T. , Hong Kong SAR 999077 , P. R. China
| |
Collapse
|
21
|
Pilecki B, Wulf-Johansson H, Støttrup C, Jørgensen PT, Djiadeu P, Nexøe AB, Schlosser A, Hansen SWK, Madsen J, Clark HW, Nielsen CH, Vestbo J, Palaniyar N, Holmskov U, Sorensen GL. Surfactant Protein D Deficiency Aggravates Cigarette Smoke-Induced Lung Inflammation by Upregulation of Ceramide Synthesis. Front Immunol 2018; 9:3013. [PMID: 30619359 PMCID: PMC6305334 DOI: 10.3389/fimmu.2018.03013] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 12/05/2018] [Indexed: 01/10/2023] Open
Abstract
Cigarette smoke (CS) is the main cause of chronic obstructive pulmonary disease. Surfactant protein D (SP-D) is an important anti-inflammatory protein that regulates host immune defense in the lungs. Here, we investigated the role of SP-D in a murine model of CS-induced inflammation. Pulmonary SP-D localization and abundance was compared between smoker and non-smoker individuals. For in vivo studies, wildtype, and SP-D-deficient mice were exposed to CS for either 12 weeks or 3 days. Moreover, the effect of therapeutic administration of recombinant fragment of human SP-D on the acute CS-induced changes was evaluated. Pulmonary SP-D appeared with heterogenous expression in human smokers, while mouse lung SP-D was uniformly upregulated after CS exposure. We found that SP-D-deficient mice were more susceptible to CS-induced macrophage-rich airway inflammation. SP-D deficiency influenced local pro-inflammatory cytokine levels, with increased CCL3 and interleukin-6 but decreased CXCL1. Furthermore, CS exposure caused significant upregulation of pro-inflammatory ceramides and related ceramide synthase gene transcripts in SP-D-deficient mice compared to wildtype littermates. Administration of recombinant fragment of human SP-D (rfhSP-D) alleviated CS-induced macrophage infiltration and prevented induction of ceramide synthase gene expression. Finally, rfhSP-D treatment attenuated CS-induced human epithelial cell apoptosis in vitro. Our results indicate that SP-D deficiency aggravates CS-induced lung inflammation partly through regulation of ceramide synthesis and that local SP-D enrichment rescues CS-induced inflammation.
Collapse
Affiliation(s)
- Bartosz Pilecki
- Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Helle Wulf-Johansson
- Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Christian Støttrup
- Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Patricia Troest Jørgensen
- Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Pascal Djiadeu
- Translational Medicine, Lung Innate Immunity Research Laboratory, The Hospital for Sick Children Research Institute, Toronto, ON, Canada
| | - Anders Bathum Nexøe
- Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Anders Schlosser
- Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Søren Werner Karlskov Hansen
- Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Jens Madsen
- Department of Child Health, Sir Henry Wellcome Laboratories, Academic Unit for Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
- Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
- National Institute for Health Research, Southampton Respiratory Biomedical Research Unit, Centre for Biomedical Research, University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom
| | - Howard William Clark
- Department of Child Health, Sir Henry Wellcome Laboratories, Academic Unit for Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
- Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
- National Institute for Health Research, Southampton Respiratory Biomedical Research Unit, Centre for Biomedical Research, University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom
| | - Claus Henrik Nielsen
- Center for Rheumatology and Spine Diseases, Institute for Inflammation Research, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Jørgen Vestbo
- Department of Respiratory Medicine, Odense University Hospital, Odense, Denmark
- Division of Infection, Immunity and Respiratory Medicine, Manchester Academic Health Science Centre, Manchester University NHS Foundation Trust, Manchester, United Kingdom
| | - Nades Palaniyar
- Translational Medicine, Lung Innate Immunity Research Laboratory, The Hospital for Sick Children Research Institute, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, and Institute of Medical Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Uffe Holmskov
- Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Grith Lykke Sorensen
- Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
22
|
Mölleken C, Ahrens M, Schlosser A, Dietz J, Eisenacher M, Meyer HE, Schmiegel W, Holmskov U, Sarrazin C, Sorensen GL, Sitek B, Bracht T. Direct-acting antivirals-based therapy decreases hepatic fibrosis serum biomarker microfibrillar-associated protein 4 in hepatitis C patients. Clin Mol Hepatol 2018; 25:42-51. [PMID: 30449076 PMCID: PMC6435967 DOI: 10.3350/cmh.2018.0029] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 09/04/2018] [Indexed: 12/15/2022] Open
Abstract
Background/Aims An estimated 80 million people worldwide are infected with viremic hepatitis C virus (HCV). Even after eradication of HCV with direct acting antivirals (DAAs), hepatic fibrosis remains a risk factor for hepatocarcinogenesis. Recently, we confirmed the applicability of microfibrillar-associated protein 4 (MFAP4) as a serum biomarker for the assessment of hepatic fibrosis. The aim of the present study was to assess the usefulness of MFAP4 as a biomarker of liver fibrosis after HCV eliminating therapy with DAAs. Methods MFAP4 was measured using an immunoassay in 50 hepatitis C patients at baseline (BL), the end-of-therapy (EoT), and the 12-week follow-up (FU) visit. Changes in MFAP4 from BL to FU and their association with laboratory parameters including alanine aminotransferase (ALT), aspartate aminotransferase (AST), platelets, the AST to platelet ratio index (APRI), fibrosis-4 score (FIB-4), and albumin were analyzed. Results MFAP4 serum levels were representative of the severity of hepatic fibrosis at BL and correlated well with laboratory parameters, especially APRI (Spearman correlation, R²=0.80). Laboratory parameters decreased significantly from BL to EoT. MFAP4 serum levels were found to decrease from BL and EoT to FU with high statistical significance (Wilcoxon p<0.001 for both). Conclusions Our findings indicate that viral eradication resulted in reduced MFAP4 serum levels, presumably representing a decrease in hepatic fibrogenesis or fibrosis. Hence, MFAP4 may be a useful tool for risk assessment in hepatitis C patients with advanced fibrosis after eradication of the virus.
Collapse
Affiliation(s)
- Christian Mölleken
- Department of Gastroenterology and Hepatology, University Hospital Bergmannsheil, Bochum, Germany
| | - Maike Ahrens
- Medizinisches Proteom-Center, Ruhr University Bochum, Bochum, Germany.,Chrestos Concept GmbH & Co. KG, Essen, Germany
| | - Anders Schlosser
- Institute for Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Julia Dietz
- Medical Clinic 1, J.W. Goethe University Hospital, Frankfurt, Germany
| | - Martin Eisenacher
- Medizinisches Proteom-Center, Ruhr University Bochum, Bochum, Germany
| | - Helmut E Meyer
- Medizinisches Proteom-Center, Ruhr University Bochum, Bochum, Germany.,Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Dortmund, Germany
| | - Wolff Schmiegel
- Department of Gastroenterology and Hepatology, University Hospital Bergmannsheil, Bochum, Germany
| | - Uffe Holmskov
- Institute for Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Christoph Sarrazin
- Medical Clinic 1, J.W. Goethe University Hospital, Frankfurt, Germany.,Medical Clinic 2, St. Josefs-Hospital, Wiesbaden, Germany
| | - Grith Lykke Sorensen
- Institute for Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Barbara Sitek
- Medizinisches Proteom-Center, Ruhr University Bochum, Bochum, Germany
| | - Thilo Bracht
- Medizinisches Proteom-Center, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
23
|
Hemstra LE, Schlosser A, Lindholt JS, Sorensen GL. Microfibrillar-associated protein 4 variation in symptomatic peripheral artery disease. J Transl Med 2018; 16:159. [PMID: 29884190 PMCID: PMC5994031 DOI: 10.1186/s12967-018-1523-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 05/23/2018] [Indexed: 11/10/2022] Open
Abstract
Background Symptomatic peripheral artery disease (PAD) is an atherosclerotic occlusive disease affecting the lower extremities. The cause of symptomatic PAD is atherosclerosis, vascular dysfunctions, impaired angiogenesis and neointima formation. Microfibrillar-associated protein 4 (MFAP4) is an extracellular matrix protein, which is highly expressed in the heart and arteries and recently introduced as a potential mediator of pathological vascular remodeling and neointima formation. We aimed to investigate the relationship between serum MFAP4 (sMFAP4) and symptomatic PAD outcomes. Methods A total of 286 PAD patients were analyzed if they had either intermittent claudication or critical lower-extremity ischemia (CLI) and followed for 7 years. The level of serum MFAP4 (sMFAP4) was measured by alphaLISA. Kaplan–Meier, Cox proportional hazard and logistic regression analysis were used to analyze the associations between upper tertile sMFAP4 and symptomatic PAD outcomes. Results Patients with upper tertile sMFAP4 had an odds ratio (OR) of 2.65 (p < 0.001) for having CLI diagnosis. Further analysis indicated that patients with upper tertile sMFAP4 had a hazard ratio (HR) of 1.97 (p = 0.04) for cardiovascular death during the 7-years follow-up. However, analysis of 2-year primary patency showed that patients with upper tertile sMFAP4 had decreased risk of vascular occlusion after reconstructive surgery with HR of 0.15 (p = 0.02). Conclusions sMFAP4 has potential as a prognostic marker for cardiovascular death, primary patency of reconstructed vessels and CLI diagnosis in symptomatic PAD patients. Confirmation of observations in larger cohorts is warranted. Electronic supplementary material The online version of this article (10.1186/s12967-018-1523-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Line Ea Hemstra
- Cancer and Inflammation Research, Department of Molecular Medicine, University of Southern Denmark, J.B. Winsløws Vej 25, 3rd Floor, Odense, Denmark
| | - Anders Schlosser
- Cancer and Inflammation Research, Department of Molecular Medicine, University of Southern Denmark, J.B. Winsløws Vej 25, 3rd Floor, Odense, Denmark
| | - Jes Sanddal Lindholt
- Cardiovascular Research Unit, Viborg Hospital, Viborg, Denmark.,Center of Individualized Medicine in Arterial Diseases (CIMA), Department of Cardiothoracic and Vascular Surgery, Odense University Hospital, Odense, Denmark
| | - Grith L Sorensen
- Cancer and Inflammation Research, Department of Molecular Medicine, University of Southern Denmark, J.B. Winsløws Vej 25, 3rd Floor, Odense, Denmark.
| |
Collapse
|
24
|
|
25
|
Sorensen GL. Surfactant Protein D in Respiratory and Non-Respiratory Diseases. Front Med (Lausanne) 2018; 5:18. [PMID: 29473039 PMCID: PMC5809447 DOI: 10.3389/fmed.2018.00018] [Citation(s) in RCA: 132] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 01/19/2018] [Indexed: 12/16/2022] Open
Abstract
Surfactant protein D (SP-D) is a multimeric collectin that is involved in innate immune defense and expressed in pulmonary, as well as non-pulmonary, epithelia. SP-D exerts antimicrobial effects and dampens inflammation through direct microbial interactions and modulation of host cell responses via a series of cellular receptors. However, low protein concentrations, genetic variation, biochemical modification, and proteolytic breakdown can induce decomposition of multimeric SP-D into low-molecular weight forms, which may induce pro-inflammatory SP-D signaling. Multimeric SP-D can decompose into trimeric SP-D, and this process, and total SP-D levels, are partly determined by variation within the SP-D gene, SFTPD. SP-D has been implicated in the development of respiratory diseases including respiratory distress syndrome, bronchopulmonary dysplasia, allergic asthma, and chronic obstructive pulmonary disease. Disease-induced breakdown or modifications of SP-D facilitate its systemic leakage from the lung, and circulatory SP-D is a promising biomarker for lung injury. Moreover, studies in preclinical animal models have demonstrated that local pulmonary treatment with recombinant SP-D is beneficial in these diseases. In recent years, SP-D has been shown to exert antimicrobial and anti-inflammatory effects in various non-pulmonary organs and to have effects on lipid metabolism and pro-inflammatory effects in vessel walls, which enhance the risk of atherosclerosis. A common SFTPD polymorphism is associated with atherosclerosis and diabetes, and SP-D has been associated with metabolic disorders because of its effects in the endothelium and adipocytes and its obesity-dampening properties. This review summarizes and discusses the reported genetic associations of SP-D with disease and the clinical utility of circulating SP-D for respiratory disease prognosis. Moreover, basic research on the mechanistic links between SP-D and respiratory, cardiovascular, and metabolic diseases is summarized. Perspectives on the development of SP-D therapy are addressed.
Collapse
Affiliation(s)
- Grith L Sorensen
- Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
26
|
Spoorenberg SMC, Vestjens SMT, Voorn GP, van Moorsel CHM, Meek B, Zanen P, Rijkers GT, Bos WJW, Grutters JC, the Ovidius study group. Course of SP-D, YKL-40, CCL18 and CA 15-3 in adult patients hospitalised with community-acquired pneumonia and their association with disease severity and aetiology: A post-hoc analysis. PLoS One 2018; 13:e0190575. [PMID: 29324810 PMCID: PMC5764260 DOI: 10.1371/journal.pone.0190575] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Accepted: 11/23/2017] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND AND AIM SP-D, YKL-40, CCL18 and CA 15-3 are pulmonary markers that have been extensively investigated in different chronic pulmonary diseases. However, in acute pulmonary diseases, such as community-acquired pneumonia (CAP), little is known about the course of these markers and their relationship with the aetiological agent. The aim of this study was to investigate the course of these four markers in CAP and to study influence of disease severity, aetiology and antibiotic use prior to admission on their course. METHODS We included 291 adult patients hospitalised with CAP and 20 healthy controls. Measurements were performed in serum of day 0, 2, and 4, and at least 30 days after admission. RESULTS Our most important results were: 1) At all time-points, including 30 days after admission, YKL-40 and CCL18 levels were higher in CAP patients compared to healthy controls; and 2) Patients with CAP caused by an intracellular, atypical bacterium had lower YKL-40 and especially CCL18 levels on and during admission in comparison with other or unknown CAP aetiology. CONCLUSIONS Our findings suggest that these pulmonary markers could be useful to assess CAP severity and, especially YKL-40 and CCL18 by helping predict CAP caused by atypical pathogens.
Collapse
Affiliation(s)
| | | | - G. P. Voorn
- Department of Medical Microbiology and Immunology, St Antonius Hospital, Nieuwegein, The Netherlands
| | - Coline H. M. van Moorsel
- Department of Pulmonology, St Antonius Hospital, Nieuwegein, The Netherlands
- Division of Heart and Lungs, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Bob Meek
- Department of Medical Microbiology and Immunology, St Antonius Hospital, Nieuwegein, The Netherlands
| | - Pieter Zanen
- Division of Heart and Lungs, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Ger T. Rijkers
- Department of Medical Microbiology and Immunology, St Antonius Hospital, Nieuwegein, The Netherlands
- Department of Sciences, Roosevelt Academy, Middelburg, The Netherlands
| | - Willem Jan W. Bos
- Department of Internal Medicine, St Antonius Hospital, Nieuwegein, The Netherlands
| | - Jan C. Grutters
- Department of Pulmonology, St Antonius Hospital, Nieuwegein, The Netherlands
- Division of Heart and Lungs, University Medical Centre Utrecht, Utrecht, The Netherlands
| | | |
Collapse
|
27
|
Peck MJ, Sanders EB, Scherer G, Lüdicke F, Weitkunat R. Review of biomarkers to assess the effects of switching from cigarettes to modified risk tobacco products. Biomarkers 2018; 23:213-244. [PMID: 29297706 DOI: 10.1080/1354750x.2017.1419284] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Context: One approach to reducing the harm caused by cigarette smoking, at both individual and population level, is to develop, assess and commercialize modified risk alternatives that adult smokers can switch to. Studies to demonstrate the exposure and risk reduction potential of such products generally involve the measuring of biomarkers, of both exposure and effect, sampled in various biological matrices.Objective: In this review, we detail the pros and cons for using several biomarkers as indicators of effects of changing from conventional cigarettes to modified risk products.Materials and methods: English language publications between 2008 and 2017 were retrieved from PubMed using the same search criteria for each of the 25 assessed biomarkers. Nine exclusion criteria were applied to exclude non-relevant publications.Results: A total of 8876 articles were retrieved (of which 7476 were excluded according to the exclusion criteria). The literature indicates that not all assessed biomarkers return to baseline levels following smoking cessation during the study periods but that nine had potential for use in medium to long-term studies.Discussion and conclusion: In clinical studies, it is important to choose biomarkers that show the biological effect of cessation within the duration of the study.
Collapse
Affiliation(s)
| | | | | | - Frank Lüdicke
- Research & Development, Philip Morris International, Neuchâtel, Switzerland
| | - Rolf Weitkunat
- Research & Development, Philip Morris International, Neuchâtel, Switzerland
| |
Collapse
|
28
|
Fakih D, Akiki Z, Junker K, Medlej-Hashim M, Waked M, Salameh P, Holmskov U, Bouharoun-Tayoun H, Chamat S, Sorensen GL, Jounblat R. Surfactant protein D multimerization and gene polymorphism in COPD and asthma. Respirology 2017; 23:298-305. [PMID: 28960651 DOI: 10.1111/resp.13193] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 06/26/2017] [Accepted: 08/11/2017] [Indexed: 12/01/2022]
Abstract
BACKGROUND AND OBJECTIVE A structural single nucleotide polymorphism rs721917 in the surfactant protein D (SP-D) gene, known as Met11Thr, was reported to influence the circulating levels and degree of multimerization of SP-D and was associated with both COPD and atopy in asthma. Moreover, disease-related processes are known to degrade multimerized SP-D, however, the degree of the protein degradation in these diseases is not clarified. We aimed to determine the distribution of multimerized (high molecular weight (HMW)) and non-multimerized (low molecular weight (LMW)) species of serum SP-D and their correlation with genetic polymorphisms and presence of disease in Lebanese COPD and asthmatic patients. METHODS Serum SP-D levels were measured by ELISA in 88 COPD, 121 asthmatic patients and 223 controls. Randomly selected subjects were chosen for genotyping of rs721917 and multimerization studies. HMW and LMW SP-D were separated by gel permeation chromatography. RESULTS Serum SP-D levels were significantly increased in patients with COPD, but not in asthmatic patients, when compared to controls. Met11Thr variation strongly affected serum SP-D levels and the degree of multimerization, but was not associated with COPD and asthma in the study. Remarkably, HMW/LMW serum SP-D ratio was significantly lower in Met11/Met11 COPD and asthmatic patients compared to controls. CONCLUSION Collectively, non-multimerized species of serum SP-D were dominant in COPD and asthmatic patients suggesting that degradation of SP-D takes place to a significant degree in pulmonary disease. Assays that can separate SP-D proteolytic breakdown products or modified forms from naturally occurring SP-D trimers may result in optimal disease markers for pulmonary inflammatory diseases.
Collapse
Affiliation(s)
- Dalia Fakih
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark.,Department of Life and Earth Sciences, Faculty of Sciences II, Lebanese University, Fanar, Lebanon.,Laboratory of Immunology, Faculty of Public Health, Lebanese University, Fanar, Lebanon
| | - Zeina Akiki
- Laboratory of Immunology, Faculty of Public Health, Lebanese University, Fanar, Lebanon.,Clinical and Epidemiological Research Laboratory, Faculty of Pharmacy, Lebanese University, Beirut, Lebanon
| | - Kirsten Junker
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Myrna Medlej-Hashim
- Department of Life and Earth Sciences, Faculty of Sciences II, Lebanese University, Fanar, Lebanon
| | - Mirna Waked
- Saint-George Hospital University, Medical Center, Beirut, Lebanon.,Faculty of Medicine, Balamand University, Beirut, Lebanon
| | - Pascale Salameh
- Laboratory of Immunology, Faculty of Public Health, Lebanese University, Fanar, Lebanon.,Clinical and Epidemiological Research Laboratory, Faculty of Pharmacy, Lebanese University, Beirut, Lebanon
| | - Uffe Holmskov
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | | | - Soulaima Chamat
- Laboratory of Immunology, Faculty of Public Health, Lebanese University, Fanar, Lebanon.,Faculty of Medicine, Lebanese University, Hadath, Lebanon
| | - Grith L Sorensen
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Rania Jounblat
- Department of Life and Earth Sciences, Faculty of Sciences II, Lebanese University, Fanar, Lebanon.,Laboratory of Immunology, Faculty of Public Health, Lebanese University, Fanar, Lebanon
| |
Collapse
|
29
|
Diao W, Shen N, Du Y, Sun X, Liu B, Xu M, He B. Identification of thyroxine-binding globulin as a candidate plasma marker of chronic obstructive pulmonary disease. Int J Chron Obstruct Pulmon Dis 2017; 12:1549-1564. [PMID: 28579773 PMCID: PMC5448702 DOI: 10.2147/copd.s137806] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Biomarkers for the management of chronic obstructive pulmonary disease (COPD) are limited. The aim of this study was to explore new plasma biomarkers in patients with COPD. Thyroxine-binding globulin (THBG) was initially identified by proteomics in a discovery panel and subsequently verified by enzyme-linked immunosorbent assay in another verification panel with a 1-year follow-up. THBG levels were elevated in patients with COPD (9.2±2.3 μg/mL) compared to those of the controls (6.6±2.0 μg/mL). Receiver operating characteristic curves suggested that THBG was able to slightly differentiate between patients with COPD and controls (area under the curve [AUC]: 0.814) and performed better if combined with fibrinogen (AUC: 0.858). THBG was more capable of distinguishing Global Initiative for Obstructive Lung Disease stages I–III and IV (AUC: 0.851) compared with fibrinogen (AUC 0.582). THBG levels were negatively associated with predicted percentage forced expiratory volume in 1 s and positively related to predicted percentage residual volume, RV/percentage total lung capacity, and percentage low-attenuation area. COPD patients with higher baseline THBG levels had a greater risk of acute exacerbation (AE) than those with lower THBG levels (P=0.014, by Kaplan–Meier curve; hazard ratio: 4.229, by Cox proportional hazards model). In summary, THBG is a potential plasma biomarker of COPD and can assist in the management of stable stage and AEs in COPD patients.
Collapse
Affiliation(s)
| | | | | | | | | | - Ming Xu
- Department of Cardiology, Institute of Vascular Medicine, Peking University Third Hospital.,Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, People's Republic of China
| | - Bei He
- Department of Respiratory Medicine
| |
Collapse
|
30
|
Rathe M, Sorensen GL, Wehner PS, Holmskov U, Sangild PT, Schmiegelow K, Müller K, Husby S. Chemotherapeutic treatment reduces circulating levels of surfactant protein-D in children with acute lymphoblastic leukemia. Pediatr Blood Cancer 2017; 64. [PMID: 27667327 DOI: 10.1002/pbc.26253] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 08/15/2016] [Accepted: 08/16/2016] [Indexed: 01/06/2023]
Abstract
BACKGROUND Surfactant protein D (SP-D) is a host defense molecule of the innate immune system that enhances pathogen clearance and modulates inflammatory responses. We hypothesized that circulating SP-D levels are associated with chemotherapy-induced mucositis and infectious morbidity in children with acute lymphoblastic leukemia (ALL). PROCEDURE In a prospective study, 43 children receiving treatment for ALL were monitored for mucosal toxicity from diagnosis through the induction phase of treatment. Serial blood draws were taken to determine the levels of SP-D, interleukin-6 (IL-6), C-reactive protein, and white blood cells. Data on fever, antibiotics, and bacteremia were collected. Baseline levels of circulating SP-D were compared with healthy controls. RESULTS Baseline values of circulating SP-D were similar to levels in healthy controls (median: 829 ng/ml vs. 657 ng/ml, respectively, P > 0.05). After initiation of chemotherapy, a significant reduction in SP-D levels was observed at all time points: 704 ng/ml at day 8, 413 ng/ml at day 15, 395 ng/ml at day 22, and 520 ng/ml at day 29 (all, P < 0.05). No significant associations between SP-D values, the occurrence of mucosal toxicity, or infectious morbidity were observed. However, loss of circulating SP-D from days 8 to 15 was associated with more systemic inflammation, and lower SP-D values at day 15 were associated with elevated intestinal mucositis scores (P < 0.05). CONCLUSIONS The current study supports the hypothesis that the detrimental effect of chemotherapy on patients' immune functions includes decreased circulating levels of innate mucosal molecules such as SP-D, potentially aggravating mucosal and systemic inflammatory responses.
Collapse
Affiliation(s)
- Mathias Rathe
- Department of pediatric hematology and oncology, Hans Christian Andersen Children's Hospital, Odense University Hospital, Odense, Denmark.,OPEN, Odense Patient Data Explorative Network, Odense University Hospital, Odense, Denmark
| | - Grith L Sorensen
- Department of Cancer and Inflammation, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Peder S Wehner
- Department of pediatric hematology and oncology, Hans Christian Andersen Children's Hospital, Odense University Hospital, Odense, Denmark
| | - Uffe Holmskov
- Department of Cancer and Inflammation, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Per T Sangild
- Section of Comparative Pediatrics and Nutrition, Department of Clinical Veterinary and Animal Science, University of Copenhagen, Denmark
| | - Kjeld Schmiegelow
- Department of Paediatrics and Adolescent Medicine, Rigshospitalet, Copenhagen University Hospital, Denmark
| | - Klaus Müller
- Department of Paediatrics and Adolescent Medicine, Rigshospitalet, Copenhagen University Hospital, Denmark.,Department of Rheumatology, The Institute of Inflammation Research, Rigshospitalet, Copenhagen University Hospital, Denmark
| | - Steffen Husby
- Department of pediatric hematology and oncology, Hans Christian Andersen Children's Hospital, Odense University Hospital, Odense, Denmark
| |
Collapse
|
31
|
Niu R, Liu Y, Zhang Y, Zhang Y, Wang H, Wang Y, Wang W, Li X. iTRAQ-Based Proteomics Reveals Novel Biomarkers for Idiopathic Pulmonary Fibrosis. PLoS One 2017; 12:e0170741. [PMID: 28122020 PMCID: PMC5266322 DOI: 10.1371/journal.pone.0170741] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Accepted: 01/10/2017] [Indexed: 12/31/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a gradual lung disease with a survival of less than 5 years post-diagnosis for most patients. Poor molecular description of IPF has led to unsatisfactory interpretation of the pathogenesis of this disease, resulting in the lack of successful treatments. The objective of this study was to discover novel noninvasive biomarkers for the diagnosis of IPF. We employed a coupled isobaric tag for relative and absolute quantitation (iTRAQ)-liquid chromatography–tandem mass spectrometry (LC–MS/MS) approach to examine protein expression in patients with IPF. A total of 97 differentially expressed proteins (38 upregulated proteins and 59 downregulated proteins) were identified in the serum of IPF patients. Using String software, a regulatory network containing 87 nodes and 244 edges was built, and the functional enrichment showed that differentially expressed proteins were predominantly involved in protein activation cascade, regulation of response to wounding and extracellular components. A set of three most significantly upregulated proteins (HBB, CRP and SERPINA1) and four most significantly downregulated proteins (APOA2, AHSG, KNG1 and AMBP) were selected for validation in an independent cohort of IPF and other lung diseases using ELISA test. The results confirmed the iTRAQ profiling results and AHSG, AMBP, CRP and KNG1 were found as specific IPF biomarkers. ROC analysis indicated the diagnosis potential of the validated biomarkers. The findings of this study will contribute in understanding the pathogenesis of IPF and facilitate the development of therapeutic targets.
Collapse
Affiliation(s)
- Rui Niu
- Department of Respiratory Medicine, Second Hospital of Shandong University, Shandong, China
| | - Ying Liu
- Operating Room, Tianjin Chest Hospital, Tianjin, China
| | - Ying Zhang
- Department of Respiratory Medicine, Second Hospital of Shandong University, Shandong, China
| | - Yuan Zhang
- Department of Evidence-based Medicine, Second Hospital of Shandong University, Shandong, China
| | - Hui Wang
- Department of Respiratory Medicine, Second Hospital of Shandong University, Shandong, China
| | - Yongbin Wang
- Department of Respiratory Medicine, Second Hospital of Shandong University, Shandong, China
| | - Wei Wang
- Department of Respiratory Medicine, Second Hospital of Shandong University, Shandong, China
- * E-mail: (WW); (XL)
| | - Xiaohui Li
- Department of Nursing, Second Hospital of Shandong University, Shandong, China
- * E-mail: (WW); (XL)
| |
Collapse
|
32
|
Spoorenberg SMC, Vestjens SMT, Rijkers GT, Meek B, van Moorsel CHM, Grutters JC, Bos WJW. YKL-40, CCL18 and SP-D predict mortality in patients hospitalized with community-acquired pneumonia. Respirology 2016; 22:542-550. [PMID: 27782361 DOI: 10.1111/resp.12924] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Revised: 08/08/2016] [Accepted: 08/08/2016] [Indexed: 11/28/2022]
Abstract
BACKGROUND AND OBJECTIVE The aim of this study was to investigate the prognostic value of four biomarkers, YKL-40, chemokine (C-C motif) ligand 18 (CCL18), surfactant protein-D (SP-D) and CA 15-3, in patients admitted with community-acquired pneumonia (CAP). These markers have been studied extensively in chronic pulmonary disease, but in acute pulmonary disease their prognostic value is unknown. METHODS A total of 289 adult patients who were hospitalized with CAP and participated in a randomized controlled trial were enrolled. Biomarker levels were measured on the day of admission. Intensive care unit admission, 30-day, 1-year and long-term mortality (median follow-up of 5.4 years, interquartile range (IQR): 4.7-6.1) were recorded as outcomes. RESULTS Median YKL-40 and CCL18 levels were significantly higher and levels of SP-D were significantly lower in CAP patients compared to healthy controls. Significantly higher YKL-40, CCL18 and SP-D levels were found in patients classified in pneumonia severity index classes 4-5 and with a CURB-65 score ≥2 compared to patients with less severe pneumonia. Furthermore, these three markers were significant predictors for long-term mortality in multivariate analysis and compared with C-reactive protein and procalcitonin level on admission, area under the curves were higher for 30-day, 1-year and long-term mortality. CA 15-3 levels were less predictive. CONCLUSION YKL-40, CCL18 and SP-D levels were higher in patients with more severe pneumonia, possibly reflecting the extent of pulmonary inflammation. Of these, YKL-40 most significantly predicts mortality for CAP.
Collapse
Affiliation(s)
| | - Stefan M T Vestjens
- Department of Internal Medicine, St Antonius Hospital, Nieuwegein, The Netherlands
| | - Ger T Rijkers
- Department of Medical Microbiology and Immunology, St Antonius Hospital, Nieuwegein, The Netherlands.,Department of Sciences, University College Roosevelt, Middelburg, The Netherlands
| | - Bob Meek
- Department of Medical Microbiology and Immunology, St Antonius Hospital, Nieuwegein, The Netherlands
| | - Coline H M van Moorsel
- Department of Pulmonology, St Antonius Hospital, Nieuwegein, The Netherlands.,Division of Heart and Lungs, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Jan C Grutters
- Department of Pulmonology, St Antonius Hospital, Nieuwegein, The Netherlands.,Division of Heart and Lungs, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Willem Jan W Bos
- Department of Internal Medicine, St Antonius Hospital, Nieuwegein, The Netherlands
| | | |
Collapse
|
33
|
Fernández-Montes Moraleda B, San Román J, Rodríguez-Lorenzo LM. Adsorption and conformational modification of fibronectin and fibrinogen adsorbed on hydroxyapatite. A QCM-D study. J Biomed Mater Res A 2016; 104:2585-94. [PMID: 27254464 DOI: 10.1002/jbm.a.35802] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 03/11/2016] [Accepted: 03/16/2016] [Indexed: 01/06/2023]
Abstract
Hydroxyapatite is a bioactive ceramic frequently used for bone engineering/replacement. One of the parameters that influence the biological response to implanted materials is the conformation of the first adsorbed protein layer. In this work, the adsorption and conformational changes of two fibroid serum proteins; fibronectin and fibrinogen adsorbed onto four different hydroxyapatite powders are studied with a Quartz Crystal Microbalance with Dissipation (QCM-D). Each of the calcined apatites adsorbs less protein than their corresponding synthesized samples. Adsorption on synthesized samples yields always an extended conformation whereas a reorganization of the layer is observed for the calcined samples. Fg acquires a "Side on" conformation in all the samples at the beginning of the experiment except for one of the synthesized samples where an "End-on" conformation is obtained during the whole experiment. The Extended conformation is the active conformation for Fn. This conformation is favored by apatites with large specific surface area (SSA) and on highly concentrated media. Apatite surface features should be considered in the selection or design of materials for bone regeneration, since it is possible to control the conformation mode of attachment of Fn and Fg by an appropriate selection of them. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2585-2594, 2016.
Collapse
Affiliation(s)
- Belén Fernández-Montes Moraleda
- Biomaterials Group, ICTP-CSIC, Juan De La Cierva, 3, Madrid, 28006, Spain.,Networking Biomedical Research Centre in Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, Zaragoza, Spain
| | - Julio San Román
- Biomaterials Group, ICTP-CSIC, Juan De La Cierva, 3, Madrid, 28006, Spain.,Networking Biomedical Research Centre in Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, Zaragoza, Spain
| | - Luís M Rodríguez-Lorenzo
- Biomaterials Group, ICTP-CSIC, Juan De La Cierva, 3, Madrid, 28006, Spain.,Networking Biomedical Research Centre in Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, Zaragoza, Spain
| |
Collapse
|
34
|
Sorensen GL, Bladbjerg EM, Steffensen R, Tan Q, Madsen J, Drivsholm T, Holmskov U. Association between the surfactant protein D (SFTPD) gene and subclinical carotid artery atherosclerosis. Atherosclerosis 2016; 246:7-12. [DOI: 10.1016/j.atherosclerosis.2015.12.037] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 12/07/2015] [Accepted: 12/23/2015] [Indexed: 12/14/2022]
|
35
|
Ferreira AJ, Reis A, Marçal N, Pinto P, Bárbara C. COPD: A stepwise or a hit hard approach? REVISTA PORTUGUESA DE PNEUMOLOGIA 2016; 22:214-21. [PMID: 26935750 DOI: 10.1016/j.rppnen.2015.12.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2015] [Revised: 11/28/2015] [Accepted: 12/27/2015] [Indexed: 10/22/2022] Open
Abstract
Current guidelines differ slightly on the recommendations for treatment of Chronic Obstructive Pulmonary Disease (COPD) patients, and although there are some undisputed recommendations, there is still debate regarding the management of COPD. One of the hindrances to deciding which therapeutic approach to choose is late diagnosis or misdiagnosis of COPD. After a proper diagnosis is achieved and severity assessed, the choice between a stepwise or "hit hard" approach has to be made. For GOLD A patients the stepwise approach is recommended, whilst for B, C and D patients this remains debatable. Moreover, in patients for whom inhaled corticosteroids (ICS) are recommended, a step-up or "hit hard" approach with triple therapy will depend on the patient's characteristics and, for patients who are being over-treated with ICS, ICS withdrawal should be performed, in order to optimize therapy and reduce excessive medications. This paper discusses and proposes stepwise, "hit hard", step-up and ICS withdrawal therapeutic approaches for COPD patients based on their GOLD group. We conclude that all approaches have benefits, and only a careful patient selection will determine which approach is better, and which patients will benefit the most from each approach.
Collapse
Affiliation(s)
- A J Ferreira
- Pulmonology Department, Centro Hospitalar Universitário de Coimbra, Portugal; Faculty of Medicine, University of Coimbra, Portugal
| | - A Reis
- Pulmonology Department, Centro Hospitalar Tondela-Viseu, EPE, Portugal
| | - N Marçal
- Pulmonology Department, Hospital de Vila Franca de Xira, Portugal
| | - P Pinto
- Chest Department, Centro Hospitalar Lisboa Norte, Lisbon, Portugal; Environmental Health Institute (ISAMB), Faculty of Medicine, University of Lisbon, Portugal
| | - C Bárbara
- Chest Department, Centro Hospitalar Lisboa Norte, Lisbon, Portugal; Environmental Health Institute (ISAMB), Faculty of Medicine, University of Lisbon, Portugal.
| | | |
Collapse
|
36
|
Zien Alaabden A, Mohammad Y, Fahoum S. The role of serum surfactant protein D as a biomarker of exacerbation of chronic obstructive pulmonary disease. Qatar Med J 2016; 2015:18. [PMID: 26942111 PMCID: PMC4759340 DOI: 10.5339/qmj.2015.18] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 01/07/2016] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND The exacerbation of chronic obstructive pulmonary disease (COPD) is a major factor for the high mortality associated with the disease. There is a paucity in the lung-specific biomarkers which diagnose these exacerbations. Surfactant protein D (SP-D) is a promising biomarker in predicting clinical outcomes for patients with COPD, is lung-specific and can be detected in serum. However, the profile in which serum concentrations of SP-D change during acute exacerbation is still unclear. This study aims to estimate and compare the concentrations of serum SP-D in patients with stable disease and during the exacerbation. METHODS A cross-sectional study was conducted which composed of apparently healthy individuals (n = 28), which included 14 smokers and 14 nonsmokers, patients with stable COPD (n = 28), and patients experiencing acute exacerbations (n = 28). Pulmonary functions were performed for all groups. Serum SP-D concentrations were measured using enzyme-linked immunosorbent assay (ELISA). These concentrations were compared by analysis of variance. RESULTS Serum SP-D levels were significantly elevated in patients with acute exacerbations (508.733 ± 102.813 ng/ml) compared to patients with stable COPD (337.916 ± 86.265 ng/ml) and healthy subjects (177.313 ± 46.998 ng/ml; p < 0.001). Serum SP-D levels correlated inversely with lung function parameters including FEV1%pred, FVC%pred and FEV1/FVC. CONCLUSION Serum SP-D levels are raised early on during acute exacerbations of COPD, which could be a potential early diagnostic biomarker for COPD exacerbations.
Collapse
Affiliation(s)
- Alaa Zien Alaabden
- Department of Biochemistry and Microbiology, Faculty of Pharmacy, Damascus University, Damascus, Syria
| | - Yousser Mohammad
- Department of Internal Medicine, Chest Disease Section, Faculty of Medicine, Tishreen University, Lattakia, Syria
| | - Sahar Fahoum
- Department of Biochemistry and Microbiology, Faculty of Pharmacy, Damascus University, Damascus, Syria
| |
Collapse
|
37
|
Barnes PJ, Burney PGJ, Silverman EK, Celli BR, Vestbo J, Wedzicha JA, Wouters EFM. Chronic obstructive pulmonary disease. Nat Rev Dis Primers 2015; 1:15076. [PMID: 27189863 DOI: 10.1038/nrdp.2015.76] [Citation(s) in RCA: 428] [Impact Index Per Article: 42.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is a common disease with high global morbidity and mortality. COPD is characterized by poorly reversible airway obstruction, which is confirmed by spirometry, and includes obstruction of the small airways (chronic obstructive bronchiolitis) and emphysema, which lead to air trapping and shortness of breath in response to physical exertion. The most common risk factor for the development of COPD is cigarette smoking, but other environmental factors, such as exposure to indoor air pollutants - especially in developing countries - might influence COPD risk. Not all smokers develop COPD and the reasons for disease susceptibility in these individuals have not been fully elucidated. Although the mechanisms underlying COPD remain poorly understood, the disease is associated with chronic inflammation that is usually corticosteroid resistant. In addition, COPD involves accelerated ageing of the lungs and an abnormal repair mechanism that might be driven by oxidative stress. Acute exacerbations, which are mainly triggered by viral or bacterial infections, are important as they are linked to a poor prognosis. The mainstay of the management of stable disease is the use of inhaled long-acting bronchodilators, whereas corticosteroids are beneficial primarily in patients who have coexisting features of asthma, such as eosinophilic inflammation and more reversibility of airway obstruction. Apart from smoking cessation, no treatments reduce disease progression. More research is needed to better understand disease mechanisms and to develop new treatments that reduce disease activity and progression.
Collapse
Affiliation(s)
- Peter J Barnes
- Airway Disease Section, National Heart and Lung Institute, Imperial College, Dovehouse Street, London SW3 6LY, UK
| | - Peter G J Burney
- Division of Medical Genetics and Population Health, National Heart and Lung Institute, Imperial College, London, UK
| | - Edwin K Silverman
- Channing Division of Network Medicine and Pulmonary and Critical Care Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Bartolome R Celli
- Pulmonary and Critical Care Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Jørgen Vestbo
- Centre of Respiratory Medicine and Allergy, Manchester Academic Science Centre, University Hospital South Manchester NHS Foundation Trust, Manchester, UK
| | - Jadwiga A Wedzicha
- Airway Disease Section, National Heart and Lung Institute, Imperial College, Dovehouse Street, London SW3 6LY, UK
| | - Emiel F M Wouters
- Department of Respiratory Medicine, Maastricht University Medical Centre, Maastricht, The Netherlands
| |
Collapse
|
38
|
Ito E, Oka R, Ishii T, Korekane H, Kurimoto A, Kizuka Y, Kitazume S, Ariki S, Takahashi M, Kuroki Y, Kida K, Taniguchi N. Fucosylated surfactant protein-D is a biomarker candidate for the development of chronic obstructive pulmonary disease. J Proteomics 2015. [PMID: 26206179 DOI: 10.1016/j.jprot.2015.07.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
UNLABELLED We previously reported that knockout mice for α1,6-fucosyltransferase (Fut8), which catalyzes the biosynthesis of core-fucose in N-glycans, develop emphysema and that Fut8 heterozygous knockout mice are more sensitive to cigarette smoke-induced emphysema than wild-type mice. Moreover, a lower FUT8 activity was found to be associated with a faster decline in lung function among chronic obstructive pulmonary disease (COPD) patients. These results led us to hypothesize that core-fucosylation levels in a glycoprotein could be used as a biomarker for COPD. We focused on a lung-specific glycoprotein, surfactant protein D (SP-D), which plays a role in immune responses and is present in the distal airways, alveoli, and blood circulation. The results of a glycomic analysis reported herein demonstrate the presence of a core-fucose in an N-glycan on enriched SP-D from pooled human sera. We developed an antibody-lectin enzyme immunoassay (EIA) for assessing fucosylation (core-fucose and α1,3/4 fucose) in COPD patients. The results indicate that fucosylation levels in serum SP-D are significantly higher in COPD patients than in non-COPD smokers. The severity of emphysema was positively associated with fucosylation levels in serum SP-D in smokers. Our findings suggest that increased fucosylation levels in serum SP-D are associated with the development of COPD. BIOLOGICAL SIGNIFICANCE It has been proposed that serum SP-D concentrations are predictive of COPD pathogenesis, but distinguishing between COPD patients and healthy individuals to establish a clear cut-off value is difficult because smoking status highly affects circulating SP-D levels. Herein, we focused on N-glycosylation in SP-D and examined whether or not N-glycosylation patterns in SP-D are associated with the pathogenesis of COPD. We performed an N-glycomic analysis of human serum SP-D and the results show that a core-fucose is present in its N-glycan. We also found that the N-glycosylation in serum SP-D was indeed altered in COPD, that is, fucosylation levels including core-fucosylation are significantly increased in COPD patients compared with non-COPD smokers. The severity of emphysema was positively associated with fucosylation levels in serum SP-D in smokers. Our findings shed new light on the discovery and/or development of a useful biomarker based on glycosylation changes for diagnosing COPD. This article is part of a Special Issue entitled: HUPO 2014.
Collapse
Affiliation(s)
- Emi Ito
- Disease Glycomics Team, Systems Glycobiology Research Group, RIKEN-Max Planck Joint Research Center, RIKEN Global Research Cluster, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | - Ritsuko Oka
- Disease Glycomics Team, Systems Glycobiology Research Group, RIKEN-Max Planck Joint Research Center, RIKEN Global Research Cluster, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | - Takeo Ishii
- Respiratory Care Clinic, Nippon Medical School, 4-7-15-8F Kudan-Minami, Chiyoda-ku, Tokyo 102-0074, Japan
| | - Hiroaki Korekane
- Disease Glycomics Team, Systems Glycobiology Research Group, RIKEN-Max Planck Joint Research Center, RIKEN Global Research Cluster, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan.
| | - Ayako Kurimoto
- Disease Glycomics Team, Systems Glycobiology Research Group, RIKEN-Max Planck Joint Research Center, RIKEN Global Research Cluster, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | - Yasuhiko Kizuka
- Disease Glycomics Team, Systems Glycobiology Research Group, RIKEN-Max Planck Joint Research Center, RIKEN Global Research Cluster, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | - Shinobu Kitazume
- Disease Glycomics Team, Systems Glycobiology Research Group, RIKEN-Max Planck Joint Research Center, RIKEN Global Research Cluster, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | - Shigeru Ariki
- Department of Biochemistry, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan
| | - Motoko Takahashi
- Department of Biochemistry, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan
| | - Yoshio Kuroki
- Department of Biochemistry, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan
| | - Kozui Kida
- Respiratory Care Clinic, Nippon Medical School, 4-7-15-8F Kudan-Minami, Chiyoda-ku, Tokyo 102-0074, Japan
| | - Naoyuki Taniguchi
- Disease Glycomics Team, Systems Glycobiology Research Group, RIKEN-Max Planck Joint Research Center, RIKEN Global Research Cluster, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan.
| |
Collapse
|
39
|
|