1
|
Bhowmik D, Patel MT, Goldberg Oppenheimer P. Illuminating extracellular nanovesicles through the spectroscopic lens: a mini review of cutting-edge insights and emerging applications. Front Bioeng Biotechnol 2025; 13:1592391. [PMID: 40416313 PMCID: PMC12098046 DOI: 10.3389/fbioe.2025.1592391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Accepted: 04/23/2025] [Indexed: 05/27/2025] Open
Abstract
Extracellular vesicles (EVs) are cell-derived particles that facilitate intercellular communication by carrying bioactive molecules like proteins and RNA, impacting both health and disease. Herein, the EVs' significance in physiological and pathological processes is reviewed, emphasising their potential as biomarkers for diseases including for instance, cancer, neurodegenerative disorders and cardiovascular conditions. The principles and applications of Raman spectroscopy (RS) - a powerful tool offering detailed molecular insights into EVs, are further examined. The non-destructive nature of this spectroscopic technique renders it invaluable for studying the molecular composition, purity and concentration of EVs. When EVs are isolated from accessible biofluids such as blood, urine or saliva, the overall process remains minimally invasive, enhancing its clinical applicability. The review highlights Raman spectroscopy's role in identifying disease-related EVs, distinguishing subpopulations and enhancing our understanding of EVs in disease mechanisms and therapeutic applications.
Collapse
Affiliation(s)
- Debarati Bhowmik
- Advanced Nanomaterials Structures and Applications Laboratories, School of Chemical Engineering, College of Engineering and Physical Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Mohamed T. Patel
- Advanced Nanomaterials Structures and Applications Laboratories, School of Chemical Engineering, College of Engineering and Physical Sciences, University of Birmingham, Birmingham, United Kingdom
- Healthcare Technologies Institute, Institute of Translational Medicine, Birmingham, United Kingdom
| | - Pola Goldberg Oppenheimer
- Advanced Nanomaterials Structures and Applications Laboratories, School of Chemical Engineering, College of Engineering and Physical Sciences, University of Birmingham, Birmingham, United Kingdom
- Healthcare Technologies Institute, Institute of Translational Medicine, Birmingham, United Kingdom
- Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
2
|
Begum R, Mutyala D, Thota S, Bidarimath N, Batra S. Compartmentalization of proteasomes in lipid rafts and exosomes: unveiling molecular interactions in vaping-related cellular processes. Arch Toxicol 2025:10.1007/s00204-025-03999-0. [PMID: 40289048 DOI: 10.1007/s00204-025-03999-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Accepted: 02/19/2025] [Indexed: 04/29/2025]
Abstract
Tobacco-based products, including e-cigarettes, have gained popularity as perceived safer alternatives to traditional smoking despite their addictive nature. However, emerging evidence shows that heating e-liquids generates aerosols containing harmful substances, including nicotine, aldehydes, metals, and fine/ultrafine particles. This aerosol composition varies significantly based on device settings, e-liquid ingredients, and heating conditions. E-cigarettes use has been associated with declining lung function, epithelial cell damage, inflammation, and oxidative stress. Previous studies have highlighted and identified the ubiquitin-proteasome system within the lipid raft proteome of murine macrophages, suggesting its role in modulating the NF-κB(p105)-MEK-ERK pathway and inflammatory responses. Based on these findings, our study aimed to investigate the effects of e-cigarette vapors on the compartmentalization of proteasomes. We exposed human type II lung alveolar epithelial cells (A549) to filtered air or tobacco-flavored e-cigarette vapor condensate (TF-ECVC; with or without nicotine) for 24 h. Our findings revealed a notable increase in the transcription and translation of lipid rafts-associated proteins, including Caveolin-1, Caveolin-2, Flotillin-1, and Flotillin-2. We performed subcellular fractionation to elucidate the localization of proteasome/immunoproteasome subunits along with lipid rafts-associated proteins in the membrane and cytosolic fractions. Furthermore, we also observed the localization of proteasome and immunoproteasome subunits within the lipid raft fractions of TF-ECVC-exposed alveolar epithelial cells. Notably, membrane rafts-associated proteins and proteasome subunits were significantly accumulated within exosomes released from the challenged cells. These findings underscore the role of membrane rafts in proteasome compartmentalization and highlight novel molecular mechanisms regulated by ECVC. Furthermore, this study provides critical insights into the potential health risks associated with e-cigarette usage, emphasizing the need for further investigation into its cellular effects.
Collapse
Affiliation(s)
- R Begum
- 129 Health Research Center, Laboratory of Pulmonary Immunotoxicology, Department of Environmental Toxicology, Southern University and A&M College, Baton Rouge, LA, 70813, USA
| | - D Mutyala
- 129 Health Research Center, Laboratory of Pulmonary Immunotoxicology, Department of Environmental Toxicology, Southern University and A&M College, Baton Rouge, LA, 70813, USA
| | - S Thota
- 129 Health Research Center, Laboratory of Pulmonary Immunotoxicology, Department of Environmental Toxicology, Southern University and A&M College, Baton Rouge, LA, 70813, USA
| | - N Bidarimath
- 129 Health Research Center, Laboratory of Pulmonary Immunotoxicology, Department of Environmental Toxicology, Southern University and A&M College, Baton Rouge, LA, 70813, USA
| | - S Batra
- 129 Health Research Center, Laboratory of Pulmonary Immunotoxicology, Department of Environmental Toxicology, Southern University and A&M College, Baton Rouge, LA, 70813, USA.
| |
Collapse
|
3
|
Wang J, Luo Q, Gu T, An F, Zhou Y, Min Y, Zhang R, Jiang Y. Serum-Derived Exosomal TBX2-AS1 Exacerbates COPD by Altering the M1/M2 Ratio of Macrophages through Regulating the miR-423-5p/miR-23b-3p Axis. Immunol Invest 2025; 54:271-295. [PMID: 39589066 DOI: 10.1080/08820139.2024.2434692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
OBJECTIVE To investigate the mechanism of serum exosomes in chronic obstructive pulmonary disease (COPD), especially the effect of lncRNA TBX2-AS1 on macrophage polarization. METHODS Screen differentially expressed genes through bioinformatics analysis, detect the expression of related molecules in clinical samples and cell experiments, construct a mouse model and conduct functional rescue experiments, using various experimental techniques such as RT - qPCR, Western Blot, flow cytometry, ELISA, and luciferase reporter assay. RESULTS TBX2-AS1 is highly expressed in the serum and serum exosomes of COPD patients, and it can promote macrophage M1 polarization and inhibit M2 polarization; it exerts its role by negatively regulating the miR-423-5p/miR-23b - 3p axis, where miR-423-5p inhibits CELSR2 expression to prevent M1 polarization, and miR-23b-3p inhibits NEK6 expression to promote M2 polarization; in vivo experiments, down-regulation of CELSR2/NEK6 can reverse the promoting effect of COPD serum exosomes on lung injury and inflammation. CONCLUSION COPD serum exosomes deliver TBX2-AS1 to macrophages, regulate the miR-423-5p-CELSR2/miR-23b-3p-NEK6 pathway, affect macrophage polarization, and exacerbate the progression of COPD, providing new directions and potential targets for the diagnosis and treatment of COPD.
Collapse
Affiliation(s)
- JinHai Wang
- Department of Emergency, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Qing Luo
- Department of Internal Medicine, People's Hospital of Hainan Tibetan Autonomous Prefecture, Qinghai, Hainan Tibetan Autonomous Prefecture, China
| | - TiJun Gu
- Department of Emergency, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - FenQin An
- Department of Emergency, People's Hospital of Hainan Tibetan Autonomous Prefecture, Hainan Tibetan Autonomous Prefecture, China
| | - YunZheng Zhou
- Department of Emergency, People's Hospital of Hainan Tibetan Autonomous Prefecture, Hainan Tibetan Autonomous Prefecture, China
| | - YePing Min
- Department of Emergency, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - RuiRen Zhang
- Department of Emergency, People's Hospital of Hainan Tibetan Autonomous Prefecture, Hainan Tibetan Autonomous Prefecture, China
| | - YiMing Jiang
- Department of Emergency, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, China
- Department of Emergency, People's Hospital of Hainan Tibetan Autonomous Prefecture, Hainan Tibetan Autonomous Prefecture, China
| |
Collapse
|
4
|
Shen Q, Chen J, Yang S, Zhang H, Yu H, Wang S, Li J. Protection against cigarette smoke-induced chronic obstructive pulmonary disease via activation of the SIRT1/FoxO1 axis by targeting microRNA-132. Am J Transl Res 2024; 16:5516-5524. [PMID: 39544778 PMCID: PMC11558385 DOI: 10.62347/fvqp4019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 09/11/2024] [Indexed: 11/17/2024]
Abstract
OBJECTIVE To investigate the biological role of miR-132 in a murine model of chronic obstructive pulmonary disease (COPD) via activation of the SIRT1/FoxO1 axis. METHODS COPD was induced in C57BL/6J male mice by exposing them to cigarette smoke (CS) for 8 weeks. A miR-132 knockout mouse model was used to assess the role of miR-132 in CS-induced COPD. Lung tissue apoptosis was evaluated using TUNEL assays and histopathology, along with lung functional tests which were performed to assess CS-induced lung injury. RESULTS Elevated miR-132 expression was observed in lung tissues and bronchoalveolar lavage fluid in COPD mice. miR-132 depletion improved lung function, restored lung tissue morphology, and reduced apoptosis. Target prediction software identified miR-132 as a potential repressor of SIRT1. In COPD mice, SIRT1 and FoxO1 expression were reduced, but miR-132 knockout restored their levels. CONCLUSION Inhibition of miR-132 may serve as a therapeutic strategy for CS-induced COPD.
Collapse
Affiliation(s)
- Qin Shen
- Department of Respiratory Medicine, Hunan Provincial People’s Hospital (The First Affiliated Hospital of Hunan Normal University)Changsha 410005, Hunan, P. R. China
| | - Jing Chen
- Department of Respiratory Medicine, Hunan Provincial People’s Hospital (The First Affiliated Hospital of Hunan Normal University)Changsha 410005, Hunan, P. R. China
| | - Suzhen Yang
- Department of Respiratory Medicine, Hunan Provincial People’s Hospital (The First Affiliated Hospital of Hunan Normal University)Changsha 410005, Hunan, P. R. China
| | - Hui Zhang
- Department of Respiratory Medicine, Hunan Provincial People’s Hospital (The First Affiliated Hospital of Hunan Normal University)Changsha 410005, Hunan, P. R. China
| | - Hui Yu
- School of Medicine, Hunan Normal UniversityChangsha 410005, Hunan, P. R. China
| | - Sha Wang
- Department of Endocrinology, The First Affiliated Hospital of Changsha Medical UniversityChangsha 410005, Hunan, P. R. China
| | - Jianmin Li
- Department of Pulmonary and Critical Care Medicine, Hunan Provincial People’s Hospital (The First Affiliated Hospital of Hunan Normal University)Changsha 410005, Hunan, P. R. China
| |
Collapse
|
5
|
Shigematsu M, Kawamura T, Deshpande DA, Kirino Y. Immunoactive signatures of circulating tRNA- and rRNA-derived RNAs in chronic obstructive pulmonary disease. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102285. [PMID: 39220268 PMCID: PMC11364045 DOI: 10.1016/j.omtn.2024.102285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 07/17/2024] [Indexed: 09/04/2024]
Abstract
Chronic obstructive pulmonary disease (COPD) is the most prevalent lung disease, and macrophages play a central role in the inflammatory response in COPD. We here report a comprehensive characterization of circulating short non-coding RNAs (sncRNAs) in plasma from patients with COPD. While circulating sncRNAs are increasingly recognized for their regulatory roles and biomarker potential in various diseases, the conventional RNA sequencing (RNA-seq) method cannot fully capture these circulating sncRNAs due to their heterogeneous terminal structures. By pre-treating the plasma RNAs with T4 polynucleotide kinase, which converts all RNAs to those with RNA-seq susceptible ends (5'-phosphate and 3'-hydroxyl), we comprehensively sequenced a wide variety of non-microRNA sncRNAs, such as 5'-tRNA halves containing a 2',3'-cyclic phosphate. We discovered a remarkable accumulation of the 5'-half derived from tRNAValCAC in plasma from COPD patients, whereas the 5'-tRNAGlyGCC half is predominant in healthy donors. Further, the 5'-tRNAValCAC half activates human macrophages via Toll-like receptor 7 and induces cytokine production. Additionally, we identified circulating rRNA-derived fragments that were upregulated in COPD patients and demonstrated their ability to induce cytokine production in macrophages. Our findings provide evidence of circulating, immune-active sncRNAs in patients with COPD, suggesting that they serve as inflammatory mediators in the pathogenesis of COPD.
Collapse
Affiliation(s)
- Megumi Shigematsu
- Computational Medicine Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Takuya Kawamura
- Computational Medicine Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Deepak A. Deshpande
- Center for Translational Medicine, Jane and Leonard Korman Respiratory Institute, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Yohei Kirino
- Computational Medicine Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
6
|
Kotsiou OS, Katsanaki K, Tsiggene A, Papathanasiou S, Rouka E, Antonopoulos D, Gerogianni I, Balatsos NAA, Gourgoulianis KI, Tsilioni I. Detection and Characterization of Extracellular Vesicles in Sputum Samples of COPD Patients. J Pers Med 2024; 14:820. [PMID: 39202011 PMCID: PMC11355697 DOI: 10.3390/jpm14080820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 07/20/2024] [Accepted: 07/29/2024] [Indexed: 09/03/2024] Open
Abstract
BACKGROUND Only one study has reported the presence of extracellular vesicles (EVs) in COPD patients' sputum. Thus, we aimed to isolate and characterize EVs from COPD and healthy individuals' sputum. METHODS A total of 20 spontaneous sputum samples from COPD patients (m/f: 19/1) and induced sputum samples from healthy controls (m/f: 8/2) were used for EV isolation. The sputum supernatants were resuspended in PBS, precleared by centrifugation at 800× g for 10 min at 4 °C, and passed through a 0.22 μm filter (Millipore, Burlington, MA, USA). EVs were isolated by a standard membrane affinity spin column method (exoEasy maxi kit, Qiagen, Hilden, Germany). The EVs were then characterized by assessing their morphology and size using Transmission Electron Microscopy (TEM) and determining the CD9 and CD81 EV-markers with Western blot analysis. RESULTS The EVs had a spherical shape and their mean diameter in the COPD patients was significantly greater than in the controls. Enrichment of the EV markers, CD9 and CD81, were detected in both the healthy and COPD individuals. Total EV-associated protein was significantly increased in the COPD patients compared to the controls. ROC analysis showed that total EV-associated protein in the sputum could be used to differentiate between the controls and COPD patients, with a sensitivity of 80% and a specificity of 70% at a cut-off point of 55.59 μg/mL (AUC = 0.8150). CONCLUSIONS EVs were detectable in both the COPD and healthy individuals' sputum. The ratio of EVs in the 150-200 nm range was twice as high in the COPD patients than in the controls. The COPD patients' sputum contained increased total EV-associated protein as compared to controls, highlighting their value as a new source of specific exoproteins.
Collapse
Affiliation(s)
- Ourania S. Kotsiou
- Laboratory of Human Pathophysiology, Faculty of Nursing, University of Thessaly, 415 00 Larissa, Greece
| | - Katerina Katsanaki
- Department of Biochemistry, University of Thessaly, 415 00 Larissa, Greece; (K.K.); (A.T.); (D.A.); (N.A.A.B.)
| | - Aikaterini Tsiggene
- Department of Biochemistry, University of Thessaly, 415 00 Larissa, Greece; (K.K.); (A.T.); (D.A.); (N.A.A.B.)
| | - Sophia Papathanasiou
- Department of Respiratory Medicine, University of Thessaly, 415 00 Larissa, Greece; (S.P.); (I.G.); (K.I.G.)
| | - Erasmia Rouka
- Faculty of Nursing, University of Thessaly, 415 00 Larissa, Greece;
| | - Dionysios Antonopoulos
- Department of Biochemistry, University of Thessaly, 415 00 Larissa, Greece; (K.K.); (A.T.); (D.A.); (N.A.A.B.)
| | - Irene Gerogianni
- Department of Respiratory Medicine, University of Thessaly, 415 00 Larissa, Greece; (S.P.); (I.G.); (K.I.G.)
| | - Nikolaos A. A. Balatsos
- Department of Biochemistry, University of Thessaly, 415 00 Larissa, Greece; (K.K.); (A.T.); (D.A.); (N.A.A.B.)
| | | | - Irene Tsilioni
- Department of Immunology, Tufts University School of Medicine, Boston, MA 02111, USA
| |
Collapse
|
7
|
Xuan W, Wang S, Alarcon-Calderon A, Bagwell MS, Para R, Wang F, Zhang C, Tian X, Stalboerger P, Peterson T, Sabbah MS, Du Z, Sarrafian T, Mahlberg R, Hillestad ML, Rizzo SA, Paradise CR, Behfar A, Vassallo R. Nebulized platelet-derived extracellular vesicles attenuate chronic cigarette smoke-induced murine emphysema. Transl Res 2024; 269:76-93. [PMID: 38325750 DOI: 10.1016/j.trsl.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 01/31/2024] [Accepted: 02/04/2024] [Indexed: 02/09/2024]
Abstract
Chronic obstructive pulmonary disease (COPD) is a prevalent lung disease usually resulting from cigarette smoking (CS). Cigarette smoking induces oxidative stress, which causes inflammation and alveolar epithelial cell apoptosis and represents a compelling therapeutic target for COPD. Purified human platelet-derived exosome product (PEP) is endowed with antioxidant enzymes and immunomodulatory molecules that mediate tissue repair. In this study, a murine model of CS-induced emphysema was used to determine whether nebulized PEP can influence the development of CS-induced emphysema through the mitigation of oxidative stress and inflammation in the lung. Nebulization of PEP effectively delivered the PEP vesicles into the alveolar region, with evidence of their uptake by type I and type II alveolar epithelial cells and macrophages. Lung function testing and morphometric assessment showed a significant attenuation of CS-induced emphysema in mice treated with nebulized PEP thrice weekly for 4 weeks. Whole lung immuno-oncology RNA sequencing analysis revealed that PEP suppressed several CS-induced cell injuries and inflammatory pathways. Validation of inflammatory cytokines and apoptotic protein expression on the lung tissue revealed that mice treated with PEP had significantly lower levels of S100A8/A9 expressing macrophages, higher levels of CD4+/FOXP3+ Treg cells, and reduced NF-κB activation, inflammatory cytokine production, and apoptotic proteins expression. Further validation using in vitro cell culture showed that pretreatment of alveolar epithelial cells with PEP significantly attenuated CS extract-induced apoptotic cell death. These data show that nebulization of exosomes like PEP can effectively deliver exosome cargo into the lung, mitigate CS-induced emphysema in mice, and suppress oxidative lung injury, inflammation, and apoptotic alveolar epithelial cell death.
Collapse
Affiliation(s)
- Weixia Xuan
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic College of Medicine and Science, Rochester 55905, Minnesota.; Department of Respiratory Medicine, Henan Provincial People's Hospital, Zhengzhou, China
| | - Shaohua Wang
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic College of Medicine and Science, Rochester 55905, Minnesota
| | - Amarilys Alarcon-Calderon
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic College of Medicine and Science, Rochester 55905, Minnesota
| | - Monique Simone Bagwell
- Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA.; Van Cleve Cardiac Regenerative Medicine Program, Center for Regenerative Biotherapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - Rachel Para
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic College of Medicine and Science, Rochester 55905, Minnesota.; Touro College of Osteopathic Medicine, New York, NY
| | - Faping Wang
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic College of Medicine and Science, Rochester 55905, Minnesota.; Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Chujie Zhang
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic College of Medicine and Science, Rochester 55905, Minnesota.; Department of Cardiology, Xi-Jing Hospital, Fourth Military Medical University, Xi'an 710000, China
| | - Xue Tian
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic College of Medicine and Science, Rochester 55905, Minnesota.; Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Paul Stalboerger
- Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA.; Van Cleve Cardiac Regenerative Medicine Program, Center for Regenerative Biotherapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - Timothy Peterson
- Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA.; Van Cleve Cardiac Regenerative Medicine Program, Center for Regenerative Biotherapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - Michael S Sabbah
- Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA.; Van Cleve Cardiac Regenerative Medicine Program, Center for Regenerative Biotherapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - Zeji Du
- Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA.; Van Cleve Cardiac Regenerative Medicine Program, Center for Regenerative Biotherapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - Tiffany Sarrafian
- Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA.; Van Cleve Cardiac Regenerative Medicine Program, Center for Regenerative Biotherapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - Ryan Mahlberg
- Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA.; Van Cleve Cardiac Regenerative Medicine Program, Center for Regenerative Biotherapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - Matthew L Hillestad
- Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA.; Van Cleve Cardiac Regenerative Medicine Program, Center for Regenerative Biotherapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - Skylar A Rizzo
- Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA.; Van Cleve Cardiac Regenerative Medicine Program, Center for Regenerative Biotherapeutics, Mayo Clinic, Rochester, MN 55905, USA.; Mayo Clinic Medical Scientist Training Program, Rochester, MN, USA
| | | | - Atta Behfar
- Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA.; Van Cleve Cardiac Regenerative Medicine Program, Center for Regenerative Biotherapeutics, Mayo Clinic, Rochester, MN 55905, USA.; Center for Regenerative Therapeutics, Mayo Clinic, Rochester, MN, USA; Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA; Summer Undergraduate Research Fellowship, Mayo Clinic, Rochester, MN, USA; Marriott Heart Disease Research Program, Mayo Clinic, Rochester, MN, USA; Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, Minnesota
| | - Robert Vassallo
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic College of Medicine and Science, Rochester 55905, Minnesota.; Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, Minnesota.
| |
Collapse
|
8
|
Shigematsu M, Kawamura T, Deshpande DA, Kirino Y. Immunoactive signatures of circulating tRNA- and rRNA-derived RNAs in chronic obstructive pulmonary disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.19.599707. [PMID: 38948719 PMCID: PMC11212963 DOI: 10.1101/2024.06.19.599707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Chronic obstructive pulmonary disease (COPD) is the most prevalent lung disease, and macrophages play a central role in the inflammatory response in COPD. We here report a comprehensive characterization of circulating short non-coding RNAs (sncRNAs) in plasma from patients with COPD. While circulating sncRNAs are increasingly recognized for their regulatory roles and biomarker potential in various diseases, the conventional RNA-seq method cannot fully capture these circulating sncRNAs due to their heterogeneous terminal structures. By pre-treating the plasma RNAs with T4 polynucleotide kinase, which converts all RNAs to those with RNA-seq susceptible ends (5'-phosphate and 3'-hydroxyl), we comprehensively sequenced a wide variety of non-microRNA sncRNAs, such as 5'-tRNA halves containing a 2',3'-cyclic phosphate. We discovered a remarkable accumulation of the 5'-half derived from tRNA ValCAC in plasma from COPD patients, whereas the 5'-tRNA GlyGCC half is predominant in healthy donors. Further, the 5'-tRNA ValCAC half activates human macrophages via Toll-like receptor 7 and induces cytokine production. Additionally, we identified circulating rRNA-derived fragments that were upregulated in COPD patients and demonstrated their ability to induce cytokine production in macrophages. Our findings provide evidence of circulating, immune-active sncRNAs in patients with COPD, suggesting that they serve as inflammatory mediators in the pathogenesis of COPD.
Collapse
|
9
|
Bergantini L, Baker J, Bossios A, Braunstahl GJ, Conemans LH, Lombardi F, Mathioudakis AG, Pobeha P, Ricciardolo FLM, Prada Romero LP, Schleich F, Snelgrove RJ, Trinkmann F, Uller L, Beech A. ERS International Congress 2023: highlights from the Airway Diseases Assembly. ERJ Open Res 2024; 10:00891-2023. [PMID: 38529346 PMCID: PMC10962455 DOI: 10.1183/23120541.00891-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 11/16/2023] [Indexed: 03/27/2024] Open
Abstract
In this review, early career and senior members of Assembly 5 (Airway Diseases, Asthma, COPD and Chronic Cough) present key recent findings pertinent to airway diseases that were presented during the European Respiratory Society International Congress 2023 in Milan, Italy, with a particular focus on asthma, COPD, chronic cough and bronchiectasis. During the congress, an increased number of symposia, workshops and abstract presentations were organised. In total, 739 abstracts were submitted for Assembly 5 and the majority of these were presented by early career members. These data highlight the increased interest in this group of respiratory diseases.
Collapse
Affiliation(s)
- Laura Bergantini
- Respiratory Disease Unit, Department of Medical Sciences, Surgery, and Neurosciences, University of Siena, Siena, Italy
| | - James Baker
- Division of Immunology, Immunity to Infection and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| | - Apostolos Bossios
- Karolinska Severe Asthma Center, Department of Respiratory Medicine and Allergy, Karolinska University Hospital Huddinge, Stockholm, Sweden
- Division of Lung and Airway Research, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Gert-Jan Braunstahl
- Franciscus Gasthuis and Vlietland Hospital, Rotterdam, The Netherlands
- Erasmus Medical Center Rotterdam, Rotterdam, The Netherlands
| | | | - Francesco Lombardi
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Alexander G. Mathioudakis
- Division of Immunology, Immunity to Infection and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
- North West Lung Centre, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Pavol Pobeha
- Faculty of Medicine, Pavol Jozef Safarik University, Kosice, Slovakia
| | - Fabio Luigi Massimo Ricciardolo
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
- Institute of Translational Pharmacology, National Research Council (IFT-CNR), Palermo, Italy
| | | | - Florence Schleich
- Respiratory Medicine, CHU Sart-Tilman B35, University of Liège, GIGA I3, Liège, Belgium
| | | | - Frederik Trinkmann
- Department of Pneumology and Critical Care Medicine, Thoraxklinik at Heidelberg University Hospital, Translational Lung Research Center Heidelberg, German Center for Lung Research (DZL), Heidelberg, Germany
- Department of Biomedical Informatics, Center for Preventive Medicine and Digital Health, University Medical Center Mannheim, Heidelberg University, Mannheim, Germany
| | - Lena Uller
- Department of Experimental Medical Science, Unit of Respiratory Immunopharmacology, Lund University, Lund, Sweden
| | - Augusta Beech
- Division of Immunology, Immunity to Infection and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
- Medicines Evaluation Unit, Manchester University NHS Foundation Trust, Manchester, UK
| |
Collapse
|
10
|
Ahmad S, Zhang XL, Ahmad A. Epigenetic regulation of pulmonary inflammation. Semin Cell Dev Biol 2024; 154:346-354. [PMID: 37230854 PMCID: PMC10592630 DOI: 10.1016/j.semcdb.2023.05.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 05/08/2023] [Accepted: 05/09/2023] [Indexed: 05/27/2023]
Abstract
Pulmonary disease such as chronic obstructive pulmonary disease (COPD), asthma, pulmonary fibrosis and pulmonary hypertension are the leading cause of deaths. More importantly, lung diseases are on the rise and environmental factors induced epigenetic modifications are major players on this increased prevalence. It has been reported that dysregulation of genes involved in epigenetic regulation such as the histone deacetylase (HDACs) and histone acetyltransferase (HATs) play important role in lung health and pulmonary disease pathogenesis. Inflammation is an essential component of respiratory diseases. Injury and inflammation trigger release of extracellular vesicles that can act as epigenetic modifiers through transfer of epigenetic regulators such as microRNAs (miRNAs), long non-coding RNAs (lncRNAs), proteins and lipids, from one cell to another. The immune dysregulations caused by the cargo contents are important contributors of respiratory disease pathogenesis. N6 methylation of RNA is also emerging to be a critical mechanism of epigenetic alteration and upregulation of immune responses to environmental stressors. Epigenetic changes such as DNA methylation are stable and often long term and cause onset of chronic lung conditions. These epigenetic pathways are also being utilized for therapeutic intervention in several lung conditions.
Collapse
Affiliation(s)
- Shama Ahmad
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Xiao Lu Zhang
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Aftab Ahmad
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
11
|
Miron RJ, Estrin NE, Sculean A, Zhang Y. Understanding exosomes: Part 2-Emerging leaders in regenerative medicine. Periodontol 2000 2024; 94:257-414. [PMID: 38591622 DOI: 10.1111/prd.12561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 02/16/2024] [Accepted: 02/21/2024] [Indexed: 04/10/2024]
Abstract
Exosomes are the smallest subset of extracellular signaling vesicles secreted by most cells with the ability to communicate with other tissues and cell types over long distances. Their use in regenerative medicine has gained tremendous momentum recently due to their ability to be utilized as therapeutic options for a wide array of diseases/conditions. Over 5000 publications are currently being published yearly on this topic, and this number is only expected to dramatically increase as novel therapeutic strategies continue to be developed. Today exosomes have been applied in numerous contexts including neurodegenerative disorders (Alzheimer's disease, central nervous system, depression, multiple sclerosis, Parkinson's disease, post-traumatic stress disorders, traumatic brain injury, peripheral nerve injury), damaged organs (heart, kidney, liver, stroke, myocardial infarctions, myocardial infarctions, ovaries), degenerative processes (atherosclerosis, diabetes, hematology disorders, musculoskeletal degeneration, osteoradionecrosis, respiratory disease), infectious diseases (COVID-19, hepatitis), regenerative procedures (antiaging, bone regeneration, cartilage/joint regeneration, osteoarthritis, cutaneous wounds, dental regeneration, dermatology/skin regeneration, erectile dysfunction, hair regrowth, intervertebral disc repair, spinal cord injury, vascular regeneration), and cancer therapy (breast, colorectal, gastric cancer and osteosarcomas), immune function (allergy, autoimmune disorders, immune regulation, inflammatory diseases, lupus, rheumatoid arthritis). This scoping review is a first of its kind aimed at summarizing the extensive regenerative potential of exosomes over a broad range of diseases and disorders.
Collapse
Affiliation(s)
- Richard J Miron
- Department of Periodontology, University of Bern, Bern, Switzerland
| | - Nathan E Estrin
- Advanced PRF Education, Venice, Florida, USA
- School of Dental Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, Florida, USA
| | - Anton Sculean
- Department of Periodontology, University of Bern, Bern, Switzerland
| | - Yufeng Zhang
- Department of Oral Implantology, University of Wuhan, Wuhan, China
| |
Collapse
|
12
|
Jang S, Lee H, Park J, Cha SR, Lee J, Park Y, Jang SH, Park JR, Hong SH, Yang SR. PTD-FGF2 Attenuates Elastase Induced Emphysema in Mice and Alveolar Epithelial Cell Injury. COPD 2023; 20:109-118. [PMID: 36882376 DOI: 10.1080/15412555.2023.2174842] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
Aberrant communication in alveolar epithelium is a major feature of inflammatory response for the airway remodeling leading to chronic obstructive pulmonary disease (COPD). In this study, we investigated the effect of protein transduction domains (PTD) conjugated Basic Fibroblast Growth Factor (FGF2) (PTD-FGF2) in response to cigarette smoke extract (CSE) in MLE-12 cells and porcine pancreatic elastase (PPE)-induced emphysematous mice. When PPE-induced mice were intraperitoneally treated with 0.1-0.5 mg/kg PTD-FGF2 or FGF2, the linear intercept, infiltration of inflammatory cells into alveoli and pro-inflammatory cytokines were significantly decreased. In western blot analysis, phosphorylated protein levels of c-Jun N-terminal Kinase 1/2 (JNK1/2), extracellular signal-regulated kinase (ERK1/2) and p38 mitogen-activated protein kinases (MAPK) were decreased in PPE-induced mice treated PTD-FGF2. In MLE-12 cells, PTD-FGF2 treatment decreased reactive oxygen species (ROS) production and further decreased Interleukin-6 (IL-6) and IL-1b cytokines in response to CSE. In addition, phosphorylated protein levels of ERK1/2, JNK1/2 and p38 MAPK were reduced. We next determined microRNA expression in the isolated exosomes of MLE-12 cells. In reverse transcription-polymerase chain reaction (RT-PCR) analysis, level of let-7c miRNA was significantly increased while levels of miR-9 and miR-155 were decreased in response to CSE. These data suggest that PTD-FGF2 treatment plays a protective role in regulation of let-7c, miR-9 and miR-155 miRNA expressions and MAPK signaling pathways in CSE-induced MLE-12 cells and PPE-induced emphysematous mice.
Collapse
Affiliation(s)
- Soojin Jang
- Department of Medicine, Kangwon National University, Chuncheon, Gangwon, Republic of Korea
| | - Hanbyeol Lee
- Department of Medicine, Kangwon National University, Chuncheon, Gangwon, Republic of Korea
| | - Jaehyun Park
- Department of Medicine, Kangwon National University, Chuncheon, Gangwon, Republic of Korea
| | - Sang-Ryul Cha
- Department of Medicine, Kangwon National University, Chuncheon, Gangwon, Republic of Korea
| | - Jooyeon Lee
- Department of Medicine, Kangwon National University, Chuncheon, Gangwon, Republic of Korea
| | - Youngheon Park
- Department of Medicine, Kangwon National University, Chuncheon, Gangwon, Republic of Korea
| | - Sang Ho Jang
- Bioceltran Co., Ltd, Chuncheon, Republic of Korea
| | - Jeong-Ran Park
- Department of Medicine, Kangwon National University, Chuncheon, Gangwon, Republic of Korea
| | - Seok-Ho Hong
- Department of Internal Medicine, Kangwon National University, Chuncheon, Gangwon, Republic of Korea
| | - Se-Ran Yang
- Department of Medicine, Kangwon National University, Chuncheon, Gangwon, Republic of Korea
| |
Collapse
|
13
|
Liu X, Li Z, Zheng Y, Wang W, He P, Guan K, Wu T, Wang X, Zhang X. Extracellular vesicles isolated from hyperuricemia patients might aggravate airway inflammation of COPD via senescence-associated pathway. J Inflamm (Lond) 2022; 19:18. [PMID: 36324164 PMCID: PMC9628085 DOI: 10.1186/s12950-022-00315-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 10/19/2022] [Indexed: 11/21/2022] Open
Abstract
BACKGROUNDS Chronic obstructive pulmonary disease (COPD) is a major health issue resulting in significant mortality worldwide. Due to the high heterogeneity and unclear pathogenesis, the management and therapy of COPD are still challenging until now. Elevated serum uric acid(SUA) levels seem to be associated with the inflammatory level in patients with COPD. However, the underlying mechanism is not yet clearly established. In the current research, we aim to elucidate the effect of high SUA levels on airway inflammation among COPD patients. METHODS Through bioinformatic analysis, the common potential key genes were determined in both COPD and hyperuricemia (HUA) patients. A total of 68 COPD patients aged 50-75-year were included in the study, and their clinical parameters, including baseline characteristics, lung function test, as well as blood chemistry test were recorded. These parameters were then compared between the COPD patients with and without HUA. Hematoxylin & Eosin (HE), immunofluorescence (IF), and Masson trichrome staining were performed to demonstrate the pathological changes in the lung tissues. Furthermore, we isolated extracellular vesicles (EVs) from plasma, sputum, and bronchoalveolar lavage fluid (BALF) samples and detected the expression of inflammatory factor (Interleukin-6 (IL-6), IL-8 and COPD related proteases (antitrypsin and elastase) between two groups. Additionally, we treated the human bronchial epithelial (HBE) cells with cigarette smoke extract (CSE), and EVs were derived from the plasma in vitro experiments. The critical pathway involving the relationship between COPD and HUA was eventually validated based on the results of RNA sequencing (RNA-seq) and western blot (WB). RESULTS In the study, the COPD patients co-existing with HUA were found to have more loss of pulmonary function compared with those COPD patients without HUA. The lung tissue samples of patients who had co-existing COPD and HUA indicated greater inflammatory cell infiltration, more severe airway destruction and even fibrosis. Furthermore, the high SUA level could exacerbate the progress of airway inflammation in COPD through the transfer of EVs. In vitro experiments, we determined that EVs isolated from plasma, sputum, and BALF played pivotal roles in the CSE-induced inflammation of HBE. The EVs in HUA patients might exacerbate both systemic inflammation and airway inflammatory response via the senescence-related pathway. CONCLUSION The pulmonary function and clinical indicators of COPD patients with HUA were worse than those without HUA, which may be caused by the increased airway inflammatory response through the EVs in the patient's peripheral blood. Moreover, it might mediate the EVs via senescence-related pathways in COPD patients with HUA.
Collapse
Affiliation(s)
- Xuanqi Liu
- grid.413597.d0000 0004 1757 8802Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040 China ,grid.413087.90000 0004 1755 3939Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University Shanghai Medical College, Shanghai, China ,grid.413087.90000 0004 1755 3939Shanghai Institute of Infectious Disease and Biosecurity, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zheng Li
- grid.413597.d0000 0004 1757 8802Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040 China ,grid.413597.d0000 0004 1757 8802Department of Thoracic Surgery, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040 China
| | - Yang Zheng
- grid.413597.d0000 0004 1757 8802Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040 China
| | - Wenhao Wang
- grid.413597.d0000 0004 1757 8802Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040 China ,grid.413597.d0000 0004 1757 8802Department of Traditional Chinese Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040 China
| | - Peiqing He
- grid.413597.d0000 0004 1757 8802Department of Traditional Chinese Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040 China
| | - Kangwei Guan
- grid.413597.d0000 0004 1757 8802Department of Traditional Chinese Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040 China
| | - Tao Wu
- grid.413597.d0000 0004 1757 8802Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040 China ,grid.413597.d0000 0004 1757 8802Department of Traditional Chinese Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040 China
| | - Xiaojun Wang
- grid.413597.d0000 0004 1757 8802Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040 China
| | - Xuelin Zhang
- grid.413597.d0000 0004 1757 8802Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040 China ,grid.413597.d0000 0004 1757 8802Department of Thoracic Surgery, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040 China
| |
Collapse
|
14
|
Matsuzaka Y, Yashiro R. Regulation of Extracellular Vesicle-Mediated Immune Responses against Antigen-Specific Presentation. Vaccines (Basel) 2022; 10:1691. [PMID: 36298556 PMCID: PMC9607341 DOI: 10.3390/vaccines10101691] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/28/2022] [Accepted: 10/04/2022] [Indexed: 11/24/2022] Open
Abstract
Extracellular vesicles (EVs) produced by various immune cells, including B and T cells, macrophages, dendritic cells (DCs), natural killer (NK) cells, and mast cells, mediate intercellular communication and have attracted much attention owing to the novel delivery system of molecules in vivo. DCs are among the most active exosome-secreting cells of the immune system. EVs produced by cancer cells contain cancer antigens; therefore, the development of vaccine therapy that does not require the identification of cancer antigens using cancer-cell-derived EVs may have significant clinical implications. In this review, we summarise the molecular mechanisms underlying EV-based immune responses and their therapeutic effects on tumour vaccination.
Collapse
Affiliation(s)
- Yasunari Matsuzaka
- Division of Molecular and Medical Genetics, Center for Gene and Cell Therapy, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
- Administrative Section of Radiation Protection, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira 187-8551, Tokyo, Japan
| | - Ryu Yashiro
- Administrative Section of Radiation Protection, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira 187-8551, Tokyo, Japan
- Department of Infectious Diseases, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka-shi 181-8611, Tokyo, Japan
| |
Collapse
|
15
|
Negrete-García MC, de Jesús Ramos-Abundis J, Alvarado-Vasquez N, Montes-Martínez E, Montaño M, Ramos C, Sommer B. Exosomal Micro-RNAs as Intercellular Communicators in Idiopathic Pulmonary Fibrosis. Int J Mol Sci 2022; 23:11047. [PMID: 36232350 PMCID: PMC9569972 DOI: 10.3390/ijms231911047] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/09/2022] [Accepted: 09/14/2022] [Indexed: 12/12/2022] Open
Abstract
Communication between neighboring or distant cells is made through a complex network that includes extracellular vesicles (EVs). Exosomes, which are a subgroup of EVs, are released from most cell types and have been found in biological fluids such as urine, plasma, and airway secretions like bronchoalveolar lavage (BAL), nasal lavage, saliva, and sputum. Mainly, the cargo exosomes are enriched with mRNAs and microRNAs (miRNAs), which can be transferred to a recipient cell consequently modifying and redirecting its biological function. The effects of miRNAs derive from their role as gene expression regulators by repressing or degrading their target mRNAs. Nowadays, various types of research are focused on evaluating the potential of exosomal miRNAs as biomarkers for the prognosis and diagnosis of different pathologies. Nevertheless, there are few reports on their role in the pathophysiology of idiopathic pulmonary fibrosis (IPF), a chronic lung disease characterized by progressive lung scarring with no cure. In this review, we focus on the role and effect of exosomal miRNAs as intercellular communicators in the onset and progression of IPF, as well as discussing their potential utility as therapeutic agents for the treatment of this disease.
Collapse
Affiliation(s)
- María Cristina Negrete-García
- Molecular Biology Laboratory, Department of Research in Pulmonary Fibrosis, National Institute of Respiratory Diseases “Ismael Cosío Villegas”, Calzada de Tlalpan 4502, Col. Sección XVI, Mexico City 14080, Mexico
| | - Javier de Jesús Ramos-Abundis
- Molecular Biology Laboratory, Department of Research in Pulmonary Fibrosis, National Institute of Respiratory Diseases “Ismael Cosío Villegas”, Calzada de Tlalpan 4502, Col. Sección XVI, Mexico City 14080, Mexico
- Higher School of Medicine Instituto Politécnico Nacional, Salvador Díaz Mirón esquina Plan de San Luis S/N, Miguel Hidalgo, Casco de Santo Tomás, Mexico City 11340, Mexico
| | - Noé Alvarado-Vasquez
- Biochemistry Department, National Institute of Respiratory Diseases “Ismael Cosío Villegas”, Calzada de Tlalpan 4502, Col. Sección XVI, Mexico City 14080, Mexico
| | - Eduardo Montes-Martínez
- Molecular Biology Laboratory, Department of Research in Pulmonary Fibrosis, National Institute of Respiratory Diseases “Ismael Cosío Villegas”, Calzada de Tlalpan 4502, Col. Sección XVI, Mexico City 14080, Mexico
| | - Martha Montaño
- Cell Biology Laboratory, Department of Research in Pulmonary Fibrosis, National Institute of Respiratory Diseases “Ismael Cosío Villegas”, Calzada de Tlalpan 4502, Col. Sección XVI, Mexico City 14080, Mexico
| | - Carlos Ramos
- Cell Biology Laboratory, Department of Research in Pulmonary Fibrosis, National Institute of Respiratory Diseases “Ismael Cosío Villegas”, Calzada de Tlalpan 4502, Col. Sección XVI, Mexico City 14080, Mexico
| | - Bettina Sommer
- Bronchial Hyperreactivity Research Department, National Institute of Respiratory Diseases “Ismael Cosío Villegas” Calzada de Tlalpan 4502, Col. Sección XVI, Mexico City 14080, Mexico
| |
Collapse
|
16
|
Kell DB, Pretorius E. The potential role of ischaemia-reperfusion injury in chronic, relapsing diseases such as rheumatoid arthritis, Long COVID, and ME/CFS: evidence, mechanisms, and therapeutic implications. Biochem J 2022; 479:1653-1708. [PMID: 36043493 PMCID: PMC9484810 DOI: 10.1042/bcj20220154] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 02/07/2023]
Abstract
Ischaemia-reperfusion (I-R) injury, initiated via bursts of reactive oxygen species produced during the reoxygenation phase following hypoxia, is well known in a variety of acute circumstances. We argue here that I-R injury also underpins elements of the pathology of a variety of chronic, inflammatory diseases, including rheumatoid arthritis, ME/CFS and, our chief focus and most proximally, Long COVID. Ischaemia may be initiated via fibrin amyloid microclot blockage of capillaries, for instance as exercise is started; reperfusion is a necessary corollary when it finishes. We rehearse the mechanistic evidence for these occurrences here, in terms of their manifestation as oxidative stress, hyperinflammation, mast cell activation, the production of marker metabolites and related activities. Such microclot-based phenomena can explain both the breathlessness/fatigue and the post-exertional malaise that may be observed in these conditions, as well as many other observables. The recognition of these processes implies, mechanistically, that therapeutic benefit is potentially to be had from antioxidants, from anti-inflammatories, from iron chelators, and via suitable, safe fibrinolytics, and/or anti-clotting agents. We review the considerable existing evidence that is consistent with this, and with the biochemical mechanisms involved.
Collapse
Affiliation(s)
- Douglas B. Kell
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L69 7ZB, U.K
- The Novo Nordisk Foundation Centre for Biosustainability, Technical University of Denmark, Kemitorvet 200, 2800 Kgs Lyngby, Denmark
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, Private Bag X1 Matieland 7602, South Africa
| | - Etheresia Pretorius
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L69 7ZB, U.K
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, Private Bag X1 Matieland 7602, South Africa
| |
Collapse
|
17
|
Therapeutic Strategy of Mesenchymal-Stem-Cell-Derived Extracellular Vesicles as Regenerative Medicine. Int J Mol Sci 2022; 23:ijms23126480. [PMID: 35742923 PMCID: PMC9224400 DOI: 10.3390/ijms23126480] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/07/2022] [Accepted: 06/08/2022] [Indexed: 12/11/2022] Open
Abstract
Extracellular vesicles (EVs) are lipid bilayer membrane particles that play critical roles in intracellular communication through EV-encapsulated informative content, including proteins, lipids, and nucleic acids. Mesenchymal stem cells (MSCs) are pluripotent stem cells with self-renewal ability derived from bone marrow, fat, umbilical cord, menstruation blood, pulp, etc., which they use to induce tissue regeneration by their direct recruitment into injured tissues, including the heart, liver, lung, kidney, etc., or secreting factors, such as vascular endothelial growth factor or insulin-like growth factor. Recently, MSC-derived EVs have been shown to have regenerative effects against various diseases, partially due to the post-transcriptional regulation of target genes by miRNAs. Furthermore, EVs have garnered attention as novel drug delivery systems, because they can specially encapsulate various target molecules. In this review, we summarize the regenerative effects and molecular mechanisms of MSC-derived EVs.
Collapse
|
18
|
Extracellular Vesicles as Novel Drug-Delivery Systems through Intracellular Communications. MEMBRANES 2022; 12:membranes12060550. [PMID: 35736256 PMCID: PMC9230693 DOI: 10.3390/membranes12060550] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/17/2022] [Accepted: 05/20/2022] [Indexed: 02/07/2023]
Abstract
Since it has been reported that extracellular vesicles (EVs) carry cargo using cell-to-cell comminication according to various in vivo situations, they are exprected to be applied as new drug-delivery systems (DDSs). In addition, non-coding RNAs, such as microRNAs (miRNAs), have attracted much attention as potential biomarkers in the encapsulated extracellular-vesicle (EV) form. EVs are bilayer-based lipids with heterogeneous populations of varying sizes and compositions. The EV-mediated transport of contents, which includes proteins, lipids, and nucleic acids, has attracted attention as a DDS through intracellular communication. Many reports have been made on the development of methods for introducing molecules into EVs and efficient methods for introducing them into target vesicles. In this review, we outline the possible molecular mechanisms by which miRNAs in exosomes participate in the post-transcriptional regulation of signaling pathways via cell–cell communication as novel DDSs, especially small EVs.
Collapse
|
19
|
Neri T, Celi A, Tinè M, Bernardinello N, Cosio MG, Saetta M, Nieri D, Bazzan E. The Emerging Role of Extracellular Vesicles Detected in Different Biological Fluids in COPD. Int J Mol Sci 2022; 23:ijms23095136. [PMID: 35563528 PMCID: PMC9101666 DOI: 10.3390/ijms23095136] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/29/2022] [Accepted: 05/03/2022] [Indexed: 01/08/2023] Open
Abstract
The pathogenesis of chronic obstructive pulmonary disease (COPD) is characterized by complex cellular and molecular mechanisms, not fully elucidated so far. It involves inflammatory cells (monocytes/macrophages, neutrophils, lymphocytes), cytokines, chemokines and, probably, new players yet to be clearly identified and described. Chronic local and systemic inflammation, lung aging and cellular senescence are key pathological events in COPD development and progression over time. Extracellular vesicles (EVs), released by virtually all cells both as microvesicles and exosomes into different biological fluids, are involved in intercellular communication and, therefore, represent intriguing players in pathobiological mechanisms (including those characterizing aging and chronic diseases); moreover, the role of EVs as biomarkers in different diseases, including COPD, is rapidly gaining recognition. In this review, after recalling the essential steps of COPD pathogenesis, we summarize the current evidence on the roles of EVs collected in different biological mediums as biomarkers in COPD and as potential players in the specific mechanisms leading to disease development. We will also briefly review the data on EV as potential therapeutic targets and potential therapeutic agents.
Collapse
Affiliation(s)
- Tommaso Neri
- Centro Dipartimentale di Biologia Cellulare Cardiorespiratoria, Dipartimento di Patologia Chirurgica, Medica, Molecolare e dell’Area Critica, Università degli Studi di Pisa, 56124 Pisa, Italy; (T.N.); (A.C.); (D.N.)
| | - Alessandro Celi
- Centro Dipartimentale di Biologia Cellulare Cardiorespiratoria, Dipartimento di Patologia Chirurgica, Medica, Molecolare e dell’Area Critica, Università degli Studi di Pisa, 56124 Pisa, Italy; (T.N.); (A.C.); (D.N.)
| | - Mariaenrica Tinè
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, 35128 Padova, Italy; (M.T.); (N.B.); (M.G.C.); (M.S.)
| | - Nicol Bernardinello
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, 35128 Padova, Italy; (M.T.); (N.B.); (M.G.C.); (M.S.)
| | - Manuel G. Cosio
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, 35128 Padova, Italy; (M.T.); (N.B.); (M.G.C.); (M.S.)
- Meakins-Christie Laboratories, Respiratory Division, McGill University, Montreal, QC H3A 0G4, Canada
| | - Marina Saetta
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, 35128 Padova, Italy; (M.T.); (N.B.); (M.G.C.); (M.S.)
| | - Dario Nieri
- Centro Dipartimentale di Biologia Cellulare Cardiorespiratoria, Dipartimento di Patologia Chirurgica, Medica, Molecolare e dell’Area Critica, Università degli Studi di Pisa, 56124 Pisa, Italy; (T.N.); (A.C.); (D.N.)
| | - Erica Bazzan
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, 35128 Padova, Italy; (M.T.); (N.B.); (M.G.C.); (M.S.)
- Correspondence: ; Tel.: +39-049-821-3449
| |
Collapse
|