1
|
Widacha L, Szramel J, Nieckarz Z, Kurpinska A, Smolenski RT, Chlopicki S, Zoladz JA, Majerczak J. Physical activity of moderate-intensity optimizes myocardial citrate cycle in a murine model of heart failure. Front Physiol 2025; 16:1568060. [PMID: 40241718 PMCID: PMC12000009 DOI: 10.3389/fphys.2025.1568060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Accepted: 03/19/2025] [Indexed: 04/18/2025] Open
Abstract
Introduction There is growing body of evidence that an enhanced concentration of branched-chain amino acids (BCAAs), as a consequence of an impaired myocardial oxidative metabolism, is involved in the occurrence and progression of heart failure (HF). The purpose of this study was to examine the effect of 8 weeks of spontaneous wheel running (8-sWR) (reflecting low-to-moderate intensity physical activity) on the myocardial [BCAAs] and mitochondrial oxidative metabolism markers, such as tricarboxylic acid (TCA) cycle intermediates (TCAi), mitochondrial electron transport chain (ETC) proteins and mitochondrial DNA copy number (mtDNA/nDNA) in a murine model of HF. Methods Adult heart failure (Tgαq*44) and wild-type (WT) mice were randomly assigned to either the sedentary or exercising group. Myocardial concentrations of [TCAi] and [BCAAs] were measured by LC-MS/MS, ETC proteins were determined by Western immunoblotting and mtDNA/nDNA was assessed by qPCR. Results Heart failure mice exhibited decreased exercise performance capacity as reflected by a lower total distance covered and time of running in wheels. This was accompanied by impaired TCA cycle, including higher citrate concentration and greater [BCAAs] in the heart of Tgαq*44 mice compared to their control counterparts. No impact of disease at its current stage i.e., in the transition phase from the compensated to decompensated stage of HF on the myocardial mitochondrial ETC, proteins content was observed, however the altered basal level of mitochondrial biogenesis (lower mtDNA/nDNA) in the heart of Tgαq*44 mice compared to their control counterparts was detected. Interestingly, 8-sWR significantly decreased myocardial citrate content in the presence of unchanged myocardial [BCAAs], ETC proteins content and mtDNA copy number. Conclusion Moderate-intensity physical activity, even of short duration, could be considered an effective intervention in heart failure. Our results suggest that central metabolic pathway - TCA cycle appears to be more sensitive to moderate-intensity physical activity (as reflected by the lowering of myocardial citrate concentration) than the mechanism(s) regulating the BCAAs turnover in the heart. This observation may have a particular importance in heart failure, since an improvement of impaired myocardial oxidative metabolism may contribute to the upgrading of the clinical status of patients.
Collapse
Affiliation(s)
- Lucyna Widacha
- Chair of Exercise Physiology and Muscle Bioenergetics, Faculty of Health Sciences, Jagiellonian University Medical College, Krakow, Poland
| | - Joanna Szramel
- Chair of Exercise Physiology and Muscle Bioenergetics, Faculty of Health Sciences, Jagiellonian University Medical College, Krakow, Poland
| | - Zenon Nieckarz
- Department of Experimental Computer Physics, Marian Smoluchowski Institute of Physics, Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Krakow, Poland
| | - Anna Kurpinska
- Jagiellonian Centre of Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Ryszard T. Smolenski
- Department of Biochemistry, Faculty of Medicine, Medical University of Gdansk, Gdansk, Poland
| | - Stefan Chlopicki
- Jagiellonian Centre of Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
- Chair of Pharmacology, Faculty of Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Jerzy A. Zoladz
- Chair of Exercise Physiology and Muscle Bioenergetics, Faculty of Health Sciences, Jagiellonian University Medical College, Krakow, Poland
| | - Joanna Majerczak
- Chair of Exercise Physiology and Muscle Bioenergetics, Faculty of Health Sciences, Jagiellonian University Medical College, Krakow, Poland
| |
Collapse
|
2
|
Wang L, Yu C, You T, Zhang X, Su H, Cao B, Anwaier S, Xiang H, Dai C, Long X, Han L, Zhang D, Wang J, Zhu P, Yan X, Liang J, Chen Z, Huang H, Zhu S, Sun T, Chen J, Zhu P. Injection of ROS-Responsive Hydrogel Loaded with IL-1β-targeted nanobody for ameliorating myocardial infarction. Bioact Mater 2025; 46:273-284. [PMID: 39811465 PMCID: PMC11732248 DOI: 10.1016/j.bioactmat.2024.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 12/14/2024] [Accepted: 12/14/2024] [Indexed: 01/16/2025] Open
Abstract
The cardiac microenvironment profoundly restricts the efficacy of myocardial regeneration tactics for the treatment of myocardial infarction (MI). A prospective approach for MI therapeutics encompasses the combined strategy of scavenging reactive oxygen species (ROS) to alleviate oxidative stress injury and facilitating macrophage polarization towards the regenerative M2 phenotype. In this investigation, we fabricated a ROS-sensitive hydrogel engineered to deliver our previously engineered IL-1β-VHH for myocardial restoration. In mouse and rat models of myocardial infarction, the therapeutic gel was injected into the pericardial cavity, effectively disseminated over the heart surface, forming an in situ epicardial patch. The IL-1β-VHH released from the hydrogel exhibited penetrative potential into the myocardium. Our results imply that this infarct-targeting gel can adhere to the damaged cardiac tissue and augment the quantity of anti-IL-1β antibodies. Moreover, the anti-IL-1β hydrogel safeguards cardiomyocytes from apoptosis by neutralizing IL-1β and inducing M2-type polarization within the myocardial infarction regions, thereby facilitating therapeutic cardiac repair. Our results emphasize the effectiveness of this synergistic comprehensive treatment modality in the management of MI and showcase its considerable potential for promoting recovery in infarcted hearts.
Collapse
Affiliation(s)
- Lu Wang
- School of Medicine South China University of Technology, Guangzhou, Guangdong, 510006, China
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510100, China
- Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Guangzhou Key Laboratory of Cardiac Pathogenesis and Prevention, Guangzhou, Guangdong, 510100, China
| | - Changjiang Yu
- School of Medicine South China University of Technology, Guangzhou, Guangdong, 510006, China
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510100, China
- Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Guangzhou Key Laboratory of Cardiac Pathogenesis and Prevention, Guangzhou, Guangdong, 510100, China
| | - Ting You
- School of Medicine South China University of Technology, Guangzhou, Guangdong, 510006, China
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510100, China
- Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Guangzhou Key Laboratory of Cardiac Pathogenesis and Prevention, Guangzhou, Guangdong, 510100, China
- The First Affiliated Hospital, Department of Emergency, Hengyang Medical School, University of South China, China
| | - Xinkui Zhang
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510100, China
- Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Guangzhou Key Laboratory of Cardiac Pathogenesis and Prevention, Guangzhou, Guangdong, 510100, China
| | - Haotao Su
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510100, China
- Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Guangzhou Key Laboratory of Cardiac Pathogenesis and Prevention, Guangzhou, Guangdong, 510100, China
| | - Bihui Cao
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510100, China
- Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Guangzhou Key Laboratory of Cardiac Pathogenesis and Prevention, Guangzhou, Guangdong, 510100, China
| | - Sainiwaer Anwaier
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510100, China
- Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Guangzhou Key Laboratory of Cardiac Pathogenesis and Prevention, Guangzhou, Guangdong, 510100, China
| | - Hongmo Xiang
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510100, China
- Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Guangzhou Key Laboratory of Cardiac Pathogenesis and Prevention, Guangzhou, Guangdong, 510100, China
| | - Chengming Dai
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510100, China
- Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Guangzhou Key Laboratory of Cardiac Pathogenesis and Prevention, Guangzhou, Guangdong, 510100, China
| | - Xiang Long
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510100, China
- Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Guangzhou Key Laboratory of Cardiac Pathogenesis and Prevention, Guangzhou, Guangdong, 510100, China
| | - Linjiang Han
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510100, China
- Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Guangzhou Key Laboratory of Cardiac Pathogenesis and Prevention, Guangzhou, Guangdong, 510100, China
| | - Dengfeng Zhang
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510100, China
- Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Guangzhou Key Laboratory of Cardiac Pathogenesis and Prevention, Guangzhou, Guangdong, 510100, China
| | - Junwei Wang
- Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Peng Zhu
- Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Xinjian Yan
- School of Medicine South China University of Technology, Guangzhou, Guangdong, 510006, China
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510100, China
- Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Guangzhou Key Laboratory of Cardiac Pathogenesis and Prevention, Guangzhou, Guangdong, 510100, China
| | - Jialiang Liang
- School of Medicine South China University of Technology, Guangzhou, Guangdong, 510006, China
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510100, China
- Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Guangzhou Key Laboratory of Cardiac Pathogenesis and Prevention, Guangzhou, Guangdong, 510100, China
| | - Zerui Chen
- School of Medicine South China University of Technology, Guangzhou, Guangdong, 510006, China
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510100, China
- Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Guangzhou Key Laboratory of Cardiac Pathogenesis and Prevention, Guangzhou, Guangdong, 510100, China
| | - Huanlei Huang
- School of Medicine South China University of Technology, Guangzhou, Guangdong, 510006, China
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510100, China
- Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Guangzhou Key Laboratory of Cardiac Pathogenesis and Prevention, Guangzhou, Guangdong, 510100, China
- Guangdong Provincial People’ S Hospital Ganzhou Hospital, Ganzhou, 341000, China
| | - Shuoji Zhu
- School of Medicine South China University of Technology, Guangzhou, Guangdong, 510006, China
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510100, China
- Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Guangzhou Key Laboratory of Cardiac Pathogenesis and Prevention, Guangzhou, Guangdong, 510100, China
| | - Tucheng Sun
- School of Medicine South China University of Technology, Guangzhou, Guangdong, 510006, China
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510100, China
- Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Guangzhou Key Laboratory of Cardiac Pathogenesis and Prevention, Guangzhou, Guangdong, 510100, China
| | - Jimei Chen
- School of Medicine South China University of Technology, Guangzhou, Guangdong, 510006, China
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510100, China
- Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Guangzhou Key Laboratory of Cardiac Pathogenesis and Prevention, Guangzhou, Guangdong, 510100, China
| | - Ping Zhu
- School of Medicine South China University of Technology, Guangzhou, Guangdong, 510006, China
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510100, China
- Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Guangzhou Key Laboratory of Cardiac Pathogenesis and Prevention, Guangzhou, Guangdong, 510100, China
- Guangdong Provincial People’ S Hospital Ganzhou Hospital, Ganzhou, 341000, China
| |
Collapse
|
3
|
Zhang C, Zhu Y, Wang M, Chen R, Sun X. Comparison of chemical composition between imitation wild and transplanted Astragali Radix and their therapeutic effects on heart failure. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118827. [PMID: 39293703 DOI: 10.1016/j.jep.2024.118827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/25/2024] [Accepted: 09/12/2024] [Indexed: 09/20/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Astragali Radix (AR) is a traditional Chinese herbal medicine, which has been widely used on treating chronic heart failure (CHF) in clinical practice. Two main types of AR in the market are the imitation wild AR (5YAR) and transplanted AR (2YAR). It remains unclear whether there are variations in the anti-heart failure effects of AR with different growth years. Further research is required to explore the material composition and mechanisms of AR in combating heart failure. AIM OF THE STUDY The aim of the study was to compare the main chemical composition content and the protective effects of 2YAR and 5YAR on heart failure. MATERIALS AND METHODS Ethanol extracts of 2YAR and 5YAR were prepared, and chemical composition analysis was conducted. C57BL/6 mice were subcutaneously injected with ISO to induce heart failure (HF) and were administrated with a corresponding dose of the extracts of 2YAR and 5YAR by gavage for 28 days. Cardiac function was evaluated using echocardiography. The serum levels of enzymes related to myocardial injury, oxidative stress, and inflammation were detected. The left ventricle was excised for hematoxylin-eosin, Masson, Sirius Red, wheat germ agglutinin, and TUNEL staining. Electron microscopy examination of mitochondrial structure in myocardial cells. Protein expression of monocarboxylate transporter 4 (MCT4), Peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α), phosphorylated AMP-activated protein kinase (p-AMPK), phosphorylated serine/threonine protein kinase (p-AKT), and phosphorylated insulin receptor substrates 1 (p-IRS-1) were detected by immunohistochemistry and Western blot. RESULTS The content of saponins and flavonoids in 5YAR was higher than that in the 2YAR. However, the content of polysaccharides in 5YAR is lower than in 2YAR. The treatment of 2YAR and 5YAR daily for 28 days prevented ISO-induced myocardial damage, including the decrease in serum cardiac enzymes and cardiomyocyte apoptotic index, and improvement in heart function and mitochondrial structure. Additionally, 2YAR and 5YAR reduced serum inflammatory factors and myocardial fibrosis levels. Treatment with 2YAR and 5YAR also decreased MCT4 expression and enhanced PGC-1α, p-AKT, p-AMPK, and p-IRS-1 expression in heart tissues. CONCLUSIONS The 5YAR was better than 2YAR in anti-heart failure, which may be related to the increase in saponins and flavonoids content. AR exerts anti-heart failure effect by improving mitochondrial function and ameliorating cardiac insulin resistance through activation of the AMPK/PGC1α and IRS/AKT pathways.
Collapse
Affiliation(s)
- Chongyang Zhang
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yindi Zhu
- Academy of Chinese Materia Medica, Wenzhou Medical University, Wenzhou, China
| | - Min Wang
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China; Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
| | - Rongchang Chen
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China; Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China.
| | - Xiaobo Sun
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China; Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China.
| |
Collapse
|
4
|
Stepanyan A, Brojakowska A, Zakharyan R, Hakobyan S, Davitavyan S, Sirunyan T, Khachatryan G, Khlgatian MK, Bisserier M, Zhang S, Sahoo S, Hadri L, Rai A, Garikipati VNS, Arakelyan A, Goukassian DA. Evaluating sex-specific responses to western diet across the lifespan: impact on cardiac function and transcriptomic signatures in C57BL/6J mice at 530 and 640/750 days of age. Cardiovasc Diabetol 2024; 23:454. [PMID: 39732652 PMCID: PMC11682651 DOI: 10.1186/s12933-024-02565-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 12/24/2024] [Indexed: 12/30/2024] Open
Abstract
BACKGROUND Long-term consumption of Western Diet (WD) is a well-established risk factor for the development of cardiovascular disease (CVD); however, there is a paucity of studies on the long-term effects of WD on the pathophysiology of CVD and sex-specific responses. METHODS Our study aimed to investigate the sex-specific pathophysiological changes in left ventricular (LV) function using transthoracic echocardiography (ECHO) and LV tissue transcriptomics in WD-fed C57BL/6 J mice for 125 days, starting at the age of 300 through 425 days. RESULTS In female mice, consumption of the WD diet showed long-term effects on LV structure and possible development of HFpEF-like phenotype with compensatory cardiac structural changes later in life. In male mice, ECHO revealed the development of an HFrEF-like phenotype later in life without detectable structural alterations. The transcriptomic profile revealed a sex-associated dichotomy in LV structure and function. Specifically, at 530-day, WD-fed male mice exhibited differentially expressed genes (DEGs), which were overrepresented in pathways associated with endocrine function, signal transduction, and cardiomyopathies. At 750 days, WD-fed male mice exhibited dysregulation of several genes involved in various lipid, glucagon, and glutathione metabolic pathways. At 530 days, WD-fed female mice exhibited the most distinctive set of DEGs with an abundance of genes related to circadian rhythms. At 640 days, altered DEGs in WD-fed female mice were associated with cardiac energy metabolism and remodeling. CONCLUSIONS Our study demonstrated distinct sex-specific and age-associated differences in cardiac structure, function, and transcriptome signature between WD-fed male and female mice.
Collapse
Affiliation(s)
- Ani Stepanyan
- Institute of Molecular Biology, National Academy of Science of Republic of Armenia, 7 Ezras Hasratyan Street, 0014, Yerevan, Armenia.
| | - Agnieszka Brojakowska
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, 1470 Madison Ave, s7-119, New York, NY, USA
- Department of Cell Biology, Yale School of Medicine, New Haven, CT, USA
| | - Roksana Zakharyan
- Institute of Molecular Biology, National Academy of Science of Republic of Armenia, 7 Ezras Hasratyan Street, 0014, Yerevan, Armenia
| | - Siras Hakobyan
- Institute of Molecular Biology, National Academy of Science of Republic of Armenia, 7 Ezras Hasratyan Street, 0014, Yerevan, Armenia
| | - Suren Davitavyan
- Institute of Molecular Biology, National Academy of Science of Republic of Armenia, 7 Ezras Hasratyan Street, 0014, Yerevan, Armenia
| | - Tamara Sirunyan
- Institute of Molecular Biology, National Academy of Science of Republic of Armenia, 7 Ezras Hasratyan Street, 0014, Yerevan, Armenia
| | - Gisane Khachatryan
- Institute of Molecular Biology, National Academy of Science of Republic of Armenia, 7 Ezras Hasratyan Street, 0014, Yerevan, Armenia
| | - Mary K Khlgatian
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, 1470 Madison Ave, s7-119, New York, NY, USA
| | - Malik Bisserier
- Department of Cell Biology and Anatomy and Physiology, New York Medical College, Valhalla, NY, USA
| | - Shihong Zhang
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, 1470 Madison Ave, s7-119, New York, NY, USA
| | - Susmita Sahoo
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, 1470 Madison Ave, s7-119, New York, NY, USA
| | - Lahouaria Hadri
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Amit Rai
- Aging + Cardiovascular Discovery Center, Department of Cardiovascular Sciences Lewis Katz School of Medicine, Temple University, Philadelphia, USA
| | - Venkata Naga Srikanth Garikipati
- Aging + Cardiovascular Discovery Center, Department of Cardiovascular Sciences Lewis Katz School of Medicine, Temple University, Philadelphia, USA
| | - Arsen Arakelyan
- Institute of Molecular Biology, National Academy of Science of Republic of Armenia, 7 Ezras Hasratyan Street, 0014, Yerevan, Armenia
| | - David A Goukassian
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, 1470 Madison Ave, s7-119, New York, NY, USA.
| |
Collapse
|
5
|
Sun Q, Karwi QG, Wong N, Lopaschuk GD. Advances in myocardial energy metabolism: metabolic remodelling in heart failure and beyond. Cardiovasc Res 2024; 120:1996-2016. [PMID: 39453987 PMCID: PMC11646102 DOI: 10.1093/cvr/cvae231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/28/2024] [Accepted: 07/03/2024] [Indexed: 10/27/2024] Open
Abstract
The very high energy demand of the heart is primarily met by adenosine triphosphate (ATP) production from mitochondrial oxidative phosphorylation, with glycolysis providing a smaller amount of ATP production. This ATP production is markedly altered in heart failure, primarily due to a decrease in mitochondrial oxidative metabolism. Although an increase in glycolytic ATP production partly compensates for the decrease in mitochondrial ATP production, the failing heart faces an energy deficit that contributes to the severity of contractile dysfunction. The relative contribution of the different fuels for mitochondrial ATP production dramatically changes in the failing heart, which depends to a large extent on the type of heart failure. A common metabolic defect in all forms of heart failure [including heart failure with reduced ejection fraction (HFrEF), heart failure with preserved EF (HFpEF), and diabetic cardiomyopathies] is a decrease in mitochondrial oxidation of pyruvate originating from glucose (i.e. glucose oxidation). This decrease in glucose oxidation occurs regardless of whether glycolysis is increased, resulting in an uncoupling of glycolysis from glucose oxidation that can decrease cardiac efficiency. The mitochondrial oxidation of fatty acids by the heart increases or decreases, depending on the type of heart failure. For instance, in HFpEF and diabetic cardiomyopathies myocardial fatty acid oxidation increases, while in HFrEF myocardial fatty acid oxidation either decreases or remains unchanged. The oxidation of ketones (which provides the failing heart with an important energy source) also differs depending on the type of heart failure, being increased in HFrEF, and decreased in HFpEF and diabetic cardiomyopathies. The alterations in mitochondrial oxidative metabolism and glycolysis in the failing heart are due to transcriptional changes in key enzymes involved in the metabolic pathways, as well as alterations in redox state, metabolic signalling and post-translational epigenetic changes in energy metabolic enzymes. Of importance, targeting the mitochondrial energy metabolic pathways has emerged as a novel therapeutic approach to improving cardiac function and cardiac efficiency in the failing heart.
Collapse
Affiliation(s)
- Qiuyu Sun
- Cardiovascular Research Center, University of Alberta, Edmonton, AB T6G 2S2, Canada
- Department of Pediatrics, University of Alberta, Edmonton, AB T6G 2S2, Canada
| | - Qutuba G Karwi
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, Saint John’s, NL A1B 3V6, Canada
| | - Nathan Wong
- Cardiovascular Research Center, University of Alberta, Edmonton, AB T6G 2S2, Canada
- Department of Pediatrics, University of Alberta, Edmonton, AB T6G 2S2, Canada
| | - Gary D Lopaschuk
- Cardiovascular Research Center, University of Alberta, Edmonton, AB T6G 2S2, Canada
- Department of Pediatrics, University of Alberta, Edmonton, AB T6G 2S2, Canada
| |
Collapse
|
6
|
Alivaisi E, Amini S, Haghani K, Ghaneialvar H, Keshavarzi F. Comparative effects of metformin and varying intensities of exercise on miR-133a expression in diabetic rats: Insights from machine learning analysis. Biochem Biophys Rep 2024; 40:101882. [PMID: 39649797 PMCID: PMC11625223 DOI: 10.1016/j.bbrep.2024.101882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 11/12/2024] [Accepted: 11/18/2024] [Indexed: 12/11/2024] Open
Abstract
This study investigated the effects of metformin, high-intensity interval training (HIIT), and moderate-intensity continuous training (MCT) on miR-133a expression in a diabetic rat model. miR-133a, a microRNA associated with skeletal muscle insulin resistance, served as a key indicator of treatment efficacy. Diabetic rats exhibited elevated miR-133a levels compared to healthy controls. Both HIIT and MCT, alone and in combination with metformin, significantly reduced miR-133a expression. Importantly, the combination of HIIT and metformin demonstrated the most potent effect, reducing miR-133a levels more than other treatments. We used the CatBoost algorithm to develop a predictive model for miR-133a expression based on metabolic parameters. The model accurately predicted miR-133a levels using body weight, blood glucose, insulin levels, and cholesterol metrics. The findings suggest a potential clinical strategy combining metformin and exercise, with miR-133a potentially serving as a biomarker for personalized diabetes management.
Collapse
Affiliation(s)
- Elahe Alivaisi
- Department of Biology, Sanandaj Branch, Islamic Azad University, Sanandaj, Iran
| | - Sabrieh Amini
- Department of Biology, Sanandaj Branch, Islamic Azad University, Sanandaj, Iran
| | - Karimeh Haghani
- Department of Clinical Biochemistry, School of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| | - Hori Ghaneialvar
- Biotechnology and Medicinal Plants Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Fatemeh Keshavarzi
- Department of Biology, Sanandaj Branch, Islamic Azad University, Sanandaj, Iran
| |
Collapse
|
7
|
Wu H, Liu Y, Liu C. The interregulatory circuit between non-coding RNA and apoptotic signaling in diabetic cardiomyopathy. Noncoding RNA Res 2024; 9:1080-1097. [PMID: 39022683 PMCID: PMC11254508 DOI: 10.1016/j.ncrna.2024.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 07/20/2024] Open
Abstract
Diabetes mellitus has surged in prevalence, emerging as a prominent epidemic and assuming a foremost position among prevalent medical disorders. Diabetes constitutes a pivotal risk element for cardiovascular maladies, with diabetic cardiomyopathy (DCM) standing out as a substantial complication encountered by individuals with diabetes. Apoptosis represents a physiological phenomenon observed throughout the aging and developmental stages, giving rise to the programmed cell death, which is implicated in DCM. Non-coding RNAs assume significant functions in modulation of gene expression. Their deviant expression of ncRNAs is implicated in overseeing diverse cellular attributes such as proliferation, apoptosis, and has been postulated to play a role in the progression of DCM. Notably, ncRNAs and the process of apoptosis can mutually influence and cooperate in shaping the destiny of human cardiac tissues. Therefore, the exploration of the interplay between apoptosis and non-coding RNAs holds paramount importance in the formulation of efficacious therapeutic and preventive approaches for managing DCM. In this review, we provide a comprehensive overview of the apoptotic signaling pathways relevant to DCM and subsequently delve into the reciprocal regulation between apoptosis and ncRNAs in DCM. These insights contribute to an enhanced comprehension of DCM and the development of therapeutic strategies.
Collapse
Affiliation(s)
- Hao Wu
- Public Health Clinical Center Affiliated to Shandong University, Jinan, 250100, China
| | - Yan Liu
- Public Health Clinical Center Affiliated to Shandong University, Jinan, 250100, China
| | - Chunli Liu
- Public Health Clinical Center Affiliated to Shandong University, Jinan, 250100, China
| |
Collapse
|
8
|
Ghiasvand T, Karimi J, Khodadadi I, Yazdi A, Khazaei S, Kichi ZA, Hosseini SK. Evaluating SORT1 and SESN1 genes expression in peripheral blood mononuclear cells and oxidative stress status in patients with coronary artery disease. BMC Genom Data 2024; 25:93. [PMID: 39488678 PMCID: PMC11531137 DOI: 10.1186/s12863-024-01275-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 10/24/2024] [Indexed: 11/04/2024] Open
Abstract
BACKGROUND Coronary artery disease (CAD) significantly contributes to global fatalities. Recent studies have demonstrated the crucial roles of sortilin1 (SORT1) and sestrin1 (SESN1) in lipid metabolism, as well as their involvement in the development of CAD. The aberrant expression or activity of SORT1 can consequently lead to metabolic and vascular diseases. Sestrins, including SESN1, play a crucial role in helping cells survive by maintaining metabolic balance while also reducing oxidative stress (OS). OS contributes to the progression of atherosclerosis-related diseases, such as CAD. The study aimed to compare the gene expression of SORT1 and SESN1 in peripheral blood mononuclear cells (PBMCs), alongside serum OS markers, in CAD patients and controls. MATERIALS The case-control study included 49 CAD patients and 40 controls. The expression of the SORT1 and SESN1 genes was quantified using qRT-PCR, and the expression of the SORT1 protein was evaluated by western blotting. OS markers, including total oxidation status (TOS), total antioxidant capacity (TAC), and malondialdehyde (MDA), were measured using spectrophotometric and fluorometric methods. RESULTS SORT1 gene and protein expressions were similar between groups. CAD patients had a non-significant decrease in SESN1 gene expression. MDA levels were significantly higher in CAD patients, whereas TOS and TAC levels did not differ significantly. CONCLUSION For atherosclerosis-related disorders like CAD, MDA shows potential as a non-invasive, easy-to-use, affordable, and stable biomarker. Further research is needed to elucidate the precise roles of SORT1 and SESN1 in CAD pathogenesis.
Collapse
Affiliation(s)
- Tayebe Ghiasvand
- Department of Clinical Biochemistry, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Jamshid Karimi
- Department of Clinical Biochemistry, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Iraj Khodadadi
- Department of Clinical Biochemistry, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Amirhossein Yazdi
- Department of Cardiology, Faculty of Medicine, Clinical Research Development Unit of Farshchian Hospital, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Salman Khazaei
- Research Center for Health Sciences, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Zahra Abedi Kichi
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Seyed Kianoosh Hosseini
- Department of Cardiology, Faculty of Medicine, Clinical Research Development Unit of Farshchian Hospital, Hamadan University of Medical Sciences, Hamadan, Iran.
- Cardiovascular Research Center, Hamadan University of Medical Sciences, Farshchian Heart Center, Fahmideh Blvd., 6517839131, Hamadan, Iran.
| |
Collapse
|
9
|
Singh S, Singh TG. Unlocking the mechanistic potential of Thuja occidentalis for managing diabetic neuropathy and nephropathy. J Tradit Complement Med 2024; 14:581-597. [PMID: 39850604 PMCID: PMC11752125 DOI: 10.1016/j.jtcme.2024.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 01/25/2025] Open
Abstract
Diabetes mellitus and its debilitating microvascular complications, including diabetic neuropathy and nephropathy, represent a growing global health burden. Despite advances in conventional therapies, their suboptimal efficacy and adverse effects necessitate exploring complementary and alternative medicine approaches. Thuja occidentalis, a coniferous tree species native to eastern North America, has gained significant attention for its potential therapeutic applications in various disorders, attributed to its rich phytochemical composition. The present comprehensive review evaluates the therapeutic potential of Thuja occidentalis in managing diabetic neuropathy and nephropathy, with a particular emphasis on elucidating the underlying cellular and molecular mechanisms. The review delves into the active constituents of Thuja occidentalis, such as essential oils, flavonoids, tannins, and proanthocyanidin compounds, which have demonstrated antioxidant, anti-inflammatory, and other beneficial properties in preclinical studies. Importantly, the review provides an in-depth analysis of the intricate signaling pathways modulated by Thuja occidentalis, including NF-κB, PI3K-Akt, JAK-STAT, JNK, MAPK/ERK, and Nrf2 cascades. These pathways are intricately linked to oxidative stress, inflammation, and apoptosis processes, which play pivotal roles in the pathogenesis of diabetic neuropathy and nephropathy. Furthermore, the review critically evaluates the evidence-based toxicological data of Thuja occidentalis as a more effective and comprehensive therapeutic strategy in diabetes complications. Therefore, the current review aims to provide a comprehensive understanding of the therapeutic potential of Thuja occidentalis as an adjunctive treatment strategy for diabetic neuropathy and nephropathy while highlighting the need for further research to optimize its clinical translation.
Collapse
Affiliation(s)
- Shareen Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India
| | - Thakur Gurjeet Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India
| |
Collapse
|
10
|
Sun Y, Miao B, Cao Y, Cui J, Da Y, Qi L, Zhou S. Significance of plasma TGF-β1 level detection in patients with T2DM with heart failure. J Med Biochem 2024; 43:704-710. [PMID: 39712502 PMCID: PMC11662957 DOI: 10.5937/jomb0-47321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 05/18/2024] [Indexed: 12/24/2024] Open
Abstract
Background The aim of the study was to examine the significance of plasma Transforming Growth Factor-1/TGF-β1 (TGF-β1) level testing in patients with Type 2 Diabetes Mellitus (T2DM) and heart failure. Methods A sample of T2DM patients who were hospitalised for dyspnea was chosen between June 2021 and June 2023. Based on the convenience sample approach, 150 cases were screened for the study, and 50 healthy non-diabetic people without cardiac problems who completed physical examinations over the same period were included as a control group. All study participants had their serum NT-proBNP and plasma TGF-I levels checked, and the values between the two groups were compared. Then, the patients with T2DM with heart failure were grouped according to whether they were accompanied by heart failure or not and the grading of cardiac function, and then the serum NT-proBNP and plasma TGF-β1 levels were compared between the different groups of patients. The diagnostic value of plasma TGF-β1 in the occurrence of heart failure in patients with T2DM was analysed. Results There were 54 patients without heart failure and 96 people with heart failure among the 150 T2DM patients. The cut-off point was 44.50 g/L. At this time, the sensitivity and specificity for diagnosing concomitant heart failure in T2DM were 79.63% and 52.51%, respectively. 96 individuals with T2DM and heart failure showed greater serum and plasma levels of NT-proBNP and TGF-β1 compared to the other two groups (P=0.05). ProBNP and plasma TGF-β1 levels had a positive and significant relationship (P=0.05). Conclusions Plasma TGF-β1 levels were much higher in T2DM patients than in the general population, and the increase in this index was more pronounced in patients who also had heart failure, a diagnostic indicator for T2DM and heart failure.
Collapse
Affiliation(s)
- Yunjing Sun
- Xingtai Third Hospital, Cardiology Ward 2, Xingtai, China
| | - Bo Miao
- Xingtai Third Hospital, Coronary Care Unit, Xingtai, China
| | - Yabing Cao
- Xingtai Third Hospital, Cardiology Ward 1, Xingtai, China
| | - Jiangman Cui
- Xingtai Third Hospital, Cardiology Ward 2, Xingtai, China
| | - Yingxiao Da
- Xingtai Third Hospital, Cardiology Ward 2, Xingtai, China
| | - Liping Qi
- Xingtai Third Hospital, Department of Cardiology, Xingtai, China
| | - Song Zhou
- Xingtai Third Hospital, Cardiology Ward 2, Xingtai, China
| |
Collapse
|
11
|
Mouton AJ, Aitken NM, Morato JG, O'Quinn KR, do Carmo JM, da Silva AA, Omoto ACM, Li X, Wang Z, Schrimpe-Rutledge AC, Codreanu SG, Sherrod SD, McLean JA, Stanford JK, Brown JA, Hall JE. Glutamine metabolism improves left ventricular function but not macrophage-mediated inflammation following myocardial infarction. Am J Physiol Cell Physiol 2024; 327:C571-C586. [PMID: 38981605 PMCID: PMC11427008 DOI: 10.1152/ajpcell.00272.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/07/2024] [Accepted: 06/21/2024] [Indexed: 07/11/2024]
Abstract
Glutamine is a critical amino acid that serves as an energy source, building block, and signaling molecule for the heart tissue and the immune system. However, the role of glutamine metabolism in regulating cardiac remodeling following myocardial infarction (MI) is unknown. In this study, we show in adult male mice that glutamine metabolism is altered both in the remote (contractile) area and in infiltrating macrophages in the infarct area after permanent left anterior descending artery occlusion. We found that metabolites related to glutamine metabolism were differentially altered in macrophages at days 1, 3, and 7 after MI using untargeted metabolomics. Glutamine metabolism in live cells was increased after MI relative to no MI controls. Gene expression in the remote area of the heart indicated a loss of glutamine metabolism. Glutamine administration improved left ventricle (LV) function at days 1, 3, and 7 after MI, which was associated with improved contractile and metabolic gene expression. Conversely, administration of BPTES, a pharmacological inhibitor of glutaminase-1, worsened LV function after MI. Neither glutamine nor BPTES administration impacted gene expression or bioenergetics of macrophages isolated from the infarct area. Our results indicate that glutamine metabolism plays a critical role in maintaining LV contractile function following MI and that glutamine administration improves LV function. Glutamine metabolism may also play a role in regulating macrophage function, but macrophages are not responsive to exogenous pharmacological manipulation of glutamine metabolism.NEW & NOTEWORTHY Glutamine metabolism is altered in both infarct macrophages and the remote left ventricle (LV) following myocardial infarction (MI). Supplemental glutamine improves LV function following MI while inhibiting glutamine metabolism with BPTES worsens LV function. Supplemental glutamine or BPTES does not impact macrophage immunometabolic phenotypes after MI.
Collapse
Affiliation(s)
- Alan J Mouton
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi, United States
- Mississippi Center for Obesity Research, University of Mississippi Medical Center, Jackson, Mississippi, United States
| | - Nikaela M Aitken
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi, United States
| | - Jemylle G Morato
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi, United States
| | - Katherine R O'Quinn
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi, United States
| | - Jussara M do Carmo
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi, United States
- Mississippi Center for Obesity Research, University of Mississippi Medical Center, Jackson, Mississippi, United States
| | - Alexandre A da Silva
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi, United States
- Mississippi Center for Obesity Research, University of Mississippi Medical Center, Jackson, Mississippi, United States
| | - Ana C M Omoto
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi, United States
- Mississippi Center for Obesity Research, University of Mississippi Medical Center, Jackson, Mississippi, United States
| | - Xuan Li
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi, United States
- Mississippi Center for Obesity Research, University of Mississippi Medical Center, Jackson, Mississippi, United States
| | - Zhen Wang
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi, United States
- Mississippi Center for Obesity Research, University of Mississippi Medical Center, Jackson, Mississippi, United States
| | - Alexandra C Schrimpe-Rutledge
- Department of Chemistry and Center for Innovative Technology, Vanderbilt University, Nashville, Tennessee, United States
| | - Simona G Codreanu
- Department of Chemistry and Center for Innovative Technology, Vanderbilt University, Nashville, Tennessee, United States
| | - Stacy D Sherrod
- Department of Chemistry and Center for Innovative Technology, Vanderbilt University, Nashville, Tennessee, United States
| | - John A McLean
- Department of Chemistry and Center for Innovative Technology, Vanderbilt University, Nashville, Tennessee, United States
| | - Joshua K Stanford
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi, United States
| | - Jordan A Brown
- Jackson State University, Jackson, Mississippi, United States
| | - John E Hall
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi, United States
- Mississippi Center for Obesity Research, University of Mississippi Medical Center, Jackson, Mississippi, United States
| |
Collapse
|
12
|
Nardone M, Sridhar VS, Yau K, Odutayo A, Cherney DZI. Proximal versus distal diuretics in congestive heart failure. Nephrol Dial Transplant 2024; 39:1392-1403. [PMID: 38425090 PMCID: PMC11361814 DOI: 10.1093/ndt/gfae058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Indexed: 03/02/2024] Open
Abstract
Volume overload represents a hallmark clinical feature linked to the development and progression of heart failure (HF). Alleviating signs and symptoms of volume overload represents a foundational HF treatment target that is achieved using loop diuretics in the acute and chronic setting. Recent work has provided evidence to support guideline-directed medical therapies, such as sodium glucose cotransporter 2 (SGLT2) inhibitors and mineralocorticoid receptor (MR) antagonists, as important adjunct diuretics that may act synergistically when used with background loop diuretics in people with chronic HF. Furthermore, there is growing interest in understanding the role of SGLT2 inhibitors, carbonic anhydrase inhibitors, thiazide diuretics, and MR antagonists in treating volume overload in patients hospitalized for acute HF, particularly in the setting of loop diuretic resistance. Thus, the current review demonstrates that: (i) SGLT2 inhibitors and MR antagonists confer long-term cardioprotection in chronic HF patients but it is unclear whether natriuresis or diuresis represents the primary mechanisms for this benefit, (ii) SGLT2 inhibitors, carbonic anhydrase inhibitors, and thiazide diuretics increase natriuresis in the acute HF setting, but implications on long-term outcomes remain unclear and warrants further investigation, and (iii) a multi-nephron segment approach, using agents that act on distinct segments of the nephron, potentiate diuresis to alleviate signs and symptoms of volume overload in acute HF.
Collapse
Affiliation(s)
- Massimo Nardone
- University Health Network, Division of Nephrology, Department of Medicine, University of Toronto, Ontario, Canada
| | - Vikas S Sridhar
- University Health Network, Division of Nephrology, Department of Medicine, University of Toronto, Ontario, Canada
| | - Kevin Yau
- University Health Network, Division of Nephrology, Department of Medicine, University of Toronto, Ontario, Canada
| | - Ayodele Odutayo
- University Health Network, Division of Nephrology, Department of Medicine, University of Toronto, Ontario, Canada
| | - David Z I Cherney
- University Health Network, Division of Nephrology, Department of Medicine, University of Toronto, Ontario, Canada
| |
Collapse
|
13
|
Gao C, Xiong Z, Liu Y, Wang M, Wang M, Liu T, Liu J, Ren S, Cao N, Yan H, Drucker DJ, Rau CD, Yokota T, Huang J, Wang Y. Glucagon Receptor Antagonist for Heart Failure With Preserved Ejection Fraction. Circ Res 2024; 135:614-628. [PMID: 39011638 PMCID: PMC11325917 DOI: 10.1161/circresaha.124.324706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 07/01/2024] [Accepted: 07/08/2024] [Indexed: 07/17/2024]
Abstract
BACKGROUND Heart failure with preserved ejection fraction (HFpEF) is an emerging major unmet need and one of the most significant clinic challenges in cardiology. The pathogenesis of HFpEF is associated with multiple risk factors. Hypertension and metabolic disorders associated with obesity are the 2 most prominent comorbidities observed in patients with HFpEF. Although hypertension-induced mechanical overload has long been recognized as a potent contributor to heart failure with reduced ejection fraction, the synergistic interaction between mechanical overload and metabolic disorders in the pathogenesis of HFpEF remains poorly characterized. METHOD We investigated the functional outcome and the underlying mechanisms from concurrent mechanic and metabolic stresses in the heart by applying transverse aortic constriction in lean C57Bl/6J or obese/diabetic B6.Cg-Lepob/J (ob/ob) mice, followed by single-nuclei RNA-seq and targeted manipulation of a top-ranked signaling pathway differentially affected in the 2 experimental cohorts. RESULTS In contrast to the post-transverse aortic constriction C57Bl/6J lean mice, which developed pathological features of heart failure with reduced ejection fraction over time, the post-transverse aortic constriction ob/ob mice showed no significant changes in ejection fraction but developed characteristic pathological features of HFpEF, including diastolic dysfunction, worsened cardiac hypertrophy, and pathological remodeling, along with further deterioration of exercise intolerance. Single-nuclei RNA-seq analysis revealed significant transcriptome reprogramming in the cardiomyocytes stressed by both pressure overload and obesity/diabetes, markedly distinct from the cardiomyocytes singularly stressed by pressure overload or obesity/diabetes. Furthermore, glucagon signaling was identified as the top-ranked signaling pathway affected in the cardiomyocytes associated with HFpEF. Treatment with a glucagon receptor antagonist significantly ameliorated the progression of HFpEF-related pathological features in 2 independent preclinical models. Importantly, cardiomyocyte-specific genetic deletion of the glucagon receptor also significantly improved cardiac function in response to pressure overload and metabolic stress. CONCLUSIONS These findings identify glucagon receptor signaling in cardiomyocytes as a critical determinant of HFpEF progression and provide proof-of-concept support for glucagon receptor antagonism as a potential therapy for the disease.
Collapse
MESH Headings
- Animals
- Heart Failure/physiopathology
- Heart Failure/metabolism
- Heart Failure/drug therapy
- Heart Failure/etiology
- Stroke Volume/drug effects
- Mice, Inbred C57BL
- Mice
- Male
- Receptors, Glucagon/antagonists & inhibitors
- Receptors, Glucagon/metabolism
- Receptors, Glucagon/genetics
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/pathology
- Mice, Obese
- Ventricular Function, Left/drug effects
- Obesity/metabolism
- Obesity/physiopathology
- Obesity/complications
- Disease Models, Animal
- Signal Transduction
Collapse
Affiliation(s)
- Chen Gao
- Department of Pharmacology and Systems Physiology, University of Cincinnati, OH (C.G., T.L.)
| | - Zhaojun Xiong
- Department of Cardiovascular Medicine, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China (Z.X.)
| | - Yunxia Liu
- Signature Research Program in Cardiovascular and Metabolic Diseases, DukeNUS School of Medicine and National Heart Center of Singapore, Singapore (Y.L., Meng Wang, S.R., Y.W.)
| | - Meng Wang
- Signature Research Program in Cardiovascular and Metabolic Diseases, DukeNUS School of Medicine and National Heart Center of Singapore, Singapore (Y.L., Meng Wang, S.R., Y.W.)
| | - Menglong Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, China (Menglong Wang, J.L.)
| | - Tian Liu
- Department of Pharmacology and Systems Physiology, University of Cincinnati, OH (C.G., T.L.)
| | - Jianfang Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, China (Menglong Wang, J.L.)
| | - Shuxun Ren
- Signature Research Program in Cardiovascular and Metabolic Diseases, DukeNUS School of Medicine and National Heart Center of Singapore, Singapore (Y.L., Meng Wang, S.R., Y.W.)
| | - Nancy Cao
- School of Medicine and Public Health, University of Wisconsin, Madison (N.C.)
| | - Hai Yan
- REMD Biotherapeutics, Camarillo, CA (Y.H.)
| | - Daniel J. Drucker
- Department of Medicine, Lunenfeld Tanenbaum Research Institute, Mt. Sinai Hospital, Toronto, Ontario, Canada (D.J.D.)
| | - Christoph Daniel Rau
- Computational Medicine Program and Department of Human Genetics, University of North Carolina at Chapel Hill (C.D.R.)
| | - Tomohiro Yokota
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, and the VA Greater Los Angeles Healthcare System (T.Y.)
| | - Jijun Huang
- Division of Endocrinology, Department of medicine, David Geffen School of Medicine, University of California, Los Angeles (J.H.)
| | - Yibin Wang
- Signature Research Program in Cardiovascular and Metabolic Diseases, DukeNUS School of Medicine and National Heart Center of Singapore, Singapore (Y.L., Meng Wang, S.R., Y.W.)
- Department of Medicine, Duke University School of Medicine, Durham, NC (Y.W.)
| |
Collapse
|
14
|
Tanase DM, Valasciuc E, Costea CF, Scripcariu DV, Ouatu A, Hurjui LL, Tarniceriu CC, Floria DE, Ciocoiu M, Baroi LG, Floria M. Duality of Branched-Chain Amino Acids in Chronic Cardiovascular Disease: Potential Biomarkers versus Active Pathophysiological Promoters. Nutrients 2024; 16:1972. [PMID: 38931325 PMCID: PMC11206939 DOI: 10.3390/nu16121972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 06/13/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024] Open
Abstract
Branched-chain amino acids (BCAAs), comprising leucine (Leu), isoleucine (Ile), and valine (Val), are essential nutrients vital for protein synthesis and metabolic regulation via specialized signaling networks. Their association with cardiovascular diseases (CVDs) has become a focal point of scientific debate, with emerging evidence suggesting both beneficial and detrimental roles. This review aims to dissect the multifaceted relationship between BCAAs and cardiovascular health, exploring the molecular mechanisms and clinical implications. Elevated BCAA levels have also been linked to insulin resistance (IR), type 2 diabetes mellitus (T2DM), inflammation, and dyslipidemia, which are well-established risk factors for CVD. Central to these processes are key pathways such as mammalian target of rapamycin (mTOR) signaling, nuclear factor kappa-light-chain-enhancer of activate B cells (NF-κB)-mediated inflammation, and oxidative stress. Additionally, the interplay between BCAA metabolism and gut microbiota, particularly the production of metabolites like trimethylamine-N-oxide (TMAO), adds another layer of complexity. Contrarily, some studies propose that BCAAs may have cardioprotective effects under certain conditions, contributing to muscle maintenance and metabolic health. This review critically evaluates the evidence, addressing the biological basis and signal transduction mechanism, and also discusses the potential for BCAAs to act as biomarkers versus active mediators of cardiovascular pathology. By presenting a balanced analysis, this review seeks to clarify the contentious roles of BCAAs in CVD, providing a foundation for future research and therapeutic strategies required because of the rising prevalence, incidence, and total burden of CVDs.
Collapse
Affiliation(s)
- Daniela Maria Tanase
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (D.M.T.); (A.O.); (D.E.F.); (M.F.)
- Internal Medicine Clinic, “St. Spiridon” County Clinical Emergency Hospital, Iasi 700111, Romania
| | - Emilia Valasciuc
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (D.M.T.); (A.O.); (D.E.F.); (M.F.)
- Internal Medicine Clinic, “St. Spiridon” County Clinical Emergency Hospital, Iasi 700111, Romania
| | - Claudia Florida Costea
- Department of Ophthalmology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
- 2nd Ophthalmology Clinic, “Prof. Dr. Nicolae Oblu” Emergency Clinical Hospital, 700309 Iași, Romania
| | - Dragos Viorel Scripcariu
- Department of General Surgery, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
- Regional Institute of Oncology, 700483 Iasi, Romania
| | - Anca Ouatu
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (D.M.T.); (A.O.); (D.E.F.); (M.F.)
- Internal Medicine Clinic, “St. Spiridon” County Clinical Emergency Hospital, Iasi 700111, Romania
| | - Loredana Liliana Hurjui
- Department of Morpho-Functional Sciences II, Physiology Discipline, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
- Hematology Laboratory, “St. Spiridon” County Clinical Emergency Hospital, 700111 Iasi, Romania
| | - Claudia Cristina Tarniceriu
- Department of Morpho-Functional Sciences I, Discipline of Anatomy, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
- Hematology Clinic, “Sf. Spiridon” County Clinical Emergency Hospital, 700111 Iasi, Romania
| | - Diana Elena Floria
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (D.M.T.); (A.O.); (D.E.F.); (M.F.)
- Institute of Gastroenterology and Hepatology, “St. Spiridon” County Clinical Emergency Hospital, 700111 Iasi, Romania
| | - Manuela Ciocoiu
- Department of Pathophysiology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
| | - Livia Genoveva Baroi
- Department of Surgery, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
- Department of Vascular Surgery, “St. Spiridon” County Clinical Emergency Hospital, 700111 Iasi, Romania
| | - Mariana Floria
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (D.M.T.); (A.O.); (D.E.F.); (M.F.)
- Internal Medicine Clinic, “St. Spiridon” County Clinical Emergency Hospital, Iasi 700111, Romania
| |
Collapse
|
15
|
Nag S, Mitra O, Maturi B, Kaur SP, Saini A, Nama M, Roy S, Samanta S, Chacko L, Dutta R, Sayana SB, Subramaniyan V, Bhatti JS, Kandimalla R. Autophagy and mitophagy as potential therapeutic targets in diabetic heart condition: Harnessing the power of nanotheranostics. Asian J Pharm Sci 2024; 19:100927. [PMID: 38948399 PMCID: PMC11214300 DOI: 10.1016/j.ajps.2024.100927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 03/29/2024] [Accepted: 04/13/2024] [Indexed: 07/02/2024] Open
Abstract
Autophagy and mitophagy pose unresolved challenges in understanding the pathology of diabetic heart condition (DHC), which encompasses a complex range of cardiovascular issues linked to diabetes and associated cardiomyopathies. Despite significant progress in reducing mortality rates from cardiovascular diseases (CVDs), heart failure remains a major cause of increased morbidity among diabetic patients. These cellular processes are essential for maintaining cellular balance and removing damaged or dysfunctional components, and their involvement in the development of diabetic heart disease makes them attractive targets for diagnosis and treatment. While a variety of conventional diagnostic and therapeutic strategies are available, DHC continues to present a significant challenge. Point-of-care diagnostics, supported by nanobiosensing techniques, offer a promising alternative for these complex scenarios. Although conventional medications have been widely used in DHC patients, they raise several concerns regarding various physiological aspects. Modern medicine places great emphasis on the application of nanotechnology to target autophagy and mitophagy in DHC, offering a promising approach to deliver drugs beyond the limitations of traditional therapies. This article aims to explore the potential connections between autophagy, mitophagy and DHC, while also discussing the promise of nanotechnology-based theranostic interventions that specifically target these molecular pathways.
Collapse
Affiliation(s)
- Sagnik Nag
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia
| | - Oishi Mitra
- Department of Bio-Sciences, School of Bio-Sciences & Technology (SBST), Vellore Institute of Technology (VIT), Tiruvalam Road, Vellore 632014, Tamil Nadu, India
| | - Bhanu Maturi
- Department of Internal Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Simran Preet Kaur
- Department of Microbiology, University of Delhi (South Campus), Benito Juarez Road, New Delhi 110021, India
| | - Ankita Saini
- Department of Microbiology, University of Delhi (South Campus), Benito Juarez Road, New Delhi 110021, India
| | - Muskan Nama
- Department of Bio-Sciences, School of Bio-Sciences & Technology (SBST), Vellore Institute of Technology (VIT), Tiruvalam Road, Vellore 632014, Tamil Nadu, India
| | - Soumik Roy
- Department of Biotechnology, Indian Institute of Technology, Hyderabad (IIT-H), Sangareddy, Telangana 502284, India
| | - Souvik Samanta
- Department of Bio-Sciences, School of Bio-Sciences & Technology (SBST), Vellore Institute of Technology (VIT), Tiruvalam Road, Vellore 632014, Tamil Nadu, India
| | - Leena Chacko
- BioAnalytical Lab, Meso Scale Discovery, 1601 Research Blvd, Rockville, MD, USA
| | - Rohan Dutta
- Department of Bio-Sciences, School of Bio-Sciences & Technology (SBST), Vellore Institute of Technology (VIT), Tiruvalam Road, Vellore 632014, Tamil Nadu, India
| | - Suresh Babu Sayana
- Department of Pharmacology, Government Medical College, Suryapet, Telangana, India
| | - Vetriselvan Subramaniyan
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia
| | - Jasvinder Singh Bhatti
- Laboratory of Translational Medicine and Nanotherapeutics, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, India
| | - Ramesh Kandimalla
- Department of Biochemistry, Kakatiya Medical College, Warangal 506007, India
| |
Collapse
|
16
|
Heckmann ND, Palmer R, Mayfield CK, Gucev G, Lieberman JR, Hong K. Glucagon-Like Peptide Receptor-1 Agonists Used for Medically-Supervised Weight Loss in Patients With Hip and Knee Osteoarthritis: Critical Considerations for the Arthroplasty Surgeon. Arthroplast Today 2024; 27:101327. [PMID: 39071832 PMCID: PMC11282421 DOI: 10.1016/j.artd.2024.101327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/08/2023] [Accepted: 01/27/2024] [Indexed: 07/30/2024] Open
Abstract
Patients with morbid obesity and concomitant hip or knee osteoarthritis represent a challenging patient demographic to treat as these patients often present earlier in life, have more severe symptoms, and have worse surgical outcomes following total hip and total knee arthroplasty. Previously, bariatric and metabolic surgeries represented one of the few weight loss interventions that morbidly obese patients could undergo prior to total joint arthroplasty. However, data regarding the reduction in complications with preoperative bariatric surgery remain mixed. Glucagon-like peptide receptor-1 (GLP-1) agonists have emerged as an effective treatment option for obesity in patients with and without diabetes mellitus. Furthermore, recent data suggest these medications may serve as potential anti-inflammatory and disease-modifying agents for numerous chronic conditions, including osteoarthritis. This review will discuss the GLP-1 agonists and GLP-1/glucose-dependent insulinotropic polypeptide dual agonists currently available, along with GLP-1/glucose-dependent insulinotropic polypeptide/glucagon triple agonists presently being developed to address the obesity epidemic. Furthermore, this review will address the potential problem of GLP-1-related delayed gastric emptying and its impact on the timing of elective total joint arthroplasty. The review aims to provide arthroplasty surgeons with a primer for implementing this class of medication in their current and future practice, including perioperative instructions and perioperative safety considerations when treating patients taking these medications.
Collapse
Affiliation(s)
- Nathanael D. Heckmann
- Department of Orthopaedic Surgery, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| | - Ryan Palmer
- Department of Orthopaedic Surgery, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| | - Cory K. Mayfield
- Department of Orthopaedic Surgery, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| | - Gligor Gucev
- Department of Anesthesiology, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| | - Jay R. Lieberman
- Department of Orthopaedic Surgery, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| | - Kurt Hong
- Center for Clinical Nutrition, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
17
|
Dabour MS, George MY, Daniel MR, Blaes AH, Zordoky BN. The Cardioprotective and Anticancer Effects of SGLT2 Inhibitors: JACC: CardioOncology State-of-the-Art Review. JACC CardioOncol 2024; 6:159-182. [PMID: 38774006 PMCID: PMC11103046 DOI: 10.1016/j.jaccao.2024.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 05/24/2024] Open
Abstract
Sodium-glucose cotransporter-2 (SGLT2) inhibitors, originally approved for type 2 diabetes mellitus, have demonstrated efficacy in reducing cardiovascular events, particularly heart failure, in patients with and without diabetes. An intriguing research area involves exploring the potential application of SGLT2 inhibitors in cardio-oncology, aiming to mitigate the cardiovascular adverse events associated with anticancer treatments. These inhibitors present a unique dual nature, offering both cardioprotective effects and anticancer properties, conferring a double benefit for cardio-oncology patients. In this review, the authors first examine the established cardioprotective effects of SGLT2 inhibitors in heart failure and subsequently explore the existing body of evidence, including both preclinical and clinical studies, that supports the use of SGLT2 inhibitors in the context of cardio-oncology. The authors further discuss the mechanisms through which SGLT2 inhibitors protect against cardiovascular toxicity secondary to cancer treatment. Finally, they explore the potential anticancer effects of SGLT2 inhibitors along with their proposed mechanisms.
Collapse
Affiliation(s)
- Mohamed S. Dabour
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota, USA
- Department of Clinical Pharmacy, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Mina Y. George
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota, USA
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Mary R. Daniel
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota, USA
| | - Anne H. Blaes
- Division of Hematology/Oncology/Transplantation, Medical School, University of Minnesota, Minneapolis, Minnesota, USA
| | - Beshay N. Zordoky
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
18
|
Nayudu GSS, Benny BM, Thomas G, Khan MA, Basutkar RS. Exploring the Efficacy of Sotagliflozin on Heart and Kidney Health in Diabetic Patients: A Comprehensive Meta-Analysis. Indian J Community Med 2024; 49:269-278. [PMID: 38665437 PMCID: PMC11042128 DOI: 10.4103/ijcm.ijcm_210_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 12/08/2023] [Indexed: 04/28/2024] Open
Abstract
Evidence for reducing cardiovascular and renal events with sotagliflozin is uncertain among type 2 diabetes mellitus (T2DM) patients. To gather more evidence, this meta-analysis assesses the beneficial effects of sotagliflozin, a dual sodium-glucose cotransporter 1 and 2 inhibitor, in reducing the cardiovascular and renal events in diabetic patients with or without chronic kidney disease (CKD). Scopus, Google Scholar, Cochrane Central Register of Controlled Trials (CENTRAL), and PubMed were the databases used to search. The studies published from January 1, 2018, to January 30, 2022, were considered. The eligibility of studies was assessed independently. The data were collected in a modified Cochrane data extraction form. The included studies' quality was assessed with the Cochrane risk-of-bias tool. The quality of evidence for renal and cardiovascular outcomes was evaluated using GRADEpro software. The number of events of urgent visits to the hospital and requiring hospitalization was reduced (RR: 0.73; 95% CI: 0.69, 0.78; P value <0.00001). The mortality rate because of cardiovascular events was decreased with sotagliflozin (RR: 0.73; 95% CI: 0.67, 0.80; P value <0.00001). Patients taking sotagliflozin had a drastic decline in the number of deaths due to stroke and non-fatal myocardial infarction. Yet, there is no difference between the groups in terms of changes in mortality due to other causes or the glomerular filtration rate (GFR). Sotagliflozin demonstrated effectiveness in reducing the mortality rate related to heart failure and cardiovascular events when the dose was increased from 200 mg to 400 mg. Despite this, evidence is still needed to prove the renal protective action.
Collapse
Affiliation(s)
- Greeshma S. S. Nayudu
- Department of Pharmacy Practice, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, The Nilgiris, Tamil Nadu, India
| | - Binit M. Benny
- Department of Pharmacy Practice, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, The Nilgiris, Tamil Nadu, India
| | - Grace Thomas
- Department of Pharmacy Practice, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, The Nilgiris, Tamil Nadu, India
| | - Maria A. Khan
- Department of Pharmacy Practice, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, The Nilgiris, Tamil Nadu, India
| | - Roopa S. Basutkar
- Department of Pharmacy Practice, Nitte (Deemed to be University), NGSM Institute of Pharmaceutical Sciences (NGSMIPS), Mangalore, Karnataka, India
| |
Collapse
|
19
|
Atia MM, Mahmoud HAA, Wilson M, Abd-Allah EA. A comprehensive survey of warfarin-induced hepatic toxicity using histopathological, biomarker, and molecular evaluation. Heliyon 2024; 10:e26484. [PMID: 38440292 PMCID: PMC10909775 DOI: 10.1016/j.heliyon.2024.e26484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 02/06/2024] [Accepted: 02/14/2024] [Indexed: 03/06/2024] Open
Abstract
Warfarin finds human application as anticoagulant therapy. Warfarin usage can cause liver damage and hemorrhage. Besides functioning as anticoagulant and causing continuous bleeding of pests, the mechanism of toxicity of warfarin is unknown. In this study, Wild female and male rats were administrated orally with warfarin for 18 days at 9, 18, 27.5, and 55 mg/kg, respectively. Hepatoxicity was determined by assessing, LD50, leukocyte counts, immunochemistry, histopathology, serum proteins, Western blotting, especially of markers of liver injury, such as AST, ALT & ALP, and markers of antioxidant and oxidative stress markers. Warfarin treatment decreased Nrf2 levels while it increased caspase 3, CYP2C9, COLL1A1. It caused cellular damage and fibrosis of liver. The plasma levels of markers of liver injury, AST, ALT, ALP, bilirubin and transferrin were increased. The plasma levels of albumin, IgG and antitrypsin were decreased. Warfarin treatment decreased RBC and total lymphocyte count while increasing selectively neutrophils. Warfarin exposure caused increased oxidative stress; increased LPO and decreased GSH, SOD, CAT and NO production. Oral exposure of rats with Warfarin leads to increased oxidative stress resulting into liver damage via CYP2C9 mediated by Nrf2 depletion.
Collapse
Affiliation(s)
- Mona M. Atia
- Laboratory of Molecular Cell Biology, Zoology Department, Faculty of Science, Assiut University, Egypt
| | - Heba Allah Ahmed Mahmoud
- Plant Protection Research Institute (PPRI), Agriculture Research Center, Animal Pests Department, Egypt
| | - Magdy Wilson
- Plant Protection Research Institute (PPRI), Agriculture Research Center, Animal Pests Department, Egypt
| | - Elham A. Abd-Allah
- Laboratory of Physiology, Department of Zoology, Faculty of Science, New Valley University, EL-kharga, Egypt
| |
Collapse
|
20
|
Weeks KL, Kiriazis H, Wadley GD, Masterman EI, Sergienko NM, Raaijmakers AJA, Trewin AJ, Harmawan CA, Yildiz GS, Liu Y, Drew BG, Gregorevic P, Delbridge LMD, McMullen JR, Bernardo BC. A gene therapy targeting medium-chain acyl-CoA dehydrogenase (MCAD) did not protect against diabetes-induced cardiac pathology. J Mol Med (Berl) 2024; 102:95-111. [PMID: 37987775 DOI: 10.1007/s00109-023-02397-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 10/31/2023] [Accepted: 11/09/2023] [Indexed: 11/22/2023]
Abstract
Diabetic cardiomyopathy describes heart disease in patients with diabetes who have no other cardiac conditions but have a higher risk of developing heart failure. Specific therapies to treat the diabetic heart are limited. A key mechanism involved in the progression of diabetic cardiomyopathy is dysregulation of cardiac energy metabolism. The aim of this study was to determine if increasing the expression of medium-chain acyl-coenzyme A dehydrogenase (MCAD; encoded by Acadm), a key regulator of fatty acid oxidation, could improve the function of the diabetic heart. Male mice were administered streptozotocin to induce diabetes, which led to diastolic dysfunction 8 weeks post-injection. Mice then received cardiac-selective adeno-associated viral vectors encoding MCAD (rAAV6:MCAD) or control AAV and were followed for 8 weeks. In the non-diabetic heart, rAAV6:MCAD increased MCAD expression (mRNA and protein) and increased Acadl and Acadvl, but an increase in MCAD enzyme activity was not detectable. rAAV6:MCAD delivery in the diabetic heart increased MCAD mRNA expression but did not significantly increase protein, activity, or improve diabetes-induced cardiac pathology or molecular metabolic and lipid markers. The uptake of AAV viral vectors was reduced in the diabetic versus non-diabetic heart, which may have implications for the translation of AAV therapies into the clinic. KEY MESSAGES: The effects of increasing MCAD in the diabetic heart are unknown. Delivery of rAAV6:MCAD increased MCAD mRNA and protein, but not enzyme activity, in the non-diabetic heart. Independent of MCAD enzyme activity, rAAV6:MCAD increased Acadl and Acadvl in the non-diabetic heart. Increasing MCAD cardiac gene expression alone was not sufficient to protect against diabetes-induced cardiac pathology. AAV transduction efficiency was reduced in the diabetic heart, which has clinical implications.
Collapse
Affiliation(s)
- Kate L Weeks
- Department of Anatomy and Physiology, University of Melbourne, Parkville, VIC, 3010, Australia
- Department of Cardiometabolic Health, University of Melbourne, Parkville, VIC, 3010, Australia
- Department of Diabetes, Central Clinical School, Monash University, Clayton, VIC, 3800, Australia
| | - Helen Kiriazis
- Department of Cardiometabolic Health, University of Melbourne, Parkville, VIC, 3010, Australia
- Baker Heart and Diabetes Institute, PO Box 6492, Melbourne, VIC, 3004, Australia
| | - Glenn D Wadley
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Burwood, VIC, 3125, Australia
| | - Emma I Masterman
- Baker Heart and Diabetes Institute, PO Box 6492, Melbourne, VIC, 3004, Australia
| | - Nicola M Sergienko
- Department of Diabetes, Central Clinical School, Monash University, Clayton, VIC, 3800, Australia
- Baker Heart and Diabetes Institute, PO Box 6492, Melbourne, VIC, 3004, Australia
| | - Antonia J A Raaijmakers
- Department of Anatomy and Physiology, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Adam J Trewin
- Department of Anatomy and Physiology, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Claudia A Harmawan
- Baker Heart and Diabetes Institute, PO Box 6492, Melbourne, VIC, 3004, Australia
| | - Gunes S Yildiz
- Baker Heart and Diabetes Institute, PO Box 6492, Melbourne, VIC, 3004, Australia
| | - Yingying Liu
- Baker Heart and Diabetes Institute, PO Box 6492, Melbourne, VIC, 3004, Australia
| | - Brian G Drew
- Department of Cardiometabolic Health, University of Melbourne, Parkville, VIC, 3010, Australia
- Department of Diabetes, Central Clinical School, Monash University, Clayton, VIC, 3800, Australia
- Baker Heart and Diabetes Institute, PO Box 6492, Melbourne, VIC, 3004, Australia
| | - Paul Gregorevic
- Department of Anatomy and Physiology, University of Melbourne, Parkville, VIC, 3010, Australia
- Centre for Muscle Research, University of Melbourne, Parkville, VIC, 3010, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, 3800, Australia
- Department of Neurology, University of Washington School of Medicine, Seattle, WA, 98195, USA
| | - Lea M D Delbridge
- Department of Anatomy and Physiology, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Julie R McMullen
- Department of Cardiometabolic Health, University of Melbourne, Parkville, VIC, 3010, Australia
- Department of Diabetes, Central Clinical School, Monash University, Clayton, VIC, 3800, Australia
- Baker Heart and Diabetes Institute, PO Box 6492, Melbourne, VIC, 3004, Australia
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Bianca C Bernardo
- Department of Diabetes, Central Clinical School, Monash University, Clayton, VIC, 3800, Australia.
- Baker Heart and Diabetes Institute, PO Box 6492, Melbourne, VIC, 3004, Australia.
- Department of Paediatrics, University of Melbourne, Parkville, VIC, 3010, Australia.
| |
Collapse
|
21
|
Ahamad R, Bhandari U, Nabi S, Sharma S. Saroglitazar suppresses KIM-1 and type IV collagen in high fat diet and low-dose streptozotocin-induced diabetic nephropathy in Wistar rats. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2024; 27:1447-1455. [PMID: 39386240 PMCID: PMC11459336 DOI: 10.22038/ijbms.2024.78221.16908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 06/01/2024] [Indexed: 10/12/2024]
Abstract
Objectives Nephropathy is the most common comorbidity linked to T2D. The present study aimed to examine the potential of saroglitazar in the context of a high-fat diet and low-dose streptozotocin-induced diabetic nephropathy in Wistar rats. Materials and Methods Molecular docking simulation investigations were conducted on the ligand-binding region of type IV collagen and Kidney injury molecule-1 (KIM-1), using saroglitazar and fenofibrate as the subjects. The rats were fed either a conventional rodent diet or a high-fat diet ad libitum for two weeks. Following a two-week period, the rats given an HFD were administered with a low-dose of STZ (35 mg/kg, IP). Rats with experimentally induced diabetes were categorized into five groups: normal control; diabetic control; HFD+STZ+saroglitazar (2 mg/kg); HFD+STZ+saroglitazar (4 mg/kg); HFD+STZ+fenofibrate (100 mg/kg) treated orally for 21 days with continuation on HFD. After 21 days, rats were kept on fasting overnight, blood and urine was acquired for various biochemical analysis. Animals were sacrificed, and kidney tissues were removed for histopathological studies. Results In-silico investigation showed a substantial affinity between saroglitazar and fenofibrate with KIM-1 and type IV collagen. Saroglitazar produced a significant (P<0.01) reduction in weight of the body, serum blood sugar, albumin, creatinine, and BUN levels. Further, saroglitazar significantly (P<0.01) reduced the KIM-1 and type IV collagen levels in the urine of diabetic rats. Histopathological results showed improvement in tubular degeneration, necrosis, and dilatation of Bowman's space in kidney tissue. Conclusion Saroglitazar attenuated renal injury by improving renal function in HFD+STZ-induced DN in Wistar rats.
Collapse
Affiliation(s)
- Rizwan Ahamad
- Department of Pharmacology, School of Pharmaceutical Education & Research (SPER), Jamia Hamdard, New Delhi-110062, India
| | - Uma Bhandari
- Department of Pharmacology, School of Pharmaceutical Education & Research (SPER), Jamia Hamdard, New Delhi-110062, India
| | - Sayima Nabi
- Department of Pharmacology, School of Pharmaceutical Education & Research (SPER), Jamia Hamdard, New Delhi-110062, India
| | - Shweta Sharma
- Department of Pharmacology, School of Pharmaceutical Education & Research (SPER), Jamia Hamdard, New Delhi-110062, India
| |
Collapse
|
22
|
Kloock S, Ziegler CG, Dischinger U. Obesity and its comorbidities, current treatment options and future perspectives: Challenging bariatric surgery? Pharmacol Ther 2023; 251:108549. [PMID: 37879540 DOI: 10.1016/j.pharmthera.2023.108549] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/08/2023] [Accepted: 10/19/2023] [Indexed: 10/27/2023]
Abstract
Obesity and its comorbidities, including type 2 diabetes mellitus, cardiovascular disease, heart failure and non-alcoholic liver disease are a major health and economic burden with steadily increasing numbers worldwide. The need for effective pharmacological treatment options is strong, but, until recently, only few drugs have proven sufficient efficacy and safety. This article provides a comprehensive overview of obesity and its comorbidities, with a special focus on organ-specific pathomechanisms. Bariatric surgery as the so far most-effective therapeutic strategy, current pharmacological treatment options and future treatment strategies will be discussed. An increasing knowledge about the gut-brain axis and especially the identification and physiology of incretins unfolds a high number of potential drug candidates with impressive weight-reducing potential. Future multi-modal therapeutic concepts in obesity treatment may surpass the effectivity of bariatric surgery not only with regard to weight loss, but also to associated comorbidities.
Collapse
Affiliation(s)
- Simon Kloock
- Department of Internal Medicine, Division of Endocrinology and Diabetes, University Hospital, University of Würzburg, Würzburg, Germany
| | - Christian G Ziegler
- Department of Internal Medicine, Division of Endocrinology and Diabetes, University Hospital, University of Würzburg, Würzburg, Germany; Department of Internal Medicine III, University Hospital Carl Gustav Carus Dresden, Dresden, Germany
| | - Ulrich Dischinger
- Department of Internal Medicine, Division of Endocrinology and Diabetes, University Hospital, University of Würzburg, Würzburg, Germany; Comprehensive Heart Failure Center, Würzburg, Germany.
| |
Collapse
|
23
|
Ray A. Retatrutide: a triple incretin receptor agonist for obesity management. Expert Opin Investig Drugs 2023; 32:1003-1008. [PMID: 37902090 DOI: 10.1080/13543784.2023.2276754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 10/25/2023] [Indexed: 10/31/2023]
Abstract
INTRODUCTION Obesity treatment is evolving rapidly with the emergence of agents targeting incretin receptors. Retatrutide, a triple agonist of these receptors, shows promise in obesity management. AREAS COVERED Retatrutide, in phase-2 trials, exhibited significant reductions in glycated hemoglobin (HbA1c) and dose-dependent weight loss in individuals with type 2 diabetes mellitus (T2DM). In non-T2DM individuals, it produced substantial weight loss and improved glucose levels, albeit with gastrointestinal side effects. The role of glucagon receptor agonism in the management of heart failure and its potential impact on eating patterns have also been covered in this article. EXPERT OPINION Although the reductions in HbA1c and dose-dependent weight loss among individuals with T2DM were significantly more for higher doses of retatrutide, it needs to be observed that the active comparator was dulaglutide, which is not approved for the treatment of obesity, at a dose of 1.5 mg, which is much lower than the highest approved dose of 4.5 mg. Dose-dependent increase in heart rate and incidents of mild to moderate cardiac arrythmias raise cardiovascular safety concerns and signify that carrying out long-term cardiovascular outcome trials (CVOTs) will be critical. In addition, retatrutide's potential in heart failure management is intriguing given the series of positive findings of semaglutide on cardiovascular outcomes.
Collapse
Affiliation(s)
- Avik Ray
- Division of Pharmacoepidemiology and Pharmacoeconomics, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| |
Collapse
|
24
|
Ridwan M, Dimiati H, Syukri M, Lesmana R. Potential molecular mechanism underlying cardiac fibrosis in diabetes mellitus: a narrative review. Egypt Heart J 2023; 75:46. [PMID: 37306727 PMCID: PMC10260731 DOI: 10.1186/s43044-023-00376-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 06/08/2023] [Indexed: 06/13/2023] Open
Abstract
BACKGROUND Diabetes mellitus (DM) is among the most common risk factors for cardiovascular disease in the world with prevalence of more than 500 million population in 2021. Cardiac fibrosis with its complex process has been hypothesized as one of the mechanisms explaining development of heart failure in diabetic patients. Recently, the biomolecular mechanism of cardiac fibrosis in the hyperglycemia setting has been focusing around transforming growth factor β-1 (TGFβ-1) as a major factor. However, there is interplay role of several factors including microRNAs (miRNAs) which acts as a potential regulator of cardiac fibrosis connected with TGFβ-1. In this review, we explored interplay role of several factors including microRNAs which acts as a potential regulator of cardiac fibrosis connected with TGFβ-1 in diabetes mellitus. This narrative review included articles from the PubMed and Science Direct databases published in the last 10 years (2012-2022). MAIN TEXT In diabetic patients, excessive activation of myofibroblasts occurs and triggers pro-collagen to convert into mature collagen to fill the cardiac interstitial space resulting in a pathological process of extracellular matrix remodeling. The balance between matrix metalloproteinase (MMP) and its inhibitor (tissue inhibitor of metalloproteinase, TIMP) is crucial in degradation of the extracellular matrix. Diabetes-related cardiac fibrosis is modulated by increasing level of TGF-β1 mediated by cellular components, including cardiomyocyte and non-cardiomyocyte cells involving fibroblasts, vascular pericytes smooth muscle cells, endothelial cells, mast cells, macrophages, and dendritic cells. Several miRNAs such as miR-21, miR-9, miR-29, miR-30d, miR-144, miR-34a, miR-150, miR-320, and miR-378 are upregulated in diabetic cardiomyopathy. TGF-β1, together with inflammatory cytokines, oxidative stress, combined sma and the mothers against decapentaplegic (smad) protein, mitogen-activated protein kinase (MAPK), and microRNAs, is interconnectedly involved in extracellular matrix production and fibrotic response. In this review, we explored interplay role of several factors including microRNAs which acts as a potential regulator of cardiac fibrosis connected with TGFβ-1 in diabetes mellitus. CONCLUSIONS Long-term hyperglycemia activates cardiac fibroblast via complex processes involving TGF-β1, miRNA, inflammatory chemokines, oxidative stress, smad, or MAPK pathways. There is increasing evidence of miRNA's roles lately in modulating cardiac fibrosis.
Collapse
Affiliation(s)
- Muhammad Ridwan
- Doctorate School of Medical Science, Faculty of Medicine, Universitas Syiah Kuala, Banda Aceh, 23116, Indonesia
| | - Herlina Dimiati
- Department of Pediatrics, Faculty of Medicine, Universitas Syiah Kuala, Banda Aceh, 23111, Indonesia.
| | - Maimun Syukri
- Department of Internal Medicine, Faculty of Medicine, Universitas Syiah Kuala, Banda Aceh, 23111, Indonesia
| | - Ronny Lesmana
- Physiology Division, Department of Biomedical Science, Faculty of Medicine, Universitas Padjadjaran, Sumedang, West Java, 45363, Indonesia
| |
Collapse
|
25
|
Nodari S, Fioretti F, Barilla F. Redefining diabetes mellitus treatments according to different mechanisms beyond hypoglycaemic effect. Heart Fail Rev 2023; 28:607-625. [PMID: 35133551 PMCID: PMC8821791 DOI: 10.1007/s10741-021-10203-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/09/2021] [Indexed: 12/03/2022]
Abstract
Early epidemiologic studies in type 2 diabetes suggested that the long-term risk of microvascular and macrovascular complications increase progressively as glucose concentrations rise, inspiring the pursuit of near euglycaemia as a means of preventing these complications in type 1 and type 2 diabetes. Evidence emerging over the past decade, however, showed that the aggressive efforts often needed to achieve low HbA1c levels can ultimately lead to worse clinical outcomes, greater risk of severe hypoglycaemia, and higher burden of treatment. The acknowledgment of the disappointing results obtained with therapies aimed exclusively at improving glycaemic control has led in recent years to a substantial paradigm shift in the treatment of the diabetic patient. The results obtained first with GLP-1RAs and more recently even more with SGLT2i on mortality and CV events have made it clear how other mechanisms, beyond the hypoglycaemic effect, are at the basis of the benefits observed in several cardiovascular outcome trials. And as evidence of the great revolution of thought we are experiencing, there is the recognition of gliflozins as drugs for the treatment not only of diabetic patients but also of non-diabetic patients suffering from HF, as reported in the latest ESC/HFA guidelines. Surely, we still have a lot to understand, but it is certain that this is the beginning of a new era.
Collapse
Affiliation(s)
- Savina Nodari
- Department of Medical and Surgical Specialities, Radiological Sciences and Public Health, University and Spedali Civili of Brescia, Brescia, Italy.
| | - Francesco Fioretti
- Department of Medical and Surgical Specialities, Radiological Sciences and Public Health, University and Spedali Civili of Brescia, Brescia, Italy
| | - Francesco Barilla
- Department of System's Medicine, Tor Vergata University, Rome, Italy
| |
Collapse
|
26
|
Karwi QG, Lopaschuk GD. Branched-Chain Amino Acid Metabolism in the Failing Heart. Cardiovasc Drugs Ther 2023; 37:413-420. [PMID: 35150384 DOI: 10.1007/s10557-022-07320-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/27/2022] [Indexed: 01/11/2023]
Abstract
Branched-chain amino acids (BCAAs) are essential amino acids which have critical roles in protein synthesis and energy metabolism in the body. In the heart, there is a strong correlation between impaired BCAA oxidation and contractile dysfunction in heart failure. Plasma and myocardial levels of BCAA and their metabolites, namely branched-chain keto acids (BCKAs), are also linked to cardiac insulin resistance and worsening adverse remodelling in the failing heart. This review discusses the regulation of BCAA metabolism in the heart and the impact of depressed cardiac BCAA oxidation on cardiac energy metabolism, function, and structure in heart failure. While impaired BCAA oxidation in the failing heart causes the accumulation of BCAA and BCKA in the myocardium, recent evidence suggested that the BCAAs and BCKAs have divergent effects on the insulin signalling pathway and the mammalian target of the rapamycin (mTOR) signalling pathway. Dietary and pharmacological interventions that enhance cardiac BCAA oxidation and limit the accumulation of cardiac BCAAs and BCKAs have been shown to have cardioprotective effects in the setting of ischemic heart disease and heart failure. Thus, targeting cardiac BCAA oxidation may be a promising therapeutic approach for heart failure.
Collapse
Affiliation(s)
- Qutuba G Karwi
- Cardiovascular Research Centre, University of Alberta, Edmonton, AB, T6G 2S2, Canada.,Department of Pharmacology, College of Medicine, University of Diyala, Diyala, Iraq
| | - Gary D Lopaschuk
- Cardiovascular Research Centre, University of Alberta, Edmonton, AB, T6G 2S2, Canada.
| |
Collapse
|
27
|
Mousavi SN, Bahramfard T, Rad EY, Hosseinikia M, Saboori S. Association of Leptin and Retinol Binding Protein 4 with the Risk of Gestational Diabetes: A Systematic Review and Meta-Analysis of Observational Studies. Indian J Endocrinol Metab 2023; 27:96-104. [PMID: 37292076 PMCID: PMC10245309 DOI: 10.4103/ijem.ijem_385_22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 12/14/2022] [Accepted: 02/13/2023] [Indexed: 06/10/2023] Open
Abstract
The positive correlation between serum levels of retinol binding protein 4 (RBP4) and gestational diabetes (GDM) has been proven in the previous meta-analysis on case-control studies. However, its association with serum levels of leptin is not studied in any meta-analysis. Therefore, we performed an updated systematic review of observational studies evaluating the association between serum RBP4 and leptin with the risk of GDM. A systematic search was performed on four databases, including PubMed, Scopus, Web of Science, and Google Scholar, up to March 2021. After screening and deleting duplicates, nine articles met our inclusion criteria. Studies had case-control and cohort design, and included 5074 participants with a mean age range between 18 and 32.65 years (2359 participants for RBP4 and 2715 participants for leptin). Interestingly, this meta-analysis revealed higher levels of RBP4 (OR=2.04; 95% CI: 1.37, 3.04) and leptin (OR=2.32; 95% CI: 1.39, 3.87) are significantly associated with the increased risk of overall GDM. The subgroup analysis approved the results based on the study design, trimester of pregnancy and serum/plasms to investigate the source of heterogeneity. The present meta-analysis determines serum leptin and RBP4 levels as predictors of GDM occurrence. However, studies included in this meta-analysis showed significant heterogeneity.
Collapse
Affiliation(s)
- Seyedeh Neda Mousavi
- Zanjan Metabolic Diseases Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Tooba Bahramfard
- Student Research Committee, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Esmaeil Yousefi Rad
- Nutritional Health Research Centre, School of Health and Nutrition, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Mahboobe Hosseinikia
- Department of Nutrition and Food Sciences, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Somayeh Saboori
- Nutritional Health Research Centre, School of Health and Nutrition, Lorestan University of Medical Sciences, Khorramabad, Iran
| |
Collapse
|
28
|
Tuglo LS. Comparison of adiposity anthropometric indices and their associations with visceral fat levels determined by bioelectrical impedance analysis among diabetic patients. Sci Rep 2022; 12:17824. [PMID: 36280694 PMCID: PMC9592612 DOI: 10.1038/s41598-022-22848-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 10/20/2022] [Indexed: 01/20/2023] Open
Abstract
Visceral fat (VF) and its effect on metabolic disorders have been extensively studied; nevertheless, there is a need for a simple and reliable index to equally assess VF in low-resource settings. This multihospital-based study was designed to compare the five adiposity anthropometric indices and their associations with VF levels determined by bioelectrical impedance analysis as the reference standard among diabetic patients. A pretested questionnaire was used to collect anthropometric, biochemical and hemodynamic data from 473 diabetic patients. Regression analysis was performed to determine the associations between the five adiposity anthropometric indices and VF levels. Receiver operating characteristic (ROC) curves were used to confirm the predictive capacities of the five adiposity anthropometric indices with VF levels. The waist-to-height ratio WHtR showed the greatest ROC value [area under the curve (AUC) = 0.745, p ˂0.001] in identifying diabetic patients with high VF levels compared to body mass index BMI [AUC = 0.584, p = 0.047], waist circumference WC [AUC = 0.723, p ˂0.001], hip circumference HC [AUC = 0.647, p ˂0.001] and waist-to-hip ratio WHR [AUC = 0.711, p ˂0.001]. Likewise, the regression analysis of WHtR and VF levels revealed the strongest association [unadjusted odds ratio (UOR) = 21.49, p < 0.001] compared to BMI [UOR = 6.77, p = 0.008], WC [UOR = 6.37, p < 0.001], HC [UOR = 5.93, p = 0.002] and WHR [UOR = 13.17, p < 0.001]. The optimal cut-off values to identify diabetic patients with high VF levels were > 0.5 for WHtR, > 25.7 kg/m2 for BMI, > 80.5 cm for WC, > 95.5 cm for HC and > 0.82 for WHR. WHtR was shown to have overpowered BMI, HC, WC and WHR in identifying diabetic patients with high VF levels. Therefore, the Ghana Health Service could recommend WHtR as a better diagnostic index for assessing VF levels due to its high predictive capacity.
Collapse
Affiliation(s)
- Lawrence Sena Tuglo
- grid.449729.50000 0004 7707 5975Department of Nutrition and Dietetics, School of Allied Health Sciences, University of Health and Allied Sciences, Ho, Ghana
| |
Collapse
|
29
|
Pruett JE, Everman SJ, Hoang NH, Salau F, Taylor LC, Edwards KS, Hosler JP, Huffman AM, Romero DG, Yanes Cardozo LL. Mitochondrial function and oxidative stress in white adipose tissue in a rat model of PCOS: effect of SGLT2 inhibition. Biol Sex Differ 2022; 13:45. [PMID: 35986388 PMCID: PMC9389812 DOI: 10.1186/s13293-022-00455-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 08/03/2022] [Indexed: 11/18/2022] Open
Abstract
Background Polycystic ovary syndrome (PCOS), characterized by androgen excess and ovulatory dysfunction, is associated with a high prevalence of obesity and insulin resistance (IR) in women. We demonstrated that sodium–glucose cotransporter-2 inhibitor (SGLT2i) administration decreases fat mass without affecting IR in the PCOS model. In male models of IR, administration of SGLT2i decreases oxidative stress and improves mitochondrial function in white adipose tissue (WAT). Therefore, we hypothesized that SGLT2i reduces adiposity via improvement in mitochondrial function and oxidative stress in WAT in PCOS model. Methods Four-week-old female rats were treated with dihydrotestosterone for 90 days (PCOS model), and SGLT2i (empagliflozin) was co-administered during the last 3 weeks. Body composition was measured before and after SGLT2i treatment by EchoMRI. Subcutaneous (SAT) and visceral (VAT) WAT were collected for histological and molecular studies at the end of the study. Results PCOS model had an increase in food intake, body weight, body mass index, and fat mass/lean mass ratio compared to the control group. SGLT2i lowered fat mass/lean ratio in PCOS. Glucosuria was observed in both groups, but had a larger magnitude in controls. The net glucose balance was similar in both SGLT2i-treated groups. The PCOS SAT had a higher frequency of small adipocytes and a lower frequency of large adipocytes. In SAT of controls, SGLT2i increased frequencies of small and medium adipocytes while decreasing the frequency of large adipocytes, and this effect was blunted in PCOS. In VAT, PCOS had a lower frequency of small adipocytes while SGLT2i increased the frequency of small adipocytes in PCOS. PCOS model had decreased mitochondrial content in SAT and VAT without impacting oxidative stress in WAT or the circulation. SGLT2i did not modify mitochondrial function or oxidative stress in WAT in both treated groups. Conclusions Hyperandrogenemia in PCOS causes expansion of WAT, which is associated with decreases in mitochondrial content and function in SAT and VAT. SGLT2i increases the frequency of small adipocytes in VAT only without affecting mitochondrial dysfunction, oxidative stress, or IR in the PCOS model. SGLT2i decreases adiposity independently of adipose mitochondrial and oxidative stress mechanisms in the PCOS model. Supplementary Information The online version contains supplementary material available at 10.1186/s13293-022-00455-x. Androgen excess in PCOS model is associated with decreased markers of mitochondrial content in both subcutaneous and visceral white adipose tissue. Androgen excess in PCOS model is associated with increased frequency of small adipocytes in subcutaneous white adipose tissue while decreasing frequency of small adipocytes in visceral white adipose tissue. SGLT2 inhibition did not modify markers of mitochondrial content or oxidative stress in either subcutaneous or visceral white adipose tissue in PCOS model. SGLT2 inhibition increased frequency of small adipocytes in both subcutaneous and visceral white adipose tissue in control rats; however, SGLT2 inhibition only increased frequency of small adipocytes in visceral white adipose tissue in PCOS model.
Collapse
|
30
|
Insights into the Role of Glucagon Receptor Signaling in Metabolic Regulation from Pharmacological Inhibition and Tissue-Specific Knockout Models. Biomedicines 2022; 10:biomedicines10081907. [PMID: 36009454 PMCID: PMC9405517 DOI: 10.3390/biomedicines10081907] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/01/2022] [Accepted: 08/03/2022] [Indexed: 11/16/2022] Open
Abstract
While glucagon has long been recognized as the primary counter hormone to insulin’s actions, it has recently gained recognition as a metabolic regulator with its effects extending beyond control of glycemia. Recently developed models of tissue-specific glucagon receptor knockouts have advanced our understanding of this hormone, providing novel insight into the role it plays within organs as well as its systemic effects. Studies where the pharmacological blockade of the glucagon receptor has been employed have proved similarly valuable in the study of organ-specific and systemic roles of glucagon signaling. Studies carried out employing these tools demonstrate that glucagon indeed plays a role in regulating glycemia, but also in amino acid and lipid metabolism, systemic endocrine, and paracrine function, and in the response to cardiovascular injury. Here, we briefly review recent progress in our understanding of glucagon’s role made through inhibition of glucagon receptor signaling utilizing glucagon receptor antagonists and tissue specific genetic knockout models.
Collapse
|
31
|
Vanweert F, Schrauwen P, Phielix E. Role of branched-chain amino acid metabolism in the pathogenesis of obesity and type 2 diabetes-related metabolic disturbances BCAA metabolism in type 2 diabetes. Nutr Diabetes 2022; 12:35. [PMID: 35931683 PMCID: PMC9356071 DOI: 10.1038/s41387-022-00213-3] [Citation(s) in RCA: 115] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 06/15/2022] [Accepted: 07/05/2022] [Indexed: 12/23/2022] Open
Abstract
Branched-chain amino acid (BCAA) catabolism has been considered to have an emerging role in the pathogenesis of metabolic disturbances in obesity and type 2 diabetes (T2D). Several studies showed elevated plasma BCAA levels in humans with insulin resistance and patients with T2D, although the underlying reason is unknown. Dysfunctional BCAA catabolism could theoretically be an underlying factor. In vitro and animal work collectively show that modulation of the BCAA catabolic pathway alters key metabolic processes affecting glucose homeostasis, although an integrated understanding of tissue-specific BCAA catabolism remains largely unknown, especially in humans. Proof-of-concept studies in rodents -and to a lesser extent in humans – strongly suggest that enhancing BCAA catabolism improves glucose homeostasis in metabolic disorders, such as obesity and T2D. In this review, we discuss several hypothesized mechanistic links between BCAA catabolism and insulin resistance and overview current available tools to modulate BCAA catabolism in vivo. Furthermore, this review considers whether enhancing BCAA catabolism forms a potential future treatment strategy to promote metabolic health in insulin resistance and T2D.
Collapse
Affiliation(s)
- Froukje Vanweert
- Department of Nutrition and Movement Sciences, NUTRIM, School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Patrick Schrauwen
- Department of Nutrition and Movement Sciences, NUTRIM, School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Esther Phielix
- Department of Nutrition and Movement Sciences, NUTRIM, School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, The Netherlands.
| |
Collapse
|
32
|
Ferro F, Spelat R, Valente C, Contessotto P. Understanding How Heart Metabolic Derangement Shows Differential Stage Specificity for Heart Failure with Preserved and Reduced Ejection Fraction. Biomolecules 2022; 12:biom12070969. [PMID: 35883525 PMCID: PMC9312956 DOI: 10.3390/biom12070969] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 06/30/2022] [Accepted: 07/06/2022] [Indexed: 12/12/2022] Open
Abstract
Heart failure (HF) is a clinical condition defined by structural and functional abnormalities in the heart that gradually result in reduced cardiac output (HFrEF) and/or increased cardiac pressures at rest and under stress (HFpEF). The presence of asymptomatic individuals hampers HF identification, resulting in delays in recognizing patients until heart dysfunction is manifested, thus increasing the chance of poor prognosis. Given the recent advances in metabolomics, in this review we dissect the main alterations occurring in the metabolic pathways behind the decrease in cardiac function caused by HF. Indeed, relevant preclinical and clinical research has been conducted on the metabolite connections and differences between HFpEF and HFrEF. Despite these promising results, it is crucial to note that, in addition to identifying single markers and reliable threshold levels within the healthy population, the introduction of composite panels would strongly help in the identification of those individuals with an increased HF risk. That said, additional research in the field is required to overcome the current drawbacks and shed light on the pathophysiological changes that lead to HF. Finally, greater collaborative data sharing, as well as standardization of procedures and approaches, would enhance this research field to fulfil its potential.
Collapse
Affiliation(s)
- Federico Ferro
- Department of Medical, Surgery and Health Sciences, University of Trieste, 34125 Trieste, Italy
- Correspondence:
| | - Renza Spelat
- Neurobiology Sector, International School for Advanced Studies (SISSA), 34136 Trieste, Italy;
| | - Camilla Valente
- Department of Molecular Medicine, University of Padova, 35122 Padova, Italy; (C.V.); (P.C.)
| | - Paolo Contessotto
- Department of Molecular Medicine, University of Padova, 35122 Padova, Italy; (C.V.); (P.C.)
| |
Collapse
|
33
|
Takashima M, Nakamura K, Kiyohara T, Wakisaka Y, Hidaka M, Takaki H, Yamanaka K, Shibahara T, Wakisaka M, Ago T, Kitazono T. Low-dose sodium-glucose cotransporter 2 inhibitor ameliorates ischemic brain injury in mice through pericyte protection without glucose-lowering effects. Commun Biol 2022; 5:653. [PMID: 35780235 PMCID: PMC9250510 DOI: 10.1038/s42003-022-03605-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 06/20/2022] [Indexed: 12/11/2022] Open
Abstract
Antidiabetic sodium-glucose cotransporter 2 (SGLT2) inhibitors have attracted attention for their cardiorenal-protective properties beyond their glucose-lowering effect. However, their benefits in ischemic stroke remain controversial. Here we show the effects of luseogliflozin, a selective SGLT2 inhibitor, in acute ischemic stroke, using a permanent middle cerebral artery occlusion (pMCAO) model in non-diabetic mice. Pretreatment with low-dose luseogliflozin, which does not affect blood glucose levels, significantly attenuated infarct volume, blood-brain barrier disruption, and motor dysfunction after pMCAO. SGLT2 was expressed predominantly in brain pericytes and was upregulated in peri- and intra-infarct areas. Notably, luseogliflozin pretreatment reduced pericyte loss in ischemic areas. In cultured pericytes, luseogliflozin activated AMP-activated protein kinase α and increased mitochondrial transcription factor A expression and number of mitochondria, conferring resistance to oxygen-glucose deprivation. Collectively, pre-stroke inhibition of SGLT2 induces ischemic tolerance in brain pericytes independent of the glucose-lowering effect, contributing to the attenuation of ischemic brain injury. Pre-treatment of non-diabetic mice with the SGLT2 inhibitor, luseogliflozin, reduces brain damage and neurological dysfunction following middle cerebral artery occlusion by acquiring ischemic tolerance in pericytes.
Collapse
Affiliation(s)
- Masamitsu Takashima
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Kuniyuki Nakamura
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.
| | - Takuya Kiyohara
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Yoshinobu Wakisaka
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Masaoki Hidaka
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Hayato Takaki
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Kei Yamanaka
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Tomoya Shibahara
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Masanori Wakisaka
- Wakisaka Internal Medicine Clinic, 1-24-19 Fujisaki, Sawara-ku, Fukuoka, 814-0013, Japan
| | - Tetsuro Ago
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Takanari Kitazono
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| |
Collapse
|
34
|
Eyileten C, Wicik Z, Keshwani D, Aziz F, Aberer F, Pferschy PN, Tripolt NJ, Sourij C, Prietl B, Prüller F, von Lewinski D, De Rosa S, Siller-Matula JM, Postula M, Sourij H. Alteration of circulating platelet-related and diabetes-related microRNAs in individuals with type 2 diabetes mellitus: a stepwise hypoglycaemic clamp study. Cardiovasc Diabetol 2022; 21:79. [PMID: 35596173 PMCID: PMC9123651 DOI: 10.1186/s12933-022-01517-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 04/22/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND In patients with type 2 diabetes mellitus (T2DM) an association between severe hypoglycaemic episodes and the risk of cardiovascular (CV) morbidity and mortality has been previously established. METHODS We aimed to investigate the influence of hypoglycaemia on several diabetes-related and platelet-related miRNAs selected based on bioinformatic analysis and literature search, including hsa-miR-16, hsa-miR-34a, hsa-miR-129-2, hsa-miR-15a, hsa-miR-15b, hsa-miR-106a, miR-223, miR-126. Selected miRNAs were validated by qRT-PCR in 14 patients with T2DM on metformin monotherapy, without established CV disease and antiplatelet therapy during a stepwise hypoglycaemic clamp experiment and a follow-up 7 days after the clamp event. In order to identify which pathways and phenotypes are associated with validated miRNAs we performed target prediction on genes expressed with high confidence in platelets. RESULTS Circulating levels of miR-106a-5p, miR-15b, miR-15a, miR-16-5p, miR-223 and miR-126 were increased after euglycaemic clamp followed by hypoglycaemic clamp, each with its distinctive time trend. On the contrary, miR-129-2-3p, miR-92a-3p and miR-34a-3p remained unchanged. MiR-16-5p was negatively correlated with interleukin (IL)-6, intercellular adhesion molecule (ICAM) and vascular cell adhesion molecule (VCAM) (p = 0.002, p < 0.001, p = 0.016, respectively), whereas miR-126 was positively correlated with VCAM (p < 0.001). There were negative correlations between miR-16-5p, miR-126 and coagulation factors, including factor VIII and von Willebrand factor (vWF). Among all studied miRNAs, miR-126, miR-129-2-3p and miR-15b showed correlation with platelet function. Bioinformatic analysis of platelet-related targets of analyzed miRNAs showed strong enrichment of IL-2 signaling. We also observed significant enrichment of pathways and diseases related to cancer, CV diseases, hyperglycemia, and neurological diseases. CONCLUSIONS Hypoglycaemia can significantly influence the expression of platelet-enriched miRNAs, with a time trend paralleling the time course of platelet activation. This suggests miRNAs could be exploited as biomarkers for platelet activation in response to hypoglycaemia, as they are probably released by platelets upon activation by hypoglycaemic episodes. Should they hold their promise in clinical endpoint studies, platelet-derived miRNAs might become helpful markers of CV risk in subjects with diabetes. Trial registration The study was registered at clinical trials.gov; Impact of Hypoglycaemia in Patients With DIAbetes Mellitus Type 2 on PLATElet Activation (Diaplate), trial number: NCT03460899.
Collapse
Affiliation(s)
- Ceren Eyileten
- Department of Experimental and Clinical Pharmacology, Center for Preclinical Research and Technology CEPT, Medical University of Warsaw, Banacha 1B str., 02-097, Warsaw, Poland.,Genomics Core Facility, Center of New Technologies (CeNT), University of Warsaw, Warsaw, Poland
| | - Zofia Wicik
- Department of Experimental and Clinical Pharmacology, Center for Preclinical Research and Technology CEPT, Medical University of Warsaw, Banacha 1B str., 02-097, Warsaw, Poland
| | - Disha Keshwani
- Department of Experimental and Clinical Pharmacology, Center for Preclinical Research and Technology CEPT, Medical University of Warsaw, Banacha 1B str., 02-097, Warsaw, Poland
| | - Faisal Aziz
- Division of Endocrinology and Diabetology, Interdisciplinary Metabolic Medicine Trials Unit, Medical University of Graz, Graz, Austria.,Center for Biomarker Research in Medicine, CBmed, Graz, Austria
| | - Felix Aberer
- Division of Endocrinology and Diabetology, Interdisciplinary Metabolic Medicine Trials Unit, Medical University of Graz, Graz, Austria
| | - Peter N Pferschy
- Division of Endocrinology and Diabetology, Interdisciplinary Metabolic Medicine Trials Unit, Medical University of Graz, Graz, Austria.,Center for Biomarker Research in Medicine, CBmed, Graz, Austria
| | - Norbert J Tripolt
- Division of Endocrinology and Diabetology, Interdisciplinary Metabolic Medicine Trials Unit, Medical University of Graz, Graz, Austria
| | - Caren Sourij
- Division of Cardiology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Barbara Prietl
- Center for Biomarker Research in Medicine, CBmed, Graz, Austria
| | - Florian Prüller
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - Dirk von Lewinski
- Division of Cardiology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Salvatore De Rosa
- Division of Cardiology, Department of Medical and Surgical Sciences, "Magna Graecia" University, Catanzaro, Italy
| | - Jolanta M Siller-Matula
- Department of Experimental and Clinical Pharmacology, Center for Preclinical Research and Technology CEPT, Medical University of Warsaw, Banacha 1B str., 02-097, Warsaw, Poland.,Department of Cardiology, Medical University of Vienna, Vienna, Austria
| | - Marek Postula
- Department of Experimental and Clinical Pharmacology, Center for Preclinical Research and Technology CEPT, Medical University of Warsaw, Banacha 1B str., 02-097, Warsaw, Poland.
| | - Harald Sourij
- Division of Endocrinology and Diabetology, Interdisciplinary Metabolic Medicine Trials Unit, Medical University of Graz, Graz, Austria
| |
Collapse
|
35
|
Wang M, Zhao M, Yu J, Xu Y, Zhang J, Liu J, Zheng Z, Ye J, Wang Z, Ye D, Feng Y, Xu S, Pan W, Wei C, Wan J. MCC950, a Selective NLRP3 Inhibitor, Attenuates Adverse Cardiac Remodeling Following Heart Failure Through Improving the Cardiometabolic Dysfunction in Obese Mice. Front Cardiovasc Med 2022; 9:727474. [PMID: 35647084 PMCID: PMC9133382 DOI: 10.3389/fcvm.2022.727474] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 03/28/2022] [Indexed: 11/13/2022] Open
Abstract
Obesity is often accompanied by hypertension. Although a large number of studies have confirmed that NLRP3 inhibitors can improve cardiac remodeling in mice with a normal diet, it is still unclear whether NLRP3 inhibitors can improve heart failure (HF) induced by pressure overload in obese mice. The purpose of this study was to explore the role of MCC950, a selective NLRP3 inhibitor, on HF in obese mice and its metabolic mechanism. Obese mice induced with a 10-week high-fat diet (HFD) were used in this study. After 4 weeks of HFD, transverse aortic constriction (TAC) surgery was performed to induce a HF model. MCC950 (10 mg/kg, once/day) was injected intraperitoneally from 2 weeks after TAC and continued for 4 weeks. After echocardiography examination, we harvested left ventricle tissues and performed molecular experiments. The results suggest that in obese mice, MCC950 can significantly improve cardiac hypertrophy and fibrosis caused by pressure overload. MCC950 ameliorated cardiac inflammation after TAC surgery and promoted M2 macrophage infiltration in the cardiac tissue. MCC950 not only restored fatty acid uptake and utilization by regulating the expression of CD36 and CPT1β but also reduced glucose uptake and oxidation via regulating the expression of GLUT4 and p-PDH. In addition, MCC950 affected the phosphorylation of AKT and AMPK in obese mice with HF. In summary, MCC950 can alleviate HF induced by pressure overload in obese mice via improving cardiac metabolism, providing a basis for the clinical application of NLRP3 inhibitors in obese patients with HF.
Collapse
Affiliation(s)
- Menglong Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Mengmeng Zhao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Junping Yu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Yao Xu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Jishou Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Jianfang Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Zihui Zheng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Jing Ye
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Zhen Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Di Ye
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Yongqi Feng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Shuwan Xu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Wei Pan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Cheng Wei
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Jun Wan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| |
Collapse
|
36
|
Omar SM, Musa IR, Abdelbagi O, Sharif ME, Adam I. The association between glycosylated haemoglobin and newly diagnosed hypertension in a non-diabetic Sudanese population: a cross-sectional study. BMC Cardiovasc Disord 2022; 22:208. [PMID: 35538423 PMCID: PMC9088041 DOI: 10.1186/s12872-022-02649-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 04/25/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Glycosylated haemoglobin (HbA1c) is considered reliable for diagnosing and monitoring diabetes mellitus (DM). It also indicates cardiovascular complications related to DM. However, only a few studies have been conducted on this topic. METHODS We conducted a cross-sectional study to investigate the association between newly diagnosed hypertension and HbA1c among non-diabetic Sudanese adults. The sociodemographic characteristics of the participants in the sample were gathered using a questionnaire, and HbA1c was measured using an Ichroma machine. RESULTS Three hundred and eighty-four healthy participants were enrolled in this study. The median (interquartile range [IQR]) age was 56.0 (14.0) years, and 72.1% of the participants were female. The median (IQR) body mass index (BMI) was 31.2 (8.7) kg/m2. One hundred and fifteen (29.9%) participants presented newly diagnosed hypertension. The results of the multivariate analysis showed that age (adjusted odd ratio [AOR] = 1.03; 95% confidence interval [CI] = 1.01‒1.05); BMI (AOR = 1.09; 95% CI = 1.05‒1.14); HbA1c levels (AOR = 2.18; 95% CI = 1.29‒3.67) was positively associated with newly diagnosed hypertension. For an HbA1c level of 5.0% or more, the sensitivity and specificity of newly diagnosed hypertension were 91.3% and 28.2%, respectively (area under the curve = 0.61; 95% CI = 0.55-0.67; P ˂ 0.001). Participants who presented HbA1c levels of 5.0% or more were found to be at higher risk for newly diagnosed hypertension (AOR = 2.53; 95% CI = 1.14‒5.61). CONCLUSION The results of this study indicated a high prevalence of newly diagnosed hypertension, and HbA1c levels were positively associated with newly diagnosed hypertension.
Collapse
Affiliation(s)
- Saeed M Omar
- Faculty of Medicine, Gadarif University, Gadarif, Sudan.
| | - Imad R Musa
- Department of Medicine, Royal Commission Hospital in Al Jubail Industrial City, Al Jubail, Kingdom of Saudi Arabia
| | - Omer Abdelbagi
- Department of Pathology, AL Qunfudhah Faculty of Medicine, Umm Al-Qura University, Al Qunfudhah, Saudi Arabia
| | - Manal E Sharif
- College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Ishag Adam
- Department of Obstetrics and Gynecology, Unaizah College of Medicine and Medical Sciences, Qassim University, Unaizah, Saudi Arabia
| |
Collapse
|
37
|
Rafaqat S, Rafaqat S, Rafaqat S. Pathophysiological aspects of insulin resistance in Atrial Fibrillation: novel therapeutic approaches. INTERNATIONAL JOURNAL OF ARRHYTHMIA 2022. [DOI: 10.1186/s42444-021-00057-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Abstract
Background
Insulin resistance is associated with metabolic disorders including diabetes, obesity, hypertension, and inflammation which are the risk factors for Atrial Fibrillation. Many studies have reported that type 2 diabetes and AF are related and also their prevalence is increasing globally. Moreover, insulin resistance begins the type 2 diabetes.
Main body
This review explains the pathophysiological aspects of insulin resistance in AF patients and discusses the drugs that are used to manage insulin resistance including Biguanides (metformin), thiazolidinediones (TZDs) [Pioglitazone, rosiglitazone], Sodium-glucose cotransporter 2 (SGLT2) inhibitors, Concentrated Insulin Products, Dipeptidyl peptidase-4 (DPP-4) Inhibitors, Glucagon-like peptide 1 (GLP-1) receptor Agonists, Pramlintide, Sulfonylureas, Meglitinides, α-Glucosidase Inhibitors, Colesevelam, Bromocriptine. This review will highlight a few major drugs that played a significant role in AF patients. For this purpose, many databases were used for reviewing the literature and keywords are used such as Insulin Resistance, Pathophysiology, Atrial Fibrillation, and Drugs.
Conclusion
This review article concludes that insulin resistance is related to AF. It also provides an outlook on the recent pathophysiological aspects of insulin resistance in AF; however, more studies are needed to clarify the management of insulin resistance in AF patients to prevent the development of type 2 diabetes.
Collapse
|
38
|
Shyamala N, Kongettira CL, Puranam K, Kupsal K, Kummari R, Padala C, Hanumanth SR. In silico identification of single nucleotide variations at CpG sites regulating CpG island existence and size. Sci Rep 2022; 12:3574. [PMID: 35246549 PMCID: PMC8897451 DOI: 10.1038/s41598-022-05198-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 01/03/2022] [Indexed: 12/20/2022] Open
Abstract
Genetic and epigenetic modifications of genes involved in the key regulatory pathways play a significant role in the pathophysiology and progression of multifactorial diseases. The present study is an attempt to identify single nucleotide variations (SNVs) at CpG sites of promoters of ACAT1, APOB, APOE, CYBA, FAS, FLT1, KSR2, LDLR, MMP9, PCSK9, PHOX2A, REST, SH2B3, SORT1 and TIMP1 genes influencing CpG island (CGI) existence and size associated with the pathophysiology of Diabetes mellitus, Coronary artery disease and Cancers. Promoter sequences located between -2000 to + 2000 bp were retrieved from the EPDnew database and predicted the CpG island using MethPrimer. Further, SNVs at CpG sites were accessed from NCBI, Ensembl while transcription factor (TF) binding sites were accessed using AliBaba2.1. CGI existence and size were determined for each SNV at CpG site with respect to wild type and variant allele by MethPrimer. A total of 200 SNVs at CpG sites were analyzed from the promoters of ACAT1, APOB, APOE, CYBA, FAS, FLT1, KSR2, LDLR, MMP9, PCSK9, PHOX2A, REST, SH2B3, SORT1 and TIMP1 genes. Of these, only 17 (8.5%) SNVs were found to influence the loss of CGI while 70 (35%) SNVs were found to reduce the size of CGI. It has also been found that 59% (10) of CGI abolishing SNVs are showing differences in binding of TFs. The findings of the study suggest that the candidate SNVs at CpG sites regulating CGI existence and size might influence the DNA methylation status and expression of genes involved in molecular pathways associated with several diseases. The insights of the present study may pave the way for new experimental studies to undertake challenges in DNA methylation, gene expression and protein assays.
Collapse
Affiliation(s)
- Nivas Shyamala
- Department of Genetics and Biotechnology, University College of Science, Osmania University, Hyderabad, 500007, Telangana State, India
| | - Chaitra Lava Kongettira
- Department of Genetics and Biotechnology, University College of Science, Osmania University, Hyderabad, 500007, Telangana State, India
| | - Kaushik Puranam
- Department of Genetics and Biotechnology, University College of Science, Osmania University, Hyderabad, 500007, Telangana State, India
| | - Keerthi Kupsal
- Department of Genetics and Biotechnology, University College of Science, Osmania University, Hyderabad, 500007, Telangana State, India
| | - Ramanjaneyulu Kummari
- Department of Genetics and Biotechnology, University College of Science, Osmania University, Hyderabad, 500007, Telangana State, India
| | - Chiranjeevi Padala
- Department of Genetics and Biotechnology, University College of Science, Osmania University, Hyderabad, 500007, Telangana State, India
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, Telangana State, India
| | - Surekha Rani Hanumanth
- Department of Genetics and Biotechnology, University College of Science, Osmania University, Hyderabad, 500007, Telangana State, India.
| |
Collapse
|
39
|
Putative effect of melatonin on cardiomyocyte senescence in mice with type 1 diabetes mellitus. J Diabetes Metab Disord 2022; 21:353-359. [PMID: 35673474 PMCID: PMC9167392 DOI: 10.1007/s40200-022-00982-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 01/17/2022] [Indexed: 02/02/2023]
Abstract
Background To date, many investigators have tried to clarify the molecular mechanism of cardiovascular injuries after T1D. In present study, we evaluated the possible effects of melatonin on the levels of aging-related factors in the heart tissue of streptozotocin-induced diabetic mice. Methods 40 male mice were enrolled in this study and randomly allocated into 4 groups (n = 10) as follows: Control group (C), Control group + melatonin (CM), Diabetic group (D), Diabetic + melatonin (DM) group. Single Streptozotocin (50 mg/kbW) was applied for the induction of T1D. 3 mg/kg melatonin was injected intraperitoneally twice a week for consequent four weeks. After the completion of this period, the animals were sacrificed and their heart tissue was obtained for histological examination (IHC analysis of vWF and α-SMA cells), aging and inflammation-related gene analysis. Result Hematoxylin and Eosin staining indicated cardiomyocyte toxicity in T1D mice. IHC analysis of vascular tissue showed the detachment of vWF and α-SMA cells and disintegration into the vascular lumen. Additionally, real-time PCR assay showed the up-regulation of β-galactosidase and suppression of SOX2, Klotho, and Telomerase genes in T1D mice compared to the control group (p < 0.05). We noted that melatonin administration can revert these condition and closed near-to-control levels. Along with these conditions, the levels of IL-1β were also decreased after melatonin treatment. Conclusions In general, one can hypothesize that modulation of different effectors associated with aging is beneficial to alleviate cardiac injuries under hypergylcemic condition. Melatonin can exert its therapeutic effects, in part, through anti-aging capacity.
Collapse
|
40
|
Beneficial effects of MgSO 4 on TFAM, UPC3 and FNDC5 mRNA expressions in skeletal muscle of type 2 diabetic rats: a possible mechanism to improve insulin resistance. Mol Biol Rep 2022; 49:2795-2803. [PMID: 35064400 DOI: 10.1007/s11033-021-07091-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 12/16/2021] [Indexed: 12/29/2022]
Abstract
BACKGROUND Hypomagnesemia has been associated with development of type 2 diabetes mellitus (T2DM) and its complications. Irisin has beneficial effects on glucose uptake and improves hepatic glucose and lipid metabolism. In this study, we aimed to evaluate the effects of long-term treatment of MgSO4 and insulin on insulin resistance, dyslipidemia, serum and hepatic irisin levels, skeletal muscle gene expression of fibronectin type III domain-containing protein 5 (FNDC5), mitochondrial transcription factor A (TFAM) and mitochondrial uncoupling protein 3 (UCP3) in T2DM rats. METHODS AND RESULTS Twenty-four rats were divided into four groups: Control group, diabetic control (DC) using a high-fat diet + streptozotocin, insulin-treated diabetic group (DC + Ins), MgSO4-treated diabetic group (DC + Mg). At the end of therapies, serum concentrations of FBG, TG, insulin, Ox-LDL, along with serum and hepatic irisin levels were measured. FNDC5, TFAM, and UCP3 mRNA expressions were measured in the skeletal muscle by Real-time PCR. In comparison with DC group, MgSO4 therapy resulted in decreased FBG, TG, Ox-LDL, improved serum insulin and irisin levels, and increased mRNA expressions of FNDC5, UCP3 and TFAM. Insulin therapy significantly decreased FBG, Ox-LDL, FNDC5 and serum irisin levels compared with the control group. While, insulin therapy markedly increased TFAM and UCP3 compared with the DC group. CONCLUSIONS In conclusion, MgSO4 can improve insulin resistance and hyperlipidemia partly through decreasing Ox-LDL, increasing serum irisin levels as well as increasing FNDC5, TFAM, and UCP3 mRNA expressions in T2DM rats. These findings can be considered in the management of diabetes treatment.
Collapse
|
41
|
Yu LM, Dong X, Zhao JK, Xu YL, Xu DY, Xue XD, Zhou ZJ, Huang YT, Zhao QS, Luo LY, Wang ZS, Wang HS. Activation of PKG-CREB-KLF15 by melatonin attenuates Angiotensin II-induced vulnerability to atrial fibrillation via enhancing branched-chain amino acids catabolism. Free Radic Biol Med 2022; 178:202-214. [PMID: 34864165 DOI: 10.1016/j.freeradbiomed.2021.11.043] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/27/2021] [Accepted: 11/30/2021] [Indexed: 12/20/2022]
Abstract
Mitochondrial reactive oxygen species (ROS) damage and atrial remodeling serve as the crucial substrates for the genesis of atrial fibrillation (AF). Branched-chain amino acids (BCAAs) catabolic defect plays critical roles in multiple cardiovascular diseases. However, the alteration of atrial BCAA catabolism and its role in AF remain largely unknown. This study aimed to explore the role of BCAA catabolism in the pathogenesis of AF and to further evaluate the therapeutic effect of melatonin with a focus on protein kinase G (PKG)-cAMP response element binding protein (CREB)-Krüppel-like factor 15 (KLF15) signaling. We found that angiotensin II-treated atria exhibited significantly elevated BCAA level, reduced BCAA catabolic enzyme activity, increased AF vulnerability, aggravated atrial electrical and structural remodeling, and enhanced mitochondrial ROS damage. These deleterious effects were attenuated by melatonin co-administration while exacerbated by BCAA oral supplementation. Melatonin treatment ameliorated BCAA-induced atrial damage and reversed BCAA-induced down-regulation of atrial PKGIα expression, CREB phosphorylation as well as KLF15 expression. However, inhibition of PKG partly abolished melatonin-induced beneficial actions. In summary, these data demonstrated that atrial BCAA catabolic defect contributed to the pathogenesis of AF by aggravating tissue fibrosis and mitochondrial ROS damage. Melatonin treatment ameliorated Ang II-induced atrial structural as well as electrical remodeling by activating PKG-CREB-KLF15. The present study reveals additional mechanisms contributing to AF genesis and highlights the opportunity of a novel therapy for AF by targeting BCAA catabolism. Melatonin may serve as a potential therapeutic agent for AF intervention.
Collapse
Affiliation(s)
- Li-Ming Yu
- Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning, 110016, PR China
| | - Xue Dong
- Outpatient Department of Liaoning Military Region, General Hospital of Northern Theater Command, 49 Beiling Road, Shenyang, Liaoning, 110032, PR China
| | - Ji-Kai Zhao
- Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning, 110016, PR China
| | - Yin-Li Xu
- Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning, 110016, PR China
| | - Deng-Yue Xu
- Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning, 110016, PR China
| | - Xiao-Dong Xue
- Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning, 110016, PR China
| | - Zi-Jun Zhou
- Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning, 110016, PR China
| | - Yu-Ting Huang
- Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning, 110016, PR China
| | - Qiu-Sheng Zhao
- Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning, 110016, PR China
| | - Lin-Yu Luo
- Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning, 110016, PR China
| | - Zhi-Shang Wang
- Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning, 110016, PR China
| | - Hui-Shan Wang
- Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning, 110016, PR China.
| |
Collapse
|
42
|
Jiang M, Xie X, Cao F, Wang Y. Mitochondrial Metabolism in Myocardial Remodeling and Mechanical Unloading: Implications for Ischemic Heart Disease. Front Cardiovasc Med 2021; 8:789267. [PMID: 34957264 PMCID: PMC8695728 DOI: 10.3389/fcvm.2021.789267] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 11/04/2021] [Indexed: 11/16/2022] Open
Abstract
Ischemic heart disease refers to myocardial degeneration, necrosis, and fibrosis caused by coronary artery disease. It can lead to severe left ventricular dysfunction (LVEF ≤ 35–40%) and is a major cause of heart failure (HF). In each contraction, myocardium is subjected to a variety of mechanical forces, such as stretch, afterload, and shear stress, and these mechanical stresses are clinically associated with myocardial remodeling and, eventually, cardiac outcomes. Mitochondria produce 90% of ATP in the heart and participate in metabolic pathways that regulate the balance of glucose and fatty acid oxidative phosphorylation. However, altered energetics and metabolic reprogramming are proved to aggravate HF development and progression by disturbing substrate utilization. This review briefly summarizes the current insights into the adaptations of cardiomyocytes to mechanical stimuli and underlying mechanisms in ischemic heart disease, with focusing on mitochondrial metabolism. We also discuss how mechanical circulatory support (MCS) alters myocardial energy metabolism and affects the detrimental metabolic adaptations of the dysfunctional myocardium.
Collapse
Affiliation(s)
- Min Jiang
- Department of Cardiology, National Clinical Research Center for Geriatric Disease, The Second Medical Center, Chinese People's Liberation Army General Hospital, Beijing, China.,College of Pulmonary and Critical Care Medicine, Chinese People's Liberation Army General Hospital, Beijing, China.,Medical School of Chinese People's Liberation Army, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Xiaoye Xie
- Department of Cardiology, National Clinical Research Center for Geriatric Disease, The Second Medical Center, Chinese People's Liberation Army General Hospital, Beijing, China.,Medical School of Chinese People's Liberation Army, Chinese People's Liberation Army General Hospital, Beijing, China.,Department of Cadre Ward, The 960 Hospital of Chinese People's Liberation Army, Jinan, China
| | - Feng Cao
- Department of Cardiology, National Clinical Research Center for Geriatric Disease, The Second Medical Center, Chinese People's Liberation Army General Hospital, Beijing, China.,Medical School of Chinese People's Liberation Army, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Yabin Wang
- Department of Cardiology, National Clinical Research Center for Geriatric Disease, The Second Medical Center, Chinese People's Liberation Army General Hospital, Beijing, China.,Medical School of Chinese People's Liberation Army, Chinese People's Liberation Army General Hospital, Beijing, China
| |
Collapse
|
43
|
Abstract
Cardiovascular disease (CVD) is the leading cause of morbidity and mortality in the general population. Energy metabolism disturbance is one of the early abnormalities in CVDs, such as coronary heart disease, diabetic cardiomyopathy, and heart failure. To explore the role of myocardial energy homeostasis disturbance in CVDs, it is important to understand myocardial metabolism in the normal heart and their function in the complex pathophysiology of CVDs. In this article, we summarized lipid metabolism/lipotoxicity and glucose metabolism/insulin resistance in the heart, focused on the metabolic regulation during neonatal and ageing heart, proposed potential metabolic mechanisms for cardiac regeneration and degeneration. We provided an overview of emerging molecular network among cardiac proliferation, regeneration, and metabolic disturbance. These novel targets promise a new era for the treatment of CVDs.
Collapse
Affiliation(s)
- Lu-Yun WANG
- Division of Cardiology, Tongji Hospital, Tongji Medical College and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiologic Disorders, Huazhong University of Science and Technology, Wuhan, China
| | - Chen CHEN
- Division of Cardiology, Tongji Hospital, Tongji Medical College and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiologic Disorders, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
44
|
Zhao X, Ming J, Qu S, Li HJ, Wu J, Ji L, Chen Y. Cost-Effectiveness of Flash Glucose Monitoring for the Management of Patients with Type 1 and Patients with Type 2 Diabetes in China. Diabetes Ther 2021; 12:3079-3092. [PMID: 34689295 PMCID: PMC8586326 DOI: 10.1007/s13300-021-01166-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 09/27/2021] [Indexed: 01/16/2023] Open
Abstract
INTRODUCTION To compare the cost-effectiveness of flash glucose monitoring versus self-monitoring of blood glucose/point of care testing (SMBG/POCT) in both patients with type 1 and patients with type 2 diabetes (T1D/T2D) receiving insulin therapy. METHODS The IQVIA CORE Diabetes Model (version 9.5) was used to project the lifetime costs and health outcomes of flash glucose monitoring and SMBG/POCT from a Chinese societal perspective. We considered both hospital and individual version flash glucose monitoring to reflect the clinical practice in China. The clinical inputs leveraged the outcomes from both clinical trials and real-world studies. Cohort characteristics, intervention costs, treatment-related disutility and mortality were extracted from the literature. We also conducted scenario analyses and probabilistic sensitivity analyses to test the robustness of results. RESULTS Compared with SMBG/POCT using efficacy results from clinical trial, flash glucose monitoring brought the incremental costs of Chinese yuan (CNY) 58,021 and CNY 90,997 and additional quality-adjusted life years (QALYs) of 1.22 and 0.65 for patients with T1D and patients with T2D, respectively. According to the "WHO-CHOICE threshold" of three times the gross domestic product per capita in China (CNY 217,341 in 2020) as cost-effectiveness threshold, flash glucose monitoring was cost-effective for both patients with T1D and patients with T2D with incremental cost-effectiveness ratios (ICER) of CNY 47,636 and CNY 140,297 per QALY gained, respectively. According to the real-world effectiveness data, flash glucose monitoring was dominant for patients with T1D (lower costs and better effectiveness) and cost-effective for patients with T2D with an ICER of CNY 124,169 per QALY gained compared with SMBG/POCT. Scenario analyses and probabilistic sensitivity analyses confirmed the robustness of the results. CONCLUSION Flash glucose monitoring is likely to be considered as a cost-effective strategy compared to SMBG/POCT for Chinese patients with T1D and patients with T2D receiving insulin therapy.
Collapse
Affiliation(s)
- Xinran Zhao
- Real World Solutions, IQVIA, Shanghai, China
| | - Jian Ming
- Real World Solutions, IQVIA, Shanghai, China
- National Health Commission Key Laboratory of Health Technology Assessment, School of Public Health, Fudan University, Shanghai, China
| | - Shuli Qu
- Real World Solutions, IQVIA, Shanghai, China
| | | | - Jing Wu
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Linong Ji
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Beijing, China.
| | - Yingyao Chen
- National Health Commission Key Laboratory of Health Technology Assessment, School of Public Health, Fudan University, Shanghai, China.
| |
Collapse
|
45
|
Karwi QG, Sun Q, Lopaschuk GD. The Contribution of Cardiac Fatty Acid Oxidation to Diabetic Cardiomyopathy Severity. Cells 2021; 10:cells10113259. [PMID: 34831481 PMCID: PMC8621814 DOI: 10.3390/cells10113259] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/15/2021] [Accepted: 11/17/2021] [Indexed: 12/17/2022] Open
Abstract
Diabetes is a major risk factor for the development of cardiovascular disease via contributing and/or triggering significant cellular signaling and metabolic and structural alterations at the level of the heart and the whole body. The main cause of mortality and morbidity in diabetic patients is cardiovascular disease including diabetic cardiomyopathy. Therefore, understanding how diabetes increases the incidence of diabetic cardiomyopathy and how it mediates the major perturbations in cell signaling and energy metabolism should help in the development of therapeutics to prevent these perturbations. One of the significant metabolic alterations in diabetes is a marked increase in cardiac fatty acid oxidation rates and the domination of fatty acids as the major energy source in the heart. This increased reliance of the heart on fatty acids in the diabetic has a negative impact on cardiac function and structure through a number of mechanisms. It also has a detrimental effect on cardiac efficiency and worsens the energy status in diabetes, mainly through inhibiting cardiac glucose oxidation. Furthermore, accelerated cardiac fatty acid oxidation rates in diabetes also make the heart more vulnerable to ischemic injury. In this review, we discuss how cardiac energy metabolism is altered in diabetic cardiomyopathy and the impact of cardiac insulin resistance on the contribution of glucose and fatty acid to overall cardiac ATP production and cardiac efficiency. Furthermore, how diabetes influences the susceptibility of the myocardium to ischemia/reperfusion injury and the role of the changes in glucose and fatty acid oxidation in mediating these effects are also discussed.
Collapse
Affiliation(s)
- Qutuba G. Karwi
- Cardiovascular Research Centre, Department of Pediatrics, University of Alberta, Edmonton, AB T6G 2S2, Canada; (Q.G.K.); (Q.S.)
| | - Qiuyu Sun
- Cardiovascular Research Centre, Department of Pediatrics, University of Alberta, Edmonton, AB T6G 2S2, Canada; (Q.G.K.); (Q.S.)
| | - Gary D. Lopaschuk
- 423 Heritage Medical Research Centre, University of Alberta, Edmonton, AB T6G 2S2, Canada
- Correspondence: ; Tel.: +1-780-492-2170; Fax: +1-780-492-9753
| |
Collapse
|
46
|
Uddin GM, Karwi QG, Pherwani S, Gopal K, Wagg CS, Biswas D, Atnasious M, Wu Y, Wu G, Zhang L, Ho KL, Pulinilkunnil T, Ussher JR, Lopaschuk GD. Deletion of BCATm increases insulin-stimulated glucose oxidation in the heart. Metabolism 2021; 124:154871. [PMID: 34478752 DOI: 10.1016/j.metabol.2021.154871] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 08/21/2021] [Accepted: 08/27/2021] [Indexed: 02/01/2023]
Abstract
BACKGROUNDS Branched chain amino acid (BCAA) oxidation is impaired in cardiac insulin resistance, leading to the accumulation of BCAAs and the first products of BCAA oxidation, the branched chain ketoacids. However, it is not clear whether it is the BCAAs, BCKAs or both that are mediating cardiac insulin resistance. To determine this, we produced mice with a cardiac-specific deletion of BCAA aminotransferase (BCATm-/-), the first enzyme in the BCAA oxidation pathway that is responsible for converting BCAAs to BCKAs. METHODS Eight-week-old BCATm cardiac specific knockout (BCATm-/-) male mice and their α-MHC (myosin heavy chain) - Cre expressing wild type littermates (WT-Cre+/+) received tamoxifen (50 mg/kg i.p. 6 times over 8 days). At 16-weeks of age, cardiac energy metabolism was assessed in isolated working hearts. RESULTS BCATm-/- mice have decreased cardiac BCAA oxidation rates, increased cardiac BCAAs and a reduction in cardiac BCKAs. Hearts from BCATm-/- mice showed an increase in insulin stimulation of glucose oxidation and an increase in p-AKT. To determine the impact of reversing these events, we perfused isolated working mice hearts with high levels of BCKAs, which completely abolished insulin-stimulated glucose oxidation rates, an effect associated with decreased p-AKT and inactivation of pyruvate dehydrogenase (PDH), the rate-limiting enzyme in glucose oxidation. CONCLUSION This implicates the BCKAs, and not BCAAs, as the actual mediators of cardiac insulin resistance and suggests that lowering cardiac BCKAs can be used as a therapeutic strategy to improve insulin sensitivity in the heart.
Collapse
Affiliation(s)
- Golam M Uddin
- Cardiovascular Research Centre, University of Alberta, Edmonton, Canada
| | - Qutuba G Karwi
- Cardiovascular Research Centre, University of Alberta, Edmonton, Canada; Department of Pharmacology, College of Medicine, University of Diyala, Diyala, Iraq
| | - Simran Pherwani
- Cardiovascular Research Centre, University of Alberta, Edmonton, Canada
| | - Keshav Gopal
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Canada; Alberta Diabetes Institute, University of Alberta, Edmonton, Canada; Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Canada
| | - Cory S Wagg
- Cardiovascular Research Centre, University of Alberta, Edmonton, Canada
| | - Dipsikha Biswas
- Department of Biochemistry Molecular Biology, Dalhousie University, Canada
| | - Mariam Atnasious
- Cardiovascular Research Centre, University of Alberta, Edmonton, Canada
| | - Yikuan Wu
- Cardiovascular Research Centre, University of Alberta, Edmonton, Canada
| | - Guoqing Wu
- Cardiovascular Research Centre, University of Alberta, Edmonton, Canada; State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China
| | - Liyan Zhang
- Cardiovascular Research Centre, University of Alberta, Edmonton, Canada
| | - Kim L Ho
- Cardiovascular Research Centre, University of Alberta, Edmonton, Canada
| | | | - John R Ussher
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Canada; Alberta Diabetes Institute, University of Alberta, Edmonton, Canada; Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Canada
| | - Gary D Lopaschuk
- Cardiovascular Research Centre, University of Alberta, Edmonton, Canada; Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Canada; Alberta Diabetes Institute, University of Alberta, Edmonton, Canada.
| |
Collapse
|
47
|
Kusunose K, Imai T, Tanaka A, Dohi K, Shiina K, Yamada T, Kida K, Eguchi K, Teragawa H, Takeishi Y, Ohte N, Yamada H, Sata M, Node K. Effects of canagliflozin on NT-proBNP stratified by left ventricular diastolic function in patients with type 2 diabetes and chronic heart failure: a sub analysis of the CANDLE trial. Cardiovasc Diabetol 2021; 20:186. [PMID: 34521417 PMCID: PMC8442416 DOI: 10.1186/s12933-021-01380-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 09/05/2021] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Identification of the effective subtypes of treatment for heart failure (HF) is an essential topic for optimizing treatment of the disorder. We hypothesized that the beneficial effect of SGLT2 inhibitors (SGLT2i) on the levels of N-terminal pro-brain natriuretic peptide (NT-proBNP) might depend on baseline diastolic function. To elucidate the effects of SGLT2i in type 2 diabetes mellitus (T2DM) and chronic HF we investigated, as a post-hoc sub-study of the CANDLE trial, the effects of canagliflozin on NT-proBNP levels from baseline to 24 weeks, with the data stratified by left ventricular (LV) diastolic function at baseline. METHODS Patients (n = 233) in the CANDLE trial were assigned randomly to either an add-on canagliflozin (n = 113) or glimepiride treatment groups (n = 120). The primary endpoint was a comparison between the two groups of the changes from baseline to 24 weeks in NT-pro BNP levels, stratified according to baseline ventricular diastolic function. RESULTS The change in the geometric mean of NT-proBNP level from baseline to 24 weeks was 0.98 (95% CI 0.89-1.08) in the canagliflozin group and 1.07 (95% CI 0.97-1.18) in the glimepiride group. The ratio of change with canagliflozin/glimepiride was 0.93 (95% CI 0.82-1.05). Responder analyses were used to investigate the response of an improvement in NT-proBNP levels. Although the subgroup analyses for septal annular velocity (SEP-e') showed no marked heterogeneity in treatment effect, the subgroup with an SEP-e' < 4.7 cm/s indicated there was an association with lower NT-proBNP levels in the canagliflozin group compared with that in the glimepiride group (ratio of change with canagliflozin/glimepiride (0.83, 95% CI 0.66-1.04). CONCLUSIONS In the subgroup with a lower LV diastolic function, canagliflozin showed a trend of reduced NT-pro BNP levels compared to that observed with glimepiride. This study suggests that the beneficial effects of canagliflozin treatment may be different in subgroups classified by the severity of LV diastolic dysfunction.
Collapse
Affiliation(s)
- Kenya Kusunose
- Department of Cardiovascular Medicine, Tokushima University Hospital, 2-50-1 Kuramoto, Tokushima, Japan.
| | - Takumi Imai
- Department of Medical Statistics, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Atsushi Tanaka
- Department of Cardiovascular Medicine, Saga University, Saga, Japan
| | - Kaoru Dohi
- Department of Cardiology and Nephrology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Kazuki Shiina
- Department of Cardiology, Tokyo Medical University, Tokyo, Japan
| | - Takahisa Yamada
- Devision of Cardiology, Osaka General Medical Center, Osaka, Japan
| | - Keisuke Kida
- Department of Pharmacology, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Kazuo Eguchi
- Department of General Internal Medicine, Saitama Red Cross Hospital, Saitama, Japan
| | - Hiroki Teragawa
- Department of Cardiovascular Medicine, JR Hiroshima Hospital, Hiroshima, Japan
| | - Yasuchika Takeishi
- Department of Cardiovascular Medicine, Fukushima Medical University, Fukushima, Japan
| | - Nobuyuki Ohte
- Department of Cardiovascular Medicine, Nagoya City University East Medical Center, Nagoya, Japan
| | - Hirotsugu Yamada
- Department of Community Medicine for Cardiology, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Masataka Sata
- Department of Cardiovascular Medicine, Tokushima University Hospital, 2-50-1 Kuramoto, Tokushima, Japan
| | - Koichi Node
- Department of Cardiovascular Medicine, Saga University, Saga, Japan
| |
Collapse
|
48
|
Wasyluk W, Nowicka-Stążka P, Zwolak A. Heart Metabolism in Sepsis-Induced Cardiomyopathy-Unusual Metabolic Dysfunction of the Heart. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18147598. [PMID: 34300048 PMCID: PMC8303349 DOI: 10.3390/ijerph18147598] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 06/26/2021] [Accepted: 07/02/2021] [Indexed: 12/11/2022]
Abstract
Due to the need for continuous work, the heart uses up to 8% of the total energy expenditure. Due to the relatively low adenosine triphosphate (ATP) storage capacity, the heart's work is dependent on its production. This is possible due to the metabolic flexibility of the heart, which allows it to use numerous substrates as a source of energy. Under normal conditions, a healthy heart obtains approximately 95% of its ATP by oxidative phosphorylation in the mitochondria. The primary source of energy is fatty acid oxidation, the rest of the energy comes from the oxidation of pyruvate. A failed heart is characterised by a disturbance in these proportions, with the contribution of individual components as a source of energy depending on the aetiology and stage of heart failure. A unique form of cardiac dysfunction is sepsis-induced cardiomyopathy, characterised by a significant reduction in energy production and impairment of cardiac oxidation of both fatty acids and glucose. Metabolic disorders appear to contribute to the pathogenesis of cardiac dysfunction and therefore are a promising target for future therapies. However, as many aspects of the metabolism of the failing heart remain unexplained, this issue requires further research.
Collapse
Affiliation(s)
- Weronika Wasyluk
- Chair of Internal Medicine and Department of Internal Medicine in Nursing, Faculty of Health Sciences, Medical University of Lublin, 20-093 Lublin, Poland; (P.N.-S.); (A.Z.)
- Doctoral School, Medical University of Lublin, 20-093 Lublin, Poland
- Correspondence:
| | - Patrycja Nowicka-Stążka
- Chair of Internal Medicine and Department of Internal Medicine in Nursing, Faculty of Health Sciences, Medical University of Lublin, 20-093 Lublin, Poland; (P.N.-S.); (A.Z.)
| | - Agnieszka Zwolak
- Chair of Internal Medicine and Department of Internal Medicine in Nursing, Faculty of Health Sciences, Medical University of Lublin, 20-093 Lublin, Poland; (P.N.-S.); (A.Z.)
| |
Collapse
|
49
|
Abstract
Insulin receptors are highly expressed in the heart and vasculature. Insulin signaling regulates cardiac growth, survival, substrate uptake, utilization, and mitochondrial metabolism. Insulin signaling modulates the cardiac responses to physiological and pathological stressors. Altered insulin signaling in the heart may contribute to the pathophysiology of ventricular remodeling and heart failure progression. Myocardial insulin signaling adapts rapidly to changes in the systemic metabolic milieu. What may initially represent an adaptation to protect the heart from carbotoxicity may contribute to amplifying the risk of heart failure in obesity and diabetes. This review article presents the multiple roles of insulin signaling in cardiac physiology and pathology and discusses the potential therapeutic consequences of modulating myocardial insulin signaling.
Collapse
Affiliation(s)
- E Dale Abel
- Division of Endocrinology, Metabolism and Diabetes and Fraternal Order of Eagles Diabetes Research Center, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| |
Collapse
|
50
|
Mouton AJ, Flynn ER, Moak SP, Aitken NM, Omoto ACM, Li X, da Silva AA, Wang Z, do Carmo JM, Hall JE. Dimethyl fumarate preserves left ventricular infarct integrity following myocardial infarction via modulation of cardiac macrophage and fibroblast oxidative metabolism. J Mol Cell Cardiol 2021; 158:38-48. [PMID: 34023353 DOI: 10.1016/j.yjmcc.2021.05.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 05/12/2021] [Accepted: 05/17/2021] [Indexed: 12/30/2022]
Abstract
Myocardial infarction (MI) is one of the leading causes of mortality and cardiovascular disease worldwide. MI is characterized by a substantial inflammatory response in the infarcted left ventricle (LV), followed by transition of quiescent fibroblasts to active myofibroblasts, which deposit collagen to form the reparative scar. Metabolic shifting between glycolysis and mitochondrial oxidative phosphorylation (OXPHOS) is an important mechanism by which these cell types transition towards reparative phenotypes. Thus, we hypothesized that dimethyl fumarate (DMF), a clinically approved anti-inflammatory agent with metabolic actions, would improve post-MI remodeling via modulation of macrophage and fibroblast metabolism. Adult male C57BL/6J mice were treated with DMF (10 mg/kg) for 3-7 days after MI. DMF attenuated LV infarct and non-infarct wall thinning at 3 and 7 days post-MI, and decreased LV dilation and pulmonary congestion at day 7. DMF improved LV infarct collagen deposition, myofibroblast activation, and angiogenesis at day 7. DMF also decreased pro-inflammatory cytokine expression (Tnf) 3 days after MI, and decreased inflammatory markers in macrophages isolated from the infarcted heart (Hif1a, Il1b). In fibroblasts extracted from the infarcted heart at day 3, RNA-Seq analysis demonstrated that DMF promoted an anti-inflammatory/pro-reparative phenotype. By Seahorse analysis, DMF did not affect glycolysis in either macrophages or fibroblasts at day 3, but enhanced macrophage OXPHOS while impairing fibroblast OXPHOS. Our results indicate that DMF differentially affects macrophage and fibroblast metabolism, and promotes anti-inflammatory/pro-reparative actions. In conclusion, targeting cellular metabolism in the infarcted heart may be a promising therapeutic strategy.
Collapse
Affiliation(s)
- Alan J Mouton
- Department of Physiology and Biophysics, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216-4505, United States of America; Mississippi Center for Obesity Research, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216-4505, United States of America.
| | - Elizabeth R Flynn
- Department of Physiology and Biophysics, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216-4505, United States of America
| | - Sydney P Moak
- Department of Physiology and Biophysics, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216-4505, United States of America
| | - Nikaela M Aitken
- Department of Physiology and Biophysics, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216-4505, United States of America
| | - Ana C M Omoto
- Department of Physiology and Biophysics, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216-4505, United States of America; Mississippi Center for Obesity Research, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216-4505, United States of America
| | - Xuan Li
- Department of Physiology and Biophysics, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216-4505, United States of America; Mississippi Center for Obesity Research, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216-4505, United States of America
| | - Alexandre A da Silva
- Department of Physiology and Biophysics, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216-4505, United States of America; Mississippi Center for Obesity Research, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216-4505, United States of America
| | - Zhen Wang
- Department of Physiology and Biophysics, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216-4505, United States of America; Mississippi Center for Obesity Research, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216-4505, United States of America
| | - Jussara M do Carmo
- Department of Physiology and Biophysics, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216-4505, United States of America; Mississippi Center for Obesity Research, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216-4505, United States of America
| | - John E Hall
- Department of Physiology and Biophysics, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216-4505, United States of America; Mississippi Center for Obesity Research, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216-4505, United States of America
| |
Collapse
|