1
|
Su S, Quan C, Chen Q, Wang R, Du Q, Zhu S, Li M, Yang X, Rong P, Chen J, Bai Y, Zheng W, Feng W, Liu M, Xie B, Ouyang K, Shi YS, Lan F, Zhang X, Xiao R, Chen X, Wang HY, Chen S. AS160 is a lipid-responsive regulator of cardiac Ca 2+ homeostasis by controlling lysophosphatidylinositol metabolism and signaling. Nat Commun 2024; 15:9602. [PMID: 39505896 PMCID: PMC11542008 DOI: 10.1038/s41467-024-54031-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 10/28/2024] [Indexed: 11/08/2024] Open
Abstract
The obese heart undergoes metabolic remodeling and exhibits impaired calcium (Ca2+) homeostasis, which are two critical assaults leading to cardiac dysfunction. The molecular mechanisms underlying these alterations in obese heart are not well understood. Here, we show that the Rab-GTPase activating protein AS160 is a lipid-responsive regulator of Ca2+ homeostasis through governing lysophosphatidylinositol metabolism and signaling. Palmitic acid/high fat diet inhibits AS160 activity through phosphorylation by NEK6, which consequently activates its downstream target Rab8a. Inactivation of AS160 in cardiomyocytes elevates cytosolic Ca2+ that subsequently impairs cardiac contractility. Mechanistically, Rab8a downstream of AS160 interacts with DDHD1 to increase lysophosphatidylinositol metabolism and signaling that leads to Ca2+ release from sarcoplasmic reticulum. Inactivation of NEK6 prevents inhibition of AS160 by palmitic acid/high fat diet, and alleviates cardiac dysfunction in high fat diet-fed mice. Together, our findings reveal a regulatory mechanism governing metabolic remodeling and Ca2+ homeostasis in obese heart, and have therapeutic implications to combat obesity cardiomyopathy.
Collapse
Affiliation(s)
- Shu Su
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Cardiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, School of Medicine, Nanjing University, Nanjing, China
- MOE Key Laboratory of Model Animal for Disease Study, Department of Endocrinology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, School of Medicine, Nanjing University, Nanjing, China
| | - Chao Quan
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Cardiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, School of Medicine, Nanjing University, Nanjing, China
- MOE Key Laboratory of Model Animal for Disease Study, Department of Endocrinology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, School of Medicine, Nanjing University, Nanjing, China
| | - Qiaoli Chen
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Cardiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, School of Medicine, Nanjing University, Nanjing, China
- MOE Key Laboratory of Model Animal for Disease Study, Department of Endocrinology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, School of Medicine, Nanjing University, Nanjing, China
| | - Ruizhen Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Cardiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, School of Medicine, Nanjing University, Nanjing, China
- MOE Key Laboratory of Model Animal for Disease Study, Department of Endocrinology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, School of Medicine, Nanjing University, Nanjing, China
| | - Qian Du
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Cardiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, School of Medicine, Nanjing University, Nanjing, China
- MOE Key Laboratory of Model Animal for Disease Study, Department of Endocrinology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, School of Medicine, Nanjing University, Nanjing, China
| | - Sangsang Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Cardiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, School of Medicine, Nanjing University, Nanjing, China
- MOE Key Laboratory of Model Animal for Disease Study, Department of Endocrinology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, School of Medicine, Nanjing University, Nanjing, China
| | - Min Li
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Cardiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, School of Medicine, Nanjing University, Nanjing, China
- MOE Key Laboratory of Model Animal for Disease Study, Department of Endocrinology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, School of Medicine, Nanjing University, Nanjing, China
| | - Xinyu Yang
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Cardiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, School of Medicine, Nanjing University, Nanjing, China
- MOE Key Laboratory of Model Animal for Disease Study, Department of Endocrinology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, School of Medicine, Nanjing University, Nanjing, China
| | - Ping Rong
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Cardiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, School of Medicine, Nanjing University, Nanjing, China
- MOE Key Laboratory of Model Animal for Disease Study, Department of Endocrinology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, School of Medicine, Nanjing University, Nanjing, China
| | - Jiang Chen
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Yingyu Bai
- Department of Biopharmaceuticals & Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Wen Zheng
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing, China
| | - Weikuan Feng
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Cardiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, School of Medicine, Nanjing University, Nanjing, China
- MOE Key Laboratory of Model Animal for Disease Study, Department of Endocrinology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, School of Medicine, Nanjing University, Nanjing, China
| | - Minjun Liu
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Cardiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, School of Medicine, Nanjing University, Nanjing, China
- MOE Key Laboratory of Model Animal for Disease Study, Department of Endocrinology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, School of Medicine, Nanjing University, Nanjing, China
| | - Bingxian Xie
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Cardiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, School of Medicine, Nanjing University, Nanjing, China
- MOE Key Laboratory of Model Animal for Disease Study, Department of Endocrinology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, School of Medicine, Nanjing University, Nanjing, China
| | - Kunfu Ouyang
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen, China
| | - Yun Stone Shi
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Cardiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, School of Medicine, Nanjing University, Nanjing, China
| | - Feng Lan
- Beijing Laboratory for Cardiovascular Precision Medicine, MOE Key Laboratory of Biomedical Engineering for Cardiovascular Disease Research, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Xiuqin Zhang
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing, China
| | - Ruiping Xiao
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing, China
| | - Xiongwen Chen
- Department of Biopharmaceuticals & Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Hong-Yu Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Cardiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, School of Medicine, Nanjing University, Nanjing, China.
- MOE Key Laboratory of Model Animal for Disease Study, Department of Endocrinology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, School of Medicine, Nanjing University, Nanjing, China.
| | - Shuai Chen
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Cardiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, School of Medicine, Nanjing University, Nanjing, China.
- MOE Key Laboratory of Model Animal for Disease Study, Department of Endocrinology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, School of Medicine, Nanjing University, Nanjing, China.
- Nanjing Biomedical Research Institute, Nanjing University, Nanjing, China.
- Nanjing Key Laboratory for Cardiovascular Information and Health Engineering Medicine, Nanjing, China.
| |
Collapse
|
2
|
Lin L, Dekkers IA, Tao Q, Paiman EHM, Bizino MB, Jazet IM, Lamb HJ. MR Assessed Changes of Renal Sinus Fat in Response to Glucose Regulation in West European and South Asian Patients With Type 2 Diabetes. J Magn Reson Imaging 2024; 60:729-738. [PMID: 38085104 DOI: 10.1002/jmri.29174] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/19/2023] [Accepted: 10/19/2023] [Indexed: 07/13/2024] Open
Abstract
BACKGROUND Ethnic differences in the progression and outcome of diabetic kidney disease (DKD) remain to be elucidated. MRI-quantified renal sinus fat volume could be a potential biomarker to help investigate the changes of DKD risk in response to glucose regulation. PURPOSE To evaluate whether the effect of glucose-lowering treatment on renal sinus fat volume differed in West Europeans (WE) compared to South Asians (SA), and whether ethnic-related difference exists regarding the effect of liraglutide on renal sinus fat. STUDY TYPE Retrospective. POPULATION Ninety-three patients with type 2 diabetes mellitus, including 47 WE (27 males) aged 59.3 ± 6.5 years, and 46 SA (19 males) aged 54.4 ± 9.8 years. FIELD STRENGTH/SEQUENCE 3.0 T dual-echo fast gradient-echo pulse sequence using two-point Dixon technique with a phase-correction algorithm. ASSESSMENT Changes of renal sinus fat volume were measured by a radiologist (LL) with 4-years' experience, and were compared between the two ethnic groups, together with glycemic level, metabolic risk factors and renal function. The effects of liraglutide were assessed. STATISTICAL TESTS Normality of the data was visually evaluated by histograms and Q-Q plots. Within-group and between-group differences were analyzed using paired t-tests and analysis of covariance. Associations were analyzed by person's correlation and multiple linear regression models. RESULTS Renal sinus fat decreased in SA patients (Δ% = -7.6% ± 14.8%), but increased in WE patients (Δ% = 5.0% ± 13.1%), with a significant difference between the two ethnic groups. In the WE group, the increase of sinus fat volume was significant in the placebo subgroup (Δ% = 6.8% ± 12.5%), in contrast to the nonsignificant increase in the liraglutide subgroup (Δ% = 3.0% ± 13.8%, P = 0.444). DATA CONCLUSION Renal sinus fat accumulation responds differently to glucose regulation, showing a reduction in SA patients in contrast to a persistent accumulation in WE patients. A trend of less accumulation of sinus fat in WE patients receiving liraglutide has been observed. EVIDENCE LEVEL 4 TECHNICAL EFFICACY: Stage 4.
Collapse
Affiliation(s)
- Ling Lin
- Department of Radiology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Ilona A Dekkers
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Qian Tao
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Elisabeth H M Paiman
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Maurice B Bizino
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Ingrid M Jazet
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Hildo J Lamb
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
3
|
Radzioch E, Dąbek B, Balcerczyk-Lis M, Frąk W, Fularski P, Młynarska E, Rysz J, Franczyk B. Diabetic Cardiomyopathy-From Basics through Diagnosis to Treatment. Biomedicines 2024; 12:765. [PMID: 38672121 PMCID: PMC11048005 DOI: 10.3390/biomedicines12040765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/22/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
Diabetic cardiomyopathy (DCM) is the development of myocardial dysfunction in patients with diabetes despite the absence of comorbidities such as hypertension, atherosclerosis or valvular defect. The cardiovascular complications of poorly controlled diabetes are very well illustrated by the U.K. Prospective Diabetes Study (UKPDS), which showed a clear association between increasing levels of glycated hemoglobin and the development of heart failure (HF). The incidence of HF in patients with diabetes is projected to increase significantly, which is why its proper diagnosis and treatment is so important. Providing appropriate therapy focusing on antidiabetic and hypolipemic treatment with the consideration of pharmacotherapy for heart failure reduces the risk of CMD and reduces the incidence of cardiovascular complications. Health-promoting changes made by patients such as a low-carbohydrate diet, regular exercise and weight reduction also appear to be important in achieving appropriate outcomes. New hope for the development of therapies for DCM is offered by novel methods using stem cells and miRNA, which, however, require more thorough research to confirm their efficacy.
Collapse
Affiliation(s)
- Ewa Radzioch
- Department of Nephrocardiology, Medical Univeristy of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Bartłomiej Dąbek
- Department of Nephrocardiology, Medical Univeristy of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Marta Balcerczyk-Lis
- Department of Nephrocardiology, Medical Univeristy of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Weronika Frąk
- Department of Nephrocardiology, Medical Univeristy of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Piotr Fularski
- Department of Nephrocardiology, Medical Univeristy of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Ewelina Młynarska
- Department of Nephrocardiology, Medical Univeristy of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Jacek Rysz
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Beata Franczyk
- Department of Nephrocardiology, Medical Univeristy of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| |
Collapse
|
4
|
Januzzi JL, Del Prato S, Rosenstock J, Butler J, Ezekowitz J, Ibrahim NE, Lam CSP, Marwick T, Wilson Tang WH, Liu Y, Mohebi R, Urbinati A, Zannad F, Perfetti R. Characterizing diabetic cardiomyopathy: baseline results from the ARISE-HF trial. Cardiovasc Diabetol 2024; 23:49. [PMID: 38302936 PMCID: PMC10835978 DOI: 10.1186/s12933-024-02135-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 01/15/2024] [Indexed: 02/03/2024] Open
Abstract
BACKGROUND Diabetic cardiomyopathy (DbCM) is a form of Stage B heart failure (HF) at high risk for progression to overt disease. Using baseline characteristics of study participants from the Aldose Reductase Inhibition for Stabilization of Exercise Capacity in Heart Failure (ARISE-HF) Trial we sought to characterize clinical characteristics of individuals with findings consistent with DbCM. METHODS Among study participants meeting inclusion criteria, clinical characteristics, laboratory testing, imaging, Kansas City Cardiomyopathy Questionnaire (KCCQ), Physical Activity Scale of the Elderly (PASE) and cardiopulmonary exercise testing (CPET) results were tabulated. Cluster phenogroups were identified. RESULTS Among 691 study participants (mean age 67.4 years; 50% were female), mean duration of type 2 diabetes mellitus (T2DM) was 14.5 years. The median (Q1, Q3) N-terminal pro-B type natriuretic peptide and high sensitivity cardiac troponin T were 71 (35, 135) ng/L and 9 [6, 12] ng/L. The most common echocardiographic abnormalities were reduced global longitudinal strain in 25.3% and impaired diastolic relaxation in 17.7%. Despite rather well-preserved KCCQ scores the average PASE score was markedly impaired at 155 accompanied by an average maximal oxygen consumption of 15.7 mL/Kg/minute on CPET. In K-means clustering, 4 phenogroups were identified including a higher-risk group with more advanced age, greater elevation of cardiac biomarkers, and more prevalent evidence for diastolic dysfunction and left ventricular hypertrophy. CONCLUSIONS Baseline data from the ARISE-HF Trial provide clinical characterization of individuals with T2DM and features of stage B HF, and may help clarify the diagnosis of DbCM. TRIAL REGISTRATION ARISE-HF, NCT04083339.
Collapse
Affiliation(s)
- James L Januzzi
- Heart Failure Trials, Baim Institute for Clinical Research, Boston, MA, USA.
- Cardiology Division, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, 02114, Boston, MA, USA.
| | - Stefano Del Prato
- Interdisciplinary Research Center 'Health Science', Sant'Anna School of Advanced Studies, Pisa, Italy
| | - Julio Rosenstock
- Velocity Clinical Research at Medical City and University of Texas, Southwestern Medical Center, Dallas, TX, USA
| | - Javed Butler
- Baylor Scott and White Research Institute, , Dallas, TX, USA
- University of Mississippi, Jackson, MS, USA
| | - Justin Ezekowitz
- Canadian VIGOUR Centre, University of Alberta, Edmonton, AB, Canada
| | - Nasrien E Ibrahim
- Cardiology Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Carolyn S P Lam
- National Heart Centre Singapore and Duke-National University of Singapore, Singapore, Singapore
| | - Thomas Marwick
- Baker Heart and Diabetes Institute, Melbourne, Australia
- Menzies Institute for Medical Research, Hobart, Australia
| | - W H Wilson Tang
- Department of Cardiovascular Medicine, Heart Vascular and Thoracic Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Yuxi Liu
- Cardiology Division, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, 02114, Boston, MA, USA
| | - Reza Mohebi
- Cardiology Division, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, 02114, Boston, MA, USA
| | | | - Faiez Zannad
- Université de Lorraine, CIC Inserm and CHRU Nancy, Lorraine, France
| | | |
Collapse
|
5
|
Yuan L, Verhoeven A, Blomberg N, van Eyk HJ, Bizino MB, Rensen PCN, Jazet IM, Lamb HJ, Rabelink TJ, Giera M, van den Berg BM. Ethnic Disparities in Lipid Metabolism and Clinical Outcomes between Dutch South Asians and Dutch White Caucasians with Type 2 Diabetes Mellitus. Metabolites 2024; 14:33. [PMID: 38248836 PMCID: PMC10819672 DOI: 10.3390/metabo14010033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/26/2023] [Accepted: 12/30/2023] [Indexed: 01/23/2024] Open
Abstract
Type 2 diabetes mellitus (T2DM) poses a higher risk for complications in South Asian individuals compared to other ethnic groups. To shed light on potential mediating factors, we investigated lipidomic changes in plasma of Dutch South Asians (DSA) and Dutch white Caucasians (DwC) with and without T2DM and explore their associations with clinical features. Using a targeted quantitative lipidomics platform, monitoring over 1000 lipids across 17 classes, along with 1H NMR based lipoprotein analysis, we studied 51 healthy participants (21 DSA, 30 DwC) and 92 T2DM patients (47 DSA, 45 DwC) from the MAGNetic resonance Assessment of VICTOza efficacy in the Regression of cardiovascular dysfunction in type 2 dIAbetes mellitus (MAGNA VICTORIA) study. This comprehensive mapping of the circulating lipidome allowed us to identify relevant lipid modules through unbiased weighted correlation network analysis, as well as disease and ethnicity related key mediatory lipids. Significant differences in lipidomic profiles, encompassing various lipid classes and species, were observed between T2DM patients and healthy controls in both the DSA and DwC populations. Our analyses revealed that healthy DSA, but not DwC, controls already exhibited a lipid profile prone to develop T2DM. Particularly, in DSA-T2DM patients, specific lipid changes correlated with clinical features, particularly diacylglycerols (DGs), showing significant associations with glycemic control and renal function. Our findings highlight an ethnic distinction in lipid modules influencing clinical outcomes in renal health. We discover distinctive ethnic disparities of the circulating lipidome and identify ethnicity-specific lipid markers. Jointly, our discoveries show great potential as personalized biomarkers for the assessment of glycemic control and renal function in DSA-T2DM individuals.
Collapse
Affiliation(s)
- Lushun Yuan
- Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (L.Y.); (P.C.N.R.); (T.J.R.)
- Department of Internal Medicine, Division of Nephrology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Aswin Verhoeven
- Center for Proteomics and Metabolomics, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (A.V.); (N.B.); (M.G.)
| | - Niek Blomberg
- Center for Proteomics and Metabolomics, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (A.V.); (N.B.); (M.G.)
| | - Huub J. van Eyk
- Department of Internal Medicine, Division of Endocrinology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (H.J.v.E.); (I.M.J.)
| | - Maurice B. Bizino
- Department of Radiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (M.B.B.); (H.J.L.)
| | - Patrick C. N. Rensen
- Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (L.Y.); (P.C.N.R.); (T.J.R.)
- Department of Internal Medicine, Division of Endocrinology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (H.J.v.E.); (I.M.J.)
| | - Ingrid M. Jazet
- Department of Internal Medicine, Division of Endocrinology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (H.J.v.E.); (I.M.J.)
| | - Hildo J. Lamb
- Department of Radiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (M.B.B.); (H.J.L.)
| | - Ton J. Rabelink
- Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (L.Y.); (P.C.N.R.); (T.J.R.)
- Department of Internal Medicine, Division of Nephrology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Martin Giera
- Center for Proteomics and Metabolomics, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (A.V.); (N.B.); (M.G.)
| | - Bernard M. van den Berg
- Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (L.Y.); (P.C.N.R.); (T.J.R.)
- Department of Internal Medicine, Division of Nephrology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| |
Collapse
|
6
|
Zhang HK, Shi CY, Liu DT, Gao HQ, Zhao QQ, Zhang N, Yang L, Li GQ, Wang YL, Du Y, Li Q, Bo KR, Zhuang B, Fan ZM, Sun ZH, Xu L. Dynamic changes in cardiac morphology, function, and diffuse myocardial fibrosis duration of diabetes in type 1 and type 2 diabetic mice models using 7.0 T CMR and echocardiography. Front Endocrinol (Lausanne) 2023; 14:1278619. [PMID: 38027188 PMCID: PMC10663371 DOI: 10.3389/fendo.2023.1278619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
BACKGROUND Diabetes mellitus (DM) is associated with an increased risk of cardiovascular disease (CVD). Hence, early detection of cardiac changes by imaging is crucial to reducing cardiovascular complications. PURPOSE Early detection of cardiac changes is crucial to reducing cardiovascular complications. The study aimed to detect the dynamic change in cardiac morphology, function, and diffuse myocardial fibrosis(DMF) associated with T1DM and T2DM mice models. MATERIALS AND METHODS 4-week-old C57Bl/6J male mice were randomly divided into control (n=30), T1DM (n=30), and T2DM (n=30) groups. A longitudinal study was conducted every 4 weeks using serial 7.0T CMR and echocardiography imaging. Left ventricular ejection fraction (LV EF), tissue tracking parameters, and DMF were measured by cine CMR and extracellular volume fraction (ECV). Global peak circumferential strain (GCPS), peak systolic strain rate (GCPSSR) values were acquired by CMR feature tracking. LV diastolic function parameter (E/E') was acquired by echocardiography. The correlations between the ECV and cardiac function parameters were assessed by Pearson's test. RESULTS A total of 6 mice were included every 4 weeks in control, T1DM, and T2DM groups for analysis. Compared to control group, an increase was detected in the LV mass and E/E' ratio, while the values of GCPS, GCPSSR decreased mildly in DM. Compared to T2DM group, GCPS and GCPSSR decreased earlier in T1DM(GCPS 12W,P=0.004; GCPSSR 12W,P=0.04). ECV values showed a significant correlation with GCPS and GCPSSR in DM groups. Moreover, ECV values showed a strong positive correlation with E/E'(T1DM,r=0.757,P<0.001;T2DM, r=0.811,P<0.001). CONCLUSION The combination of ECV and cardiac mechanical parameters provide imaging biomakers for pathophysiology, early diagnosis of cardiac morphology, function and early intervention in diabetic cardiomyopathy in the future.
Collapse
Affiliation(s)
- Hong-Kai Zhang
- Department of Radiology, Beijing Anzhen Hospital, Beijing Institute of Heart, Lung, and Vascular Diseases, Capital Medical University, Beijing, China
| | - Chun-Yan Shi
- Department of Radiology, Beijing Anzhen Hospital, Beijing Institute of Heart, Lung, and Vascular Diseases, Capital Medical University, Beijing, China
| | - Dong-Ting Liu
- Department of Radiology, Beijing Anzhen Hospital, Beijing Institute of Heart, Lung, and Vascular Diseases, Capital Medical University, Beijing, China
| | - Hui-Qiang Gao
- Department of Cardiac Surgery, Beijing Anzhen Hospital, Beijing Institute of Heart, Lung and Vascular Diseases, Capital Medical University, Beijing, China
| | - Qian-Qian Zhao
- Department of Cardiology, Medical School of Chinese People’s Liberation Army (PLA), Beijing, China
| | - Nan Zhang
- Department of Radiology, Beijing Anzhen Hospital, Beijing Institute of Heart, Lung, and Vascular Diseases, Capital Medical University, Beijing, China
| | - Lin Yang
- Department of Radiology, Beijing Anzhen Hospital, Beijing Institute of Heart, Lung, and Vascular Diseases, Capital Medical University, Beijing, China
| | - Guo-Qi Li
- Beijing Institute of Heart, Lung, and Vascular Diseases, The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing, China
| | - Yue-Li Wang
- Echocardiographic Medical Center, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Yu Du
- Department of Cardiology, Clinical Center for Coronary Heart Disease, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Qing Li
- Department of Radiology, Beijing Anzhen Hospital, Beijing Institute of Heart, Lung, and Vascular Diseases, Capital Medical University, Beijing, China
| | - Kai-Rui Bo
- Department of Radiology, Beijing Anzhen Hospital, Beijing Institute of Heart, Lung, and Vascular Diseases, Capital Medical University, Beijing, China
| | - Baiyan Zhuang
- Department of Radiology, Beijing Anzhen Hospital, Beijing Institute of Heart, Lung, and Vascular Diseases, Capital Medical University, Beijing, China
| | - Zhan-Ming Fan
- Department of Radiology, Beijing Anzhen Hospital, Beijing Institute of Heart, Lung, and Vascular Diseases, Capital Medical University, Beijing, China
| | - Zhong-Hua Sun
- Discipline of Medical Radiation Science, Curtin Medical School, Perth, WA, Australia
| | - Lei Xu
- Department of Radiology, Beijing Anzhen Hospital, Beijing Institute of Heart, Lung, and Vascular Diseases, Capital Medical University, Beijing, China
| |
Collapse
|
7
|
Role of Echocardiography in Diabetic Cardiomyopathy: From Mechanisms to Clinical Practice. J Cardiovasc Dev Dis 2023; 10:jcdd10020046. [PMID: 36826542 PMCID: PMC9959745 DOI: 10.3390/jcdd10020046] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 01/17/2023] [Accepted: 01/25/2023] [Indexed: 01/28/2023] Open
Abstract
It has been well established that diabetes mellitus (DM) is considered as a core risk factor for the development of cardiovascular diseases. However, what is less appreciated is the fact that DM may affect cardiac function irrespective of cardiac pathologies to which it contributes, such as coronary artery disease and hypertension. Although echocardiography provides accurate and reproducible diagnostic and prognostic data in patients with DM, its use in these patients is still underappreciated, resulting in progression of DM-related heart failure in many patients. Hence, in the present review, we aimed to discuss the role of echocardiography in the contemporary management of diabetic cardiomyopathy (DCM), as well as the role of emerging echocardiographic techniques, which may contribute to earlier diagnosis and more appropriate management of this complication of DM. In order to improve outcomes, focus must be placed on early diagnosis of this condition using a combination of echocardiography and emerging biomarkers, but perhaps the more important thing is to change perspective when it comes to the clinical importance of DCM.
Collapse
|
8
|
Nguyen IT, Joles JA, Verhaar MC, Lamb HJ, Dekkers IA. Obesity in relation to cardiorenal function. VISCERAL AND ECTOPIC FAT 2023:243-264. [DOI: 10.1016/b978-0-12-822186-0.00006-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
9
|
Heart Involvement in Diabetes mellitus Patients. Fam Med 2022. [DOI: 10.30841/2307-5112.1-2.2022.260509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Diabetes mellitus (DM) is one of the most significant medical and social health problems worldwide. The main cause of death in patients with DM is cardiovascular diseases, which leads to the significant decrease in quality of life and life expectancy.
The aim of this literature review is analyze of the frequency, mechanisms and manifestations of heart disease in diabetes patients.
A significant amount of the modern researches is devoted to the diagnosis and treatment of the diabetes complications, including diabetic cardiomyopathy (DC). According to many authors, heart disease in diabetes is associated with the formation of DC, comorbid coronary heart disease and arterial hypertension. DC occurs in 16.8–54% of patients with diabetes and is an independent factor which increases the death risk by 50–60%.
Numerous scientific studies have been devoted to the diagnosis and treatment of DC, emphasizing that in order to reduce cardiovascular disease and mortality in patients with diabetes, it is necessary, above all, to achieve glycemic control. Diabetic history, age, comorbidities, atherosclerotic lesions, smoking, overweight or obesity also play an important role.
The main aspects of the development and impact of diabetes on the health and life of patients are the untimely diagnosis of this disease, its multifactorial pathogenesis, progressive course and severity of complications. Due to development of the early complications and disability, studies of morphofunctional changes in the myocardium in diabetes are extremely relevant, as cardiomyopathy may increase the risk of myocardial infarction and heart failure.
The rapid increase in the number of patients with diabetes, many of whom die from cardiovascular complications, makes the problem of diabetic heart disease one of the most pressing health problems. Treatment of these patients should include correction of carbohydrate metabolism, control of blood lipid composition, decrease in myocardial ischemia, correction of the myocardial metabolism and the risk of heart failure.
Collapse
|
10
|
Muñoz-Córdova F, Hernández-Fuentes C, Lopez-Crisosto C, Troncoso MF, Calle X, Guerrero-Moncayo A, Gabrielli L, Chiong M, Castro PF, Lavandero S. Novel Insights Into the Pathogenesis of Diabetic Cardiomyopathy and Pharmacological Strategies. Front Cardiovasc Med 2022; 8:707336. [PMID: 35004869 PMCID: PMC8734937 DOI: 10.3389/fcvm.2021.707336] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 11/29/2021] [Indexed: 12/17/2022] Open
Abstract
Diabetic cardiomyopathy (DCM) is a severe complication of diabetes developed mainly in poorly controlled patients. In DCM, several clinical manifestations as well as cellular and molecular mechanisms contribute to its phenotype. The production of reactive oxygen species (ROS), chronic low-grade inflammation, mitochondrial dysfunction, autophagic flux inhibition, altered metabolism, dysfunctional insulin signaling, cardiomyocyte hypertrophy, cardiac fibrosis, and increased myocardial cell death are described as the cardinal features involved in the genesis and development of DCM. However, many of these features can be associated with broader cellular processes such as inflammatory signaling, mitochondrial alterations, and autophagic flux inhibition. In this review, these mechanisms are critically discussed, highlighting the latest evidence and their contribution to the pathogenesis of DCM and their potential as pharmacological targets.
Collapse
Affiliation(s)
- Felipe Muñoz-Córdova
- Faculty of Chemical and Pharmaceutical Sciences and Faculty of Medicine, Advanced Center for Chronic Diseases (ACCDiS), University of Chile, Santiago, Chile
| | - Carolina Hernández-Fuentes
- Faculty of Chemical and Pharmaceutical Sciences and Faculty of Medicine, Advanced Center for Chronic Diseases (ACCDiS), University of Chile, Santiago, Chile
| | - Camila Lopez-Crisosto
- Faculty of Chemical and Pharmaceutical Sciences and Faculty of Medicine, Advanced Center for Chronic Diseases (ACCDiS), University of Chile, Santiago, Chile.,Division of Cardiovascular Diseases, Faculty of Medicine, Advanced Center for Chronic Diseases (ACCDiS), Pontifical Catholic University of Chile, Santiago, Chile
| | - Mayarling F Troncoso
- Faculty of Chemical and Pharmaceutical Sciences and Faculty of Medicine, Advanced Center for Chronic Diseases (ACCDiS), University of Chile, Santiago, Chile.,Department of Medical Technology, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Ximena Calle
- Faculty of Chemical and Pharmaceutical Sciences and Faculty of Medicine, Advanced Center for Chronic Diseases (ACCDiS), University of Chile, Santiago, Chile
| | - Alejandra Guerrero-Moncayo
- Faculty of Chemical and Pharmaceutical Sciences and Faculty of Medicine, Advanced Center for Chronic Diseases (ACCDiS), University of Chile, Santiago, Chile
| | - Luigi Gabrielli
- Division of Cardiovascular Diseases, Faculty of Medicine, Advanced Center for Chronic Diseases (ACCDiS), Pontifical Catholic University of Chile, Santiago, Chile
| | - Mario Chiong
- Faculty of Chemical and Pharmaceutical Sciences and Faculty of Medicine, Advanced Center for Chronic Diseases (ACCDiS), University of Chile, Santiago, Chile
| | - Pablo F Castro
- Division of Cardiovascular Diseases, Faculty of Medicine, Advanced Center for Chronic Diseases (ACCDiS), Pontifical Catholic University of Chile, Santiago, Chile.,Corporación Centro de Estudios Científicos de las Enfermedades Crónicas (CECEC), University of Chile, Santiago, Chile
| | - Sergio Lavandero
- Faculty of Chemical and Pharmaceutical Sciences and Faculty of Medicine, Advanced Center for Chronic Diseases (ACCDiS), University of Chile, Santiago, Chile.,Corporación Centro de Estudios Científicos de las Enfermedades Crónicas (CECEC), University of Chile, Santiago, Chile.,Department of Internal Medicine (Cardiology Division), University of Texas Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
11
|
Zhang Q, Kang Y, Tang S, Yu CM. Intersection Between Diabetes and Heart Failure: Is SGLT2i the "One Stone for Two Birds" Approach? Curr Cardiol Rep 2021; 23:171. [PMID: 34647188 PMCID: PMC8513735 DOI: 10.1007/s11886-021-01591-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/22/2021] [Indexed: 02/06/2023]
Abstract
Purpose of Review Diabetes mellitus (DM) is a major comorbidity of heart failure (HF). Comparing the similarities and differences in disease characteristics and treatment between the HF patients with and without DM, this review was to investigate whether and how the novel class of sodium-glucose transport protein 2 inhibitors (SGLT2i) would benefit both populations. Recent Findings Despite the obviously different clinical profiles, patients of HF with reduced ejection fraction (HFrEF) should be treated the same with guideline directed medical therapy, irrespective of DM status. Upon the mounting evidence that supported its use in diabetic patients at high risk of HF, recent large clinical trials demonstrated that SGLT2i could further reduce HF hospitalization or cardiovascular mortality and improve quality of life in diabetic and non-diabetic HFrEF patients who were optimally managed. Summary SGLT2i expands the foundation of HFrEF therapy. Whether it is equally effective in HF with preserved ejection fraction awaits more evidence.
Collapse
Affiliation(s)
- Qing Zhang
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| | - Yu Kang
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Siqi Tang
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Cheuk-Man Yu
- Chiu Hin Kwong Heart Centre, Hong Kong Baptist Hospital, Hong Kong, China. .,Department of Medicine & Therapeutics, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
12
|
Lin L, Dekkers IA, Huang L, Tao Q, Paiman EHM, Bizino MB, Jazet IM, Lamb HJ. Renal sinus fat volume in type 2 diabetes mellitus is associated with glycated hemoglobin and metabolic risk factors. J Diabetes Complications 2021; 35:107973. [PMID: 34217586 DOI: 10.1016/j.jdiacomp.2021.107973] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 06/09/2021] [Accepted: 06/10/2021] [Indexed: 11/18/2022]
Abstract
AIMS We aimed to compare renal sinus fat volume assessed by MRI between patients with type 2 diabetes and healthy volunteers, and investigate the association between renal sinus fat and metabolic traits. METHODS In this cross-sectional study, renal sinus fat and parenchyma volumes measured on abdominal MRI were compared between patients and controls using analysis of covariance. Associations of renal parameters with clinical characteristics were analyzed using linear regression analysis. RESULTS A total of 146 participants were enrolled, consisting of 95 type 2 diabetes patients (57.2±8.8years, 49.5% male) and 51 controls (54.0±9.2years, 43.1% male). Patients with diabetes demonstrated larger sinus fat volumes (15.4±7.5cm3 vs. 10.3±7.1cm3, p<0.001) and sinus fat-parenchyma ratio than controls. In the total population, renal sinus fat was positively associated with HbA1c, abdominal VAT, cholesterol and triglycerides, after adjustment for age, sex, ethnicity and type 2 diabetes. In type 2 diabetes patients, increased sinus fat volume was significantly associated with urinary albumin-to-creatinine ratio. CONCLUSION Renal sinus fat volume is positively associated with several metabolic risk factors including HbA1c level and urinary albumin-to-creatinine ratio in type 2 diabetes patients, indicating a potential role of renal sinus fat in the development of diabetic nephropathy. Future studies are needed to investigate whether sinus fat volume can serve as an early biomarker for diabetic nephropathy.
Collapse
Affiliation(s)
- Ling Lin
- Department of Radiology, Leiden University Medical Center, Albinusdreef 2, 2333, ZA, Leiden, the Netherlands.
| | - Ilona A Dekkers
- Department of Radiology, Leiden University Medical Center, Albinusdreef 2, 2333, ZA, Leiden, the Netherlands
| | - Lu Huang
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Qiaokou District, Wuhan, Hubei, China
| | - Qian Tao
- Department of Radiology, Leiden University Medical Center, Albinusdreef 2, 2333, ZA, Leiden, the Netherlands
| | - Elisabeth H M Paiman
- Department of Radiology, Leiden University Medical Center, Albinusdreef 2, 2333, ZA, Leiden, the Netherlands
| | - Maurice B Bizino
- Department of Radiology, Leiden University Medical Center, Albinusdreef 2, 2333, ZA, Leiden, the Netherlands
| | - Ingrid M Jazet
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Albinusdreef 2, 2333, ZA, Leiden, the Netherlands
| | - Hildo J Lamb
- Department of Radiology, Leiden University Medical Center, Albinusdreef 2, 2333, ZA, Leiden, the Netherlands
| |
Collapse
|
13
|
Zhou FL, Deng MY, Deng LL, Li YM, Mo D, Xie LJ, Gao Y, Tian HM, Guo YK, Ren Y. Evaluation of the effects of glycated hemoglobin on cardiac function in patients with short-duration type 2 diabetes mellitus: A cardiovascular magnetic resonance study. Diabetes Res Clin Pract 2021; 178:108952. [PMID: 34273454 DOI: 10.1016/j.diabres.2021.108952] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/16/2021] [Accepted: 07/12/2021] [Indexed: 02/05/2023]
Abstract
AIMS To investigate the association between glycated hemoglobin (HbA1c) and myocardial dysfunction and to determine whether its association is independent of myocardial perfusion. METHODS Sixty-four patients with type 2 diabetes mellitus (T2DM) were recruited. They were divided into groups according to their HbA1c level: the controlled T2DM group (HbA1c < 7%) and uncontrolled T2DM groups (HbA1c ≥ 7%). Meanwhile, 30 age-matched healthy volunteers were included. All patients with T2DM and healthy controls underwent cardiovascular magnetic resonance imaging to evaluate the myocardial mechanics and perfusion parameters. RESULTS The circumferential and longitudinal peak strain (PS) (p = 0.009 and 0.002 respectively) and global radial, circumferential, and longitudinal peak strain diastolic strain rates (PDSRs) (p = 0.002, 0.001, and 0.001 respectively) were lower in the uncontrolled T2DM group than in the controls without diabetes. In multivariable linear regression analysis, HbA1c was independently related to all directions of the PS and PDSR. The myocardial perfusion parameters were not independently associated with the PS or PDSR. CONCLUSIONS Cardiac function is impaired in Chinese T2DM patients with poor glucose control (HbA1c ≥ 7%), with preserved left ventricular (LV) ejection fraction, and disease duration <10 years. Poor blood glucose control is an independent predictor of LV myocardial dysfunction for patients with short-term T2DM.
Collapse
Affiliation(s)
- Fang-Li Zhou
- Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, 37 GuoXue Street, Chengdu 610041, Sichuan, People's Republic of China
| | - Ming-Yan Deng
- Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, 37 GuoXue Street, Chengdu 610041, Sichuan, People's Republic of China
| | - Li-Ling Deng
- Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, 37 GuoXue Street, Chengdu 610041, Sichuan, People's Republic of China
| | - Yuan-Mei Li
- Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, 37 GuoXue Street, Chengdu 610041, Sichuan, People's Republic of China
| | - Dan Mo
- Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, 37 GuoXue Street, Chengdu 610041, Sichuan, People's Republic of China
| | - Lin-Jun Xie
- Department of Radiology, Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, Sichuan, People's Republic of China
| | - Yue Gao
- Department of Radiology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, People's Republic of China
| | - Hao-Ming Tian
- Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, 37 GuoXue Street, Chengdu 610041, Sichuan, People's Republic of China
| | - Ying-Kun Guo
- Department of Radiology, Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, Sichuan, People's Republic of China
| | - Yan Ren
- Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, 37 GuoXue Street, Chengdu 610041, Sichuan, People's Republic of China.
| |
Collapse
|
14
|
Estimated pulse wave velocity (ePWV) as a potential gatekeeper for MRI-assessed PWV: a linear and deep neural network based approach in 2254 participants of the Netherlands Epidemiology of Obesity study. Int J Cardiovasc Imaging 2021; 38:183-193. [PMID: 34304318 PMCID: PMC8818644 DOI: 10.1007/s10554-021-02359-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 07/15/2021] [Indexed: 12/03/2022]
Abstract
Pulse wave velocity (PWV) assessed by magnetic resonance imaging (MRI) is a prognostic marker for cardiovascular events. Prediction modelling could enable indirect PWV assessment based on clinical and anthropometric data. The aim was to calculate estimated-PWV (ePWV) based on clinical and anthropometric measures using linear ridge regression as well as a Deep Neural Network (DNN) and to determine the cut-off which provides optimal discriminative performance between lower and higher PWV values. In total 2254 participants from the Netherlands Epidemiology of Obesity study were included (age 45–65 years, 51% male). Both a basic and expanded prediction model were developed. PWV was estimated using linear ridge regression and DNN. External validation was performed in 114 participants (age 30–70 years, 54% female). Performance was compared between models and estimation accuracy was evaluated by ROC-curves. A cut-off for optimal discriminative performance was determined using Youden’s index. The basic ridge regression model provided an adjusted R2 of 0.33 and bias of < 0.001, the expanded model did not add predictive performance. Basic and expanded DNN models showed similar model performance. Optimal discriminative performance was found for PWV < 6.7 m/s. In external validation expanded ridge regression provided the best performance of the four models (adjusted R2: 0.29). All models showed good discriminative performance for PWV < 6.7 m/s (AUC range 0.81–0.89). ePWV showed good discriminative performance with regard to differentiating individuals with lower PWV values (< 6.7 m/s) from those with higher values, and could function as gatekeeper in selecting patients who benefit from further MRI-based PWV assessment.
Collapse
|
15
|
Minciună IA, Hilda Orășan O, Minciună I, Lazar AL, Sitar-Tăut AV, Oltean M, Tomoaia R, Puiu M, Sitar-Tăut DA, Pop D, Cozma A. Assessment of subclinical diabetic cardiomyopathy by speckle-tracking imaging. Eur J Clin Invest 2021; 51:e13475. [PMID: 33326612 DOI: 10.1111/eci.13475] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 11/28/2020] [Accepted: 12/05/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND Diastolic dysfunction is traditionally believed to be the first subclinical manifestation of diabetic cardiomyopathy (DCM), leading to systolic dysfunction and then overt heart failure. However, in the last few years, several studies suggested that systolic subclinical dysfunction measured by speckle-tracking echocardiography (STE) may appear ahead of diastolic dysfunction. In this review, the main endpoint is to show whether subclinical myocardial systolic dysfunction appears ahead of diastolic dysfunction and the implication this may have on the evolution and management of DCM. MATERIALS AND METHODS We performed a search in PubMed for all relevant publications on the assessment of DCM by STE from 1 June 2015 to 1 June 2020. RESULTS AND CONCLUSIONS The results illustrate that subclinical systolic dysfunction assessed by STE is present in early DCM stages, with or without the association of diastolic dysfunction. This could be a promising perspective for the early management of patients with DCM leading to the prevention of the overt form of disease.
Collapse
Affiliation(s)
- Ioan-Alexandru Minciună
- "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania.,Cardiology Department, Rehabilitation Hospital, Cluj-Napoca, Romania
| | - Olga Hilda Orășan
- Internal Medicine Department, "Iuliu Haţieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Iulia Minciună
- Regional Institute of Gastroenterology and Hepatology ''Octavian Fodor'', Cluj-Napoca, Romania
| | - Andrada-Luciana Lazar
- Dermatology Department, "Iuliu Haţieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Adela Viviana Sitar-Tăut
- Internal Medicine Department, "Iuliu Haţieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Monica Oltean
- Heart Institute ''Nicolae Stancioiu'', Cluj-Napoca, Romania
| | - Raluca Tomoaia
- "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania.,Cardiology Department, Rehabilitation Hospital, Cluj-Napoca, Romania
| | - Mihai Puiu
- "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania.,Cardiology Department, Rehabilitation Hospital, Cluj-Napoca, Romania
| | - Dan-Andrei Sitar-Tăut
- Faculty of Economics and Business Administration, Babeș-Bolyai University, Cluj-Napoca, Romania
| | - Dana Pop
- "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania.,Cardiology Department, Rehabilitation Hospital, Cluj-Napoca, Romania
| | - Angela Cozma
- Internal Medicine Department, "Iuliu Haţieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| |
Collapse
|
16
|
Yeo JL, Brady EM, McCann GP, Gulsin GS. Sex and ethnic differences in the cardiovascular complications of type 2 diabetes. Ther Adv Endocrinol Metab 2021; 12:20420188211034297. [PMID: 34408835 PMCID: PMC8365016 DOI: 10.1177/20420188211034297] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 07/05/2021] [Indexed: 12/14/2022] Open
Abstract
Diabetes mellitus represents a global health concern affecting 463 million adults and is projected to rapidly rise to 700 million people by 2045. Amongst those with type 2 diabetes (T2D), there are recognised differences in the impact of the disease on different sex and ethnic groups. The relative risk of cardiovascular complications between individuals with and without T2D is higher in females than males. People of South Asian heritage are two to four times more likely to develop T2D than white people, but conversely not more likely to experience cardiovascular complications. Differences in the pathophysiological responses in these groups may identify potential areas for intervention beyond glycaemic control. In this review, we highlight key differences of diabetes-associated cardiovascular complications by sex and ethnic background, with a particular emphasis on South Asians. Evidence assessing therapeutic efficacy of new glucose lowering drugs in minority groups is limited and many major cardiovascular outcomes trials do not report ethnic specific data. Conversely, lifestyle intervention and bariatric surgery appear to have similar benefits regardless of sex and ethnic groups. We encourage future studies with better representation of women and ethnic minorities that will provide valuable data to allow better risk stratification and tailored prevention and management strategies to improve cardiovascular outcomes in T2D.
Collapse
Affiliation(s)
- Jian L Yeo
- Department of Cardiovascular Sciences, University of Leicester and the Leicester NIHR Biomedical Research Centre, Glenfield Hospital, Groby Road, Leicester, LE3 9QP, UK
| | - Emer M Brady
- Department of Cardiovascular Sciences, University of Leicester and the Leicester NIHR Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Gerry P McCann
- Department of Cardiovascular Sciences, University of Leicester and the Leicester NIHR Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Gaurav S Gulsin
- Department of Cardiovascular Sciences, University of Leicester and the Leicester NIHR Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| |
Collapse
|
17
|
Dekkers IA, Bizino MB, Paiman EHM, Smit JW, Jazet IM, de Vries APJ, Lamb HJ. The Effect of Glycemic Control on Renal Triglyceride Content Assessed by Proton Spectroscopy in Patients With Type 2 Diabetes Mellitus: A Single-Center Parallel-Group Trial. J Ren Nutr 2020; 31:611-619. [PMID: 33293204 DOI: 10.1053/j.jrn.2020.09.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 09/23/2020] [Accepted: 09/24/2020] [Indexed: 12/27/2022] Open
Abstract
OBJECTIVE Ectopic lipid accumulation in the kidney (fatty kidney) is a potential driver of diabetic kidney disease, and tight glycemic control can reduce risk of diabetic nephropathy. We assessed whether glycemic control influences renal triglyceride content (RTGC). Furthermore, we compared glucagon-like peptide-1 receptor agonist liraglutide versus standard glucose-lowering therapy. DESIGN AND METHODS In this single-center parallel-group trial, patients with type 2 diabetes mellitus were randomized to liraglutide or placebo added to standard care (metformin/sulfonylurea derivative/insulin). Changes in RTGC after 26 weeks of glycemic control measured by proton spectroscopy and difference in RTGC between treatment groups were analyzed. RESULTS Fifty patients with type 2 diabetes mellitus were included in the baseline analysis (mean age, 56.5 ± 9.1 years; range, 33-73 years; 46% males). Seventeen patients had baseline and follow-up measurements. Mean glycated hemoglobin was 7.8 ± 0.8%, which changed to 7.3 ± 0.9% after 26 weeks of glycemic control irrespective of treatment group (P = .046). Log-transformed RTGC was -0.68 ± 0.30% and changed to -0.83 ± 0.32% after 26 weeks of glycemic control irrespective of treatment group (P = .049). A 26-week-to-̶baseline RTGC ratio (95% confidence interval) was significantly different between liraglutide (-0.30 [-0.50, -0.09]) and placebo added to standard care (-0.003 [-0.34, 0.34]) (P = .04). CONCLUSION In this exploratory study, we found that 26 weeks of glycemic control resulted in lower RTGC, in particular for liraglutide; however, larger clinical studies are needed to assess whether these changes reflect a true effect of glycemic control on fatty kidney.
Collapse
Affiliation(s)
- Ilona A Dekkers
- Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands.
| | - Maurice B Bizino
- Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands; Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Elisabeth H M Paiman
- Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Johannes W Smit
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Ingrid M Jazet
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Aiko P J de Vries
- Division of Nephrology and Transplant Medicine, Department of Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Hildo J Lamb
- Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
18
|
Chen HF, Chang YH, Lo HJ, Isfandiari MA, Martini S, Hou WH, Li CY. Incidence of idiopathic cardiomyopathy in patients with type 2 diabetes in Taiwan: age, sex, and urbanization status-stratified analysis. Cardiovasc Diabetol 2020; 19:177. [PMID: 33054769 PMCID: PMC7558694 DOI: 10.1186/s12933-020-01144-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 09/27/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND The epidemiology of diabetes and idiopathic cardiomyopathy have limited data. We investigated the overall and the age-, sex-, and urbanization-specific incidence and relative hazard of idiopathic cardiomyopathy in association with type 2 diabetes and various anti-diabetic medications used in Taiwan. METHODS A total of 474,268 patients with type 2 diabetes were identified from ambulatory care and inpatient claims in 2007-2009 from Taiwan's National Health Insurance (NHI) database. We randomly selected 474,266 age-, sex-, and diagnosis date-matched controls from the registry of NHI beneficiaries. All study subjects were linked to ambulatory care and inpatient claims (up to the end of 2016) to identify the possible diagnosis of idiopathic cardiomyopathy. The person-year approach with Poisson assumption was used to estimate the incidence, and Cox proportional hazard regression model with Fine and Gray's method was used to estimate the relative hazards of idiopathic cardiomyopathy in relation to type 2 diabetes. RESULTS The overall incidence of idiopathic cardiomyopathy for men and women patients, respectively, was 3.83 and 2.94 per 10,000 person-years, which were higher than the corresponding men and women controls (2.00 and 1.34 per 10,000 person-years). Compared with the control group, patients with type 2 diabetes were significantly associated with an increased hazard of idiopathic cardiomyopathy (adjusted hazard ratio [aHR]: 1.60, 95% confidence interval [CI]: 1.45-1.77] in all age and sex stratifications except in those men aged > 64 years. Patients with type 2 diabetes aged < 45 years confronted the greatest increase in the hazard of idiopathic cardiomyopathy, with an aHR of 3.35 (95% CI 2.21-5.06) and 3.48 (95% CI 1.60-7.56) for men and women, respectively. The usage of some anti-diabetic medications revealed lower risks of idiopathic cardiomyopathy. CONCLUSIONS In Taiwan, diabetes increased the risk of idiopathic cardiomyopathy in both sexes and in all age groups, except in men aged > 64 years. Younger patients were vulnerable to have higher HRs of idiopathic cardiomyopathy. Some anti-diabetic medications may reduce the risks of cardiomyopathy.
Collapse
Affiliation(s)
- Hua-Fen Chen
- Department of Endocrinology, Far Eastern Memorial Hospital, New Taipei City, Taiwan
- School of Medicine and Department of Public Health, College of Medicine, Fujen Catholic University, New Taipei City, Taiwan
| | - Ya-Hui Chang
- Department of Public Health, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Hsien-Jung Lo
- Department of Cardiology, Cardiovascular Center, Far Eastern Memorial Hospital, New Taipei City, Taiwan
| | | | - Santi Martini
- Department of Epidemiology, Faculty of Public Health, Universitas Airlangga, Surabaya, Indonesia
| | - Wen-Hsuan Hou
- Department of Physical Medicine and Rehabilitation, Taipei Medical University Hospital, Taipei, Taiwan
- Master Program in Long-Term Care, College of Nursing, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chung-Yi Li
- Department of Public Health, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
- Department of Epidemiology, Faculty of Public Health, Universitas Airlangga, Surabaya, Indonesia.
- Department of Public Health, College of Public Health, China Medical University, Taichung City, Taiwan.
- Department of Healthcare Administration, College of Medical and Health Science, Asia University, Taichung City, Taiwan.
| |
Collapse
|
19
|
Tadic M, Cuspidi C, Calicchio F, Grassi G, Mancia G. Diabetic cardiomyopathy: How can cardiac magnetic resonance help? Acta Diabetol 2020; 57:1027-1034. [PMID: 32285200 DOI: 10.1007/s00592-020-01528-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 03/26/2020] [Indexed: 12/17/2022]
Abstract
Diabetes cardiomyopathy is a specific form of cardiac disease characteristic for diabetic patients. Development of echocardiography enabled diagnosis of diabetic cardiomyopathy significantly before the occurrence of heart failure. Previously was believed that left ventricular (LV) diastolic dysfunction represents the first detectable stage of diabetic cardiomyopathy. However, speckle tracking imaging and strain evaluation showed that mechanical changes occur before LV diastolic dysfunction. Nevertheless, it seems that the first detectable stage of diabetic cardiomyopathy is myocardial interstitial fibrosis, which currently could be diagnosed predominantly by cardiac magnetic resonance. T1 mapping evaluation before and after contrast injection enables assessment of extracellular volume (ECV) and provides qualitative and quantitative assessment of interstitial myocardial fibrosis in diabetic patients. Studies showed a strong correlation between ECV-parameter of interstitial fibrosis and level of glycated hemoglobin-main parameter of glucose control in diabetes. This stage of fibrosis is still not LV hypertrophy and it is reversible, which is of a great importance because of timely initiation of treatment. The necessity for early diagnose is significantly increasing due to the fact that diabetes and arterial hypertension are concomitant disorders in the large number of diabetic patients and it has been known that the risk of interstitial myocardial fibrosis is multiplied in patients with both conditions. Future follow-up investigations are essential to determine the causal relationship between interstitial fibrosis and outcome in these patients. The aim of this review was to summarize the current knowledge and clinical usefulness of CMR in diabetic patients.
Collapse
Affiliation(s)
- Marijana Tadic
- Department of Cardiology, University Hospital "Dr. Dragisa Misovic - Dedinje", Heroja Milana Tepica 1, 11000, Belgrade, Serbia.
| | - Cesare Cuspidi
- University of Milan-Bicocca, Milan, Italy
- Clinical Research Unit, Istituto Auxologico Italiano, Viale della Resistenza 23, 20036, Meda, Italy
| | | | | | - Giuseppe Mancia
- University of Milan-Bicocca, Milan, Italy
- Policlinico di Monza, Monza, Italy
| |
Collapse
|
20
|
Abstract
Diabetes mellitus predisposes affected individuals to a significant spectrum of cardiovascular complications, one of the most debilitating in terms of prognosis is heart failure. Indeed, the increasing global prevalence of diabetes mellitus and an aging population has given rise to an epidemic of diabetes mellitus-induced heart failure. Despite the significant research attention this phenomenon, termed diabetic cardiomyopathy, has received over several decades, understanding of the full spectrum of potential contributing mechanisms, and their relative contribution to this heart failure phenotype in the specific context of diabetes mellitus, has not yet been fully resolved. Key recent preclinical discoveries that comprise the current state-of-the-art understanding of the basic mechanisms of the complex phenotype, that is, the diabetic heart, form the basis of this review. Abnormalities in each of cardiac metabolism, physiological and pathophysiological signaling, and the mitochondrial compartment, in addition to oxidative stress, inflammation, myocardial cell death pathways, and neurohumoral mechanisms, are addressed. Further, the interactions between each of these contributing mechanisms and how they align to the functional, morphological, and structural impairments that characterize the diabetic heart are considered in light of the clinical context: from the disease burden, its current management in the clinic, and where the knowledge gaps remain. The need for continued interrogation of these mechanisms (both known and those yet to be identified) is essential to not only decipher the how and why of diabetes mellitus-induced heart failure but also to facilitate improved inroads into the clinical management of this pervasive clinical challenge.
Collapse
Affiliation(s)
- Rebecca H. Ritchie
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville campus), Parkville, Victoria 3052, Australia
| | - E. Dale Abel
- Division of Endocrinology and Metabolism, University of Iowa Carver College of Medicine, Iowa City, IA 52242, United States
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, IA 52242, United States
| |
Collapse
|
21
|
Paiman EHM, van Eyk HJ, van Aalst MMA, Bizino MB, van der Geest RJ, Westenberg JJM, Geelhoed-Duijvestijn PH, Kharagjitsingh AV, Rensen PCN, Smit JWA, Jazet IM, Lamb HJ. Effect of Liraglutide on Cardiovascular Function and Myocardial Tissue Characteristics in Type 2 Diabetes Patients of South Asian Descent Living in the Netherlands: A Double-Blind, Randomized, Placebo-Controlled Trial. J Magn Reson Imaging 2019; 51:1679-1688. [PMID: 31799782 PMCID: PMC7318583 DOI: 10.1002/jmri.27009] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 11/13/2019] [Accepted: 11/14/2019] [Indexed: 12/22/2022] Open
Abstract
Background The glucagon‐like peptide‐1 (GLP‐1) receptor agonist liraglutide may be beneficial in the regression of diabetic cardiomyopathy. South Asian ethnic groups in particular are at risk of developing type 2 diabetes. Purpose To assess the effects of liraglutide on left ventricular (LV) diastolic and systolic function in South Asian type 2 diabetes patients. Study Type Prospective, double‐blind, randomized, placebo‐controlled trial. Population Forty‐seven type 2 diabetes patients of South Asian ancestry living in the Netherlands, with or without ischemic heart disease, who were randomly assigned to 26‐week treatment with liraglutide (1.8 mg/day) or placebo. Field Strength/Sequence 3T (balanced steady‐state free precession cine MRI, 2D and 4D velocity‐encoded MRI, 1H‐MRS, T1 mapping). Assessment Primary endpoints were changes in LV diastolic function (early deceleration peak [Edec], ratio of early and late peak filling rate [E/A], estimated LV filling pressure [E/Ea]) and LV systolic function (ejection fraction). Secondary endpoints were changes in aortic stiffness (aortic pulse wave velocity [PWV]), myocardial steatosis (myocardial triglyceride content), and diffuse fibrosis (extracellular volume [ECV]). Statistical Tests Data were analyzed according to intention‐to‐treat. Between‐group differences were reported as mean (95% confidence interval [CI]) and were assessed using analysis of covariance (ANCOVA). Results Liraglutide (n = 22) compared with placebo (n = 25) did not change Edec (+0.2 mL/s2 × 10‐3 (–0.3;0.6)), E/A (–0.09 (–0.23;0.05)), E/Ea (+0.1 (–1.2;1.3)) and ejection fraction (0% (–3;2)), but decreased stroke volume (–9 mL (–14;–5)) and increased heart rate (+10 bpm (4;15)). Aortic PWV (+0.5 m/s (–0.6;1.6)), myocardial triglyceride content (+0.21% (–0.09;0.51)), and ECV (–0.2% (–1.4;1.0)) were unaltered. Data Conclusion Liraglutide did not affect LV diastolic and systolic function, aortic stiffness, myocardial triglyceride content, or extracellular volume in Dutch South Asian type 2 diabetes patients with or without coronary artery disease. Level of Evidence: 1 Technical Efficacy Stage: 4 J. Magn. Reson. Imaging 2020;51:1679–1688.
Collapse
Affiliation(s)
- Elisabeth H M Paiman
- Department of Radiology, Leiden University Medical Centre, Leiden, the Netherlands
| | - Huub J van Eyk
- Department of Medicine, Division of Endocrinology, Leiden University Medical Centre, Leiden, the Netherlands.,Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Centre, Leiden, the Netherlands
| | - Minke M A van Aalst
- Department of Radiology, Leiden University Medical Centre, Leiden, the Netherlands
| | - Maurice B Bizino
- Department of Radiology, Leiden University Medical Centre, Leiden, the Netherlands
| | - Rob J van der Geest
- Department of Radiology, Leiden University Medical Centre, Leiden, the Netherlands
| | - Jos J M Westenberg
- Department of Radiology, Leiden University Medical Centre, Leiden, the Netherlands
| | | | - Aan V Kharagjitsingh
- Department of Diabetology and Endocrinology, University Hospital Brussels, Brussels, Belgium
| | - Patrick C N Rensen
- Department of Medicine, Division of Endocrinology, Leiden University Medical Centre, Leiden, the Netherlands.,Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Centre, Leiden, the Netherlands
| | - Johannes W A Smit
- Department of Medicine, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Ingrid M Jazet
- Department of Medicine, Division of Endocrinology, Leiden University Medical Centre, Leiden, the Netherlands.,Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Centre, Leiden, the Netherlands
| | - Hildo J Lamb
- Department of Radiology, Leiden University Medical Centre, Leiden, the Netherlands
| |
Collapse
|