1
|
Huettemeister J, Bögner M, Eggert-Doktor D, Heil E, Primessnig U, Reimers SC, Kirk M, Ramesh G, Nazari-Shafti TZ, Grubitzsch H, Sündermann S, Knosalla C, Zhang K, Falk V, Heinzel FR, Hohendanner F. Structural and functional adaptations of human cardiomyocytes in metabolic disease and heart failure. Am J Physiol Heart Circ Physiol 2025; 328:H1193-H1203. [PMID: 40266293 DOI: 10.1152/ajpheart.00903.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 01/27/2025] [Accepted: 04/14/2025] [Indexed: 04/24/2025]
Abstract
Heart failure (HF), obesity, and diabetes are associated with structural and functional changes that affect the heart at both the organ and cellular levels. Studying isolated adult single cardiomyocytes provides valuable mechanistic insights. However, isolating single cardiomyocytes from human tissue is particularly challenging. This study presents an optimized multiple-step digestion protocol to isolate viable cardiomyocytes from atrial and ventricular human tissue obtained perioperatively or through myocardial biopsies. Using this method and resource, we analyzed calcium-signaling during excitation-contraction coupling and structural features such as t-tubules and mitochondria using confocal microscopy in patients with or without HF, obesity, or diabetes. In a subset of patients undergoing open heart surgery, tissue samples and serum from the great cardiac vein were obtained either under control conditions or upon cardiac volume challenge (VC). We isolated viable cells and observed distinct structural differences between atrial and ventricular cardiomyocytes, including variations in t-tubular and cell size. In atrial cardiomyocytes, when comparing control with patients with HF, the t-tubular networks were unchanged. However, patients with obesity exhibited significantly more t-tubules associated with larger cell sizes. Furthermore, mitochondrial density appeared higher in patients with overweight and diabetes, suggesting that the metabolic status influences cardiomyocyte structure. Finally, when exposing isolated cardiomyocytes with VC serum from the respective patients, excitation-contraction coupling was markedly enhanced, indicating a distention-related alteration of the cardiac secretome with immediate effects on cardiomyocytes. In summary, an optimized protocol for isolating human cardiomyocytes confirmed structural features, identified disease-related changes, and allowed studying the dynamic impact of cardiac distention on secretome-related cardiomyocyte function.NEW & NOTEWORTHY This study presents a novel protocol for isolating human cardiomyocytes, uncovering atrial-ventricular structural differences, obesity-related increases in t-tubules and mitochondria, and metabolic influences on cell architecture. It highlights the dynamic effects of cardiac volume challenge on excitation-contraction coupling through secretome alterations. These advancements provide insights into how conditions like obesity and diabetes reshape cardiomyocyte structure and function, advancing our understanding of heart disease mechanisms.
Collapse
Affiliation(s)
- Judith Huettemeister
- Department of Cardiology, Angiology and Intensive Care Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany
- German Center for Cardiovascular Research (DZHK) Partner Site Berlin, Berlin, Germany
| | - Markus Bögner
- Department of Cardiology, Angiology and Intensive Care Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany
- German Center for Cardiovascular Research (DZHK) Partner Site Berlin, Berlin, Germany
| | - Dirk Eggert-Doktor
- Department of Cardiology, Angiology and Intensive Care Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Emanuel Heil
- Department of Cardiology, Angiology and Intensive Care Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Uwe Primessnig
- Department of Cardiology, Angiology and Intensive Care Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Sophie C Reimers
- Department of Cardiology, Angiology and Intensive Care Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Marzena Kirk
- Department of Cardiology, Angiology and Intensive Care Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Girish Ramesh
- Department of Cardiology, Angiology and Intensive Care Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Timo Zadegh Nazari-Shafti
- Department of Cardiothoracic and Vascular Surgery, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas, United States
| | - Herko Grubitzsch
- Department of Cardiothoracic and Vascular Surgery, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Simon Sündermann
- Department of Cardiothoracic and Vascular Surgery, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Christoph Knosalla
- Department of Cardiothoracic and Vascular Surgery, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Kun Zhang
- Department of Cardiology, Angiology and Intensive Care Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany
- German Center for Cardiovascular Research (DZHK) Partner Site Berlin, Berlin, Germany
| | - Volkmar Falk
- German Center for Cardiovascular Research (DZHK) Partner Site Berlin, Berlin, Germany
- Department of Cardiothoracic and Vascular Surgery, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Department of Health Sciences and Technology, Translational Cardiovascular Technologies, Eidgenössische Technische Hochschule Zürich, Zürich, Switzerland
| | - Frank R Heinzel
- Medizinische Klinik, Städtisches Klinikum Dresden, Dresden, Germany
| | - Felix Hohendanner
- Department of Cardiology, Angiology and Intensive Care Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany
- German Center for Cardiovascular Research (DZHK) Partner Site Berlin, Berlin, Germany
- Berlin Institute of Health, Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
2
|
Luo JC, Jin LH, Zhong YS, Xu XY, Zhang ZY, Chen J, Chen ZX, Li S, Zhang XD, Qian JC. Sotagliflozin provides additional benefits for high-fat diet-induced cardiac inflammatory injury by extra inhibiting P38MAPK and JNK. Int Immunopharmacol 2025; 155:114631. [PMID: 40215771 DOI: 10.1016/j.intimp.2025.114631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 04/06/2025] [Accepted: 04/06/2025] [Indexed: 04/29/2025]
Abstract
SGLT1/2 dual-target inhibitors have demonstrated significant benefits for diabetic patients, particularly those with cardiovascular complications. However, pharmacological mechanisms beyond SGLT1/2 inhibition remain incompletely understood. The current study investigated the effects of sotagliflozin, a representative SGLT1/2 inhibitor, on obesity-related cardiomyopathy and explored the underlying molecular mechanisms. A high-fat diet-induced obese mouse model was employed to evaluate cardiac function and biochemical parameters, complemented by transcriptomic analysis and network pharmacology to identify potential therapeutic targets. Results demonstrated that sotagliflozin effectively ameliorated hyperglycemia, hyperlipidemia, and hypertension in obese mice while significantly improving obesity-induced cardiac dysfunction through suppression of myocardial inflammatory responses. Transcriptomic analysis revealed enrichment of differentially expressed genes in the MAPK pathway, which was further corroborated by network pharmacology. Both in vivo and in vitro validation confirmed direct binding of sotagliflozin to P38MAPK and JNK, leading to significant inhibition of their activation induced by palmitic acid or high-fat diet. These findings suggest that the cardioprotective effects of sotagliflozin against obesity-related cardiomyopathy are mediated through multi-target inhibition of P38MAPK and JNK pathways. Targeting inflammatory signaling pathways while managing cardiovascular risk factors may represent a promising therapeutic strategy for obesity-associated cardiovascular diseases.
Collapse
Affiliation(s)
- Jian-Chao Luo
- Institute of Molecular Toxicology and Pharmacology, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Le-Hao Jin
- Institute of Molecular Toxicology and Pharmacology, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yun-Shan Zhong
- Institute of Molecular Toxicology and Pharmacology, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiao-Yu Xu
- Institute of Molecular Toxicology and Pharmacology, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhe-Yan Zhang
- Institute of Molecular Toxicology and Pharmacology, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jing Chen
- Institute of Molecular Toxicology and Pharmacology, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhong-Xi Chen
- Institute of Molecular Toxicology and Pharmacology, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Sen Li
- School of Basic Medicine, Wenzhou Medical University, Wenzhou 325035, China.
| | - Xiao-Dan Zhang
- Institute of Molecular Toxicology and Pharmacology, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Jian-Chang Qian
- Institute of Molecular Toxicology and Pharmacology, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
3
|
Cui X, Spanos M, Zhao C, Wan W, Cui C, Wang L, Xiao J. Mitochondrial Dysfunction in HFpEF: Potential Interventions Through Exercise. J Cardiovasc Transl Res 2025; 18:442-456. [PMID: 39863753 DOI: 10.1007/s12265-025-10591-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 01/13/2025] [Indexed: 01/27/2025]
Abstract
HFpEF is a prevalent and complex type of heart failure. The concurrent presence of conditions such as obesity, hypertension, hyperglycemia, and hyperlipidemia significantly increase the risk of developing HFpEF. Mitochondria, often referred to as the powerhouses of the cell, are crucial in maintaining cellular functions, including ATP production, intracellular Ca2+ regulation, reactive oxygen species generation and clearance, and the regulation of apoptosis. Exercise plays a vital role in preserving mitochondrial homeostasis, thereby protecting the cardiovascular system from acute stress, and is a fundamental component in maintaining cardiovascular health. In this study, we review the mitochondrial dysfunction underlying the development and progression of HFpEF. Given the pivotal role of exercise in modulating cardiovascular diseases, we particularly focus on exercise as a potential therapeutic strategy for improving mitochondrial function. Graphical abstract Note: This picture was created with BioRender.com.
Collapse
Affiliation(s)
- Xinxin Cui
- Cardiac Regeneration and Ageing Lab, Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, 226011, China
- Institute of Cardiovascular Sciences, Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), School of Life Science, Shanghai Engineering Research Center of Organ Repair, Shanghai University, Shanghai, China
| | - Michail Spanos
- Cardiovascular Division of the Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
- Albert Einstein College of Medicine, Department of Internal Medicine, NCB, Bronx, NY, USA
| | - Cuimei Zhao
- Department of Cardiology, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Wensi Wan
- Institute of Cardiovascular Sciences, Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), School of Life Science, Shanghai Engineering Research Center of Organ Repair, Shanghai University, Shanghai, China
| | - Caiyue Cui
- Institute of Cardiovascular Sciences, Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), School of Life Science, Shanghai Engineering Research Center of Organ Repair, Shanghai University, Shanghai, China
| | - Lijun Wang
- Cardiac Regeneration and Ageing Lab, Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, 226011, China.
- Institute of Cardiovascular Sciences, Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), School of Life Science, Shanghai Engineering Research Center of Organ Repair, Shanghai University, Shanghai, China.
| | - Junjie Xiao
- Cardiac Regeneration and Ageing Lab, Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, 226011, China.
- Institute of Cardiovascular Sciences, Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), School of Life Science, Shanghai Engineering Research Center of Organ Repair, Shanghai University, Shanghai, China.
| |
Collapse
|
4
|
Gaggini M, Sabatino L, Suman AF, Chatzianagnostou K, Vassalle C. Insights into the Roles of GLP-1, DPP-4, and SGLT2 at the Crossroads of Cardiovascular, Renal, and Metabolic Pathophysiology. Cells 2025; 14:387. [PMID: 40072115 PMCID: PMC11898734 DOI: 10.3390/cells14050387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 02/24/2025] [Accepted: 02/28/2025] [Indexed: 03/15/2025] Open
Abstract
In recent years, new drugs for the treatment of type 2 diabetes (T2D) have been proposed, including glucagon-like peptide 1 (GLP-1) agonists or sodium-glucose cotransporter 2 (SGLT2) inhibitors and dipeptidyl peptidase-4 (DPP-4) inhibitors. Over time, some of these agents (in particular, GLP-1 agonists and SGLT2 inhibitors), which were initially developed for their glucose-lowering actions, have demonstrated significant beneficial pleiotropic effects, thus expanding their potential therapeutic applications. This review aims to discuss the mechanisms, pleiotropic effects, and therapeutic potential of GLP-1, DPP-4, and SGLT2, with a particular focus on their cardiorenal benefits beyond glycemic control.
Collapse
Affiliation(s)
- Melania Gaggini
- Institute of Clinical Physiology, National Research Council, Via G. Moruzzi 1, 56124 Pisa, Italy; (M.G.); (L.S.)
| | - Laura Sabatino
- Institute of Clinical Physiology, National Research Council, Via G. Moruzzi 1, 56124 Pisa, Italy; (M.G.); (L.S.)
| | - Adrian Florentin Suman
- Institute of Clinical Physiology, National Research Council, Via G. Moruzzi 1, 56124 Pisa, Italy; (M.G.); (L.S.)
| | | | - Cristina Vassalle
- Fondazione CNR-Regione Toscana G Monasterio, Via G. Moruzzi 1, 56124 Pisa, Italy;
| |
Collapse
|
5
|
Wang H, Zu Q, Lu M, Chen R, Tang Z, Yang Z. Cardiovascular Outcomes in Patients with Complex Type 2 Diabetes Mellitus Treated with the Dual SGLT Inhibitor Sotagliflozin: A Meta-analysis. Diabetes Ther 2025; 16:485-498. [PMID: 39883288 PMCID: PMC11867987 DOI: 10.1007/s13300-025-01696-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 01/16/2025] [Indexed: 01/31/2025] Open
Abstract
INTRODUCTION Scientific publications have shown sodium-glucose co-transporter-2 (SGLT2) inhibitors to have several beneficial effects in patients with complex type 2 diabetes mellitus (T2DM). However, sodium-glucose co-transporter-1 (SGLT-1) inhibitor is still under investigation in clinical trials. Recently, a dual inhibitor of sodium-glucose co-transporter (SGLT1/2), sotagliflozin, has been approved for use in patients with T2DM. In this analysis, we aimed to systematically compare the cardiovascular outcomes in patients with complex T2DM who were treated with the newly approved dual (SGLT 1 and 2) inhibitor sotagliflozin. METHODS Electronic databases, including Embase, MEDLINE, http://www. CLINICALTRIALS gov , Web of Science, Google Scholar, the Cochrane database, and reference lists of relevant publications, were searched for publications comparing the novel SGLT1/2 inhibitor versus placebo for the treatment of patients with complex T2DM. The primary endpoint, including total number of deaths from cardiovascular causes, hospitalization for heart failure, and urgent visits for heart failure, death from cardiovascular causes, cardiac mortality, hospitalization for heart failure, non-fatal myocardial infarction, and total number of cardiac events, were considered as the endpoints in this analysis. The RevMan software version 5.4 was used to carry out the statistical analysis. Risk ratios (RR) with 95% confidence intervals (CI) were used to represent the data following analysis. RESULTS A total of 13,054 participants enrolled between 2017 and 2020 were included in this analysis, with 6734 participants assigned to sotagliflozin and 6320 assigned to placebo. The results of this analysis showed that the primary endpoint was significantly in favor of sotagliflozin with (RR: 0.73, 95% CI 0.67-0.80; P = 0.00001). Hospitalization for heart failure (RR: 0.67, 95% CI 0.60-0.75; P = 0.00001) and the total number of cardiac events (RR: 0.73, 95% CI 0.67-0.79; P = 0.00001) were also significantly lower with sotagliflozin when compared to placebo in these patients with complex T2DM. However, the risk for cardiovascular mortality and non-fatal myocardial infarction were not significantly different with (RR: 0.91, 95% CI 0.76-1.09; P = 0.31) and (RR: 0.92, 95% CI 0.27-3.12; P = 0.89), respectively. CONCLUSIONS Cardiovascular outcomes, including the total number of adverse cardiac events and hospitalization for heart failure, were significantly reduced with the newly approved SGLT1/2 inhibitor sotagliflozin apparently showing its cardiovascular efficacy in patients with complex T2DM. Future trials with larger sample sizes and a longer follow-up time could possibly confirm this hypothesis.
Collapse
Affiliation(s)
- Hong Wang
- Department of Cardiology, The Peoples Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, Guangxi, People's Republic of China.
| | - Quannan Zu
- College of Management and Economics, Tianjin University, Tianjin, 300072, People's Republic of China
| | - Ming Lu
- College of Management and Economics, Tianjin University, Tianjin, 300072, People's Republic of China
| | - Rongfa Chen
- The State Key Laboratory Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, People's Republic of China
| | - Zhangui Tang
- Institute of Cardiovascular Disease, Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, 430032, People's Republic of China
| | - Zhiren Yang
- The State Key Laboratory Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, People's Republic of China
| |
Collapse
|
6
|
Ning ZH, Wang XH, Tang HF, Hu HJ. The role of SGLT1 in atrial fibrillation and its relationship with endothelial-mesenchymal transition. Biochem Biophys Res Commun 2025; 748:151338. [PMID: 39823893 DOI: 10.1016/j.bbrc.2025.151338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 12/23/2024] [Accepted: 01/13/2025] [Indexed: 01/20/2025]
Abstract
Atrial fibrillation (AF) is a prevalent arrhythmia closely associated with atrial fibrosis, posing significant challenges to cardiovascular health. Recent studies have identified the sodium-glucose co-transporter 1 (SGLT1) as a potential key player in the pathophysiology of heart diseases, particularly in the context of AF and atrial fibrosis. This review aims to synthesize current knowledge regarding the mechanisms by which SGLT1 influences the development of AF and atrial fibrosis, with a specific focus on its relationship with endothelial-mesenchymal transition (EMT). By analyzing the latest research findings, this paper discusses how SGLT1 may modulate structural and functional changes in the atria, thereby enhancing our understanding of the underlying mechanisms driving AF.
Collapse
Affiliation(s)
- Zhi-Hong Ning
- The First Affiliated Hospital, Department of Cardiovascular Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China
| | - Xiu-Heng Wang
- The First Affiliated Hospital, Department of Medical-record, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China
| | - Hui-Fang Tang
- The First Affiliated Hospital, Department of Cardiovascular Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China
| | - Heng-Jing Hu
- The First Affiliated Hospital, Department of Cardiovascular Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China; Department of Cardiovascular Disease and Key Lab for Atherosclerosis of Hunan Province, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China.
| |
Collapse
|
7
|
Lin M, Zhang S, Zhang L, Yang C, Luo Y, Peng Y, Tan X, Wen Q, Fan X, Ou X. Redefining outcomes of ventricular arrhythmia for SGLT2 inhibitor medication in heart failure patients: a meta-analysis of randomized controlled trials. Syst Rev 2025; 14:31. [PMID: 39893467 PMCID: PMC11786358 DOI: 10.1186/s13643-025-02766-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 01/12/2025] [Indexed: 02/04/2025] Open
Abstract
BACKGROUND Sodium-glucose co-transporter 2 (SGLT2) inhibitors have been shown to lower the risk of re-hospitalization and cardiovascular mortality among heart failure (HF) patients. Nevertheless, the impact of these agents on ventricular arrhythmias (VAs) has not been thoroughly investigated. To assess the beneficial impact of SGLT2 inhibitors on VAs in patients at various stages of HF, a systematic review and meta-analysis of randomized controlled trials involving SGLT2 inhibitors in this patient population was performed. METHODS A comprehensive search of the PubMed, Embase, Ovid, ProQuest, Scopus, and Cochrane databases was performed for clinical trials published up to November 21, 2024. The primary outcomes of interest were incidences of VAs and sudden cardiac death (SCD) between the groups receiving SGLT2 inhibitors and the control drugs. For the outcomes observed in the populations of the included trials and in specific subgroups, hazard ratios (HRs) and 95% confidence intervals (CIs) were pooled and meta-analysed across the analyses. RESULTS A total of 23 randomized trials (22 placebo-controlled trials and 1 active-controlled trial) involving 74,380 patients (37,372 receiving SGLT2 inhibitors and 37,008 in the control group) were included. The analysed SGLT2 inhibitors included canagliflozin, dapagliflozin, empagliflozin, bexagliflozin, sotagliflozin, and ertugliflozin. The participants were non-advanced HF patients, including at-risk for HF, pre-HF, and symptomatic HF, with follow-up duration ranging from 12 to 296 weeks. Compared with the control, treatment with SGLT2 inhibitors was associated with significantly reduced risk of VAs (risk ratio (RR) 0.85, 95% confidence interval (CI) 0.74-0.98; P = 0.02) and SCD (RR 0.79, 95% CI 0.64-0.98; P = 0.03). Subgroup analyses indicated that longer follow-up (≥ 1 year) taking SGLT2 inhibitors can still reduce the risk of VAs (RR 0.79, 95% CI 0.65-0.96; P = 0.02) and SCD (RR 0.80, 95% CI 0.65-0.99; P = 0.04). CONCLUSION SGLT2 inhibitors have beneficial effects on lowering risks of VAs and SCD in patients with type 2 diabetes, cardiovascular diseases, heart failure with reduced ejection fraction (HFrEF), heart failure with preserved ejection fraction (HFpEF), and heart failure with mildly reduced ejection fraction (HFmrEF), with longer follow-up duration reinforcing these findings. However, future prospective trials are needed to verify the effects of SGLT2 inhibitors on VAs and SCD. SYSTEMATIC REVIEW REGISTRATION PROSPERO (CRD42024601914).
Collapse
Affiliation(s)
- Miao Lin
- Key Laboratory of Medical Electrophysiology of the Ministry of Education, Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Shiyu Zhang
- Key Laboratory of Medical Electrophysiology of the Ministry of Education, Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Lu Zhang
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Chengying Yang
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yang Luo
- Key Laboratory of Medical Electrophysiology of the Ministry of Education, Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Yajin Peng
- Key Laboratory of Medical Electrophysiology of the Ministry of Education, Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Xiaoqiu Tan
- Key Laboratory of Medical Electrophysiology of the Ministry of Education, Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, China
| | - Qiang Wen
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Xinrong Fan
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China.
| | - Xianhong Ou
- Key Laboratory of Medical Electrophysiology of the Ministry of Education, Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China.
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China.
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, China.
| |
Collapse
|
8
|
Hummelgaard S, Hvid H, Birn H, Glerup S, Tom N, Bilgin M, Kirchhoff JE, Weyer K. Lack of renoprotective effects by long-term PCSK9 and SGLT2 inhibition using alirocumab and empagliflozin in obese ZSF1 rats. Am J Physiol Renal Physiol 2025; 328:F48-F67. [PMID: 39556312 DOI: 10.1152/ajprenal.00065.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 11/04/2024] [Accepted: 11/06/2024] [Indexed: 12/21/2024] Open
Abstract
Chronic kidney disease (CKD) is associated with an increased risk of cardiovascular disease (CVD). Despite the entry of sodium glucose cotransporter 2 (SGLT2) inhibitors, CKD persists as a medical challenge. Proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibition reduces low-density lipoprotein (LDL)-cholesterol, a major risk factor of CVD. Interestingly, studies indicate that PCSK9 inhibition decreases proteinuria in kidney disease, complementing the reduced CVD risk. This study aimed to validate obese ZSF1 rats as a model for the renoprotective effects of PCSK9 and SGLT2 inhibition using alirocumab and empagliflozin for 15 wk. Obese rats revealed a significant reduction in measured glomerular filtration rate (mGFR) and increased urine albumin/creatinine ratio (UACR) during follow-up compared with lean controls. Alirocumab treatment resulted in a decline in mGFR and increased UACR compared with vehicle-treated obese rats. Immunohistochemistry showed increased fibrosis and inflammation in kidney tissue from obese rats treated with empagliflozin or alirocumab, whereas hepatic cholesterol and triglyceride levels were lowered compared with vehicle-treated obese rats. Although alirocumab lowered circulating free cholesterol levels throughout the treatment period, certain cholesteryl esters were increased at the end of the study, resulting in no overall difference in total cholesterol levels in the alirocumab group. Correspondingly, only a trend toward increased hepatic LDL-receptor levels was observed. In conclusion, these findings suggest that alirocumab treatment aggravates kidney dysfunction in obese ZSF1 rats. Moreover, in contrast to the renoprotective properties of empagliflozin observed in patients with CKD, empagliflozin did not ameliorate kidney disease progression in the obese ZSF1 rat.NEW & NOTEWORTHY New treatments to slow kidney disease progression and reduce cardiovascular disease risk are needed for chronic kidney disease (CKD). We investigated the cholesterol-lowering PCSK9 inhibitor alirocumab as a new treatment for proteinuric CKD and the effect of SGLT2 inhibition using empagliflozin in obese ZSF1 rats. Regarding renoprotection, our findings were contradictory with previous preclinical studies and clinical data, suggesting that different pathophysiological mechanisms may apply to this rat model.
Collapse
Affiliation(s)
- Sandra Hummelgaard
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Department of Cardio-Renal Pharmacology, Novo Nordisk, Måløv, Denmark
| | - Henning Hvid
- Department of Pathology and Imaging, Novo Nordisk, Måløv, Denmark
| | - Henrik Birn
- Department of Clinical Medicine and Renal Medicine, Aarhus University and Aarhus University Hospital, Aarhus, Denmark
| | - Simon Glerup
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Draupnir Bio, c/o INCUBA Skejby, Aarhus, Denmark
| | - Nikola Tom
- Lipidomics Core Facility, Danish Cancer Institute, Copenhagen, Denmark
| | - Mesut Bilgin
- Lipidomics Core Facility, Danish Cancer Institute, Copenhagen, Denmark
| | | | - Kathrin Weyer
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
9
|
Chen YR, Zhu FY, Zhou R. SGLT2 inhibitors for alleviating heart failure through non-hypoglycemic mechanisms. Front Cardiovasc Med 2024; 11:1494882. [PMID: 39717441 PMCID: PMC11663900 DOI: 10.3389/fcvm.2024.1494882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 11/12/2024] [Indexed: 12/25/2024] Open
Abstract
Sodium-glucose cotransporter-2 (SGLT2) inhibitors afford significant cardiovascular benefits to patients with diabetes mellitus and heart failure. Three large randomized clinical trials (EMPAREG-Outcomes, DECLARE-TIMI58, and DAPA-HF) have shown that SGLT2 inhibitors prevent cardiovascular events and reduce the risk of death and hospital admission resulting from heart failure. Patients without type 2 diabetes mellitus (T2DM) also experience a similar degree of cardiovascular benefit as those with T2DM do. SGLT2 inhibitors could improve cardiac function through potential non-hypoglycemic mechanisms, including the reduction of the circulatory volume load, regulation of energy metabolism, maintenance of ion homeostasis, alleviation of inflammation and oxidative stress, and direct inhibition of cardiac SGLT1 receptors and antimyocardial fibrosis. This article reviews the mechanism through which SGLT2 inhibitors prevent/alleviate heart failure through non-hypoglycemic pathways, to support their use for the treatment of heart failure in non-T2DM patients.
Collapse
Affiliation(s)
| | | | - Rong Zhou
- Department of Cardiology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| |
Collapse
|
10
|
Hung CH, Lu LY. New Insights into the Role of SGLT-2 Inhibitors in the Prevention of Dementia. Neurol Int 2024; 16:1717-1730. [PMID: 39728750 DOI: 10.3390/neurolint16060124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/21/2024] [Accepted: 12/02/2024] [Indexed: 12/28/2024] Open
Abstract
Diabetes mellitus (DM) is a chronic disease associated with numerous complications, including cardiovascular diseases, nephropathy, and neuropathy. Sodium-glucose cotransporter 2 (SGLT-2) inhibitors, a class of novel antidiabetic agents, have demonstrated promising therapeutic effects beyond glycemic control, with potential benefits extending to the cardiovascular and renal systems. Recently, research has increasingly focused on exploring the potential role of SGLT-2 inhibitors in preventing dementia. The aim of this review is to summarize the current research suggesting that SGLT-2 inhibitors, such as empagliflozin and dapagliflozin, may have neuroprotective effects that reduce dementia risk and improve cognitive function in type 2 diabetes patients. These benefits are likely due to better glycemic control, reduced oxidative stress, and less advanced glycation end-product (AGE) formation, all linked to neurodegeneration. Despite these promising findings, existing studies are limited by small sample sizes and short follow-up durations, which may not adequately capture long-term outcomes. To establish more robust evidence, larger-scale, long-term randomized controlled trials (RCTs) involving diverse populations are needed. These studies should involve diverse populations and focus on understanding the mechanisms behind the neuroprotective effects. Addressing these limitations will provide clearer guidelines for using SGLT-2 inhibitors in dementia prevention and management. This will help improve therapeutic strategies for cognitive health in diabetic patients.
Collapse
Affiliation(s)
- Cheng-Hsien Hung
- Department of Pharmacy, Chang Bing Show Chwan Memorial Hospital, Changhua 50544, Taiwan
- Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan
| | - Li-Yu Lu
- School of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan
| |
Collapse
|
11
|
Zarei B, Fazli B, Tayyebi M, Abbasi Teshnizi M, Moeinipour A, Javedanfar O, Javidi Dasht Bayaz R, Rahmati M, Ghavami V, Amini S, Mohammadpour AH. Evaluation of the effect of empagliflozin on prevention of atrial fibrillation after coronary artery bypass grafting: a double-blind, randomized, placebo-controlled trial. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:9935-9946. [PMID: 38953969 DOI: 10.1007/s00210-024-03225-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 06/04/2024] [Indexed: 07/04/2024]
Abstract
This study is aimed at evaluating the effect of empagliflozin in preventing atrial fibrillation after coronary artery bypass grafting (CABG). Eighty-two patients who fulfilled the inclusion criteria were allocated to the empagliflozin group (n = 43) or placebo group (n = 39). In two groups, patients received empagliflozin or placebo tablets 3 days before surgery and on the first three postoperative days (for 6 days) in addition to the standard regimen during hospitalization. During the first 3 days after surgery, types of arrhythmias after cardiac surgery, including supraventricular arrhythmias, especially postoperative atrial fibrillation (POAF), ventricular arrhythmias, and heart blocks, were assessed by electrocardiogram monitoring. C-reactive protein (CRP) levels were evaluated pre-operatively and postoperative on the third day. The incidence of POAF in the treatment group was lower compared to the control group; however, this reduction was statistically non-significant (p = 0.09). The frequency of ventricular tachycardia was reduced significantly in the treatment group versus patients in the control (p = 0.02). Also, a significant reduction in the frequency of premature ventricular contractions (PVCs) was seen in the treatment group in comparison with the control group (p = 0.001). After the intervention, CRP levels were significantly less in the empagliflozin group compared to the control group in the third postoperative day (p = 0.04). The prophylactic use of empagliflozin effectively reduced the incidence of ventricular arrhythmia in patients undergoing CABG surgery.
Collapse
Affiliation(s)
- Batool Zarei
- Department of Clinical Pharmacy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Benyamin Fazli
- Department of Anesthesiology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Tayyebi
- Interventional Cardiac Electrophysiologist, Department of Cardiovascular Diseases, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Aliasghar Moeinipour
- Department of Cardiac Surgery, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Omid Javedanfar
- Department of Cardiac Surgery, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reza Javidi Dasht Bayaz
- Vascular and Endovascular Surgery Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Malihe Rahmati
- Vascular and Endovascular Surgery Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vahid Ghavami
- Department of Biostatistics, Social Determinants of Health Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shahram Amini
- Department of Anesthesia, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Amir Hooshang Mohammadpour
- Department of Clinical Pharmacy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
12
|
Bode D, Pronto JRD, Schiattarella GG, Voigt N. Metabolic remodelling in atrial fibrillation: manifestations, mechanisms and clinical implications. Nat Rev Cardiol 2024; 21:682-700. [PMID: 38816507 DOI: 10.1038/s41569-024-01038-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/22/2024] [Indexed: 06/01/2024]
Abstract
Atrial fibrillation (AF) is a continually growing health-care burden that often presents together with metabolic disorders, including diabetes mellitus and obesity. Current treatments often fall short of preventing AF and its adverse outcomes. Accumulating evidence suggests that metabolic disturbances can promote the development of AF through structural and electrophysiological remodelling, but the underlying mechanisms that predispose an individual to AF are aetiology-dependent, thus emphasizing the need for tailored therapeutic strategies to treat AF that target an individual's metabolic profile. AF itself can induce changes in glucose, lipid and ketone metabolism, mitochondrial function and myofibrillar energetics (as part of a process referred to as 'metabolic remodelling'), which can all contribute to atrial dysfunction. In this Review, we discuss our current understanding of AF in the setting of metabolic disorders, as well as changes in atrial metabolism that are relevant to the development of AF. We also describe the potential of available and emerging treatment strategies to target metabolic remodelling in the setting of AF and highlight key questions and challenges that need to be addressed to improve outcomes in these patients.
Collapse
Affiliation(s)
- David Bode
- Max Rubner Center for Cardiovascular Metabolic Renal Research (MRC), Deutsches Herzzentrum der Charité (DHZC), Charité - Universitätsmedizin Berlin, Berlin, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Julius Ryan D Pronto
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Georg-August University Göttingen, Göttingen, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany
| | - Gabriele G Schiattarella
- Max Rubner Center for Cardiovascular Metabolic Renal Research (MRC), Deutsches Herzzentrum der Charité (DHZC), Charité - Universitätsmedizin Berlin, Berlin, Germany.
- DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin, Germany.
- Translational Approaches in Heart Failure and Cardiometabolic Disease, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.
- Division of Cardiology, Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy.
| | - Niels Voigt
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Georg-August University Göttingen, Göttingen, Germany.
- DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany.
- Cluster of Excellence 'Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells' (MBExC), University of Göttingen, Göttingen, Germany.
| |
Collapse
|
13
|
Li Q, Muhib UR, Ma X, Liu Z, Gao F, Wang Z. Potential Mechanisms of Epicardial Adipose Tissue Influencing Heart Failure with Preserved Ejection Fraction. Rev Cardiovasc Med 2024; 25:311. [PMID: 39355598 PMCID: PMC11440401 DOI: 10.31083/j.rcm2509311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/28/2024] [Accepted: 04/09/2024] [Indexed: 10/03/2024] Open
Abstract
Heart failure (HF) is the predominant terminal stage and the leading cause of mortality in cardiac disease. Heart failure with preserved ejection fraction (HFpEF) affects roughly 50% of HF patients globally. Due to the global aging population, the prevalence, morbidity, and mortality of HFpEF have gradually increased. Epicardial adipose tissue (EAT), as a key visceral adipose tissue around the heart, affects cardiac diastolic function and exercise reserve capacity. EAT closely adheres to the myocardium and can produce inflammatory factors, neurotransmitters, and other factors through autocrine or paracrine mechanisms, affecting the heart function by inflammatory response, cardiac metabolism and energy supply, cardiomyocyte structure and electrical activity, and pericardial vascular function. Currently, research on the mechanism and treatment methods of HFpEF is constantly improving. EAT may play a multi-level impact on the occurrence and development of HFpEF. This review also summarizes the potential impact of EAT on the heart in HFpEF combined with other metabolism-related diseases such as obesity or diabetes over other obesity-related measures, such as body mass index (BMI) or other adipose tissue. Above all, this review comprehensively summarizes the potential mechanisms by which EAT may affect HFpEF. The objective is to enhance our comprehension and management of HFpEF. Future research should delve into the mechanistic relationship between EAT and HFpEF, and investigate interventions aimed at EAT to improve the prognosis of patients with HFpEF.
Collapse
Affiliation(s)
- Qiuxuan Li
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing Key Laboratory of Precision Medicine of Coronary Atherosclerotic Disease, Clinical Center for Coronary Heart Disease, 100029 Beijing, China
| | - Ur Rehman Muhib
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing Key Laboratory of Precision Medicine of Coronary Atherosclerotic Disease, Clinical Center for Coronary Heart Disease, 100029 Beijing, China
| | - Xiaoteng Ma
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing Key Laboratory of Precision Medicine of Coronary Atherosclerotic Disease, Clinical Center for Coronary Heart Disease, 100029 Beijing, China
| | - Zaiqiang Liu
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing Key Laboratory of Precision Medicine of Coronary Atherosclerotic Disease, Clinical Center for Coronary Heart Disease, 100029 Beijing, China
| | - Fei Gao
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing Key Laboratory of Precision Medicine of Coronary Atherosclerotic Disease, Clinical Center for Coronary Heart Disease, 100029 Beijing, China
| | - Zhijian Wang
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing Key Laboratory of Precision Medicine of Coronary Atherosclerotic Disease, Clinical Center for Coronary Heart Disease, 100029 Beijing, China
| |
Collapse
|
14
|
Lin CY, Lin SI, Lee YH, Chen CY. Left Atrial Hemodynamics and Clinical Utility in Heart Failure. Rev Cardiovasc Med 2024; 25:325. [PMID: 39355585 PMCID: PMC11440442 DOI: 10.31083/j.rcm2509325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/03/2024] [Accepted: 05/16/2024] [Indexed: 10/03/2024] Open
Abstract
Comprehensive knowledge of the left atrium (LA) and its pathophysiology has emerged as an important clinical and research focus in the heart failure (HF) arena. Although studies on HF focusing on investigating left ventricular remodeling are numerous, those on atrial structural and functional changes have received comparatively less attention. Studies on LA remodeling have recently received increasing attention, and LA pressure (LAP) has become a novel target for advanced monitoring and is a potential therapeutic approach for treating HF. Various devices specifically designed for the direct measurement of LAP have been developed to optimize HF treatment by reducing LAP. This review focuses on LA hemodynamic monitoring and effective LAP decompression.
Collapse
Affiliation(s)
- Chang-Yi Lin
- Cardiovascular Division, Department of Internal Medicine, Mackay Memorial Hospital, Mackay Medical College, 104217 New Taipei City, Taiwan
| | - Shu-I Lin
- Cardiovascular Division, Department of Internal Medicine, Mackay Memorial Hospital, Mackay Medical College, 104217 New Taipei City, Taiwan
- Department of Nursing, Mackay Junior College of Medicine, Nursing and Management, 104217 New Taipei City, Taiwan
| | - Ying-Hsiang Lee
- Cardiovascular Division, Department of Internal Medicine, Mackay Memorial Hospital, Mackay Medical College, 104217 New Taipei City, Taiwan
- Department of Nursing, Mackay Junior College of Medicine, Nursing and Management, 104217 New Taipei City, Taiwan
| | - Chun-Yen Chen
- Cardiovascular Division, Department of Internal Medicine, Mackay Memorial Hospital, Mackay Medical College, 104217 New Taipei City, Taiwan
| |
Collapse
|
15
|
Minciună IA, Tomoaia R, Mihăilă D, Cismaru G, Puiu M, Roșu R, Simu G, Frîngu F, Irimie DA, Caloian B, Zdrenghea D, Pop D. Recent Advances in Understanding the Molecular Mechanisms of SGLT2 Inhibitors in Atrial Remodeling. Curr Issues Mol Biol 2024; 46:9607-9623. [PMID: 39329923 PMCID: PMC11430639 DOI: 10.3390/cimb46090571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/26/2024] [Accepted: 08/30/2024] [Indexed: 09/28/2024] Open
Abstract
Atrial cardiomyopathy and remodeling play pivotal roles in the development of atrial fibrillation (AF) and heart failure (HF), involving complex changes in atrial structure and function. These changes facilitate the progression of AF and HF by creating a dynamic interplay between mechanical stress and electrical disturbances in the heart. Sodium-glucose cotransporter 2 inhibitors (SGLT2is), initially developed for the management of type 2 diabetes, have demonstrated promising cardiovascular benefits, being currently one of the cornerstone treatments in HF management. Despite recent data from randomized clinical trials indicating that SGLT2is may significantly influence atrial remodeling, their overall effectiveness in this context is still under debate. Given the emerging evidence, this review examines the molecular mechanisms through which SGLT2is exert their effects on atrial remodeling, aiming to clarify their potential benefits and limitations. By exploring these mechanisms, this review aims to provide insights into how SGLT2is can be integrated into strategies for preventing the progression of atrial remodeling and HF, as well as the development of AF.
Collapse
Affiliation(s)
- Ioan-Alexandru Minciună
- 5th Department of Internal Medicine, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania; (I.-A.M.); (D.M.); (G.C.); (R.R.); (F.F.); (D.A.I.); (B.C.); (D.Z.); (D.P.)
- Cardiology Department, Rehabilitation Hospital, 400066 Cluj-Napoca, Romania;
| | - Raluca Tomoaia
- 5th Department of Internal Medicine, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania; (I.-A.M.); (D.M.); (G.C.); (R.R.); (F.F.); (D.A.I.); (B.C.); (D.Z.); (D.P.)
- Cardiology Department, Rehabilitation Hospital, 400066 Cluj-Napoca, Romania;
| | - Dragos Mihăilă
- 5th Department of Internal Medicine, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania; (I.-A.M.); (D.M.); (G.C.); (R.R.); (F.F.); (D.A.I.); (B.C.); (D.Z.); (D.P.)
| | - Gabriel Cismaru
- 5th Department of Internal Medicine, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania; (I.-A.M.); (D.M.); (G.C.); (R.R.); (F.F.); (D.A.I.); (B.C.); (D.Z.); (D.P.)
- Cardiology Department, Rehabilitation Hospital, 400066 Cluj-Napoca, Romania;
| | - Mihai Puiu
- Cardiology Department, Rehabilitation Hospital, 400066 Cluj-Napoca, Romania;
| | - Radu Roșu
- 5th Department of Internal Medicine, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania; (I.-A.M.); (D.M.); (G.C.); (R.R.); (F.F.); (D.A.I.); (B.C.); (D.Z.); (D.P.)
- Cardiology Department, Rehabilitation Hospital, 400066 Cluj-Napoca, Romania;
| | - Gelu Simu
- 5th Department of Internal Medicine, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania; (I.-A.M.); (D.M.); (G.C.); (R.R.); (F.F.); (D.A.I.); (B.C.); (D.Z.); (D.P.)
- Cardiology Department, Rehabilitation Hospital, 400066 Cluj-Napoca, Romania;
| | - Florina Frîngu
- 5th Department of Internal Medicine, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania; (I.-A.M.); (D.M.); (G.C.); (R.R.); (F.F.); (D.A.I.); (B.C.); (D.Z.); (D.P.)
- Cardiology Department, Rehabilitation Hospital, 400066 Cluj-Napoca, Romania;
| | - Diana Andrada Irimie
- 5th Department of Internal Medicine, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania; (I.-A.M.); (D.M.); (G.C.); (R.R.); (F.F.); (D.A.I.); (B.C.); (D.Z.); (D.P.)
- Cardiology Department, Rehabilitation Hospital, 400066 Cluj-Napoca, Romania;
| | - Bogdan Caloian
- 5th Department of Internal Medicine, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania; (I.-A.M.); (D.M.); (G.C.); (R.R.); (F.F.); (D.A.I.); (B.C.); (D.Z.); (D.P.)
- Cardiology Department, Rehabilitation Hospital, 400066 Cluj-Napoca, Romania;
| | - Dumitru Zdrenghea
- 5th Department of Internal Medicine, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania; (I.-A.M.); (D.M.); (G.C.); (R.R.); (F.F.); (D.A.I.); (B.C.); (D.Z.); (D.P.)
| | - Dana Pop
- 5th Department of Internal Medicine, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania; (I.-A.M.); (D.M.); (G.C.); (R.R.); (F.F.); (D.A.I.); (B.C.); (D.Z.); (D.P.)
- Cardiology Department, Rehabilitation Hospital, 400066 Cluj-Napoca, Romania;
| |
Collapse
|
16
|
Pourafkari M, Connelly KA, Verma S, Mazer CD, Teoh H, Quan A, Goodman SG, Rai A, Ng MY, Deva DP, Triverio P, Jiminez-Juan L, Yan AT, Ge Y. Empagliflozin and left atrial function in patients with type 2 diabetes mellitus and coronary artery disease: insight from the EMPA-HEART CardioLink-6 randomized clinical trial. Cardiovasc Diabetol 2024; 23:319. [PMID: 39198860 PMCID: PMC11360285 DOI: 10.1186/s12933-024-02344-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 06/27/2024] [Indexed: 09/01/2024] Open
Abstract
BACKGROUND Sodium-glucose cotransporter-2 (SGLT2) inhibitors have demonstrated reduction in heart failure outcomes in patients with type 2 diabetes mellitus, although the exact mechanism of benefit remains unclear. Alteration in left atrial (LA) function due to chronic pressure or volume overload is a hallmark of heart failure. OBJECTIVE To evaluate the effect of the SGLT2 inhibitor empagliflozin on LA volume and function. METHODS 90 patients with coronary artery disease and type 2 diabetes (T2DM) were randomized to empagliflozin (n = 44) or placebo (n = 46), and underwent cardiac magnetic resonance (CMR) imaging at baseline and after 6 months. The main outcome was change in LA volume; LA function, including active and passive components, was also measured by a blinded reader. RESULTS At baseline, there was no significant difference in LA volumes between the empagliflozin (indexed maximum LA volume 26.4 ± 8.4mL/m2, minimum LA volume 11.1 ± 5.7mL/m2) and placebo (indexed maximum LA volume 28.7 ± 8.2mL/m2, minimum LA volume 12.6 ± 5.0mL/m2) groups. After 6 months, changes in LA volumes did not differ with adjusted difference (empagliflozin minus placebo): 0.99 mL/m2 (95% CI: -1.7 to 3.7 mL/m2; p = 0.47) for indexed maximum LA volume, and 0.87 mL/m2 (95% CI: -0.9 to 2.6 mL/m2; p = 0.32) for indexed minimum LA volume. Changes in total LA emptying fraction were also similar, with between-group adjusted mean difference - 0.01 (95% CI: -0.05 to 0.03, p = 0.59). CONCLUSION SGLT2 inhibition with empagliflozin for 6 months did not have a significant impact on LA volume and function in patients with T2DM and coronary artery disease. (Effects of Empagliflozin on Cardiac Structure in Patients with Type 2 Diabetes [EMPA-HEART]; NCT02998970).
Collapse
Affiliation(s)
- Marina Pourafkari
- Department of Medical Imaging, St. Michael's Hospital, Toronto, Canada
| | - Kim A Connelly
- Division of Cardiology, Terrence Donnelly Heart Centre, St Michael's Hospital, 30 Bond Street, Toronto, ON, M5B 1W8, Canada.
- University of Toronto, Toronto, Canada.
- Keenan Research Centre, Li Ka Shing Knowledge Institute, St Michael's Hospital, Toronto, Canada.
| | - Subodh Verma
- University of Toronto, Toronto, Canada
- Keenan Research Centre, Li Ka Shing Knowledge Institute, St Michael's Hospital, Toronto, Canada
- Division of Cardiac Surgery, St Michael's Hospital, Toronto, Canada
| | - C David Mazer
- University of Toronto, Toronto, Canada
- Department of Anesthesia, St Michael's Hospital, Toronto, Canada
| | - Hwee Teoh
- Division of Cardiac Surgery, St Michael's Hospital, Toronto, Canada
- Division of Endocrinology and Metabolism, St Michael's Hospital, Toronto, Canada
| | - Adrian Quan
- Division of Cardiac Surgery, St Michael's Hospital, Toronto, Canada
| | - Shaun G Goodman
- Division of Cardiology, Terrence Donnelly Heart Centre, St Michael's Hospital, 30 Bond Street, Toronto, ON, M5B 1W8, Canada
- University of Toronto, Toronto, Canada
- Keenan Research Centre, Li Ka Shing Knowledge Institute, St Michael's Hospital, Toronto, Canada
| | - Archana Rai
- Department of Medical Imaging, St. Michael's Hospital, Toronto, Canada
| | - Ming Yen Ng
- Department of Diagnostic Radiology, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China
| | - Djeven P Deva
- Department of Medical Imaging, St. Michael's Hospital, Toronto, Canada
- University of Toronto, Toronto, Canada
| | - Piero Triverio
- Department of Electrical & Computer Engineering, Institute of Biomedical Engineering, University of Toronto, Toronto, Canada
| | - Laura Jiminez-Juan
- Department of Medical Imaging, St. Michael's Hospital, Toronto, Canada
- University of Toronto, Toronto, Canada
| | - Andrew T Yan
- Department of Medical Imaging, St. Michael's Hospital, Toronto, Canada.
- Division of Cardiology, Terrence Donnelly Heart Centre, St Michael's Hospital, 30 Bond Street, Toronto, ON, M5B 1W8, Canada.
- University of Toronto, Toronto, Canada.
- Keenan Research Centre, Li Ka Shing Knowledge Institute, St Michael's Hospital, Toronto, Canada.
| | - Yin Ge
- Division of Cardiology, Terrence Donnelly Heart Centre, St Michael's Hospital, 30 Bond Street, Toronto, ON, M5B 1W8, Canada.
- University of Toronto, Toronto, Canada.
| |
Collapse
|
17
|
Li Z, Yao X, Zhang J, Yang J, Ni J, Wang Y. Exploring the bone marrow micro environment in thalassemia patients: potential therapeutic alternatives. Front Immunol 2024; 15:1403458. [PMID: 39161767 PMCID: PMC11330836 DOI: 10.3389/fimmu.2024.1403458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 07/22/2024] [Indexed: 08/21/2024] Open
Abstract
Genetic mutations in the β-globin gene lead to a decrease or removal of the β-globin chain, causing the build-up of unstable alpha-hemoglobin. This condition is referred to as beta-thalassemia (BT). The present treatment strategies primarily target the correction of defective erythropoiesis, with a particular emphasis on gene therapy and hematopoietic stem cell transplantation. However, the presence of inefficient erythropoiesis in BT bone marrow (BM) is likely to disturb the previously functioning BM microenvironment. This includes accumulation of various macromolecules, damage to hematopoietic function, destruction of bone cell production and damage to osteoblast(OBs), and so on. In addition, the changes of BT BM microenvironment may have a certain correlation with the occurrence of hematological malignancies. Correction of the microenvironment can be achieved through treatments such as iron chelation, antioxidants, hypoglycemia, and biologics. Hence, This review describes damage in the BT BM microenvironment and some potential remedies.
Collapse
Affiliation(s)
- Zengzheng Li
- Department of Hematology, The First People’s Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
- Yunnan Province Clinical Research Center for Hematologic Disease, The First People’s Hospital of Yunnan Province, Kunming, Yunnan, China
- Yunnan Provincial Clinical Medical Center for Blood Diseases and Thrombosis Prevention and Treatment, Kunming, Yunnan, China
| | - Xiangmei Yao
- Department of Hematology, The First People’s Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
- Yunnan Province Clinical Research Center for Hematologic Disease, The First People’s Hospital of Yunnan Province, Kunming, Yunnan, China
- Yunnan Provincial Clinical Medical Center for Blood Diseases and Thrombosis Prevention and Treatment, Kunming, Yunnan, China
| | - Jie Zhang
- Department of Medical Genetics, The First People’s Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Jinghui Yang
- Department of Pediatrics, The First People’s Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Junxue Ni
- Hospital Office, The First People’s Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Yajie Wang
- Department of Hematology, The First People’s Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
- Yunnan Province Clinical Research Center for Hematologic Disease, The First People’s Hospital of Yunnan Province, Kunming, Yunnan, China
- Yunnan Provincial Clinical Medical Center for Blood Diseases and Thrombosis Prevention and Treatment, Kunming, Yunnan, China
| |
Collapse
|
18
|
Trum M, Riechel J, Schollmeier E, Lebek S, Hegner P, Reuthner K, Heers S, Keller K, Wester M, Klatt S, Hamdani N, Provaznik Z, Schmid C, Maier L, Arzt M, Wagner S. Empagliflozin inhibits increased Na influx in atrial cardiomyocytes of patients with HFpEF. Cardiovasc Res 2024; 120:999-1010. [PMID: 38728438 PMCID: PMC11288740 DOI: 10.1093/cvr/cvae095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/16/2024] [Accepted: 02/02/2024] [Indexed: 05/12/2024] Open
Abstract
AIMS Heart failure with preserved ejection fraction (HFpEF) causes substantial morbidity and mortality. Importantly, atrial remodelling and atrial fibrillation are frequently observed in HFpEF. Sodium-glucose cotransporter 2 inhibitors (SGLT2i) have recently been shown to improve clinical outcomes in HFpEF, and post-hoc analyses suggest atrial anti-arrhythmic effects. We tested if isolated human atrial cardiomyocytes from patients with HFpEF exhibit an increased Na influx, which is known to cause atrial arrhythmias, and if that is responsive to treatment with the SGTL2i empagliflozin. METHODS AND RESULTS Cardiomyocytes were isolated from atrial biopsies of 124 patients (82 with HFpEF) undergoing elective cardiac surgery. Na influx was measured with the Na-dye Asante Natrium Green-2 AM (ANG-2). Compared to patients without heart failure (NF), Na influx was doubled in HFpEF patients (NF vs. HFpEF: 0.21 ± 0.02 vs. 0.38 ± 0.04 mmol/L/min (N = 7 vs. 18); P = 0.0078). Moreover, late INa (measured via whole-cell patch clamp) was significantly increased in HFpEF compared to NF. Western blot and HDAC4 pulldown assay indicated a significant increase in CaMKII expression, CaMKII autophosphorylation, CaMKII activity, and CaMKII-dependent NaV1.5 phosphorylation in HFpEF compared to NF, whereas NaV1.5 protein and mRNA abundance remained unchanged. Consistently, increased Na influx was significantly reduced by treatment not only with the CaMKII inhibitor autocamtide-2-related inhibitory peptide (AIP), late INa inhibitor tetrodotoxin (TTX) but also with sodium/hydrogen exchanger 1 (NHE1) inhibitor cariporide. Importantly, empagliflozin abolished both increased Na influx and late INa in HFpEF. Multivariate linear regression analysis, adjusting for important clinical confounders, revealed HFpEF to be an independent predictor for changes in Na handling in atrial cardiomyocytes. CONCLUSION We show for the first time increased Na influx in human atrial cardiomyocytes from HFpEF patients, partly due to increased late INa and enhanced NHE1-mediated Na influx. Empagliflozin inhibits Na influx and late INa, which could contribute to anti-arrhythmic effects in patients with HFpEF.
Collapse
Affiliation(s)
- Maximilian Trum
- Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany
| | - Johannes Riechel
- Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany
| | - Elisa Schollmeier
- Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany
| | - Simon Lebek
- Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany
| | - Philipp Hegner
- Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany
| | - Kathrin Reuthner
- Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany
| | - Silvia Heers
- Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany
| | - Karoline Keller
- Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany
| | - Michael Wester
- Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany
| | - Susanne Klatt
- Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany
| | - Nazha Hamdani
- Department of Cellular and Translational Physiology, Ruhr-University Bochum, Bochum, Germany
| | - Zdenek Provaznik
- Department of Cardiothoracic Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Christof Schmid
- Department of Cardiothoracic Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Lars Maier
- Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany
| | - Michael Arzt
- Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany
| | - Stefan Wagner
- Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
19
|
Ionică LN, Lința AV, Bătrîn AD, Hâncu IM, Lolescu BM, Dănilă MD, Petrescu L, Mozoș IM, Sturza A, Muntean DM. The Off-Target Cardioprotective Mechanisms of Sodium-Glucose Cotransporter 2 Inhibitors: An Overview. Int J Mol Sci 2024; 25:7711. [PMID: 39062954 PMCID: PMC11277154 DOI: 10.3390/ijms25147711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/08/2024] [Accepted: 07/13/2024] [Indexed: 07/28/2024] Open
Abstract
Sodium-glucose cotransporter 2 inhibitors (SGLT2i), a novel class of glucose-lowering drugs, have revolutionized the management of heart failure with reduced and preserved ejection fraction, regardless of the presence of diabetes, and are currently incorporated in the heart failure guidelines. While these drugs have consistently demonstrated their ability to decrease heart failure hospitalizations in several landmark clinical trials, their cardioprotective effects are far from having been completely elucidated. In the past decade, a growing body of experimental research has sought to address the molecular and cellular mechanisms of SGLT2i in order to provide a better understanding of the off-target acute and chronic cardiac benefits, beyond the on-target renal effect responsible for blood glucose reduction. The present narrative review addresses the direct cardioprotective effects of SGLT2i, delving into the off-target mechanisms of the drugs currently approved for heart failure therapy, and provides insights into future perspectives.
Collapse
Affiliation(s)
- Loredana N. Ionică
- Department of Internal Medicine-Medical Semiotics, “Victor Babeș” University of Medicine and Pharmacy of Timișoara, E. Murgu Sq. No. 2, 300041 Timișoara, Romania;
- Doctoral School Medicine-Pharmacy, “Victor Babeș” University of Medicine and Pharmacy of Timișoara, E. Murgu Sq., No. 2, 300041 Timișoara, Romania; (A.V.L.); (A.D.B.); (I.M.H.); (B.M.L.)
- Centre for Translational Research and Systems Medicine, “Victor Babeș” University of Medicine and Pharmacy of Timișoara, E. Murgu Sq. No. 2, 300041 Timișoara, Romania; (M.D.D.); (L.P.); (I.M.M.); (D.M.M.)
| | - Adina V. Lința
- Doctoral School Medicine-Pharmacy, “Victor Babeș” University of Medicine and Pharmacy of Timișoara, E. Murgu Sq., No. 2, 300041 Timișoara, Romania; (A.V.L.); (A.D.B.); (I.M.H.); (B.M.L.)
- Centre for Translational Research and Systems Medicine, “Victor Babeș” University of Medicine and Pharmacy of Timișoara, E. Murgu Sq. No. 2, 300041 Timișoara, Romania; (M.D.D.); (L.P.); (I.M.M.); (D.M.M.)
- Department of Functional Sciences-Pathophysiology, “Victor Babeș” University of Medicine and Pharmacy of Timișoara, E. Murgu Sq. No. 2, 300041 Timișoara, Romania
| | - Alina D. Bătrîn
- Doctoral School Medicine-Pharmacy, “Victor Babeș” University of Medicine and Pharmacy of Timișoara, E. Murgu Sq., No. 2, 300041 Timișoara, Romania; (A.V.L.); (A.D.B.); (I.M.H.); (B.M.L.)
- Centre for Translational Research and Systems Medicine, “Victor Babeș” University of Medicine and Pharmacy of Timișoara, E. Murgu Sq. No. 2, 300041 Timișoara, Romania; (M.D.D.); (L.P.); (I.M.M.); (D.M.M.)
| | - Iasmina M. Hâncu
- Doctoral School Medicine-Pharmacy, “Victor Babeș” University of Medicine and Pharmacy of Timișoara, E. Murgu Sq., No. 2, 300041 Timișoara, Romania; (A.V.L.); (A.D.B.); (I.M.H.); (B.M.L.)
- Centre for Translational Research and Systems Medicine, “Victor Babeș” University of Medicine and Pharmacy of Timișoara, E. Murgu Sq. No. 2, 300041 Timișoara, Romania; (M.D.D.); (L.P.); (I.M.M.); (D.M.M.)
- Department of Functional Sciences-Pathophysiology, “Victor Babeș” University of Medicine and Pharmacy of Timișoara, E. Murgu Sq. No. 2, 300041 Timișoara, Romania
| | - Bogdan M. Lolescu
- Doctoral School Medicine-Pharmacy, “Victor Babeș” University of Medicine and Pharmacy of Timișoara, E. Murgu Sq., No. 2, 300041 Timișoara, Romania; (A.V.L.); (A.D.B.); (I.M.H.); (B.M.L.)
- Centre for Translational Research and Systems Medicine, “Victor Babeș” University of Medicine and Pharmacy of Timișoara, E. Murgu Sq. No. 2, 300041 Timișoara, Romania; (M.D.D.); (L.P.); (I.M.M.); (D.M.M.)
| | - Maria D. Dănilă
- Centre for Translational Research and Systems Medicine, “Victor Babeș” University of Medicine and Pharmacy of Timișoara, E. Murgu Sq. No. 2, 300041 Timișoara, Romania; (M.D.D.); (L.P.); (I.M.M.); (D.M.M.)
- Department of Functional Sciences-Pathophysiology, “Victor Babeș” University of Medicine and Pharmacy of Timișoara, E. Murgu Sq. No. 2, 300041 Timișoara, Romania
| | - Lucian Petrescu
- Centre for Translational Research and Systems Medicine, “Victor Babeș” University of Medicine and Pharmacy of Timișoara, E. Murgu Sq. No. 2, 300041 Timișoara, Romania; (M.D.D.); (L.P.); (I.M.M.); (D.M.M.)
| | - Ioana M. Mozoș
- Centre for Translational Research and Systems Medicine, “Victor Babeș” University of Medicine and Pharmacy of Timișoara, E. Murgu Sq. No. 2, 300041 Timișoara, Romania; (M.D.D.); (L.P.); (I.M.M.); (D.M.M.)
- Department of Functional Sciences-Pathophysiology, “Victor Babeș” University of Medicine and Pharmacy of Timișoara, E. Murgu Sq. No. 2, 300041 Timișoara, Romania
| | - Adrian Sturza
- Centre for Translational Research and Systems Medicine, “Victor Babeș” University of Medicine and Pharmacy of Timișoara, E. Murgu Sq. No. 2, 300041 Timișoara, Romania; (M.D.D.); (L.P.); (I.M.M.); (D.M.M.)
- Department of Functional Sciences-Pathophysiology, “Victor Babeș” University of Medicine and Pharmacy of Timișoara, E. Murgu Sq. No. 2, 300041 Timișoara, Romania
| | - Danina M. Muntean
- Centre for Translational Research and Systems Medicine, “Victor Babeș” University of Medicine and Pharmacy of Timișoara, E. Murgu Sq. No. 2, 300041 Timișoara, Romania; (M.D.D.); (L.P.); (I.M.M.); (D.M.M.)
- Department of Functional Sciences-Pathophysiology, “Victor Babeș” University of Medicine and Pharmacy of Timișoara, E. Murgu Sq. No. 2, 300041 Timișoara, Romania
| |
Collapse
|
20
|
Chatzianagnostou K, Gaggini M, Suman Florentin A, Simonini L, Vassalle C. New Molecules in Type 2 Diabetes: Advancements, Challenges and Future Directions. Int J Mol Sci 2024; 25:6218. [PMID: 38892417 PMCID: PMC11173177 DOI: 10.3390/ijms25116218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/30/2024] [Accepted: 06/02/2024] [Indexed: 06/21/2024] Open
Abstract
Although good glycemic control in patients with type 2 diabetes (T2D) can prevent cardiovascular complications, many diabetic patients still have poor optimal control. A new class of antidiabetic drugs (e.g., glucagon-like peptide-1-GLP-1 receptor agonists, sodium-glucose co-transporters-SGLT2 inhibitors), in addition to the low hypoglycemic effect, exert multiple beneficial effects at a metabolic and cardiovascular level, through mechanisms other than antihyperglycemic agents. This review aims to discuss the effects of these new antidiabetic drugs, highlighting cardiovascular and metabolic benefits, through the description of their action mechanisms as well as available data by preclinical and clinical studies. Moreover, new innovative tools in the T2D field will be described which may help to advance towards a better targeted T2D personalized care in future.
Collapse
Affiliation(s)
| | - Melania Gaggini
- Institute of Clinical Physiology, National Research Council, Via G. Moruzzi 1, 56124 Pisa, Italy; (M.G.); (A.S.F.)
| | - Adrian Suman Florentin
- Institute of Clinical Physiology, National Research Council, Via G. Moruzzi 1, 56124 Pisa, Italy; (M.G.); (A.S.F.)
| | - Ludovica Simonini
- Department of Surgical, Medical and Molecular Pathology and Critical Area, University of Pisa, 56126 Pisa, Italy;
| | - Cristina Vassalle
- Fondazione CNR-Regione Toscana G Monasterio, Via G. Moruzzi 1, 56124 Pisa, Italy;
| |
Collapse
|
21
|
Li Y, Zhang Z, Zhang Z, Zheng N, Ding X. Empagliflozin, a sodium-glucose cotransporter inhibitor enhancing mitochondrial action and cardioprotection in metabolic syndrome. J Cell Physiol 2024; 239:e31264. [PMID: 38764242 DOI: 10.1002/jcp.31264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 03/13/2024] [Accepted: 03/18/2024] [Indexed: 05/21/2024]
Abstract
Metabolic syndrome (MetS) has a large clinical population nowadays, usually due to excessive energy intake and lack of exercise. During MetS, excess nutrients stress the mitochondria, resulting in relative hypoxia in tissues and organs, even when blood supply is not interrupted or reduced, making mitochondrial dysfunction a central pathogenesis of cardiovascular disease in the MetS. Sodium-glucose cotransporter 2 inhibitors were designed as a hyperglycemic drug that acts on the renal tubules to block sugar reabsorption in primary urine. Recently they have been shown to have anti-inflammatory and other protective effects on cardiomyocytes in MetS, and have also been recommended in the latest heart failure guidelines as a routine therapy. Among these inhibitors, empagliflozin shows better clinical promise due to less influence from glomerular filtration rate. This review focuses on the mitochondrial mechanisms of empagliflozin, which underlie the anti-inflammatory and recover cellular functions in MetS cardiomyocytes, including stabilizing calcium concentration, mediating metabolic reprogramming, maintaining homeostasis of mitochondrial quantity and quality, stable mitochondrial DNA copy number, and repairing damaged mitochondrial DNA.
Collapse
Affiliation(s)
- Yunhao Li
- Graduate School, China Medical University, Shenyang, China
- Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, China
| | - Zhanming Zhang
- Faculty of Science, The University of Hong Kong, Hong Kong, China
| | - Zheming Zhang
- Graduate School, China Medical University, Shenyang, China
- Department of Thoracic Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Ningning Zheng
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Xudong Ding
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
22
|
Liu Z, Wang J, Tian P, Liu Y, Xing L, Fu C, Huang X, Liu P. Sodium-glucose cotransporter 1 promotes the biofunctions of perivascular preadipocytes mediated by Akt/mTOR/p70S6K signaling pathway. Am J Physiol Cell Physiol 2024; 326:C1611-C1624. [PMID: 38646789 PMCID: PMC11371362 DOI: 10.1152/ajpcell.00606.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 04/09/2024] [Accepted: 04/09/2024] [Indexed: 04/23/2024]
Abstract
The influence of SGLT-1 on perivascular preadipocytes (PVPACs) and vascular remodeling is not well understood. This study aimed to elucidate the role and mechanism of SGLT-1-mediated PVPACs bioactivity. PVPACs were cultured in vitro and applied ex vivo to the carotid arteries of mice using a lentivirus-based thermosensitive in situ gel (TISG). The groups were treated with Lv-SGLT1 (lentiviral vector, overexpression), Lv-siSGLT1 (RNA interference, knockdown), or specific signaling pathway inhibitors. Assays were conducted to assess changes in cell proliferation, apoptosis, glucose uptake, adipogenic differentiation, and vascular remodeling in the PVPACs. Protein expression was analyzed by Western blotting, immunocytochemistry, and/or immunohistochemistry. The methyl thiazolyl tetrazolium (MTT) assay and Hoechst 33342 staining indicated that SGLT-1 overexpression significantly promoted PVPACs proliferation and inhibited apoptosis in vitro. Conversely, SGLT-1 knockdown exerted the opposite effect. Oil Red O staining revealed that SGLT-1 overexpression facilitated adipogenic differentiation, while its inhibition mitigated these effects. 3H-labeled glucose uptake experiments demonstrated that SGLT-1 overexpression enhanced glucose uptake by PVPACs, whereas RNA interference-mediated SGLT-1 inhibition had no significant effect on glucose uptake. Moreover, RT-qPCR, Western blotting, and immunofluorescence analyses revealed that SGLT-1 overexpression upregulated FABP4 and VEGF-A levels and activated the Akt/mTOR/p70S6K signaling pathway, whereas SGLT-1 knockdown produced the opposite effects. In vivo studies corroborated these findings and indicated that SGLT-1 overexpression facilitated carotid artery remodeling. Our study demonstrates that SGLT-1 activation of the Akt/mTOR/p70S6K signaling pathway promotes PVPACs proliferation, adipogenesis, glucose uptake, glucolipid metabolism, and vascular remodeling.NEW & NOTEWORTHY SGLT-1 is expressed in PVPACs and can affect preadipocyte glucolipid metabolism and vascular remodeling. SGLT-1 promotes the biofunctions of PVPACs mediated by Akt/mTOR/p70S6K signaling pathway. Compared with caudal vein or intraperitoneal injection, the external application of lentivirus-based thermal gel around the carotid artery is an innovative attempt at vascular remodeling model, it may effectively avoid the transfection of lentiviral vector into the whole body of mice and the adverse effect on experimental results.
Collapse
Affiliation(s)
- Zhiquan Liu
- Department of Cardiology, The Second Hospital of Shandong University, Jinan, China
- Division of Life Sciences and Medicine, Department of Cardiology, the First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, China
| | - Jiayu Wang
- Department of Cardiology, The Second Hospital of Shandong University, Jinan, China
| | - Peiqing Tian
- Department of Cardiology, The Second Hospital of Shandong University, Jinan, China
| | - Yixuan Liu
- Division of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Liyun Xing
- Department of Cardiology, The Second Hospital of Shandong University, Jinan, China
| | - Caihua Fu
- Department of Cardiology, Jinan Central Hospital Affiliated Shandong University, Jinan, China
| | - Xianwei Huang
- Department of Emergency, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Ping Liu
- Department of Cardiology, The Second Hospital of Shandong University, Jinan, China
| |
Collapse
|
23
|
Schauer A, Adams V, Kämmerer S, Langner E, Augstein A, Barthel P, Männel A, Fabig G, Alves PKN, Günscht M, El-Armouche A, Müller-Reichert T, Linke A, Winzer EB. Empagliflozin Improves Diastolic Function in HFpEF by Restabilizing the Mitochondrial Respiratory Chain. Circ Heart Fail 2024; 17:e011107. [PMID: 38847102 PMCID: PMC11177604 DOI: 10.1161/circheartfailure.123.011107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 01/25/2024] [Accepted: 01/30/2024] [Indexed: 06/16/2024]
Abstract
BACKGROUND Clinical studies demonstrated beneficial effects of sodium-glucose-transporter 2 inhibitors on the risk of cardiovascular death in patients with heart failure with preserved ejection fraction (HFpEF). However, underlying processes for cardioprotection remain unclear. The present study focused on the impact of empagliflozin (Empa) on myocardial function in a rat model with established HFpEF and analyzed underlying molecular mechanisms. METHODS Obese ZSF1 (Zucker fatty and spontaneously hypertensive) rats were randomized to standard care (HFpEF, n=18) or Empa (HFpEF/Empa, n=18). ZSF1 lean rats (con, n=18) served as healthy controls. Echocardiography was performed at baseline and after 4 and 8 weeks, respectively. After 8 weeks of treatment, hemodynamics were measured invasively, mitochondrial function was assessed and myocardial tissue was collected for either molecular and histological analyses or transmission electron microscopy. RESULTS In HFpEF Empa significantly improved diastolic function (E/é: con: 17.5±2.8; HFpEF: 24.4±4.6; P<0.001 versus con; HFpEF/Empa: 19.4±3.2; P<0.001 versus HFpEF). This was accompanied by improved hemodynamics and calcium handling and by reduced inflammation, hypertrophy, and fibrosis. Proteomic analysis demonstrated major changes in proteins involved in mitochondrial oxidative phosphorylation. Cardiac mitochondrial respiration was significantly impaired in HFpEF but restored by Empa (Vmax complex IV: con: 0.18±0.07 mmol O2/s/mg; HFpEF: 0.13±0.05 mmol O2/s/mg; P<0.041 versus con; HFpEF/Empa: 0.21±0.05 mmol O2/s/mg; P=0.012 versus HFpEF) without alterations of mitochondrial content. The expression of cardiolipin, an essential stability/functionality-mediating phospholipid of the respiratory chain, was significantly decreased in HFpEF but reverted by Empa (con: 15.9±1.7 nmol/mg protein; HFpEF: 12.5±1.8 nmol/mg protein; P=0.002 versus con; HFpEF/Empa: 14.5±1.8 nmol/mg protein; P=0.03 versus HFpEF). Transmission electron microscopy revealed a reduced size of mitochondria in HFpEF, which was restored by Empa. CONCLUSIONS The study demonstrates beneficial effects of Empa on diastolic function, hemodynamics, inflammation, and cardiac remodeling in a rat model of HFpEF. These effects were mediated by improved mitochondrial respiratory capacity due to modulated cardiolipin and improved calcium handling.
Collapse
Affiliation(s)
- Antje Schauer
- Department of Internal Medicine and Cardiology, Heart Center Dresden - Laboratory of Experimental and Molecular Cardiology, Technische Universität Dresden, Germany (A.S., V.A., E.L., A.A., P.B., A.M., P.K.N.A., A.L., E.B.W.)
| | - Volker Adams
- Department of Internal Medicine and Cardiology, Heart Center Dresden - Laboratory of Experimental and Molecular Cardiology, Technische Universität Dresden, Germany (A.S., V.A., E.L., A.A., P.B., A.M., P.K.N.A., A.L., E.B.W.)
| | - Susanne Kämmerer
- Institute of Pharmacology and Toxicology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Germany (S.K., M.G., A.E.-A.)
| | - Erik Langner
- Department of Internal Medicine and Cardiology, Heart Center Dresden - Laboratory of Experimental and Molecular Cardiology, Technische Universität Dresden, Germany (A.S., V.A., E.L., A.A., P.B., A.M., P.K.N.A., A.L., E.B.W.)
| | - Antje Augstein
- Department of Internal Medicine and Cardiology, Heart Center Dresden - Laboratory of Experimental and Molecular Cardiology, Technische Universität Dresden, Germany (A.S., V.A., E.L., A.A., P.B., A.M., P.K.N.A., A.L., E.B.W.)
| | - Peggy Barthel
- Department of Internal Medicine and Cardiology, Heart Center Dresden - Laboratory of Experimental and Molecular Cardiology, Technische Universität Dresden, Germany (A.S., V.A., E.L., A.A., P.B., A.M., P.K.N.A., A.L., E.B.W.)
| | - Anita Männel
- Department of Internal Medicine and Cardiology, Heart Center Dresden - Laboratory of Experimental and Molecular Cardiology, Technische Universität Dresden, Germany (A.S., V.A., E.L., A.A., P.B., A.M., P.K.N.A., A.L., E.B.W.)
| | - Gunar Fabig
- Experimental Center, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Germany (G.F., T.M.-R.)
| | - Paula Ketilly Nascimento Alves
- Department of Internal Medicine and Cardiology, Heart Center Dresden - Laboratory of Experimental and Molecular Cardiology, Technische Universität Dresden, Germany (A.S., V.A., E.L., A.A., P.B., A.M., P.K.N.A., A.L., E.B.W.)
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, Brazil (P.K.N.A.)
| | - Mario Günscht
- Institute of Pharmacology and Toxicology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Germany (S.K., M.G., A.E.-A.)
| | - Ali El-Armouche
- Institute of Pharmacology and Toxicology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Germany (S.K., M.G., A.E.-A.)
| | - Thomas Müller-Reichert
- Experimental Center, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Germany (G.F., T.M.-R.)
| | - Axel Linke
- Department of Internal Medicine and Cardiology, Heart Center Dresden - Laboratory of Experimental and Molecular Cardiology, Technische Universität Dresden, Germany (A.S., V.A., E.L., A.A., P.B., A.M., P.K.N.A., A.L., E.B.W.)
| | - Ephraim B. Winzer
- Department of Internal Medicine and Cardiology, Heart Center Dresden - Laboratory of Experimental and Molecular Cardiology, Technische Universität Dresden, Germany (A.S., V.A., E.L., A.A., P.B., A.M., P.K.N.A., A.L., E.B.W.)
| |
Collapse
|
24
|
Hohendanner F, Boegner M, Huettemeister J, Zhang K, Dreysse S, Knosalla C, Falk V, Schoenrath F, Just IA, Stawowy P. Microvascular dysfunction in heart transplantation is associated with altered cardiomyocyte mitochondrial structure and unimpaired excitation-contraction coupling. PLoS One 2024; 19:e0303540. [PMID: 38820336 PMCID: PMC11142617 DOI: 10.1371/journal.pone.0303540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 04/25/2024] [Indexed: 06/02/2024] Open
Abstract
INTRODUCTION Microvascular dysfunction (MVD) is a hallmark feature of chronic graft dysfunction in patients that underwent orthotopic heart transplantation (OHT) and is the main contributor to impaired long-term graft survival. The aim of this study was to determine the effect of MVD on functional and structural properties of cardiomyocytes isolated from ventricular biopsies of OHT patients. METHODS We included 14 patients post-OHT, who had been transplanted for 8.1 years [5.0; 15.7 years]. Mean age was 49.6 ± 14.3 years; 64% were male. Coronary microvasculature was assessed using guidewire-based coronary flow reserve(CFR)/index of microvascular resistance (IMR) measurements. Ventricular myocardial biopsies were obtained and cardiomyocytes were isolated using enzymatic digestion. Cells were electrically stimulated and subcellular Ca2+ signalling as well as mitochondrial density were measured using confocal imaging. RESULTS MVD measured by IMR was present in 6 of 14 patients with a mean IMR of 53±10 vs. 12±2 in MVD vs. controls (CTRL), respectively. CFR did not differ between MVD and CTRL. Ca2+ transients during excitation-contraction coupling in isolated ventricular cardiomyocytes from a subset of patients showed unaltered amplitudes. In addition, Ca2+ release and Ca2+ removal were not significantly different between MVD and CTRL. However, mitochondrial density was significantly increased in MVD vs. CTRL (34±1 vs. 29±2%), indicating subcellular changes associated with MVD. CONCLUSION In-vivo ventricular microvascular dysfunction post OHT is associated with preserved excitation-contraction coupling in-vitro, potentially owing to compensatory changes on the mitochondrial level or due to the potentially reversible cause of the disease.
Collapse
Affiliation(s)
- Felix Hohendanner
- Department of Cardiology, Deutsches Herzzentrum der Charité, Angiology and Intensive Care Medicine, Berlin, Germany
- Charité –Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Berlin, Germany
| | - Markus Boegner
- Department of Cardiology, Deutsches Herzzentrum der Charité, Angiology and Intensive Care Medicine, Berlin, Germany
- Charité –Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Berlin, Germany
| | - Judith Huettemeister
- Department of Cardiology, Deutsches Herzzentrum der Charité, Angiology and Intensive Care Medicine, Berlin, Germany
- Charité –Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Berlin, Germany
| | - Kun Zhang
- Department of Cardiology, Deutsches Herzzentrum der Charité, Angiology and Intensive Care Medicine, Berlin, Germany
- Charité –Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Berlin, Germany
| | - Stephan Dreysse
- Department of Cardiology, Deutsches Herzzentrum der Charité, Angiology and Intensive Care Medicine, Berlin, Germany
- Charité –Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Christoph Knosalla
- Charité –Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Berlin, Germany
- Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum der Charité, Berlin, Germany
| | - Volkmar Falk
- Charité –Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Berlin, Germany
- Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum der Charité, Berlin, Germany
- Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH), Institute of Translational Medicine, Translational Cardiovascular Technologies, Zurich, Switzerland
| | - Felix Schoenrath
- Charité –Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Berlin, Germany
- Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum der Charité, Berlin, Germany
| | - Isabell Anna Just
- Charité –Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Berlin, Germany
- Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum der Charité, Berlin, Germany
| | - Philipp Stawowy
- Department of Cardiology, Deutsches Herzzentrum der Charité, Angiology and Intensive Care Medicine, Berlin, Germany
- Charité –Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Berlin, Germany
| |
Collapse
|
25
|
Borriello G, Buonincontri V, de Donato A, Della Corte M, Gravina I, Iulianiello P, Joshi R, Mone P, Cacciola G, Viggiano D. The interplay between sodium/glucose cotransporter type 2 and mitochondrial ionic environment. Mitochondrion 2024; 76:101878. [PMID: 38599300 DOI: 10.1016/j.mito.2024.101878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 03/04/2024] [Accepted: 04/07/2024] [Indexed: 04/12/2024]
Abstract
Mitochondrial volume is maintained through the permeability of the inner mitochondrial membrane by a specific aquaporin and the osmotic balance between the mitochondrial matrix and cellular cytoplasm. Various electrolytes, such as calcium and hydrogen ions, potassium, and sodium, as well as other osmotic substances, affect the swelling of mitochondria. Intracellular glucose levels may also affect mitochondrial swelling, although the relationship between mitochondrial ion homeostasis and intracellular glucose is poorly understood. This article reviews what is currently known about how the Sodium-Glucose transporter (SGLT) may impact mitochondrial sodium (Na+) homeostasis. SGLTs regulate intracellular glucose and sodium levels and, therefore, interfere with mitochondrial ion homeostasis because mitochondrial Na+ is closely linked to cytoplasmic calcium and sodium dynamics. Recently, a large amount of data has been available on the effects of SGLT2 inhibitors on mitochondria in different cell types, including renal proximal tubule cells, endothelial cells, mesangial cells, podocytes, neuronal cells, and cardiac cells. The current evidence suggests that SGLT inhibitors (SGLTi) may affect mitochondrial dynamics regarding intracellular Sodium and hydrogen ions. Although the regulation of mitochondrial ion channels by SGLTs is still in its infancy, the evidence accumulated thus far of the effect of SGLTi on mitochondrial functions certainly will foster further research in this direction.
Collapse
Affiliation(s)
- Gianmarco Borriello
- Dept. Translational Medical Sciences, Univ. Campania, "L Vanvitelli", Naples, Italy
| | | | - Antonio de Donato
- Biogem, Biology and Molecular Genetics Institute, Ariano Irpino, AV, Italy
| | - Michele Della Corte
- Dept. Translational Medical Sciences, Univ. Campania, "L Vanvitelli", Naples, Italy
| | - Ilenia Gravina
- Dept. Translational Medical Sciences, Univ. Campania, "L Vanvitelli", Naples, Italy
| | - Pietro Iulianiello
- Dept. Translational Medical Sciences, Univ. Campania, "L Vanvitelli", Naples, Italy
| | - Rashmi Joshi
- Dept. Translational Medical Sciences, Univ. Campania, "L Vanvitelli", Naples, Italy
| | - Pasquale Mone
- Department of Medicine and Health Sciences, University of Molise, Campobasso, Italy; Casa di cura privata Montevergine, Mercogliano, Italy
| | - Giovanna Cacciola
- Dept. Translational Medical Sciences, Univ. Campania, "L Vanvitelli", Naples, Italy
| | - Davide Viggiano
- Dept. Translational Medical Sciences, Univ. Campania, "L Vanvitelli", Naples, Italy.
| |
Collapse
|
26
|
Hojná S, Malínská H, Hüttl M, Vaňourková Z, Marková I, Miklánková D, Hrdlička J, Papoušek F, Neckář J, Kujal P, Behuliak M, Rauchová H, Kadlecová M, Sedmera D, Neffeová K, Zábrodská E, Olejníčková V, Zicha J, Vaněčková I. Hepatoprotective and cardioprotective effects of empagliflozin in spontaneously hypertensive rats fed a high-fat diet. Biomed Pharmacother 2024; 174:116520. [PMID: 38581924 DOI: 10.1016/j.biopha.2024.116520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 03/19/2024] [Accepted: 03/28/2024] [Indexed: 04/08/2024] Open
Abstract
A combination of liver and heart dysfunction worsens the prognosis of human survival. The aim of this study was to investigate whether empagliflozin (a sodium-glucose transporter-2 inhibitor) has beneficial effects not only on cardiac and renal function but also on hepatic function. Adult (6-month-old) male spontaneously hypertensive rats (SHR) were fed a high-fat diet (60% fat) for four months to induce hepatic steatosis and mild heart failure. For the last two months, the rats were treated with empagliflozin (empa, 10 mg.kg-1.day-1 in the drinking water). Renal function and oral glucose tolerance test were analyzed in control (n=8), high-fat diet (SHR+HF, n=10), and empagliflozin-treated (SHR+HF+empa, n=9) SHR throughout the study. Metabolic parameters and echocardiography were evaluated at the end of the experiment. High-fat diet feeding increased body weight and visceral adiposity, liver triglyceride and cholesterol concentrations, and worsened glucose tolerance. Although the high-fat diet did not affect renal function, it significantly worsened cardiac function in a subset of SHR rats. Empagliflozin reduced body weight gain but not visceral fat deposition. It also improved glucose sensitivity and several metabolic parameters (plasma insulin, uric acid, and HDL cholesterol). In the liver, empagliflozin reduced ectopic lipid accumulation, lipoperoxidation, inflammation and pro-inflammatory HETEs, while increasing anti-inflammatory EETs. In addition, empagliflozin improved cardiac function (systolic, diastolic and pumping) independent of blood pressure. The results of our study suggest that hepatoprotection plays a decisive role in the beneficial effects of empagliflozin in preventing the progression of cardiac dysfunction induced by high-fat diet feeding.
Collapse
Affiliation(s)
- Silvie Hojná
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Hana Malínská
- Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Martina Hüttl
- Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Zdeňka Vaňourková
- Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Irena Marková
- Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Denisa Miklánková
- Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Jaroslav Hrdlička
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - František Papoušek
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Jan Neckář
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic; Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Petr Kujal
- 3rd Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Michal Behuliak
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Hana Rauchová
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Michaela Kadlecová
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - David Sedmera
- 1st Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Kristýna Neffeová
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic; 1st Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Eva Zábrodská
- 1st Faculty of Medicine, Charles University, Prague, Czech Republic
| | | | - Josef Zicha
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Ivana Vaněčková
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic.
| |
Collapse
|
27
|
Zhang W, Yu M, Cheng G. Sotagliflozin versus dapagliflozin to improve outcome of patients with diabetes and worsening heart failure: a cost per outcome analysis. Front Pharmacol 2024; 15:1373314. [PMID: 38694909 PMCID: PMC11061456 DOI: 10.3389/fphar.2024.1373314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 04/04/2024] [Indexed: 05/04/2024] Open
Abstract
Background and aim Dapagliflozin inhibits the sodium-glucose cotransporter protein 2 (SGLT-2), while sotagliflozin, belonging to a new class of dual-acting SGLT-1/SGLT-2 inhibitors, has garnered considerable attention due to its efficacy and safety. Both Dapagliflozin and sotagliflozin play a significant role in treating worsening heart failure in diabetes/nondiabetes patients with heart failure. Therefore, this article was to analyze and compare the cost per outcome of both drugs in preventing one event in patients diagnosed with diabetes-related heart failure. Method The Cost Needed to Treat (CNT) was employed to calculate the cost of preventing one event, and the Number Needed to Treat (NNT) represents the anticipated number of patients requiring the intervention treatment to prevent a single adverse event, or the anticipated number of patients needing multiple treatments to achieve a beneficial outcome. The efficacy and safety data were obtained from the results of two published clinical trials, DAPA-HF and SOLOIST-WHF. Due to the temporal difference in the drugs' releases, we temporarily analyzed the price of dapagliflozin to calculate the price of sotagliflozin within the same timeframe. The secondary analyses aimed to assess the stability of the CNT study and minimize differences between the results of the RCT control and trial groups, employing one-way sensitivity analyses. Result The final results revealed an annualized Number Needed to Treat (aNNT) of 4 (95% CI 3-7) for preventing one event with sotagliflozin, as opposed to 23 (95% CI 16-55) for dapagliflozin. We calculated dapagliflozin's cost per prevented event (CNT) to be $109,043 (95% CI $75,856-$260,755). The price of sotagliflozin was set below $27,260, providing a favorable advantage. Sensitivity analysis suggests that sotagliflozin may hold a cost advantage. Conclusion In this study, sotagliflozin was observed to exhibit a price advantage over dapagliflozin in preventing one events, cardiovascular mortality, or all-cause mortality in patients with diabetes.
Collapse
Affiliation(s)
| | | | - Guohua Cheng
- Department of Pharmacy, Jinan University, Guangzhou, China
| |
Collapse
|
28
|
Semmler L, Jeising T, Huettemeister J, Bathe-Peters M, Georgoula K, Roshanbin R, Sander P, Fu S, Bode D, Hohendanner F, Pieske B, Annibale P, Schiattarella GG, Oeing CU, Heinzel FR. Impairment of the adrenergic reserve associated with exercise intolerance in a murine model of heart failure with preserved ejection fraction. Acta Physiol (Oxf) 2024; 240:e14124. [PMID: 38436094 DOI: 10.1111/apha.14124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 12/27/2023] [Accepted: 02/20/2024] [Indexed: 03/05/2024]
Abstract
AIM Exercise intolerance is the central symptom in patients with heart failure with preserved ejection fraction. In the present study, we investigated the adrenergic reserve both in vivo and in cardiomyocytes of a murine cardiometabolic HFpEF model. METHODS 12-week-old male C57BL/6J mice were fed regular chow (control) or a high-fat diet and L-NAME (HFpEF) for 15 weeks. At 27 weeks, we performed (stress) echocardiography and exercise testing and measured the adrenergic reserve and its modulation by nitric oxide and reactive oxygen species in left ventricular cardiomyocytes. RESULTS HFpEF mice (preserved left ventricular ejection fraction, increased E/e', pulmonary congestion [wet lung weight/TL]) exhibited reduced exercise capacity and a reduction of stroke volume and cardiac output with adrenergic stress. In ventricular cardiomyocytes isolated from HFpEF mice, sarcomere shortening had a higher amplitude and faster relaxation compared to control animals. Increased shortening was caused by a shift of myofilament calcium sensitivity. With addition of isoproterenol, there were no differences in sarcomere function between HFpEF and control mice. This resulted in a reduced inotropic and lusitropic reserve in HFpEF cardiomyocytes. Preincubation with inhibitors of nitric oxide synthases or glutathione partially restored the adrenergic reserve in cardiomyocytes in HFpEF. CONCLUSION In this murine HFpEF model, the cardiac output reserve on adrenergic stimulation is impaired. In ventricular cardiomyocytes, we found a congruent loss of the adrenergic inotropic and lusitropic reserve. This was caused by increased contractility and faster relaxation at rest, partially mediated by nitro-oxidative signaling.
Collapse
Affiliation(s)
- Lukas Semmler
- Department of Internal Medicine and Cardiology, German Heart Center Charité (DHZC) - Campus Virchow-Klinikum, Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
| | - Tobias Jeising
- Department of Internal Medicine and Cardiology, German Heart Center Charité (DHZC) - Campus Virchow-Klinikum, Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
| | - Judith Huettemeister
- Department of Internal Medicine and Cardiology, German Heart Center Charité (DHZC) - Campus Virchow-Klinikum, Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
| | - Marc Bathe-Peters
- Receptor Signalling Group, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- School of Physics and Astronomy, University of St Andrews, St Andrews, UK
| | - Konstantina Georgoula
- Receptor Signalling Group, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Rashin Roshanbin
- Department of Internal Medicine and Cardiology, German Heart Center Charité (DHZC) - Campus Virchow-Klinikum, Berlin, Germany
| | - Paulina Sander
- Department of Internal Medicine and Cardiology, German Heart Center Charité (DHZC) - Campus Virchow-Klinikum, Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
| | - Shu Fu
- Department of Internal Medicine and Cardiology, German Heart Center Charité (DHZC) - Campus Virchow-Klinikum, Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
| | - David Bode
- Department of Internal Medicine and Cardiology, German Heart Center Charité (DHZC) - Campus Virchow-Klinikum, Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
| | - Felix Hohendanner
- Department of Internal Medicine and Cardiology, German Heart Center Charité (DHZC) - Campus Virchow-Klinikum, Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
| | - Burkert Pieske
- Division of Cardiology, Department of Internal Medicine, University Medicine Rostock, Rostock, Germany
| | - Paolo Annibale
- Receptor Signalling Group, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- School of Physics and Astronomy, University of St Andrews, St Andrews, UK
| | - Gabriele G Schiattarella
- Department of Internal Medicine and Cardiology, German Heart Center Charité (DHZC) - Campus Virchow-Klinikum, Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
- Translational Approaches in Heart Failure and Cardiometabolic Disease, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Christian U Oeing
- Department of Internal Medicine and Cardiology, German Heart Center Charité (DHZC) - Campus Virchow-Klinikum, Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
| | - Frank R Heinzel
- Department of Internal Medicine and Cardiology, German Heart Center Charité (DHZC) - Campus Virchow-Klinikum, Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
- 2. Medizinische Klinik - Kardiologie, Angiologie, Intensivmedizin, Städtisches Klinikum Dresden, Dresden, Germany
| |
Collapse
|
29
|
Tecce N, de Alteriis G, de Alteriis G, Verde L, Tecce MF, Colao A, Muscogiuri G. Harnessing the Synergy of SGLT2 Inhibitors and Continuous Ketone Monitoring (CKM) in Managing Heart Failure among Patients with Type 1 Diabetes. Healthcare (Basel) 2024; 12:753. [PMID: 38610175 PMCID: PMC11011472 DOI: 10.3390/healthcare12070753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/25/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
Heart failure (HF) management in type 1 diabetes (T1D) is particularly challenging due to its increased prevalence and the associated risks of hospitalization and mortality, driven by diabetic cardiomyopathy. Sodium-glucose cotransporter-2 inhibitors (SGLT2-is) offer a promising avenue for treating HF, specifically the preserved ejection fraction variant most common in T1D, but their utility is hampered by the risk of euglycemic diabetic ketoacidosis (DKA). This review investigates the potential of SGLT2-is in T1D HF management alongside emergent Continuous Ketone Monitoring (CKM) technology as a means to mitigate DKA risk through a comprehensive analysis of clinical trials, observational studies, and reviews. The evidence suggests that SGLT2-is significantly reduce HF hospitalization and enhance cardiovascular outcomes. However, their application in T1D patients remains limited due to DKA concerns. CKM technology emerges as a crucial tool in this context, offering real-time monitoring of ketone levels, which enables the safe incorporation of SGLT2-is into treatment regimes by allowing for early detection and intervention in the development of ketosis. The synergy between SGLT2-is and CKM has the potential to revolutionize HF treatment in T1D, promising improved patient safety, quality of life, and reduced HF-related morbidity and mortality. Future research should aim to employ clinical trials directly assessing this integrated approach, potentially guiding new management protocols for HF in T1D.
Collapse
Affiliation(s)
- Nicola Tecce
- Dipartimento di Medicina Clinica e Chirurgia, Unit of Endocrinology, Federico II University Medical School of Naples, Via Sergio Pansini 5, 80131 Napoli, Italy; (G.d.A.); (A.C.)
| | - Giorgio de Alteriis
- Department of Industrial Engineering, University of Naples Federico II, Piazzale Tecchio 80, 80125 Naples, Italy;
| | - Giulia de Alteriis
- Dipartimento di Medicina Clinica e Chirurgia, Unit of Endocrinology, Federico II University Medical School of Naples, Via Sergio Pansini 5, 80131 Napoli, Italy; (G.d.A.); (A.C.)
| | - Ludovica Verde
- Centro Italiano per la Cura e il Benessere del Paziente con Obesità (C.I.B.O), Dipartimento di Medicina Clinica e Chirurgia, Unit of Endocrinology, Federico II University Medical School of Naples, Via Sergio Pansini 5, 80131 Napoli, Italy;
| | - Mario Felice Tecce
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy;
| | - Annamaria Colao
- Dipartimento di Medicina Clinica e Chirurgia, Unit of Endocrinology, Federico II University Medical School of Naples, Via Sergio Pansini 5, 80131 Napoli, Italy; (G.d.A.); (A.C.)
- Cattedra Unesco “Educazione alla Salute e Allo Sviluppo Sostenibile”, University Federico II, 80131 Napoli, Italy
| | - Giovanna Muscogiuri
- Dipartimento di Medicina Clinica e Chirurgia, Unit of Endocrinology, Federico II University Medical School of Naples, Via Sergio Pansini 5, 80131 Napoli, Italy; (G.d.A.); (A.C.)
- Cattedra Unesco “Educazione alla Salute e Allo Sviluppo Sostenibile”, University Federico II, 80131 Napoli, Italy
| |
Collapse
|
30
|
Wijnker PJM, Dinani R, van der Laan NC, Algül S, Knollmann BC, Verkerk AO, Remme CA, Zuurbier CJ, Kuster DWD, van der Velden J. Hypertrophic cardiomyopathy dysfunction mimicked in human engineered heart tissue and improved by sodium-glucose cotransporter 2 inhibitors. Cardiovasc Res 2024; 120:301-317. [PMID: 38240646 PMCID: PMC10939456 DOI: 10.1093/cvr/cvae004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 11/15/2023] [Accepted: 11/29/2023] [Indexed: 03/16/2024] Open
Abstract
AIMS Hypertrophic cardiomyopathy (HCM) is the most common inherited cardiomyopathy, often caused by pathogenic sarcomere mutations. Early characteristics of HCM are diastolic dysfunction and hypercontractility. Treatment to prevent mutation-induced cardiac dysfunction is lacking. Sodium-glucose cotransporter 2 inhibitors (SGLT2i) are a group of antidiabetic drugs that recently showed beneficial cardiovascular outcomes in patients with acquired forms of heart failure. We here studied if SGLT2i represent a potential therapy to correct cardiomyocyte dysfunction induced by an HCM sarcomere mutation. METHODS AND RESULTS Contractility was measured of human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) harbouring an HCM mutation cultured in 2D and in 3D engineered heart tissue (EHT). Mutations in the gene encoding β-myosin heavy chain (MYH7-R403Q) or cardiac troponin T (TNNT2-R92Q) were investigated. In 2D, intracellular [Ca2+], action potential and ion currents were determined. HCM mutations in hiPSC-CMs impaired relaxation or increased force, mimicking early features observed in human HCM. SGLT2i enhance the relaxation of hiPSC-CMs, to a larger extent in HCM compared to control hiPSC-CMs. Moreover, SGLT2i-effects on relaxation in R403Q EHT increased with culture duration, i.e. hiPSC-CMs maturation. Canagliflozin's effects on relaxation were more pronounced than empagliflozin and dapagliflozin. SGLT2i acutely altered Ca2+ handling in HCM hiPSC-CMs. Analyses of SGLT2i-mediated mechanisms that may underlie enhanced relaxation in mutant hiPSC-CMs excluded SGLT2, Na+/H+ exchanger, peak and late Nav1.5 currents, and L-type Ca2+ current, but indicate an important role for the Na+/Ca2+ exchanger. Indeed, electrophysiological measurements in mutant hiPSC-CM indicate that SGLT2i altered Na+/Ca2+ exchange current. CONCLUSION SGLT2i (canagliflozin > dapagliflozin > empagliflozin) acutely enhance relaxation in human EHT, especially in HCM and upon prolonged culture. SGLT2i may represent a potential therapy to correct early cardiac dysfunction in HCM.
Collapse
Affiliation(s)
- Paul J M Wijnker
- Department of Physiology, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Heart Failure & Arrhythmias, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Rafeeh Dinani
- Department of Physiology, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Heart Failure & Arrhythmias, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Nico C van der Laan
- Department of Physiology, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Heart Failure & Arrhythmias, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Sila Algül
- Department of Physiology, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Heart Failure & Arrhythmias, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Bjorn C Knollmann
- Vanderbilt Center for Arrhythmia Research and Therapeutics, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Arie O Verkerk
- Amsterdam Cardiovascular Sciences, Heart Failure & Arrhythmias, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
- Experimental Cardiology, Amsterdam UMC, Academic Medical Centre, Amsterdam, The Netherlands
| | - Carol Ann Remme
- Amsterdam Cardiovascular Sciences, Heart Failure & Arrhythmias, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
- Experimental Cardiology, Amsterdam UMC, Academic Medical Centre, Amsterdam, The Netherlands
| | - Coert J Zuurbier
- Amsterdam Cardiovascular Sciences, Heart Failure & Arrhythmias, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
- Laboratory for Experimental Intensive Care and Anesthesiology (L.E.I.C.A.), Department of Anesthesiology, Amsterdam UMC, Academic Medical Centre, Amsterdam, The Netherlands
| | - Diederik W D Kuster
- Department of Physiology, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Heart Failure & Arrhythmias, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Jolanda van der Velden
- Department of Physiology, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Heart Failure & Arrhythmias, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| |
Collapse
|
31
|
Philip A, Dwivedi PSR, Shastry CS, Utagi B. Guideline directed medical therapy induced nephrotoxicity in HFrEF patients; an insight to its mechanism. J Biomol Struct Dyn 2024:1-15. [PMID: 38466079 DOI: 10.1080/07391102.2024.2326193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 02/27/2024] [Indexed: 03/12/2024]
Abstract
Guideline Directed Medical Therapy (GDMT) has been the standard pharmacotherapy for the treatment of Heart Failure patients with reduced Ejection Fraction (HFrEF) recommended by the European Society of Cardiology (ESC). However, patients on GDMT are likely to possess nephrotoxicity as an adverse effect. We utilized multiple system biology tools like ADVER-Pred, gene enrichment analysis, molecular docking, molecular dynamic simulations, and MMPBSA analysis to predict a possible molecular mechanism of how selected combinations of GDMT may cause nephrotoxicity. As per the ACC/AHA/ESC guidelines, we categorized the drugs as category 1 including β-blockers (BB), angiotensin receptor blockers (ARB), and sodium-glucose cotransporter-2 inhibitors (SGLT2I), category 2 includes BB's, SGLT2I, and angiotensin receptor-neprilysin inhibitors (ARNI), and category 3 includes BB's, SGLT2I, and angiotensin-converting enzyme (ACE) inhibitors. Enrichment analysis predicted category 2 drugs to possess the highest number of proteins to be involved in the development of nephrotoxicity i.e. 79.41%. The targets HBA1, CBR1, ATG5, and SLC6A3 were the top hub genes with an edge count of 7 followed by GPX1 with an edge count of 6. Molecular docking studies revealed candesartan-SLC6A3 to possess the highest binding affinity of -10.2 kcal/mol. In addition, simulation studies displayed empagliflozin-CBR1 to possess the highest stability followed by candesartan-ATG5. A combination of β-blockers, ARBs, and SGLT2I are predicted to likely possess nephrotoxicity which may be due to the modulation of HBA1, CBR1, ATG5, and GPX1. In conclusion, candesartan and empagliflozin are most likely to cause nephrotoxicity via the modulation of HBA1, CBR1, ATG5, and GPX1.
Collapse
Affiliation(s)
- Anu Philip
- Department of Pharmacy Practice, NGSM Institute of Pharmaceutical Sciences (NGSMIPS), Nitte (Deemed to be University), Mangalore, India
| | - Prarambh S R Dwivedi
- Department of Pharmacology, NGSM Institute of Pharmaceutical Sciences (NGSMIPS), Nitte (Deemed to be University), Mangalore, India
| | - C S Shastry
- Department of Pharmacy Practice, NGSM Institute of Pharmaceutical Sciences (NGSMIPS), Nitte (Deemed to be University), Mangalore, India
| | - Basavaraj Utagi
- Department of Cardiology, KS Hegde Medical Academy (KSHEMA), Nitte (Deemed to be University), Mangalore, India
| |
Collapse
|
32
|
Hasan I, Rashid T, Jaikaransingh V, Heilig C, Abdel-Rahman EM, Awad AS. SGLT2 inhibitors: Beyond glycemic control. J Clin Transl Endocrinol 2024; 35:100335. [PMID: 38525377 PMCID: PMC10957445 DOI: 10.1016/j.jcte.2024.100335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/08/2024] [Accepted: 03/11/2024] [Indexed: 03/26/2024] Open
Abstract
Multiple randomized controlled trials have extensively examined the therapeutic effectiveness of sodium-glucose cotransporter 2 (SGLT2) inhibitors, ushering in a transformative approach to treating individuals with type 2 diabetes mellitus (DM). Notably, emerging reports have drawn attention to the potential positive impacts of SGLT2 inhibitors in nondiabetic patients. In an effort to delve into this phenomenon, a comprehensive systematic literature review spanning PubMed (NLM), Medline (Ovid), and Cochrane Library, covering publications from 2000 to 2024 was undertaken. This systematic review encompassed twenty-six randomized control trials (RCTs) involving 35,317 participants. The findings unveiled a multifaceted role for SGLT2 inhibitors, showcasing their ability to enhance metabolic control and yield cardioprotective effects through a reduction in cardiovascular death (CVD) and hospitalization related to heart failure (HF). Additionally, a renalprotective effect was observed, evidenced by a slowdown in chronic kidney disease (CKD) progression and a decrease in albuminuria. Importantly, these benefits were coupled with an acceptable safety profile. The literature also points to various biological plausibility and underlying mechanistic pathways, offering insights into the association between SGLT2 inhibitors and these positive outcomes in nondiabetic individuals. Current research trends indicate a continual exploration of additional role for SGLT2 inhibitors in. Nevertheless, further research is imperative to fully elucidate the mechanisms and long-term outcomes associated with the nondiabetic use of SGLT2 inhibitors.
Collapse
Affiliation(s)
- Irtiza Hasan
- University of Florida College of Medicine-Jacksonville, FL, USA
| | - Tasnuva Rashid
- University of Florida College of Medicine-Jacksonville, FL, USA
| | | | - Charles Heilig
- University of Florida College of Medicine-Jacksonville, FL, USA
| | | | - Alaa S. Awad
- University of Florida College of Medicine-Jacksonville, FL, USA
| |
Collapse
|
33
|
Ostrominski JW, Vaduganathan M. Chapter 2: Clinical and Mechanistic Potential of Sodium-Glucose Co-Transporter 2 (SGLT2) Inhibitors in Heart Failure with Preserved Ejection Fraction. Am J Med 2024; 137:S9-S24. [PMID: 37160196 DOI: 10.1016/j.amjmed.2023.04.035] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 04/18/2023] [Indexed: 05/11/2023]
Abstract
Sodium-glucose co-transporter 2 inhibitors (SGLT2i) have emerged as an important approach for the treatment of heart failure in patients with or without diabetes. Although the precise mechanisms underpinning their clinical impact remain incompletely resolved, mechanistic studies and insights from major clinical trials have demonstrated the impact of SGLT2 inhibitors on numerous cardio-renal-metabolic pathways of relevance to heart failure with preserved ejection fraction (HFpEF), which, in the contemporary era, constitutes approximately half of all patients with heart failure. Despite rates of morbidity and mortality that are commensurate with those of heart failure with reduced ejection fraction, disease-modifying therapies have comparatively been severely lacking. As such, HFpEF remains among the greatest unmet needs in cardiovascular medicine. Within the past decade, HFpEF has been established as a highly integrated disorder, involving not only the cardiovascular system, but also the lungs, kidneys, skeletal muscle, and adipose tissue. Given their multisystem impact, SGLT2i offer unique promise in addressing the complex pathophysiology of HFpEF, and in recent randomized controlled trials, were shown to significantly reduce heart failure events and cardiovascular death in patients with HFpEF. Herein, we discuss several proposed mechanisms of clinical benefit of SGLT2i in HFpEF.
Collapse
Affiliation(s)
- John W Ostrominski
- Brigham and Women's Hospital Heart & Vascular Center, Harvard Medical School, Boston, Mass
| | - Muthiah Vaduganathan
- Brigham and Women's Hospital Heart & Vascular Center, Harvard Medical School, Boston, Mass.
| |
Collapse
|
34
|
Paasche A, Wiedmann F, Kraft M, Seibertz F, Herlt V, Blochberger PL, Jávorszky N, Beck M, Weirauch L, Seeger T, Blank A, Haefeli WE, Arif R, Meyer AL, Warnecke G, Karck M, Voigt N, Frey N, Schmidt C. Acute antiarrhythmic effects of SGLT2 inhibitors-dapagliflozin lowers the excitability of atrial cardiomyocytes. Basic Res Cardiol 2024; 119:93-112. [PMID: 38170280 PMCID: PMC10837223 DOI: 10.1007/s00395-023-01022-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 11/08/2023] [Accepted: 11/24/2023] [Indexed: 01/05/2024]
Abstract
In recent years, SGLT2 inhibitors have become an integral part of heart failure therapy, and several mechanisms contributing to cardiorenal protection have been identified. In this study, we place special emphasis on the atria and investigate acute electrophysiological effects of dapagliflozin to assess the antiarrhythmic potential of SGLT2 inhibitors. Direct electrophysiological effects of dapagliflozin were investigated in patch clamp experiments on isolated atrial cardiomyocytes. Acute treatment with elevated-dose dapagliflozin caused a significant reduction of the action potential inducibility, the amplitude and maximum upstroke velocity. The inhibitory effects were reproduced in human induced pluripotent stem cell-derived cardiomyocytes, and were more pronounced in atrial compared to ventricular cells. Hypothesizing that dapagliflozin directly affects the depolarization phase of atrial action potentials, we examined fast inward sodium currents in human atrial cardiomyocytes and found a significant decrease of peak sodium current densities by dapagliflozin, accompanied by a moderate inhibition of the transient outward potassium current. Translating these findings into a porcine large animal model, acute elevated-dose dapagliflozin treatment caused an atrial-dominant reduction of myocardial conduction velocity in vivo. This could be utilized for both, acute cardioversion of paroxysmal atrial fibrillation episodes and rhythm control of persistent atrial fibrillation. In this study, we show that dapagliflozin alters the excitability of atrial cardiomyocytes by direct inhibition of peak sodium currents. In vivo, dapagliflozin exerts antiarrhythmic effects, revealing a potential new additional role of SGLT2 inhibitors in the treatment of atrial arrhythmias.
Collapse
Affiliation(s)
- Amelie Paasche
- Department of Cardiology, Medical University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
- DZHK (German Center for Cardiovascular Research), Partner site Heidelberg/Mannheim, University of Heidelberg, Im Neuenheimer Feld 669, 69120, Heidelberg, Germany
- HCR, Heidelberg Center for Heart Rhythm Disorders, University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Felix Wiedmann
- Department of Cardiology, Medical University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
- DZHK (German Center for Cardiovascular Research), Partner site Heidelberg/Mannheim, University of Heidelberg, Im Neuenheimer Feld 669, 69120, Heidelberg, Germany
- HCR, Heidelberg Center for Heart Rhythm Disorders, University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Manuel Kraft
- Department of Cardiology, Medical University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
- DZHK (German Center for Cardiovascular Research), Partner site Heidelberg/Mannheim, University of Heidelberg, Im Neuenheimer Feld 669, 69120, Heidelberg, Germany
- HCR, Heidelberg Center for Heart Rhythm Disorders, University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Fitzwilliam Seibertz
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Robert Koch Strasse 42a, 37075, Göttingen, Germany
- DZHK (German Center for Cardiovascular Research) Partner Site Göttingen, Robert Koch Strasse 42a, 37075, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Robert Koch Strasse 40, 37075, Göttingen, Germany
| | - Valerie Herlt
- Department of Cardiology, Medical University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Pablo L Blochberger
- Department of Cardiology, Medical University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Natasa Jávorszky
- Department of Cardiology, Medical University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Moritz Beck
- Department of Cardiology, Medical University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Leo Weirauch
- Department of Cardiology, Medical University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Timon Seeger
- Department of Cardiology, Medical University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
- DZHK (German Center for Cardiovascular Research), Partner site Heidelberg/Mannheim, University of Heidelberg, Im Neuenheimer Feld 669, 69120, Heidelberg, Germany
| | - Antje Blank
- Department of Clinical Pharmacology and Pharmacoepidemiology, University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Walter E Haefeli
- Department of Clinical Pharmacology and Pharmacoepidemiology, University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Rawa Arif
- Department of Cardiac Surgery, University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Anna L Meyer
- Department of Cardiac Surgery, University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Gregor Warnecke
- Department of Cardiac Surgery, University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Matthias Karck
- Department of Cardiac Surgery, University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Niels Voigt
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Robert Koch Strasse 42a, 37075, Göttingen, Germany
- DZHK (German Center for Cardiovascular Research) Partner Site Göttingen, Robert Koch Strasse 42a, 37075, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Robert Koch Strasse 40, 37075, Göttingen, Germany
| | - Norbert Frey
- Department of Cardiology, Medical University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
- DZHK (German Center for Cardiovascular Research), Partner site Heidelberg/Mannheim, University of Heidelberg, Im Neuenheimer Feld 669, 69120, Heidelberg, Germany
- HCR, Heidelberg Center for Heart Rhythm Disorders, University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Constanze Schmidt
- Department of Cardiology, Medical University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany.
- DZHK (German Center for Cardiovascular Research), Partner site Heidelberg/Mannheim, University of Heidelberg, Im Neuenheimer Feld 669, 69120, Heidelberg, Germany.
- HCR, Heidelberg Center for Heart Rhythm Disorders, University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany.
| |
Collapse
|
35
|
Gao P, Gao X, Xie B, Tse G, Liu T. Aging and atrial fibrillation: A vicious circle. Int J Cardiol 2024; 395:131445. [PMID: 37848123 DOI: 10.1016/j.ijcard.2023.131445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 09/17/2023] [Accepted: 10/12/2023] [Indexed: 10/19/2023]
Abstract
Atrial fibrillation (AF) is the commonest sustained cardiac arrhythmia observed in clinical practice. Its prevalence increases dramatically with advancing age. This review article discusses the recent advances in studies investigating the relationship between aging and AF and the possible underlying mechanisms.
Collapse
Affiliation(s)
- Pan Gao
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China
| | - Xinyi Gao
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China
| | - Bingxin Xie
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China
| | - Gary Tse
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China; School of Nursing and Health Studies, Hong Kong Metropolitan University, Hong Kong, China
| | - Tong Liu
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China.
| |
Collapse
|
36
|
Gao S, Liu XP, Li TT, Chen L, Feng YP, Wang YK, Yin YJ, Little PJ, Wu XQ, Xu SW, Jiang XD. Animal models of heart failure with preserved ejection fraction (HFpEF): from metabolic pathobiology to drug discovery. Acta Pharmacol Sin 2024; 45:23-35. [PMID: 37644131 PMCID: PMC10770177 DOI: 10.1038/s41401-023-01152-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 08/08/2023] [Indexed: 08/31/2023]
Abstract
Heart failure (HF) with preserved ejection fraction (HFpEF) is currently a preeminent challenge for cardiovascular medicine. It has a poor prognosis, increasing mortality, and is escalating in prevalence worldwide. Despite accounting for over 50% of all HF patients, the mechanistic underpinnings driving HFpEF are poorly understood, thus impeding the discovery and development of mechanism-based therapies. HFpEF is a disease syndrome driven by diverse comorbidities, including hypertension, diabetes and obesity, pulmonary hypertension, aging, and atrial fibrillation. There is a lack of high-fidelity animal models that faithfully recapitulate the HFpEF phenotype, owing primarily to the disease heterogeneity, which has hampered our understanding of the complex pathophysiology of HFpEF. This review provides an updated overview of the currently available animal models of HFpEF and discusses their characteristics from the perspective of energy metabolism. Interventional strategies for efficiently utilizing energy substrates in preclinical HFpEF models are also discussed.
Collapse
Affiliation(s)
- Si Gao
- Department of Pharmacy, School of Medicine, Guangxi University of Science and Technology, Liuzhou, 545005, China
| | - Xue-Ping Liu
- Department of Pharmacy, School of Medicine, Guangxi University of Science and Technology, Liuzhou, 545005, China
| | - Ting-Ting Li
- Department of Pharmacy, School of Medicine, Guangxi University of Science and Technology, Liuzhou, 545005, China
| | - Li Chen
- Department of Pharmacy, School of Medicine, Guangxi University of Science and Technology, Liuzhou, 545005, China
| | - Yi-Ping Feng
- Department of Pharmacy, School of Medicine, Guangxi University of Science and Technology, Liuzhou, 545005, China
| | - Yu-Kun Wang
- Department of Pharmacy, School of Medicine, Guangxi University of Science and Technology, Liuzhou, 545005, China
| | - Yan-Jun Yin
- School of Pharmacy, Bengbu Medical College, Bengbu, 233000, China
| | - Peter J Little
- School of Pharmacy, University of Queensland, Pharmacy Australia Centre of Excellence, Woolloongabba, QLD, 4102, Australia
| | - Xiao-Qian Wu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China.
| | - Suo-Wen Xu
- Department of Endocrinology, First Affiliated Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China.
| | - Xu-Dong Jiang
- Department of Pharmacy, School of Medicine, Guangxi University of Science and Technology, Liuzhou, 545005, China.
| |
Collapse
|
37
|
Abstract
Elevated left atrial pressure during exercise is a hallmark of heart failure (HF) and is associated with adverse left atrial remodeling and poor outcomes. To decompress the pressure-overloaded left atrium in patients with HF, several device-based approaches have been developed to create a permanent, pressure-dependent, left-to-right interatrial shunt. Such approaches are currently in various stages of investigations in both HF with reduced ejection fraction (EF) and HF with preserved EF. This review discusses the evolution of the concept of left atrial decompression and summarizes the current landscape of device-based approaches used for left atrial decompression.
Collapse
Affiliation(s)
- Husam M Salah
- Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Claudia Baratto
- Division of Cardiology, Dyspnea and Pulmonary Hypertension Clinic, Ospedale San Luca IRCCS Istituto Auxologico Italiano, Milano, Italy
| | - Dmitry M Yaranov
- Baptist Heart Institute, Baptist Memorial Hospital, Memphis, TN, USA
| | - Karl-Philipp Rommel
- Deptartment of Cardiology, Heart Center at University of Leipzig and Leipzig Heart Institute, Leipzig, Germany; Cardiovacular Research Foundation, New York, NY, USA
| | | | - Sergio Caravita
- Division of Cardiology, Dyspnea and Pulmonary Hypertension Clinic, Ospedale San Luca IRCCS Istituto Auxologico Italiano, Milano, Italy; Department of Management, Information and Production Engineering, University of Bergamo, Dalmine, Province of Bergamo, Italy
| | | | - Marat Fudim
- Division of Cardiology, Department of Medicine, Duke University, Durham, NC, USA; Duke Clinical Research Institute, Durham, NC, USA.
| |
Collapse
|
38
|
Mehrhof F, Hüttemeister J, Tanacli R, Bock M, Bögner M, Schoenrath F, Falk V, Zips D, Hindricks G, Gerds-Li JH, Hohendanner F. Cardiac radiotherapy transiently alters left ventricular electrical properties and induces cardiomyocyte-specific ventricular substrate changes in heart failure. Europace 2023; 26:euae005. [PMID: 38193546 PMCID: PMC10803027 DOI: 10.1093/europace/euae005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 12/28/2023] [Indexed: 01/10/2024] Open
Abstract
AIMS Ongoing clinical trials investigate the therapeutic value of stereotactic cardiac radioablation (cRA) in heart failure patients with ventricular tachycardia. Animal data indicate an effect on local cardiac conduction properties. However, the exact mechanism of cRA in patients remains elusive. Aim of the current study was to investigate in vivo and in vitro myocardial properties in heart failure and ventricular tachycardia upon cRA. METHODS AND RESULTS High-density 3D electroanatomic mapping in sinus rhythm was performed in a patient with a left ventricular assist device and repeated ventricular tachycardia episodes upon several catheter-based endocardial radio-frequency ablation attempts. Subsequent to electroanatomic mapping and cRA of the left ventricular septum, two additional high-density electroanatomic maps were obtained at 2- and 4-month post-cRA. Myocardial tissue samples were collected from the left ventricular septum during 4-month post-cRA from the irradiated and borderzone regions. In addition, we performed molecular biology and mitochondrial density measurements of tissue and isolated cardiomyocytes. Local voltage was altered in the irradiated region of the left ventricular septum during follow-up. No change of local voltage was observed in the control (i.e. borderzone) region upon irradiation. Interestingly, local activation time was significantly shortened upon irradiation (2-month post-cRA), a process that was reversible (4-month post-cRA). Molecular biology unveiled an increased expression of voltage-dependent sodium channels in the irradiated region as compared with the borderzone, while Connexin43 and transforming growth factor beta were unchanged (4-month post-cRA). Moreover, mitochondrial density was decreased in the irradiated region as compared with the borderzone. CONCLUSION Our study supports the notion of transiently altered cardiac conduction potentially related to structural and functional cellular changes as an underlying mechanism of cRA in patients with ventricular tachycardia.
Collapse
Affiliation(s)
- Felix Mehrhof
- Klinik für Radioonkologie und Strahlentherapie, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Judith Hüttemeister
- Department of Cardiology, Angiology and Intensive Care Medicine, Deutsches Herzzentrum der Charité, Augustenburger Platz 1, Germany, 13353 Berlin, Germany
- Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Radu Tanacli
- Department of Cardiology, Angiology and Intensive Care Medicine, Deutsches Herzzentrum der Charité, Augustenburger Platz 1, Germany, 13353 Berlin, Germany
- Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Matthias Bock
- Department of Cardiology, Angiology and Intensive Care Medicine, Deutsches Herzzentrum der Charité, Augustenburger Platz 1, Germany, 13353 Berlin, Germany
- Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), partner site, Berlin, Germany
| | - Markus Bögner
- Department of Cardiology, Angiology and Intensive Care Medicine, Deutsches Herzzentrum der Charité, Augustenburger Platz 1, Germany, 13353 Berlin, Germany
- Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), partner site, Berlin, Germany
| | - Felix Schoenrath
- Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), partner site, Berlin, Germany
- Klinik für Herz-, Thorax- und Gefäßchirurgie, Deutsches Herzzentrum der Charité, Berlin, Germany
| | - Volkmar Falk
- Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), partner site, Berlin, Germany
- Klinik für Herz-, Thorax- und Gefäßchirurgie, Deutsches Herzzentrum der Charité, Berlin, Germany
- Translational Cardiovascular Technologies, Institute of Translational Medicine, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH) Zurich, Berlin, Germany
| | - Daniel Zips
- Klinik für Radioonkologie und Strahlentherapie, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Gerhard Hindricks
- Department of Cardiology, Angiology and Intensive Care Medicine, Deutsches Herzzentrum der Charité, Augustenburger Platz 1, Germany, 13353 Berlin, Germany
- Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), partner site, Berlin, Germany
| | - Jin-Hong Gerds-Li
- Department of Cardiology, Angiology and Intensive Care Medicine, Deutsches Herzzentrum der Charité, Augustenburger Platz 1, Germany, 13353 Berlin, Germany
- Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Felix Hohendanner
- Department of Cardiology, Angiology and Intensive Care Medicine, Deutsches Herzzentrum der Charité, Augustenburger Platz 1, Germany, 13353 Berlin, Germany
- Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), partner site, Berlin, Germany
| |
Collapse
|
39
|
Talha M, Ali MH. Letter to the Editor: Latest FDA Approved Drug Sotagliflozin (Inpefa): A Glance at its Prospectives for Heart Failure. Curr Probl Cardiol 2023; 48:101897. [PMID: 37402421 DOI: 10.1016/j.cpcardiol.2023.101897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 06/27/2023] [Indexed: 07/06/2023]
Affiliation(s)
- Muhammad Talha
- Department of Cardiology, Shaikh Khalifa Bin Zayed Al-Nahyan Medical and Dental College, Lahore, Punjab, Pakistan.
| | - Mohammad Haris Ali
- Department of Cardiology, Shaikh Khalifa Bin Zayed Al-Nahyan Medical and Dental College, Lahore, Punjab, Pakistan
| |
Collapse
|
40
|
Huang S, Shi K, Li Y, Wang J, Jiang L, Gao Y, Yan WF, Shen LT, Yang ZG. Effect of Metabolic Dysfunction-Associated Fatty Liver Disease on Left Ventricular Deformation and Atrioventricular Coupling in Patients With Metabolic Syndrome Assessed by MRI. J Magn Reson Imaging 2023; 58:1098-1107. [PMID: 36591962 DOI: 10.1002/jmri.28588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Metabolic dysfunction-associated fatty liver disease (MAFLD) was recently recognized as an important risk factor for cardiovascular diseases. PURPOSE To examine the effect of MAFLD on cardiac function in metabolic syndrome by MRI. STUDY TYPE Retrospective. POPULATION One hundred seventy-nine patients with metabolic syndrome (MetS), 101 with MAFLD (MAFLD [+]) and 78 without (MAFLD [-]). Eighty-one adults without any of the components of MetS or cardiac abnormalities were included as control group. FIELD STRENGTH/SEQUENCE 3.0 T; balanced steady-state free precession sequence. ASSESSMENT Left atrial (LA) strain was assessed during three phases: reservoir strain (LA-RS), conduit strain (LA-CS), and booster strain (LA-BS). Left ventricular (LV) global longitudinal (LV-GLS) strain was also derived. The left atrioventricular coupling index (LACI) was calculated as the ratio of LA end-diastolic volume (LA-EDV) and LV-EDV. STATISTICAL TESTS Student's t test or Mann-Whitney U test; One-way analysis of variance. A P value <0.05 was considered statistically significant. RESULTS Among MetS patients, individuals with MAFLD had significantly lower magnitude LV-GLS (-11.6% ± 3.3% vs. -13.8% ± 2.7%) than those without MAFLD. For LA strains, LA-RS (36.9% ± 13.7% vs. 42.9% ± 13.5%) and LA-CS (20.0% ± 10.6% vs. 24.1% ± 9.2%) were also significantly reduced in MAFLD (+) compared to MAFLD (-). The LACIs (17.2% [12.9-21.2] % vs. 15.8% [12.2-19.7] %) were significantly higher in patients with MAFLD compared to those without MAFLD. After adjustment for other clinical factors, MAFLD was found to be independently correlated with LV-GLS (β = -0.270) and LACI (β = 0.260). DATA CONCLUSION MAFLD had an unfavorable effect on LV myocardial strain in MetS. Moreover, LA strain and atrioventricular coupling were further impaired in patients with concomitant MAFLD compared to those without MAFLD. Last, MAFLD was independently associated with subclinical LV dysfunction and atrioventricular coupling after adjustment for other clinical factors. EVIDENCE LEVEL 3 TECHNICAL EFFICACY: 3.
Collapse
Affiliation(s)
- Shan Huang
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ke Shi
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yuan Li
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jin Wang
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Li Jiang
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yue Gao
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Wei-Feng Yan
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Li-Ting Shen
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhi-Gang Yang
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
41
|
Manolis AA, Manolis TA, Melita H, Manolis AS. Sodium-glucose cotransporter type 2 inhibitors and cardiac arrhythmias. Trends Cardiovasc Med 2023; 33:418-428. [PMID: 35447305 DOI: 10.1016/j.tcm.2022.04.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/02/2022] [Accepted: 04/15/2022] [Indexed: 02/06/2023]
Abstract
The introduction of sodium-glucose cotransporter 2 (SGLT2) inhibitors as a new and effective class of therapeutic agents for type 2 diabetes (T2D) preventing the reabsorption of glucose in the kidneys and thus facilitating glucose excretion in the urine, but also as agents with cardiovascular benefits, particularly in patients with heart failure (HF), regardless of the diabetic status, has ushered in a new era in treating patients with T2D and/or HF. In addition, data have recently emerged indicating an antiarrhythmic effect of the SGLT2 inhibitors in patients with and without diabetes. Prospective studies, randomized controlled trials and meta-analyses have provided robust evidence for a protective and beneficial effect of these agents against atrial fibrillation, ventricular arrhythmias and sudden cardiac death. The antiarrhythmic mechanisms involved include reverse atrial and ventricular remodeling, amelioration of mitochondrial function, reduction of hypoglycemic episodes with their attendant arrhythmogenic effects, attenuated sympathetic nervous system activity, regulation of sodium and calcium homeostasis, and suppression of prolonged ventricular repolarization. These new data on antiarrhythmic actions of SGLT2 inhibitors are herein reviewed, potential mechanisms involved are discussed and pictorially illustrated, and treatment results on specific arrhythmias are described and tabulated.
Collapse
Affiliation(s)
| | | | | | - Antonis S Manolis
- First Department of Cardiology, Athens University School of Medicine, Athens, Greece.
| |
Collapse
|
42
|
Wang X, Zhang X, Zhang W, Li J, Weng W, Li Q. Association of Sodium-Glucose Cotransporter 2 Inhibitors (SGLT2i) with Cardiac Arrhythmias: A Systematic Review and Meta-Analysis of Cardiovascular Outcome Trials. Rev Cardiovasc Med 2023; 24:258. [PMID: 39076384 PMCID: PMC11262450 DOI: 10.31083/j.rcm2409258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/12/2023] [Accepted: 04/07/2023] [Indexed: 07/31/2024] Open
Abstract
Background Sodium-glucose cotransporter 2 inhibitors (SGLT2i) are a class of widely used hypoglycemic agents for the treatment of type 2 diabetes mellitus (T2DM). In addition to lowering blood glucose, SGLT2i protects the heart and kidney, significantly reduces cardiovascular events, and delays the progression of heart failure and chronic kidney disease. However, previous studies have not exhaustively discussed the association between SGLT2i and the risk of developing cardiac arrhythmias. The purpose of this study is to assess the association of SGLT2i with cardiac arrhythmias in patients with T2DM and without T2DM in cardiovascular outcome trials (CVOTs). Methods We performed a meta-analysis and systematic review of CVOTs that compared SGLT2i with placebo. MEDLINE, Web of Science, The Cochrane Library and Embase were systematically searched from inception to December 2022. We included CVOTs reporting cardiovascular or renal outcomes with a follow-up duration of at least 6 months. Results A total of 12 CVOTs with 77,470 participants were included in this meta-analysis (42,016 SGLT2i vs 35,454 control), including patients with T2DM, heart failure (HF), or chronic kidney disease (CKD). Follow-up duration ranged from 9 months to 5.65 years. Medications included empagliflozin, canagliflozin, dapagliflozin and ertugliflozin. SGLT2i were associated with a lower risk of tachycardia (risk ratio (RR) 0.86; 95% confidence interval (CI) 0.79-0.95), supraventricular tachycardia (SVT; RR 0.84; 95% CI 0.75-0.94), atrial fibrillation (AF; RR 0.86; 95% CI 0.75-0.97) and atrial flutter (AFL; RR 0.75; 95% CI 0.57-0.99) in patients with T2DM, HF and CKD. SGLT2i could also reduce the risk of cardiac arrest in CKD patients (RR 0.50; 95% CI 0.26-0.95). Besides, SGLT2i therapy was not associated with a lower risk of ventricular arrhythmia and bradycardia. Conclusions SGLT2i therapy is associated with significantly reduced the risk of tachycardia, SVT, AF, and AFL in patients with T2DM, HF, and CKD. In addition, SGLT2i could also reduce the risk of cardiac arrest in CKD patients. Further researches are needed to fully elucidate the antiarrhythmic mechanism of SGLT2i.
Collapse
Affiliation(s)
- Xujie Wang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, 100091
Beijing, China
- National Clinical Research Center for Chinese Medicine Cardiology, 100091
Beijing, China
| | - Xuexue Zhang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, 100091
Beijing, China
- National Clinical Research Center for Chinese Medicine Cardiology, 100091
Beijing, China
| | - Wantong Zhang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, 100091
Beijing, China
- National Clinical Research Center for Chinese Medicine Cardiology, 100091
Beijing, China
- Institute of Clinical Pharmacology, China Academy of Chinese Medical
Sciences, 100091 Beijing, China
| | - Jiaxi Li
- The First Clinical College, Shanxi University of Chinese Medicine, 030024
Taiyuan, Shanxi, China
| | - Weiliang Weng
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, 100091
Beijing, China
- National Clinical Research Center for Chinese Medicine Cardiology, 100091
Beijing, China
- Institute of Clinical Pharmacology, China Academy of Chinese Medical
Sciences, 100091 Beijing, China
| | - Qiuyan Li
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, 100091
Beijing, China
- National Clinical Research Center for Chinese Medicine Cardiology, 100091
Beijing, China
| |
Collapse
|
43
|
Wang S, Zhao H, Lin S, Lv Y, Lin Y, Liu Y, Peng R, Jin H. New therapeutic directions in type II diabetes and its complications: mitochondrial dynamics. Front Endocrinol (Lausanne) 2023; 14:1230168. [PMID: 37670891 PMCID: PMC10475949 DOI: 10.3389/fendo.2023.1230168] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 08/07/2023] [Indexed: 09/07/2023] Open
Abstract
As important organelles of energetic and metabolism, changes in the dynamic state of mitochondria affect the homeostasis of cellular metabolism. Mitochondrial dynamics include mitochondrial fusion and mitochondrial fission. The former is coordinated by mitofusin-1 (Mfn1), mitofusin-2 (Mfn2), and optic atrophy 1 (Opa1), and the latter is mediated by dynamin related protein 1 (Drp1), mitochondrial fission 1 (Fis1) and mitochondrial fission factor (MFF). Mitochondrial fusion and fission are generally in dynamic balance and this balance is important to preserve the proper mitochondrial morphology, function and distribution. Diabetic conditions lead to disturbances in mitochondrial dynamics, which in return causes a series of abnormalities in metabolism, including decreased bioenergy production, excessive production of reactive oxygen species (ROS), defective mitophagy and apoptosis, which are ultimately closely linked to multiple chronic complications of diabetes. Multiple researches have shown that the incidence of diabetic complications is connected with increased mitochondrial fission, for example, there is an excessive mitochondrial fission and impaired mitochondrial fusion in diabetic cardiomyocytes, and that the development of cardiac dysfunction induced by diabetes can be attenuated by inhibiting mitochondrial fission. Therefore, targeting the restoration of mitochondrial dynamics would be a promising therapeutic target within type II diabetes (T2D) and its complications. The molecular approaches to mitochondrial dynamics, their impairment in the context of T2D and its complications, and pharmacological approaches targeting mitochondrial dynamics are discussed in this review and promise benefits for the therapy of T2D and its comorbidities.
Collapse
Affiliation(s)
- Shengnan Wang
- Department of Rheumatology and Immunology, The Third Affiliated Hospital of Shanghai University, Wenzhou No.3 Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People’s Hospital, Wenzhou, China
| | - Haiyang Zhao
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang, College of Life and Environmental Science, Wenzhou University, Wenzhou, China
| | - Suxian Lin
- Department of Rheumatology and Immunology, The Third Affiliated Hospital of Shanghai University, Wenzhou No.3 Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People’s Hospital, Wenzhou, China
| | - Yang Lv
- Department of Rheumatology and Immunology, The Third Affiliated Hospital of Shanghai University, Wenzhou No.3 Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People’s Hospital, Wenzhou, China
| | - Yue Lin
- General Practitioner, The Third Affiliated Hospital of Shanghai University, Wenzhou No.3 Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People’s Hospital, Wenzhou, China
| | - Yinai Liu
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang, College of Life and Environmental Science, Wenzhou University, Wenzhou, China
| | - Renyi Peng
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang, College of Life and Environmental Science, Wenzhou University, Wenzhou, China
| | - Huanzhi Jin
- General Practitioner, The Third Affiliated Hospital of Shanghai University, Wenzhou No.3 Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People’s Hospital, Wenzhou, China
| |
Collapse
|
44
|
Bodnar P, Mazurkiewicz M, Chwalba T, Romuk E, Ciszek-Chwalba A, Jacheć W, Wojciechowska C. The Impact of Pharmacotherapy for Heart Failure on Oxidative Stress-Role of New Drugs, Flozins. Biomedicines 2023; 11:2236. [PMID: 37626732 PMCID: PMC10452694 DOI: 10.3390/biomedicines11082236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 08/27/2023] Open
Abstract
Heart failure (HF) is a multifactorial clinical syndrome involving many complex processes. The causes may be related to abnormal heart structure and/or function. Changes in the renin-angiotensin-aldosterone system, the sympathetic nervous system, and the natriuretic peptide system are important in the pathophysiology of HF. Dysregulation or overexpression of these processes leads to changes in cardiac preload and afterload, changes in the vascular system, peripheral vascular dysfunction and remodeling, and endothelial dysfunction. One of the important factors responsible for the development of heart failure at the cellular level is oxidative stress. This condition leads to deleterious cellular effects as increased levels of free radicals gradually disrupt the state of equilibrium, and, as a consequence, the internal antioxidant defense system is damaged. This review focuses on pharmacotherapy for chronic heart failure with regard to oxidation-reduction metabolism, with special attention paid to the latest group of drugs, SGLT2 inhibitors-an integral part of HF treatment. These drugs have been shown to have beneficial effects by protecting the antioxidant system at the cellular level.
Collapse
Affiliation(s)
- Patryk Bodnar
- Student Research Team at the Second Department of Cardiology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, M. C. Skłodowskiej 10 Street, 41-800 Zabrze, Poland; (P.B.); (T.C.); (A.C.-C.)
| | | | - Tomasz Chwalba
- Student Research Team at the Second Department of Cardiology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, M. C. Skłodowskiej 10 Street, 41-800 Zabrze, Poland; (P.B.); (T.C.); (A.C.-C.)
| | - Ewa Romuk
- Department of Biochemistry, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Jordana 19 Street, 41-808 Zabrze, Poland
| | - Anna Ciszek-Chwalba
- Student Research Team at the Second Department of Cardiology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, M. C. Skłodowskiej 10 Street, 41-800 Zabrze, Poland; (P.B.); (T.C.); (A.C.-C.)
| | - Wojciech Jacheć
- Second Department of Cardiology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, M. C. Skłodowskiej 10 Street, 41-800 Zabrze, Poland; (W.J.); (C.W.)
| | - Celina Wojciechowska
- Second Department of Cardiology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, M. C. Skłodowskiej 10 Street, 41-800 Zabrze, Poland; (W.J.); (C.W.)
| |
Collapse
|
45
|
Zhao M, Li N, Zhou H. SGLT1: A Potential Drug Target for Cardiovascular Disease. Drug Des Devel Ther 2023; 17:2011-2023. [PMID: 37435096 PMCID: PMC10332373 DOI: 10.2147/dddt.s418321] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 06/29/2023] [Indexed: 07/13/2023] Open
Abstract
SGLT1 and SGLT2 are the two main members of the sodium-glucose cotransporters (SGLTs), which are mainly responsible for glucose reabsorption in the body. In recent years, many large clinical trials have shown that SGLT2 inhibitors have cardiovascular protection for diabetic and non-diabetic patients independent of lowering blood glucose. However, SGLT2 was barely detected in the hearts of humans and animals, while SGLT1 was highly expressed in myocardium. As SGLT2 inhibitors also have a moderate inhibitory effect on SGLT1, the cardiovascular protection of SGLT2 inhibitors may be due to SGLT1 inhibition. SGLT1 expression is associated with pathological processes such as cardiac oxidative stress, inflammation, fibrosis, and cell apoptosis, as well as mitochondrial dysfunction. The purpose of this review is to summarize the protective effects of SGLT1 inhibition on hearts in various cell types, including cardiomyocytes, endothelial cells, and fibroblasts in preclinical studies, and to highlight the underlying molecular mechanisms of protection against cardiovascular diseases. Selective SGLT1 inhibitors could be considered a class of drugs for cardiac-specific therapy in the future.
Collapse
Affiliation(s)
- Mengnan Zhao
- Department of Endocrinology, the Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, People’s Republic of China
| | - Na Li
- Department of Endocrinology, the Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, People’s Republic of China
| | - Hong Zhou
- Department of Endocrinology, the Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, People’s Republic of China
| |
Collapse
|
46
|
Zhong C, Yang J, Zhang Y, Fan X, Fan Y, Hua N, Li D, Jin S, Li Y, Chen P, Chen Y, Cai X, Zhang Y, Jiang L, Yang W, Yu P, Lin H. TRPM2 Mediates Hepatic Ischemia-Reperfusion Injury via Ca 2+-Induced Mitochondrial Lipid Peroxidation through Increasing ALOX12 Expression. RESEARCH (WASHINGTON, D.C.) 2023; 6:0159. [PMID: 37275121 PMCID: PMC10232356 DOI: 10.34133/research.0159] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 05/03/2023] [Indexed: 06/07/2023]
Abstract
Hepatic ischemia-reperfusion (IR) injury is a serious clinical problem that complicates liver resection and transplantation. Despite recent advances in understanding of the pathophysiology of hepatic IR injury, effective interventions and therapeutics are still lacking. Here, we examined the role of transient receptor potential melastatin 2 (TRPM2), a Ca2+-permeable, non-selective cation channel, in mediating hepatic IR injury. Our data showed that TRPM2 deficiency attenuated IR-induced liver dysfunction, inflammation, and cell death in mice. Moreover, RNA sequencing analysis indicated that TRPM2-induced IR injury occurs via ferroptosis-related pathways. Consistently, as a ferroptosis inducer, (1S,3R)-RSL3 treatment induced mitochondrial dysfunction in hepatocytes and a TRPM2 inhibitor suppressed this. Interestingly, TRPM2-mediated calcium influx caused mitochondrial calcium accumulation via the mitochondrial Ca2+-selective uniporter and increased the expression level of arachidonate 12-lipoxygenase (ALOX12), which results in mitochondrial lipid peroxidation during hepatic IR injury. Furthermore, hepatic IR injury-induced ferroptosis was obviously relieved by a TRPM2 inhibitor or calcium depletion, both in vitro and in vivo. Collectively, these findings demonstrate a crucial role for TRPM2-mediated ferroptosis in hepatic IR injury via increased Ca2+-induced ALOX12 expression, indicating that pharmacological inhibition of TRPM2 may provide an effective therapeutic strategy for hepatic IR injury-related diseases, such as during liver resection and transplantation.
Collapse
Affiliation(s)
- Cheng Zhong
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine,
Zhejiang University, Hangzhou, P.R. China
| | - Jing Yang
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine,
Zhejiang University, Hangzhou, P.R. China
| | - Yiyin Zhang
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine,
Zhejiang University, Hangzhou, P.R. China
| | - Xiaoxiao Fan
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine,
Zhejiang University, Hangzhou, P.R. China
| | - Yang Fan
- Department of Toxicology and Department of Medical Oncology of Second Affiliated Hospital,
Zhejiang University School of Medicine, Hangzhou, P.R. China
| | - Ning Hua
- Department of Physiology and Pathophysiology and Sino-UK Joint Laboratory of Brain Function and Injury of Henan Province,
Xinxiang Medical University, 453003 Xinxiang, Henan, P.R. China
| | - Duguang Li
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine,
Zhejiang University, Hangzhou, P.R. China
| | - Shengxi Jin
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine,
Zhejiang University, Hangzhou, P.R. China
| | - Yirun Li
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine,
Zhejiang University, Hangzhou, P.R. China
| | - Peng Chen
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine,
Zhejiang University, Hangzhou, P.R. China
| | - Yongle Chen
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine,
Zhejiang University, Hangzhou, P.R. China
| | - Xiaobo Cai
- Department of Biophysics and Department of Neurology of the Fourth Affiliated Hospital,
Zhejiang University School of Medicine, Hangzhou 310000, P.R. China
| | - Yi Zhang
- Department of Biophysics and Department of Neurology of the Fourth Affiliated Hospital,
Zhejiang University School of Medicine, Hangzhou 310000, P.R. China
| | - Linhua Jiang
- Department of Physiology and Pathophysiology and Sino-UK Joint Laboratory of Brain Function and Injury of Henan Province,
Xinxiang Medical University, 453003 Xinxiang, Henan, P.R. China
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, LS2 9JT Leeds, UK
| | - Wei Yang
- Department of Biophysics and Department of Neurology of the Fourth Affiliated Hospital,
Zhejiang University School of Medicine, Hangzhou 310000, P.R. China
| | - Peilin Yu
- Department of Toxicology and Department of Medical Oncology of Second Affiliated Hospital,
Zhejiang University School of Medicine, Hangzhou, P.R. China
| | - Hui Lin
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine,
Zhejiang University, Hangzhou, P.R. China
- Zhejiang Engineering Research Center of Cognitive Healthcare, Sir Run Run Shaw Hospital,
School of Medicine, Zhejiang University, Hangzhou 310020, P.R. China
- College of Biomedical Engineering and Instrument Science,
Zhejiang University, Hangzhou 310058, P.R. China
| |
Collapse
|
47
|
Dasari D, Goyal SG, Penmetsa A, Sriram D, Dhar A. Canagliflozin protects diabetic cardiomyopathy by mitigating fibrosis and preserving the myocardial integrity with improved mitochondrial function. Eur J Pharmacol 2023; 949:175720. [PMID: 37054940 DOI: 10.1016/j.ejphar.2023.175720] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 03/31/2023] [Accepted: 04/11/2023] [Indexed: 04/15/2023]
Abstract
Sodium-glucose transport protein 2 (SGLT-2) inhibitors are approved antidiabetic drugs with a beneficial effect on reducing major adverse cardiac events and heart failure hospitalization. Among them, canagliflozin has the least selectivity toward SGLT-2 over the SGLT-1 isoform. Canagliflozin can inhibit SGLT-1 at therapeutic levels; however, the underlying molecular mechanism is not understood. This study aimed to evaluate the effect of canagliflozin on SGLT1 expression in an animal model of diabetic cardiomyopathy (DCM) and its associated effects. In vivo studies were carried out in the most clinically relevant high-fat diet and streptozotocin-induced type-2 diabetes model of diabetic cardiomyopathy, and in vitro studies were performed using cultured rat cardiomyocytes stimulated with high glucose and palmitic acid. DCM was induced in male Wistar rats for 8 weeks with or without 10 mg/kg canagliflozin treatment. At the end of the study, systemic and molecular characteristics were measured using immunofluorescence, quantitative RT‒PCR, immunoblotting, histology, and FACS analysis. SGLT-1 expression was upregulated in DCM hearts and was associated with fibrosis, apoptosis, and hypertrophy. Canagliflozin treatment attenuated these changes. The histological evaluation showed improved myocardial structure, and in vitro results revealed improved mitochondrial quality and biogenesis after canagliflozin treatment. In conclusion, canagliflozin protects the DCM heart by inhibiting myocardial SGLT-1 and associated hypertrophy, fibrosis, and apoptosis. Thus, developing novel pharmacological inhibitors targeting SGLT-1 could be a better strategy for treating DCM and associated cardiovascular complications.
Collapse
Affiliation(s)
- Deepika Dasari
- Department of Pharmacy, Birla Institute of Technology and Sciences (BITS) Pilani, Hyderabad Campus, Jawahar Nagar, Shameerpet, Hyderabad, Telangana, 500078, India
| | - Srashti Gopal Goyal
- Department of Pharmacy, Birla Institute of Technology and Sciences (BITS) Pilani, Hyderabad Campus, Jawahar Nagar, Shameerpet, Hyderabad, Telangana, 500078, India
| | - Anuhya Penmetsa
- Department of Pharmacy, Birla Institute of Technology and Sciences (BITS) Pilani, Hyderabad Campus, Jawahar Nagar, Shameerpet, Hyderabad, Telangana, 500078, India
| | - Dharmarajan Sriram
- Department of Pharmacy, Birla Institute of Technology and Sciences (BITS) Pilani, Hyderabad Campus, Jawahar Nagar, Shameerpet, Hyderabad, Telangana, 500078, India
| | - Arti Dhar
- Department of Pharmacy, Birla Institute of Technology and Sciences (BITS) Pilani, Hyderabad Campus, Jawahar Nagar, Shameerpet, Hyderabad, Telangana, 500078, India.
| |
Collapse
|
48
|
Capone F, Sotomayor-Flores C, Bode D, Wang R, Rodolico D, Strocchi S, Schiattarella GG. Cardiac metabolism in HFpEF: from fuel to signalling. Cardiovasc Res 2023; 118:3556-3575. [PMID: 36504368 DOI: 10.1093/cvr/cvac166] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/05/2022] [Accepted: 09/07/2022] [Indexed: 12/14/2022] Open
Abstract
Heart failure (HF) is marked by distinctive changes in myocardial uptake and utilization of energy substrates. Among the different types of HF, HF with preserved ejection fraction (HFpEF) is a highly prevalent, complex, and heterogeneous condition for which metabolic derangements seem to dictate disease progression. Changes in intermediate metabolism in cardiometabolic HFpEF-among the most prevalent forms of HFpEF-have a large impact both on energy provision and on a number of signalling pathways in the heart. This dual, metabolic vs. signalling, role is played in particular by long-chain fatty acids (LCFAs) and short-chain carbon sources [namely, short-chain fatty acids (SCFAs) and ketone bodies (KBs)]. LCFAs are key fuels for the heart, but their excess can be harmful, as in the case of toxic accumulation of lipid by-products (i.e. lipotoxicity). SCFAs and KBs have been proposed as a potential major, alternative source of energy in HFpEF. At the same time, both LCFAs and short-chain carbon sources are substrate for protein post-translational modifications and other forms of direct and indirect signalling of pivotal importance in HFpEF pathogenesis. An in-depth molecular understanding of the biological functions of energy substrates and their signalling role will be instrumental in the development of novel therapeutic approaches to HFpEF. Here, we summarize the current evidence on changes in energy metabolism in HFpEF, discuss the signalling role of intermediate metabolites through, at least in part, their fate as substrates for post-translational modifications, and highlight clinical and translational challenges around metabolic therapy in HFpEF.
Collapse
Affiliation(s)
- Federico Capone
- Translational Approaches in Heart Failure and Cardiometabolic Disease, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany.,Division of Internal Medicine, Department of Medicine, University of Padua, Padua, Italy
| | - Cristian Sotomayor-Flores
- Max Rubner Center for Cardiovascular Metabolic Renal Research (MRC), Department of Cardiology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - David Bode
- Max Rubner Center for Cardiovascular Metabolic Renal Research (MRC), Department of Cardiology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Rongling Wang
- Max Rubner Center for Cardiovascular Metabolic Renal Research (MRC), Department of Cardiology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Daniele Rodolico
- Department of Cardiovascular and Pulmonary Sciences, Catholic University of the Sacred Heart, Rome, Italy
| | - Stefano Strocchi
- Translational Approaches in Heart Failure and Cardiometabolic Disease, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Gabriele G Schiattarella
- Translational Approaches in Heart Failure and Cardiometabolic Disease, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany.,Max Rubner Center for Cardiovascular Metabolic Renal Research (MRC), Department of Cardiology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany.,Division of Cardiology, Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy
| |
Collapse
|
49
|
Lima-Posada I, Stephan Y, Soulié M, Palacios-Ramirez R, Bonnard B, Nicol L, Kolkhof P, Jaisser F, Mulder P. Benefits of the Non-Steroidal Mineralocorticoid Receptor Antagonist Finerenone in Metabolic Syndrome-Related Heart Failure with Preserved Ejection Fraction. Int J Mol Sci 2023; 24:ijms24032536. [PMID: 36768859 PMCID: PMC9916671 DOI: 10.3390/ijms24032536] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/20/2023] [Accepted: 01/23/2023] [Indexed: 02/03/2023] Open
Abstract
The mineralocorticoid receptor (MR) plays an important role in the development of chronic kidney disease (CKD) and associated cardiovascular complications. Antagonizing the overactivation of the MR with MR antagonists (MRA) is a therapeutic option, but their use in patients with CKD is limited due to the associated risk of hyperkalemia. Finerenone is a non-steroidal MRA associated with an improved benefit-risk profile in comparison to steroidal MRAs. In this study, we decided to test whether finerenone improves renal and cardiac function in male hypertensive and diabetic ZSF1 rats as an established preclinical HFpEF model. Finerenone was administered at 10 mg/kg/day for 12 weeks. Cardiac function/hemodynamics were assessed in vivo. ZSF1 rats showed classical signs of CKD with increased BUN, UACR, hypertrophy, and fibrosis of the kidney together with characteristic signs of HFpEF including cardiac fibrosis, diastolic dysfunction, and decreased cardiac perfusion. Finerenone treatment did not impact kidney function but reduced renal hypertrophy and cardiac fibrosis. Interestingly, finerenone ameliorated diastolic dysfunction and cardiac perfusion in ZSF1 rats. In summary, we show for the first time that non-steroidal MR antagonism by finerenone attenuates cardiac diastolic dysfunction and improves cardiac perfusion in a preclinical HFpEF model. These cardiac benefits were found to be largely independent of renal benefits.
Collapse
Affiliation(s)
- Ixchel Lima-Posada
- Centre de Recherche des Cordeliers, UMRS 1138, INSERM, Sorbonne Université, Université Paris Cité, 75006 Paris, France
| | - Yohan Stephan
- INSERM EnVI UMR 1096, Univ Rouen Normandie, 76183 Rouen, France
| | - Matthieu Soulié
- Centre de Recherche des Cordeliers, UMRS 1138, INSERM, Sorbonne Université, Université Paris Cité, 75006 Paris, France
- INSERM EnVI UMR 1096, Univ Rouen Normandie, 76183 Rouen, France
| | - Roberto Palacios-Ramirez
- Centre de Recherche des Cordeliers, UMRS 1138, INSERM, Sorbonne Université, Université Paris Cité, 75006 Paris, France
| | - Benjamin Bonnard
- Centre de Recherche des Cordeliers, UMRS 1138, INSERM, Sorbonne Université, Université Paris Cité, 75006 Paris, France
| | - Lionel Nicol
- INSERM EnVI UMR 1096, Univ Rouen Normandie, 76183 Rouen, France
| | - Peter Kolkhof
- Cardiovascular Precision Medicines, Research and Early Development, Pharmaceuticals, Bayer AG, 42113 Wuppertal, Germany
| | - Frederic Jaisser
- Centre de Recherche des Cordeliers, UMRS 1138, INSERM, Sorbonne Université, Université Paris Cité, 75006 Paris, France
- INSERM, Clinical Investigation Centre 1433, French-Clinical Research Infrastructure Network (F-CRIN) INI-CRCT (Cardiovascular and Renal Clinical Trialists), 54500 Nancy, France
- Correspondence: ; Tel.: +33-144276485
| | - Paul Mulder
- INSERM EnVI UMR 1096, Univ Rouen Normandie, 76183 Rouen, France
| |
Collapse
|
50
|
Gong Y, Kong B, Shuai W, Chen T, Zhang J, Huang H. Effect of sotagliflozin on ventricular arrhythmias in mice with myocardial infraction. Eur J Pharmacol 2022; 936:175357. [DOI: 10.1016/j.ejphar.2022.175357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/20/2022] [Accepted: 10/24/2022] [Indexed: 11/15/2022]
|