1
|
Elhamdi M, Falkenberg F, Miled N, Bongaerts J, Siegert P, Hmidet N, Ghorbel S. AprMH1 subtilisin from Bacillus zhangzhouensis MH1: Molecular cloning, characterization, and homology modeling. Int J Biol Macromol 2025; 307:141889. [PMID: 40064257 DOI: 10.1016/j.ijbiomac.2025.141889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 02/24/2025] [Accepted: 03/07/2025] [Indexed: 03/16/2025]
Abstract
The growing demand for robust proteases in industrial applications, particularly those based on the widely used subtilisin family, necessitates the development of novel and improved enzymes. This study reports exploration and characterization of a subtilisin, AprMH1, isolated from a recently identified Bacillus zhangzhouensis MH1 (NCBI Acct. No. MZ569437). The isolated aprMH1 gene, consisting of 1146 bp and encoding a 381 amino acid protein, was successfully cloned and overexpressed in Bacillus subtilis DB104. The recombinant AprMH1 protease, belonging to the S8 subtilase family and sharing 99.27 % similarity with keratinase Ker1 (ANQ68333.1) of B. pumilus CCUG 66887, displayed remarkable biochemical properties that offer significant industrial potential. It was produced in a one-liter fermenter, yielding 400,000 U after 48 h, and purified to homogeneity by ion-exchange chromatography with a 3.4-fold purification. AprMH1, a monomer of 27.8 kDa, exhibited optimum activity at pH 10 and 55 °C. It remained stable between pH 7-11 and retained 64 % of activity at 50 °C for 1 h. It also remained stable with non-ionic surfactants and its stability with SDS was enhanced by propylene glycol. Structural insights were gained through 3D modeling and comparative analysis with subtilisin Carlsberg (P00780.2), Apr1 (P07518.1), and Savinase (P29600.1). AprMH1 was found to belong to a distinct alkaline subgroup within the true subtilisin subfamily, exhibiting superior activity and stability at higher temperatures, making it a promising candidate for applications in harsh industrial environments. These novel properties highlight the potential of AprMH1 for future industrial processes, especially in the detergent sector.
Collapse
Affiliation(s)
- Marwa Elhamdi
- Enzyme Engineering and Microbiology Laboratory, National Engineering School of Sfax - University of Sfax, Sfax, Tunisia.
| | - Fabian Falkenberg
- Institute of Nano- and Biotechnologies, University of Applied Sciences Aachen, 52428 Jülich, Germany
| | - Nabil Miled
- University of Jeddah, Applied College, Biology Department, Jeddah, Saudi Arabia
| | - Johannes Bongaerts
- Institute of Nano- and Biotechnologies, University of Applied Sciences Aachen, 52428 Jülich, Germany
| | - Petra Siegert
- Institute of Nano- and Biotechnologies, University of Applied Sciences Aachen, 52428 Jülich, Germany
| | - Noomen Hmidet
- Enzyme Engineering and Microbiology Laboratory, National Engineering School of Sfax - University of Sfax, Sfax, Tunisia
| | - Sofiane Ghorbel
- University of Jeddah, Applied College, Biology Department, Jeddah, Saudi Arabia
| |
Collapse
|
2
|
Ogundolie FA, Saliu TP, Okpara MO, Njikam JM, Olajuyigbe FM, Ajele JO, Kumar GN. In silico and structural analysis of Bacillus licheniformis FAO.CP7 pullulanase isolated from cocoa (Theobroma cacao L.) pod waste. BMC Microbiol 2025; 25:261. [PMID: 40307708 PMCID: PMC12042331 DOI: 10.1186/s12866-025-03958-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 04/09/2025] [Indexed: 05/02/2025] Open
Abstract
Pullulanase (EC 3.2.1.41) is an important debranching enzyme that plays a critical role in maximizing the abundant energy present in branched polysaccharides. Its unique ability to efficiently degrade branched polysaccharides makes it crucial in industries like biofuels, food, and pharmaceuticals. Therefore, discovering microbes that produce pullulanase and thrive in harsh industrial conditions holds significant potential for optimizing large-scale bioprocessing. This unique property has made pullulanase an important enzyme in the industry. Thus, the search for microbes that have the pullulanase production properties and capacity to withstand harsh industrial conditions will be of high industrial relevance. Therefore, this study aimed to amplify, sequence, and molecularly characterize the pullulanase gene encoding extracellular pullulanase in Bacillus licheniformis strain FAO.CP7 (Accession No: MN150530.1.) which was obtained from cocoa pods using several bioinformatics tools. The amplified PulA gene had a nucleotide sequence of 2247 base pairs encoding a full-length open reading frame (ORF) pullulanase protein of 748 amino-acids residues with molecular weight 82.39 kDa and theoretical isoelectric point of 6.47, respectively. The deduced pullulanase protein had an aliphatic index of 77.66. Using BLASTp, the deduced amino acid sequence of the pullulanase gene showed 85% homologies with those from B. licheniformis strains. Multiple sequence alignment of PulA protein sequence showed that it contains YNWGYNP motif which is also found in all type I pullulanase protein sequences analysed. The restriction mapping of the gene showed that it can be digested with several restriction enzymes. Further analysis revealed that the deduced protein had a hydrophobicity score of - 0.37 without a transmembrane helix. Overall, this study revealed the PulA gene of B. licheniformis strain FAO.CP7 obtained from cocoa pods and its deduced protein show significant potential for enhancing starch bioprocessing. With further optimization, it could offer substantial benefits to starch-based biotechnological industries.
Collapse
Affiliation(s)
- Frank Abimbola Ogundolie
- Enzymology and Enzyme Technology Unit, Department of Biochemistry, Federal University of Technology, Akure, Nigeria.
- Enzyme Biotechnology and Environmental Health Unit, Department of Biochemistry, Federal University of Technology, Akure, Nigeria.
- Microbial and Molecular Biology Laboratory, Department of Biochemistry, Maharaja Sayajirao University of Baroda, Vadodara, India.
- Department of Biotechnology, Faculty of Computing and Applied Sciences, Baze University, Abuja, Nigeria.
| | - Tolulope Peter Saliu
- Enzymology and Enzyme Technology Unit, Department of Biochemistry, Federal University of Technology, Akure, Nigeria
- Computation and Molecular Biology Unit, Department of Biochemistry, Federal University of Technology, Akure, Nigeria
- Department of Physiology, College of Medcine, University of Kentucky, Kentucky, USA
| | - Michael Obinna Okpara
- Enzymology and Enzyme Technology Unit, Department of Biochemistry, Federal University of Technology, Akure, Nigeria
- Computation and Molecular Biology Unit, Department of Biochemistry, Federal University of Technology, Akure, Nigeria
- Biomedical Biotechnology Research Unit (BioBRU), Department of Biochemistry, Microbiology, and Bioinformatics, Rhodes University, Grahamstown, South Africa
| | | | - Folasade Mayowa Olajuyigbe
- Enzyme Biotechnology and Environmental Health Unit, Department of Biochemistry, Federal University of Technology, Akure, Nigeria
| | - Joshua Oluwafemi Ajele
- Enzymology and Enzyme Technology Unit, Department of Biochemistry, Federal University of Technology, Akure, Nigeria
| | - Gattupalli Naresh Kumar
- Microbial and Molecular Biology Laboratory, Department of Biochemistry, Maharaja Sayajirao University of Baroda, Vadodara, India
| |
Collapse
|
3
|
Zhang Y, Yang L, Wang H, Zhang H, Feng Y, Tan T. High-efficiency heterologous expression of functional RVG29-BoNT/A light chain fusion protein in Bacillus subtilis based on a combinatorial strategy. Int J Biol Macromol 2025; 310:143226. [PMID: 40246127 DOI: 10.1016/j.ijbiomac.2025.143226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 04/05/2025] [Accepted: 04/14/2025] [Indexed: 04/19/2025]
Abstract
Botulinum neurotoxin type A (BoNT/A) has been used as an injectable therapeutic agent in medical aesthetics, neuroscience research, and other medical fields. In this study, the non-endotoxin-producing and food-safe bacterium Bacillus subtilis WB800N was selected as the host strain to express functional RVG29-BoNT/A light chain (Lc) fusion proteins through a combinatorial strategy involving promoter engineering, signal peptide optimization, and overexpression of transport-related proteins and molecular chaperones. The RVG29 peptide, known for its neuronal targeting ability, was fused to the Lc of BoNT/A to enhance its transmembrane delivery and substrate cleavage activity. Furthermore, a series of promoter screening, tandem promoter construction, and site-specific mutations were conducted to maximize transcriptional activity of the target protein. Moreover, a library of 244 native signal peptides was constructed, and high-throughput fluorescence screening identified Sec pathway-related signal peptides that significantly improved secretion efficiency. Meanwhile, transport-related proteins, particularly FtsY, and molecular chaperones like GroEL/DnaJ, were overexpressed to further enhance the secretion and soluble expression of the RVG29-Lc. Additionally, knockdown of the hrcA gene, a repressor of heat-shock genes, improved the expression of molecular chaperones, as well as the RVG29-Lc. The combinatorial strategy achieved a final intracellular expression level of 500.33 ± 5.00 mg/L and the secretion level of 75.15 ± 4.33 mg/L under the same experimental conditions. This work presents a robust framework for the high-efficiency production of functional RVG29-Lc fusion proteins in B. subtilis, offering valuable insights into the industrial-scale production of therapeutic BoNT-derived proteins.
Collapse
Affiliation(s)
- Yuhan Zhang
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, Beijing 100029, China; State Key Laboratory of Green Biomanufacturing, Beijing University of Chemical Technology, Beijing 100029, China; Beijing Key Laboratory of Green Chemicals Biomanufacturing, Beijing University of Chemical Technology, Beijing 100029, China; Beijing Synthetic Bio-manufacturing Technology Innovation Center, Beijing 102209, China
| | - Lingguang Yang
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, Beijing 100029, China; College of Chemical and Biological Engineering, Yichun University, Yichun 336000, China
| | - Hao Wang
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, Beijing 100029, China; State Key Laboratory of Green Biomanufacturing, Beijing University of Chemical Technology, Beijing 100029, China; Beijing Key Laboratory of Green Chemicals Biomanufacturing, Beijing University of Chemical Technology, Beijing 100029, China; Beijing Synthetic Bio-manufacturing Technology Innovation Center, Beijing 102209, China
| | - Haobo Zhang
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, Beijing 100029, China; State Key Laboratory of Green Biomanufacturing, Beijing University of Chemical Technology, Beijing 100029, China; Beijing Key Laboratory of Green Chemicals Biomanufacturing, Beijing University of Chemical Technology, Beijing 100029, China; Beijing Synthetic Bio-manufacturing Technology Innovation Center, Beijing 102209, China
| | - Yue Feng
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, Beijing 100029, China; State Key Laboratory of Green Biomanufacturing, Beijing University of Chemical Technology, Beijing 100029, China; Beijing Key Laboratory of Green Chemicals Biomanufacturing, Beijing University of Chemical Technology, Beijing 100029, China; Beijing Synthetic Bio-manufacturing Technology Innovation Center, Beijing 102209, China.
| | - Tianwei Tan
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, Beijing 100029, China; State Key Laboratory of Green Biomanufacturing, Beijing University of Chemical Technology, Beijing 100029, China; Beijing Key Laboratory of Green Chemicals Biomanufacturing, Beijing University of Chemical Technology, Beijing 100029, China; Beijing Synthetic Bio-manufacturing Technology Innovation Center, Beijing 102209, China.
| |
Collapse
|
4
|
Ren P, Dong Q, Zhou C, Chen T, Sun W, Chen Y, Ying H. Enhanced pullulanase production through expression system optimization and biofilm-immobilized fermentation strategies. Int J Biol Macromol 2025; 297:139933. [PMID: 39824400 DOI: 10.1016/j.ijbiomac.2025.139933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 12/31/2024] [Accepted: 01/14/2025] [Indexed: 01/20/2025]
Abstract
Pullulanase (PUL) plays a crucial role in breaking down α-1,6-glycosidic bonds in starch, a key process in starch processing and conversion. Based on PulB with high enzymatic activity, the expression of PUL in Bacillus subtilis was enhanced by plasmid screening, double promoter optimization, and signal peptide engineering. Furthermore, we innovatively employed a mussel foot protein to enhance the cell adhesion to carriers and utilized biofilm-based cell immobilization technology to optimize the fermentation process and stimulate biofilm formation. This approach led to a notably elevated enzyme activity, reaching 2233.56 U mL-1. The PUL crude enzyme solution, capable of generating high glucose syrup and resistant starch, paves the way for new avenues of exploration and advancement in research and industrial biotechnology.
Collapse
Affiliation(s)
- Peifang Ren
- National Engineering Research Center for Biotechnology, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, PR China; State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Qiwei Dong
- National Engineering Research Center for Biotechnology, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, PR China; State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Chaowei Zhou
- National Engineering Research Center for Biotechnology, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, PR China; State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Tianpeng Chen
- National Engineering Research Center for Biotechnology, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, PR China; State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Wenjun Sun
- National Engineering Research Center for Biotechnology, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, PR China; State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, PR China.
| | - Yong Chen
- National Engineering Research Center for Biotechnology, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, PR China; State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, PR China.
| | - Hanjie Ying
- National Engineering Research Center for Biotechnology, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, PR China; State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, PR China; Soochow University, Suzhou, Jiangsu 215123, PR China
| |
Collapse
|
5
|
Berzina I, Kalnins M, Geiba Z, Raita S, Palcevska J, Mika T, Spalvins K. Creating Single-Cell Protein-Producing Bacillus subtilis Mutants Using Chemical Mutagen and Amino Acid Inhibitors. SCIENTIFICA 2024; 2024:8968295. [PMID: 39649941 PMCID: PMC11623996 DOI: 10.1155/sci5/8968295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 11/12/2024] [Indexed: 12/11/2024]
Abstract
Due to population growth and climate changes, there is a rising need for alternative food and protein sources to reduce protein scarcity and the environmental impact of food industries. Single-cell proteins (SCPs) have the potential to partially or fully substitute plant- and animal-derived dietary proteins. Bacillus subtilis is an appealing bacterium for SCP production because of its fast growth and ability to obtain high protein and essential amino acid (AA) content in its biomass. It is also capable of utilizing a wide range of substrates. B. subtilis attractiveness and efficiency can be further enhanced using mutagenesis. In this study, a novel approach to creating mutant strains with enhanced protein and AA content was experimentally validated. The method is based on the application of AA inhibitors for selective pressure to ensure the growth of mutants with enhanced protein and/or AA synthesis capacity. For AA inhibitors, three herbicides were used: glufosinate-ammonium (GA), L-methionine sulfoximine (MSO), and S-(2-aminoethyl)-L-cysteine (AEC). Initially, AA inhibitor doses for the complete inhibition of wild-type (WT) B. subtilis strain were determined. Then, B. subtilis was treated with EMS chemical mutagen and created mutants were cultivated on a medium containing inhibitory dose of AA inhibitors. Growing samples were selected, analyzed, and compared. The optimal inhibitory concentrations of herbicides for mutant selection were 0.05-0.4 M for GA, 0.01-0.05 M for MSO, and 0.2 M for AEC. The best-performing mutants were selected when using GA-improvement of 7.1 times higher biomass content, 1.5 times higher protein concentration, 1.2 times higher AA content, and 1.2 times higher essential AA index was achieved in comparison with WT B. subtilis. Enhanced mutants were also successfully selected when using MSO and AEC. This study demonstrates the potential of using AA inhibitors for the selection of mutants with improved protein and AA profiles.
Collapse
Affiliation(s)
- Indra Berzina
- Institute of Energy Systems and Environment, Riga Technical University, Azenes Street 12/1, LV 1048, Riga, Latvia
| | - Martins Kalnins
- Institute of Energy Systems and Environment, Riga Technical University, Azenes Street 12/1, LV 1048, Riga, Latvia
| | - Zane Geiba
- Institute of Energy Systems and Environment, Riga Technical University, Azenes Street 12/1, LV 1048, Riga, Latvia
| | - Svetlana Raita
- Institute of Energy Systems and Environment, Riga Technical University, Azenes Street 12/1, LV 1048, Riga, Latvia
| | - Jelizaveta Palcevska
- Institute of Energy Systems and Environment, Riga Technical University, Azenes Street 12/1, LV 1048, Riga, Latvia
| | - Taras Mika
- Institute of Energy Systems and Environment, Riga Technical University, Azenes Street 12/1, LV 1048, Riga, Latvia
| | - Kriss Spalvins
- Institute of Energy Systems and Environment, Riga Technical University, Azenes Street 12/1, LV 1048, Riga, Latvia
| |
Collapse
|
6
|
Xiao R, Du C, Li H, Zhang M, Wu Y, Xing L, Bu K, Wang P. Heterologous expression and characterization of an unsaturated glucuronyl hydrolase from Alteromonas sp. A321. Int J Biol Macromol 2024; 282:137012. [PMID: 39486732 DOI: 10.1016/j.ijbiomac.2024.137012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/14/2024] [Accepted: 10/26/2024] [Indexed: 11/04/2024]
Abstract
Strong promoters and stable mRNAs are essential for the overproduction of heterologous proteins in Bacillus subtilis. To improve the strength of natural promoters and ensure robust protein output, promoter and genetic insulator engineering have been used. A series of plasmids containing single and dual promoters and genetic insulators to express alt3796 were engineered, which encoded an unsaturated glucuronyl hydrolase (UGL). As a first step, we screened the host and deleted the signal peptide (SPALT) of alt3796, successfully expressed secreted ALT3796 from B. subtilis WB800. Subsequently, to improve expression, we screened the dual promoter PHag-spoVG from a collection of 22 promoters, which yielded higher enzymatic activity. Finally, using a recombinant strain carrying a plasmid with the PHag-spoVG dual promoter and a genetic insulator, we obtained 40.9 U/mL of activity. Purified recombinant ALT3796 exhibited good stability and specifically degraded ulvan. In conclusion, a system for the heterologous expression of ALT3796 was constructed, and the obtained protein exhibited favorable properties, suggesting its potential for preparing novel ulvan oligosaccharides.
Collapse
Affiliation(s)
- Rui Xiao
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Chunying Du
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Huawei Li
- School of Nursing, Qingdao University, Qingdao 266011, China
| | - Man Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Yinglu Wu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Laigui Xing
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Kaixuan Bu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Peng Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China.
| |
Collapse
|
7
|
Zhou L, Zhang R, Jiang B, Meng Q, Chen J, Liu X. Efficient Production of an Alginate Lyase in Bacillus subtilis with Combined Strategy: Vector and Host Selection, Promoter and Signal Peptide Screening, and Modification of a Translation Initiation Region. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:19403-19412. [PMID: 39180506 DOI: 10.1021/acs.jafc.4c03532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/26/2024]
Abstract
Alginate lyases (ALys) whose degrading products, alginate oligosaccharides, exhibit various outstanding biochemical activities have aroused increasing interest of researchers in the marine bioresource field. However, their predominant sourcing from marine bacteria, with limited yields and unclear genetic backgrounds, presents a challenge for industrial production. In this study, ALys (Aly01) from Vibrio natriegens SK 42.001 was expressed in Bacillus subtilis (B. subtilis), a nonpathogenic microorganism recognized as generally safe (GRAS). This accomplishment was realized through a comprehensive strategy involving vector and host selection, promoter and signal peptide screening, and engineering of the ribosome binding site (RBS) and the N-terminal coding sequence (NCS). The optimal combination was identified as the pP43NMK and B. subtilis WB600. Among the 19 reported strong promoters, PnprE exhibited the best performance, showing intracellular enzyme activities of 4.47 U/mL. Despite expectations, dual promoter construction did not yield a significant increase. Further, SPydhT demonstrated the highest extracellular activity (1.33 U/mL), which was further improved by RBS/NCS engineering, reaching 4.58 U/mL. Finally, after fed-batch fermentation, the extracellular activity reached 18.01 U/mL, which was the highest of ALys with a high molecular weight expressed in B. subtilis. These findings are expected to offer valuable insights into the heterologous expression of ALys in B. subtilis.
Collapse
Affiliation(s)
- Licheng Zhou
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Ran Zhang
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Bo Jiang
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Qing Meng
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jingjing Chen
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xiaoyong Liu
- Shandong Haizhibao Ocean Technology Co., Ltd., Weihai 264333, China
| |
Collapse
|
8
|
Dong W, Fu X, Zhou D, Teng J, Yang J, Zhen J, Zhao X, Liu Y, Zheng H, Bai W. Extracellular Overexpression of a Neutral Pullulanase in Bacillus subtilis through Multiple Copy Genome Integration and Atypical Secretion Pathway Enhancement. Bioengineering (Basel) 2024; 11:661. [PMID: 39061743 PMCID: PMC11273987 DOI: 10.3390/bioengineering11070661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 06/21/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024] Open
Abstract
Neutral pullulanases, having a good application prospect in trehalose production, showed a limited expression level. In order to address this issue, two approaches were utilized to enhance the yield of a new neutral pullulanase variant (PulA3E) in B. subtilis. One involved using multiple copies of genome integration to increase its expression level and fermentation stability. The other focused on enhancing the PulA-type atypical secretion pathway to further improve the secretory expression of PulA3E. Several strains with different numbers of genome integrations, ranging from one to four copies, were constructed. The four-copy genome integration strain PD showed the highest extracellular pullulanase activity. Additionally, the integration sites ytxE, ytrF, and trpP were selected based on their ability to enhance the PulA-type atypical secretion pathway. Furthermore, overexpressing the predicated regulatory genes comEA and yvbW of the PulA-type atypical secretion pathway in PD further improved its extracellular expression. Three-liter fermenter scale-up production of PD and PD-ARY yielded extracellular pullulanase activity of 1767.1 U/mL at 54 h and 2465.1 U/mL at 78 h, respectively. Finally, supplementing PulA3E with 40 U/g maltodextrin in the multi-enzyme catalyzed system resulted in the highest trehalose production of 166 g/L and the substrate conversion rate of 83%, indicating its potential for industrial application.
Collapse
Affiliation(s)
- Wenkang Dong
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China (Y.L.)
| | - Xiaoping Fu
- National Technology Innovation Center of Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- Industrial Enzymes National Engineering Research Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- Tianjin Key Laboratory for Industrial Biological Systems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Dasen Zhou
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China (Y.L.)
| | - Jia Teng
- Industrial Enzymes National Engineering Research Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Jun Yang
- Industrial Enzymes National Engineering Research Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Jie Zhen
- National Technology Innovation Center of Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- Industrial Enzymes National Engineering Research Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- Tianjin Key Laboratory for Industrial Biological Systems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Xingya Zhao
- National Technology Innovation Center of Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- Industrial Enzymes National Engineering Research Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- Tianjin Key Laboratory for Industrial Biological Systems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Yihan Liu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China (Y.L.)
| | - Hongchen Zheng
- National Technology Innovation Center of Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- Industrial Enzymes National Engineering Research Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- Tianjin Key Laboratory for Industrial Biological Systems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Wenqin Bai
- National Technology Innovation Center of Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- Industrial Enzymes National Engineering Research Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- Tianjin Key Laboratory for Industrial Biological Systems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| |
Collapse
|
9
|
Ferrando J, Miñana-Galbis D, Picart P. The Construction of an Environmentally Friendly Super-Secreting Strain of Bacillus subtilis through Systematic Modulation of Its Secretory Pathway Using the CRISPR-Cas9 System. Int J Mol Sci 2024; 25:6957. [PMID: 39000067 PMCID: PMC11240994 DOI: 10.3390/ijms25136957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/12/2024] [Accepted: 06/18/2024] [Indexed: 07/16/2024] Open
Abstract
Achieving commercially significant yields of recombinant proteins in Bacillus subtilis requires the optimization of its protein production pathway, including transcription, translation, folding, and secretion. Therefore, in this study, our aim was to maximize the secretion of a reporter α-amylase by overcoming potential bottlenecks within the secretion process one by one, using a clustered regularly interspaced short palindromic repeat-Cas9 (CRISPR-Cas9) system. The strength of single and tandem promoters was evaluated by measuring the relative α-amylase activity of AmyQ integrated into the B. subtilis chromosome. Once a suitable promoter was selected, the expression levels of amyQ were upregulated through the iterative integration of up to six gene copies, thus boosting the α-amylase activity 20.9-fold in comparison with the strain harboring a single amyQ gene copy. Next, α-amylase secretion was further improved to a 26.4-fold increase through the overexpression of the extracellular chaperone PrsA and the signal peptide peptidase SppA. When the final expression strain was cultivated in a 3 L fermentor for 90 h, the AmyQ production was enhanced 57.9-fold. The proposed strategy allows for the development of robust marker-free plasmid-less super-secreting B. subtilis strains with industrial relevance.
Collapse
Affiliation(s)
| | | | - Pere Picart
- Faculty of Pharmacy and Food Science Technology, Department of Biology, Healthcare and the Environment, Microbiology Section, Universitat de Barcelona, Avinguda Diagonal 643, 08028 Barcelona, Spain; (J.F.); (D.M.-G.)
| |
Collapse
|
10
|
Wei X, Yang L, Chen Z, Xia W, Chen Y, Cao M, He N. Molecular weight control of poly-γ-glutamic acid reveals novel insights into extracellular polymeric substance synthesis in Bacillus licheniformis. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:60. [PMID: 38711141 DOI: 10.1186/s13068-024-02501-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 04/04/2024] [Indexed: 05/08/2024]
Abstract
BACKGROUND The structural diversity of extracellular polymeric substances produced by microorganisms is attracting particular attention. Poly-gamma-glutamic acid (γ-PGA) is a widely studied extracellular polymeric substance from Bacillus species. The function of γ-PGA varies with its molecular weight (Mw). RESULTS Herein, different endogenous promoters in Bacillus licheniformis were selected to regulate the expression levels of pgdS, resulting in the formation of γ-PGA with Mw values ranging from 1.61 × 103 to 2.03 × 104 kDa. The yields of γ-PGA and exopolysaccharides (EPS) both increased in the pgdS engineered strain with the lowest Mw and viscosity, in which the EPS content was almost tenfold higher than that of the wild-type strain. Subsequently, the compositions of EPS from the pgdS engineered strain also changed. Metabolomics and RT-qPCR further revealed that improving the transportation efficiency of EPS and the regulation of carbon flow of monosaccharide synthesis could affect the EPS yield. CONCLUSIONS Here, we present a novel insight that increased pgdS expression led to the degradation of γ-PGA Mw and changes in EPS composition, thereby stimulating EPS and γ-PGA production. The results indicated a close relationship between γ-PGA and EPS in B. licheniformis and provided an effective strategy for the controlled synthesis of extracellular polymeric substances.
Collapse
Affiliation(s)
- Xiaoyu Wei
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, Fujian, China
- The Key Lab for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen, People's Republic of China
| | - Lijie Yang
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, Fujian, China
- The Key Lab for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen, People's Republic of China
| | - Zhen Chen
- College of Life Science, Xinyang Normal University, Xinyang, 464000, China.
| | - Wenhao Xia
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, Fujian, China
- The Key Lab for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen, People's Republic of China
| | - Yongbin Chen
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, Fujian, China
- The Key Lab for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen, People's Republic of China
| | - Mingfeng Cao
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, Fujian, China.
- The Key Lab for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen, People's Republic of China.
| | - Ning He
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, Fujian, China.
- The Key Lab for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen, People's Republic of China.
| |
Collapse
|
11
|
Vojnovic S, Aleksic I, Ilic-Tomic T, Stevanovic M, Nikodinovic-Runic J. Bacillus and Streptomyces spp. as hosts for production of industrially relevant enzymes. Appl Microbiol Biotechnol 2024; 108:185. [PMID: 38289383 PMCID: PMC10827964 DOI: 10.1007/s00253-023-12900-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 11/28/2023] [Accepted: 12/05/2023] [Indexed: 02/01/2024]
Abstract
The application of enzymes is expanding across diverse industries due to their nontoxic and biodegradable characteristics. Another advantage is their cost-effectiveness, reflected in reduced processing time, water, and energy consumption. Although Gram-positive bacteria, Bacillus, and Streptomyces spp. are successfully used for production of industrially relevant enzymes, they still lag far behind Escherichia coli as hosts for recombinant protein production. Generally, proteins secreted by Bacillus and Streptomyces hosts are released into the culture medium; their native conformation is preserved and easier recovery process enabled. Given the resilience of both hosts in harsh environmental conditions and their spore-forming capability, a deeper understanding and broader use of Bacillus and Streptomyces as expression hosts could significantly enhance the robustness of industrial bioprocesses. This mini-review aims to compare two expression hosts, emphasizing their specific advantages in industrial surroundings such are chemical, detergent, textile, food, animal feed, leather, and paper industries. The homologous sources, heterologous hosts, and molecular tools used for the production of recombinant proteins in these hosts are discussed. The potential to use both hosts as biocatalysts is also evaluated. Undoubtedly, Bacillus and Streptomyces spp. as production hosts possess the potential to take on a more substantial role, providing superior (bio-based) process robustness and flexibility. KEY POINTS: • Bacillus and Streptomyces spp. as robust hosts for enzyme production. • Industrially relevant enzyme groups for production in alternative hosts highlighted. • Molecular biology techniques are enabling easier utilization of both hosts.
Collapse
Affiliation(s)
- Sandra Vojnovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042, Belgrade 152, Serbia.
| | - Ivana Aleksic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042, Belgrade 152, Serbia
| | - Tatjana Ilic-Tomic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042, Belgrade 152, Serbia
| | - Milena Stevanovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042, Belgrade 152, Serbia
| | - Jasmina Nikodinovic-Runic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042, Belgrade 152, Serbia.
| |
Collapse
|
12
|
Chen Q, Wang B, Pan L. Efficient expression of γ-glutamyl transpeptidase in Bacillus subtilis via CRISPR/Cas9n and its immobilization. Appl Microbiol Biotechnol 2024; 108:149. [PMID: 38240797 DOI: 10.1007/s00253-023-12889-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/17/2023] [Accepted: 10/24/2023] [Indexed: 01/23/2024]
Abstract
In this study, we successfully applied the strategy of combining tandem promoters and tandem signal peptides with overexpressing signal peptidase to efficiently express and produce γ-glutamyl peptidase (GGT) enzymes (BsGGT, BaGGT, and BlGGT) from Bacillus subtilis, Bacillus amyloliquefaciens, and Bacillus licheniformis in Bacillus subtilis ATCC6051Δ5. In order to avoid the problem of instability caused by duplicated strong promoters, we assembled tandem promoters of different homologous genes from different species. To achieve resistance marker-free enzyme in the food industry, we first removed the replication origin and corresponding resistance marker of Escherichia coli from the expression vector. The plasmid was then transformed into the B. subtilis host, and the Kan resistance gene in the expression plasmid was directly edited and silenced using the CRISPR/Cas9n-AID base editing system. As a result, a recombinant protein expression carrier without resistance markers was constructed, and the enzyme activity of the BlGGT strain during shake flask fermentation can reach 53.65 U/mL. The recombinant BlGGT was immobilized with epoxy resin and maintained 82.8% enzyme activity after repeated use for 10 times and 87.36% enzyme activity after storage at 4 °C for 2 months. The immobilized BlGGT enzyme was used for the continuous synthesis of theanine with a conversion rate of 65.38%. These results indicated that our approach was a promising solution for improving enzyme production efficiency and achieving safe production of enzyme preparations in the food industry. KEY POINTS: • Efficient expression of recombinant proteins by a combination of dual promoter and dual signal peptide. • Construction of small vectors without resistance markers in B. subtilis using CRISPR/Cas9n-AID editing system. • The process of immobilizing BlGGT with epoxy resin was optimized.
Collapse
Affiliation(s)
- Qianlin Chen
- School of Biology and Biological Engineering, Guangzhou Higher Education Mega Centre, South China University of Technology, Panyu District, Guangzhou, 510006, Guangdong, People's Republic of China
| | - Bin Wang
- School of Biology and Biological Engineering, Guangzhou Higher Education Mega Centre, South China University of Technology, Panyu District, Guangzhou, 510006, Guangdong, People's Republic of China
| | - Li Pan
- School of Biology and Biological Engineering, Guangzhou Higher Education Mega Centre, South China University of Technology, Panyu District, Guangzhou, 510006, Guangdong, People's Republic of China.
| |
Collapse
|
13
|
Yu X, Zhang K, Zhu X, Lv H, Wu J. High level food-grade expression of maltogenic amylase in Bacillus subtilis through dal gene auxotrophic selection marker. Int J Biol Macromol 2024; 254:127372. [PMID: 37838136 DOI: 10.1016/j.ijbiomac.2023.127372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 09/13/2023] [Accepted: 10/09/2023] [Indexed: 10/16/2023]
Abstract
As a food-safe microorganism, Bacillus subtilis has been widely utilized in the production of food enzyme, where a food-grade expression system without antibiotic is required. However, there is no mature system for such expression, since the recombinant plasmid in existing food-grade expression system is unstable especially in high-density fermentation. In this study, we constructed a food-grade expression system based on the dal gene auxotrophic selection marker. Specifically, maltogenic amylase (AmyM) was expressed in dal deletion strain without antibiotic, yielding an activity of 519 U/mL. To increase the expression of AmyM, the promoter of amyM (gene encoding AmyM) was optimized. Furthermore, we found that excessive expression of dal gene was detrimental to the stability of plasmid, and the ribosome binding site (RBS) of dal was mutated with the reduced synthesis of D-alanine. After that, AmyM activity increased to 1364 U/mL with the 100 % stability of plasmid. The 3-L fermentor cultivation was performed with the highest value ever reported in food-grade microorganisms, an activity of 2388 U/mL, showing the scale-up production capability of this system. Besides, it is also able to apply the system for other food enzymes, which indicating the great generalizability of this system for different application.
Collapse
Affiliation(s)
- Xinrui Yu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, People's Republic of China; School of Bioengineering, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Kang Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, People's Republic of China; School of Bioengineering, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Xuyang Zhu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, People's Republic of China; School of Bioengineering, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Huihui Lv
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, People's Republic of China; School of Bioengineering, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Jing Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, People's Republic of China; School of Bioengineering, Jiangnan University, Wuxi 214122, People's Republic of China.
| |
Collapse
|
14
|
Gan T, Fang J, Wang Y, Liu K, Sang Y, Chen H, Lu Y, Zhu L, Chen X. Promoter engineering for efficient production of sucrose phosphorylase in Bacillus subtilis and its application in enzymatic synthesis of 2-O-α-D-glucopyranosyl-L-ascorbic acid. Enzyme Microb Technol 2023; 169:110267. [PMID: 37321017 DOI: 10.1016/j.enzmictec.2023.110267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 05/31/2023] [Accepted: 06/01/2023] [Indexed: 06/17/2023]
Abstract
2-O-α-D-glucopyranosyl-L-ascorbic acid (AA-2G), a stable glucoside derivative of L-ascorbic acid (L-AA), can be one-step synthesized by sucrose phosphorylase (SPase). In this study, we attempted to produce extracellular SPase in Bacillus subtilis WB800 for the food-grade production of AA-2G. The results showed that the secretion of SPases did not require signal peptide. Promoter and its compatibility to target SPase gene were proved to be the key factors for high-level secretion. The strong promoter P43 and synthetic SPase gene derived from Bifidobacterium longum (BloSPase) were selected due to generate a relatively high extracellular activity (0.94 U/mL) for L-AA glycosylation. A highly active dual-promoter system PsigH-100-P43 was further constructed, which produced the highest extracellular and intracellular activity were 5.53 U/mL and 6.85 U/mL in fed-batch fermentation, respectively. Up to 113.58 g/L of AA-2G could be achieved by the supernatant of fermentation broth and a higher yield of 146.42 g/L was obtained by whole-cells biotransformation. Therefore, the optimal dual-promoter system in B. subtilis is suitable for the food-grade scale-up production of AA-2G.
Collapse
Affiliation(s)
- Tian Gan
- Institute of Fermentation Engineering, Zhejiang University of Technology, Hangzhou 310014, China; College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jingyi Fang
- Institute of Fermentation Engineering, Zhejiang University of Technology, Hangzhou 310014, China; College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yuxin Wang
- Institute of Fermentation Engineering, Zhejiang University of Technology, Hangzhou 310014, China; College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Kaiqiang Liu
- Institute of Fermentation Engineering, Zhejiang University of Technology, Hangzhou 310014, China; College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yumin Sang
- Institute of Fermentation Engineering, Zhejiang University of Technology, Hangzhou 310014, China; College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Hanchi Chen
- Institute of Fermentation Engineering, Zhejiang University of Technology, Hangzhou 310014, China; College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yuele Lu
- Institute of Fermentation Engineering, Zhejiang University of Technology, Hangzhou 310014, China; College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Linjiang Zhu
- Institute of Fermentation Engineering, Zhejiang University of Technology, Hangzhou 310014, China; College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Xiaolong Chen
- Institute of Fermentation Engineering, Zhejiang University of Technology, Hangzhou 310014, China; College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
15
|
Ferrando J, Filluelo O, Zeigler DR, Picart P. Barriers to simultaneous multilocus integration in Bacillus subtilis tumble down: development of a straightforward screening method for the colorimetric detection of one-step multiple gene insertion using the CRISPR-Cas9 system. Microb Cell Fact 2023; 22:21. [PMID: 36721198 PMCID: PMC9890709 DOI: 10.1186/s12934-023-02032-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 01/25/2023] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Despite recent advances in genetic engineering tools for effectively regulating and manipulating genes, efficient simultaneous multigene insertion methods have not been established in Bacillus subtilis. To date, multilocus integration systems in B. subtilis, which is one of the main industrial enzyme producers and a GRAS (generally regarded as safe) microbial host, rely on iterative rounds of plasmid construction for sequential insertions of genes into the B. subtilis chromosome, which is tedious and time consuming. RESULTS In this study, we present development and proof-of-concept of a novel CRISPR-Cas9-based genome-editing strategy for the colorimetric detection of one-step multiple gene insertion in B. subtilis. First, up to three copies of the crtMN operon from Staphylococcus aureus, encoding a yellow pigment, were incorporated at three ectopic sites within the B. subtilis chromosome, rendering engineered strains able to form yellow colonies. Second, a single CRISPR-Cas9-based plasmid carrying a highly specific single guide RNA (sgRNA) targeting crtMN operon and a changeable editing template was constructed to facilitate simultaneous insertion of multiple gene-copies through homology-directed repair (HDR). Upon transformation of engineered strains with engineered plasmids, strains harboring up to three gene copies integrated into the chromosome formed white colonies because of the removal of the crtMN operon, clearly distinguishable from yellow colonies harboring undesired genetic modifications. As a result, construction of a plasmid-less, marker-free, high-expression stable producer B. subtilis strain can be completed in only seven days, demonstrating the potential that the implementation of this technology may bring for biotechnology purposes. CONCLUSIONS The novel technology expands the genome-editing toolset for B. subtilis and means a substantial improvement over current methodology, offering new application possibilities that we envision should significantly boost the development of B. subtilis as a chassis in the field of synthetic biology.
Collapse
Affiliation(s)
- Jordi Ferrando
- grid.5841.80000 0004 1937 0247Microbiology Section, Department of Biology, Healthcare and Environment, Faculty of Pharmacy and Food Sciences, Universitat de Barcelona, Barcelona, Catalonia Spain
| | - Oriana Filluelo
- grid.5841.80000 0004 1937 0247Microbiology Section, Department of Biology, Healthcare and Environment, Faculty of Pharmacy and Food Sciences, Universitat de Barcelona, Barcelona, Catalonia Spain
| | | | - Pere Picart
- grid.5841.80000 0004 1937 0247Microbiology Section, Department of Biology, Healthcare and Environment, Faculty of Pharmacy and Food Sciences, Universitat de Barcelona, Barcelona, Catalonia Spain
| |
Collapse
|
16
|
Research Progress on the Effect of Autolysis to Bacillus subtilis Fermentation Bioprocess. FERMENTATION 2022. [DOI: 10.3390/fermentation8120685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Bacillus subtilis is a gram-positive bacterium, a promising microorganism due to its strong extracellular protein secretion ability, non-toxic, and relatively mature industrial fermentation technology. However, cell autolysis during fermentation restricts the industrial application of B. subtilis. With the fast advancement of molecular biology and genetic engineering technology, various advanced procedures and gene editing tools have been used to successfully construct autolysis-resistant B. subtilis chassis cells to manufacture various biological products. This paper first analyses the causes of autolysis in B. subtilis from a mechanistic perspective and outlines various strategies to address autolysis in B. subtilis. Finally, potential strategies for solving the autolysis problem of B. subtilis are foreseen.
Collapse
|
17
|
Miao CH, Wang XF, Qiao B, Xu QM, Cao CY, Cheng JS. Artificial consortia of Bacillus amyloliquefaciens HM618 and Bacillus subtilis for utilizing food waste to synthetize iturin A. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:72628-72638. [PMID: 35612705 DOI: 10.1007/s11356-022-21029-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
Food waste is a cheap and abundant organic resource that can be used as a substrate for the production of the broad-spectrum antifungal compound iturin A. To increase the efficiency of food waste biotransformation, different artificial consortia incorporating the iturin A producer Bacillus amyloliquefaciens HM618 together with engineered Bacillus subtilis WB800N producing lipase or amylase were constructed. The results showed that recombinant B. subtilis WB-A13 had the highest amylase activity of 23406.4 U/mL, and that the lipase activity of recombinant B. subtilis WB-L01 was 57.5 U/mL. When strain HM618 was co-cultured with strain WB-A14, the higher yield of iturin A reached to 7.66 mg/L, representing a 32.9% increase compared to the pure culture of strain HM618. In the three-strain consortium comprising strains HM618, WB-L02, and WB-A14 with initial OD600 values of 0.2, 0.15, and 0.15, respectively, the yield of iturin A reached 8.12 mg/L, which was 38.6% higher than the control. Taken together, artificial consortia of B. amyloliquefaciens and recombinant B. subtilis can produce an increased yield of iturin A, which provides a new strategy for the valorization of food waste.
Collapse
Affiliation(s)
- Chang-Hao Miao
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin, 300350, People's Republic of China
- SynBio Research Platform, Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin, 300350, People's Republic of China
| | - Xiao-Feng Wang
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin, 300350, People's Republic of China
- SynBio Research Platform, Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin, 300350, People's Republic of China
| | - Bin Qiao
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin, 300350, People's Republic of China
| | - Qiu-Man Xu
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Science, Tianjin Normal University, Binshuixi Road 393, Xiqing District, Tianjin, 300387, People's Republic of China
| | - Chun-Yang Cao
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin, 300350, People's Republic of China
- SynBio Research Platform, Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin, 300350, People's Republic of China
| | - Jing-Sheng Cheng
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin, 300350, People's Republic of China.
- SynBio Research Platform, Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin, 300350, People's Republic of China.
| |
Collapse
|
18
|
Krüger A, Welsch N, Dürwald A, Brundiek H, Wardenga R, Piascheck H, Mengers HG, Krabbe J, Beyer S, Kabisch JF, Popper L, Hübel T, Antranikian G, Schweder T. A host-vector toolbox for improved secretory protein overproduction in Bacillus subtilis. Appl Microbiol Biotechnol 2022; 106:5137-5151. [PMID: 35802157 PMCID: PMC9329435 DOI: 10.1007/s00253-022-12062-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 06/24/2022] [Accepted: 06/28/2022] [Indexed: 11/29/2022]
Abstract
Abstract
Target proteins in biotechnological applications are highly diverse. Therefore, versatile flexible expression systems for their functional overproduction are required. In order to find the right heterologous gene expression strategy, suitable host-vector systems, which combine different genetic circuits, are useful. In this study, we designed a novel Bacillus subtilis expression toolbox, which allows the overproduction and secretion of potentially toxic enzymes. This toolbox comprises a set of 60 expression vectors, which combine two promoter variants, four strong secretion signals, a translation-enhancing downstream box, and three plasmid backbones. This B. subtilis toolbox is based on a tailor-made, clean deletion mutant strain, which is protease and sporulation deficient and exhibits reduced autolysis and secondary metabolism. The appropriateness of this alternative expression platform was tested for the overproduction of two difficult-to-produce eukaryotic model proteins. These included the sulfhydryl oxidase Sox from Saccharomyces cerevisiae, which forms reactive hydrogen peroxide and undesired cross-linking of functional proteins, and the human interleukin-1β, a pro-inflammatory cytokine. For the best performing Sox and interleukin, overproducing and secreting variants of these new B. subtilis toolbox fermentation strategies were developed and tested. This study demonstrates the suitability of the prokaryotic B. subtilis host-vector system for the extracellular production of two eukaryotic proteins with biotechnological relevance. Key points • Construction of a versatile Bacillus subtilis gene expression toolbox. • Verification of the toolbox by the secretory overproduction of two difficult-to-express proteins. • Fermentation strategy for an acetoin-controlled overproduction of heterologous proteins. Supplementary Information The online version contains supplementary material available at 10.1007/s00253-022-12062-2.
Collapse
Affiliation(s)
- Anna Krüger
- Institute of Technical Microbiology, Hamburg University of Technology, Kasernenstr. 12, 21073, Hamburg, Germany
| | - Norma Welsch
- Pharmaceutical Biotechnology, Institute of Pharmacy, University of Greifswald, Felix-Hausdorff-Str. 3, 17487, Greifswald, Germany.,Institute of Marine Biotechnology, Walther-Rathenau-Str. 49, 17489, Greifswald, Germany
| | - Alexandra Dürwald
- Pharmaceutical Biotechnology, Institute of Pharmacy, University of Greifswald, Felix-Hausdorff-Str. 3, 17487, Greifswald, Germany
| | - Henrike Brundiek
- Enzymicals AG, Walther-Rathenau-Straße 49a, 17489, Greifswald, Germany
| | - Rainer Wardenga
- Enzymicals AG, Walther-Rathenau-Straße 49a, 17489, Greifswald, Germany
| | - Henning Piascheck
- Institute of Technical Microbiology, Hamburg University of Technology, Kasernenstr. 12, 21073, Hamburg, Germany
| | - Hendrik G Mengers
- Institute of Applied Microbiology - iAMB, Aachen Biology and Biotechnology - ABBt, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany
| | - Jana Krabbe
- Pharmaceutical Biotechnology, Institute of Pharmacy, University of Greifswald, Felix-Hausdorff-Str. 3, 17487, Greifswald, Germany.,Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology, HKI, Beutenbergstr. 11a, 07745, Jena, Germany
| | - Sandra Beyer
- Pharmaceutical Biotechnology, Institute of Pharmacy, University of Greifswald, Felix-Hausdorff-Str. 3, 17487, Greifswald, Germany.,Bioprocess Center, Eppendorf AG, Rudolf-Schulten-Str. 5, 52428, Jülich, Germany
| | - Johannes F Kabisch
- Pharmaceutical Biotechnology, Institute of Pharmacy, University of Greifswald, Felix-Hausdorff-Str. 3, 17487, Greifswald, Germany.,Department of Biotechnology and Food Science, NTNU, Sem Sælands vei 6, 7034, Trondheim, Norway
| | - Lutz Popper
- Stern Enzym GmbH & Co. KG, Kurt-Fischer-Str. 55, 22926, Ahrensburg, Germany
| | - Tanno Hübel
- Miltenyi Biotec GmbH, Robert-Koch-Str. 1, 17166, Teterow, Germany
| | - Garabed Antranikian
- Institute of Technical Microbiology, Hamburg University of Technology, Kasernenstr. 12, 21073, Hamburg, Germany
| | - Thomas Schweder
- Pharmaceutical Biotechnology, Institute of Pharmacy, University of Greifswald, Felix-Hausdorff-Str. 3, 17487, Greifswald, Germany. .,Institute of Marine Biotechnology, Walther-Rathenau-Str. 49, 17489, Greifswald, Germany.
| |
Collapse
|
19
|
Li H, Yao D, Pan Y, Chen X, Fang Z, Xiao Y. Enhanced extracellular raw starch-degrading α-amylase production in Bacillus subtilis by promoter engineering and translation initiation efficiency optimization. Microb Cell Fact 2022; 21:127. [PMID: 35761342 PMCID: PMC9235159 DOI: 10.1186/s12934-022-01855-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 06/16/2022] [Indexed: 11/29/2022] Open
Abstract
Background A raw starch-degrading α-amylase from Pontibacillus sp. ZY (AmyZ1), previously screened by our laboratory, showed a promising application potential for starch-processing industries. However, the AmyZ1 secretory production still under investigation, which seriously restricts its application in the starch-processing industry. On the other hand, Bacillus subtilis is widely used to achieve the extracellular expression of target proteins. Results AmyZ1 secretory production was achieved in B. subtilis and was enhanced by promoter engineering and translation initiation efficiency optimization. First, based on the different phase-dependent promoters, the dual-promoter PspoVG–PspoVG142 was constructed by combining dual-promoter engineering and promoter modification. The corresponding strain BZd34 showed an extracellular AmyZ1 activity of 1437.6 U/mL during shake flask cultivation, which was 3.11-fold higher than that of the original strain BZ1 (PgroE). Then, based on translation initiation efficiency optimization, the best strain BZd343 containing optimized 5'-proximal coding sequence (opt3) produced the highest extracellular α-amylase activity of 1691.1 U/mL, which was 3.65-fold higher than that of the strain BZ1. Finally, cultivation of BZd343 in 3-L fermenter exhibited an extracellular AmyZ1 activity of 14,012 U/mL at 48 h, with productivity of 291.9 U/mL·h. Conclusions This is the first report of recombinant expression of AmyZ1 in B. subtilis and the expression level of AmyZ1 represents the highest raw starch-degrading α-amylase level in B. subtilis to date. The high-level expression of AmyZ1 in this work provides a foundation for its industrial production. The strategies used in this study also provide a strategic reference for improving the secretory expression of other enzymes in B. subtilis. Supplementary Information The online version contains supplementary material available at 10.1186/s12934-022-01855-9.
Collapse
Affiliation(s)
- He Li
- School of Life Sciences, Anhui University, Hefei, 230601, Anhui, People's Republic of China.,Anhui Key Laboratory of Modern Biomanufacturing, Hefei, 230601, Anhui, People's Republic of China
| | - Dongbang Yao
- School of Life Sciences, Anhui University, Hefei, 230601, Anhui, People's Republic of China.,Anhui Key Laboratory of Modern Biomanufacturing, Hefei, 230601, Anhui, People's Republic of China
| | - Yan Pan
- School of Life Sciences, Anhui University, Hefei, 230601, Anhui, People's Republic of China.,Anhui Key Laboratory of Modern Biomanufacturing, Hefei, 230601, Anhui, People's Republic of China
| | - Xin Chen
- School of Life Sciences, Anhui University, Hefei, 230601, Anhui, People's Republic of China.,Anhui Key Laboratory of Modern Biomanufacturing, Hefei, 230601, Anhui, People's Republic of China
| | - Zemin Fang
- School of Life Sciences, Anhui University, Hefei, 230601, Anhui, People's Republic of China. .,Anhui Key Laboratory of Modern Biomanufacturing, Hefei, 230601, Anhui, People's Republic of China.
| | - Yazhong Xiao
- School of Life Sciences, Anhui University, Hefei, 230601, Anhui, People's Republic of China. .,Anhui Key Laboratory of Modern Biomanufacturing, Hefei, 230601, Anhui, People's Republic of China.
| |
Collapse
|
20
|
A 4-α-Glucanotransferase from Thermus thermophilus HB8: Secretory Expression and Characterization. Curr Microbiol 2022; 79:202. [PMID: 35604453 DOI: 10.1007/s00284-022-02856-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 03/27/2022] [Indexed: 11/03/2022]
Abstract
4-α-glucanotransferase (4GT, EC 2.4.1.25) catalyzes the breakdown of the α-1,4 glycosidic bonds of the starch main chain and forms new α-1,4 glycosidic bonds in the side chain, which is often used to optimize the physical and chemical properties of starch and to improve the quality of starch-based food. However, the low enzyme activity of 4GT limits its production and widespread application. Herein, the 4GT gene encoding 500 amino acids from Thermus thermophilus HB8 was cloned and expressed in Escherichia coli. The purified 4GT exhibited maximum activity at pH 7.0 and 60 °C and had a good stability at pH 6.0-8.0 and 30-60 °C. It was confirmed that 4GT possessed the catalytic function of extending the branch length of potato starch. Furthermore, the 4GT gene was successfully expressed extracellularly in Bacillus subtilis. Then, the enzyme yield of 4GT increased by 4.1 times through screening of different plasmids and hosts. Additionally, the fermentation conditions were optimized to enhance 4GT extracellular enzyme yield. Finally, a recombinant Bacillus subtilis with 299.9 U/mL enzyme yield of 4GT was obtained under the optimized fermentation process. In conclusion, this study provides a valuable reference for characterization and expression of food-grade enzymes.
Collapse
|
21
|
Pudova DS, Toymentseva AA, Gogoleva NE, Shagimardanova EI, Mardanova AM, Sharipova MR. Comparative Genome Analysis of Two Bacillus pumilus Strains Producing High Level of Extracellular Hydrolases. Genes (Basel) 2022; 13:genes13030409. [PMID: 35327964 PMCID: PMC8950961 DOI: 10.3390/genes13030409] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/15/2022] [Accepted: 02/21/2022] [Indexed: 02/01/2023] Open
Abstract
Whole-genome sequencing of a soil isolate Bacillus pumilus, strain 7P, and its streptomycin-resistant derivative, B. pumilus 3-19, showed genome sizes of 3,609,117 bp and 3,609,444 bp, respectively. Annotation of the genome showed 3794 CDS (3204 with predicted function) and 3746 CDS (3173 with predicted function) in the genome of strains 7P and 3-19, respectively. In the genomes of both strains, the prophage regions Bp1 and Bp2 were identified. These include 52 ORF of prophage proteins in the Bp1 region and 38 prophages ORF in the Bp2 region. Interestingly, more than 50% of Bp1 prophage proteins are similar to the proteins of the phi105 in B. subtilis. The DNA region of Bp2 has 15% similarity to the DNA of the Brevibacillus Jimmer phage. Degradome analysis of the genome of both strains revealed 148 proteases of various classes. These include 60 serine proteases, 48 metalloproteases, 26 cysteine proteases, 4 aspartate proteases, 2 asparagine proteases, 3 threonine proteases, and 2 unclassified proteases. Likewise, three inhibitors of proteolytic enzymes were found. Comparative analysis of variants in the genomes of strains 7P and 3-19 showed the presence of 81 nucleotide variants in the genome 3-19. Among them, the missense mutations in the rpsL, comA, spo0F genes and in the upstream region of the srlR gene were revealed. These nucleotide polymorphisms may have affected the streptomycin resistance and overproduction of extracellular hydrolases of the 3-19 strain. Finally, a plasmid DNA was found in strain 7P, which is lost in its derivative, strain 3-19. This plasmid contains five coding DNA sequencing (CDS), two regulatory proteins and three hypothetical proteins.
Collapse
|
22
|
Zhen J, Zheng H, Zhao X, Fu X, Yang S, Xu J, Song H, Ma Y. Regulate the hydrophobic motif to enhance the non-classical secretory expression of Pullulanase PulA in Bacillus subtilis. Int J Biol Macromol 2021; 193:238-246. [PMID: 34710472 DOI: 10.1016/j.ijbiomac.2021.10.164] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/04/2021] [Accepted: 10/20/2021] [Indexed: 11/30/2022]
Abstract
Bacillus subtilis has been widely used as a prokaryotic host for the secretory expression of heterologous proteins. In this study, a pullulanase (PulA) from Anoxybacillus sp. LM18-11 was firstly identified to be expressed in Bacillus subtilis 1A751 through non-classical secretion pathway. Results showed that both the N- and C-terminal regions of PulA were essential for its soluble expression. To explore its specific structural basis of secretion in B. subtilis, we revealed a hydrophobic motif A501-H507 which is vital for the secretion of the whole protein of PulA. Through a series of site-specific mutagenesis, the triple-sites mutants R503E/I506E/H507E and R503E/I506Y/H507E showed the highest extracellular activity (160.07 U/mL) and total activity (243.37 U/mL) which was 1.71 times and 1.55 times higher than those of PulA. The highest secretion rate of mutant I506E/H507E was more than 50% which was 34.72% higher comparing with that of PulA. The glutamic acid substitution on these three key surface sites which decreased the surface hydrophobicity of that region was confirmed to be beneficial to improve the secretory expression of PulA. This novel discovery for the secretory expression of PulA in B. subtilis would make a new perspective on regulating a kind of non-classical secretion in B. subtilis.
Collapse
Affiliation(s)
- Jie Zhen
- Industrial Enzymes National Engineering Laboratory, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Hongchen Zheng
- National Technology Innovation Center of Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; Industrial Enzymes National Engineering Laboratory, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; Tianjin Key Laboratory for Industrial Biological Systems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.
| | - Xingya Zhao
- National Technology Innovation Center of Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; Industrial Enzymes National Engineering Laboratory, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Xiaoping Fu
- Industrial Enzymes National Engineering Laboratory, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; Tianjin Key Laboratory for Industrial Biological Systems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Shibin Yang
- National Technology Innovation Center of Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; Industrial Enzymes National Engineering Laboratory, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Jianyong Xu
- Industrial Enzymes National Engineering Laboratory, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; Tianjin Key Laboratory for Industrial Biological Systems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.
| | - Hui Song
- National Technology Innovation Center of Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; Industrial Enzymes National Engineering Laboratory, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; Tianjin Key Laboratory for Industrial Biological Systems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.
| | - Yanhe Ma
- National Technology Innovation Center of Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; Industrial Enzymes National Engineering Laboratory, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; Tianjin Key Laboratory for Industrial Biological Systems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| |
Collapse
|
23
|
Wang ZK, Gong JS, Qin J, Li H, Lu ZM, Shi JS, Xu ZH. Improving the Intensity of Integrated Expression for Microbial Production. ACS Synth Biol 2021; 10:2796-2807. [PMID: 34738786 DOI: 10.1021/acssynbio.1c00334] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Chromosomal integration of exogenous genes is preferred for industrially related fermentation, as plasmid-mediated fermentation leads to extra metabolic burden and genetic instability. Moreover, with the development and advancement of genome engineering and gene editing technologies, inserting genes into chromosomes has become more convenient; integration expression is extensively utilized in microorganisms for industrial bioproduction and expected to become the trend of recombinant protein expression. However, in actual research and application, it is important to enhance the expression of heterologous genes at the host genome level. Herein, we summarized the basic principles and characteristics of genomic integration; furthermore, we highlighted strategies to improve the expression of chromosomal integration of genes and pathways in host strains from three aspects, including chassis cell optimization, regulation of expression elements in gene expression cassettes, optimization of gene dose level and integration sites on chromosomes. Moreover, we reviewed and summarized the relevant studies on the application of integrated expression in the exploration of gene function and the various types of industrial microorganism production. Consequently, this review would serve as a reference for the better application of integrated expression.
Collapse
Affiliation(s)
- Zi-Kai Wang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, PR China
- National Engineering Laboratory for Cereal Fermentation Technology, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, PR China
| | - Jin-Song Gong
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, PR China
| | - Jiufu Qin
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, PR China
| | - Hui Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, PR China
| | - Zhen-Ming Lu
- National Engineering Laboratory for Cereal Fermentation Technology, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China
| | - Jin-Song Shi
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, PR China
| | - Zheng-Hong Xu
- National Engineering Laboratory for Cereal Fermentation Technology, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, PR China
| |
Collapse
|
24
|
Yang H, Qu J, Zou W, Shen W, Chen X. An overview and future prospects of recombinant protein production in Bacillus subtilis. Appl Microbiol Biotechnol 2021; 105:6607-6626. [PMID: 34468804 DOI: 10.1007/s00253-021-11533-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 08/12/2021] [Accepted: 08/15/2021] [Indexed: 12/27/2022]
Abstract
Bacillus subtilis is a well-characterized Gram-positive bacterium and a valuable host for recombinant protein production because of its efficient secretion ability, high yield, and non-toxicity. Here, we comprehensively review the recent studies on recombinant protein production in B. subtilis to update and supplement other previous reviews. We have focused on several aspects, including optimization of B. subtilis strains, enhancement and regulation of expression, improvement of secretion level, surface display of proteins, and fermentation optimization. Among them, optimization of B. subtilis strains mainly involves undirected chemical/physical mutagenesis and selection and genetic manipulation; enhancement and regulation of expression comprises autonomous plasmid and integrated expression, promoter regulation and engineering, and fine-tuning gene expression based on proteases and molecular chaperones; improvement of secretion level predominantly involves secretion pathway and signal peptide screening and optimization; surface display of proteins includes surface display of proteins on spores or vegetative cells; and fermentation optimization incorporates medium optimization, process condition optimization, and feeding strategy optimization. Furthermore, we propose some novel methods and future challenges for recombinant protein production in B. subtilis.Key points• A comprehensive review on recombinant protein production in Bacillus subtilis.• Novel techniques facilitate recombinant protein expression and secretion.• Surface display of proteins has significant potential for different applications.
Collapse
Affiliation(s)
- Haiquan Yang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.
| | - Jinfeng Qu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Wei Zou
- College of Bioengineering, Sichuan University of Science & Engineering, Yibin, 644000, Sichuan, China
| | - Wei Shen
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Xianzhong Chen
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
25
|
Souza CCD, Guimarães JM, Pereira SDS, Mariúba LAM. The multifunctionality of expression systems in Bacillus subtilis: Emerging devices for the production of recombinant proteins. Exp Biol Med (Maywood) 2021; 246:2443-2453. [PMID: 34424091 PMCID: PMC8649419 DOI: 10.1177/15353702211030189] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Bacillus subtilis is a successful host for producing recombinant proteins. Its GRAS (generally recognized as safe) status and its remarkable innate ability to absorb and incorporate exogenous DNA into its genome make this organism an ideal platform for the heterologous expression of bioactive substances. The factors that corroborate its value can be attributed to the scientific knowledge obtained from decades of study regarding its biology that has fostered the development of several genetic engineering strategies, such as the use of different plasmids, engineering of constitutive or double promoters, chemical inducers, systems of self-inducing expression with or without a secretion system that uses a signal peptide, and so on. Tools that enrich the technological arsenal of this expression platform improve the efficiency and reduce the costs of production of proteins of biotechnological importance. Therefore, this review aims to highlight the major advances involving recombinant expression systems developed in B. subtilis, thus sustaining the generation of knowledge and its application in future research. It was verified that this bacterium is a model in constant demand and studies of the expression of recombinant proteins on a large scale are increasing in number. As such, it represents a powerful bacterial host for academic research and industrial purposes.
Collapse
Affiliation(s)
- Caio Coutinho de Souza
- Programa de Pós-Graduação em Biotecnologia da Universidade Federal do Amazonas - UFAM, Manaus, AM 69067-005, Brazil
| | - Jander Matos Guimarães
- Centro Multiusuário de Análise de Fenômenos Biomédicos (CMABio) da Universidade do Estado do Amazonas (UEA), Manaus, AM 69065-00, Brazil
| | - Soraya Dos Santos Pereira
- Fundação Oswaldo Cruz (FIOCRUZ) Unidade de Rondônia, Porto Velho-RO 76812-245, Brazil.,Programa de Pós-Graduação em Biologia Experimental, Fundação Universidade Federal de Rondônia-PGBIOEXP/UNIR, Porto Velho-RO 76801-974, Brazil.,Instituto Leônidas e Maria Deane (ILMD), Fundação Oswaldo Cruz (FIOCRUZ), Manaus, AM 69057-070, Brazil
| | - Luis André Morais Mariúba
- Programa de Pós-Graduação em Biotecnologia da Universidade Federal do Amazonas - UFAM, Manaus, AM 69067-005, Brazil.,Programa de Pós-Graduação em Biologia Celular e Molecular, Instituto Oswaldo Cruz, IOC, Rio de Janeiro 21040-360, Brazil.,Instituto Leônidas e Maria Deane (ILMD), Fundação Oswaldo Cruz (FIOCRUZ), Manaus, AM 69057-070, Brazil.,Programa de Pós-Graduação em Imunologia Básica e Aplicada, Instituto de Ciências Biológicas, Universidade Federal do Amazonas (UFAM), Manaus, AM 69067-00, Brazil
| |
Collapse
|
26
|
Microbial starch debranching enzymes: Developments and applications. Biotechnol Adv 2021; 50:107786. [PMID: 34147588 DOI: 10.1016/j.biotechadv.2021.107786] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 06/04/2021] [Accepted: 06/15/2021] [Indexed: 12/28/2022]
Abstract
Starch debranching enzymes (SDBEs) hydrolyze the α-1,6 glycosidic bonds in polysaccharides such as starch, amylopectin, pullulan and glycogen. SDBEs are also important enzymes for the preparation of sugar syrup, resistant starch and cyclodextrin. As the synergistic catalysis of SDBEs and other starch-acting hydrolases can effectively improve the raw material utilization and production efficiency during starch processing steps such as saccharification and modification, they have attracted substantial research interest in the past decades. The substrate specificities of the two major members of SDBEs, pullulanases and isoamylases, are quite different. Pullulanases generally require at least two α-1,4 linked glucose units existing on both sugar chains linked by the α-1,6 bond, while isoamylases require at least three units of α-1,4 linked glucose. SDBEs mainly belong to glycoside hydrolase (GH) family 13 and 57. Except for GH57 type II pullulanse, GH13 pullulanases and isoamylases share plenty of similarities in sequence and structure of the core catalytic domains. However, the N-terminal domains, which might be one of the determinants contributing to the substrate binding of SDBEs, are distinct in different enzymes. In order to overcome the current defects of SDBEs in catalytic efficiency, thermostability and expression level, great efforts have been made to develop effective enzyme engineering and fermentation strategies. Herein, the diverse biochemical properties and distinct features in the sequence and structure of pullulanase and isoamylase from different sources are summarized. Up-to-date developments in the enzyme engineering, heterologous production and industrial applications of SDBEs is also reviewed. Finally, research perspective which could help understanding and broadening the applications of SDBEs are provided.
Collapse
|
27
|
Improve Production of Pullulanase of Bacillus subtilis in Batch and Fed-Batch Cultures. Appl Biochem Biotechnol 2020; 193:296-306. [PMID: 32954482 DOI: 10.1007/s12010-020-03419-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 09/11/2020] [Indexed: 10/23/2022]
Abstract
Pullulanase is a debranching enzyme that cleaves explicitly α-1,6 glycosidic bonds, which is widely used in starch saccharification, production of glucose, maltose, and bioethanol. The thermal-resistant pullulanase is isolated from a variety of microorganisms; however, the lack of industrial production of pullulanase has hindered the transformation of the laboratory to industry. In this study, the expensive maltose syrup and soybean meal powder were replaced with cheap corn starch and corn steep liquor, exhibiting 440 U/mL of pullulanase in shake flasks by changing the C/N value and the total energy of the medium. Subsequently, the cultivation conditions were explored in a 50-L and 50-m3 bioreactor. In batch culture, the pullulanase activity reached 896 U/mL, while it increased to 1743 U/mL in fed-batch culture by controlling the dissolved oxygen, pH, reducing sugar content, and temperature. Remarkably, the cultivation volume was enlarged to 50 m3 based on the technical parameters of fed-batch culture. The industrial production of pullulanase was successful, and the activity achieved 1546 U/mL. When the product was stored at room temperature (25 °C) for 6 months, the pullulanase activity was over 90%. The half-lives at 60 and 80 °C were 119.45 h and 51.18 h, respectively, which satisfied the industrial application requirements of pullulanase.
Collapse
|
28
|
Zhang K, Su L, Wu J. Recent Advances in Recombinant Protein Production byBacillus subtilis. Annu Rev Food Sci Technol 2020; 11:295-318. [DOI: 10.1146/annurev-food-032519-051750] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Bacillus subtilis has become a widely used microbial cell factory for the production of recombinant proteins, especially those associated with foods and food processing. Recent advances in genetic manipulation and proteomic analysis have been used to greatly improve protein production in B. subtilis. This review begins with a discussion of genome-editing technologies and application of the CRISPR–Cas9 system to B. subtilis. A summary of the characteristics of crucial legacy strains is followed by suggestions regarding the choice of origin strain for genetic manipulation. Finally, the review analyzes the genes and operons of B. subtilis that are important for the production of secretory proteins and provides suggestions and examples of how they can be altered to improve protein production. This review is intended to promote the engineering of this valuable microbial cell factory for better recombinant protein production.
Collapse
Affiliation(s)
- Kang Zhang
- State Key Laboratory of Food Science and Technology, School of Biotechnology, Key Laboratory of Industrial Biotechnology, Ministry of Education, and International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Lingqia Su
- State Key Laboratory of Food Science and Technology, School of Biotechnology, Key Laboratory of Industrial Biotechnology, Ministry of Education, and International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Jing Wu
- State Key Laboratory of Food Science and Technology, School of Biotechnology, Key Laboratory of Industrial Biotechnology, Ministry of Education, and International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
29
|
Construction and application of a dual promoter system for efficient protein production and metabolic pathway enhancement in Bacillus licheniformis. J Biotechnol 2020; 312:1-10. [DOI: 10.1016/j.jbiotec.2020.02.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 02/20/2020] [Accepted: 02/28/2020] [Indexed: 12/31/2022]
|
30
|
Stoffels L, Finlan A, Mannall G, Purton S, Parker B. Downstream Processing of Chlamydomonas reinhardtii TN72 for Recombinant Protein Recovery. Front Bioeng Biotechnol 2019; 7:383. [PMID: 31867315 PMCID: PMC6908742 DOI: 10.3389/fbioe.2019.00383] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 11/18/2019] [Indexed: 12/14/2022] Open
Abstract
The green microalga Chlamydomonas reinhardtii is under development as a production host for recombinant proteins and whole-cell therapeutics. In particular, the cell wall-reduced strain TN72 is used as a model organism for protein expression and algal synthetic biology. However, the bioprocessing characteristics of TN72 and other C. reinhardtii strains have yet to be examined. Here we use a TN72 strain expressing a protein-based antibiotic (Pal) to study the scale-up of cell harvest and product recovery. Cell harvest was examined with 100L cultures in two intermittent-discharge continuous-flow disc-stack centrifuges at flow rates of 150–250 L.h−1, as well as with an ultra scale-down (USD) mimic of the centrifuges. Solids recovery exceeded 99.5% and the loss of product to the supernatant was below 2–3%. TN72 is intact following the high shear conditions of the feed zone, however discharge from both disc-stack centrifuges resulted in full cell breakage and in the case of Pal, partial degradation in the subsequent hours. We demonstrated that shake flask cultivation and the USD centrifuge technique can be used to predict the pilot-scale clarification efficiency and product release at the centrifuge inlet for TN72, but not the cell breakage on discharge. This study outlines a number of challenges for scale-up of recombinant protein production in the microalgal host in particular for whole cell therapeutics, but also opportunities for the bioprocessing of intracellular products from TN72.
Collapse
Affiliation(s)
- Laura Stoffels
- Department of Biochemical Engineering, Bernard Katz Building, University College London, London, United Kingdom.,Algal Research Group, Institute of Structural and Molecular Biology, University College London, London, United Kingdom
| | - Arran Finlan
- Department of Biochemical Engineering, Bernard Katz Building, University College London, London, United Kingdom
| | - Gareth Mannall
- Department of Biochemical Engineering, Bernard Katz Building, University College London, London, United Kingdom
| | - Saul Purton
- Algal Research Group, Institute of Structural and Molecular Biology, University College London, London, United Kingdom
| | - Brenda Parker
- Department of Biochemical Engineering, Bernard Katz Building, University College London, London, United Kingdom
| |
Collapse
|