1
|
De Tomi E, Orlandi E, Belpinati F, Patuzzo C, Trabetti E, Gomez-Lira M, Malerba G. New Axes of Interaction in Circ_0079593/miR-516b-5p Network in Melanoma Metastasis Cell Lines. Genes (Basel) 2024; 15:1647. [PMID: 39766913 PMCID: PMC11675925 DOI: 10.3390/genes15121647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 12/17/2024] [Accepted: 12/20/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND/OBJECTIVES microRNAs (miRNAs) and circular RNA (circRNAs) show a close interconnection in the control of fundamental functions, such as cell proliferation and tumor development. A full understanding of this complex and interconnected network is essential for better understanding the mechanisms underlying cancer progression. Hsa_circ_0079593 is a circRNA highly expressed in melanoma and is associated with increased metastasis and progression of malignancy, whereas miR516b-5p is a microRNA whose expression is lower in several tumor types, including melanoma; its overexpression inhibits cell proliferation, migration, and invasion. In this study, we tested whether circ_0079593 is involved in the progression of melanoma aggressiveness by regulating CHAF1B and MCAM via the inhibition of miR-516b-5p. METHODS We first verified the expression of the key components in both healthy melanocyte lines and melanoma metastases, subsequently using in vitro assays such as scratch tests, Western blot, qRT-PCR, and dual luciferase report assay; we verified their interconnected regulatory effect. RESULTS Our results showed that circ_0079593-miR516b-5p interactions are involved in the increase in the migration of metastasis melanoma cells by exploiting their binding to MCAM and CHAF1B mRNAs. CONCLUSIONS This study provides two other regulatory networks in which circ_0079593 may exert its oncogenic function by increasing the speed of movement of metastatic cells through the sponge of miR-516b-5p, which cannot regulate MCAM and CHAF1B expression.
Collapse
Affiliation(s)
- Elisa De Tomi
- Department of Neurosciences, Biomedicine, and Movement Sciences, University of Verona, 37134 Verona, Italy; (E.D.T.); (E.O.); (F.B.); (C.P.); (E.T.)
| | - Elisa Orlandi
- Department of Neurosciences, Biomedicine, and Movement Sciences, University of Verona, 37134 Verona, Italy; (E.D.T.); (E.O.); (F.B.); (C.P.); (E.T.)
| | - Francesca Belpinati
- Department of Neurosciences, Biomedicine, and Movement Sciences, University of Verona, 37134 Verona, Italy; (E.D.T.); (E.O.); (F.B.); (C.P.); (E.T.)
| | - Cristina Patuzzo
- Department of Neurosciences, Biomedicine, and Movement Sciences, University of Verona, 37134 Verona, Italy; (E.D.T.); (E.O.); (F.B.); (C.P.); (E.T.)
| | - Elisabetta Trabetti
- Department of Neurosciences, Biomedicine, and Movement Sciences, University of Verona, 37134 Verona, Italy; (E.D.T.); (E.O.); (F.B.); (C.P.); (E.T.)
| | - Macarena Gomez-Lira
- Department of Neurosciences, Biomedicine, and Movement Sciences, University of Verona, 37134 Verona, Italy; (E.D.T.); (E.O.); (F.B.); (C.P.); (E.T.)
| | - Giovanni Malerba
- Department of Surgery, Dentistry, Paediatrics and Gynaecology, University of Verona, 37134 Verona, Italy;
| |
Collapse
|
2
|
Rapanotti MC, Cenci T, Scioli MG, Cugini E, Anzillotti S, Savino L, Coletta D, Di Raimondo C, Campione E, Roselli M, Bernardini S, Bianchi L, De Luca A, Ferlosio A, Orlandi A. Circulating Tumor Cells: Origin, Role, Current Applications, and Future Perspectives for Personalized Medicine. Biomedicines 2024; 12:2137. [PMID: 39335650 PMCID: PMC11429165 DOI: 10.3390/biomedicines12092137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/09/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
Circulating tumor cells (CTCs) currently represent a revolutionary tool offering unique insights for the evaluation of cancer progression, metastasis, and response to therapies. Indeed, CTCs, upon detachment from primary tumors, enter the bloodstream and acquire a great potential for their use for personalized cancer management. In this review, we describe the current understanding of and advances in the clinical employment of CTCs. Although considered rare and fleeting, CTCs are now recognized as key players favoring the development of cancer metastasis and disease recurrence, particularly in malignant melanoma, lung, breast, and colorectal cancer patients. To date, the advancements in technology and the development of several successful approaches, also including immunomagnetic enrichment allow for a reliable and reproducible detection and characterization of CTCs. Those innovative methodologies improved the isolation, quantification, and characterization of CTCs from the blood of cancer patients, providing extremely useful evidence and new insights into the nature of the tumor, its epithelial/mesenchymal profile, and its potential resistance to therapy. In fact, in addition to their prognostic and predictive value, CTCs could serve as a valuable instrument for real-time monitoring of treatment response and disease recurrence, facilitating timely interventions and thus improving patient outcomes. However, despite their potential, several challenges hinder the widespread clinical utility of CTCs: (i) CTCs' rarity and heterogeneity pose technical limitations in isolation and characterization, as well as significant hurdles in their clinical implementation; (ii) it is mandatory to standardize CTC detection methods, optimize the sample processing techniques, and integrate them with existing diagnostic modalities; and (iii) the need for the development of new techniques, such as single-cell analysis platforms, to enhance the sensitivity and specificity of CTC detection, thereby facilitating their integration into routine clinical practice. In conclusion, CTCs represent a potential extraordinary tool in cancer diagnostics and therapeutics, offering unprecedented opportunities for personalized medicine and precision oncology. Moreover, their ability to provide real-time insights into tumor biology, treatment response, and disease progression underlines a great potential for their clinical application to improve patients' outcomes and advance our understanding of cancer biology.
Collapse
Affiliation(s)
- Maria Cristina Rapanotti
- Anatomic Pathology, Department of Integrated Care Processes, University of Rome Tor Vergata, Viale Oxford 81, 00133 Rome, Italy; (T.C.); (M.G.S.); (S.A.); (L.S.); (A.F.); (A.O.)
| | - Tonia Cenci
- Anatomic Pathology, Department of Integrated Care Processes, University of Rome Tor Vergata, Viale Oxford 81, 00133 Rome, Italy; (T.C.); (M.G.S.); (S.A.); (L.S.); (A.F.); (A.O.)
| | - Maria Giovanna Scioli
- Anatomic Pathology, Department of Integrated Care Processes, University of Rome Tor Vergata, Viale Oxford 81, 00133 Rome, Italy; (T.C.); (M.G.S.); (S.A.); (L.S.); (A.F.); (A.O.)
| | - Elisa Cugini
- Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (E.C.)
| | - Silvia Anzillotti
- Anatomic Pathology, Department of Integrated Care Processes, University of Rome Tor Vergata, Viale Oxford 81, 00133 Rome, Italy; (T.C.); (M.G.S.); (S.A.); (L.S.); (A.F.); (A.O.)
| | - Luca Savino
- Anatomic Pathology, Department of Integrated Care Processes, University of Rome Tor Vergata, Viale Oxford 81, 00133 Rome, Italy; (T.C.); (M.G.S.); (S.A.); (L.S.); (A.F.); (A.O.)
| | - Deborah Coletta
- Oncology Unit, Department of Systems Medicine, University of Rome Tor Vergata, Viale Oxford 81, 00133 Rome, Italy; (D.C.); (M.R.)
| | - Cosimo Di Raimondo
- Dermatology Unit, Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (C.D.R.); (E.C.); (L.B.)
| | - Elena Campione
- Dermatology Unit, Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (C.D.R.); (E.C.); (L.B.)
| | - Mario Roselli
- Oncology Unit, Department of Systems Medicine, University of Rome Tor Vergata, Viale Oxford 81, 00133 Rome, Italy; (D.C.); (M.R.)
| | - Sergio Bernardini
- Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (E.C.)
| | - Luca Bianchi
- Dermatology Unit, Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (C.D.R.); (E.C.); (L.B.)
| | - Anastasia De Luca
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Amedeo Ferlosio
- Anatomic Pathology, Department of Integrated Care Processes, University of Rome Tor Vergata, Viale Oxford 81, 00133 Rome, Italy; (T.C.); (M.G.S.); (S.A.); (L.S.); (A.F.); (A.O.)
| | - Augusto Orlandi
- Anatomic Pathology, Department of Integrated Care Processes, University of Rome Tor Vergata, Viale Oxford 81, 00133 Rome, Italy; (T.C.); (M.G.S.); (S.A.); (L.S.); (A.F.); (A.O.)
| |
Collapse
|
3
|
Luo W, Hoang H, Zhu H, Miller K, Mo X, Eguchi S, Tian M, Liao Y, Ayello J, Rosenblum JM, Marcondes M, Currier M, Mardis E, Cripe T, Lee D, Cairo MS. Circumventing resistance within the Ewing sarcoma microenvironment by combinatorial innate immunotherapy. J Immunother Cancer 2024; 12:e009726. [PMID: 39266215 PMCID: PMC11404285 DOI: 10.1136/jitc-2024-009726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/27/2024] [Indexed: 09/14/2024] Open
Abstract
BACKGROUND Pediatric patients with recurrent/metastatic Ewing sarcoma (ES) have a dismal 5-year survival. Novel therapeutic approaches are desperately needed. Natural killer (NK) cell number and function are low in ES patient tumors, in large part due to the immunosuppressive tumor microenvironment (TME). Melanoma cell adhesion molecule (MCAM) is highly expressed on ES and associated with ES metastasis. NKTR-255 is a polymer-conjugated recombinant human interleukin-15 (IL-15) agonist improving NK cell activity and persistence. Magrolimab (MAG) is a CD47 blockade that reactivates the phagocytic activity of macrophages. METHODS Transcriptome profiling coupled with CIBERSORT analyses in both ES mouse xenografts and human patient tumors were performed to identify mechanisms of NK resistance in ES TME. A chimeric antigen receptor (CAR) NK cell targeting MCAM was engineered by CAR mRNA electroporation into ex vivo expanded NK cells. In vitro cytotoxicity assays were performed to investigate the efficacy of anti-MCAM-CAR-NK cell alone or combined with NKTR-255 against ES cells. Interferon-γ and perforin levels were measured by ELISA. The effect of MAG on macrophage phagocytosis of ES cells was evaluated by in vitro phagocytosis assays. Cell-based and patient-derived xenograft (PDX)-based xenograft mouse models of ES were used to investigate the antitumor efficacy of CAR-NK alone and combined with NKTR-255 and MAG in vivo. RESULTS We found that NK cell infiltration and activity were negatively regulated by tumor-associated macrophages (TAM) in ES TME. Expression of anti-MCAM CAR significantly and specifically enhanced NK cytotoxic activity against MCAMhigh but not MCAM-knockout ES cells in vitro, and significantly reduced lung metastasis and extended animal survival in vivo. NKTR-255 and MAG significantly enhanced in vitro CAR-NK cytotoxicity and macrophage phagocytic activity against ES cells, respectively. By combining with NKTR-255 and MAG, the anti-MCAM-CAR-NK cell significantly decreased primary tumor growth and prolonged animal survival in both cell- and PDX-based ES xenograft mouse models. CONCLUSIONS Our preclinical studies demonstrate that immunotherapy via the innate immune system by combining tumor-targeting CAR-NK cells with an IL-15 agonist and a CD47 blockade is a promising novel therapeutic approach to targeting MCAMhigh malignant metastatic ES.
Collapse
Affiliation(s)
- Wen Luo
- Department of Pediatrics, New York Medical College, Valhalla, New York, USA
- Department of Pathology, Immunology and Microbiology, New York Medical College, Valhalla, New York, USA
| | - Hai Hoang
- Department of Pediatrics, New York Medical College, Valhalla, New York, USA
| | - Hongwen Zhu
- Department of Pediatrics, New York Medical College, Valhalla, New York, USA
| | - Katherine Miller
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Columbus, Ohio, USA
- Pediatric Hem/Onc/BMT, Nationwide Children's Hospital Hematology Oncology and Blood and Marrow Transplant, Columbus, Ohio, USA
| | - Xiaokui Mo
- Biomedical Informatics, The Ohio State University, Columbus, Ohio, USA
| | - Shiori Eguchi
- Department of Pediatrics, New York Medical College, Valhalla, New York, USA
| | - Meijuan Tian
- Department of Pediatrics, New York Medical College, Valhalla, New York, USA
| | - Yanling Liao
- Department of Pediatrics, New York Medical College, Valhalla, New York, USA
| | - Janet Ayello
- Department of Pediatrics, New York Medical College, Valhalla, New York, USA
| | - Jeremy M Rosenblum
- Department of Pediatrics, New York Medical College, Valhalla, New York, USA
| | | | - Mark Currier
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Columbus, Ohio, USA
| | - Elaine Mardis
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Columbus, Ohio, USA
- Pediatric Hem/Onc/BMT, Nationwide Children's Hospital Hematology Oncology and Blood and Marrow Transplant, Columbus, Ohio, USA
- Department of Neurosurgery, The Ohio State University, Columbus, Ohio, USA
| | - Timothy Cripe
- Pediatric Hem/Onc/BMT, Nationwide Children's Hospital Hematology Oncology and Blood and Marrow Transplant, Columbus, Ohio, USA
| | - Dean Lee
- Pediatric Hem/Onc/BMT, Nationwide Children's Hospital Hematology Oncology and Blood and Marrow Transplant, Columbus, Ohio, USA
| | - Mitchell S Cairo
- Department of Pediatrics, New York Medical College, Valhalla, New York, USA
- Departments of Pathology, Immunology and Microbiology, Medicine, Cell Biology and Anatomy, New York Medical College, Valhalla, New York, USA
| |
Collapse
|
4
|
Park J, Wu Y, Suk Kim J, Byun J, Lee J, Oh YK. Cytoskeleton-modulating nanomaterials and their therapeutic potentials. Adv Drug Deliv Rev 2024; 211:115362. [PMID: 38906478 DOI: 10.1016/j.addr.2024.115362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/25/2024] [Accepted: 06/16/2024] [Indexed: 06/23/2024]
Abstract
The cytoskeleton, an intricate network of protein fibers within cells, plays a pivotal role in maintaining cell shape, enabling movement, and facilitating intracellular transport. Its involvement in various pathological states, ranging from cancer proliferation and metastasis to the progression of neurodegenerative disorders, underscores its potential as a target for therapeutic intervention. The exploration of nanotechnology in this realm, particularly the use of nanomaterials for cytoskeletal modulation, represents a cutting-edge approach with the promise of novel treatments. Inorganic nanomaterials, including those derived from gold, metal oxides, carbon, and black phosphorus, alongside organic variants such as peptides and proteins, are at the forefront of this research. These materials offer diverse mechanisms of action, either by directly interacting with cytoskeletal components or by influencing cellular signaling pathways that, in turn, modulate the cytoskeleton. Recent advancements have introduced magnetic field-responsive and light-responsive nanomaterials, which allow for targeted and controlled manipulation of the cytoskeleton. Such precision is crucial in minimizing off-target effects and enhancing therapeutic efficacy. This review explores the importance of research into cytoskeleton-targeting nanomaterials for developing therapeutic interventions for a range of diseases. It also addresses the progress made in this field, the challenges encountered, and future directions for using nanomaterials to modulate the cytoskeleton. The continued exploration of nanomaterials for cytoskeleton modulation holds great promise for advancing therapeutic strategies against a broad spectrum of diseases, marking a significant step forward in the intersection of nanotechnology and medicine.
Collapse
Affiliation(s)
- Jinwon Park
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Yina Wu
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Jung Suk Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Junho Byun
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea.
| | - Jaiwoo Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea.
| | - Yu-Kyoung Oh
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
5
|
Miller SG, Hoh M, Ebmeier CC, Tay JW, Ahn NG. Cooperative polarization of MCAM/CD146 and ERM family proteins in melanoma. Mol Biol Cell 2024; 35:ar31. [PMID: 38117590 PMCID: PMC10916866 DOI: 10.1091/mbc.e23-06-0255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 11/22/2023] [Accepted: 12/15/2023] [Indexed: 12/22/2023] Open
Abstract
The WRAMP structure is a protein network associated with tail-end actomyosin contractility, membrane retraction, and directional persistence during cell migration. A marker of WRAMP structures is melanoma cell adhesion molecule (MCAM) which dynamically polarizes to the cell rear. However, factors that mediate MCAM polarization are still unknown. In this study, BioID using MCAM as bait identifies the ERM family proteins, moesin, ezrin, and radixin, as WRAMP structure components. We also present a novel image analysis pipeline, Protein Polarity by Percentile ("3P"), which classifies protein polarization using machine learning and facilitates quantitative analysis. Using 3P, we find that depletion of moesin, and to a lesser extent ezrin, decreases the proportion of cells with polarized MCAM. Furthermore, although copolarized MCAM and ERM proteins show high spatial overlap, 3P identifies subpopulations with ERM proteins closer to the cell periphery. Live-cell imaging confirms that MCAM and ERM protein polarization is tightly coordinated, but ERM proteins enrich at the cell edge first. Finally, deletion of a juxtamembrane segment in MCAM previously shown to promote ERM protein interactions impedes MCAM polarization. Our findings highlight the requirement for ERM proteins in recruitment of MCAM to WRAMP structures and an advanced computational tool to characterize protein polarization.
Collapse
Affiliation(s)
- Suzannah G. Miller
- Department of Biochemistry, University of Colorado Boulder, Boulder CO 80303
| | - Maria Hoh
- Department of Biochemistry, University of Colorado Boulder, Boulder CO 80303
| | | | - Jian Wei Tay
- BioFrontiers Institute, University of Colorado Boulder, Boulder CO 80303
| | - Natalie G. Ahn
- Department of Biochemistry, University of Colorado Boulder, Boulder CO 80303
- BioFrontiers Institute, University of Colorado Boulder, Boulder CO 80303
| |
Collapse
|
6
|
Shah V, Panchal V, Shah A, Vyas B, Agrawal S, Bharadwaj S. Immune checkpoint inhibitors in metastatic melanoma therapy (Review). MEDICINE INTERNATIONAL 2024; 4:13. [PMID: 38410760 PMCID: PMC10895472 DOI: 10.3892/mi.2024.137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/26/2024] [Indexed: 02/28/2024]
Abstract
An increase in the incidence of melanoma has been observed in recent decades, which poses a significant challenge due to its poor prognosis in the advanced and metastatic stages. Previously, chemotherapy and high doses of interleukin-2 were available treatments for melanoma; however, they offered limited survival benefits and were associated with severe toxicities. The treatment of metastatic melanoma has been transformed by new developments in immunotherapy. Immune checkpoint inhibitors (ICIs), monoclonal antibodies that target cytotoxic T-lymphocyte-associated antigen-4 (CTLA-4), programmed cell death protein 1 (PD-1) and its ligand, PDL-1, have emerged as promising therapeutic options. Commonly used ICIs, such as ipilimumab, nivolumab and pembrolizumab, have been found to be associated with an improved median overall survival, recurrence-free survival and response rates compared to traditional chemotherapies. Combination therapies involving different types of ICIs, such as anti-PD1 with anti-CTLA-4, have further enhanced the overall survival and response rates by targeting various phases of T-cell activation. Additionally, the development of novel biomarkers has facilitated the assessment of responses to ICI therapy, with tissue and serum-based prognostic and predictive biomarkers now available. The increased response observed with ICIs also provides potential for immune-related adverse effects on various organ systems. Further research is required to evaluate the efficacy and safety of various combinations of ICIs, while ongoing clinical trials explore the potential of newer ICIs. Concerns regarding the development of resistance to ICIs also warrant attention. The present review summarizes and discusses the advent of ICIs with a marked significant breakthrough in the treatment of metastatic melanoma, providing improved outcomes compared to traditional therapies.
Collapse
Affiliation(s)
- Vedant Shah
- Department of Medicine, Smt. N.H.L. Municipal Medical College and Sardar Vallabhbhai Patel Institute of Medical Sciences and Research (SVPISMR), Ahmedabad, Gujarat 380058, India
| | - Viraj Panchal
- Department of Medicine, Smt. N.H.L. Municipal Medical College and Sardar Vallabhbhai Patel Institute of Medical Sciences and Research (SVPISMR), Ahmedabad, Gujarat 380058, India
| | - Abhi Shah
- Department of Medicine, Smt. N.H.L. Municipal Medical College and Sardar Vallabhbhai Patel Institute of Medical Sciences and Research (SVPISMR), Ahmedabad, Gujarat 380058, India
| | - Bhavya Vyas
- Department of Medicine, Smt. N.H.L. Municipal Medical College and Sardar Vallabhbhai Patel Institute of Medical Sciences and Research (SVPISMR), Ahmedabad, Gujarat 380058, India
| | - Siddharth Agrawal
- Department of Medicine, Smt. N.H.L. Municipal Medical College and Sardar Vallabhbhai Patel Institute of Medical Sciences and Research (SVPISMR), Ahmedabad, Gujarat 380058, India
| | - Sanket Bharadwaj
- Department of Medicine, Smt. N.H.L. Municipal Medical College and Sardar Vallabhbhai Patel Institute of Medical Sciences and Research (SVPISMR), Ahmedabad, Gujarat 380058, India
| |
Collapse
|
7
|
Amira G, Akram D, Fadoua M, Bilel N, Alya B, Khalil BS, Monia SK, Fatma S, Habib HM, Nathalie B, Raja TM. Imbalance of TH17/TREG cells in Tunisian patients with systemic sclerosis. Presse Med 2024; 53:104221. [PMID: 38161053 DOI: 10.1016/j.lpm.2023.104221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 08/07/2022] [Accepted: 11/22/2022] [Indexed: 01/03/2024] Open
Abstract
Fibrosis is a pathological manifestation in which connective tissue replaces normal one. It can affect many tissues from the skin to internal organs such as the lungs. Manifestations of pulmonary involvement can be pulmonary arterial hypertension or pulmonary fibrosis. The latter one is currently the leading cause of death in various autoimmune diseases, including systemic sclerosis. Our study group consists of 50 patients with systemic sclerosis: 24 with limited cutaneous form and 26 with diffuse cutaneous form. This cohort was compared to 50 healthy controls (age and sex matched); our aim is to explore the distribution of TH17 cells (TH17) as well as regulatory T cells (TREG) and study their correlation with the disease's progress. Our results show an increase for IL17A in patients compared to controls and that this increase is correlated with a specific clinical involvement: Pulmonary fibrosis. This correlation suggests a crucial role of IL17A in fibrosis especially in systemic sclerosis. In addition, we have shown that the percentages of TH17 cells are higher in patients; however, the percentages of TREG cells are similar between patients and controls. A study of TREG cell activity showed that TREG lost suppressive activity by inactivating the FOXP3 transcription factor. This proves that despite their presence, TREG does not adequately carry out their regulatory activity. Finally, we analyzed the correlation between TH17/TREG and clinical damage; the results show a positive correlation with pulmonary involvement proving the role of TH17/TREG balance in induced fibrosis in systemic sclerosis. No significative difference was observed, for all the parameters, between the two different forms of the disease. In conclusion, the results associated with the TH17/TREG scale and their correlations with fibrosis in systemic sclerosis open a way for new tools to manage this autoimmune disease, which up to today has neither treatment nor accurate diagnosis.
Collapse
Affiliation(s)
- Gabsi Amira
- Laboratory of Genetics Immunology and Human Pathology, University of Tunis El Manar, LR05ES05, Tunis 2092, Tunisia; Aix Marseille University, INSERM, C2VN UMR1263, Marseille, France.
| | - Dlala Akram
- Laboratory of Genetics Immunology and Human Pathology, University of Tunis El Manar, LR05ES05, Tunis 2092, Tunisia
| | - Missaoui Fadoua
- Laboratory of Genetics Immunology and Human Pathology, University of Tunis El Manar, LR05ES05, Tunis 2092, Tunisia
| | - Neili Bilel
- Laboratory of Genetics Immunology and Human Pathology, University of Tunis El Manar, LR05ES05, Tunis 2092, Tunisia
| | - Boutaba Alya
- Laboratory of Genetics Immunology and Human Pathology, University of Tunis El Manar, LR05ES05, Tunis 2092, Tunisia
| | - Ben Salem Khalil
- Laboratory of Genetics Immunology and Human Pathology, University of Tunis El Manar, LR05ES05, Tunis 2092, Tunisia
| | - Smiti Khanfir Monia
- Internal medicine service, University hospital center LA RABTA, Tunis 1007, Tunisia; University of Tunis EL MANAR, Faculty of medicine Tunis, Tunis 1007, Tunisia
| | - Said Fatma
- Internal medicine service, University hospital center LA RABTA, Tunis 1007, Tunisia; University of Tunis EL MANAR, Faculty of medicine Tunis, Tunis 1007, Tunisia
| | - Houman Mohamed Habib
- Internal medicine service, University hospital center LA RABTA, Tunis 1007, Tunisia; University of Tunis EL MANAR, Faculty of medicine Tunis, Tunis 1007, Tunisia
| | - Bardin Nathalie
- Aix Marseille University, INSERM, C2VN UMR1263, Marseille, France; Laboratory of immunology, University hospital La Conception Marseille France, France
| | - Triki Marrakchi Raja
- Laboratory of Genetics Immunology and Human Pathology, University of Tunis El Manar, LR05ES05, Tunis 2092, Tunisia
| |
Collapse
|
8
|
Sautreuil C, Lecointre M, Dalmasso J, Lebon A, Leuillier M, Janin F, Lecuyer M, Bekri S, Marret S, Laquerrière A, Brasse-Lagnel C, Gil S, Gonzalez BJ. Expression of placental CD146 is dysregulated by prenatal alcohol exposure and contributes in cortical vasculature development and positioning of vessel-associated oligodendrocytes. Front Cell Neurosci 2024; 17:1294746. [PMID: 38269113 PMCID: PMC10806802 DOI: 10.3389/fncel.2023.1294746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 12/11/2023] [Indexed: 01/26/2024] Open
Abstract
Recent data showed that prenatal alcohol exposure (PAE) impairs the "placenta-brain" axis controlling fetal brain angiogenesis in human and preclinical models. Placental growth factor (PlGF) has been identified as a proangiogenic messenger between these two organs. CD146, a partner of the VEGFR-1/2 signalosome, is involved in placental angiogenesis and exists as a soluble circulating form. The aim of the present study was to investigate whether placental CD146 may contribute to brain vascular defects described in fetal alcohol spectrum disorder. At a physiological level, quantitative reverse transcription polymerase chain reaction experiments performed in human placenta showed that CD146 is expressed in developing villi and that membrane and soluble forms of CD146 are differentially expressed from the first trimester to term. In the mouse placenta, a similar expression pattern of CD146 was found. CD146 immunoreactivity was detected in the labyrinth zone and colocalized with CD31-positive endothelial cells. Significant amounts of soluble CD146 were quantified by ELISA in fetal blood, and the levels decreased after birth. In the fetal brain, the membrane form of CD146 was the majority and colocalized with microvessels. At a pathophysiological level, PAE induced marked dysregulation of CD146 expression. The soluble form of CD146 decreased in both placenta and fetal blood, whereas it increased in the fetal brain. Similarly, the expression of several members of the CD146 signalosome, such as VEGFR2 and PSEN, was differentially impaired between the two organs by PAE. At a functional level, targeted repression of placental CD146 by in utero electroporation (IUE) of CRISPR/Cas9 lentiviral plasmids resulted in (i) a decrease in cortical vessel density, (ii) a loss of radial vascular organization, and (iii) a reduced density of oligodendrocytes. Statistical analysis showed that the more the vasculature was impaired, the more the cortical oligodendrocyte density was reduced. Altogether, these data support that placental CD146 contributes to the proangiogenic "placenta-brain" axis and that placental CD146 dysfunction contributes to the cortical oligo-vascular development. Soluble CD146 would represent a promising placental biomarker candidate representative of alcohol-induced neurovascular defects in neonates, as recently suggested by PlGF (patents WO2016207253 and WO2018100143).
Collapse
Affiliation(s)
- Camille Sautreuil
- Rouen Université, Inserm U1245 – Team “Epigenetics and Pathophysiology of Neurodevelopmental Disorders”, Normandie Université, Normandy Centre for Genomic and Personalized Medicine, Rouen, France
| | - Maryline Lecointre
- Rouen Université, Inserm U1245 – Team “Epigenetics and Pathophysiology of Neurodevelopmental Disorders”, Normandie Université, Normandy Centre for Genomic and Personalized Medicine, Rouen, France
| | | | - Alexis Lebon
- Rouen Université, US51 HeRacLeS, PRIMACEN Platform, Faculty of Biological Sciences, Normandie Université, Mont-Saint-Aignan, France
| | | | - François Janin
- Rouen Université, Inserm U1245 – Team “Epigenetics and Pathophysiology of Neurodevelopmental Disorders”, Normandie Université, Normandy Centre for Genomic and Personalized Medicine, Rouen, France
| | - Matthieu Lecuyer
- Rouen Université, Inserm U1245 – Team “Epigenetics and Pathophysiology of Neurodevelopmental Disorders”, Normandie Université, Normandy Centre for Genomic and Personalized Medicine, Rouen, France
| | - Soumeya Bekri
- Rouen Université, Inserm U1245 – Team “Epigenetics and Pathophysiology of Neurodevelopmental Disorders”, Normandie Université, Normandy Centre for Genomic and Personalized Medicine, Rouen, France
- Rouen Université, CHU Rouen, Department of Metabolic Biochemistry, Normandie University, Rouen, France
| | - Stéphane Marret
- Rouen Université, Inserm U1245 – Team “Epigenetics and Pathophysiology of Neurodevelopmental Disorders”, Normandie Université, Normandy Centre for Genomic and Personalized Medicine, Rouen, France
- Rouen Université, CHU Rouen, Department of Neonatal Pediatrics and Intensive Care, Rouen, France
| | - Annie Laquerrière
- Rouen Université, Inserm U1245 – Team “Epigenetics and Pathophysiology of Neurodevelopmental Disorders”, Normandie Université, Normandy Centre for Genomic and Personalized Medicine, Rouen, France
- Rouen Université, CHU Rouen, Department of Pathology, Rouen Normandy Hospital, Rouen, France
| | - Carole Brasse-Lagnel
- Rouen Université, Inserm U1245 – Team “Epigenetics and Pathophysiology of Neurodevelopmental Disorders”, Normandie Université, Normandy Centre for Genomic and Personalized Medicine, Rouen, France
| | - Sophie Gil
- Université de Paris, INSERM, UMR-S 1139, 3PHM, Paris, France
| | - Bruno J. Gonzalez
- Rouen Université, Inserm U1245 – Team “Epigenetics and Pathophysiology of Neurodevelopmental Disorders”, Normandie Université, Normandy Centre for Genomic and Personalized Medicine, Rouen, France
| |
Collapse
|
9
|
Yang Q, Huang W, Hsu JC, Song L, Sun X, Li C, Cai W, Kang L. CD146-targeted nuclear medicine imaging in cancer: state of the art. VIEW 2023; 4:20220085. [PMID: 38076327 PMCID: PMC10703309 DOI: 10.1002/viw.20220085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 02/02/2023] [Indexed: 01/02/2024] Open
Abstract
The transmembrane glycoprotein adhesion molecule CD146 is overexpressed in a wide variety of cancers. Through molecular imaging, a specific biomarker's expression and distribution can be viewed in vivo non-invasively. Radionuclide-labeled monoclonal antibodies or relevant fragments that target CD146 may find potential applications in cancer imaging, thereby offering tremendous value in cancer diagnosis, staging, prognosis evaluation, and prediction of drug resistance. This review discusses the recent developments of CD146-targeted molecular imaging via nuclear medicine, especially in malignant melanoma, brain tumor, lung cancer, liver cancer, breast cancer, and pancreatic cancer. Many studies have proved that CD146 targeting may present a promising strategy for cancer theranostics.
Collapse
Affiliation(s)
- Qi Yang
- Department of Nuclear Medicine, Peking University First Hospital, Beijing 100034, China
| | - Wenpeng Huang
- Department of Nuclear Medicine, Peking University First Hospital, Beijing 100034, China
| | - Jessica C. Hsu
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States of America
| | - Lele Song
- Department of Nuclear Medicine, Peking University First Hospital, Beijing 100034, China
| | - Xinyao Sun
- Department of Nuclear Medicine, Peking University First Hospital, Beijing 100034, China
| | - Cuicui Li
- Department of Nuclear Medicine, Beijing Friendship Hospital of Capital Medical University, Beijing 100050, China
| | - Weibo Cai
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States of America
| | - Lei Kang
- Department of Nuclear Medicine, Peking University First Hospital, Beijing 100034, China
| |
Collapse
|
10
|
Zhou H, Zhao C, Shao R, Xu Y, Zhao W. The functions and regulatory pathways of S100A8/A9 and its receptors in cancers. Front Pharmacol 2023; 14:1187741. [PMID: 37701037 PMCID: PMC10493297 DOI: 10.3389/fphar.2023.1187741] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 08/07/2023] [Indexed: 09/14/2023] Open
Abstract
Inflammation primarily influences the initiation, progression, and deterioration of many human diseases, and immune cells are the principal forces that modulate the balance of inflammation by generating cytokines and chemokines to maintain physiological homeostasis or accelerate disease development. S100A8/A9, a heterodimer protein mainly generated by neutrophils, triggers many signal transduction pathways to mediate microtubule constitution and pathogen defense, as well as intricate procedures of cancer growth, metastasis, drug resistance, and prognosis. Its paired receptors, such as receptor for advanced glycation ends (RAGEs) and toll-like receptor 4 (TLR4), also have roles and effects within tumor cells, mainly involved with mitogen-activated protein kinases (MAPKs), NF-κB, phosphoinositide 3-kinase (PI3K)/Akt, mammalian target of rapamycin (mTOR) and protein kinase C (PKC) activation. In the clinical setting, S100A8/A9 and its receptors can be used complementarily as efficient biomarkers for cancer diagnosis and treatment. This review comprehensively summarizes the biological functions of S100A8/A9 and its various receptors in tumor cells, in order to provide new insights and strategies targeting S100A8/A9 to promote novel diagnostic and therapeutic methods in cancers.
Collapse
Affiliation(s)
- Huimin Zhou
- State Key Laboratory of Respiratory Health and Multimorbidity, Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Cong Zhao
- State Key Laboratory of Respiratory Health and Multimorbidity, Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Rongguang Shao
- State Key Laboratory of Respiratory Health and Multimorbidity, Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yanni Xu
- NHC Key Laboratory of Biotechnology of Antibiotics, National Center for New Microbial Drug Screening, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wuli Zhao
- State Key Laboratory of Respiratory Health and Multimorbidity, Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
11
|
Nejabat M, Samie A, Ramezani M, Alibolandi M, Abnous K, Taghdisi SM. An Overview on Gold Nanorods as Versatile Nanoparticles in Cancer Therapy. J Control Release 2023; 354:221-242. [PMID: 36621644 DOI: 10.1016/j.jconrel.2023.01.009] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 01/10/2023]
Abstract
Gold nanorods (GNRs/AuNRs) are a group of gold nanoparticles which their simple surface chemistry allows for various surface modifications, providing the possibility of using them in the fabrication of biocompatible and functional nano-agents for cancer therapy. AuNRs, moreover, exhibit a maximum absorption of longitudinal localized surface plasmon resonance (LSPR) in the near-infrared (NIR) region which overlaps with NIR bio-tissue 'window' suggesting that they are proper tools for thermal ablation of cancer cells. AuNRs can be used for induction of mono or combination therapies by administering various therapeutic approaches such as photothermal therapy (PTT), photodynamic therapy (PDT), chemotherapy (CT), radiotherapy (RT), and gene therapy (GT). In this review, anticancer therapeutic capacities of AuNRs along with different surface modifications are summarized comprehensively. The roles of AuNRs in fabrication of various nano-constructs are also discussed.
Collapse
Affiliation(s)
- Masoud Nejabat
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Samie
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Ramezani
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mona Alibolandi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Khalil Abnous
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Seyed Mohammad Taghdisi
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
12
|
Galectin-3 Is a Natural Binding Ligand of MCAM (CD146, MUC18) in Melanoma Cells and Their Interaction Promotes Melanoma Progression. Biomolecules 2022; 12:biom12101451. [PMID: 36291660 PMCID: PMC9599063 DOI: 10.3390/biom12101451] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/03/2022] [Accepted: 10/07/2022] [Indexed: 11/16/2022] Open
Abstract
Melanoma cell adhesion molecule (MCAM, CD146, MUC18) is a heavily glycosylated transmembrane protein and a marker of melanoma metastasis. It is expressed in advanced primary melanoma and metastasis but rarely in benign naevi or normal melanocytes. More and more evidence has shown that activation of the MCAM on cell surface plays a vital role in melanoma progression and metastasis. However, the natural MCAM binding ligand that initiates MCAM activation in melanoma so far remains elusive. This study revealed that galectin-3, a galactoside-binding protein that is commonly overexpressed in many cancers including melanoma, is naturally associated with MCAM on the surface of both skin and uveal melanoma cells. Binding of galectin-3 to MCAM, via O-linked glycans on the MCAM, induces MCAM dimerization and clustering on cell surface and subsequent activation of downstream AKT signalling. This leads to the increases of a number of important steps in melanoma progression of cell proliferation, adhesion, migration, and invasion. Thus, galectin-3 is a natural binding ligand of MCAM in melanoma, and their interaction activates MCAM and promotes MCAM-mediated melanoma progression. Targeting the galectin-3–MCAM interaction may potentially be a useful therapeutic strategy for melanoma treatment.
Collapse
|
13
|
Gough M, Singh DK, Singh B, Kaushal D, Mehra S. System-wide identification of myeloid markers of TB disease and HIV-induced reactivation in the macaque model of Mtb infection and Mtb/SIV co-infection. Front Immunol 2022; 13:777733. [PMID: 36275677 PMCID: PMC9583676 DOI: 10.3389/fimmu.2022.777733] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 08/17/2022] [Indexed: 11/13/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) has developed specialized mechanisms to parasitize its host cell, the macrophage. These mechanisms allow it to overcome killing by oxidative burst and persist in the wake of an inflammatory response. Mtb infection in the majority of those exposed is controlled in an asymptomatic form referred to as latent tuberculosis infection (LTBI). HIV is a well-known catalyst of reactivation of LTBI to active TB infection (ATB). Through the use of nonhuman primates (NHPs) co-infected with Mtb and Simian Immunodeficiency Virus (Mtb/SIV), we are able to simulate human progression of TB/AIDS comorbidity. The advantage of NHP models is that they recapitulate the breadth of human TB outcomes, including immune control of infection, and loss of this control due to SIV co-infection. Identifying correlates of immune control of infection is important for both vaccine and therapeutics development. Using macaques infected with Mtb or Mtb/SIV and with different clinical outcomes we attempted to identify signatures between those that progress to active infection after SIV challenge (reactivators) and those that control the infection (non-reactivators). We particularly focused on pathways relevant to myeloid origin cells such as macrophages, as these innate immunocytes have an important contribution to the initial control or the lack thereof, following Mtb infection. Using bacterial burden, C-reactive protein (CRP), and other clinical indicators of disease severity as a guide, we were able to establish gene signatures of host disease state and progression. In addition to gene signatures, clustering algorithms were used to differentiate between host disease states and identify relationships between genes. This allowed us to identify clusters of genes which exhibited differential expression profiles between the three groups of macaques: ATB, LTBI and Mtb/SIV. The gene signatures were associated with pathways relevant to apoptosis, ATP production, phagocytosis, cell migration, and Type I interferon (IFN), which are related to macrophage function. Our results suggest novel macrophage functions that may play roles in the control of Mtb infection with and without co-infection with SIV. These results particularly point towards an interplay between Type I IFN signaling and IFN-γ signaling, and the resulting impact on lung macrophages as an important determinant of progression to TB.
Collapse
Affiliation(s)
| | | | | | | | - Smriti Mehra
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, United States
| |
Collapse
|
14
|
Liu J, Smith S, Wang C. Reversing the Epithelial-Mesenchymal Transition in Metastatic Cancer Cells Using CD146-Targeted Black Phosphorus Nanosheets and a Mild Photothermal Treatment. ACS NANO 2022; 16:3208-3220. [PMID: 35089691 DOI: 10.1021/acsnano.1c11070] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Cancer metastasis leads to most deaths in cancer patients, and the epithelial-mesenchymal transition (EMT) is the key mechanism that endows the cancer cells with strong migratory and invasive abilities. Here, we present a nanomaterial-based approach to reverse the EMT in cancer cells by targeting an EMT inducer, CD146, using engineered black phosphorus nanosheets (BPNSs) and a mild photothermal treatment. We demonstrate this approach can convert highly metastatic, mesenchymal-type breast cancer cells to an epithelial phenotype (i.e., reversing EMT), leading to a complete stoppage of cancer cell migration. By using advanced nanomechanical and super-resolution imaging, complemented by immunoblotting, we validate the phenotypic switch in the cancer cells, as evidenced by the altered actin organization and cell morphology, downregulation of mesenchymal protein markers, and upregulation of epithelial protein markers. We also elucidate the molecular mechanism behind the reversal of EMT. Our results reveal that CD146-targeted BPNSs and a mild photothermal treatment synergistically contribute to EMT reversal by downregulating membrane CD146 and perturbing its downstream EMT-related signaling pathways. Considering CD146 overexpression has been confirmed on the surface of a variety of metastatic, mesenchymal-like cancer cells, this approach could be applicable for treating various cancer metastasis via modulating the phenotype switch in cancer cells.
Collapse
Affiliation(s)
- Jinyuan Liu
- Nanoscience and Nanoengineering, South Dakota School of Mines and Technology, 501 East St Joseph Street, Rapid City, South Dakota 57701, United States
- BioSystems Networks & Translational Research (BioSNTR), 501 East St Joseph Street, Rapid City, South Dakota 57701, United States
| | - Steve Smith
- Nanoscience and Nanoengineering, South Dakota School of Mines and Technology, 501 East St Joseph Street, Rapid City, South Dakota 57701, United States
- BioSystems Networks & Translational Research (BioSNTR), 501 East St Joseph Street, Rapid City, South Dakota 57701, United States
| | - Congzhou Wang
- Nanoscience and Nanoengineering, South Dakota School of Mines and Technology, 501 East St Joseph Street, Rapid City, South Dakota 57701, United States
- BioSystems Networks & Translational Research (BioSNTR), 501 East St Joseph Street, Rapid City, South Dakota 57701, United States
| |
Collapse
|
15
|
Liu J, Kang L, Smith S, Wang C. Transmembrane MUC18 Targeted Polydopamine Nanoparticles and a Mild Photothermal Effect Synergistically Disrupt Actin Cytoskeleton and Migration of Cancer Cells. NANO LETTERS 2021; 21:9609-9618. [PMID: 34726401 DOI: 10.1021/acs.nanolett.1c03377] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Transmembrane MUC18 is highly expressed on most metastatic cancers. Herein, we demonstrate that targeting MUC18 with polydopamine nanoparticles (PDA NPs) and a mild photothermal effect can completely cease the migration of melanoma and breast cancer cells without killing the cells. The inhibited cell migration can be attributed to the altered actin cytoskeleton, cell stiffness, and cell morphology, as revealed by nanomechanical and super resolution fluorescence imaging techniques. Further mechanistic studies at the molecular level show that MUC18 targeted PDA NPs and a mild photothermal treatment produce a synergistic effect on the actin cytoskeleton by downregulating the transmembrane MUC18 and interrupting ezrin-radixin-moesin phosphorylation, thereby releasing the actin cytoskeleton from the cell membrane and compromising force transduction through the actin cytoskeleton to the transmembrane MUC18. Overall, the concept of targeting transmembrane metastatic markers and disrupting their downstream effectors (i.e., actin and actin-binding proteins) opens up a new avenue to cancer therapy.
Collapse
Affiliation(s)
- Jinyuan Liu
- Nanoscience and Nanoengineering, South Dakota School of Mines and Technology, 501 E. St. Joseph Street, Rapid City, South Dakota 57701, United States
- BioSystems Networks and Translational Research (BioSNTR), 501 E. St. Joseph Street, Rapid City, South Dakota 57701, United States
| | - Lin Kang
- Nanoscience and Nanoengineering, South Dakota School of Mines and Technology, 501 E. St. Joseph Street, Rapid City, South Dakota 57701, United States
- BioSystems Networks and Translational Research (BioSNTR), 501 E. St. Joseph Street, Rapid City, South Dakota 57701, United States
| | - Steve Smith
- Nanoscience and Nanoengineering, South Dakota School of Mines and Technology, 501 E. St. Joseph Street, Rapid City, South Dakota 57701, United States
- BioSystems Networks and Translational Research (BioSNTR), 501 E. St. Joseph Street, Rapid City, South Dakota 57701, United States
| | - Congzhou Wang
- Nanoscience and Nanoengineering, South Dakota School of Mines and Technology, 501 E. St. Joseph Street, Rapid City, South Dakota 57701, United States
- BioSystems Networks and Translational Research (BioSNTR), 501 E. St. Joseph Street, Rapid City, South Dakota 57701, United States
| |
Collapse
|
16
|
Rapanotti MC, Cugini E, Nuccetelli M, Terrinoni A, Di Raimondo C, Lombardo P, Costanza G, Cosio T, Rossi P, Orlandi A, Campione E, Bernardini S, Blot-Chabaud M, Bianchi L. MCAM/MUC18/CD146 as a Multifaceted Warning Marker of Melanoma Progression in Liquid Biopsy. Int J Mol Sci 2021; 22:12416. [PMID: 34830300 PMCID: PMC8623757 DOI: 10.3390/ijms222212416] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 12/26/2022] Open
Abstract
Human malignant melanoma shows a high rate of mortality after metastasization, and its incidence is continuously rising worldwide. Several studies have suggested that MCAM/MUC18/CD146 plays an important role in the progression of this malignant disease. MCAM/MUC18/CD146 is a typical single-spanning transmembrane glycoprotein, existing as two membrane isoforms, long and short, and an additional soluble form, sCD146. We previously documented that molecular MCAM/MUC18/CD146 expression is strongly associated with disease progression. Recently, we showed that MCAM/MUC18/CD146 and ABCB5 can serve as melanoma-specific-targets in the selection of highly primitive circulating melanoma cells, and constitute putative proteins associated with disease spreading progression. Here, we analyzed CD146 molecular expression at onset or at disease recurrence in an enlarged melanoma case series. For some patients, we also performed the time courses of molecular monitoring. Moreover, we explored the role of soluble CD146 in different cohorts of melanoma patients at onset or disease progression, rather than in clinical remission, undergoing immune therapy or free from any clinical treatment. We showed that MCAM/MUC18/CD146 can be considered as: (1) a membrane antigen suitable for identification and enrichment in melanoma liquid biopsy; (2) a highly effective molecular "warning" marker for minimal residual disease monitoring; and (3) a soluble protein index of inflammation and putative response to therapeutic treatments.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Biomarkers, Tumor/blood
- Biomarkers, Tumor/genetics
- CD146 Antigen/blood
- CD146 Antigen/chemistry
- CD146 Antigen/genetics
- Disease Progression
- Female
- Follow-Up Studies
- Gene Expression
- Gene Expression Regulation, Neoplastic
- Humans
- Liquid Biopsy
- Longitudinal Studies
- Male
- Melanoma/blood
- Melanoma/genetics
- Melanoma/pathology
- Middle Aged
- Neoplasm Recurrence, Local/blood
- Neoplasm Recurrence, Local/genetics
- Neoplasm, Residual/blood
- Neoplasm, Residual/genetics
- Neoplastic Cells, Circulating/metabolism
- Skin Neoplasms/blood
- Skin Neoplasms/genetics
- Skin Neoplasms/pathology
- Solubility
- Young Adult
- Melanoma, Cutaneous Malignant
Collapse
Affiliation(s)
- Maria Cristina Rapanotti
- Department of Onco-Haematology, University of Rome Tor Vergata, Viale Oxford 81, 00133 Rome, Italy
- Department of Laboratory Medicine, University of Rome Tor Vergata, Viale Oxford 81, 00133 Rome, Italy; (E.C.); (M.N.); (A.T.); (G.C.); (S.B.)
| | - Elisa Cugini
- Department of Laboratory Medicine, University of Rome Tor Vergata, Viale Oxford 81, 00133 Rome, Italy; (E.C.); (M.N.); (A.T.); (G.C.); (S.B.)
| | - Marzia Nuccetelli
- Department of Laboratory Medicine, University of Rome Tor Vergata, Viale Oxford 81, 00133 Rome, Italy; (E.C.); (M.N.); (A.T.); (G.C.); (S.B.)
| | - Alessandro Terrinoni
- Department of Laboratory Medicine, University of Rome Tor Vergata, Viale Oxford 81, 00133 Rome, Italy; (E.C.); (M.N.); (A.T.); (G.C.); (S.B.)
| | - Cosimo Di Raimondo
- Dermatology Unit, Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (C.D.R.); (P.L.); (T.C.); (E.C.); (L.B.)
| | - Paolo Lombardo
- Dermatology Unit, Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (C.D.R.); (P.L.); (T.C.); (E.C.); (L.B.)
| | - Gaetana Costanza
- Department of Laboratory Medicine, University of Rome Tor Vergata, Viale Oxford 81, 00133 Rome, Italy; (E.C.); (M.N.); (A.T.); (G.C.); (S.B.)
| | - Terenzio Cosio
- Dermatology Unit, Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (C.D.R.); (P.L.); (T.C.); (E.C.); (L.B.)
| | - Piero Rossi
- Department of Surgery Sciences, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy;
| | - Augusto Orlandi
- Anatomic Pathology, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy;
| | - Elena Campione
- Dermatology Unit, Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (C.D.R.); (P.L.); (T.C.); (E.C.); (L.B.)
| | - Sergio Bernardini
- Department of Laboratory Medicine, University of Rome Tor Vergata, Viale Oxford 81, 00133 Rome, Italy; (E.C.); (M.N.); (A.T.); (G.C.); (S.B.)
| | - Marcel Blot-Chabaud
- Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1076, Aix-Marseille University, UFR Pharmacy, 13005 Marseille, France;
| | - Luca Bianchi
- Dermatology Unit, Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (C.D.R.); (P.L.); (T.C.); (E.C.); (L.B.)
| |
Collapse
|
17
|
Liu J, Kang L, Ratnayake I, Ahrenkiel P, Smith S, Wang C. Targeting cancer cell adhesion molecule, CD146, with low-dose gold nanorods and mild hyperthermia disrupts actin cytoskeleton and cancer cell migration. J Colloid Interface Sci 2021; 601:556-569. [PMID: 34090032 PMCID: PMC8349892 DOI: 10.1016/j.jcis.2021.05.144] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 05/10/2021] [Accepted: 05/23/2021] [Indexed: 12/16/2022]
Abstract
Cluster of differentiation 146 (CD146), a cancer cell adhesion molecule, is over-expressed on the surfaces of melanoma, breast, ovarian, and prostate cancer cells, and its high expression indicates the migration tendency of these cancer cells and poor patient prognosis. Here, we hypothesize that targeting the CD146 with low-dose gold nanorods combined with mild hyperthermia can stop the migration of these cancer cells. Two metastatic cancer cells including a melanoma and a breast cancer cell line are selected as the model systems. Cell migration assays show that the migration of both cell lines can be completely stopped by the treatment. Atomic force microscopy and super resolution fluorescence microscopy reveal the alterations of actin cytoskeleton and cell morphology correspond to the inhibited cell migration. Further mechanistic analysis indicates the treatment disrupts the actin cytoskeleton by a synergistic mechanism including depleting membrane CD146 and interfering ezrin-radixin-moesin phosphorylation. As a result, we believe targeting CD146 with low-dose gold nanorods and mild hyperthermia could be a versatile, effective, and safe approach for stopping cancer metastasis. More broadly, the concept of targeting cancer cell surface markers that connect the underlying actin cytoskeleton, offers enormous potential in treating cancer metastasis, which accounts for more than 90% of cancer-associated mortality.
Collapse
Affiliation(s)
- Jinyuan Liu
- Nanoscience and Nanoengineering, South Dakota School of Mines and Technology, 501 East Saint Joseph Street, Rapid City, SD 57701, USA; BioSystems Networks & Translational Research (BioSNTR), 501 East Saint Joseph Street, Rapid City, SD 57701, USA
| | - Lin Kang
- Nanoscience and Nanoengineering, South Dakota School of Mines and Technology, 501 East Saint Joseph Street, Rapid City, SD 57701, USA; BioSystems Networks & Translational Research (BioSNTR), 501 East Saint Joseph Street, Rapid City, SD 57701, USA
| | - Ishara Ratnayake
- Nanoscience and Nanoengineering, South Dakota School of Mines and Technology, 501 East Saint Joseph Street, Rapid City, SD 57701, USA; BioSystems Networks & Translational Research (BioSNTR), 501 East Saint Joseph Street, Rapid City, SD 57701, USA
| | - Phil Ahrenkiel
- Nanoscience and Nanoengineering, South Dakota School of Mines and Technology, 501 East Saint Joseph Street, Rapid City, SD 57701, USA; BioSystems Networks & Translational Research (BioSNTR), 501 East Saint Joseph Street, Rapid City, SD 57701, USA
| | - Steve Smith
- Nanoscience and Nanoengineering, South Dakota School of Mines and Technology, 501 East Saint Joseph Street, Rapid City, SD 57701, USA; BioSystems Networks & Translational Research (BioSNTR), 501 East Saint Joseph Street, Rapid City, SD 57701, USA
| | - Congzhou Wang
- Nanoscience and Nanoengineering, South Dakota School of Mines and Technology, 501 East Saint Joseph Street, Rapid City, SD 57701, USA; BioSystems Networks & Translational Research (BioSNTR), 501 East Saint Joseph Street, Rapid City, SD 57701, USA.
| |
Collapse
|
18
|
Queiroz A, Pelissari C, Arana-Chavez VE, Trierveiler M. Temporo-spatial distribution of stem cell markers CD146 and p75NTR during odontogenesis in mice. J Appl Oral Sci 2021; 29:e20210138. [PMID: 34550167 PMCID: PMC8462488 DOI: 10.1590/1678-7757-2021-0138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 05/29/2021] [Accepted: 06/28/2021] [Indexed: 11/22/2022] Open
Abstract
Mesenchymal and epithelial stem cells were identified in dental tissues; however, knowledge about the odontogenic stem cells is limited, and there are some questions regarding their temporo-spatial dynamics in tooth development. OBJECTIVE Our study aimed to analyze the expression of the stem cell markers CD146 and p75NTR during the different stages of odontogenesis. METHODOLOGY The groups consisted of 13.5, 15.5, 17.5 days old embryos, and 14 days postnatal BALB/c mice. The expression of CD146 and p75NTR was evaluated by immunohistochemistry. RESULTS Our results showed that positive cells for both markers were present in all stages of tooth development, and the number of positive cells increased with the progression of this process. Cells of epithelial and ectomesenchymal origin were positive for CD146, and the expression of p75NTR was mainly detected in the dental papilla and dental follicle. In the postnatal group, dental pulp cells were positive for CD146, and the reduced enamel epithelium and the oral mucosa epithelium showed immunostaining for p75NTR. CONCLUSIONS These results suggest that the staining pattern of CD146 and p75NTR underwent temporal and spatial changes during odontogenesis and both markers were expressed by epithelial and mesenchymal cell types, which is relevant due to the significance of the epithelial-ectomesenchymal interactions in tooth development.
Collapse
Affiliation(s)
- Aline Queiroz
- Universidade de São Paulo, Faculdade de Odontologia, Departamento de Estomatologia, Disciplina de Patologia Oral e Maxilofacial, Laboratório de Biologia de Células-Tronco em Odontologia LABITRON, São Paulo, SP, Brasil
| | - Cibele Pelissari
- Universidade de São Paulo, Faculdade de Odontologia, Departamento de Estomatologia, Disciplina de Patologia Oral e Maxilofacial, Laboratório de Biologia de Células-Tronco em Odontologia LABITRON, São Paulo, SP, Brasil
| | - Victor Elias Arana-Chavez
- Universidade de São Paulo, Faculdade de Odontologia, Departamento de Biomateriais e Biologia Oral, São Paulo, SP, Brasil
| | - Marília Trierveiler
- Universidade de São Paulo, Faculdade de Odontologia, Departamento de Estomatologia, Disciplina de Patologia Oral e Maxilofacial, Laboratório de Biologia de Células-Tronco em Odontologia LABITRON, São Paulo, SP, Brasil
| |
Collapse
|
19
|
D’Arcy C, Kiel C. Cell Adhesion Molecules in Normal Skin and Melanoma. Biomolecules 2021; 11:biom11081213. [PMID: 34439879 PMCID: PMC8391223 DOI: 10.3390/biom11081213] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/10/2021] [Accepted: 08/11/2021] [Indexed: 12/11/2022] Open
Abstract
Cell adhesion molecules (CAMs) of the cadherin, integrin, immunoglobulin, and selectin protein families are indispensable for the formation and maintenance of multicellular tissues, especially epithelia. In the epidermis, they are involved in cell–cell contacts and in cellular interactions with the extracellular matrix (ECM), thereby contributing to the structural integrity and barrier formation of the skin. Bulk and single cell RNA sequencing data show that >170 CAMs are expressed in the healthy human skin, with high expression levels in melanocytes, keratinocytes, endothelial, and smooth muscle cells. Alterations in expression levels of CAMs are involved in melanoma propagation, interaction with the microenvironment, and metastasis. Recent mechanistic analyses together with protein and gene expression data provide a better picture of the role of CAMs in the context of skin physiology and melanoma. Here, we review progress in the field and discuss molecular mechanisms in light of gene expression profiles, including recent single cell RNA expression information. We highlight key adhesion molecules in melanoma, which can guide the identification of pathways and strategies for novel anti-melanoma therapies.
Collapse
|
20
|
Lei X, Wang K, Wang W, Jin H, Gu W, Chen Z, Wang W, Gao K, Wang H. Recognize the role of CD146/MCAM in the osteosarcoma progression: an in vitro study. Cancer Cell Int 2021; 21:300. [PMID: 34103063 PMCID: PMC8186124 DOI: 10.1186/s12935-021-02006-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 06/03/2021] [Indexed: 12/11/2022] Open
Abstract
Background Osteosarcoma (OS) is a common malignant bone tumor with poor prognosis. We previously reviewed that CD146 is correlated with multiple cancer progression, while its impact on OS is currently not systematically studied. Methods MG63 was transfected with lentivirus to express CD146 ectopically, and anti-CD146 neutralizing antibody ab75769 was used to inhibit 143B. Cyclic migration of MG63 and co-culture between MG63 and 143B were used to explore the role of OS malignancy in CD146 expression. The effect of OS cell medium (CM) on endothelium behaviors was assessed, and the expression changes of CD146 before and after co-culture of endothelium and OS were evaluated. Finally, the expression of CD146 in OS was detected under different culture conditions, including hyperoxia, low oxygen, high glucose and low glucose conditions. Results CD146 promoted the colony formation, migration, invasion and homotypic adhesion of OS cells, and reducing the concentration of soluble CD146 in the OS medium inhibited the proliferation, migration and lumen formation of the cultured endothelium. However, CD146 did not affect the adhesion between OS and endothelium, nor did co-culture of both sides affect the CD146 expression. Similarly, the proliferation, migration and CD146 expression of MG63 remained unchanged after many cycles of migration itself, as did its co-culture with 143B for expressing CD146. In addition, we also showed that high glucose promoted the expression of CD146 in OS, while hypoxia had the opposite effect. Conclusions These findings demonstrate that CD146 promotes OS progression by mediating pro-tumoral and angiogenic effects. Thus, CD146 could be a potential therapeutic target for OS, especially for OS patients with diabetes. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-021-02006-7.
Collapse
Affiliation(s)
- Xing Lei
- Department of Orthopedic Surgery, Linyi People's Hospital, Linyi, 276000, China
| | - Kewei Wang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, 157 Baojian Road, Harbin, 150081, China
| | - Wenbo Wang
- Department of Orthopedic Surgery, The First Affiliated Hospital, Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin, 150001, China
| | - Hao Jin
- Department of Orthopedic Surgery, The First Affiliated Hospital, Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin, 150001, China
| | - Wenguang Gu
- Department of Orthopedic Surgery, The First Affiliated Hospital, Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin, 150001, China
| | - Zhiguo Chen
- Department of Orthopedic Surgery, Linyi People's Hospital, Linyi, 276000, China
| | - Wei Wang
- Department of Orthopedic Surgery, Linyi People's Hospital, Linyi, 276000, China
| | - Kaituo Gao
- Department of Orthopedic Surgery, Linyi People's Hospital, Linyi, 276000, China
| | - Huan Wang
- Department of Orthopedic Surgery, The First Affiliated Hospital, Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin, 150001, China.
| |
Collapse
|
21
|
Porcelli L, Guida M, De Summa S, Di Fonte R, De Risi I, Garofoli M, Caputo M, Negri A, Strippoli S, Serratì S, Azzariti A. uPAR + extracellular vesicles: a robust biomarker of resistance to checkpoint inhibitor immunotherapy in metastatic melanoma patients. J Immunother Cancer 2021; 9:jitc-2021-002372. [PMID: 33972390 PMCID: PMC8112420 DOI: 10.1136/jitc-2021-002372] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/02/2021] [Indexed: 12/23/2022] Open
Abstract
Background Emerging evidence has highlighted the importance of extracellular vesicle (EV)-based biomarkers of resistance to immunotherapy with checkpoint inhibitors in metastatic melanoma. Considering the tumor-promoting implications of urokinase-type plasminogen activator receptor (uPAR) signaling, this study aimed to assess uPAR expression in the plasma-derived EVs of patients with metastatic melanoma to determine its potential correlation with clinical outcomes. Methods Blood samples from 71 patients with metastatic melanoma were collected before initiating immunotherapy. Tumor-derived and immune cell-derived EVs were isolated and analyzed to assess the relative percentage of uPAR+ EVs. The associations between uPAR and clinical outcomes, sex, BRAF status, baseline lactate dehydrogenase levels and number of metastatic sites were assessed. Results Responders had a significantly lower percentage of tumor-derived, dendritic cell (DC)-derived and CD8+ T cell-derived uPAR +EVs at baseline than non-responders. The Kaplan-Meier survival curves for the uPAR+EV quartiles indicated that higher levels of melanoma-derived uPAR+ EVs were strongly correlated with poorer progression-free survival (p<0.0001) and overall survival (p<0.0001). We also found a statistically significant correlation between lower levels of uPAR+ EVs from both CD8+ T cells and DCs and better survival. Conclusions Our results indicate that higher levels of tumor-derived, DC-derived and CD8+ T cell-derived uPAR+ EVs in non-responders may represent a new biomarker of innate resistance to immunotherapy with checkpoint inhibitors. Moreover, uPAR+ EVs represent a new potential target for future therapeutic approaches.
Collapse
Affiliation(s)
- Letizia Porcelli
- Laboratory of Experimental Pharmacology, IRCCS Istituto Tumori Giovanni Paolo II, Bari, Italy
| | - Michele Guida
- Rare tumors and Melanoma Unit, IRCCS Istituto Tumori Giovanni Paolo II, Bari, Italy
| | - Simona De Summa
- Molecular Diagnostics and Pharmacogenetics Unit, IRCCS Istituto Tumori Giovanni Paolo II, Bari, Italy
| | - Roberta Di Fonte
- Laboratory of Experimental Pharmacology, IRCCS Istituto Tumori Giovanni Paolo II, Bari, Italy
| | - Ivana De Risi
- Rare tumors and Melanoma Unit, IRCCS Istituto Tumori Giovanni Paolo II, Bari, Italy
| | - Marianna Garofoli
- Laboratory of Experimental Pharmacology, IRCCS Istituto Tumori Giovanni Paolo II, Bari, Italy
| | - Mariapia Caputo
- Molecular Diagnostics and Pharmacogenetics Unit, IRCCS Istituto Tumori Giovanni Paolo II, Bari, Italy
| | - Antonio Negri
- Haematology Unit, IRCCS Istituto Tumori Giovanni Paolo II, Bari, Italy
| | - Sabino Strippoli
- Rare tumors and Melanoma Unit, IRCCS Istituto Tumori Giovanni Paolo II, Bari, Italy
| | - Simona Serratì
- Laboratory of Nanotechnology, IRCCS-Istituto Tumori Giovanni Paolo II, Bari, Italy
| | - Amalia Azzariti
- Laboratory of Experimental Pharmacology, IRCCS Istituto Tumori Giovanni Paolo II, Bari, Italy
| |
Collapse
|
22
|
Hernández IB, Kromhout JZ, Teske E, Hennink WE, van Nimwegen SA, Oliveira S. Molecular targets for anticancer therapies in companion animals and humans: what can we learn from each other? Theranostics 2021; 11:3882-3897. [PMID: 33664868 PMCID: PMC7914358 DOI: 10.7150/thno.55760] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 12/29/2020] [Indexed: 12/24/2022] Open
Abstract
Despite clinical successes in the treatment of some early stage cancers, it is undeniable that novel and innovative approaches are needed to aid in the fight against cancer. Targeted therapies offer the desirable feature of tumor specificity while sparing healthy tissues, thereby minimizing side effects. However, the success rate of translation of these therapies from the preclinical setting to the clinic is dramatically low, highlighting an important point of necessary improvement in the drug development process in the oncology field. The practice of a comparative oncology approach can address some of the current issues, by introducing companion animals with spontaneous tumors in the linear drug development programs. In this way, animals from the veterinary clinic get access to novel/innovative therapies, otherwise inaccessible, while generating robust data to aid therapy refinement and increase translational success. In this review, we present an overview of targetable membrane proteins expressed in the most well-characterized canine and feline solid cancers, greatly resembling the counterpart human malignancies. We identified particular areas in which a closer collaboration between the human and veterinary clinic would benefit both human and veterinary patients. Considerations and challenges to implement comparative oncology in the development of anticancer targeted therapies are also discussed.
Collapse
|
23
|
Feng R, Wang Y, Ramachandran V, Ma Q, May MM, Li M, Zhou JX, Xu X, Xu K, Fang S, Xia W, Sui D, Liu H, Gao X, Prieto V, Blacklow SC, Lu M, Lee JE. Characterization of novel neutralizing mouse monoclonal antibody JM1-24-3 developed against MUC18 in metastatic melanoma. J Exp Clin Cancer Res 2020; 39:273. [PMID: 33278894 PMCID: PMC7718695 DOI: 10.1186/s13046-020-01722-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 09/28/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND MUC18 is a glycoprotein highly expressed on the surface of melanoma and other cancers which promotes tumor progression and metastasis. However, its mechanism of action and suitability as a therapeutic target are unknown. METHODS A monoclonal antibody (mAb) (JM1-24-3) was generated from metastatic melanoma tumor live cell immunization, and high-throughput screening identified MUC18 as the target. RESULTS Analysis of molecular interactions between MUC18 and JM1-24-3 revealed that the downstream signaling events depended on binding of the mAb to a conformational epitope on the extracellular domain of MUC18. JM1-24-3 inhibited melanoma cell proliferation, migration and invasion in vitro and reduced tumor growth and metastasis in vivo. CONCLUSION These results confirm that MUC18 is mechanistically important in melanoma growth and metastasis, suggest that the MUC18 epitope identified is a promising therapeutic target, and that the JM1-24-3 mAb may serve as the basis for a potential therapeutic agent.
Collapse
Affiliation(s)
- Runhua Feng
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.,Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yuling Wang
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Vijaya Ramachandran
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | | | - Matthew M May
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.,Department of Otolaryngology, Mayo School of Graduate Medical Education, Rochester, MN, 55905, USA
| | - Ming Li
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.,Department of Pathology, Anhui Province Hospital, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Joe X Zhou
- LC Sciences, LLC, Houston, TX, 77054, USA
| | - Xiang Xu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard University School of Medicine, Boston, MA, 02115, USA.,Department of Pathology, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Kejing Xu
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Shenying Fang
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Weiya Xia
- Department of Molecular & Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Dawen Sui
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Huey Liu
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Xiaolian Gao
- Department of Biology and Biochemistry, The University of Houston, Houston, TX, 77204, USA
| | - Victor Prieto
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Stephen C Blacklow
- Department of Biological Chemistry and Molecular Pharmacology, Harvard University School of Medicine, Boston, MA, 02115, USA
| | - Mason Lu
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA. .,MedAbome, Inc., Fremont, CA, 94538, USA.
| | - Jeffrey E Lee
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| |
Collapse
|
24
|
Zeng D, Liang YK, Xiao YS, Wei XL, Lin HY, Wu Y, Bai JW, Chen M, Zhang GJ. Inhibition of Notch1 reverses EMT and chemoresistance to cisplatin via direct downregulation of MCAM in triple-negative breast cancer cells. Int J Cancer 2020; 147:490-504. [PMID: 32020593 DOI: 10.1002/ijc.32911] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 12/22/2019] [Accepted: 01/07/2020] [Indexed: 02/05/2023]
Abstract
Resistance to chemotherapy continues to be a critical issue in the clinical therapy of triple-negative breast cancer (TNBC). Epithelial-mesenchymal transition (EMT) is thought to contribute to chemoresistance in several cancer types, including breast cancer. Identification of the key signaling pathway that regulates the EMT program and contributes to chemoresistance in TNBC will provide a novel strategy to overcome chemoresistance in this subtype of cancer. Herein, we demonstrate that Notch1 positively associates with melanoma cell adhesion molecule (MCAM), a unique EMT activator, in TNBC tissue samples both at mRNA and protein levels. High expression of Notch1 and MCAM both predicts a poor survival in basal-like/TNBC patients, particularly in those treated with chemotherapy. The expression of Notch1 and MCAM in MDA-MB-231 cells gradually increases in a time-dependent manner when exposing to low dose cisplatin. Moreover, the expressions of Notch1 and MCAM in cisplatin-resistant MDA-MB-231 cells are significantly higher than wild-type counterparts. Notch1 promotes EMT and chemoresistance, as well as invasion and proliferation of TNBC cells via direct activating MCAM promoter. Inhibition of Notch1 significantly downregulates MCAM expression, resulting in the reversion of EMT and chemoresistance to cisplatin in TNBC cells. Our study reveals the regulatory mechanism of the Notch1 pathway and MCAM in TNBC and suggesting that targeting the Notch1/MCAM axis, in conjunction with conventional chemotherapies, might be a potential avenue to enhance the therapeutic efficacy for patients with TNBC.
Collapse
Affiliation(s)
- De Zeng
- Department of Medical Oncology, Shantou University Medical College Cancer Hospital, Shantou, China
- Changjiang Scholar's Laboratory, Shantou University Medical College (SUMC), Shantou, China
| | - Yuan-Ke Liang
- Department of Thyroid and Breast Surgery, the First Affiliated Hospital of Shantou University Medical College, Shantou, China
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Ying-Sheng Xiao
- Changjiang Scholar's Laboratory, Shantou University Medical College (SUMC), Shantou, China
- Department of Thyroid Surgery, Shantou Central Hospital, Shantou, China
| | - Xiao-Long Wei
- Department of Pathology, Cancer Hospital of SUMC, Shantou, China
| | - Hao-Yu Lin
- Department of Thyroid and Breast Surgery, the First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Yang Wu
- Changjiang Scholar's Laboratory, Shantou University Medical College (SUMC), Shantou, China
| | - Jing-Wen Bai
- The Cancer Center and the Department of Breast and Thyroid Surgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Min Chen
- Changjiang Scholar's Laboratory, Shantou University Medical College (SUMC), Shantou, China
| | - Guo-Jun Zhang
- The Cancer Center and the Department of Breast and Thyroid Surgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
- Fujian Anti-Cancer Center, Fujian, China
| |
Collapse
|
25
|
Nicolini F, Bocchini M, Angeli D, Bronte G, Delmonte A, Crinò L, Mazza M. Fully Human Antibodies for Malignant Pleural Mesothelioma Targeting. Cancers (Basel) 2020; 12:E915. [PMID: 32276524 PMCID: PMC7226231 DOI: 10.3390/cancers12040915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/04/2020] [Accepted: 04/07/2020] [Indexed: 12/13/2022] Open
Abstract
Immunotherapy is the most promising therapeutic approach against malignant pleural mesothelioma (MPM). Despite technological progress, the number of targetable antigens or specific antibodies is limited, thus hindering the full potential of recent therapeutic interventions. All possibilities of finding new targeting molecules must be exploited. The specificity of targeting is guaranteed by the use of monoclonal antibodies, while fully human antibodies are preferred, as they are functional and generate no neutralizing antibodies. The aim of this review is to appraise the latest advances in screening methods dedicated to the identification and harnessing of fully human antibodies. The scope of identifying useful molecules proceeds along two avenues, i.e., through the antigen-first or binding-first approaches. The first relies on screening human antibody libraries or plasma from immunized transgenic mice or humans to isolate binders to specific antigens. The latter takes advantage of specific binding to tumor cells of antibodies present in phage display libraries or in responders' plasma samples without prior knowledge of the antigens. Additionally, next-generation sequencing analysis of B-cell receptor repertoire pre- and post-therapy in memory B-cells from responders allows for the identification of clones expanded and matured upon treatment. Human antibodies identified can be subsequently reformatted to generate a plethora of therapeutics like antibody-drug conjugates, immunotoxins, and advanced cell-therapeutics such as chimeric antigen receptor-transduced T-cells.
Collapse
Affiliation(s)
- Fabio Nicolini
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy; (F.N.); (M.B.)
| | - Martine Bocchini
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy; (F.N.); (M.B.)
| | - Davide Angeli
- Unit of Biostatistics and Clinical Trials, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy;
| | - Giuseppe Bronte
- Department of Medical Oncology, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy; (G.B.); (A.D.); (L.C.)
| | - Angelo Delmonte
- Department of Medical Oncology, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy; (G.B.); (A.D.); (L.C.)
| | - Lucio Crinò
- Department of Medical Oncology, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy; (G.B.); (A.D.); (L.C.)
| | - Massimiliano Mazza
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy; (F.N.); (M.B.)
| |
Collapse
|
26
|
Zhang G, Yang DL, Zheng G, Liang Y. Survivin expression as an independent predictor of overall survival in malignant peritoneal mesothelioma. Oncol Lett 2020; 19:3871-3880. [PMID: 32382335 PMCID: PMC7202285 DOI: 10.3892/ol.2020.11505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 02/14/2020] [Indexed: 02/07/2023] Open
Abstract
Malignant peritoneal mesothelioma (MPeM) is an incurable cancer strongly associated with asbestos exposure and characterised by poor prognosis. The aim of the present study was to elucidate the prognostic and predictive value of CD146 and survivin expression in MPeM. Diagnostic biopsies from 60 patients with MPeM were collected and analysed for CD146, survivin and Ki-67 expression using immunohistochemistry. Complete clinical and follow-up information was obtained from patients' records. CD146 was expressed in 31/60 MPeM specimens and survivin in 34/60 specimens, with both expression levels being significantly associated with the Ki-67 labelling index (Ki-67LI). Kaplan-Meier and univariate Cox regression analyses revealed that a lower peritoneal cancer index (PCI), tumour-directed treatment, stage I, lower Ki-67LI and lower CD146 and survivin expression had a statistically positive effect on overall survival (OS). Cox regression analysis revealed that PCI [hazard ratio (HR)=1.99; 95% CI, 1.04–3.83; P=0.038], survivin (HR=1.47; 95% CI, 1.03–2.10; P=0.034) and treatment protocol including intraperitoneal chemotherapy (HR=0.28; 95% CI, 0.14–0.57; P=0.013) and systemic chemotherapy (HR=0.13; 95% CI, 0.04–0.42; P=0.013) retained independent prognostic significance for OS. All of these were included in the nomogram. Calibration curves showed good agreement between nomogram-predicted and observed survival. The C-index of the nomogram for predicting OS was 0.77. A lower PCI, intraperitoneal chemotherapy, systemic chemotherapy and a lower level of survivin were powerful prognostic markers in patients with MPeM. The proposed nomogram provides individual survival prediction for patients with MPeM.
Collapse
Affiliation(s)
- Guozun Zhang
- Department of Gastroenterology, Cangzhou Central Hospital, Cangzhou, Hebei 061001, P.R. China
| | - Dong-Liang Yang
- Department of Medical Statistics, Cangzhou Medical College, Cangzhou, Hebei 061001, P.R. China
| | - Guoqi Zheng
- Department of Gastroenterology, Cangzhou Central Hospital, Cangzhou, Hebei 061001, P.R. China
| | - Yufei Liang
- Department of Gastroenterology, Cangzhou Central Hospital, Cangzhou, Hebei 061001, P.R. China
| |
Collapse
|
27
|
Upregulation of CD146 in Pediatric B-Cell Acute Lymphocytic Leukemia and Its Implications on Treatment Outcomes. J Immunol Res 2020; 2020:9736159. [PMID: 32090132 PMCID: PMC7031726 DOI: 10.1155/2020/9736159] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 12/30/2019] [Indexed: 12/03/2022] Open
Abstract
Background and Aim. We studied through flow cytometry the expression of CD146 on different T cells, and B-cell ALL blasts trying to correlate its expression with different prognostic factors of B-cell ALL and treatment outcomes. Patients and Methods. All pediatric patients with B-cell ALL were subjected to bone marrow examination and cytochemistry, flow cytometric immunophenotyping using monoclonal antibodies utilized for diagnosis of B-ALL including CD34, CD19, CD10, CD22, and intracellular IgM. The diagnosis was based on standard morphologic, cytochemical, and immunophenotypic followed by flow cytometric detection of CD146 expression on blast cells, CD4+, and CD8+ T cells.
Collapse
|
28
|
Biomarkers Predictive of Survival and Response to Immune Checkpoint Inhibitors in Melanoma. Am J Clin Dermatol 2020; 21:1-11. [PMID: 31602560 DOI: 10.1007/s40257-019-00475-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Immunotherapy has revolutionized the treatment of melanoma. Targeting of the immune checkpoints cytotoxic T-lymphocyte-associated protein 4 and programmed cell death protein 1 has led to improved survival in a subset of patients. Unfortunately, the use of immune checkpoint inhibitors is associated with significant side effects and many patients do not respond to treatment. Thus, there is an urgent need both for prognostic biomarkers to estimate risk and for predictive biomarkers to determine which patients are likely to respond to therapy. In this review, prognostic and predictive biomarkers that are an active area of research are outlined. Of note, certain transcriptomic signatures are already used in the clinic, albeit not routinely, to prognosticate patients. In the predictive setting, programmed cell death protein ligand 1 expression has been shown to correlate with benefit but is not precise enough to be used as an exclusionary biomarker. Future investigation will need to focus on biomarkers that are easily reproducible, cost effective, and accurate. The use of readily available clinical material, such as serum or hematoxylin and eosin-stained images, may offer one such path forward.
Collapse
|
29
|
Leroyer AS, Blin MG, Bachelier R, Bardin N, Blot-Chabaud M, Dignat-George F. CD146 (Cluster of Differentiation 146). Arterioscler Thromb Vasc Biol 2020; 39:1026-1033. [PMID: 31070478 DOI: 10.1161/atvbaha.119.312653] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
CD146 (cluster of differentiation 146) is an adhesion molecule that is expressed by different cells constituting vessels, particularly endothelial cells. The last 30 years of research in this field have shown that CD146 plays a key role in the control of several vessel functions. Three forms of CD146 have been described, including 2 transmembrane isoforms and a soluble protein that is detectable in the plasma. These CD146 forms mediate pleiotropic functions through homophilic and heterophilic interactions with proteins present on surrounding partners. Several studies used neutralizing antibodies, siRNA, or genetically modified mice to demonstrate the involvement of CD146 in the regulation of angiogenesis, vascular permeability, and leukocyte transmigration. In this review, we will focus on the current knowledge of the roles of CD146 in vascular homeostasis and diseases associated with endothelial dysfunction.
Collapse
Affiliation(s)
- Aurélie S Leroyer
- From the Aix-Marseille University, Center for CardioVascular and Nutrition Research, INSERM 1263, INRA 1260, France (A.S.L., M.G.B., R.B., N.B., M.B.-C., F.D.-G.)
| | - Muriel G Blin
- From the Aix-Marseille University, Center for CardioVascular and Nutrition Research, INSERM 1263, INRA 1260, France (A.S.L., M.G.B., R.B., N.B., M.B.-C., F.D.-G.)
| | - Richard Bachelier
- From the Aix-Marseille University, Center for CardioVascular and Nutrition Research, INSERM 1263, INRA 1260, France (A.S.L., M.G.B., R.B., N.B., M.B.-C., F.D.-G.)
| | - Nathalie Bardin
- From the Aix-Marseille University, Center for CardioVascular and Nutrition Research, INSERM 1263, INRA 1260, France (A.S.L., M.G.B., R.B., N.B., M.B.-C., F.D.-G.).,Assistance Publique-Hôpitaux de Marseille, Hôpital de la Conception, France (N.B., F.D.-G.)
| | - Marcel Blot-Chabaud
- From the Aix-Marseille University, Center for CardioVascular and Nutrition Research, INSERM 1263, INRA 1260, France (A.S.L., M.G.B., R.B., N.B., M.B.-C., F.D.-G.)
| | - Françoise Dignat-George
- From the Aix-Marseille University, Center for CardioVascular and Nutrition Research, INSERM 1263, INRA 1260, France (A.S.L., M.G.B., R.B., N.B., M.B.-C., F.D.-G.).,Assistance Publique-Hôpitaux de Marseille, Hôpital de la Conception, France (N.B., F.D.-G.)
| |
Collapse
|
30
|
Dillman RO, Nistor GI, Poole AJ. Genomic, proteomic, and immunologic associations with a durable complete remission of measurable metastatic melanoma induced by a patient-specific dendritic cell vaccine. Hum Vaccin Immunother 2019; 16:742-755. [PMID: 31625825 PMCID: PMC7227648 DOI: 10.1080/21645515.2019.1680239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
This report describes efforts to understand the immune mechanism of action that led to a complete response in a patient with progressive, refractory, metastatic melanoma after treatment with a therapeutic vaccine consisting of autologous dendritic cells (DC) loaded with autologous tumor antigens (ATA) derived from cells that were self-renewing in cell culture. Her histocompatibility type proved to be HLA B27 with extensive mutations in the HLA-A locus. Exomic analysis of proliferating tumor cells revealed more than 2800 non-synonymous mutations compared to her leukocytes. Histology of resected tumor lesions showed no evidence of an existing or suppressed immune response. In in vitro mixed cell cultures, DC loaded with ATA induced increased IL-22 expression, and a four-fold increase in CD8 + T lymphocytes. Cryopreserved blood samples obtained at week-0, 1 week before the first of three-weekly vaccine injections, and at week-4, 1 week after the third dose, were analyzed by protein array and compared for 110 different serum markers. At baseline, she had marked elevations of amyloid A, IL-12p40, IL21, IL-22, IL-10, IL-16, GROa, TNF-alpha, IL-3, and IL-2, and a lesser elevation of IL-15. One week after 3 weekly vaccinations she had a further 80% increase in amyloid A, a further 66% increase in IL-22, a 92% decrease in IL12p40, a 45% decrease in TGF-β and 26% decrease in IL-10. The data suggested that by 3 weeks after the first DCV injection, vaccine-induced changes in this particular patient were most consistent with enhanced innate and Th1 immune responses rather than Th2 or Th17.
Collapse
Affiliation(s)
- Robert O Dillman
- AIVITA Biomedical, Inc, Irvine, CA, USA.,Hoag Cancer Institute, Newport Beach, CA, USA
| | | | | |
Collapse
|
31
|
Olajuyin AM, Olajuyin AK, Wang Z, Zhao X, Zhang X. CD146 T cells in lung cancer: its function, detection, and clinical implications as a biomarker and therapeutic target. Cancer Cell Int 2019; 19:247. [PMID: 31572064 PMCID: PMC6761715 DOI: 10.1186/s12935-019-0969-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 09/18/2019] [Indexed: 12/12/2022] Open
Abstract
CD146 alternatively called melanoma cell adhesion molecule (MCAM), is a biomarker and therapeutic target of clinical significance. It is found on different cells including the endothelial cells and lymphocytes which participate in heterotypic and homotypic ligand-receptor. This review concentrated on the CD146 expression T cells (or lymphocytes) centering on Treg in lung cancer. Here, we have also considered the vigorous investigation of CD146 mainly acknowledged new roles, essential mechanisms and clinical implications of CD146 in cancer. CD146 has progressively become a significant molecule, particularly recognized as a novel biomarker, prognosis and therapy for cancer. Hence, targeting CD146 expression by utilization of methanol extracts of Calotropis procera leaf may be useful for the treatment of carcinogenesis.
Collapse
Affiliation(s)
- Ayobami Matthew Olajuyin
- Department of Respiratory and Critical Care Medicine, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, 450003 Henan China
| | - Adefunke Kafayat Olajuyin
- Department of Respiratory and Critical Care Medicine, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, 450003 Henan China
| | - Ziqi Wang
- Department of Respiratory and Critical Care Medicine, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, 450003 Henan China
| | - Xingru Zhao
- Department of Respiratory and Critical Care Medicine, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, 450003 Henan China
| | - Xiaoju Zhang
- Department of Respiratory and Critical Care Medicine, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, 450003 Henan China
| |
Collapse
|
32
|
Schmid F, Brodesser D, Reifinger M, Forte S, Semp P, Eberspächer-Schweda MC, Wolschek M, Brandt S, Kleiter M, Pratscher B. Canine oral primary melanoma cells exhibit shift to mesenchymal phenotype and phagocytic behaviour. Vet Comp Oncol 2019; 17:211-220. [PMID: 30719836 DOI: 10.1111/vco.12464] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 10/29/2018] [Accepted: 10/30/2018] [Indexed: 12/13/2022]
Abstract
Canine oral malignant melanoma (COMM) is a potentially lethal cancer disease. We established primary cell lines from mostly amelanotic primary COMM and metastases and assessed lesions and derived cells for Melan A, PNL2 and CD146 expression. Then, migration and invasion of CD146-enriched vs -depleted COMM cells were analysed. Epithelial-to-mesenchymal transition (EMT) was addressed by Vimentin-staining and MMP2/MMP9 zymography. Phagocytic behaviour was analysed by histopathological examination and phagocytosis assay. While Melan A- and PNL2-staining yielded inconsistent data, 100% of COMM sections and primary cells showed CD146 expression, suggesting that this protein may serve as a prognostic marker. An overall correlation between CD146-expression and migration/invasion was not observed. All primary cell lines consistently expressed Vimentin and secreted biologically active MMP2, indicating that they had undergone EMT. Importantly, COMM sections exhibited cell-in-cell structures, and all primary cell lines exhibited phagocytic activity, supporting the concept that cell cannibalism may have a role in COMM progression.
Collapse
Affiliation(s)
- Franziska Schmid
- Research Group Oncology (RGO), Equine Surgery, Department for Small Animals and Horses, University of Veterinary Medicine, Vienna, Austria.,Radiooncology and Nuclear Medicine Platform, Department for Small Animals and Horses, University of Veterinary Medicine, Vienna, Austria
| | - Daniela Brodesser
- Research Group Oncology (RGO), Equine Surgery, Department for Small Animals and Horses, University of Veterinary Medicine, Vienna, Austria.,Reproductive Biotechnology, Institute of Animal Breeding and Genetics, University of Veterinary Medicine, Vienna, Austria.,Institute of Biotechnology in Animal Production, Department for Agrobiotechnology, IFA Tulln, University of Natural Resources and Life Sciences, Tulln, Austria
| | - Martin Reifinger
- Department for Pathobiology, Institute of Pathology and Forensic Veterinary Medicine, University of Veterinary Medicine, Vienna, Austria
| | - Sara Forte
- Research Group Oncology (RGO), Equine Surgery, Department for Small Animals and Horses, University of Veterinary Medicine, Vienna, Austria
| | - Pia Semp
- Research Group Oncology (RGO), Equine Surgery, Department for Small Animals and Horses, University of Veterinary Medicine, Vienna, Austria.,Radiooncology and Nuclear Medicine Platform, Department for Small Animals and Horses, University of Veterinary Medicine, Vienna, Austria
| | | | - Markus Wolschek
- Research Group Oncology (RGO), Equine Surgery, Department for Small Animals and Horses, University of Veterinary Medicine, Vienna, Austria.,BlueSky Vaccines GmbH, Vienna, Austria
| | - Sabine Brandt
- Research Group Oncology (RGO), Equine Surgery, Department for Small Animals and Horses, University of Veterinary Medicine, Vienna, Austria
| | - Miriam Kleiter
- Radiooncology and Nuclear Medicine Platform, Department for Small Animals and Horses, University of Veterinary Medicine, Vienna, Austria
| | - Barbara Pratscher
- Research Group Oncology (RGO), Equine Surgery, Department for Small Animals and Horses, University of Veterinary Medicine, Vienna, Austria.,Internal Medicine Small Animals, Department for Small Animals and Horses, University of Veterinary Medicine, Vienna, Austria.,Equine Internal Medicine, Department for Small Animals and Horses, University of Veterinary Medicine, Vienna, Austria
| |
Collapse
|
33
|
CD146 expression in oral lichen planus and oral cancer. Clin Oral Investig 2019; 24:325-332. [PMID: 31102047 DOI: 10.1007/s00784-019-02871-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 02/19/2019] [Indexed: 12/11/2022]
Abstract
OBJECTIVE To examine the CD146/METCAM expression on keratinocytes in normal oral mucosa (NOM), oral lichen planus (OLP), oral epithelial dysplasia (OED), and oral squamous cell carcinoma (OSCC). SUBJECTS AND METHODS Immunohistochemical examination of CD146 was performed on 80 specimens, divided into 20 cases from each group. The number of CD146+ keratinocytes was quantitatively assessed together with the staining intensity. RESULTS The mean percentage of CD146+ keratinocytes was 19.04±15.32, 59.40±24.48, 60.04±28.87, and 22.13±21.03 in NOM, OLP, OED, and OSCC, respectively. The mean percentages of CD146+ keratinocytes in OLP and OED were significantly higher than those of NOM and OSCC (p≤0.001). Most OED (55%) and OLP (60%) showed strong and moderate staining intensity, respectively, while NOM (50%) and OSCC (45%) predominantly expressed CD146 at mild intensity. CONCLUSIONS This is the first study to examine CD146 expression in OLP and OED. CD146 is upregulated in OLP and OED but downregulated in OSCC. The alteration in CD146 may be involved in the immunoregulatory response of OLP and the early event of oral carcinogenesis. The loss of this protein may underlie the progression of OED into invasive OSCC. CLINICAL RELEVANCE Overexpression of CD146 protein may play a role in the pathophysiology of OLP and OED.
Collapse
|
34
|
Zhu Y, Pick H, Gasilova N, Li X, Lin TE, Laeubli HP, Zippelius A, Ho PC, Girault HH. MALDI Detection of Exosomes: A Potential Tool for Cancer Studies. Chem 2019. [DOI: 10.1016/j.chempr.2019.04.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
35
|
Haddada M, Draoui H, Deschamps L, Walker F, Delaunay T, Brattsand M, Magdolen V, Darmoul D. Kallikrein-related peptidase 7 overexpression in melanoma cells modulates cell adhesion leading to a malignant phenotype. Biol Chem 2018; 399:1099-1105. [DOI: 10.1515/hsz-2017-0339] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 02/27/2018] [Indexed: 12/31/2022]
Abstract
AbstractWe recently reported that human melanoma cells, but not benign melanocytes, aberrantly express kallikrein-related peptidase 7 (KLK7). Here, we show a KLK7 overexpression-mediated decrease of cell adhesion to extracellular matrix binding proteins, associated with downregulation of α5/β1/αv/β3 integrin expression. We also report an up-regulation of MCAM/CD146 and an increase in spheroid formation of these cells. Our results demonstrate that aberrant KLK7 expression leads to a switch to a more malignant phenotype suggesting a potential role of KLK7 in melanoma invasion. Thus, KLK7 may represent a biomarker for melanoma progression and may be a potential therapeutic target for melanoma.
Collapse
|
36
|
De Sanctis F, Ugel S, Facciponte J, Facciabene A. The dark side of tumor-associated endothelial cells. Semin Immunol 2018; 35:35-47. [PMID: 29490888 DOI: 10.1016/j.smim.2018.02.002] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 02/02/2018] [Indexed: 12/29/2022]
Abstract
Angiogenesis is a hallmark of cancer and a requisite that tumors must achieve to fulfill their metabolic needs of nutrients and oxygen. As a critical step in cancer progression, the 'angiogenic switch' allows tumor cells to survive and grow, and provides them access to vasculature resulting in metastatic progression and dissemination. Tumor-dependent triggering of the angiogenic switch has critical consequences on tumor progression which extends from an increased nutrient supply and relies instead on the ability of the tumor to hijack the host immune response for the generation of a local immunoprivileged microenvironment. Tumor angiogenic-mediated establishment of endothelial anergy is responsible for this process. However, tumor endothelium can also promote immune tolerance by unbalanced expression of co-stimulatory and co-inhibitory molecules and by releasing soluble factors that restrain T cell function and induce apoptosis. In this review, we discuss the molecular properties of the tumor endothelial barrier and endothelial anergy and discuss the main immunosuppressive mechanisms triggered by the tumor endothelium. Lastly, we describe the current anti-angiogenic therapeutic landscape and how targeting tumor angiogenesis can contribute to improve clinical benefits for patients.
Collapse
Affiliation(s)
- Francesco De Sanctis
- Immunology Section, Department of Medicine, University of Verona, 37134, Verona, Italy
| | - Stefano Ugel
- Immunology Section, Department of Medicine, University of Verona, 37134, Verona, Italy
| | - John Facciponte
- Ovarian Cancer Research Center (OCRC), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Andrea Facciabene
- Ovarian Cancer Research Center (OCRC), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
37
|
Tumor growth suppressive effect of IL-4 through p21-mediated activation of STAT6 in IL-4Rα overexpressed melanoma models. Oncotarget 2018; 7:23425-38. [PMID: 26993600 PMCID: PMC5029637 DOI: 10.18632/oncotarget.8111] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Accepted: 02/28/2016] [Indexed: 01/16/2023] Open
Abstract
To evaluate the significance of interleukin 4 (IL-4) in tumor development, we compared B16F10 melanoma growth in IL-4-overespressing transgenic mice (IL-4 mice) and non-transgenic mice. In IL-4 mice, reduced tumor volume and weight were observed when compared with those of non-transgenic mice. Significant activation of DNA binding activity of STAT6, phosphorylation of STAT6 as well as IL-4, IL-4Rα and p21 expression were found in the tumor tissues of IL-4 mice compared to non-transgenic mice. Higher expression of IL-4, STAT6 and p21 in human melanoma tissue compared to normal human skin tissue was also found. Higher expression of apoptotic protein such as cleaved caspase-3, cleaved caspase-8, cleaved caspase-9, Bax, p53 and p21, but lower expression levels of survival protein such as Bcl-2 were found in the tumor of IL-4 mice. In vitro study, we found that overexpression of IL-4 significantly inhibited SK-MEL-28 human melanoma cell and B16F10 murine melanoma cell growth via p21-mediated activation of STAT6 pathway as well as increased expression of apoptotic cell death proteins. Moreover, p21 knockdown with siRNA abolished IL-4 induced activation of STAT6 and expression of p53 and p21 accompanied with reduced IL-4 expression as well as melanoma cell growth inhibition. Therefore, these results showed that IL-4 overexpression suppressed tumor development through p21-mediated activation of STAT6 pathways in melanoma models.
Collapse
|
38
|
Yang X, Zhang D, Chong T, Li Y, Wang Z, Zhang P. Expression of CK19, CD105 and CD146 are associated with early metastasis in patients with renal cell carcinoma. Oncol Lett 2018. [PMID: 29541188 PMCID: PMC5835893 DOI: 10.3892/ol.2018.7871] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The present study was designed in order to explore the association between the early metastasis of renal cell carcinoma (RCC) and biological markers of tumor cells. A total of 200 patients with RCC, who received a nephrectomy between January 2015 and October 2015, were enrolled in the present study, while 100 healthy patients served as controls. The expression of cytokeratin 19 (CK19), endoglin (CD105) and cluster of differentiation 146 (CD146) were detected using immunohistochemical staining and western blotting. All three markers were highly expressed in tumor tissues compared with adjacent normal tissues. Subsequently, an enzyme-linked immunosorbent assay was used to detect the differential expression of CK19, CD105 and CD146. The results revealed that there was a statistically significant difference in the expression of CK19 and CD105 between the two groups (P<0.05), whereas CD146 did not exhibit a statistically significant difference. The results of further experiments revealed no significant difference between four time points (Q1, 1 day pre-operation; Q2, 1 day post-operation; Q3, 1 week post-operation; and Q4, 1 month post-operation). Then, subgroup analysis was performed based on whether patients were circulating tumor cell (CTC)-positive or not, and the difference between the Q1 time point and other three time points (Q2-4). The results revealed no difference between the CTC-positive and -negative groups, and no difference between the time points Q1 and Q2. However, the expression of CK19 and CD105 exhibited a significant difference between CTC-positive and CTC-negative groups according to the difference between the time points Q1 and Q3. Furthermore, on the basis of the difference between Q1 and Q4, the expression of CK19, CD105 and CD146 were significantly different (P<0.05). Taken together, the results suggested that CK19, CD105 and CD146 markers of peripheral blood may be considered to be effective tools to evaluate the early metastasis in a CTC-positive condition. CK19, CD105 and CD146 may be useful for CTC in evaluating the prognosis of patients with RCC, although a larger sample size is necessary for further investigation.
Collapse
Affiliation(s)
- Xiaojie Yang
- Department of Urology, Second Affiliated Hospital of Medical School, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Dong Zhang
- Department of Urology, Second Affiliated Hospital of Medical School, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Tie Chong
- Department of Urology, Second Affiliated Hospital of Medical School, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Youfang Li
- Department of Urology, Second Affiliated Hospital of Medical School, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Ziming Wang
- Department of Urology, Second Affiliated Hospital of Medical School, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Peng Zhang
- Department of Urology, Second Affiliated Hospital of Medical School, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
39
|
Moreno-Fortuny A, Bragg L, Cossu G, Roostalu U. MCAM contributes to the establishment of cell autonomous polarity in myogenic and chondrogenic differentiation. Biol Open 2017; 6:1592-1601. [PMID: 28923978 PMCID: PMC5703611 DOI: 10.1242/bio.027771] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Cell polarity has a fundamental role in shaping the morphology of cells and growing tissues. Polarity is commonly thought to be established in response to extracellular signals. Here we used a minimal in vitro assay that enabled us to monitor the determination of cell polarity in myogenic and chondrogenic differentiation in the absence of external signalling gradients. We demonstrate that the initiation of cell polarity is regulated by melanoma cell adhesion molecule (MCAM). We found highly polarized localization of MCAM, Moesin (MSN), Scribble (SCRIB) and Van-Gogh-like 2 (VANGL2) at the distal end of elongating myotubes. Knockout of MCAM or elimination of its endocytosis motif does not impair the initiation of myogenesis or myoblast fusion, but prevents myotube elongation. MSN, SCRIB and VANGL2 remain uniformly distributed in MCAM knockout cells. We show that MCAM is also required at early stages of chondrogenic differentiation. In both myogenic and chondrogenic differentiation MCAM knockout leads to transcriptional downregulation of Scrib and enhanced MAP kinase activity. Our data demonstrates the importance of cell autonomous polarity in differentiation. Summary: CD146/MCAM regulates cell autonomous polarization and asymmetric localization of Scribble, Van-Gogh-like 2 and Moesin, which is required in skeletal muscle myotube elongation and chondrocyte differentiation.
Collapse
Affiliation(s)
- Artal Moreno-Fortuny
- Manchester Academic Health Science Centre, Division of Extracellular Matrix and Regenerative Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PL, UK
| | - Laricia Bragg
- Manchester Academic Health Science Centre, Division of Extracellular Matrix and Regenerative Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PL, UK
| | - Giulio Cossu
- Manchester Academic Health Science Centre, Division of Extracellular Matrix and Regenerative Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PL, UK
| | - Urmas Roostalu
- Manchester Academic Health Science Centre, Division of Extracellular Matrix and Regenerative Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PL, UK
| |
Collapse
|
40
|
Prognostic value of CD146 in solid tumor: A Systematic Review and Meta-analysis. Sci Rep 2017; 7:4223. [PMID: 28652617 PMCID: PMC5484668 DOI: 10.1038/s41598-017-01061-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Accepted: 03/16/2017] [Indexed: 01/09/2023] Open
Abstract
CD146, also known as melanoma cell adhesion molecule, was initially identified as a marker of melanoma progression and metastasis. Recently many clinical studies investigated overexpression of CD146 predict poor prognosis of solid tumor, however, the results was inconclusive, partly due to small numbers of patients included. This present meta-analysis was therefore performed utilizing the results of all clinical studies concerned to determine the prognostic value of CD146 expression in solid tumors. Relevant articles were identified through searching the PubMed, Web of Science and Embase database. In this meta-analysis, 12 studies involving 2,694 participants were included, and we drew the conclusion that strong significant associations between CD146 expression and all endpoints: overall survival (OS) [hazard ratio (HR) = 2.496, 95% confidence interval (95% CI) 2.115–2.946], time to progression (TTP) (HR = 2.445, 95% CI 1.975–3.027). Furthermore, the subgroup analysis revealed that the associations between CD146 overexpression and the outcome endpoints (OS or TTP) were significant in Mongoloid patients and Caucasian patients, as well in patients with lung cancer and digestive system cancer. In conclusion, these results showed that high CD146 was associated with poor survival in human solid tumors. CD146 may be a valuable prognosis predictive biomarker; nevertheless, whether CD146 could be a potential therapeutic target in human solid tumors needs to be further studied.
Collapse
|
41
|
Connacher MK, Tay JW, Ahn NG. Rear-polarized Wnt5a-receptor-actin-myosin-polarity (WRAMP) structures promote the speed and persistence of directional cell migration. Mol Biol Cell 2017; 28:1924-1936. [PMID: 28592632 PMCID: PMC5541843 DOI: 10.1091/mbc.e16-12-0875] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 05/19/2017] [Accepted: 05/30/2017] [Indexed: 12/31/2022] Open
Abstract
The WRAMP structure is a Wnt5-induced association of a cell adhesion molecule with F-actin and myosin IIB at the rear of migrating cells. WRAMP structures control the speed and persistence of directional cell movement in melanoma and nonmelanoma cells. In contrast to events at the cell leading edge, rear-polarized mechanisms that control directional cell migration are poorly defined. Previous work described a new intracellular complex, the Wnt5a-receptor-actomyosin polarity (WRAMP) structure, which coordinates the polarized localization of MCAM, actin, and myosin IIB in a Wnt5a-induced manner. However, the polarity and function for the WRAMP structure during cell movement were not determined. Here we characterize WRAMP structures during extended cell migration using live-cell imaging. The results demonstrate that cells undergoing prolonged migration show WRAMP structures stably polarized at the rear, where they are strongly associated with enhanced speed and persistence of directional movement. Strikingly, WRAMP structures form transiently, with cells displaying directional persistence during periods when they are present and cells changing directions randomly when they are absent. Cells appear to pause locomotion when WRAMP structures disassemble and then migrate in new directions after reassembly at a different location, which forms the new rear. We conclude that WRAMP structures represent a rear-directed cellular mechanism to control directional migration and that their ability to form dynamically within cells may control changes in direction during extended migration.
Collapse
Affiliation(s)
| | - Jian Wei Tay
- BioFrontiers Institute Advanced Light Microscopy Core, University of Colorado, Boulder, CO 80309
| | - Natalie G Ahn
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO 80309
| |
Collapse
|
42
|
Liang YK, Zeng D, Xiao YS, Wu Y, Ouyang YX, Chen M, Li YC, Lin HY, Wei XL, Zhang YQ, Kruyt FAE, Zhang GJ. MCAM/CD146 promotes tamoxifen resistance in breast cancer cells through induction of epithelial-mesenchymal transition, decreased ERα expression and AKT activation. Cancer Lett 2017; 386:65-76. [PMID: 27838413 DOI: 10.1016/j.canlet.2016.11.004] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 11/01/2016] [Accepted: 11/02/2016] [Indexed: 02/05/2023]
Abstract
Tamoxifen resistance presents a prominent clinical challenge in endocrine therapy for hormone sensitive breast cancer. However, the underlying mechanisms that contribute to tamoxifen resistance are not fully understood. In this study, we established a tamoxifen resistant MCF-7 cell line (MCF-7-Tam-R) by continuously incubating MCF-7 cells with 4-OH-tamoxifen. We found that melanoma cell adhesion molecule (MCAM/CD146), a unique epithelial-to-mesenchymal transition (EMT) inducer, was significantly up-regulated at both mRNA and protein levels in MCF-7-Tam-R cells compared to parental MCF-7 cells. Mechanistic research demonstrated that MCAM promotes tamoxifen resistance by transcriptionally suppressing ERα expression and activating the AKT pathway, followed by induction of EMT. Elevated MCAM expression was inversely correlated with recurrence-free and distant metastasis-free survival in a cohort of 4142 patients with breast cancer derived from a public database, particularly in the subgroup only treated with tamoxifen. These results demonstrate a novel function of MCAM in conferring tamoxifen resistance in breast cancer. Targeting MCAM might be a promising therapeutic strategy to overcome tamoxifen resistance in breast cancer patients.
Collapse
Affiliation(s)
- Yuan-Ke Liang
- The Breast Center, Cancer Hospital of Shantou University Medical College, 7 Raoping Road, Shantou, China; ChangJiang Scholar's Laboratory of Shantou University Medical College, 22 Xinling Road, Shantou, China; Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - De Zeng
- ChangJiang Scholar's Laboratory of Shantou University Medical College, 22 Xinling Road, Shantou, China; Department of Breast Medical Oncology, Cancer Hospital of Shantou University Medical College, 7 Raoping Road, Shantou, China
| | - Ying-Sheng Xiao
- The Breast Center, Cancer Hospital of Shantou University Medical College, 7 Raoping Road, Shantou, China; ChangJiang Scholar's Laboratory of Shantou University Medical College, 22 Xinling Road, Shantou, China
| | - Yang Wu
- The Breast Center, Cancer Hospital of Shantou University Medical College, 7 Raoping Road, Shantou, China; ChangJiang Scholar's Laboratory of Shantou University Medical College, 22 Xinling Road, Shantou, China
| | - Yan-Xiu Ouyang
- ChangJiang Scholar's Laboratory of Shantou University Medical College, 22 Xinling Road, Shantou, China
| | - Min Chen
- ChangJiang Scholar's Laboratory of Shantou University Medical College, 22 Xinling Road, Shantou, China
| | - Yao-Chen Li
- ChangJiang Scholar's Laboratory of Shantou University Medical College, 22 Xinling Road, Shantou, China
| | - Hao-Yu Lin
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Shantou University Medical College, 57 Changping Road, Shantou, China
| | - Xiao-Long Wei
- Department of Pathology, Cancer Hospital of Shantou University Medical College, 7 Raoping Road, Shantou, China
| | - Yong-Qu Zhang
- The Breast Center, Cancer Hospital of Shantou University Medical College, 7 Raoping Road, Shantou, China; ChangJiang Scholar's Laboratory of Shantou University Medical College, 22 Xinling Road, Shantou, China
| | - Frank A E Kruyt
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands.
| | - Guo-Jun Zhang
- The Breast Center, Cancer Hospital of Shantou University Medical College, 7 Raoping Road, Shantou, China; ChangJiang Scholar's Laboratory of Shantou University Medical College, 22 Xinling Road, Shantou, China.
| |
Collapse
|
43
|
Ma X, Wang J, Liu J, Mo Q, Yan X, Ma D, Duan H. Targeting CD146 in combination with vorinostat for the treatment of ovarian cancer cells. Oncol Lett 2017; 13:1681-1687. [PMID: 28454309 PMCID: PMC5403387 DOI: 10.3892/ol.2017.5630] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 10/14/2016] [Indexed: 02/03/2023] Open
Abstract
Drug resistance is the predominant cause of mortality in late-stage patients with ovarian cancer. Histone deacetylase inhibitors (HDACis) have emerged as a novel type of second line drug with high specificity for tumor cells, including ovarian cancer cells. However, HDACis usually exhibit relatively low potencies when used as a single agent. The majority of current clinical trials are combination strategies. These strategies are more empirical than mechanism-based applications. Previously, it was reported that the adhesion molecule cluster of differentiation 146 (CD146) is significantly induced in HDACi-treated tumor cells. The present study additionally confirmed that the induction of CD146 is a common phenomenon in vorinostat-treated ovarian cancer cells. AA98, an anti-CD146 monoclonal antibody (mAb), was used to target CD146 function. Synergistic antitumoral effects between AA98 and vorinostat were examined in vitro and in vivo. The potential effect of combined AA98 and vorinostat treatment on the protein kinase B (Akt) pathway was determined by western blotting. The present study found that targeting of CD146 substantially enhanced vorinostat-induced killing via the suppression of activation of Akt pathways in ovarian cancer cells. AA98 in combination with vorinostat significantly inhibited cell proliferation and increased apoptosis. In vivo, AA98 synergized with vorinostat to inhibit tumor growth and prolong survival in ovarian cancer. These data suggest that an undesired induction of CD146 may serve as a protective response to offset the antitumor efficacy of vorinostat. By contrast, targeting CD146 in combination with vorinostat may be exploited as a novel strategy to more effectively kill ovarian cancer cells.
Collapse
Affiliation(s)
- Xiaoli Ma
- Gynecological Minimal Invasive Center, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing 100006, P.R. China
| | - Jiandong Wang
- Gynecological Minimal Invasive Center, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing 100006, P.R. China
| | - Jia Liu
- Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Qingqing Mo
- Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Xiyun Yan
- Center of Molecular Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, P.R. China
| | - Ding Ma
- Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Hua Duan
- Gynecological Minimal Invasive Center, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing 100006, P.R. China
| |
Collapse
|
44
|
Anti-Metastatic and Anti-Invasion Effects of a Specific Anti-MUC18 scFv Antibody on Breast Cancer Cells. Appl Biochem Biotechnol 2016; 181:379-390. [PMID: 27565656 DOI: 10.1007/s12010-016-2218-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 08/15/2016] [Indexed: 10/21/2022]
Abstract
Breast cancer is the most common malignancy in women. Altered expression of MUC18, a cell surface receptor, and its interaction with Wnt-5a as its ligand, affects the motility and invasiveness of breast cancer cells. In this study, we explored the Wnt-5a binding site and designed an antigenic epitope on the MUC18 receptor using in silico methods. A specific single-chain variable fragment (scFv) was isolated against the epitope by several panning processes. The binding ability of the scFv to the related epitope was evaluated in ELISA and flow cytometry. The inhibitory effects of the selected scFv on MUC18 positive cell line, MDA-MB231, was assessed by migration and invasion assays. The results demonstrated isolation of specific scFv with frequency of 40 % which showed significant binding with the epitope in both ELISA and fluorescence-activated cell sorting (FACS) analyses. The antibody inhibited the migration (76 %) and invasion (67 %) of MUC18 positive cell line. The results suggest the specific anti-MUC18 scFv as an effective antibody for breast cancer immunotherapy.
Collapse
|
45
|
Suárez-Arroyo IJ, Feliz-Mosquea YR, Pérez-Laspiur J, Arju R, Giashuddin S, Maldonado-Martínez G, Cubano LA, Schneider RJ, Martínez-Montemayor MM. The proteome signature of the inflammatory breast cancer plasma membrane identifies novel molecular markers of disease. Am J Cancer Res 2016; 6:1720-1740. [PMID: 27648361 PMCID: PMC5004075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 07/10/2016] [Indexed: 06/06/2023] Open
Abstract
Inflammatory Breast Cancer (IBC) is the most lethal form of breast cancer with a 35% 5-year survival rate. The accurate and early diagnosis of IBC and the development of targeted therapy against this deadly disease remain a great medical challenge. Plasma membrane proteins (PMPs) such as E-cadherin and EGFR, play an important role in the progression of IBC. Because the critical role of PMPs in the oncogenic processes they are the perfect candidates as molecular markers and targets for cancer therapies. In the present study, Stable Isotope Labeling with Amino Acids in Cell Culture (SILAC) followed by mass spectrometry analysis was used to compare the relative expression levels of membrane proteins (MP) between non-cancerous mammary epithelial and IBC cells, MCF-10A and SUM-149, respectively. Six of the identified PMPs were validated by immunoblotting using the membrane fractions of non-IBC and IBC cell lines, compared with MCF-10A cells. Immunohistochemical analysis using IBC, invasive ductal carcinoma or normal mammary tissue samples was carried out to complete the validation method in nine of the PMPs. We identified and quantified 278 MPs, 76% of which classified as PMPs with 1.3-fold or higher change. We identified for the first time the overexpression of the novel plasminogen receptor, PLGRKT in IBC and of the carrier protein, SCAMP3. Furthermore, we describe the positive relationship between L1CAM expression and metastasis in IBC patients and the role of SCAMP3 as a tumor-related protein. Overall, the membrane proteomic signature of IBC reflects a global change in cellular organization and suggests additional strategies for cancer progression. Together, this study provides insight into the specialized IBC plasma membrane proteome with the potential to identify a number of novel therapeutic targets for IBC.
Collapse
Affiliation(s)
| | | | | | - Rezina Arju
- New York University School of Medicine, Alexandria Center for Life SciencesNew York, NY, USA
| | - Shah Giashuddin
- Department of Pathology and Laboratory Medicine, New York Methodist HospitalNew York, NY, USA
| | | | - Luis A Cubano
- Universidad Central del Caribe-School of MedicineBayamón, PR
| | - Robert J Schneider
- New York University School of Medicine, Alexandria Center for Life SciencesNew York, NY, USA
| | | |
Collapse
|
46
|
Terada M, Seki M, Takahashi R, Yamada S, Higashibata A, Majima HJ, Sudoh M, Mukai C, Ishioka N. Effects of a Closed Space Environment on Gene Expression in Hair Follicles of Astronauts in the International Space Station. PLoS One 2016; 11:e0150801. [PMID: 27029003 PMCID: PMC4814050 DOI: 10.1371/journal.pone.0150801] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 02/19/2016] [Indexed: 11/24/2022] Open
Abstract
Adaptation to the space environment can sometimes pose physiological problems to International Space Station (ISS) astronauts after their return to earth. Therefore, it is important to develop healthcare technologies for astronauts. In this study, we examined the feasibility of using hair follicles, a readily obtained sample, to assess gene expression changes in response to spaceflight adaptation. In order to investigate the gene expression changes in human hair follicles during spaceflight, hair follicles of 10 astronauts were analyzed by microarray and real time qPCR analyses. We found that spaceflight alters human hair follicle gene expression. The degree of changes in gene expression was found to vary among individuals. In some astronauts, genes related to hair growth such as FGF18, ANGPTL7 and COMP were upregulated during flight, suggesting that spaceflight inhibits cell proliferation in hair follicles.
Collapse
Affiliation(s)
- Masahiro Terada
- Divison of Aerospace Medicine, The Jikei University School of Medicine, Minato-ku, Tokyo, Japan
- Japan Aerospace Exploration Agency, Tsukuba City, Ibaraki, Japan
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, California, United States of America
- * E-mail:
| | - Masaya Seki
- Advanced Engineering Services Co., Ltd., Takezono, Tsukuba City, Ibaraki, Japan
| | - Rika Takahashi
- Advanced Engineering Services Co., Ltd., Takezono, Tsukuba City, Ibaraki, Japan
| | - Shin Yamada
- Japan Aerospace Exploration Agency, Tsukuba City, Ibaraki, Japan
| | - Akira Higashibata
- Japan Aerospace Exploration Agency, Tsukuba City, Ibaraki, Japan
- Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima City, Kagoshima, Japan
| | - Hideyuki J. Majima
- Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima City, Kagoshima, Japan
| | - Masamichi Sudoh
- Divison of Aerospace Medicine, The Jikei University School of Medicine, Minato-ku, Tokyo, Japan
- Japan Aerospace Exploration Agency, Tsukuba City, Ibaraki, Japan
| | - Chiaki Mukai
- Japan Aerospace Exploration Agency, Tsukuba City, Ibaraki, Japan
| | - Noriaki Ishioka
- Japan Aerospace Exploration Agency, Tsukuba City, Ibaraki, Japan
- Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima City, Kagoshima, Japan
- Institute of Space and Astronautical Science, Sagamihara, Kanagawa, Japan
- Department of Space and Astronautical Science, School of Physical Sciences, SOKENDAI (The Graduate University for Advanced Studies), Sagamihara, Kanagawa, Japan
| |
Collapse
|
47
|
Jiang G, Zhang L, Zhu Q, Bai D, Zhang C, Wang X. CD146 promotes metastasis and predicts poor prognosis of hepatocellular carcinoma. J Exp Clin Cancer Res 2016; 35:38. [PMID: 26928402 PMCID: PMC4772456 DOI: 10.1186/s13046-016-0313-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 02/24/2016] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related mortality worldwide. Recurrence and metastasis after curative resection remain critical obstacles in HCC treatment. CD146 predicted poor prognosis of a variety of cancers including melanoma, breast tumors, prostate cancer, and gastric cancer. However, the role of CD146 in HCC has not yet been systematically explored. METHODS To investigate the role of CD146 in HCC, we evaluated its expression in HCC tissues and HCC cell lines using real-time PCR and western blotting (WB). Second, we established HCC cell lines that stably overexpressed and interfered CD146 and explored the function of CD146 in HCC in vitro and in vivo. Third, we conducted microarray analysis to investigate the potential mechanism by identifying differentially expressed genes. Last, follow ups were conducted to help uncover the connection of CD146 expression and the prognosis of HCC patients. RESULTS We found that CD146 was overexpressed in HCC tissues and that high CD146 expression predicted poor overall survival time and shorter recurrence period in HCC patients. In vitro and in vivo experiments indicated that CD146 promoted migration and invasion of HCC cell lines. Further study indicated that CD146 promoted epithelial mesenchymal transition (EMT), IL-8 upregulation, and STAT1 downregulation. CD146 was upregulated in HCC tissues and cell lines. CONCLUSIONS CD146 promoted metastasis of HCC cells and predicted poor prognosis of HCC patients. CD146 induced EMT, and IL-8 upregulation and STAT1 downregulation may be the potential underlying mechanism. The exact mechanism still needs further investigation.
Collapse
Affiliation(s)
- Guoqing Jiang
- Department of Hepatobiliary Surgery, Clinical Medical College of Yangzhou University, Yangzhou, P.R. China.
- Key Laboratory of Living Donor Liver Transplantation, Ministry of Public Health; Department of Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, P.R. China.
| | - Long Zhang
- Key Laboratory of Living Donor Liver Transplantation, Ministry of Public Health; Department of Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, P.R. China.
| | - Qin Zhu
- Key Laboratory of Living Donor Liver Transplantation, Ministry of Public Health; Department of Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, P.R. China.
| | - Dousheng Bai
- Department of Hepatobiliary Surgery, Clinical Medical College of Yangzhou University, Yangzhou, P.R. China.
| | - Chuanyong Zhang
- Key Laboratory of Living Donor Liver Transplantation, Ministry of Public Health; Department of Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, P.R. China.
| | - Xuehao Wang
- Key Laboratory of Living Donor Liver Transplantation, Ministry of Public Health; Department of Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, P.R. China.
| |
Collapse
|
48
|
Hanson HA, Anderson RE, Aston KI, Carrell DT, Smith KR, Hotaling JM. Subfertility increases risk of testicular cancer: evidence from population-based semen samples. Fertil Steril 2016; 105:322-8.e1. [PMID: 26604070 PMCID: PMC4744156 DOI: 10.1016/j.fertnstert.2015.10.027] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 10/26/2015] [Accepted: 10/27/2015] [Indexed: 11/25/2022]
Abstract
OBJECTIVE To further understand the association between semen quality and cancer risk by means of well defined semen parameters. DESIGN Retrospective cohort study. SETTING Not applicable. PATIENT(S) A total of 20,433 men who underwent semen analysis (SA) and a sample of 20,433 fertile control subjects matched by age and birth year. INTERVENTION(S) None. MAIN OUTCOME MEASURE(S) Risk of all cancers as well as site-specific results for prostate cancer, testicular cancer, and melanoma. RESULT(S) Compared with fertile men, men with SA had an increased risk of testicular cancer (hazard rate [HR] 3.3). When the characterization of infertility was refined using individual semen parameters, we found that oligozoospermic men had an increased risk of cancer compared with fertile control subjects. This association was particularly strong for testicular cancer, with increased risk in men with oligozoospermia based on concentration (HR 11.9) and on sperm count (HR 10.3). Men in the in the lowest quartile of motility (HR 4.1), viability (HR 6.6), morphology (HR 4.2), or total motile count (HR 6.9) had higher risk of testicular cancer compared with fertile men. Men with sperm concentration and count in the 90th percentiles of the distribution (≥178 and ≥579 × 10(6)/mL, respectively), as well as total motile count, had an increased risk of melanoma (HRs 2.1, 2.7, and 2.0, respectively). We found no differences in cancer risk between azoospermic and fertile men. CONCLUSION(S) Men with SA had an increased risk of testicular cancer which varied by semen quality. Unlike earlier work, we did not find an association between azoospermia and increased cancer risk.
Collapse
Affiliation(s)
- Heidi A Hanson
- Department of Family and Preventive Medicine, University of Utah, Salt Lake City, Utah; Population Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah.
| | - Ross E Anderson
- Division of Urology, Department of Surgery, University of Utah, Salt Lake City, Utah
| | - Kenneth I Aston
- Division of Urology, Department of Surgery, University of Utah, Salt Lake City, Utah; Center for Men's Health and Reconstructive Surgery, University of Utah, Salt Lake City, Utah; Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, Utah
| | - Douglas T Carrell
- Division of Urology, Department of Surgery, University of Utah, Salt Lake City, Utah; Center for Men's Health and Reconstructive Surgery, University of Utah, Salt Lake City, Utah; Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, Utah
| | - Ken R Smith
- Population Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah; Department of Family and Consumer Studies and Population Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| | - James M Hotaling
- Center for Men's Health and Reconstructive Surgery, University of Utah, Salt Lake City, Utah
| |
Collapse
|
49
|
Zhu G, Zhang X, Wang Y, Xiong H, Zhao Y, Wang J, Sun F. Prognostic value of melanoma cell adhesion molecule expression in cancers: a meta-analysis. Int J Clin Exp Med 2015; 8:12056-12063. [PMID: 26550117 PMCID: PMC4612802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 06/02/2015] [Indexed: 06/05/2023]
Abstract
Melanoma cell adhesion molecule (MACM) has been reported in many studies as a novel bio-marker for its prognosis value in cancers. But the prognosis significance of MACM expression in cancer remains inconclusive. Therefore, we conducted a system review and meta-analysis to assess its prognosis value in cancers. A systematic search through Pubmed, EMBASE and Cochran Library database was conducted. Hazard Ratios (HRs) and 95% confidence intervals (CIs) were used to evaluate the prognosis value of MACM expression. Eleven studies with 2657 cases were included after sorting out 462 articles for this meta-analysis. The results of the fixed-model depending on the heterogeneity in studies demonstrated that MACM expression was significantly associated with overall survival (OS) in cancer (HR=2.84, 95% CI: 1.10-7.31, P<0.00001). Furthermore, subgroup analysis indicated that high expressed MACM predicted a poor OS in both Asian (HR=2.52, 95% CI: 1.80-3.52, P<0.00001) and Caucasian (HR=2.40, 95% CI: 2.01-2.88, P<0.00001). In conclusion, high expression of MACM was significantly associated with a poor prognostic outcome in cancer. MACM can be regarded as a novel bio-marker in different types of cancers and can be used to evaluate the prognosis of therapeutic effect during clinical practices.
Collapse
Affiliation(s)
- Guoqing Zhu
- Department of Clinical Laboratory Medicine, Shanghai Tenth People’s Hospital of Tongji UniversityShanghai 200072, China
| | - Xiao Zhang
- Department of Clinical Laboratory Medicine, Shanghai Tenth People’s Hospital of Tongji UniversityShanghai 200072, China
| | - Yulan Wang
- Department of Clinical Laboratory Medicine, Shanghai Tenth People’s Hospital of Tongji UniversityShanghai 200072, China
| | - Huizi Xiong
- Department of Dermatology, Shanghai Tenth People’s Hospital of Tongji UniversityShanghai 200072, China
| | - Yinghui Zhao
- Department of Clinical Laboratory Medicine, Shanghai Tenth People’s Hospital of Tongji UniversityShanghai 200072, China
| | - Jiayi Wang
- Department of Clinical Laboratory Medicine, Shanghai Tenth People’s Hospital of Tongji UniversityShanghai 200072, China
| | - Fenyong Sun
- Department of Clinical Laboratory Medicine, Shanghai Tenth People’s Hospital of Tongji UniversityShanghai 200072, China
| |
Collapse
|