1
|
Kearney EA, Heng-Chin AS, O'Flaherty K, Fowkes FJI. Human antibodies against Anopheles salivary proteins: emerging biomarkers of mosquito and malaria exposure. Trends Parasitol 2025; 41:361-373. [PMID: 40246632 DOI: 10.1016/j.pt.2025.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 03/18/2025] [Accepted: 03/20/2025] [Indexed: 04/19/2025]
Abstract
Antibodies developed against Anopheles mosquito salivary proteins injected during biting may serve as proxy biomarkers of Anopheles biting exposure. Anti-salivary biomarkers are being increasingly investigated, with ~60 studies published to date, mostly identifying positive associations with Anopheles human biting rates (HBRs). However, several literature gaps must be addressed to inform the application of anti-salivary biomarkers for serosurveillance of vector exposure and malaria transmission and in vector-control trials. We highlight the need for more studies that collect HBRs and antibody data contemporaneously, investigate novel antigens for non-African Anopheles species, and characterize antibody kinetics to understand how biomarkers can track changes in exposure over time. Together, these directions may improve upon insensitive manual mosquito catch techniques and strengthen malaria surveillance programs.
Collapse
Affiliation(s)
- Ellen A Kearney
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Australia; The McFarlane Burnet Institute of Medical Research and Public Health, Melbourne, Australia
| | - Ashleigh S Heng-Chin
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Australia; The McFarlane Burnet Institute of Medical Research and Public Health, Melbourne, Australia; Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Australia
| | - Katherine O'Flaherty
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Australia; The McFarlane Burnet Institute of Medical Research and Public Health, Melbourne, Australia
| | - Freya J I Fowkes
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Australia; The McFarlane Burnet Institute of Medical Research and Public Health, Melbourne, Australia; Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Australia.
| |
Collapse
|
2
|
Howell MM, Olajiga OM, Cardenas JC, Parada-Higuera CA, Gonzales-Pabon MU, Gutierrez-Silva LY, Jaimes-Villamizar L, Werner BM, Shaffer JG, Manuzak JA, Londono-Renteria B. Mosquito Salivary Antigens and Their Relationship to Dengue and P. vivax Malaria. Pathogens 2024; 13:52. [PMID: 38251359 PMCID: PMC10818852 DOI: 10.3390/pathogens13010052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/10/2023] [Accepted: 12/27/2023] [Indexed: 01/23/2024] Open
Abstract
In tropical areas, the simultaneous transmission of multiple vector-borne diseases is common due to ecological factors shared by arthropod vectors. Malaria and dengue virus, transmitted by Anopheles and Aedes mosquitoes, respectively, are among the top vector-borne diseases that cause significant morbidity and mortality in endemic areas. Notably, tropical areas often have suitable conditions for the co-existence of these mosquito species, highlighting the importance of identifying markers that accurately indicate the risk of acquiring each specific disease entity. Aedes are daytime-biting mosquitoes, while Anopheles preferentially bite during the night. These biting patterns raise the possibility of concurrent exposure to bites from both species. This is important because mosquito saliva, deposited in the skin during blood feeding, induces immune responses that modulate pathogen establishment and infection. Previous studies have focused on characterizing such effects on the vector-pathogen interface for an individual pathogen and its mosquito vector. In this study, we evaluated associations between immune responses to salivary proteins from non-dengue and non-malaria vector mosquito species with clinical characteristics of malaria and dengue, respectively. Surprisingly, antibody responses against Anopheles antigens in dengue patients correlated with red blood cell count and hematocrit, while antibody responses against Aedes proteins were associated with platelet count in malaria patients. Our data indicate that concurrent exposure to multiple disease-carrying mosquito vectors and their salivary proteins with differing immunomodulatory properties could influence the transmission, pathogenesis, and clinical presentation of malaria, dengue fever, and other vector-borne illnesses.
Collapse
Affiliation(s)
- McKenna M. Howell
- Arbovirology Laboratory, Department of Tropical Medicine and Infectious Disease, Tulane University, New Orleans, LA 70112, USA; (M.M.H.); (J.C.C.)
| | - Olayinka M. Olajiga
- Arbovirology Laboratory, Department of Tropical Medicine and Infectious Disease, Tulane University, New Orleans, LA 70112, USA; (M.M.H.); (J.C.C.)
| | - Jenny C. Cardenas
- Arbovirology Laboratory, Department of Tropical Medicine and Infectious Disease, Tulane University, New Orleans, LA 70112, USA; (M.M.H.); (J.C.C.)
| | | | | | | | | | - Brett M. Werner
- College of Science and Technology, Bellevue University, Bellevue, NE 68005, USA;
| | - Jeffrey G. Shaffer
- Department of Biostatistics and Data Science, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA 70112, USA;
| | - Jennifer A. Manuzak
- Division of Immunology, Tulane National Primate Research Center, Covington, LA 70433, USA;
| | - Berlin Londono-Renteria
- Arbovirology Laboratory, Department of Tropical Medicine and Infectious Disease, Tulane University, New Orleans, LA 70112, USA; (M.M.H.); (J.C.C.)
| |
Collapse
|
3
|
IgG antibody responses to Anopheles gambiae gSG6-P1 salivary peptide are induced in human populations exposed to secondary malaria vectors in forest areas in Cameroon. PLoS One 2022; 17:e0276991. [PMID: 36355922 PMCID: PMC9648791 DOI: 10.1371/journal.pone.0276991] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 10/18/2022] [Indexed: 11/12/2022] Open
Abstract
Human IgG antibody response to Anopheles gambiae gSG6-P1 salivary peptide was reported to be a pertinent indicator for assessing human exposure to mosquito bites and evaluating the risk of malaria transmission as well as the effectiveness of vector control strategies. However, the applicability of this marker to measure malaria transmission risk where human populations are mostly bitten by secondary vectors in Africa has not yet been evaluated. In this study, we aimed to investigate whether anti-gSG6-P1 antibodies response could be induced in humans living in forest areas in Cameroon where An. gambiae s.l is not predominant. In October 2019 at the pick of the rainy season, blood samples were collected from people living in the Nyabessang in the forest area in the South region of Cameroon. Malaria infection was determined using thick blood smear microscopy and Rapid Diagnostic Test. The level of IgG Anti-gSG6-P1 response as a biomarker of human exposure to Anopheles bite, was assessed using enzyme-linked immunosorbent assay. Mosquitoes were collected using the human landing catches to assess Anopheles density and for the identification of Anopheles species present in that area. IgG antibody response to the gSG6-P1 salivary peptide was detected in inhabitants of Nyabessang with high inter-individual heterogeneity. No significant variation in the level of this immune response was observed according to age and gender. The concentration of gSG6-P1 antibodies was significantly correlated with the malaria infection status and, Plasmodium falciparum-infected individuals presented a significantly higher level of IgG response than uninfected individuals (p = 0.0087). No significant difference was observed according to the use of insecticide treated nets. Out of the 1,442 Anopheles mosquitoes species collected, 849 (58.9%) were identified as An. paludis, 489 (33.91%) as An. moucheti, 28 (4.44%) as An. nili, 22 (2.08%) as An. gambiae s.l and 10 (0.69%) as An. marshallii. Our findings show that IgG response to An. gambiae gSG6-P1 peptide could be detected in humans exposed predominantly to An. moucheti and An. paludis bites. Taken together, the data revealed the potential of the Anti-gSG6-P1 IgG antibody response to serve as a universal marker to assess human exposure to any Anopheles species.
Collapse
|
4
|
Jaramillo-Underwood A, Herman C, Impoinvil D, Sutcliff A, Knipes A, Worrell CM, Fox LM, Desir L, Fayette C, Javel A, Monestime F, Mace KE, Chang MA, Lemoine JF, Won K, Udhayakumar V, Rogier E. Spatial, environmental, and individual associations with Anopheles albimanus salivary antigen IgG in Haitian children. Front Cell Infect Microbiol 2022; 12:1033917. [DOI: 10.3389/fcimb.2022.1033917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 10/20/2022] [Indexed: 11/09/2022] Open
Abstract
IgG serology can be utilized to estimate exposure to Anopheline malaria vectors and the Plasmodium species they transmit. A multiplex bead-based assay simultaneously detected IgG to Anopheles albimanus salivary gland extract (SGE) and four Plasmodium falciparum antigens (CSP, LSA-1, PfAMA1, and PfMSP1) in 11,541 children enrolled at 350 schools across Haiti in 2016. Logistic regression estimated odds of an above-median anti-SGE IgG response adjusting for individual- and environmental-level covariates. Spatial analysis detected statistically significant clusters of schools with students having high anti-SGE IgG levels, and spatial interpolation estimated anti-SGE IgG levels in unsampled locations. Boys had 11% (95% CI: 0.81, 0.98) lower odds of high anti-SGE IgG compared to girls, and children seropositive for PfMSP1 had 53% (95% CI: 1.17, 2.00) higher odds compared to PfMSP1 seronegatives. Compared to the lowest elevation, quartiles 2-4 of higher elevation were associated with successively lower odds (0.81, 0.43, and 0.34, respectively) of high anti-SGE IgG. Seven significant clusters of schools were detected in Haiti, while spatially interpolated results provided a comprehensive picture of anti-SGE IgG levels in the study area. Exposure to malaria vectors by IgG serology with SGE is a proxy to approximate vector biting in children and identify risk factors for vector exposure.
Collapse
|
5
|
Kassam NA, Laswai D, Kulaya N, Kaaya RD, Kajeguka DC, Schmiegelow C, Wang CW, Alifrangis M, Kavishe RA. Human IgG responses to Aedes mosquito salivary peptide Nterm-34kDa and its comparison to Anopheles salivary antigen (gSG6-P1) IgG responses measured among individuals living in Lower Moshi, Tanzania. PLoS One 2022; 17:e0276437. [PMID: 36301860 PMCID: PMC9612500 DOI: 10.1371/journal.pone.0276437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 09/13/2022] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND The level of human exposure to arbovirus vectors, the Aedes mosquitoes, is mainly assessed by entomological methods which are labour intensive, difficult to sustain at a large scale and are affected if transmission and exposure levels are low. Alternatively, serological biomarkers which detect levels of human exposure to mosquito bites may complement the existing epidemiologic tools as they seem cost-effective, simple, rapid, and sensitive. This study explored human IgG responses to an Aedes mosquito salivary gland peptide Nterm-34kDa in Lower Moshi, a highland area with evidence of circulating arboviruses and compared the Aedes IgG responses to Anopheles mosquitoes' salivary antigen (GSG6-P1) IgG responses. METHODS Three cross-sectional surveys were conducted in 2019: during the first dry season in March, at the end of the rainy season in June and during the second dry season in September in five villages located in Lower Moshi. Blood samples were collected from enrolled participants above six months of age (age span: 7 months to 94 years) and analysed for the presence of anti-Nterm-34kDa IgG antibodies. Possible associations between Nterm-34kDa seroprevalence and participants' characteristics were determined. Levels of IgG responses and seroprevalence were correlated and compared to the already measured IgG responses and seroprevalence of Anopheles mosquitoes' salivary antigen, GSG6-P1. RESULTS During the first dry season, Nterm-34kDa seroprevalence was 34.1% and significantly increased at the end of the rainy season to 45.3% (Chi square (χ2) = 6.42 p = 0.011). During the second dry season, the seroprevalence significantly declined to 26.5% (χ2 = 15.12 p<0.001). During the rainy season, seroprevalence was significantly higher among residents of Oria village (adjusted odds ratio (AOR) = 2.86; 95% CI = 1.0-7.8; p = 0.041) compared to Newland. Moreover, during the rainy season, the risk of exposure was significantly lower among individuals aged between 16 and 30 years (AOR = 0.25; 95% CI = 0.1 = 0.9; p = 0.036) compared to individuals aged between 0 and 5 years. There was weak to moderate negative correlation between N-term 34kDa IgG and gSG6-P1 antigens. N-term 34kDa seroprevalence were higher compared to gSG6-P1 seroprevalence. CONCLUSION The findings of this study support that IgG antibody responses towards the Aedes mosquito salivary peptide Nterm-34kDa are detectable among individuals living in lower Moshi and vary with season and geographical area. More individuals are exposed to Aedes mosquito bites than Anopheles mosquito and those exposed to Aedes bites are not necessarily exposed to Anopheles mosquitoes.
Collapse
Affiliation(s)
- Nancy A. Kassam
- Kilimanjaro Christian Medical University College (KCMUCo), Moshi, Tanzania
- * E-mail:
| | - Daniel Laswai
- Muhimbili University of Health and Allied Sciences (MUHAS), Dar es Salaam, Tanzania
| | - Neema Kulaya
- Kilimanjaro Christian Medical University College (KCMUCo), Moshi, Tanzania
| | - Robert D. Kaaya
- Kilimanjaro Christian Medical University College (KCMUCo), Moshi, Tanzania
- Pan-African Malaria Vector Research Consortium, Moshi, Tanzania
| | - Debora C. Kajeguka
- Kilimanjaro Christian Medical University College (KCMUCo), Moshi, Tanzania
| | - Christentze Schmiegelow
- Centre for Medical Parasitology, Department of Immunology and Microbiology, University of Copenhagen and Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
| | - Christian W. Wang
- Centre for Medical Parasitology, Department of Immunology and Microbiology, University of Copenhagen and Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
| | - Michael Alifrangis
- Centre for Medical Parasitology, Department of Immunology and Microbiology, University of Copenhagen and Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
| | | |
Collapse
|
6
|
Jaramillo-Underwood A, Impoinvil D, Sutcliff A, Hamre KES, Joseph V, van den Hoogen L, Lemoine JF, Ashton RA, Chang MA, Existe A, Boncy J, Drakeley C, Stresman G, Druetz T, Eisele T, Rogier E. Factors Associated With Human IgG Antibody Response to Anopheles albimanus Salivary Gland Extract, Artibonite Department, Haiti, 2017. J Infect Dis 2022; 226:1461-1469. [PMID: 35711005 PMCID: PMC10982684 DOI: 10.1093/infdis/jiac245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 06/14/2022] [Indexed: 11/14/2022] Open
Abstract
Serological data can provide estimates of human exposure to both malaria vector and parasite based on antibody responses. A multiplex bead-based assay was developed to simultaneously detect IgG to Anopheles albimanus salivary gland extract (SGE) and 23 Plasmodium falciparum antigens among 4185 participants enrolled in Artibonite department, Haiti in 2017. Logistic regression adjusted for participant- and site-level covariates and found children under 5 years and 6-15 years old had 3.7- and 5.4-fold increase in odds, respectively, of high anti-SGE IgG compared to participants >15 years. Seropositivity to P. falciparum CSP, Rh2_2030, and SEA-1 antigens was significantly associated with high IgG response against SGE, and participant enrolment at elevations under 200 m was associated with higher anti-SGE IgG levels. The ability to approximate population exposure to malaria vectors through SGE serology data is very dependent by age categories, and SGE antigens can be easily integrated into a multiplex serological assay.
Collapse
Affiliation(s)
- Alicia Jaramillo-Underwood
- Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Daniel Impoinvil
- Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Alice Sutcliff
- Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Karen E. S. Hamre
- Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Vena Joseph
- Center for Applied Malaria Research and Evaluation, Department of Tropical Medicine, Tulane University School of Public Health and Tropical Medicine, New Orleans, Louisiana, USA
| | - Lotus van den Hoogen
- Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Jean Frantz Lemoine
- Programme National de Contrôle de la Malaria, Ministère de la Santé Publique et de la Population, Port-au-Prince, Haiti
| | - Ruth A. Ashton
- Center for Applied Malaria Research and Evaluation, Department of Tropical Medicine, Tulane University School of Public Health and Tropical Medicine, New Orleans, Louisiana, USA
| | - Michelle A. Chang
- Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Alexandre Existe
- Laboratorie National de Santé Publique, Ministère de la Santé Publique et de la Population, Port-au-Prince, Haiti
| | - Jacques Boncy
- Laboratorie National de Santé Publique, Ministère de la Santé Publique et de la Population, Port-au-Prince, Haiti
| | - Chris Drakeley
- Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Gillian Stresman
- Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Thomas Druetz
- Center for Applied Malaria Research and Evaluation, Department of Tropical Medicine, Tulane University School of Public Health and Tropical Medicine, New Orleans, Louisiana, USA
- Department of Social and Preventive Medicine, University of Montreal School of Public Health, Montreal, Québec, Canada
| | - Thomas Eisele
- Center for Applied Malaria Research and Evaluation, Department of Tropical Medicine, Tulane University School of Public Health and Tropical Medicine, New Orleans, Louisiana, USA
| | - Eric Rogier
- Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| |
Collapse
|
7
|
Kearney EA, Agius PA, Chaumeau V, Cutts JC, Simpson JA, Fowkes FJI. Anopheles salivary antigens as serological biomarkers of vector exposure and malaria transmission: A systematic review with multilevel modelling. eLife 2021; 10:e73080. [PMID: 34939933 PMCID: PMC8860437 DOI: 10.7554/elife.73080] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 12/21/2021] [Indexed: 12/25/2022] Open
Abstract
Background Entomological surveillance for malaria is inherently resource-intensive and produces crude population-level measures of vector exposure which are insensitive in low-transmission settings. Antibodies against Anopheles salivary proteins measured at the individual level may serve as proxy biomarkers for vector exposure and malaria transmission, but their relationship is yet to be quantified. Methods A systematic review of studies measuring antibodies against Anopheles salivary antigens (PROSPERO: CRD42020185449). Multilevel modelling (to account for multiple study-specific observations [level 1], nested within study [level 2], and study nested within country [level 3]) estimated associations between seroprevalence with Anopheles human biting rate (HBR) and malaria transmission measures. Results From 3981 studies identified in literature searches, 42 studies across 16 countries were included contributing 393 study-specific observations of anti-Anopheles salivary antibodies determined in 42,764 samples. A positive association between HBR (log transformed) and seroprevalence was found; overall a twofold (100% relative) increase in HBR was associated with a 23% increase in odds of seropositivity (OR: 1.23, 95% CI: 1.10-1.37; p<0.001). The association between HBR and Anopheles salivary antibodies was strongest with concordant, rather than discordant, Anopheles species. Seroprevalence was also significantly positively associated with established epidemiological measures of malaria transmission: entomological inoculation rate, Plasmodium spp. prevalence, and malarial endemicity class. Conclusions Anopheles salivary antibody biomarkers can serve as a proxy measure for HBR and malaria transmission, and could monitor malaria receptivity of a population to sustain malaria transmission. Validation of Anopheles species-specific biomarkers is important given the global heterogeneity in the distribution of Anopheles species. Salivary biomarkers have the potential to transform surveillance by replacing impractical, inaccurate entomological investigations, especially in areas progressing towards malaria elimination. Funding Australian National Health and Medical Research Council, Wellcome Trust.
Collapse
Affiliation(s)
- Ellen A Kearney
- The McFarlane Burnet Institute of Medical Research and Public HealthMelbourneAustralia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of MelbourneMelbourneAustralia
| | - Paul A Agius
- The McFarlane Burnet Institute of Medical Research and Public HealthMelbourneAustralia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of MelbourneMelbourneAustralia
- Department of Epidemiology and Preventive Medicine, Monash UniversityMelbourneAustralia
| | - Victor Chaumeau
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol UniversityMae SotThailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of OxfordOxfordUnited Kingdom
| | - Julia C Cutts
- The McFarlane Burnet Institute of Medical Research and Public HealthMelbourneAustralia
- Department of Medicine at the Doherty Institute, The University of MelbourneMelbourneAustralia
| | - Julie A Simpson
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of MelbourneMelbourneAustralia
| | - Freya JI Fowkes
- The McFarlane Burnet Institute of Medical Research and Public HealthMelbourneAustralia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of MelbourneMelbourneAustralia
- Department of Epidemiology and Preventive Medicine, Monash UniversityMelbourneAustralia
| |
Collapse
|
8
|
Use of anti-gSG6-P1 IgG as a serological biomarker to assess temporal exposure to Anopheles' mosquito bites in Lower Moshi. PLoS One 2021; 16:e0259131. [PMID: 34705869 PMCID: PMC8550589 DOI: 10.1371/journal.pone.0259131] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 10/13/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Malaria prevalence in the highlands of Northern Tanzania is currently below 1% making this an elimination prone setting. As climate changes may facilitate increasing distribution of Anopheles mosquitoes in such settings, there is a need to monitor changes in risks of exposure to ensure that established control tools meet the required needs. This study explored the use of human antibodies against gambiae salivary gland protein 6 peptide 1 (gSG6-P1) as a biomarker of Anopheles exposure and assessed temporal exposure to mosquito bites in populations living in Lower Moshi, Northern Tanzania. METHODS Three cross-sectional surveys were conducted in 2019: during the dry season in March, at the end of the rainy season in June and during the dry season in September. Blood samples were collected from enrolled participants and analysed for the presence of anti-gSG6-P1 IgG. Mosquitoes were sampled from 10% of the participants' households, quantified and identified to species level. Possible associations between gSG6-P1 seroprevalence and participants' characteristics were determined. RESULTS The total number of Anopheles mosquitoes collected was highest during the rainy season (n = 1364) when compared to the two dry seasons (n = 360 and n = 1075, respectively). The gSG6-P1 seroprevalence increased from 18.8% during the dry season to 25.0% during the rainy season (χ2 = 2.66; p = 0.103) followed by a significant decline to 11.0% during the next dry season (χ2 = 12.56; p = 0.001). The largest number of mosquitoes were collected in one village (Oria), but the seroprevalence was significantly lower among the residents as compared to the rest of the villages (p = 0.039), explained by Oria having the highest number of participants owning and using bed nets. Both individual and household gSG6-P1 IgG levels had no correlation with numbers of Anopheles mosquitoes collected. CONCLUSION Anti-gSG6-P1 IgG is a potential tool in detecting and distinguishing temporal and spatial variations in exposure to Anopheles mosquito bites in settings of extremely low malaria transmission where entomological tools may be obsolete. However studies with larger sample size and extensive mosquito sampling are warranted to further explore the association between this serological marker and abundance of Anopheles mosquito.
Collapse
|
9
|
Cheteug G, Elanga-Ndille E, Donkeu C, Ekoko W, Oloume M, Essangui E, Nwane P, NSango SE, Etang J, Wanji S, Ayong L, Eboumbou Moukoko CE. Preliminary validation of the use of IgG antibody response to Anopheles gSG6-p1 salivary peptide to assess human exposure to malaria vector bites in two endemic areas of Cameroon in Central Africa. PLoS One 2020; 15:e0242510. [PMID: 33382730 PMCID: PMC7774847 DOI: 10.1371/journal.pone.0242510] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 11/03/2020] [Indexed: 11/25/2022] Open
Abstract
The specific immune response to the Anopheles salivary peptide could be a pertinent and complementary tool to assess the risk of malaria transmission and the effectiveness of vector control strategies. This study aimed to obtain first reliable data on the current state of the Anopheles gSG6-P1 biomarker for assess the level of exposure to Anopheles bites in high malaria endemic areas in Cameroon. Blood smears were collected from people living in the neighborhoods of Youpwe (suburban area, continental) and Manoka (rural area, Island), both areas in the coastal region of Cameroon. Malaria infection was determined using thick blood smear microscopy, whereas the level of specific IgG response to gSG-P1 peptide was assessed by enzyme-linked immunosorbent assay from the dried blood spots. Of 266 (153 from Youpwe, 113 from Manoka) malaria endemic residents (mean age: 22.8±19.8 years, age range: 6 months–94 years, male/female sex ratio: 1/1.2, with Manoka mean age: 23.71±20.53, male/female sex ratio:1/1.13 and Youpwe mean age: 22.12±19.22, male/female sex ratio 1/0.67) randomly included in the study, Plasmodium infection prevalence was significantly higher in Manoka than in Youpwe (64.6% vs 12,4%, p = 0.0001). The anti-gSG6-P1 IgG response showed a high inter-individual heterogeneity and was significantly higher among individuals from Manoka than those from Youpwe (p = 0.023). Malaria infected individuals presented a higher anti-gSG6-P1 IgG antibody response than non-infected (p = 0.0004). No significant difference in the level of specific IgG response to gSG-P1 was observed according to long lasting insecticidal nets use. Taken together, the data revealed that human IgG antibody response to Anopheles gSG-P1 salivary peptide could be also used to assess human exposure to malaria vectors in Central African region. This finding strengthens the relevance of this candidate biomarker to be used for measuring human exposure to malaria vectors worldwide.
Collapse
Affiliation(s)
- Glwadys Cheteug
- Malaria Research Unit, Centre Pasteur Cameroon, Yaounde, Cameroon
- Department of Microbiology and Parasitology, Faculty of Sciences, University of Buea, Buea, Cameroon
| | | | - Christiane Donkeu
- Malaria Research Unit, Centre Pasteur Cameroon, Yaounde, Cameroon
- Department of Animal Biology and Physiology, Faculty of Sciences, University of Yaounde, Yaounde, Cameroon
| | - Wolfgang Ekoko
- Parasitology and Entomology Research Unit, Department of Animal Biology and Organisms, Faculty of Sciences, University of Douala, Douala, Cameroon
| | - Martine Oloume
- Department of hematology, Centre Pasteur of Cameroon, Yaoundé, Cameroon
| | - Estelle Essangui
- Malaria Research Unit, Centre Pasteur Cameroon, Yaounde, Cameroon
- Parasitology and Entomology Research Unit, Department of Animal Biology and Organisms, Faculty of Sciences, University of Douala, Douala, Cameroon
| | - Philippe Nwane
- Biological Sciences Department, Faculty of Medicine and Pharmaceutical Sciences, University of Douala, Douala, Cameroon
| | - Sandrine Eveline NSango
- Malaria Research Unit, Centre Pasteur Cameroon, Yaounde, Cameroon
- Laboratory of Parasitology, Mycology and Virology, Postgraduate Training Unit for Health Sciences, Postgraduate School for Pure and Applied Sciences, University of Douala, Douala, Cameroon
| | - Josiane Etang
- Biological Sciences Department, Faculty of Medicine and Pharmaceutical Sciences, University of Douala, Douala, Cameroon
- Organisation de Coordination pour la Lutte contre les Endemies en Afrique Central, Yaounde, Cameroon
| | - Samuel Wanji
- Department of Microbiology and Parasitology, Faculty of Sciences, University of Buea, Buea, Cameroon
| | - Lawrence Ayong
- Malaria Research Unit, Centre Pasteur Cameroon, Yaounde, Cameroon
| | - Carole Else Eboumbou Moukoko
- Malaria Research Unit, Centre Pasteur Cameroon, Yaounde, Cameroon
- Biological Sciences Department, Faculty of Medicine and Pharmaceutical Sciences, University of Douala, Douala, Cameroon
- Laboratory of Parasitology, Mycology and Virology, Postgraduate Training Unit for Health Sciences, Postgraduate School for Pure and Applied Sciences, University of Douala, Douala, Cameroon
- * E-mail: ,
| |
Collapse
|
10
|
Montiel J, Carbal LF, Tobón-Castaño A, Vásquez GM, Fisher ML, Londono-Rentería B. IgG antibody response against Anopheles salivary gland proteins in asymptomatic Plasmodium infections in Narino, Colombia. Malar J 2020; 19:42. [PMID: 31973737 PMCID: PMC6979332 DOI: 10.1186/s12936-020-3128-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 01/16/2020] [Indexed: 12/14/2022] Open
Abstract
Background The humoral immune response against Anopheles salivary glands proteins in the vertebrate host can reflect the intensity of exposure to Anopheles bites and the risk of Plasmodium infection. In Colombia, the identification of exposure biomarkers is necessary due to the several Anopheles species circulating. The purpose of this study was to evaluate risk of malaria infection by measuring antibody responses against salivary glands extracts from Anopheles (Nyssorhynchus) albimanus and Anopheles (Nys.) darlingi and also against the gSG6-P1 peptide of Anopheles gambiae in people residing in a malaria endemic area in the Colombian Pacific coast. Methods Dried blood spots samples were eluted to measure the IgG antibodies against salivary gland extracts of An. albimanus strains STECLA (STE) and Cartagena (CTG) and An. darlingi and the gSG6-P1 peptide by ELISA in uninfected people and microscopic and submicroscopic Plasmodium carriers from the Colombia Pacific Coast. A multiple linear mixed regression model, Spearman correlation, and Mann–Whitney U-test were used to analyse IgG data. Results Significant differences in specific IgG levels were detected between infected and uninfected groups for salivary glands extracts from An. albimanus and for gSG6-P1, also IgG response to CTG and gSG6-P1 peptide were positively associated with the IgG response to Plasmodium falciparum in the mixed model. Conclusion The CTG and STE An. albimanus salivary glands extracts are a potential source of new Anopheles salivary biomarkers to identify exposure to the main malaria vector and to calculate risk of disease in the Colombian Pacific coast. Also, the gSG6-P1 peptide has the potential to quantify human exposure to the subgenus Anopheles vectors in the same area.
Collapse
Affiliation(s)
- Jehidys Montiel
- Grupo Malaria, Universidad de Antioquia, Medellín, Colombia.,Department of Entomology, Kansas State University, Manhattan, KS, USA
| | - Luisa F Carbal
- Grupo Malaria, Universidad de Antioquia, Medellín, Colombia
| | - Alberto Tobón-Castaño
- Grupo Malaria, Universidad de Antioquia, Medellín, Colombia.,Facultad de Medicina, Instituto de Investigaciones Medicas, Universidad de Antioquia, Medellín, Colombia
| | | | | | | |
Collapse
|
11
|
Buezo Montero S, Gabrieli P, Severini F, Picci L, Di Luca M, Forneris F, Facchinelli L, Ponzi M, Lombardo F, Arcà B. Analysis in a murine model points to IgG responses against the 34k2 salivary proteins from Aedes albopictus and Aedes aegypti as novel promising candidate markers of host exposure to Aedes mosquitoes. PLoS Negl Trop Dis 2019; 13:e0007806. [PMID: 31618201 PMCID: PMC6816578 DOI: 10.1371/journal.pntd.0007806] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 10/28/2019] [Accepted: 09/25/2019] [Indexed: 01/22/2023] Open
Abstract
Background Aedes mosquitoes are vectors of arboviral diseases of great relevance for public health. The recent outbreaks of dengue, Zika, chikungunya and the rapid worldwide spreading of Aedes albopictus emphasize the need for improvement of vector surveillance and control. Host antibody response to mosquito salivary antigens is emerging as a relevant additional tool to directly assess vector-host contact, monitor efficacy of control interventions and evaluate risk of arboviral transmission. Methodology/principal findings Groups of four BALB/c mice were immunized by exposure to bites of either Aedes albopictus or Aedes aegypti. The 34k2 salivary proteins from Ae. albopictus (al34k2) and Ae. aegypti (ae34k2) were expressed in recombinant form and Ae. albopictus salivary peptides were designed through B-cell epitopes prediction software. IgG responses to salivary gland extracts, peptides, al34k2 and ae34k2 were measured in exposed mice. Both al34k2 and ae34k2, with some individual and antigen-specific variation, elicited a clearly detectable antibody response in immunized mice. Remarkably, the two orthologous proteins showed very low level of immune cross-reactivity, suggesting they may eventually be developed as species-specific markers of host exposure. The al34k2 immunogenicity and the limited immune cross-reactivity to ae34k2 were confirmed in a single human donor hyperimmune to Ae. albopictus saliva. Conclusions/significance Our study shows that exposure to bites of Ae. albopictus or Ae. aegypti evokes in mice species-specific IgG responses to al34k2 or ae34k2, respectively. Deeper understanding of duration of antibody response and validation in natural conditions of human exposure to Aedes mosquitoes are certainly needed. However, our findings point to the al34k2 salivary protein as a promising potential candidate for the development of immunoassays to evaluate human exposure to Ae. albopictus. This would be a step forward in the establishment of a serological toolbox for the simultaneous assessment of human exposure to Aedes vectors and the pathogens they transmit. Taking advantage of several factors, as worldwide trading, climatic changes and urbanization, Aedes mosquitoes are impressively expanding their geographic distribution. A paradigm is provided by the rapid global spreading of Aedes albopictus, a species that is a competent vector of several arboviral diseases (e.g. dengue, Zika, chikungunya) and has been responsible of quite a few outbreaks in the last decade. Historically, vector control always played a pivotal role for the containment of arthropod-borne diseases, and this appears especially crucial for arboviral diseases for which no effective vaccines or specific medications are available. Currently, host exposure to mosquitoes is indirectly evaluated by entomological methods; however, exploitation of human immune responses to mosquito salivary proteins is emerging as a relevant additional tool, with important epidemiological implications for the evaluation of mosquito-borne disease risk. This study provides preliminary but solid indications that the 34k2 salivary proteins from Ae. albopictus and Aedes aegypti may be suitable candidates for the development of serological assays to evaluate spatial and/or temporal variation of human exposure to Aedes vectors. Combined to the presently available tools to assess arboviral exposure/infection, this may be of great help for the development of a serological toolbox allowing for the simultaneous determination of human exposure to Aedes vectors and to the pathogens they transmit.
Collapse
Affiliation(s)
- Sara Buezo Montero
- Department of Public Health and Infectious Diseases, Sapienza University, Rome, Italy
| | - Paolo Gabrieli
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, Italy
| | - Francesco Severini
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Leonardo Picci
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Marco Di Luca
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Federico Forneris
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, Italy
| | - Luca Facchinelli
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Marta Ponzi
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Fabrizio Lombardo
- Department of Public Health and Infectious Diseases, Sapienza University, Rome, Italy
| | - Bruno Arcà
- Department of Public Health and Infectious Diseases, Sapienza University, Rome, Italy
- * E-mail:
| |
Collapse
|
12
|
James S, Collins FH, Welkhoff PA, Emerson C, Godfray HCJ, Gottlieb M, Greenwood B, Lindsay SW, Mbogo CM, Okumu FO, Quemada H, Savadogo M, Singh JA, Tountas KH, Touré YT. Pathway to Deployment of Gene Drive Mosquitoes as a Potential Biocontrol Tool for Elimination of Malaria in Sub-Saharan Africa: Recommendations of a Scientific Working Group †. Am J Trop Med Hyg 2018; 98:1-49. [PMID: 29882508 PMCID: PMC5993454 DOI: 10.4269/ajtmh.18-0083] [Citation(s) in RCA: 135] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 04/04/2018] [Indexed: 12/22/2022] Open
Abstract
Gene drive technology offers the promise for a high-impact, cost-effective, and durable method to control malaria transmission that would make a significant contribution to elimination. Gene drive systems, such as those based on clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR associated protein, have the potential to spread beneficial traits through interbreeding populations of malaria mosquitoes. However, the characteristics of this technology have raised concerns that necessitate careful consideration of the product development pathway. A multidisciplinary working group considered the implications of low-threshold gene drive systems on the development pathway described in the World Health Organization Guidance Framework for testing genetically modified (GM) mosquitoes, focusing on reduction of malaria transmission by Anopheles gambiae s.l. mosquitoes in Africa as a case study. The group developed recommendations for the safe and ethical testing of gene drive mosquitoes, drawing on prior experience with other vector control tools, GM organisms, and biocontrol agents. These recommendations are organized according to a testing plan that seeks to maximize safety by incrementally increasing the degree of human and environmental exposure to the investigational product. As with biocontrol agents, emphasis is placed on safety evaluation at the end of physically confined laboratory testing as a major decision point for whether to enter field testing. Progression through the testing pathway is based on fulfillment of safety and efficacy criteria, and is subject to regulatory and ethical approvals, as well as social acceptance. The working group identified several resources that were considered important to support responsible field testing of gene drive mosquitoes.
Collapse
Affiliation(s)
- Stephanie James
- Foundation for the National Institutes of Health, Bethesda, Maryland
| | | | | | | | | | - Michael Gottlieb
- Foundation for the National Institutes of Health, Bethesda, Maryland
| | - Brian Greenwood
- London School of Hygiene & Tropical Medicine, London, United Kingdom
| | | | | | - Fredros O. Okumu
- Ifakara Health Institute, Ifakara, Tanzania
- University of Glasgow, Glasgow, Scotland
- University of the Witwatersrand, Johannesburg, South Africa
| | - Hector Quemada
- Donald Danforth Plant Science Center, Saint Louis, Missouri
| | - Moussa Savadogo
- New Partnership for Africa’s Development, Ouagadougou, Burkina Faso
| | - Jerome A. Singh
- Centre for the AIDS Programme of Research in South Africa, Durban, KwaZulu-Natal, South Africa
| | - Karen H. Tountas
- Foundation for the National Institutes of Health, Bethesda, Maryland
| | - Yeya T. Touré
- University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| |
Collapse
|
13
|
Perraut R, Varela ML, Loucoubar C, Niass O, Sidibé A, Tall A, Trape JF, Wotodjo AN, Mbengue B, Sokhna C, Vigan-Womas I, Touré A, Richard V, Mercereau-Puijalon O. Serological signatures of declining exposure following intensification of integrated malaria control in two rural Senegalese communities. PLoS One 2017; 12:e0179146. [PMID: 28609450 PMCID: PMC5469466 DOI: 10.1371/journal.pone.0179146] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 05/24/2017] [Indexed: 01/26/2023] Open
Abstract
Recent control scale-up has reduced malaria in many areas but new tools are needed to monitor further progress, including indicators of decreasing exposure to parasite infection. Although serology is considered a promising approach in this regard, the serological impact of control interventions has been so far studied using indirect quantification of exposure. Cohort surveys concomitantly recording entomological and malariometric indices have been conducted in two Senegalese settings where supervised control intensification implemented in 2006 shifted malaria from historically holoendemic in Dielmo and mesoendemic in Ndiop to hypoendemic in both settings by 2013. We analyse here serological signatures of declining transmission using archived blood samples. Responses against ten pre-erythrocytic and erythrocytic antigens from Plasmodium falciparum and P. malariae alongside an Anopheles gambiae salivary gland antigen were analysed. Cross-sectional surveys conducted before (2002) and after (2013) control intensification showed a major impact of control intensification in both settings. The age-associated prevalence, magnitude and breadth of the IgG responses to all antigens were village-specific in 2002. In 2013, remarkably similar patterns were observed in both villages, with marginal responses against all parasite antigens in the 0-5y children and reduced responses in all previously seropositive age groups. Waning of humoral responses of individuals who were immune at the time of control intensification was studied from 2006 to 2013 using yearly samplings. Longitudinal data were analysed using the Cochran-Armittage trend test and an age-related reversible catalytic conversion model. This showed that the antigen-specific antibody declines were more rapid in older children than adults. There was a strong association of antibody decline with the declining entomological inoculation rate. We thus identified serological markers of declining exposure to malaria parasites that should help future monitoring of progress towards malaria elimination.
Collapse
Affiliation(s)
- Ronald Perraut
- Institut Pasteur de Dakar, Unité d’Immunologie, Dakar, Sénégal
- * E-mail:
| | - Marie-Louise Varela
- Institut Pasteur de Dakar, G4 Biostatistiques Bioinformatique et Modélisation, Dakar, Sénégal
| | - Cheikh Loucoubar
- Institut Pasteur de Dakar, G4 Biostatistiques Bioinformatique et Modélisation, Dakar, Sénégal
| | - Oumy Niass
- Institut Pasteur de Dakar, Unité d’Immunologie, Dakar, Sénégal
| | - Awa Sidibé
- Institut Pasteur de Dakar, Unité d’Immunologie, Dakar, Sénégal
| | - Adama Tall
- Institut Pasteur de Dakar, Unité d’Epidémiologie, Dakar, Sénégal
| | | | | | - Babacar Mbengue
- Institut Pasteur de Dakar, Unité d’Immunogénétique, Dakar, Sénégal
| | - Cheikh Sokhna
- Institut de Recherche pour le Développement (IRD), URMITE, Dakar, Sénégal
| | - Inès Vigan-Womas
- Institut Pasteur de Madagascar, Unité d’Immunologie des Maladies Infectieuses, Antanarivo, Madagascar
- Institut Pasteur, Department of Parasitology and Insect Vectors, 25 Rue du Dr Roux, Paris, France
| | - Aissatou Touré
- Institut Pasteur de Dakar, Unité d’Immunologie, Dakar, Sénégal
| | - Vincent Richard
- Institut Pasteur de Dakar, Unité d’Epidémiologie, Dakar, Sénégal
| | - Odile Mercereau-Puijalon
- Institut Pasteur, Department of Parasitology and Insect Vectors, 25 Rue du Dr Roux, Paris, France
| |
Collapse
|
14
|
Ya-Umphan P, Cerqueira D, Parker DM, Cottrell G, Poinsignon A, Remoue F, Brengues C, Chareonviriyaphap T, Nosten F, Corbel V. Use of an Anopheles Salivary Biomarker to Assess Malaria Transmission Risk Along the Thailand-Myanmar Border. J Infect Dis 2017; 215:396-404. [PMID: 27932615 PMCID: PMC5853934 DOI: 10.1093/infdis/jiw543] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 11/15/2016] [Indexed: 11/13/2022] Open
Abstract
Background The modalities of malaria transmission along the Thailand-Myanmar border are poorly understood. Here we address the relevance of using a specific Anopheles salivary biomarker to measure the risk among humans of exposure to Anopheles bites. Methods Serologic surveys were conducted from May 2013 to December 2014 in 4 sentinel villages. More than 9400 blood specimens were collected in filter papers from all inhabitants at baseline and then every 3 months thereafter, for up to 18 months, for analysis by enzyme-linked immunosorbent assay. The relationship between the intensity of the human antibody response and entomological indicators of transmission (human biting rates and entomological inoculation rates [EIRs]) was studied using a multivariate 3-level mixed model analysis. Heat maps for human immunoglobulin G (IgG) responses for each village and survey time point were created using QGIS 2.4. Results The levels of IgG response among participants varied significantly according to village, season, and age (P<.001) and were positively associated with the abundance of total Anopheles species and primary malaria vectors and the EIR (P<.001). Spatial clusters of high-IgG responders were identified across space and time within study villages. Conclusions The gSG6-P1 biomarker has great potential to address the risk of transmission along the Thailand-Myanmar border and represents a promising tool to guide malaria interventions.
Collapse
Affiliation(s)
- Phubeth Ya-Umphan
- Institut de Recherche pour le Développement, Maladies Infectieuses et Vecteurs, Ecologie, Génétique, Evolution et Contrôle, Montpellier, and
- Department of Entomology, Faculty of Agriculture, and
| | - Dominique Cerqueira
- Department of Entomology, Faculty of Agriculture, and
- Shoklo Malaria Research Unit, Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand; and
| | - Daniel M Parker
- Shoklo Malaria Research Unit, Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand; and
| | - Gilles Cottrell
- Institut de Recherche pour le Développement, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Anne Poinsignon
- Institut de Recherche pour le Développement, Maladies Infectieuses et Vecteurs, Ecologie, Génétique, Evolution et Contrôle, Montpellier, and
| | - Franck Remoue
- Institut de Recherche pour le Développement, Maladies Infectieuses et Vecteurs, Ecologie, Génétique, Evolution et Contrôle, Montpellier, and
| | - Cecile Brengues
- Institut de Recherche pour le Développement, Maladies Infectieuses et Vecteurs, Ecologie, Génétique, Evolution et Contrôle, Montpellier, and
| | - Theeraphap Chareonviriyaphap
- Department of Entomology, Faculty of Agriculture, and
- Center for Advanced Studies for Agriculture and Food, Kasetsart University Institute for Advanced Studies, Kasetsart University, Bangkok, and
| | - Francois Nosten
- Shoklo Malaria Research Unit, Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand; and
- Nuffield Department of Medicine, Centre for Tropical Medicine, University of Oxford, United Kingdom
| | - Vincent Corbel
- Institut de Recherche pour le Développement, Maladies Infectieuses et Vecteurs, Ecologie, Génétique, Evolution et Contrôle, Montpellier, and
- Institut de Recherche pour le Développement, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| |
Collapse
|
15
|
Noukpo MH, Damien GB, Elanga-N'Dille E, Sagna AB, Drame PM, Chaffa E, Boussari O, Corbel V, Akogbéto M, Remoue F. Operational Assessment of Long-Lasting Insecticidal Nets by Using an Anopheles Salivary Biomarker of Human-Vector Contact. Am J Trop Med Hyg 2016; 95:1376-1382. [PMID: 27928087 DOI: 10.4269/ajtmh.15-0541] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 08/19/2016] [Indexed: 01/10/2023] Open
Abstract
The widespread implementation of long-lasting insecticidal nets (LLINs) is a major intervention method for malaria control. Although the LLINs coverage increases, information available on the physical integrity (PI) of implemented LLINs is incomplete. This study aimed to validate human IgG antibody (Ab) response to Anopheles gSG6-P1 salivary peptide antigen, previously demonstrated as a pertinent biomarker of human exposure to Anopheles bites, for evaluating the PI of LLINs in field conditions. We analyzed data from 262 randomly selected children (< 5 years of age) in health districts of Benin. Anti-gSG6-P1 IgG responses were assessed and compared with the PI of LLINs that these same children slept under, and evaluated by the hole index (HI). Specific IgG levels were positively correlated to LLINs HI (r = 0.342; P < 0.0001). According to antipeptide IgG level (i.e., intensity of vector exposure), two categories of LLINs PI were defined: 1) group "HI: [0, 100]" corresponding to LLINs with "good" PI and 2) "HI > 100" corresponding to LLINs with "bad" PI. These results suggest that human Ab response to salivary peptide could be a complementary tool to help defining a standardized threshold of efficacy for LLINs under field use.
Collapse
Affiliation(s)
- Mahoutin H Noukpo
- Centre de Recherche Entomologique de Cotonou (CREC), Cotonou, Bénin.,UMR IRD 224-CNRS 5290-Universités Montpellier Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle (MIVEGEC), Cotonou, Bénin
| | - Georgia B Damien
- Centre de Recherche Entomologique de Cotonou (CREC), Cotonou, Bénin.,UMR IRD 224-CNRS 5290-Universités Montpellier Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle (MIVEGEC), Cotonou, Bénin
| | - Emmanuel Elanga-N'Dille
- UMR IRD 224-CNRS 5290-Universités Montpellier Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle (MIVEGEC), Cotonou, Bénin
| | - André B Sagna
- Institut Pierre Richet (IPR), Institut Nationale de la Santé Publique (INSP), Bouaké, Côte d'Ivoire
| | - Papa M Drame
- UMR IRD 224-CNRS 5290-Universités Montpellier Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle (MIVEGEC), Cotonou, Bénin
| | - Evelyne Chaffa
- Programme National de Lutte Contre le Paludisme (PNLP), Ministère de la Santé, Cotonou, Bénin
| | - Olayidé Boussari
- Centre de Recherche Entomologique de Cotonou (CREC), Cotonou, Bénin.,UMR IRD 224-CNRS 5290-Universités Montpellier Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle (MIVEGEC), Cotonou, Bénin
| | - Vincent Corbel
- UMR IRD 224-CNRS 5290-Universités Montpellier Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle (MIVEGEC), Cotonou, Bénin.,Department of Entomology, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Nakhon Pathom, Thailand
| | - Martin Akogbéto
- Centre de Recherche Entomologique de Cotonou (CREC), Cotonou, Bénin.,Faculté des Sciences et Techniques (FAST), Université d'Abomey Calavi (UAC), Abomey, Bénin
| | - Franck Remoue
- Centre de Recherche Entomologique de Cotonou (CREC), Cotonou, Bénin. .,UMR IRD 224-CNRS 5290-Universités Montpellier Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle (MIVEGEC), Cotonou, Bénin.,Institut Pierre Richet (IPR), Institut Nationale de la Santé Publique (INSP), Bouaké, Côte d'Ivoire
| |
Collapse
|
16
|
Koffi D, Touré AO, Varela ML, Vigan-Womas I, Béourou S, Brou S, Ehouman MF, Gnamien L, Richard V, Djaman JA, Perraut R. Analysis of antibody profiles in symptomatic malaria in three sentinel sites of Ivory Coast by using multiplex, fluorescent, magnetic, bead-based serological assay (MAGPIX™). Malar J 2015; 14:509. [PMID: 26692284 PMCID: PMC4687342 DOI: 10.1186/s12936-015-1043-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 12/09/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Advances in malaria control have reduced the burden of disease resulting from exposure to parasite infections. The consequences on naturally acquired immunity are unclear. A magnetic bead-based immunoassay (MBA) to assess antibody levels in populations living in endemic areas was previously evaluated. In this study, the effect of clinical attacks on immunity was analysed in three sentinel sites of Ivory Coast. METHODS Recombinant proteins or peptides derived from liver or blood stage antigens of Plasmodium falciparum (CSP, LSA141, LSA3, SALSA, PF13-DBL1α1, GLURP, AMA1, MSP1p19, MSP4p20), the CSP of Plasmodium malariae and the salivary glands antigen of Anopheles gambiae (gSG6) were covalently linked to a colour-coded microsphere (Luminex™ beads) for the multiplex assay. ELISA was used for whole parasite extract antigen. Blood samples (n = 94) of patients consulting for symptomatic malaria attacks and living in three different malaria endemic settings (rural and periurban) were analysed. RESULTS Highly variable seroprevalence of antibody responses against parasite antigens was found ranging from 3 (gSG6) to 97% (MSP4p20). A marked prevalence and significantly higher level of antibodies was found in patients from the rural site (Korhogo), those harbouring the lowest level of parasitaemia. The use of whole schizont extract could not discriminate immunity level, contrary to parasite-derived recombinant proteins or peptides. Prevalence of responders to LSA141 and levels of antibodies to PF13 were significantly different between the three settings. Moreover, the post-treatment clearance of parasites was clearly associated with a significantly higher level of antibody response for almost 50% of the parasite antigens tested. CONCLUSION The multiplex MBA-Magpix technology assay provides an accurate high throughput monitoring of parasite-specific antibodies during symptomatic malaria. The levels of antibody responses may provide a risk criterion with respect to the degree of parasitic infection. Additionally, they can be used as an indicator in the implementation of malaria prevention and local control strategies.
Collapse
Affiliation(s)
- David Koffi
- Unité de Paludologie, Institut Pasteur de Côte d'Ivoire, Abidjan, Côte d'Ivoire. .,UFR Biosciences, Université Félix Houphouet Boigny, Abidjan, Côte d'Ivoire.
| | - André Offianan Touré
- Unité de Paludologie, Institut Pasteur de Côte d'Ivoire, Abidjan, Côte d'Ivoire.
| | | | - Inès Vigan-Womas
- Unité d'Immunologie des Maladies Infectieuses, Institut Pasteur de Madagascar, Antananarivo, Madagascar.
| | - Sylvain Béourou
- Unité de Paludologie, Institut Pasteur de Côte d'Ivoire, Abidjan, Côte d'Ivoire.
| | - Somela Brou
- UFR Biosciences, Université Félix Houphouet Boigny, Abidjan, Côte d'Ivoire.
| | | | - Laeticia Gnamien
- UFR Biosciences, Université Félix Houphouet Boigny, Abidjan, Côte d'Ivoire.
| | - Vincent Richard
- Unité d'Epidémiologie, Institut Pasteur de Dakar, Dakar, Sénégal.
| | | | - Ronald Perraut
- Unité d'Immunologie, Institut Pasteur de Dakar, Dakar, Sénégal.
| |
Collapse
|