1
|
dos Santos F, Xu M, Bravo de Guenni L, Lourenço-de-Oliveira R, Rubio-Palis Y. Characterization of larval habitats of Anopheles (Nyssorhynchus) darlingi and associated species in malaria areas in western Brazilian Amazon. Mem Inst Oswaldo Cruz 2024; 119:e240116. [PMID: 39383404 PMCID: PMC11458182 DOI: 10.1590/0074-02760240116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 09/04/2024] [Indexed: 10/11/2024] Open
Abstract
BACKGROUND Anopheles darlingi is the most efficient vector of malaria parasites in the Neotropics. Nevertheless, the specificities of its larval habitats are still poorly known. OBJECTIVES Characterize permanent larval habitats, and population dynamics of An. darlingi and other potential vectors in relation to climate, physicochemical variables, insect fauna and malaria cases. METHODS A 14-month longitudinal study was conducted in Porto Velho, Rondônia, western Brazilian Amazon. Monthly, 21 permanent water bodies were sampled. Immature anophelines and associated fauna were collected, physicochemical characteristics, and climate variables were recorded and analyzed. FINDINGS Five types of habitats were identified: lagoon, stream, stream combined with lagoon, stream combined with dam, and fishpond. A total of 60,927 anophelines were collected. The most abundant species in all habitats were Anopheles braziliensis and An. darlingi. The highest density was found in the lagoon, while streams had the highest species richness. Abundance was higher during the transition period wet-dry season. There was a lag of respectively four and five months between the peak of rainfall and the Madeira River level and the highest abundance of An. darlingi larvae, which were positively correlated with habitats partially shaded, pH close to neutrality, increase dissolved oxygen and sulphates. MAIN CONCLUSIONS The present study provides data on key factors defining permanent larval habitats for the surveillance of An. darlingi and other potential vectors as well as a log-linear Negative Binomial model based on immature mosquito abundance and climate variables to predict the increase in the number of malaria cases.
Collapse
|
2
|
Altamiranda-Saavedra M, Naranjo-Díaz N, Conn JE, Correa MM. Entomological parameters and population structure at a microgeographic scale of the main Colombian malaria vectors Anopheles albimanus and Anopheles nuneztovari. PLoS One 2023; 18:e0280066. [PMID: 36607981 PMCID: PMC9821454 DOI: 10.1371/journal.pone.0280066] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 12/20/2022] [Indexed: 01/07/2023] Open
Abstract
Population subdivision among several neotropical malaria vectors has been widely evaluated; however, few studies have analyzed population variation at a microgeographic scale, wherein local environmental variables may lead to population differentiation. The aim of the present study was to evaluate the genetic and geometric morphometric structure of Anopheles nuneztovari and Anopheles albimanus in endemic localities of northwestern Colombia. Genetic and phenetic structures were evaluated using microsatellites markers and wing geometric morphometrics, respectively. In addition, entomological indices of importance in transmission were calculated. Results showed that the main biting peaks of Anopheles nuneztovari were between 20:00 and 22:00, whereas Anopheles albimanus exhibited more variation in biting times among localities. Infection in An. nuneztovari by Plasmodium spp. (IR: 4.35%) and the annual entomological inoculation rate (30.31), indicated high vector exposure and local transmission risk. We did not detect Plasmodium-infected An. albimanus in this study. In general, low genetic and phenetic subdivision among the populations of both vectors was detected using a combination of phenotypic, genetic and environmental data. The results indicated high regional gene flow, although local environmental characteristics may be influencing the wing conformation differentiation and behavioral variation observed in An. albimanus. Furthermore, the population subdivision detected by microsatellite markers for both species by Bayesian genetic analysis provides a more accurate picture of the current genetic structure in comparison to previous studies. Finally, the biting behavior variation observed for both vectors among localities suggests the need for continuous malaria vector surveys covering the endemic region to implement the most effective integrated local control interventions.
Collapse
Affiliation(s)
- Mariano Altamiranda-Saavedra
- Grupo de Microbiología Molecular, Escuela de Microbiología, Universidad de Antioquia, Medellín, Colombia
- Grupo de Investigación Bioforense, Tecnológico de Antioquia, Medellín, Colombia
| | - Nelson Naranjo-Díaz
- Grupo de Microbiología Molecular, Escuela de Microbiología, Universidad de Antioquia, Medellín, Colombia
- Grupo de Investigación Bioforense, Tecnológico de Antioquia, Medellín, Colombia
| | - Jan E. Conn
- New York State Department of Health, Wadsworth Center, Albany, NY, United States of America
- Department of Biomedical Sciences, School of Public Health, State University of New York-Albany, Albany, NY, United States of America
| | - Margarita M. Correa
- Grupo de Microbiología Molecular, Escuela de Microbiología, Universidad de Antioquia, Medellín, Colombia
- * E-mail:
| |
Collapse
|
3
|
Scarpassa VM, Batista ET, Ferreira VDC, Alvesdos Santos Neto V, Roque RA, Ferreira FADS, da Costa FM. DNA barcoding suggests new species for the Mansonia subgenus (Mansonia, Mansoniini, Culicidae, Diptera) in the area surrounding the Jirau hydroelectric dam, Porto Velho municipality, Rondônia state, Brazil. Acta Trop 2022; 233:106574. [DOI: 10.1016/j.actatropica.2022.106574] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/24/2022] [Accepted: 06/25/2022] [Indexed: 11/16/2022]
|
4
|
Sousa-Paula LCD, Pessoa FAC, Otranto D, Dantas-Torres F. Beyond taxonomy: species complexes in New World phlebotomine sand flies. MEDICAL AND VETERINARY ENTOMOLOGY 2021; 35:267-283. [PMID: 33480064 DOI: 10.1111/mve.12510] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 12/21/2020] [Accepted: 01/06/2021] [Indexed: 06/12/2023]
Abstract
A species complex (= species group, species series) is an assemblage of species, which are related morphologically and phylogenetically. Recent research has revealed several arthropod vector species that were believed to be a single nominal species actually representing a group of closely related species, which are sometimes morphologically indistinguishable at one or more developmental stages. In some instances, differences in terms of vector competence, capacity, or both have been recorded. It highlights the importance of detecting and studying species complexes to improve our understanding of pathogen transmission patterns, which may be vectored more or less efficiently by different species within the complex. Considering more than 540 species, about one-third of the phlebotomine sand flies in the New World present males and/or females morphologically indistinguishable to one or more species. Remarkably, several of these species may act in transmission of pathogenic agents. In this article, we review recent research on species complexes in phlebotomine sand flies from the Americas. Possible practical implications of recently acquired knowledge and future research needs are also discussed.
Collapse
Affiliation(s)
- L C de Sousa-Paula
- Laboratory of Immunoparasitology, Department of Immunology, Aggeu Magalhães Institute, Oswaldo Cruz Foundation (FIOCRUZ), Recife, Pernambuco, Brazil
| | - F A C Pessoa
- Laboratório de Ecologia e Doenças Transmissíveis na Amazônia, Leônidas e Maria Deane Institute, Oswaldo Cruz Foundation (FIOCRUZ), Manaus, Amazonas, Brazil
| | - D Otranto
- Parasitology Unit, Department of Veterinary Medicine, University of Bari, Valenzano, Italy
| | - F Dantas-Torres
- Laboratory of Immunoparasitology, Department of Immunology, Aggeu Magalhães Institute, Oswaldo Cruz Foundation (FIOCRUZ), Recife, Pernambuco, Brazil
| |
Collapse
|
5
|
Multiple evolutionary lineages for the main vector of Leishmania guyanensis, Lutzomyia umbratilis (Diptera: Psychodidae), in the Brazilian Amazon. Sci Rep 2021; 11:15323. [PMID: 34321495 PMCID: PMC8319306 DOI: 10.1038/s41598-021-93072-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 06/21/2021] [Indexed: 02/07/2023] Open
Abstract
Lutzomyia umbratilis is the main vector of Leishmania guyanensis in the Brazilian Amazon and in neighboring countries. Previous biological and molecular investigations have revealed significant differences between L. umbratilis populations from the central Brazilian Amazon region. Here, a phylogeographic survey of L. umbratilis populations collected from nine localities in the Brazilian Amazon was conducted using two mitochondrial genes. Statistical analyses focused on population genetics, phylogenetic relationships and species delimitations. COI genetic diversity was very high, whereas Cytb diversity was moderate. COI genealogical haplotypes, population structure and phylogenetic analyses identified a deep genetic differentiation and three main genetic groups. Cytb showed a shallower genetic structure, two main haplogroups and poorly resolved phylogenetic trees. These findings, allied to absence of isolation by distance, support the hypothesis that the Amazon and Negro Rivers and interfluves are the main evolutionary forces driving L. umbratilis diversification. The main three genetic groups observed represent three evolutionary lineages, possibly species. The first lineage occurs north of the Amazon River and east of Negro River, where Le. guyanensis transmission is intense, implying that L. umbratilis is an important vector there. The second lineage is in the interfluve between north of Amazon River and west of Negro River, an area reported to be free of Le. guyanensis transmission. The third lineage, first recorded in this study, is in the interfluve between south of Amazonas River and west of Madeira River, and its involvement in the transmission of this parasite remains to be elucidated.
Collapse
|
6
|
Sallum MAM, Obando RG, Carrejo N, Wilkerson RC. Identification keys to the Anopheles mosquitoes of South America (Diptera: Culicidae). I. Introduction. Parasit Vectors 2020; 13:583. [PMID: 33208196 PMCID: PMC7672812 DOI: 10.1186/s13071-020-04298-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Accepted: 08/08/2020] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND The worldwide genus Anopheles Meigen, 1918 is the only genus containing species evolved as vectors of human and simian malaria. Morbidity and mortality caused by Plasmodium Marchiafava & Celli, 1885 is tremendous, which has made these parasites and their vectors the objects of intense research aimed at mosquito identification, malaria control and elimination. DNA tools make the identification of Anopheles species both easier and more difficult. Easier in that putative species can nearly always be separated based on DNA data; more difficult in that attaching a scientific name to a species is often problematic because morphological characters are often difficult to interpret or even see; and DNA technology might not be available and affordable. Added to this are the many species that are either not yet recognized or are similar to, or identical with, named species. The first step in solving Anopheles identification problem is to attach a morphology-based formal or informal name to a specimen. These names are hypotheses to be tested with further morphological observations and/or DNA evidence. The overarching objective is to be able to communicate about a given species under study. In South America, morphological identification which is the first step in the above process is often difficult because of lack of taxonomic expertise and/or inadequate identification keys, written for local fauna, containing the most consequential species, or obviously, do not include species described subsequent to key publication. METHODS Holotypes and paratypes and other specimens deposited in the Coleção Entomológica de Referência, Faculdade de Saúde Pública (FSP-USP), Museo de Entomología, Universidad del Valle (MUSENUV) and the US National Mosquito Collection, Smithsonian Institution (USNMC) were examined and employed to illustrate the identification keys for female, male and fourth-instar larvae of Anopheles. RESULTS We presented, in four concurrent parts, introduction and three keys to aid the identification of South American Anopheles based on the morphology of the larvae, male genitalia and adult females, with the former two keys fully illustrated. CONCLUSIONS Taxonomic information and identification keys for species of the genus Anopheles are updated. The need for further morphology-based studies and description of new species are reinforced.
Collapse
Affiliation(s)
- Maria Anice Mureb Sallum
- Departamento de Epidemiologia, Faculdade de Saúde Pública, Universidade de São Paulo, Avenida Doutor Arnaldo 715, São Paulo, São Paulo CEP01246-904 Brazil
| | | | - Nancy Carrejo
- Departamento de Biología, Universidad del Valle, A.A 25360 Cali, Colombia
| | - Richard C. Wilkerson
- Department of Entomology, Smithsonian Institution, National Museum of Natural History (NMNH), Washington, DC 20560 USA
- Walter Reed Biosystematics Unit, Smithsonian Institution Museum Support Center, 4210 Silver Hill Rd., Suitland, MD 20746 USA
- Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD 20910 USA
| |
Collapse
|
7
|
Molecular taxonomy and phylogenetic inferences of Bichromomyia flaviscutellata complex based on the COI gene DNA barcode region. INFECTION GENETICS AND EVOLUTION 2020; 81:104256. [PMID: 32084625 DOI: 10.1016/j.meegid.2020.104256] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 02/13/2020] [Accepted: 02/16/2020] [Indexed: 11/22/2022]
Abstract
Leishmaniasis is considered one of the six most important infectious diseases in the world. In spite of its importance, the leishmaniasis is one of the world's most neglected tropical diseases. Bichromomyia flaviscutellata sensu lato is a complex composed of at least three species: B. flaviscutellata sensu stricto, B. reducta and B. olmeca. The latter is composed of three subspecies: B. olmeca olmeca, B. olmeca bicolor and B. olmeca nociva, which are distributed from Central America to South America. Of these, B. flaviscutellata s.s. is recognized as the main vector of Leishmania amazonensis in Brazil. The present study aimed to identify molecularly the species and subspecies of the B. flaviscutellata complex using the 5' region of the COI gene (Barcode region). A total of 44 specimens, comprising 22 B. flaviscutellata s.s. and 22 B. olmeca nociva, were analyzed from six localities in the Brazilian Amazon: five in the State of Amazonas (Autazes, Manaus, Pitinga, Novo Airão, and Rio Preto da Eva), and one in the State of Pará (Serra do Cachorro). Three sequences from B. olmeca olmeca and one of B. olmeca bicolor from GenBank were also added to the dataset, totaling 48 sequences with a length of 549 base pairs (bp). The total dataset generated 28 haplotypes and four disconnected networks. Phylogenetic analyses using three algorithms (Neighbor-Joining [NJ], Maximum Likelihood [ML] and Bayesian Inference [BI]) generated similar topologies and most clades were from moderately to highly supported. The phylogenetic relationship, together with genetic distance values (1%) and haplotypes networks, confirm the position of B. olmeca bicolor as a subspecies of B. olmeca olmeca. However, B. olmeca nociva was closer phylogenetically to B. flaviscutellata s.s. than to B. olmeca olmeca and B. olmeca bicolor. Additionally, the haplotype network separated B. olmeca nociva from B. olmeca olmeca and B. olmeca bicolor. These findings, combined with previous morphological data, suggest that the B. olmeca nociva should be elevated to full-species status. The findings of this study also found that B. flaviscutellata s.s. populations may be in process of forming lineages.
Collapse
|
8
|
Makanda M, Kemunto G, Wamuyu L, Bargul J, Muema J, Mutunga J. Diversity and Molecular Characterization of Mosquitoes (Diptera: Culicidae) in Selected Ecological Regions in Kenya. F1000Res 2019; 8:262. [PMID: 32518622 PMCID: PMC7255902 DOI: 10.12688/f1000research.18262.2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/11/2019] [Indexed: 11/20/2022] Open
Abstract
Mosquitoes play a predominant role as leading agents in the spread of vector-borne diseases and the consequent mortality in humans. Despite reports on increase of new and recurrent mosquito borne-disease outbreaks such as chikungunya, dengue fever and Rift Valley fever in Kenya, little is known about the genetic characteristics and diversity of the vector species that have been incriminated in transmission of disease pathogens. In this study, mosquito species were collected from Kisumu city, Kilifi town and Nairobi city and we determined their genetic diversity and phylogenetic relationships. PCR was used to amplify the partial cytochrome oxidase subunit 1 (CO1) gene of mosquito samples. Molecular-genetic and phylogenetic analysis of the partial cytochrome oxidase subunit 1 (CO1) gene were employed to identify their relationship with known mosquito species. Fourteen (14) haplotypes belonging to genus
Aedes, nine (9) haplotypes belonging to genus
Anopheles and twelve (12) haplotypes belonging to genus
Culex were identified in this study. Findings from this study revealed a potentially new haplotype belonging to
Anopheles genus and reported the first molecular characterization of
Aedes cumminsii in Kenya. Sequence results revealed variation in mosquito species from Kilifi, Kisumu and Nairobi. Since vector competence varies greatly across species as well as species-complexes and is strongly associated with specific behavioural adaptations, proper species identification is important for vector control programs.
Collapse
Affiliation(s)
- Moni Makanda
- Institute for Basic Sciences Technology and Innovation, Pan African University, Nairobi, P.O. Box 62000-00200, Kenya
| | - Gladys Kemunto
- Zoology Department, Jomo Kenyatta University of Agriculture and Technology, Nairobi, P.O. Box 62000-00200, Kenya
| | - Lucy Wamuyu
- Institute of Biotechnology Research, Jomo Kenyatta University of Agriculture and Technology, Nairobi, P.O. Box 62000-00200, Kenya
| | - Joel Bargul
- Biochemistry Department, Jomo Kenyatta University of Agriculture and Technology, Nairobi, P.O. Box 62000-00200, Kenya
| | - Jackson Muema
- Biochemistry Department, Jomo Kenyatta University of Agriculture and Technology, Nairobi, P.O. Box 62000-00200, Kenya
| | - James Mutunga
- Biological Sciences Department, Mount Kenya University, Thika, P.O. Box 342-01000, Kenya
| |
Collapse
|
9
|
Carlos BC, Rona LDP, Christophides GK, Souza-Neto JA. A comprehensive analysis of malaria transmission in Brazil. Pathog Glob Health 2019; 113:1-13. [PMID: 30829565 PMCID: PMC6425916 DOI: 10.1080/20477724.2019.1581463] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Malaria remains a serious public health problem in Brazil despite a significant drop in the number of cases in the past decade. We conduct a comprehensive analysis of malaria transmission in Brazil to highlight the epidemiologically most relevant components that could help tackle the disease. We consider factors impacting on the malaria burden and transmission dynamics including the geographical occurrence of both autochthonous and imported infections, the distribution and abundance of malaria vectors and records of natural mosquito infections with Plasmodium. Our analysis identifies three discrete malaria transmission systems related to the Amazon rainforest, Atlantic rainforest and Brazilian coast, respectively. The Amazonian system accounts for 99% of all malaria cases in the country. It is largely due to autochthonous P. vivax and P. falciparum transmission by mosquitoes of the Nyssorhynchus subgenus, primarily Anopheles darlingi. Whilst P. vivax transmission is widespread, P. falciparum transmission is restricted to hotspot areas mostly in the States of Amazonas and Acre. This system is the major source of P. vivax exportation to the extra-Amazonian regions that are also affected by importation of P. falciparum from Africa. The Atlantic system comprises autochthonous P. vivax transmission typically by the bromeliad-associated mosquitoes An. cruzii and An. bellator of the Kerteszia subgenus. An. cruzii also transmits simian malaria parasites to humans. The third, widespread but geographically fragmented, system is found along the Brazilian coast and comprises P. vivax transmission mainly by An. aquasalis. We conclude that these geographically and biologically distinct malaria transmission systems require specific strategies for effective disease control.
Collapse
Affiliation(s)
- Bianca C Carlos
- a School of Agricultural Sciences, Department of Bioprocesses and Biotechnology, Central Multiuser Laboratory , São Paulo State University (UNESP) , Botucatu , Brazil.,b Institute of Biotechnology , São Paulo State University (UNESP) , Botucatu , Brazil
| | - Luisa D P Rona
- c Department of Life Sciences , Imperial College London , London , UK.,d Department of Cell Biology, Embryology and Genetics , Federal University of Santa Catarina (UFSC) , Florianópolis , Brazil.,e National Council for Scientific and Technological Development (INCT-EM, CNPq) , National Institute of Science and Technology in Molecular Entomology , Rio de Janeiro , Brazil
| | | | - Jayme A Souza-Neto
- a School of Agricultural Sciences, Department of Bioprocesses and Biotechnology, Central Multiuser Laboratory , São Paulo State University (UNESP) , Botucatu , Brazil.,b Institute of Biotechnology , São Paulo State University (UNESP) , Botucatu , Brazil
| |
Collapse
|
10
|
Scarpassa VM, Debat HJ, Alencar RB, Saraiva JF, Calvo E, Arcà B, Ribeiro JMC. An insight into the sialotranscriptome and virome of Amazonian anophelines. BMC Genomics 2019; 20:166. [PMID: 30832587 PMCID: PMC6399984 DOI: 10.1186/s12864-019-5545-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 02/18/2019] [Indexed: 01/17/2023] Open
Abstract
Background Saliva of mosquitoes contains anti-platelet, anti-clotting, vasodilatory, anti-complement and anti-inflammatory substances that help the blood feeding process. The salivary polypeptides are at a fast pace of evolution possibly due to their relative lack of structural constraint and possibly also by positive selection on their genes leading to evasion of host immune pressure. Results In this study, we used deep mRNA sequence to uncover for the first time the sialomes of four Amazonian anophelines species (Anopheles braziliensis, A. marajorara, A. nuneztovari and A. triannulatus) and extend the knowledge of the A. darlingi sialome. Two libraries were generated from A. darlingi mosquitoes, sampled from two localities separated ~ 1100 km apart. A total of 60,016 sequences were submitted to GenBank, which will help discovery of novel pharmacologically active polypeptides and the design of specific immunological markers of mosquito exposure. Additionally, in these analyses we identified and characterized novel phasmaviruses and anpheviruses associated to the sialomes of A. triannulatus, A. marajorara and A. darlingi species. Conclusions Besides their pharmacological properties, which may be exploited for the development of new drugs (e.g. anti-thrombotics), salivary proteins of blood feeding arthropods may be turned into tools to prevent and/or better control vector borne diseases; for example, through the development of vaccines or biomarkers to evaluate human exposure to vector bites. The sialotranscriptome study reported here provided novel data on four New World anopheline species and allowed to extend our knowledge on the salivary repertoire of A. darlingi. Additionally, we discovered novel viruses following analysis of the transcriptomes, a procedure that should become standard within future RNAseq studies. Electronic supplementary material The online version of this article (10.1186/s12864-019-5545-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Vera Margarete Scarpassa
- Laboratório de Genética de Populações e Evolução de Mosquitos Vetores de Malária e Dengue, Coordenação de Biodiversidade, Instituto Nacional de Pesquisas da Amazônia, Manaus, Amazonas, Brazil
| | - Humbeto Julio Debat
- Instituto de Patología Vegetal, Centro de Investigaciones Agropecuarias, Instituto Nacional de Tecnología Agropecuaria (IPAVE-CIAP-INTA), Córdoba, Argentina
| | - Ronildo Baiatone Alencar
- Laboratório de Genética de Populações e Evolução de Mosquitos Vetores de Malária e Dengue, Coordenação de Biodiversidade, Instituto Nacional de Pesquisas da Amazônia, Manaus, Amazonas, Brazil
| | - José Ferreira Saraiva
- Laboratório de Genética de Populações e Evolução de Mosquitos Vetores de Malária e Dengue, Coordenação de Biodiversidade, Instituto Nacional de Pesquisas da Amazônia, Manaus, Amazonas, Brazil
| | - Eric Calvo
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Bruno Arcà
- Department of Public Health and Infectious Diseases, Division of Parasitology, Sapienza University of Rome, Rome, Italy
| | - José M C Ribeiro
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA.
| |
Collapse
|
11
|
Prussing C, Bickersmith SA, Moreno M, Saavedra MP, Alava F, Sallum MAM, Gamboa D, Vinetz JM, Conn JE. Nyssorhynchus dunhami: bionomics and natural infection by Plasmodium falciparum and P. vivax in the Peruvian Amazon. Mem Inst Oswaldo Cruz 2018; 113:e180380. [PMID: 30517211 PMCID: PMC6276023 DOI: 10.1590/0074-02760180380] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 10/30/2018] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Nyssorhynchus dunhami, a member of the Nuneztovari Complex, has been collected in Brazil, Colombia, and Peru and described as zoophilic. Although to date Ny. dunhami has not been documented to be naturally infected by Plasmodium, it is frequently misidentified as other Oswaldoi subgroup species that are local or regional malaria vectors. OBJECTIVES The current study seeks to verify the morphological identification of Nuneztovari Complex species collected in the peri-Iquitos region of Amazonian Peru, to determine their Plasmodium infection status, and to describe ecological characteristics of their larval habitats. METHODS We collected Ny. nuneztovari s.l. adults in 2011-2012, and Ny. nuneztovari s.l. larvae and adults in 2016-2017. When possible, samples were identified molecularly using cytochrome c oxidase subunit I (COI) barcode sequencing. Adult Ny. nuneztovari s.l. from 2011-2012 were tested for Plasmodium using real-time PCR. Environmental characteristics associated with Ny. nuneztovari s.l. larvae-positive water bodies were evaluated. FINDINGS We collected 590 Ny. nuneztovari s.l. adults and 116 larvae from eight villages in peri-Iquitos. Of these, 191 adults and 111 larvae were identified by COI sequencing; all were Ny. dunhami. Three Ny. dunhami were infected with P. falciparum, and one with P. vivax, all collected from one village on one night. Ny. dunhami larvae were collected from natural and artificial water bodies, and their presence was positively associated with other Anophelinae larvae and amphibians, and negatively associated with people living within 250m. MAIN CONCLUSIONS Of Nuneztovari Complex species, we identified only Ny. dunhami across multiple years in eight peri-Iquitos localities. This study is, to our knowledge, the first report of natural infection of molecularly identified Ny. dunhami with Plasmodium. We advocate the use of molecular identification methods in this region to monitor Ny. dunhami and other putative secondary malaria vectors to more precisely evaluate their importance in malaria transmission.
Collapse
Affiliation(s)
- Catharine Prussing
- University at Albany, State University of New York, School of Public Health, Department of Biomedical Sciences, Albany, NY, USA
| | | | - Marta Moreno
- University of California San Diego, Department of Medicine, Division of Infectious Diseases, La Jolla, CA, USA
| | - Marlon P Saavedra
- Universidad Peruana Cayetano Heredia, Facultad de Ciencias y Filosofia, Laboratorios de Investigación y Desarrollo, Laboratorio ICEMR-Amazonia, Lima, Peru
| | | | - Maria Anice Mureb Sallum
- Universidade de São Paulo, Faculdade de Saúde Pública, Departamento de Epidemiologia, São Paulo, SP, Brasil
| | - Dionicia Gamboa
- Universidad Peruana Cayetano Heredia, Facultad de Ciencias y Filosofia, Laboratorios de Investigación y Desarrollo, Laboratorio ICEMR-Amazonia, Lima, Peru
- Universidad Peruana Cayetano Heredia, Instituto de Medicina Tropical Alexander von Humboldt, Lima, Peru
| | - Joseph M Vinetz
- University of California San Diego, Department of Medicine, Division of Infectious Diseases, La Jolla, CA, USA
- Universidad Peruana Cayetano Heredia, Facultad de Ciencias y Filosofia, Laboratorios de Investigación y Desarrollo, Laboratorio ICEMR-Amazonia, Lima, Peru
- Universidad Peruana Cayetano Heredia, Instituto de Medicina Tropical Alexander von Humboldt, Lima, Peru
| | - Jan E Conn
- University at Albany, State University of New York, School of Public Health, Department of Biomedical Sciences, Albany, NY, USA
- Wadsworth Center, New York State Department of Health, Albany, NY, USA
| |
Collapse
|
12
|
Bourke BP, Conn JE, de Oliveira TMP, Chaves LSM, Bergo ES, Laporta GZ, Sallum MAM. Exploring malaria vector diversity on the Amazon Frontier. Malar J 2018; 17:342. [PMID: 30261932 PMCID: PMC6161421 DOI: 10.1186/s12936-018-2483-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Accepted: 09/10/2018] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Deforestation in the Amazon and the social vulnerability of its settler communities has been associated with increased malaria incidence. The feeding biology of the most important malaria vectors in the region, notably Nyssorhynchus darlingi, compounds efforts to control vectors and reduce transmission of what has become known as "Frontier Malaria". Exploring Anophelinae mosquito diversity is fundamental to understanding the species responsible for transmission and developing appropriate management and intervention strategies for malaria control in the Amazon River basin. METHODS This study describes Anophelinae mosquito diversity from settler communities affected by Frontier Malaria in the states of Acre, Amazonas and Rondônia by analysing COI gene data using cluster and tree-based species delimitation approaches. RESULTS In total, 270 specimens from collection sites were sequenced and these were combined with 151 reference (GenBank) sequences in the analysis to assist in species identification. Conservative estimates found that the number of species collected at these sites was between 23 (mPTP partition) and 27 (strict ABGD partition) species, up to 13 of which appeared to be new. Nyssorhynchus triannulatus and Nyssorhynchus braziliensis displayed exceptional levels of intraspecific genetic diversity but there was little to no support for putative species complex status. CONCLUSIONS This study demonstrates that Anophelinae mosquito diversity continues to be underestimated in poorly sampled areas where frontier malaria is a major public health concern. The findings will help shape future studies of vector incrimination and transmission dynamics in these areas and support efforts to develop more effective vector control and transmission reduction strategies in settler communities in the Amazon River basin.
Collapse
Affiliation(s)
- Brian P Bourke
- Department of Epidemiology, Faculty of Public Health, University of São Paulo, São Paulo, SP, Brazil.
| | - Jan E Conn
- Wadsworth Center, New York State Department of Health, Slingerlands, NY, 12159, USA
- Department of Biomedical Sciences, School of Public Health, State University of New York-Albany, Albany, NY, 12222, USA
| | - Tatiane M P de Oliveira
- Department of Epidemiology, Faculty of Public Health, University of São Paulo, São Paulo, SP, Brazil
| | - Leonardo S M Chaves
- Department of Epidemiology, Faculty of Public Health, University of São Paulo, São Paulo, SP, Brazil
| | - Eduardo S Bergo
- Superintendência de Controle de Endemias, Secretaria de Estado da Saúde de São Paulo, Araraquara, SP, Brazil
| | - Gabriel Z Laporta
- Setor de Pós-graduação, Pesquisa e Inovação, Faculdade de Medicina do ABC, Santo André, SP, Brazil
| | - Maria A M Sallum
- Department of Epidemiology, Faculty of Public Health, University of São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
13
|
Insecticide Resistance and Its Intensity in Populations of Malaria Vectors in Colombia. BIOMED RESEARCH INTERNATIONAL 2018; 2018:9163543. [PMID: 30228990 PMCID: PMC6136494 DOI: 10.1155/2018/9163543] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 05/31/2018] [Indexed: 11/18/2022]
Abstract
Insecticide resistance in malaria vectors threatens malaria prevention and control efforts. In Colombia the three primary vectors, Anopheles darlingi, An. nuneztovari s.l., and An. albimanus, have reported insecticide resistance to pyrethroids, organophosphates, carbamates, and DDT; however, the insecticide resistance monitoring is not continuous, and the data on the prevalence of resistance is scarce and geographically limited. We describe the resistance levels and intensity of previously detected resistant populations among primary malaria vectors from the most endemic malaria areas in Colombia. The study was carried out in 10 localities of five states in Colombia. Bioassays were carried out following the methodology of CDC Bottle Bioassay using the discriminating concentration and in order to quantify the intensity the specimens were exposed to 2, 5, and 10X discriminating concentrations. Five insecticides were tested: deltamethrin, lambda-cyhalothrin, alpha-cypermethrin, permethrin, and DDT. The results provide evidence of low resistance intensity and resistance highly localized to pyrethroids and DDT in key malaria vectors in Colombia. This may not pose a threat to malaria control yet but frequent monitoring is needed to follow the evolution of insecticide resistance.
Collapse
|
14
|
Genetic diversity and population structure of Anopheles triannulatus s. l. in the department of Córdoba, Colombia, using DNA barcoding. BIOMEDICA 2018; 38:117-126. [PMID: 30184372 DOI: 10.7705/biomedica.v38i0.4055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 06/02/2018] [Indexed: 11/21/2022]
Abstract
Introduction: Anopheles triannulatus is not incriminated as a vector of malaria transmission in Colombia despite recent reports of infection with Plasmodium spp. in populations related to the northwestern and southeastern lineages. Genetic diversity can delimit information about gene flow and population differentiation in localities with malaria.
Objective: To estimate the genetic diversity of An. triannulatus in five municipalities with high and low incidence of malaria in the department of Córdoba.
Materials and methods: The entomological collections were done between August and November, 2016, in Tierralta, Puerto Libertador, Montelíbano, Sahagún, and Planeta Rica. We used the COI barcoding fragment as molecular marker. The genetic analysis included the estimation of genetic parameters such as the diversity haplotype, the genetic structure, the gene flow, the Tajima’s D test, the haplotype network, and the phylogenetic relationship.
Results: We obtained 148 sequences with a length of 655 nucleotides of the COI gene, from which we derived 44 haplotypes. The H2 and H21 haplotypes were the most frequent in the populations. The values of the Tajima’s D test were negative and not significant (p>0.10). The genetic structure
index (FST=0.01427) and the gene flow (Nm=17.27) evidenced no differentiation between sampled populations due to the high exchange of migrants. Using phylogenetic inferences and the haplotype network, we identified one single species without geographic differentiation or lineages in the geographic range studied.
Conclusions: The genetic diversity calculated for An. triannulatus in this context indicated stable populations in constant exchange.
Collapse
|
15
|
Reis IC, Codeço CT, Câmara DCP, Carvajal JJ, Pereira GR, Keppeler EC, Honório NA. Diversity of Anopheles spp. (Diptera: Culicidae) in an Amazonian Urban Area. NEOTROPICAL ENTOMOLOGY 2018; 47:412-417. [PMID: 29470810 DOI: 10.1007/s13744-018-0595-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 01/25/2018] [Indexed: 06/08/2023]
Abstract
The genus Anopheles encompasses several species considered as vectors of human infecting Plasmodium. Environmental changes are responsible for behavior changes in these vectors and therefore the pattern of malaria transmission. To better understand the dynamics of malaria transmission, this study aimed at identify the species of adult anophelines found in a malaria endemic urban area of the Amazon region, Mâncio Lima, located in the Acre State Brazil. Using Shannon-type light traps installed at 11 collection points near fish ponds, a total of 116 anophelines were collected belonging to nine species. Anopheles darlingi Root 1926 and An. albitarsis s.l. Lynch-Arribalzaga 1878 were the most abundant and predominant species. Despite the low number of captured adult anophelines, the occurrence of An. darlingi throughout all urban area and the presence of secondary vectors reinforce the need of a permanent and continuous entomological surveillance.
Collapse
Affiliation(s)
- I C Reis
- Lab de Mosquitos Transmissores de Hematozoários, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brasil.
- Núcleo Operacional Sentinela de Mosquitos Vetores - Nosmove/Fiocruz, Rio de Janeiro, Brasil.
| | - C T Codeço
- Programa de Computação Científica -PROCC, Fiocruz, Rio de Janeiro, Brasil
| | - D C P Câmara
- Lab de Mosquitos Transmissores de Hematozoários, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brasil
- Núcleo Operacional Sentinela de Mosquitos Vetores - Nosmove/Fiocruz, Rio de Janeiro, Brasil
| | - J J Carvajal
- Lab de Mosquitos Transmissores de Hematozoários, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brasil
- Núcleo Operacional Sentinela de Mosquitos Vetores - Nosmove/Fiocruz, Rio de Janeiro, Brasil
| | - G R Pereira
- Núcleo Operacional Sentinela de Mosquitos Vetores - Nosmove/Fiocruz, Rio de Janeiro, Brasil
| | - E C Keppeler
- Centro Multidisciplinar, Univ Federal do Acre, Rio Branco, Acre, Brasil
| | - N A Honório
- Lab de Mosquitos Transmissores de Hematozoários, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brasil
- Núcleo Operacional Sentinela de Mosquitos Vetores - Nosmove/Fiocruz, Rio de Janeiro, Brasil
| |
Collapse
|
16
|
Saraiva JF, Souto RNP, Scarpassa VM. Molecular taxonomy and evolutionary relationships in the Oswaldoi-Konderi complex (Anophelinae: Anopheles: Nyssorhynchus) from the Brazilian Amazon region. PLoS One 2018; 13:e0193591. [PMID: 29505595 PMCID: PMC5837296 DOI: 10.1371/journal.pone.0193591] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Accepted: 02/14/2018] [Indexed: 11/19/2022] Open
Abstract
Recent studies have shown that Anopheles oswaldoi sensu lato comprises a cryptic species complex in South America. Anopheles konderi, which was previously raised to synonymy with An. oswaldoi, has also been suggested to form a species complex. An. oswaldoi has been incriminated as a malaria vector in some areas of the Brazilian Amazon, Colombia, Peru and Venezuela, but was not recognized as a vector in the remaining regions in its geographic distribution. The role of An. konderi as a malaria vector is unknown or has been misattributed to An. oswaldoi. The focus of this study was molecular identification to infer the evolutionary relationships and preliminarily delimit the geographic distribution of the members of these complexes in the Brazilian Amazon region. The specimens were sampled from 18 localities belonging to five states in the Brazilian Amazon and sequenced for two molecular markers: the DNA barcode region (COI gene of mitochondrial DNA) and Internal Transcribed Spacer 2 (ITS2 ribosomal DNA). COI (83 sequences) and ITS2 (27 sequences) datasets generated 43 and 10 haplotypes, respectively. Haplotype networks and phylogenetic analyses generated with the barcode region (COI gene) recovered five groups corresponding to An. oswaldoi s.s., An. oswaldoi B, An. oswaldoi A, An. konderi and An. sp. nr. konderi; all pairwise genetic distances were greater than 3%. The group represented by An. oswaldoi A exhibited three strongly supported lineages. The molecular dating indicated that the diversification process in these complexes started approximately 2.8 Mya, in the Pliocene. These findings confirm five very closely related species and present new records for these species in the Brazilian Amazon region. The paraphyly observed for the An. oswaldoi complex suggests that An. oswaldoi and An. konderi complexes may comprise a unique species complex named Oswaldoi-Konderi. Anopheles oswaldoi B may be a potential malaria vector in the extreme north of the Brazilian Amazon, whereas evidence of sympatry for the remaining species in other parts of the Brazilian Amazon (Acre, Amazonas, Pará and Rondônia) precluded identification of probable vectors in those areas.
Collapse
Affiliation(s)
- José Ferreira Saraiva
- Laboratório de Genética de Populações e Evolução de Mosquitos Vetores de Malária e Dengue, Coordenação de Biodiversidade, Instituto Nacional de Pesquisas da Amazônia, Manaus, Amazonas, Brazil
| | - Raimundo Nonato Picanço Souto
- Laboratório de Arthropoda, Departamento de Ciências Biológicas e da Saúde, Universidade Federal do Amapá, Macapá, Amapá, Brazil
| | - Vera Margarete Scarpassa
- Laboratório de Genética de Populações e Evolução de Mosquitos Vetores de Malária e Dengue, Coordenação de Biodiversidade, Instituto Nacional de Pesquisas da Amazônia, Manaus, Amazonas, Brazil
- * E-mail:
| |
Collapse
|
17
|
González C, Molina AG, León C, Salcedo N, Rondón S, Paz A, Atencia MC, Tovar C, Ortiz M. Entomological characterization of malaria in northern Colombia through vector and parasite species identification, and analyses of spatial distribution and infection rates. Malar J 2017; 16:431. [PMID: 29078770 PMCID: PMC5658941 DOI: 10.1186/s12936-017-2076-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 10/19/2017] [Indexed: 11/13/2022] Open
Abstract
Background Malaria remains a worldwide public health concern and, in Colombia, despite the efforts to stop malaria transmission, the incidence of cases has increased over the last few years. In this context, it is necessary to evaluate vector diversity, infection rates, and spatial distribution, to better understand disease transmission dynamics. This information may contribute to the planning and development of vector control strategies. Results A total of 778 Anopheles mosquitoes were collected in fifteen localities of Córdoba from August 2015 to October 2016. Six species were identified and overall, Anopheles albimanus was the most widespread and abundant species (83%). Other species of the Nyssorhynchus subgenus were collected, including Anopheles triannulatus (13%), Anopheles nuneztovari (1%), Anopheles argyritarsis (< 1%) and two species belonging to the Anopheles subgenus: Anopheles pseudopunctipennis (3%) and Anopheles neomaculipalpus (< 1%). Four species were found naturally infected with two Plasmodium species: Anopheles nuneztovari was detected naturally infected with Plasmodium falciparum and Anopheles pseudopunctipennis with Plasmodium vivax, whereas An. albimanus and An. triannulatus were found infected with both parasite species and confirmed by nested PCR. Conclusions In general, the obtained results were contrasting with previous studies in terms of the most abundant and widespread collected species, and regarding infection rates, which were higher than those previously reported. A positive relationship between mosquito local abundance at the locality level and human infection at the municipality level was found. Mosquito local abundance and the number of houses with mosquitoes in each village are factors explaining malaria human cases in these villages. The obtained results suggest that other factors related to the apparent variation in malaria eco-epidemiology in northern Colombia, must be identified, to provide health authorities with better decision tools aiming to design control and prevention strategies. Electronic supplementary material The online version of this article (doi:10.1186/s12936-017-2076-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Camila González
- Centro de Investigaciones en Microbiología y Parasitología Tropical, CIMPAT, Departamento de Ciencias Biológicas, Universidad de los Andes, Cra. 1 No 18A-12, Bogotá, Colombia.
| | - Astrid Gisell Molina
- Centro de Investigaciones en Microbiología y Parasitología Tropical, CIMPAT, Departamento de Ciencias Biológicas, Universidad de los Andes, Cra. 1 No 18A-12, Bogotá, Colombia
| | - Cielo León
- Centro de Investigaciones en Microbiología y Parasitología Tropical, CIMPAT, Departamento de Ciencias Biológicas, Universidad de los Andes, Cra. 1 No 18A-12, Bogotá, Colombia
| | - Nicolás Salcedo
- Centro de Investigaciones en Microbiología y Parasitología Tropical, CIMPAT, Departamento de Ciencias Biológicas, Universidad de los Andes, Cra. 1 No 18A-12, Bogotá, Colombia
| | - Silvia Rondón
- Centro de Investigaciones en Microbiología y Parasitología Tropical, CIMPAT, Departamento de Ciencias Biológicas, Universidad de los Andes, Cra. 1 No 18A-12, Bogotá, Colombia
| | - Andrea Paz
- Centro de Investigaciones en Microbiología y Parasitología Tropical, CIMPAT, Departamento de Ciencias Biológicas, Universidad de los Andes, Cra. 1 No 18A-12, Bogotá, Colombia
| | - Maria Claudia Atencia
- Facultad de Ciencias de la Salud, Universidad del Sinú, Cra 1w No 38-153, Montería, Colombia
| | - Catalina Tovar
- Grupo de Enfermedades Tropicales y Resistencia Bacteriana, Facultad de Ciencias de la Salud, Universidad del Sinú, Cra 1w No 38-153, Montería, Colombia
| | - Mario Ortiz
- Centro de Investigaciones en Microbiología y Parasitología Tropical, CIMPAT, Departamento de Ciencias Biológicas, Universidad de los Andes, Cra. 1 No 18A-12, Bogotá, Colombia
| |
Collapse
|
18
|
Siqueira AM, Mesones-Lapouble O, Marchesini P, Sampaio VDS, Brasil P, Tauil PL, Fontes CJ, Costa FTM, Daniel-Ribeiro CT, Lacerda MVG, Damasceno CP, Santelli ACS. Plasmodium vivax Landscape in Brazil: Scenario and Challenges. Am J Trop Med Hyg 2016; 95:87-96. [PMID: 27708190 PMCID: PMC5201227 DOI: 10.4269/ajtmh.16-0204] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 08/19/2016] [Indexed: 01/01/2023] Open
Abstract
Brazil is the largest country of Latin America, with a considerable portion of its territoritory within the malaria-endemic Amazon region in the North. Furthermore, a considerable portion of its territory is located within the Amazon region in the north. As a result, Brazil has reported half of the total malaria cases in the Americas in the last four decades. Recent progress in malaria control has been accompanied by an increasing proportion of Plasmodium vivax, underscoring a need for a better understanding of management and control of this species and associated challenges. Among these challenges, the contribution of vivax malaria relapses, earlier production of gametocytes (compared with Plasmodium falciparum), inexistent methods to diagnose hypnozoite carriers, and decreasing efficacy of available antimalarials need to be addressed. Innovative tools, strategies, and technologies are needed to achieve further progress toward sustainable malaria elimination. Further difficulties also arise from dealing with the inherent socioeconomic and environmental particularities of the Amazon region and its dynamic changes.
Collapse
Affiliation(s)
- Andre M Siqueira
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, Brazil.,Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
| | | | - Paola Marchesini
- Coordenação Geral do Programa Nacional de Controle da Malaria, Ministério da Saúde, Brasilia, Brazil
| | - Vanderson de Souza Sampaio
- Fundação de Vigilância em Saúde, Manaus, Brazil.,Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, Brazil
| | - Patricia Brasil
- Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
| | - Pedro L Tauil
- Núcleo de Medicina Tropical, Universidade de Brasília, Brasilia, Brazil
| | | | | | | | - Marcus V G Lacerda
- Instituto Leônidas e Maria Deane, Fundação Oswaldo Cruz (Fiocruz), Manaus, Brazil.,Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Brazil.,Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, Brazil
| | - Camila P Damasceno
- Coordenação Geral do Programa Nacional de Controle da Malaria, Ministério da Saúde, Brasilia, Brazil
| | - Ana Carolina S Santelli
- Coordenação Geral do Programa Nacional de Controle da Malaria, Ministério da Saúde, Brasilia, Brazil
| |
Collapse
|
19
|
Naranjo-Díaz N, Sallum MAM, Correa MM. Population dynamics of Anopheles nuneztovari in Colombia. INFECTION GENETICS AND EVOLUTION 2016; 45:56-65. [PMID: 27553709 DOI: 10.1016/j.meegid.2016.08.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 08/05/2016] [Accepted: 08/18/2016] [Indexed: 11/27/2022]
Abstract
Anopheles nuneztovari is an important Colombian malaria vector widespread on both sides of the Andean Mountains, presenting morphological, behavioral and genetic heterogeneity throughout the country. The aim of this study was to evaluate whether the population structure and distribution of An. nuneztovari in Colombia are associated with ecological and physical barriers present in a heterogeneous landscape. Further, differences in behavior were addressed. A total of 5392 specimens of An. nuneztovari were collected. Mitochondrial and nuclear marker analyses detected subdivision among the northwest-west, northeast and east populations. For both markers, isolation by distance (~53%) and isolation by resistance (>30%) were determinants of population genetic differentiation. This suggests that physical barriers, geographical distance and ecological differences on both sides of the Andean Mountains promoted the genetic differentiation and population subdivision of An. nuneztovari in Colombia. This species showed the highest biting activity after 20:00h; indoor and outdoor preferences were found in all localities. These results indicated that the most effective interventions for controlling vector populations on both sides of the Andes need to be region-specific.
Collapse
Affiliation(s)
- Nelson Naranjo-Díaz
- Grupo de Microbiología Molecular, Escuela de Microbiología, Universidad de Antioquia, Calle 70 No. 52-21, Medellín, Colombia.
| | - Maria Anice M Sallum
- Departamento de Epidemiologia, Faculdade de Saúde Pública, Universidade de São Paulo, São Paulo, Brazil.
| | - Margarita M Correa
- Grupo de Microbiología Molecular, Escuela de Microbiología, Universidad de Antioquia, Calle 70 No. 52-21, Medellín, Colombia.
| |
Collapse
|