1
|
Anstey NM, Tham WH, Shanks GD, Poespoprodjo JR, Russell BM, Kho S. The biology and pathogenesis of vivax malaria. Trends Parasitol 2024; 40:573-590. [PMID: 38749866 DOI: 10.1016/j.pt.2024.04.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/19/2024] [Accepted: 04/19/2024] [Indexed: 07/06/2024]
Abstract
Plasmodium vivax contributes significantly to global malaria morbidity. Key advances include the discovery of pathways facilitating invasion by P. vivax merozoites of nascent reticulocytes, crucial for vaccine development. Humanized mouse models and hepatocyte culture systems have enhanced understanding of hypnozoite biology. The spleen has emerged as a major reservoir for asexual vivax parasites, replicating in an endosplenic life cycle, and contributing to recurrent and chronic infections, systemic inflammation, and anemia. Splenic accumulation of uninfected red cells is the predominant cause of anemia. Recurring and chronic infections cause progressive anemia, malnutrition, and death in young children in high-transmission regions. Endothelial activation likely contributes to vivax-associated organ dysfunction. The many recent advances in vivax pathobiology should help guide new approaches to prevention and management.
Collapse
Affiliation(s)
- Nicholas M Anstey
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia.
| | - Wai-Hong Tham
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia; Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - G Dennis Shanks
- School of Public Health, University of Queensland, Brisbane, Queensland, Australia
| | - Jeanne R Poespoprodjo
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia; Centre for Child Health and Department of Child Health, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia; Timika Malaria Research Facility, Papuan Health and Community Development Foundation, Timika, Central Papua, Indonesia; Mimika District Hospital and District Health Authority, Timika, Central Papua, Indonesia
| | - Bruce M Russell
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Steven Kho
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia; Timika Malaria Research Facility, Papuan Health and Community Development Foundation, Timika, Central Papua, Indonesia
| |
Collapse
|
2
|
Poespoprodjo JR, Douglas NM, Ansong D, Kho S, Anstey NM. Malaria. Lancet 2023; 402:2328-2345. [PMID: 37924827 DOI: 10.1016/s0140-6736(23)01249-7] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 05/22/2023] [Accepted: 06/16/2023] [Indexed: 11/06/2023]
Abstract
Malaria is resurging in many African and South American countries, exacerbated by COVID-19-related health service disruption. In 2021, there were an estimated 247 million malaria cases and 619 000 deaths in 84 endemic countries. Plasmodium falciparum strains partly resistant to artemisinins are entrenched in the Greater Mekong region and have emerged in Africa, while Anopheles mosquito vectors continue to evolve physiological and behavioural resistance to insecticides. Elimination of Plasmodium vivax malaria is hindered by impractical and potentially toxic antirelapse regimens. Parasitological diagnosis and treatment with oral or parenteral artemisinin-based therapy is the mainstay of patient management. Timely blood transfusion, renal replacement therapy, and restrictive fluid therapy can improve survival in severe malaria. Rigorous use of intermittent preventive treatment in pregnancy and infancy and seasonal chemoprevention, potentially combined with pre-erythrocytic vaccines endorsed by WHO in 2021 and 2023, can substantially reduce malaria morbidity. Improved surveillance, better access to effective treatment, more labour-efficient vector control, continued drug development, targeted mass drug administration, and sustained political commitment are required to achieve targets for malaria reduction by the end of this decade.
Collapse
Affiliation(s)
- Jeanne Rini Poespoprodjo
- Centre for Child Health and Department of Child Health, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia; Timika Malaria Research Facility, Papuan Health and Community Development Foundation, Timika, Indonesia; Mimika District Hospital and District Health Authority, Timika, Indonesia; Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, NT, Australia.
| | - Nicholas M Douglas
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, NT, Australia; Department of Infectious Diseases, Christchurch Hospital, Te Whatu Ora Waitaha, Christchurch, New Zealand; Department of Medicine, University of Otago, Christchurch, New Zealand
| | - Daniel Ansong
- School of Medicine and Dentistry, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Steven Kho
- Timika Malaria Research Facility, Papuan Health and Community Development Foundation, Timika, Indonesia; Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, NT, Australia
| | - Nicholas M Anstey
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, NT, Australia; Department of Infectious Diseases, Royal Darwin Hospital, Darwin, NT, Australia
| |
Collapse
|
3
|
Andronescu LR, Buchwald AG, Sharma A, Bauleni A, Mawindo P, Liang Y, Gutman JR, Mathanga DP, Chinkhumba J, Laufer MK. Plasmodium falciparum infection and disease in infancy associated with increased risk of malaria and anaemia in childhood. Malar J 2023; 22:217. [PMID: 37496052 PMCID: PMC10369742 DOI: 10.1186/s12936-023-04646-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 07/11/2023] [Indexed: 07/28/2023] Open
Abstract
BACKGROUND Infants under 6 months of age are often excluded from malaria surveillance and observational studies. The impact of malaria during early infancy on health later in childhood remains unknown. METHODS Infants from two birth cohorts in Malawi were monitored at quarterly intervals and whenever they were ill from birth through 24 months for Plasmodium falciparum infections and clinical malaria. Poisson regression and linear mixed effects models measured the effect of exposure to malaria in infancy on subsequent malaria incidence, weight-for-age z-scores (WAZ), and haemoglobin concentrations after 6 months. RESULTS Infants with at least one P. falciparum infection during their first 6 months had increased incidence ratio (IRR) of P. falciparum infection (IRR = 1.27, 95% CI, 1.06-1.52) and clinical malaria (IRR = 2.37, 95% CI, 2.02-2.80) compared to infants without infection. Infants with clinical malaria had increased risk of P. falciparum infection incidence between 6 and 24 months (IRR = 1.64, 95% CI, 1.38-1.94) and clinical malaria (IRR = 1.85, 95% CI, 1.48-2.32). Exposure to malaria was associated with lower WAZ over time (p = 0.02) and lower haemoglobin levels than unexposed infants at every time interval (p = 0.02). CONCLUSIONS Infants experiencing malaria infection or clinical malaria are at increased risk of subsequent infection and disease, have poorer growth, and lower haemoglobin concentrations.
Collapse
Affiliation(s)
- Liana R Andronescu
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, 21201, USA
| | - Andrea G Buchwald
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, 21201, USA
| | - Ankur Sharma
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, 21201, USA
| | - Andy Bauleni
- Malaria Alert Center, Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Patricia Mawindo
- Malaria Alert Center, Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Yuanyuan Liang
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, 21201, USA
| | - Julie R Gutman
- Malaria Branch, Centers for Disease Control and Prevention, Atlanta, 30333, USA
| | - Don P Mathanga
- Malaria Alert Center, Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Jobiba Chinkhumba
- Malaria Alert Center, Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Miriam K Laufer
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, 21201, USA.
| |
Collapse
|
4
|
Rahi M, Sirohi PR, Sharma A. Supervised administration of primaquine may enhance adherence to radical cure for P. vivax malaria in India. THE LANCET REGIONAL HEALTH. SOUTHEAST ASIA 2023; 13:100199. [PMID: 37383547 PMCID: PMC10305963 DOI: 10.1016/j.lansea.2023.100199] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/21/2023] [Accepted: 03/31/2023] [Indexed: 06/30/2023]
Abstract
The Plasmodium vivax lifecycle encompasses a dormant liver-stage known as 'hypnozoite' which serves as silent reservoirs of malaria, reactivation of which results in recurring episodes of relapse with varying periodicity. This contributes to continuous transmission of malaria unamenable to control methods. The prevention of relapse requires a "radical cure" by a hypnozoitcidal drug. Primaquine (PQ) has been the recommended radical cure for this malaria. However, adherence to 14 days PQ treatment remains poor. India accounts for majority of P. vivax burden globally. However, PQ administration is not supervised in the current national programme. Supervised administration of drugs ensures compliance and improves drug regime success rate. Trials across different countries have established the effectiveness of directly observed therapy (DOT) for prevention of relapses. As India aims to eliminate malaria by 2030, it is prudent to consider DOT to ensure complete treatment of the malaria affected populations. Therefore, we recommend that the Indian malaria control programme may consider DOT of primaquine for treatment of vivax malaria. The supervised administration would entail additional direct and indirect costs but will ensure complete treatment and hence minimize the probability of relapses. This will help the country in achieving the goal of malaria elimination.
Collapse
Affiliation(s)
- Manju Rahi
- Indian Council of Medical Research, New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | | | - Amit Sharma
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
- International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| |
Collapse
|
5
|
Kumari S, Sinha A. Culture and transfection: Two major bottlenecks in understanding Plasmodium vivax biology. Front Microbiol 2023; 14:1144453. [PMID: 37082177 PMCID: PMC10110902 DOI: 10.3389/fmicb.2023.1144453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 02/28/2023] [Indexed: 04/07/2023] Open
Abstract
The long term in vitro culture of Plasmodium falciparum was successfully established by Trager and Jensen in 1976; however it largely remains unachieved for P. vivax. The major obstacle associated with Plasmodium vivax in vitro culture is its predilection for invading younger reticulocytes and the complex remodelling of invaded reticulocytes. There are many factors under exploration for this predilection and host–parasite interactions between merozoites and invaded reticulocytes. These include various factors related to parasite, host and environment such as compromised reticulocyte osmotic stability after invasion, abundance of iron in the reticulocytes which makes them favourable for P. vivax growth and propagation and role of a hypoxic environment in P. vivax in vitro growth. P. vivax blood stage transfection represents another major hurdle towards understanding this parasite’s complex biology. Efforts in making this parasite amenable for molecular investigation by genetic modification are limited. Newer approaches in sustaining a longer in vitro culture and thereby help advancing transfection technologies in P. vivax are urgently needed that can be explored to understand the unique biology of this parasite.
Collapse
|
6
|
Drysdale M, Tan L, Martin A, Fuhrer IB, Duparc S, Sharma H. Plasmodium vivax in Children: Hidden Burden and Conspicuous Challenges, a Narrative Review. Infect Dis Ther 2023; 12:33-51. [PMID: 36378465 PMCID: PMC9868225 DOI: 10.1007/s40121-022-00713-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 10/05/2022] [Indexed: 11/16/2022] Open
Abstract
There has been progress towards decreasing malaria prevalence globally; however, Plasmodium vivax has been less responsive to elimination efforts compared with Plasmodium falciparum. P. vivax malaria remains a serious public health concern in regions where it is the dominant species (South and South-East Asia, the Eastern Mediterranean region, and South America) and is increasingly recognized for its contribution to overall morbidity and mortality worldwide. The incidence of P. vivax decreases with increasing age owing to rapidly acquired clinical immunity and there is a disproportionate burden of P. vivax in infants and children, who remain highly vulnerable to severe disease, recurrence, and anemia with associated developmental impacts. Diagnosis is sometimes difficult owing to the sensitivity of diagnostic tests to detect low levels of parasitemia. Additionally, the propensity of P. vivax to relapse following reactivation of dormant hypnozoites in the liver contributes to disease recurrence in infants and children, and potentiates morbidity and transmission. The 8-aminoquinolines, primaquine and tafenoquine, provide radical cure (relapse prevention). However, the risk of hemolysis in patients with glucose-6-phosphate dehydrogenase (G6PD) deficiency necessitates testing prior to administration of 8-aminoquinolines, which has limited their uptake. Additional challenges include lack of availability of pediatric dose formulations and problems with adherence to primaquine owing to the length of treatment recommended. A paucity of data and studies specific to pediatric P. vivax malaria impacts the ability to deliver targeted interventions. It is imperative that P. vivax in infants and children be the focus of future research, control initiatives, and anti-malarial drug development.
Collapse
Affiliation(s)
| | - Lionel Tan
- GSK, 980 Great West Road, Brentford, TW8 9GS Middlesex UK
| | - Ana Martin
- GSK, 980 Great West Road, Brentford, TW8 9GS Middlesex UK
| | | | | | - Hema Sharma
- GSK, 980 Great West Road, Brentford, TW8 9GS Middlesex UK
| |
Collapse
|
7
|
Kalkman LC, Hanscheid T, Krishna S, Kremsner PG, Grobusch MP. Antimalarial treatment in infants. Expert Opin Pharmacother 2022; 23:1711-1726. [PMID: 36174125 DOI: 10.1080/14656566.2022.2130687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Malaria in infants is common in high-transmission settings, especially in infants >6 months. Infants undergo physiological changes impacting pharmacokinetics and pharmacodynamics of anti-malarial drugs and, consequently, the safety and efficacy of malaria treatment. Yet, treatment guidelines and evidence on pharmacological interventions for malaria often fail to address this vulnerable age-group. This review aims to summarise the available data on anti-malarial treatment in infants. AREAS COVERED The standard recommended treatments for severe and uncomplicated malaria are generally safe and effective in infants. However, infants have an increased risk of drug-related vomiting and have distinct pharmacokinetic parameters of antimalarials compared with older patients. These include larger volumes of distribution, higher clearance rates and immature enzyme systems. Consequently, infants with malaria may be at increased risk of treatment failure and drug toxicity. EXPERT OPINION Knowledge expansion to optimize treatment can be achieved by including more infants in antimalarial drug trials and by reporting separately on treatment outcomes in infants. Additional evidence on the efficacy, safety, tolerability, acceptability and effectiveness of ACTs in infants is needed, as well as population pharmacokinetics studies on antimalarials in the infant population.
Collapse
Affiliation(s)
- Laura C Kalkman
- Center of Tropical Medicine and Travel Medicine, Department of Infectious Diseases, Amsterdam University Medical Centers, location Amsterdam, Amsterdam Infection & Immunity, Amsterdam Public Health, University of Amsterdam, Amsterdam, The Netherlands
| | - Thomas Hanscheid
- Instituto de Microbiologia, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Sanjeev Krishna
- Institut für Tropenmedizin, Eberhard Karls Universität Tübingen, and German Center for Infection Research (DZIF), Tübingen, Germany.,Centre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné, Gabon.,Clinical Academic Group, Institute for Infection and Immunity, and St. George's University Hospitals NHS Foundation Trust, St. George's University of London, London, UK
| | - Peter G Kremsner
- Institut für Tropenmedizin, Eberhard Karls Universität Tübingen, and German Center for Infection Research (DZIF), Tübingen, Germany.,Centre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné, Gabon
| | - Martin P Grobusch
- Center of Tropical Medicine and Travel Medicine, Department of Infectious Diseases, Amsterdam University Medical Centers, location Amsterdam, Amsterdam Infection & Immunity, Amsterdam Public Health, University of Amsterdam, Amsterdam, The Netherlands.,Institut für Tropenmedizin, Eberhard Karls Universität Tübingen, and German Center for Infection Research (DZIF), Tübingen, Germany.,Centre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné, Gabon.,Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa.,Masanga Medical Research Unit (MMRU), Masanga, Sierra Leone
| |
Collapse
|
8
|
Goo YK. Vivax Malaria and the Potential Role of the Subtelomeric Multigene vir Superfamily. Microorganisms 2022; 10:microorganisms10061083. [PMID: 35744600 PMCID: PMC9228997 DOI: 10.3390/microorganisms10061083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/20/2022] [Accepted: 05/23/2022] [Indexed: 02/01/2023] Open
Abstract
Vivax malaria, caused by Plasmodium vivax, remains a public health concern in Central and Southeast Asia and South America, with more than two billion people at risk of infection. Compared to Plasmodium falciparum, P. vivax is considered a benign infection. However, in recent decades, incidences of severe vivax malaria have been confirmed. The P. falciparum erythrocyte membrane protein 1 family encoded by var genes is known as a mediator of severe falciparum malaria by cytoadherence property. Correspondingly, the vir multigene superfamily has been identified as the largest multigene family in P. vivax and is implicated in cytoadherence to endothelial cells and immune response activation. In this review, the functions of vir genes are reviewed in the context of their potential roles in severe vivax malaria.
Collapse
Affiliation(s)
- Youn-Kyoung Goo
- Department of Parasitology and Tropical Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Korea
| |
Collapse
|
9
|
Baird JK. Basic Research of Plasmodium vivax Biology Enabling Its Management as a Clinical and Public Health Problem. Front Cell Infect Microbiol 2021; 11:696598. [PMID: 34540716 PMCID: PMC8447957 DOI: 10.3389/fcimb.2021.696598] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 06/22/2021] [Indexed: 12/20/2022] Open
Abstract
The emerging understanding of Plasmodium vivax as an infection seated in extravascular spaces of its human host carries fundamentally important implications for its management as a complex clinical and public health problem. This progress begins to reverse decades of neglected research borne of the false dogma of P. vivax as an intrinsically benign and inconsequential parasite. This Review provides real world context for the on-going laboratory explorations of the molecular and cellular events in the life of this parasite. Chemotherapies against the latent reservoir impose extraordinarily complex and difficult problems of science and medicine, but great strides in studies of the biology of hepatic P. vivax promise solutions. Fundamental assumptions regarding the interpretation of parasitaemia in epidemiology, clinical medicine, and public health are being revisited and reassessed in light of new studies of P. vivax cellular/molecular biology and pathogenesis. By examining these long overlooked complexities of P. vivax malaria, we open multiple new avenues to vaccination, chemoprevention, countermeasures against transmission, epidemiology, diagnosis, chemotherapy, and clinical management. This Review expresses how clarity of vision of biology and pathogenesis may rationally and radically transform the multiple means by which we may combat this insidiously harmful infection.
Collapse
Affiliation(s)
- J Kevin Baird
- Eijkman-Oxford Clinical Research Unit, Eijkman Institute of Molecular Biology, Jakarta, Indonesia.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
10
|
Pincelli A, Cardoso MA, Malta MB, Johansen IC, Corder RM, Nicolete VC, Soares IS, Castro MC, Ferreira MU. Low-level Plasmodium vivax exposure, maternal antibodies, and anemia in early childhood: Population-based birth cohort study in Amazonian Brazil. PLoS Negl Trop Dis 2021; 15:e0009568. [PMID: 34264946 PMCID: PMC8282015 DOI: 10.1371/journal.pntd.0009568] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 06/16/2021] [Indexed: 11/26/2022] Open
Abstract
Background Malaria causes significant morbidity and mortality in children under 5 years of age in sub-Saharan Africa and the Asia-Pacific region. Neonates and young infants remain relatively protected from clinical disease and the transplacental transfer of maternal antibodies is hypothesized as one of the protective factors. The adverse health effects of Plasmodium vivax malaria in early childhood–traditionally viewed as a benign infection–remain largely neglected in relatively low-endemicity settings across the Amazon. Methodology/Principal findings Overall, 1,539 children participating in a birth cohort study in the main transmission hotspot of Amazonian Brazil had a questionnaire administered, and blood sampled at the two-year follow-up visit. Only 7.1% of them experienced malaria confirmed by microscopy during their first 2 years of life– 89.1% of the infections were caused by P. vivax. Young infants appear to be little exposed to, or largely protected from infection, but children >12 months of age become as vulnerable to vivax malaria as their mothers. Few (1.4%) children experienced ≥4 infections during the 2-year follow-up, accounting for 43.4% of the overall malaria burden among study participants. Antenatal malaria diagnosed by microscopy during pregnancy or by PCR at delivery emerged as a significant correlate of subsequent risk of P. vivax infection in the offspring (incidence rate ratio, 2.58; P = 0.002), after adjusting for local transmission intensity. Anti-P. vivax antibodies measured at delivery do not protect mothers from subsequent malaria; whether maternal antibodies transferred to the fetus reduce early malaria risk in children remains undetermined. Finally, recent and repeated vivax malaria episodes in early childhood are associated with increased risk of anemia at the age of 2 years in this relatively low-endemicity setting. Conclusions/Significance Antenatal infection increases the risk of vivax malaria in the offspring and repeated childhood P. vivax infections are associated with anemia at the age of 2 years. Plasmodium vivax malaria causes frequent hospital admissions of infants and toddlers in areas of intense transmission in the Asia-Pacific region, often due to severe anemia, but its epidemiology and burden have been understudied in children from other endemic settings. Here we characterize the cumulative impact of P. vivax infections in infants and toddlers exposed to relatively low levels of malaria transmission in the Brazilian Amazon. We have previously shown that vivax malaria in pregnancy is associated with increased risk of maternal anemia and impaired fetal growth in this population. Now we show that the adverse effects of malaria extend to early childhood. Children born to mothers who had one or more infections during pregnancy are at an elevated risk of P. vivax malaria in their early life, although the transfer of maternal antibodies to the fetus may provide some short-term protection. Children who are repeatedly infected with P. vivax since birth are more likely to be anemic at the age of 2 years. These findings further challenge the traditional view of vivax malaria as a relatively benign infection in pregnancy and early childhood in the Amazon.
Collapse
Affiliation(s)
- Anaclara Pincelli
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Marly A. Cardoso
- Department of Nutrition, School of Public Health, University of São Paulo, São Paulo, Brazil
| | - Maíra B. Malta
- Department of Nutrition, School of Public Health, University of São Paulo, São Paulo, Brazil
- Graduate Program in Collective Health, Catholic University of Santos, Santos, Brazil
| | - Igor C. Johansen
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Rodrigo M. Corder
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Vanessa C. Nicolete
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Irene S. Soares
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Marcia C. Castro
- Department of Global Health and Population, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Marcelo U. Ferreira
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- * E-mail:
| | | |
Collapse
|
11
|
Jiero S, Pasaribu AP. Haematological profile of children with malaria in Sorong, West Papua, Indonesia. Malar J 2021; 20:126. [PMID: 33663524 PMCID: PMC7931533 DOI: 10.1186/s12936-021-03638-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 02/09/2021] [Indexed: 11/13/2022] Open
Abstract
Background Malaria remains a major public health problem in Indonesian Papua, with children under five years of age being the most affected group. Haematological changes, such as cytopenia that occur during malaria infection have been suggested as potential predictors and can aid in the diagnosis of malaria. This study aimed to assess the haematological alterations associated with malaria infection in children presenting with signs and symptoms of malaria. Methods A retrospective study was performed by collecting data from the medical records of malaria patients at Sorong Regional General Hospital, Sorong, West Papua, Indonesia, both from outpatient and inpatient clinics, from January 2014 until December 2017. The laboratory profile of children suffering from malaria was evaluated. Results One hundred and eighty-two children aged 1 month to 18 years old were enrolled. The subjects were mostly male (112, 61.5%) with a mean age of 6.45 years (SD = 4.3 years). Children below 5 years of age suffered the most from malaria in this study (77, 42.3%). One hundred two subjects (56%) were infected with Plasmodium falciparum. Half of the enrolled subjects (50%) had haemoglobin level (Hb) between 5.1 and 10 gr/dL. A total of 41 children (53.2%) less than 5 years old suffered from P. falciparum infection. In the age group of 5–10 years, there were 34 children (57.6%) who suffered from P. falciparum, and in the age group > 10 years, 27 children (58.7%) suffered from P. falciparum infection. Only 4 subjects (5.2%) in the less than 5 years old age group had mixed malaria infection. Among eight predictors of the haematological profile, there were five predictors that were significantly associated with the diagnostic criteria, namely haemoglobin, haematocrit, leukocytes, platelets and monocytes (p < 0.05). Generally, clinical symptoms are not significantly associated with a malaria diagnosis, and only one variable showed a significant relationship, pale, with a P value of 0.001. Conclusions Children with malaria had changes in some haematological markers, with anaemia, low platelet count, white blood count, and lymphocyte count being the most important predictors of malaria infection in the study area. These markers could be used to raise suspicion of malaria in children living in high endemic areas, such as West Papua.
Collapse
Affiliation(s)
- Syilvia Jiero
- Department of Child Health, Sorong Regional General Hospital, Sorong, West Papua, Indonesia
| | - Ayodhia Pitaloka Pasaribu
- Department of Child Health, Medical Faculty, Universitas Sumatera Utara, Dr. Mansur Street No. 5, 20156, Medan, Indonesia.
| |
Collapse
|
12
|
Mourão LC, Cardoso-Oliveira GP, Braga ÉM. Autoantibodies and Malaria: Where We Stand? Insights Into Pathogenesis and Protection. Front Cell Infect Microbiol 2020; 10:262. [PMID: 32596165 PMCID: PMC7300196 DOI: 10.3389/fcimb.2020.00262] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 05/04/2020] [Indexed: 12/16/2022] Open
Abstract
Autoantibodies are frequently reported in patients with malaria, but whether they contribute to protection or to pathology is an issue of debate. A large body of evidence indicates that antibodies against host-self components are associated to malaria clinical outcomes such as cerebral malaria, renal dysfunction and anemia. Nonetheless, self-reactive immunoglobulins induced during an infection can also mediate protection. In light of these controversies, we summarize here the latest findings in our understanding of autoimmune responses in malaria, focusing on Plasmodium falciparum and Plasmodium vivax. We review the main targets of self-antibody responses in malaria as well as the current, but still limited, knowledge of their role in disease pathogenesis or protection.
Collapse
Affiliation(s)
| | | | - Érika Martins Braga
- Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
13
|
Pal S, Bansil P, Bancone G, Hrutkay S, Kahn M, Gornsawun G, Penpitchaporn P, Chu CS, Nosten F, Domingo GJ. Evaluation of a Novel Quantitative Test for Glucose-6-Phosphate Dehydrogenase Deficiency: Bringing Quantitative Testing for Glucose-6-Phosphate Dehydrogenase Deficiency Closer to the Patient. Am J Trop Med Hyg 2019; 100:213-221. [PMID: 30350771 PMCID: PMC6335905 DOI: 10.4269/ajtmh.18-0612] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Glucose-6-phosphate dehydrogenase (G6PD) deficiency, a common genetic blood condition, can result in kernicterus at birth, and later in life as severe hemolysis on exposure to certain infections, foods, and drugs. The unavailability of point-of-care tests for G6PD deficiency is a barrier to routine curative treatment of Plasmodium vivax malaria with 8-aminoquinolines, such as primaquine. Two quantitative reference tests (Trinity Biotech, Bray, Ireland and Pointe Scientific, Canton, MI; Cat No. G7583) and the point-of-care STANDARD™ G6PD test (SD Biosensor, Suwon, South Korea) were evaluated. The STANDARD G6PD test was evaluated at multiple temperatures, in anticoagulated venous and capillary samples, including 79 G6PD-deficient and 66 intermediate samples and across two laboratories, one in the United States and one in Thailand. The STANDARD test performed equivalently to a reference assay for its ability to diagnose G6PD deficiency (< 30% normal) with a sensitivity of 100% (0.95 confidence interval [CI]: 95.7–100) and specificity of 97% (0.95 CI: 94.5–98.5), and could reliably identify females with less than 70% normal G6PD activity with a sensitivity of 95.5% (0.95 CI: 89.7–98.5) and specificity of 97% (0.95 CI: 94.5–98.6). The STANDARD G6PD product represents an opportunity to diagnose G6PD deficiency equally for males and females in basic clinical laboratories in high- and low-resource settings. This quantitative point-of-care diagnostic test for G6PD deficiency can provide equal access to safe radical cure of P. vivax cases in high- and low-resource settings, for males and females and may support malaria elimination, in countries where P. vivax is endemic.
Collapse
Affiliation(s)
- Sampa Pal
- Diagnostics Program, PATH, Seattle, Washington
| | | | - Germana Bancone
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom.,Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | | | - Maria Kahn
- Diagnostics Program, PATH, Seattle, Washington
| | - Gornpan Gornsawun
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Pimsupah Penpitchaporn
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Cindy S Chu
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom.,Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - François Nosten
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom.,Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | | |
Collapse
|
14
|
Oyong DA, Loughland JR, SheelaNair A, Andrew D, Rivera FDL, Piera KA, William T, Grigg MJ, Barber BE, Haque A, Engwerda CR, McCarthy JS, Anstey NM, Boyle MJ. Loss of complement regulatory proteins on red blood cells in mild malarial anaemia and in Plasmodium falciparum induced blood-stage infection. Malar J 2019; 18:312. [PMID: 31533836 PMCID: PMC6749675 DOI: 10.1186/s12936-019-2962-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 09/12/2019] [Indexed: 12/29/2022] Open
Abstract
Background Anaemia is a major consequence of malaria, caused by the removal of both infected and uninfected red blood cells (RBCs) from the circulation. Complement activation and reduced expression of complement regulatory proteins (CRPs) on RBCs are an important pathogenic mechanism in severe malarial anaemia in both Plasmodium falciparum and Plasmodium vivax infection. However, little is known about loss of CRPs on RBCs during mild malarial anaemia and in low-density infection. Methods The expression of CRP CR1, CD55, CD59, and the phagocytic regulator CD47, on uninfected normocytes and reticulocytes were assessed in individuals from two study populations: (1) P. falciparum and P. vivax-infected patients from a low transmission setting in Sabah, Malaysia; and, (2) malaria-naïve volunteers undergoing P. falciparum induced blood-stage malaria (IBSM). For clinical infections, individuals were categorized into anaemia severity categories based on haemoglobin levels. For IBSM, associations between CRPs and haemoglobin level were investigated. Results CRP expression on RBC was lower in Malaysian individuals with P. falciparum and P. vivax mild malarial anaemia compared to healthy controls. CRP expression was also reduced on RBCs from volunteers during IBSM. Reduction occurred on normocytes and reticulocytes. However, there was no significant association between reduced CRPs and haemoglobin during IBSM. Conclusions Removal of CRPs occurs on both RBCs and reticulocytes during Plasmodium infection even in mild malarial anaemia and at low levels of parasitaemia.
Collapse
Affiliation(s)
- Damian A Oyong
- Menzies School of Health Research, Darwin, NT, Australia.,Charles Darwin University, Darwin, NT, Australia
| | | | - Arya SheelaNair
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Dean Andrew
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | | | - Kim A Piera
- Menzies School of Health Research, Darwin, NT, Australia
| | - Timothy William
- Infectious Diseases Society, Sabah-Menzies School of Health Research Clinical Research Unit, Queen Elizabeth Hospital, Kota Kinabalu, Sabah, Malaysia.,Gleneagles Medical Centre, Kota Kinabalu, Sabah, Malaysia
| | - Matthew J Grigg
- Menzies School of Health Research, Darwin, NT, Australia.,Infectious Diseases Society, Sabah-Menzies School of Health Research Clinical Research Unit, Queen Elizabeth Hospital, Kota Kinabalu, Sabah, Malaysia
| | - Bridget E Barber
- Menzies School of Health Research, Darwin, NT, Australia.,QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia.,Infectious Diseases Society, Sabah-Menzies School of Health Research Clinical Research Unit, Queen Elizabeth Hospital, Kota Kinabalu, Sabah, Malaysia
| | - Ashraful Haque
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | | | - James S McCarthy
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia.,School of Medicine, University of Queensland, Brisbane, QLD, Australia
| | | | - Michelle J Boyle
- Menzies School of Health Research, Darwin, NT, Australia. .,QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia. .,Burnet Institute, Melbourne, VIC, Australia.
| |
Collapse
|
15
|
Abstract
The technical genesis and practice of 8-aminoquinoline therapy of latent malaria offer singular scientific, clinical, and public health insights. The 8-aminoquinolines brought revolutionary scientific discoveries, dogmatic practices, benign neglect, and, finally, enduring promise against endemic malaria. The clinical use of plasmochin-the first rationally synthesized blood schizontocide and the first gametocytocide, tissue schizontocide, and hypnozoitocide of any kind-commenced in 1926. Plasmochin became known to sometimes provoke fatal hemolytic crises. World War II delivered a newer 8-aminoquinoline, primaquine, and the discovery of glucose-6-phosphate dehydrogenase (G6PD) deficiency as the basis of its hemolytic toxicity came in 1956. Primaquine nonetheless became the sole therapeutic option against latent malaria. After 40 years of fitful development, in 2018 the U.S. Food and Drug Administration registered the 8-aminoquinoline called tafenoquine for the prevention of all malarias and the treatment of those that relapse. Tafenoquine also cannot be used in G6PD-unknown or -deficient patients. The hemolytic toxicity of the 8-aminoquinolines impedes their great potential, but this problem has not been a research priority. This review explores the complex technical dimensions of the history of 8-aminoquinolines. The therapeutic principles thus examined may be leveraged in improved practice and in understanding the bright prospect of discovery of newer drugs that cannot harm G6PD-deficient patients.
Collapse
Affiliation(s)
- J Kevin Baird
- Eijkman-Oxford Clinical Research Unit, Eijkman Institute for Molecular Biology, Jakarta, Indonesia
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
16
|
Setyadi A, Arguni E, Kenangalem E, Hasanuddin A, Lampah DA, Thriemer K, Anstey NM, Sugiarto P, Simpson JA, Price RN, Douglas NM, Poespoprodjo JR. Safety of primaquine in infants with Plasmodium vivax malaria in Papua, Indonesia. Malar J 2019; 18:111. [PMID: 30940140 PMCID: PMC6444676 DOI: 10.1186/s12936-019-2745-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 03/23/2019] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Primaquine (PQ) prevents relapses of vivax malaria but may induce severe haemolysis in glucose-6-phosphate dehydrogenase (G6PD) deficient patients. Data on the safety of primaquine in infants are limited. METHODS A retrospective, hospital-based cohort study of infants aged 1-12 months with vivax malaria was carried out in Timika, Papua province, Indonesia. Risks of admission, death and severe haematological outcomes within 30 days of first presentation were compared between infants who did and did not receive primaquine. Infants were not tested routinely for G6PD deficiency as per local guidelines. RESULTS Between 2004 and 2013, 4078 infants presented to the hospital for the first time with vivax malaria, of whom 3681 (90.3%) had data available for analysis. In total 1228 (33.4%) infants were aged between 1 and 6 months and 2453 (66.6%) between 6 and 12 months of age. Thirty-three (0.9%) patients received low-dose primaquine (LDP), 174 (4.7%) received high-dose primaquine (HDP), 3432 (93.2%) received no primaquine (NPQ) and 42 patients received either a single dose or an unknown dose of primaquine. The risk of the Hb concentration falling by > 25% to less than 5 g/dL was similar in the LDP or HDP groups (4.3%, 1/23) versus the NPQ group (3.5%, 16/461). Three infants (1.4%) died following receipt of PQ, all of whom had major comorbidities. Seventeen patients (0.5%) died in the NPQ group. None of the infants had documented massive haemolysis or renal impairment. CONCLUSIONS Severe clinical outcomes amongst infants treated with primaquine in Papua were rare. The risks of using primaquine in infancy must be weighed against the risks of recurrent vivax malaria in early life.
Collapse
Affiliation(s)
- Agus Setyadi
- grid.8570.aDepartment of Child Health, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Eggi Arguni
- grid.8570.aDepartment of Child Health, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Enny Kenangalem
- Timika Malaria Research Programme, Papuan Health and Community Development Foundation, Timika, Papua Indonesia ,Mimika District Hospital, Timika, Papua Indonesia
| | | | - Daniel A. Lampah
- Timika Malaria Research Programme, Papuan Health and Community Development Foundation, Timika, Papua Indonesia
| | - Kamala Thriemer
- 0000 0000 8523 7955grid.271089.5Global Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, NT Australia
| | - Nicholas M. Anstey
- 0000 0000 8523 7955grid.271089.5Global Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, NT Australia ,grid.240634.7Division of Medicine, Royal Darwin Hospital, Darwin, NT Australia
| | | | - Julie A. Simpson
- 0000 0001 2179 088Xgrid.1008.9Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Melbourne, Australia
| | - Ric N. Price
- 0000 0000 8523 7955grid.271089.5Global Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, NT Australia ,0000 0004 1936 8948grid.4991.5Centre for Tropical Medicine, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK ,0000 0004 1937 0490grid.10223.32Mahidol-Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Nicholas M. Douglas
- 0000 0000 8523 7955grid.271089.5Global Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, NT Australia ,grid.240634.7Division of Medicine, Royal Darwin Hospital, Darwin, NT Australia
| | - Jeanne R. Poespoprodjo
- grid.8570.aDepartment of Child Health, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia ,Timika Malaria Research Programme, Papuan Health and Community Development Foundation, Timika, Papua Indonesia ,Mimika District Hospital, Timika, Papua Indonesia
| |
Collapse
|
17
|
Domingo GJ, Advani N, Satyagraha AW, Sibley CH, Rowley E, Kalnoky M, Cohen J, Parker M, Kelley M. Addressing the gender-knowledge gap in glucose-6-phosphate dehydrogenase deficiency: challenges and opportunities. Int Health 2019; 11:7-14. [PMID: 30184203 PMCID: PMC6314154 DOI: 10.1093/inthealth/ihy060] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 07/18/2018] [Accepted: 07/20/2018] [Indexed: 01/25/2023] Open
Abstract
Glucose-6-phosphate dehyrdgoenase (G6PD) deficiency is a common X-linked genetic trait, with an associated enzyme phenotype, whereby males are either G6PD deficient or normal, but females exhibit a broader range of G6PD deficiencies, ranging from severe deficiency to normal. Heterozygous females typically have intermediate G6PD activity. G6PD deficiency has implications for the safe treatment for Plasmodium vivax malaria. Individuals with this deficiency are at greater risk of serious adverse events following treatment with the only curative class of anti-malarials, 8-aminoquinolines, such as primaquine. Quantitative diagnostic tests for G6PD deficiency are complex and require sophisticated laboratories. The commonly used qualitative tests, do not discriminate intermediate G6PD activities. This has resulted in poor understanding of the epidemiology of G6PD activity in females and its corresponding treatment ramifications. New simple-to-use quantitative tests, and a momentum to eliminate malaria, create an opportunity to address this knowledge gap. While this will require additional resources for clinical studies, adequate operational research, and appropriate pharmacovigilance, the health benefits from this investment go beyond the immediate intervention for which the G6PD status is first diagnosed.
Collapse
Affiliation(s)
| | | | | | - Carol H Sibley
- WorldWide Antimalarial Resistance Network, University of Washington, Seattle, WA, USA
| | | | | | | | - Michael Parker
- The Ethox Centre and Wellcome Centre for Ethics and Humanities, Nuffield Department of Population Health, University of Oxford, UK
| | - Maureen Kelley
- The Ethox Centre and Wellcome Centre for Ethics and Humanities, Nuffield Department of Population Health, University of Oxford, UK
| |
Collapse
|
18
|
Abstract
Malaria is a major cause of anaemia in tropical areas. Malaria infection causes haemolysis of infected and uninfected erythrocytes and bone marrow dyserythropoiesis which compromises rapid recovery from anaemia. In areas of high malaria transmission malaria nearly all infants and young children, and many older children and adults have a reduced haemoglobin concentration as a result. In these areas severe life-threatening malarial anaemia requiring blood transfusion in young children is a major cause of hospital admission, particularly during the rainy season months when malaria transmission is highest. In severe malaria, the mortality rises steeply below an admission haemoglobin of 3 g/dL, but it also increases with higher haemoglobin concentrations approaching the normal range. In the management of severe malaria transfusion thresholds remain uncertain. Prevention of malaria by vector control, deployment of insecticide-treated bed nets, prompt and accurate diagnosis of illness and appropriate use of effective anti-malarial drugs substantially reduces the burden of anaemia in tropical countries.
Collapse
Affiliation(s)
- Nicholas J White
- Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
19
|
Mourão LC, Baptista RDP, de Almeida ZB, Grynberg P, Pucci MM, Castro-Gomes T, Fontes CJF, Rathore S, Sharma YD, da Silva-Pereira RA, Bemquerer MP, Braga ÉM. Anti-band 3 and anti-spectrin antibodies are increased in Plasmodium vivax infection and are associated with anemia. Sci Rep 2018; 8:8762. [PMID: 29884876 PMCID: PMC5993813 DOI: 10.1038/s41598-018-27109-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 05/18/2018] [Indexed: 11/09/2022] Open
Abstract
Clearance of non-infected red blood cells (nRBCs) is one of the main components of anemia associated with Plasmodium vivax malaria. Recently, we have shown that anemic patients with P. vivax infection had elevated levels of anti-RBCs antibodies, which could enhance in vitro phagocytosis of nRBCs and decrease their deformability. Using immunoproteomics, here we characterized erythrocytic antigens that are differentially recognized by autoantibodies from anemic and non-anemic patients with acute vivax malaria. Protein spots exclusively recognized by anemic P. vivax-infected patients were identified by mass spectrometry revealing band 3 and spectrin as the main targets. To confirm this finding, antibody responses against these specific proteins were assessed by ELISA. In addition, an inverse association between hemoglobin and anti-band 3 or anti-spectrin antibodies levels was found. Anemic patients had higher levels of IgG against both band 3 and spectrin than the non-anemic ones. To determine if these autoantibodies were elicited because of molecular mimicry, we used in silico analysis and identified P. vivax proteins that share homology with human RBC proteins such as spectrin, suggesting that infection drives autoimmune responses. These findings suggest that band 3 and spectrin are potential targets of autoantibodies that may be relevant for P. vivax malaria-associated anemia.
Collapse
Affiliation(s)
- Luiza Carvalho Mourão
- Departamento de Parasitologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | | | | | | | - Maíra Mazzoni Pucci
- Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, MG, Brazil
| | - Thiago Castro-Gomes
- Departamento de Parasitologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | | | - Sumit Rathore
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, India
| | - Yagya D Sharma
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, India
| | | | | | - Érika Martins Braga
- Departamento de Parasitologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
| |
Collapse
|
20
|
Ventura AMRDS, Fernandes AAM, Zanini GM, Pratt-Riccio LR, Sequeira CG, do Monte CRS, Martins-Filho AJ, Machado RLD, Libonati RMF, de Souza JM, Daniel-Ribeiro CT. Clinical and immunological profiles of anaemia in children and adolescents with Plasmodium vivax malaria in the Pará state, Brazilian Amazon. Acta Trop 2018; 181:122-131. [PMID: 29408596 DOI: 10.1016/j.actatropica.2018.01.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 01/29/2018] [Accepted: 01/30/2018] [Indexed: 11/18/2022]
Abstract
Children and adolescents are at great risk for developing iron deficiency anaemia worldwide. In the tropical areas, malaria and intestinal parasites may also play an important role in anaemia pathogenesis. This study aimed at evaluating clinical and immunological aspects of anaemia in children and adolescents with Plasmodium vivax malaria, in the Pará State, Brazil. A longitudinal study was performed in two Reference Centers for malaria diagnosis in the Brazilian Amazon in children and adolescents with malaria (n = 81), as compared to a control group (n = 40). Patients had blood drawn three times [before treatment (D0), after treatment (D7) and at the first cure control (D30)] and hemogram, autoantibody analysis (anticardiolipin, antibodies against normal RBC membrane components) and cytokine studies (TNF and IL-10) were performed. Stool samples were collected for a parasitological examination. Malaria patients had a 2.7-fold greater chance of anaemia than the control group. At D0, 66.1% of the patients had mild anaemia, 30.5% had moderate and 3.5% had severe anaemia. Positivity to intestinal helminths and/or protozoa at stool examinations had no influence on anaemia. Patients had significantly lower levels of plasmatic TNF than control individuals at D0. Low TNF levels were more prevalent among patients with moderate/severe anaemia than in those with mild anaemia and among anaemic patients than in anaemic controls. TNF levels were positively correlated with the haemoglobin rates and negatively correlated with the interval time elapsed between the onset of symptoms and diagnosis. Both plasma TNF levels and haemoglobin rates increased during the follow-up period. The IL-10 levels were lower in patients than in the controls at day 0 and decreased thereafter up to the end of treatment. Only the anti-anticardiolipin autoantibodies were associated with moderate/severe anaemia and, possibly by reacting with the parasite glycosylphosphatidylinositol (a powerful stimulator of TNF production), may have indirectly contributed to decrease the TNF levels, which could be involved in the malarial vivax anaemia of these children and adolescents. More studies addressing this issue are necessary to confirm these findings and to add more information on the multifactorial pathogenesis of the malarial anaemia.
Collapse
Affiliation(s)
- Ana Maria Revoredo da Silva Ventura
- Laboratório de Ensaios Clínicos em Malária, Instituto Evandro Chagas, Ministério da Saúde, Secretaria de Vigilância em Saúde (IEC/MS/SVS), Ananindeua, Pará, Brazil; Serviço de Pediatria - Departamento de Saúde Integrada, Universidade do Estado do Pará (UEPA), Belém, Pará, Brazil.
| | | | - Graziela Maria Zanini
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz (IOC), Fiocruz, Rio de Janeiro, Brazil.
| | - Lilian Rose Pratt-Riccio
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz (IOC), Fiocruz, Rio de Janeiro, Brazil.
| | - Carina Guilhon Sequeira
- Serviço de Pediatria - Departamento de Saúde Integrada, Universidade do Estado do Pará (UEPA), Belém, Pará, Brazil.
| | | | - Arnaldo Jorge Martins-Filho
- Serviço de Patologia Clínica, Instituto Evandro Chagas, Ministério da Saúde, Secretaria de Vigilância em Saúde (IEC/MS/SVS), Ananindeua, Pará, Brazil.
| | - Ricardo Luiz Dantas Machado
- Laboratório de Imunogenética, Instituto Evandro Chagas, Ministério da Saúde, Secretaria de Vigilância em Saúde (IEC/MS/SVS), Ananindeua, Pará, Brazil.
| | | | - José Maria de Souza
- Laboratório de Ensaios Clínicos em Malária, Instituto Evandro Chagas, Ministério da Saúde, Secretaria de Vigilância em Saúde (IEC/MS/SVS), Ananindeua, Pará, Brazil.
| | | |
Collapse
|
21
|
Gavina K, Gnidehou S, Arango E, Hamel-Martineau C, Mitran C, Agudelo O, Lopez C, Karidio A, Banman S, Carmona-Fonseca J, Salanti A, Tuikue Ndam N, Hawkes M, Maestre A, Yanow SK. Clinical Outcomes of Submicroscopic Infections and Correlates of Protection of VAR2CSA Antibodies in a Longitudinal Study of Pregnant Women in Colombia. Infect Immun 2018; 86:e00797-17. [PMID: 29378797 PMCID: PMC5865023 DOI: 10.1128/iai.00797-17] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 01/22/2018] [Indexed: 11/20/2022] Open
Abstract
Malaria in pregnancy can cause serious adverse outcomes for the mother and the fetus. However, little is known about the effects of submicroscopic infections (SMIs) in pregnancy, particularly in areas where Plasmodium falciparum and Plasmodium vivax cocirculate. A cohort of 187 pregnant women living in Puerto Libertador in northwest Colombia was followed longitudinally from recruitment to delivery. Malaria was diagnosed by microscopy, reverse transcription-quantitative PCR (RT-qPCR), and placental histopathology. Gestational age, hemoglobin concentration, VAR2CSA-specific IgG levels, and adhesion-blocking antibodies were measured during pregnancy. Statistical analyses were performed to evaluate the impact of SMIs on birth weight and other delivery outcomes. Twenty-five percent of women (45/180) were positive for SMIs during pregnancy. Forty-seven percent of infections (21/45) were caused by P. falciparum, 33% were caused by P. vivax, and 20% were caused by mixed Plasmodium spp. Mixed infections of P. falciparum and P. vivax were associated with lower gestational age at delivery (P = 0.0033), while other outcomes were normal. Over 60% of women had antibodies to VAR2CSA, and there was no difference in antibody levels between those with and without SMIs. The anti-adhesion function of these antibodies was associated with protection from SMI-related anemia at delivery (P = 0.0086). SMIs occur frequently during pregnancy, and while mixed infections of both P. falciparum and P. vivax were not associated with a decrease in birth weight, they were associated with significant risk of preterm birth. We propose that the lack of adverse delivery outcomes is due to functional VAR2CSA antibodies that can protect pregnant women from SMI-related anemia.
Collapse
Affiliation(s)
- Kenneth Gavina
- Department of Medical Microbiology and Immunology, Faculty of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Sedami Gnidehou
- Department of Biology, Campus Saint-Jean, University of Alberta, Edmonton, Alberta, Canada
| | - Eliana Arango
- Grupo Salud y Comunidad, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| | - Chloe Hamel-Martineau
- Department of Biology, Campus Saint-Jean, University of Alberta, Edmonton, Alberta, Canada
| | - Catherine Mitran
- School of Public Health, University of Alberta, Edmonton, Alberta, Canada
| | - Olga Agudelo
- Grupo Salud y Comunidad, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| | - Carolina Lopez
- Grupo Salud y Comunidad, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| | - Aisha Karidio
- Department of Biology, Campus Saint-Jean, University of Alberta, Edmonton, Alberta, Canada
| | - Shanna Banman
- School of Public Health, University of Alberta, Edmonton, Alberta, Canada
| | - Jaime Carmona-Fonseca
- Grupo Salud y Comunidad, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| | - Ali Salanti
- Centre for Medical Parasitology at Department of Immunology and Microbiology, University of Copenhagen, Copenhagen University Hospital, Copenhagen, Denmark
| | | | - Michael Hawkes
- Department of Pediatrics, Faculty of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Amanda Maestre
- Grupo Salud y Comunidad, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| | - Stephanie K Yanow
- Department of Medical Microbiology and Immunology, Faculty of Medicine, University of Alberta, Edmonton, Alberta, Canada
- School of Public Health, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
22
|
Poespoprodjo JR, Kenangalem E, Wafom J, Chandrawati F, Puspitasari AM, Ley B, Trianty L, Korten Z, Surya A, Syafruddin D, Anstey NM, Marfurt J, Noviyanti R, Price RN. Therapeutic Response to Dihydroartemisinin-Piperaquine for P. falciparum and P. vivax Nine Years after Its Introduction in Southern Papua, Indonesia. Am J Trop Med Hyg 2018; 98:677-682. [PMID: 29345221 PMCID: PMC5850981 DOI: 10.4269/ajtmh.17-0662] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Dihydroartemisinin-piperaquine (DHP) has been the first-line treatment of uncomplicated malaria due to both Plasmodium falciparum and Plasmodium vivax infections in Papua, Indonesia, since March 2006. The efficacy of DHP was reassessed to determine whether there had been any decline following almost a decade of its extensive use. An open-label drug efficacy study of DHP for uncomplicated P. falciparum and P. vivax malaria was carried out between March 2015 and April 2016 in Timika, Papua, Indonesia. Patients with uncomplicated malaria were administered supervised DHP tablets once daily for 3 days. Clinical and laboratory data were collected daily until parasite clearance and then weekly for 6 weeks. Molecular analysis was undertaken for all patients with recurrent parasitemia. A total of 129 study patients were enrolled in the study. At day 42, the polymerase chain reaction-adjusted efficacy was 97.7% (95% confidence intervals [CI]: 87.4-99.9) in the 61 patients with P. falciparum malaria, and 98.2% [95% CI: 90.3-100] in the 56 patients with P. vivax malaria. By day 2, 98% (56/57) of patients with P. falciparum and 96.9% (63/65) of those with P. vivax had cleared their peripheral parasitemia; none of the patients were still parasitaemic on day 3. Molecular analysis of P. falciparum parasites showed that none (0/61) had K13 mutations associated previously with artemisinin resistance or increased copy number of plasmepsin 2-3 (0/61). In the absence of artemisinin resistance, DHP has retained high efficacy for the treatment of uncomplicated malaria despite extensive drug pressure over a 9-year period.
Collapse
Affiliation(s)
- Jeanne Rini Poespoprodjo
- Mimika District Hospital, Timika, Indonesia;,Timika Malaria Research Programme, Papuan Health and Community Development Foundation, Timika, Indonesia;,Paediatric Research Office, Department of Child Health, Faculty of Medicine, Universitas Gadjah Mada/Dr. Sardjito Hospital, Yogyakarta, Indonesia;,Address correspondence to Jeanne Rini Poespoprodjo, Timika Malaria Research Programme, Papuan Health and Community Development Foundation, Timika, Indonesia. E-mail:
| | - Enny Kenangalem
- Mimika District Hospital, Timika, Indonesia;,Timika Malaria Research Programme, Papuan Health and Community Development Foundation, Timika, Indonesia
| | - Johny Wafom
- Timika Malaria Research Programme, Papuan Health and Community Development Foundation, Timika, Indonesia
| | - Freis Chandrawati
- Timika Malaria Research Programme, Papuan Health and Community Development Foundation, Timika, Indonesia
| | | | - Benedikt Ley
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Australia
| | - Leily Trianty
- Eijkman Institute for Molecular Biology, Jakarta, Indonesia
| | - Zoé Korten
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Australia
| | - Asik Surya
- Indonesian Ministry of Health, National Malaria Control Program, Jakarta, Indonesia
| | - Din Syafruddin
- Eijkman Institute for Molecular Biology, Jakarta, Indonesia
| | - Nicholas M. Anstey
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Australia
| | - Jutta Marfurt
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Australia
| | | | - Ric N. Price
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Australia;,Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|