1
|
Odendaal ML, Taenzer J, de Rooij MMT, Kuiling S, Bogaert D, Franz E, Smit LAM. Nasopharyngeal microbiota is influenced by agricultural air pollution in individuals with and without COPD. Sci Rep 2025; 15:15653. [PMID: 40325057 PMCID: PMC12053623 DOI: 10.1038/s41598-025-00242-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Accepted: 04/25/2025] [Indexed: 05/07/2025] Open
Abstract
Respiratory health in chronic obstructive pulmonary disease (COPD) is influenced by environmental factors such as air pollution, yet the role of the airway microbiota in this relationship remains unclear. We investigated the association between exposure to air pollution from livestock farms and the nasopharyngeal microbiota in individuals with COPD compared to healthy control subjects. The study included nasopharyngeal swabs from 186 currently non-smoking participants in the Netherlands, including 65 individuals with COPD and 121 without from a regional rural cohort. Additionally, 116 individuals from a population-wide cohort were included as national controls. Samples were taken at three time points over 12 weeks. The nasopharyngeal microbiota was studied using 16 S rRNA gene-based sequencing for all baseline samples and a random selection of 6-weeks and 12-weeks samples. Dispersion models were used to determine the average concentrations of livestock-related PM10, endotoxin, and ammonia at the participants' home addresses. Individuals with COPD had a higher absolute abundance of anaerobic bacteria, such as Peptoniphilus, Anaerococcus, Finegoldia magna, and Prevotella. Importantly, residential exposure to ammonia was identified as the most important driver of the microbial community composition, explaining 6.6% of the variation in nasopharyngeal microbiota in individuals with COPD. Higher ammonia concentrations were associated with decreased levels of key commensals and increased abundance of anaerobic bacteria. Furthermore, individuals living in areas with high livestock density exhibited greater microbial diversity compared to the broader national population. The study highlights the influence of residential exposure to livestock-related air pollution, particularly ammonia, on nasopharyngeal microbiota composition in individuals with COPD. Our findings suggest that environmental factors significantly impact microbial communities and underscore the potential role of anaerobic bacteria in COPD pathology. Future research should further investigate the mechanisms by which environmental air pollutants affect microbial communities and explore potential interventions to mitigate their effects on respiratory health.
Collapse
Affiliation(s)
- Mari-Lee Odendaal
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands.
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, The Netherlands.
| | - Julia Taenzer
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, The Netherlands
| | - Myrna M T de Rooij
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, The Netherlands
| | - Sjoerd Kuiling
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Debby Bogaert
- Department of Paediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital/University Medical Center Utrecht, Utrecht, The Netherlands
- Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Eelco Franz
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Lidwien A M Smit
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
2
|
Heine LK, Rajasinghe LD, Wagner JG, Lewandowski RP, Li QZ, Richardson AL, Tindle AN, Shareef JJ, Harkema JR, Pestka JJ. Subchronic intranasal lipopolysaccharide exposure induces pulmonary autoimmunity and glomerulonephritis in NZBWF1 mice. Autoimmunity 2024; 57:2370536. [PMID: 38976509 PMCID: PMC11289745 DOI: 10.1080/08916934.2024.2370536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 06/16/2024] [Indexed: 07/10/2024]
Abstract
Lupus, a systemic autoimmune disease shaped by gene-environment interplay, often progresses to endstage renal failure. While subchronic systemic exposure to bacterial lipopolysaccharide (LPS) triggers autoimmunity and glomerulonephritis in lupus-prone mice, it is unknown if inhaling LPS, which is common in certain occupations, can similarly trigger lupus. Here we determined how subchronic intranasal (IN) LPS instillation influences autoimmunity and glomerulonephritis development in lupusprone NZBWF1 female mice. Briefly, mice were IN-instilled with vehicle or E. coli LPS (0.8 μg/g) twice weekly for 5 wk, followed by necropsy. For systemic comparison, additional cohorts of mice were injected with LPS intraperitoneally (IP) using identical doses/timing. Lungs were assessed for inflammatory and autoimmune responses and then related to systemic autoimmunity and glomerulonephritis. IN/LPS exposure induced in the lung: i) leukocyte infiltration, ii)mRNA signatures for cytokines, chemokines, IFN-regulated, and cell death-related genes, iii) ectopic lymphoid tissue formation, and iv)diverse IgM and IgG autoantibodies (AAbs). Pulmonary effects coincided with enlarged spleens, elevated plasma IgG AAbs, and inflamed IgG-containing kidney glomeruli. In contrast, IP/LPS treatment induced systemic autoimmunity and glomerulonephritis without pulmonary manifestations. Taken together, these preclinical findings suggest the lung could serve as a critical nexus for triggering autoimmunity by respirable LPS in genetically predisposed individuals.
Collapse
Affiliation(s)
- Lauren K. Heine
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, United States
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, United States
| | - Lichchavi D. Rajasinghe
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, United States
| | - James G. Wagner
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, United States
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, MI, United States
| | - Ryan P. Lewandowski
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, MI, United States
| | - Quan-Zhen Li
- Department of Immunology and Internal Medicine, IIMT Microarray Core Facility, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Alexa L. Richardson
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, United States
| | - Ashleigh N. Tindle
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, MI, United States
| | - Jenan J. Shareef
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, MI, United States
| | - Jack R. Harkema
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, United States
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, MI, United States
| | - James J. Pestka
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, United States
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, United States
- Department of Microbiology, Genetics, and Immunology, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
3
|
Hansen KK, Schlünssen V, Broberg K, Østergaard K, Frederiksen MW, Sigsgaard T, Madsen AM, Kolstad HA. Associations between bioaerosols, lung function work-shift changes and inflammatory markers: A study of recycling workers. Scand J Work Environ Health 2024; 50:602-612. [PMID: 39264251 PMCID: PMC11618316 DOI: 10.5271/sjweh.4187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Indexed: 09/13/2024] Open
Abstract
OBJECTIVES We investigated associations between bioaerosol exposures and work-shift changes in lung function and inflammatory markers among recycling workers. METHODS Inhalable dust was measured with personal samplers and analyzed for endotoxin, bacteria, and fungi (incubated at 25 °C and 37 °C) levels. Lung function (FEV1, FVC) was measured before and after work-shifts and serum concentrations of inflammatory markers (CRP, SAA, CC16, IL1B, IL2, IL4, IL5, IL6, IL8, IL10, IL13, and TNF) after the shift. Associations were explored by linear mixed-effects models. RESULTS We included 170 measurements from 88 production workers exposed to inhalable dust, endotoxin, bacteria, and fungi (25 °C and 37 °C) at geometric mean levels of 0.6 mg/m3, 10.7 EU/m3, 1.6×104 CFU/m3, 4.4×104 CFU/m3, and 103 CFU/m3, respectively, and 14 administrative workers exposed at 7-fold lower levels. No associations were observed between bioaerosol exposures and work-shift change in lung function. IL2, IL6, IL10, and TNF concentrations were positively associated with inhalable dust levels, SAA and IL6 with bacteria, CRP, SAA, IL8, and TNF with fungi (25 °C or 37 °C), with the latter being the only statistically significant finding (exp(β) 1.40, 95% confidence interval 1.01-1.96). CONCLUSIONS This study of recycling workers exposed to bioaerosol levels generally below those of farmers and compost workers and above background levels did not indicate any acute effect on lung function. Several inflammatory markers tended to increase with exposure, suggesting a systemic effect. Future research should combine data from bioaerosol-exposed workers to uncover health risks that may form the basis for health-based occupational exposure limits.
Collapse
Affiliation(s)
- Karoline Kærgaard Hansen
- Correspondence to: Karoline Kærgaard Hansen, Department of Occupational Medicine, Danish Ramazzini Centre, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200 Aarhus N, Denmark.
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Schwab AD, Nelson AJ, Gleason AM, Schanze OW, Wyatt TA, Shinde DD, Xiao P, Thomas VC, Guda C, Bailey KL, Kielian T, Thiele GM, Poole JA. Aconitate decarboxylase 1 mediates the acute airway inflammatory response to environmental exposures. Front Immunol 2024; 15:1432334. [PMID: 39351225 PMCID: PMC11439662 DOI: 10.3389/fimmu.2024.1432334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 08/22/2024] [Indexed: 10/04/2024] Open
Abstract
Background Environmental lipopolysaccharide (LPS) and microbial component-enriched organic dusts cause significant lung disease. These environmental exposures induce the recruitment and activation of distinct lung monocyte/macrophage subpopulations involved in disease pathogenesis. Aconitate decarboxylase 1 (Acod1) was one of the most upregulated genes following LPS (vs. saline) exposure of murine whole lungs with transcriptomic profiling of sorted lung monocyte/macrophage subpopulations also highlighting its significance. Given monocyte/macrophage activation can be tightly linked to metabolism, the objective of these studies was to determine the role of the immunometabolic regulator ACOD1 in environmental exposure-induced lung inflammation. Methods Wild-type (WT) mice were intratracheally (i.t.) instilled with 10 μg of LPS or saline. Whole lungs were profiled using bulk RNA sequencing or sorted to isolate monocyte/macrophage subpopulations. Sorted subpopulations were then characterized transcriptomically using a NanoString innate immunity multiplex array 48 h post-exposure. Next, WT and Acod1-/- mice were instilled with LPS, 25% organic dust extract (ODE), or saline, whereupon serum, bronchoalveolar lavage fluid (BALF), and lung tissues were collected. BALF metabolites of the tricarboxylic acid (TCA) cycle were quantified by mass spectrometry. Cytokines/chemokines and tissue remodeling mediators were quantitated by ELISA. Lung immune cells were characterized by flow cytometry. Invasive lung function testing was performed 3 h post-LPS with WT and Acod1-/- mice. Results Acod1-/- mice treated with LPS demonstrated decreased BALF levels of itaconate, TCA cycle reprogramming, decreased BALF neutrophils, increased lung CD4+ T cells, decreased BALF and lung levels of TNF-α, and decreased BALF CXCL1 compared to WT animals. In comparison, Acod1-/- mice treated with ODE demonstrated decreased serum pentraxin-2, BALF levels of itaconate, lung total cell, neutrophil, monocyte, and B-cell infiltrates with decreased BALF levels of TNF-α and IL-6 and decreased lung CXCL1 vs. WT animals. Mediators of tissue remodeling (TIMP1, MMP-8, MMP-9) were also decreased in the LPS-exposed Acod1-/- mice, with MMP-9 also reduced in ODE-exposed Acod1-/- mice. Lung function assessments demonstrated a blunted response to LPS-induced airway hyperresponsiveness in Acod1-/- animals. Conclusion Acod1 is robustly upregulated in the lungs following LPS exposure and encodes a key immunometabolic regulator. ACOD1 mediates the proinflammatory response to acute inhaled environmental LPS and organic dust exposure-induced lung inflammation.
Collapse
Affiliation(s)
- Aaron D. Schwab
- Division of Allergy & Immunology, Department of Internal Medicine, College of Medicine, University of Nebraska Medical Center, Omaha, NE, United States
| | - Amy J. Nelson
- Division of Allergy & Immunology, Department of Internal Medicine, College of Medicine, University of Nebraska Medical Center, Omaha, NE, United States
| | - Angela M. Gleason
- Division of Allergy & Immunology, Department of Internal Medicine, College of Medicine, University of Nebraska Medical Center, Omaha, NE, United States
| | - Oliver W. Schanze
- Division of Allergy & Immunology, Department of Internal Medicine, College of Medicine, University of Nebraska Medical Center, Omaha, NE, United States
| | - Todd A. Wyatt
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, College of Medicine, University of Nebraska Medical Center, Omaha, NE, United States
- Veterans Affairs Nebraska-Western Iowa Health Care System, Research Service, Omaha, NE, United States
- Department of Environmental, Agricultural and Occupational Health, College of Public Health, University of Nebraska Medical Center, Omaha, NE, United States
| | - Dhananjay D. Shinde
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Peng Xiao
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, United States
| | - Vinai C. Thomas
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Chittibabu Guda
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, United States
| | - Kristina L. Bailey
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, College of Medicine, University of Nebraska Medical Center, Omaha, NE, United States
- Veterans Affairs Nebraska-Western Iowa Health Care System, Research Service, Omaha, NE, United States
| | - Tammy Kielian
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Geoffrey M. Thiele
- Veterans Affairs Nebraska-Western Iowa Health Care System, Research Service, Omaha, NE, United States
- Division of Rheumatology & Immunology, Department of Internal Medicine, College of Medicine, University of Nebraska Medical Center, Omaha, NE, United States
| | - Jill A. Poole
- Division of Allergy & Immunology, Department of Internal Medicine, College of Medicine, University of Nebraska Medical Center, Omaha, NE, United States
| |
Collapse
|
5
|
Kumar Chhetry BS, Tada T, Dewangan KN, Kumar P. Evaluation of dust and endotoxin exposure among rice mill workers in northeast India. Toxicon 2024; 248:108050. [PMID: 39068994 DOI: 10.1016/j.toxicon.2024.108050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/25/2024] [Accepted: 07/25/2024] [Indexed: 07/30/2024]
Abstract
Exposure to particulate matter and endotoxin can lead to acute and chronic respiratory problems in workers. A study was conducted to quantify particulate matter with an aerodynamic diameter of ≤10 μm (PM10) and endotoxin levels in rice mills in northeast India. Sixty-four PM10 dust samples were collected from eight rice mills at two locations: the feeding and polishing sections for two varieties of paddy: Ranjit and Hali. Endotoxin exposures were analyzed using the Limulus Amoebocyte Lysate (LAL) gel clot test. The results showed that the geometric mean of the 8-h time-weighted average (TWA) PM10 dust concentration and endotoxin level in the rice mills were 10.69 mg/m³ and 2.2 EU/m³, respectively. Dust and endotoxin exposure were higher in the feeding section than in the polishing section. Endotoxin exposure in the feeding section during the milling of the Hali variety of paddy was 56.0 % higher than the milling of the Ranjit variety. Additionally, endotoxin exposure during the milling of the Hali variety was 24.2 % higher than that of the milling of the Ranjit variety in the polishing section. The dust exposure in the rice mills was 194.5 % higher than the standards set up by the United States Environmental Protection Agency. However, the exposure to endotoxin in rice mills was approximately 40.10 times below the recommended limit of 90 EU/m3.
Collapse
Affiliation(s)
- B Surya Kumar Chhetry
- Department of Agricultural Engineering, North Eastern Regional Institute of Science and Technology, Nirjuli, Itanagar, 791109, Arunachal Pradesh, India
| | - Tapi Tada
- Department of Agricultural Engineering, North Eastern Regional Institute of Science and Technology, Nirjuli, Itanagar, 791109, Arunachal Pradesh, India
| | - K N Dewangan
- Department of Agricultural Engineering, North Eastern Regional Institute of Science and Technology, Nirjuli, Itanagar, 791109, Arunachal Pradesh, India.
| | - Pradeep Kumar
- Department of Botany, University of Lucknow, Lucknow, Uttar Pradesh, 226007, India; College of Life Science & Biotechnology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea.
| |
Collapse
|
6
|
Zhang T, Lui KH, Ho SSH, Chen J, Chuang HC, Ho KF. Characterization of airborne endotoxin in personal exposure to fine particulate matter (PM 2.5) and bioreactivity for elderly residents in Hong Kong. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 280:116530. [PMID: 38833976 DOI: 10.1016/j.ecoenv.2024.116530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/17/2024] [Accepted: 05/29/2024] [Indexed: 06/06/2024]
Abstract
The heavy metals and bioreactivity properties of endotoxin in personal exposure to fine particulate matter (PM2.5) were characterized in the analysis. The average personal exposure concentrations to PM2.5 were ranged from 6.8 to 96.6 μg/m3. The mean personal PM2.5 concentrations in spring, summer, autumn, and winter were 32.1±15.8, 22.4±11.8, 35.3±11.9, and 50.2±19.9 μg/m3, respectively. There were 85 % of study targets exceeded the World Health Organization (WHO) PM2.5 threshold (24 hours). The mean endotoxin concentrations ranged from 1.086 ± 0.384-1.912 ± 0.419 EU/m3, with a geometric mean (GM) varied from 1.034 to 1.869. The concentration of iron (Fe) (0.008-1.16 μg/m3) was one of the most abundant transition metals in the samples that could affect endotoxin toxicity under Toll-Like Receptor 4 (TLR4) stimulation. In summer, the interleukin 6 (IL-6) levels showed statistically significant differences compared to other seasons. Spearman correlation analysis showed endotoxin concentrations were positively correlated with chromium (Cr) and nickel (Ni), implying possible roles as nutrients and further transport via adhering to the surface of fine inorganic particles. Mixed-effects model analysis demonstrated that Tumor necrosis factor-α (TNF-α) production was positively associated with endotoxin concentration and Cr as a combined exposure factor. The Cr contained the highest combined effect (0.205-0.262), suggesting that Cr can potentially exacerbate the effect of endotoxin on inflammation and oxidative stress. The findings will be useful for practical policies for mitigating air pollution to protect the public health of the citizens.
Collapse
Affiliation(s)
- Tianhang Zhang
- The Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong, China
| | - Ka Hei Lui
- The Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong, China
| | - Steven Sai Hang Ho
- Division of Atmosphere Sciences, Desert Research Institute, Reno, NV 89512, United States; Hong Kong Premium Services and Research Laboratory, Cheung Sha Wan, Kowloon, Hong Kong, China
| | - Jiayao Chen
- School of Architecture, Planning and Environmental Policy, University College Dublin, Dublin, Ireland
| | - Hsiao-Chi Chuang
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Kin Fai Ho
- The Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
7
|
Eidem T, Nordgren T, Hernandez M. Bioaerosol Exposures and Respiratory Diseases in Cannabis Workers. Curr Allergy Asthma Rep 2024; 24:395-406. [PMID: 38878249 PMCID: PMC11233357 DOI: 10.1007/s11882-024-01157-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/10/2024] [Indexed: 07/10/2024]
Abstract
PURPOSE OF REVIEW This review investigates occupational inhalation hazards associated with biologically derived airborne particles (bioaerosols) generated in indoor cannabis cultivation and manufacturing facilities. RECENT FINDINGS Indoor cannabis production is growing across the US as are recent reports of respiratory diseases among cannabis workers, including occupational asthma morbidity and mortality. More information is needed to understand how bioaerosol exposure in cannabis facilities impacts worker health and occupational disease risk. Preliminary studies demonstrate a significant fraction of airborne particles in cannabis facilities are comprised of fungal spores, bacteria, and plant material, which may also contain hazardous microbial metabolites and allergens. These bioaerosols may pose pathogenic, allergenic, toxigenic, and pro-inflammatory risks to workers. The absence of multi-level, holistic bioaerosol research in cannabis work environments necessitates further characterization of the potential respiratory hazards and effective risk prevention methods to safeguard occupational health as the cannabis industry continues to expand across the US and beyond.
Collapse
Affiliation(s)
- Tess Eidem
- Department of Civil, Environmental, and Architectural Engineering, University of Colorado Boulder, Boulder, CO, 80309-0428, US.
| | - Tara Nordgren
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, 80523-1601, US
| | - Mark Hernandez
- Department of Civil, Environmental, and Architectural Engineering, University of Colorado Boulder, Boulder, CO, 80309-0428, US
| |
Collapse
|
8
|
Zhang L, Yao M. Ambient particle composition and toxicity in 31 major cities in China. FUNDAMENTAL RESEARCH 2024; 4:505-515. [PMID: 38933208 PMCID: PMC11197799 DOI: 10.1016/j.fmre.2022.10.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 09/24/2022] [Accepted: 10/03/2022] [Indexed: 11/07/2022] Open
Abstract
Current assessment of air quality or control effectiveness is solely based on particulate matter (PM) mass levels, without considering their toxicity differences in terms of health benefits. Here, we collected a total of 465 automobile air conditioning filters from 31 major Chinese cities to study the composition and toxicity of PM at a national scale. Dithiothreitol assay showed that normalized PM toxicity (NIOG) in different Chinese cities varied greatly from the highest 4.99 × 10-3 for Changsha to the lowest 7.72 × 10-4 for Yinchuan. NIOG values were observed to have significant correlations with annual PM10 concentration (r = -0.416, p = 0.020) and some PM components (total fungi, SO4 2- and calcium element). The concentrations of different elements and water-soluble ions in PM also varied by several orders of magnitude for 31 cities in China. Endotoxin concentrations in PM analyzed using limulus amebocyte lysate assay ranged from 2.88 EU/mg PM (Hangzhou) to 62.82 EU/mg PM (Shijiazhuang) among 31 Chinese cities. Besides, real-time qPCR revealed 10∼100-fold differences in total bacterial and fungal levels among 31 Chinese cities. The concentrations of chemical (water soluble ions and trace elements) and biological (fungi, bacteria and endotoxin) components in PM were found to be significantly correlated with some meteorological factors and gaseous pollutants such as SO2. Our results have demonstrated that PM toxicity from 31 major cities varied greatly up to 6.5 times difference; and components such as fungi and SO4 2- in PM could play important roles in the observed PM toxicity. The city-specific air pollution control strategy that integrates toxicity factors should be enacted in order to maximize health and economic co-benefits. This work also provides a comprehensive view on the overall PM pollution situation in China.
Collapse
Affiliation(s)
- Lu Zhang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Maosheng Yao
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
9
|
de Rooij MMT, Erbrink HJ, Smit LAM, Wouters IM, Hoek G, Heederik DJJ. Short-term residential exposure to endotoxin emitted from livestock farms in relation to lung function in non-farming residents. ENVIRONMENTAL RESEARCH 2024; 243:117821. [PMID: 38072102 DOI: 10.1016/j.envres.2023.117821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 02/06/2024]
Abstract
BACKGROUND Evidence on the public health relevance of exposure to livestock farm emissions is increasing. Research mostly focused on chemical air pollution, less on microbial exposure, while endotoxins are suggested relevant bacterial components in farm emissions. Acute respiratory health effects of short-term exposure to livestock-related air pollution has been shown for NH3 and PM10, but has not yet been studied for endotoxin. We aimed to assess associations between lung function and short-term exposure to livestock farming emitted endotoxin in co-pollutant models with NH3 and PM10. METHODS In 2014/2015, spirometry was conducted in 2308 non-farming residents living in a rural area in the Netherlands. Residential exposure to livestock farming emitted endotoxin during the week prior to spirometry was estimated by dispersion modelling. The model was applied to geo-located individual barns within 10 km of each home address using provincial farm data and local hourly meteorological conditions. Regional week-average measured concentrations of NH3 and PM10 were obtained through monitoring stations. Lung function parameters (FEV1, FVC, FEV1/FVC, MMEF) were expressed in %-predicted value based on GLI-2012. Exposure-response analyses were performed by linear regression modelling. RESULTS Week-average endotoxin exposure was negatively associated with FVC, independently from regional NH3 and PM10 exposure. A 1.1% decline in FVC was estimated for an increase of endotoxin exposure from 10th to 90th percentile. Stratified analyses showed a larger decline (3.2%) for participants with current asthma and/or COPD. FEV1 was negatively associated with week-average endotoxin exposure, but less consistent after co-pollutant adjustment. FEV1/FVC and MMEF were not associated with week-average endotoxin exposure. CONCLUSIONS Lower lung function in non-farming residents was observed in relation to short-term residential exposure to livestock farming emitted endotoxin. This study indicates the probable relevance of exposure to microbial emissions from livestock farms considering public health besides chemical air pollution, necessitating future research incorporating both.
Collapse
Affiliation(s)
- Myrna M T de Rooij
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands.
| | | | - Lidwien A M Smit
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | - Inge M Wouters
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | - Gerard Hoek
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | - Dick J J Heederik
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
10
|
Descatha A, Hamzaoui H, Takala J, Oppliger A. A Systematized Overview of Published Reviews on Biological Hazards, Occupational Health, and Safety. Saf Health Work 2023; 14:347-357. [PMID: 38187198 PMCID: PMC10770102 DOI: 10.1016/j.shaw.2023.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 07/13/2023] [Accepted: 10/17/2023] [Indexed: 01/09/2024] Open
Abstract
Introduction The COVID-19 pandemic turned biological hazards in the working environment into a global concern. This systematized review of published reviews aimed to provide a comprehensive overview of the specific jobs and categories of workers exposed to biological hazards with the related prevention. Methods We extracted reviews published in English and French in PubMed, Embase, and Web of Science. Two authors, working independently, subsequently screened the potentially relevant titles and abstracts recovered (step 1) and then examined relevant full texts (step 2). Disagreements were resolved by consensus. We built tables summarizing populations of exposed workers, types of hazards, types of outcomes (types of health issues, means of prevention), and routes of transmission. Results Of 1426 studies initially identified, 79 studies by authors from every continent were selected, mostly published after 2010 (n = 63, 79.7%). About half of the reviews dealt with infectious hazards alone (n = 38, 48.1%). The industrial sectors identified involved healthcare alone (n = 16), laboratories (n = 10), agriculture (including the animal, vegetable, and grain sectors, n = 32), waste (n = 10), in addition of 11 studies without specific sectors. The results also highlighted a range of hazards (infectious and non-infectious agents, endotoxins, bioaerosols, organic dust, and emerging agents). Conclusion This systematized overview allowed to list the populations of workers exposed to biological hazards and underlined how prevention measures in the healthcare and laboratory sectors were usually well defined and controlled, although this was not the case in the agriculture and waste sectors. Further studies are necessary to quantify these risks and implement prevention measures that can be applied in every country.
Collapse
Affiliation(s)
- Alexis Descatha
- Univ Angers, CHU Angers, Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) – UMR_S 1085, IRSET-ESTER, SFR ICAT, CAPTV CDC, Angers, France
- Department of Occupational Medicine, Epidemiology and Prevention, Donald and Barbara Zucker School of Medicine, Hofstra/Northwell, USA
| | - Halim Hamzaoui
- Labour Administration, Inspection and Occupational Safety and Health Branch- International Labour Organization, HQ, Geneva, Switzerland
| | - Jukka Takala
- Faculty of Social Sciences/Health Sciences, Tampere University, Tampere, Finland
| | - Anne Oppliger
- Department of Occupational and Environmental Health, Unisanté, University of Lausanne, Epalinges-Lausanne, Switzerland
| |
Collapse
|
11
|
Huang HC, Zou ML, Chen YH, Jiang CB, Wu CD, Lung SCC, Chien LC, Lo YC, Chao HJ. Effects of indoor air quality and home environmental characteristics on allergic diseases among preschool children in the Greater Taipei Area. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 897:165392. [PMID: 37423284 DOI: 10.1016/j.scitotenv.2023.165392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 06/11/2023] [Accepted: 07/06/2023] [Indexed: 07/11/2023]
Abstract
Indoor air quality and home environmental characteristics are potential factors associated with the onset and exacerbation of allergic diseases. Our study examined the effects of these factors on allergic diseases (i.e., asthma, allergic rhinitis, allergic conjunctivitis, and atopic dermatitis) among preschool children. We recruited a total of 120 preschool children from an ongoing birth cohort study in the Greater Taipei Area. A comprehensive environmental evaluation was conducted at each participant's residence and included measurements of indoor and outdoor air pollutants, fungal spores, endotoxins, and house dust mite allergens. A structured questionnaire was used to collect information on the allergic diseases and home environments of participants. Land-use characteristics and points of interest in the surrounding area of each home were analyzed. Other covariates were obtained from the cohort data. Multiple logistic regressions were used to examine the relationships between allergic diseases and covariates. We observed that all mean indoor air pollutant levels were below Taiwan's indoor air quality standards. After adjustment for covariates, the total number of fungal spores and the ozone, Der f 1, and endotoxin levels were significantly associated with increased risks of allergic diseases. Biological contaminants more significantly affected allergic diseases than other pollutants. Moreover, home environmental characteristics (e.g., living near power facilities and gas stations) were associated with an increased risk of allergic diseases. Regular and proper home sanitation is recommended to prevent the accumulation of indoor pollutants, especially biological contaminants. Living away from potential sources of pollution is also crucial for protecting the health of children.
Collapse
Affiliation(s)
- Hsiao-Chun Huang
- School of Public Health, College of Public Health, Taipei Medical University, Taipei, Taiwan
| | - Ming-Lun Zou
- School of Public Health, College of Public Health, Taipei Medical University, Taipei, Taiwan
| | - Yi-Hua Chen
- School of Public Health, College of Public Health, Taipei Medical University, Taipei, Taiwan; Neuroscience Research Center, Taipei Medical University, Taipei, Taiwan
| | - Chuen-Bin Jiang
- Department of Pediatric Gastroenterology, Hepatology and Nutrition, MacKay Children's Hospital, Taipei, Taiwan; Department of Medicine, MacKay Medical College, New Taipei City, Taiwan
| | - Chih-Da Wu
- Department of Geomatics, National Cheng Kung University, Tainan, Taiwan; National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan; Innovation and Development Center of Sustainable Agriculture, National Chung Hsing University, Tainan, Taiwan
| | | | - Ling-Chu Chien
- School of Public Health, College of Public Health, Taipei Medical University, Taipei, Taiwan; Neuroscience Research Center, Taipei Medical University, Taipei, Taiwan
| | - Yu-Chun Lo
- Neuroscience Research Center, Taipei Medical University, Taipei, Taiwan; Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Hsing Jasmine Chao
- School of Public Health, College of Public Health, Taipei Medical University, Taipei, Taiwan; Neuroscience Research Center, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
12
|
Wu B, Li J, Wang Y, Yang J, Ye Y, Sun J, Sheng L, Wu M, Zhang Y, Gong Y, Zhou J, Ji J, Sun X. Exploring the impact of fungal spores from agricultural environments on the mice lung microbiome and metabolic profile. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 264:115456. [PMID: 37714035 DOI: 10.1016/j.ecoenv.2023.115456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/21/2023] [Accepted: 09/05/2023] [Indexed: 09/17/2023]
Abstract
Exposure to particulate matter (PM) from agricultural environments has been extensively reported to cause respiratory health concerns in both animals and agricultural workers. Furthermore, PM from agricultural environments, containing fungal spores, has emerged as a significant threat to public health and the environment. Despite its potential toxicity, the impact of fungal spores present in PM from agricultural environments on the lung microbiome and metabolic profile is not well understood. To address this gap in knowledge, we developed a mice model of immunodeficiency using cyclophosphamide and subsequently exposed the mice to fungal spores via the trachea. By utilizing metabolomics techniques and 16 S rRNA sequencing, we conducted a comprehensive investigation into the alterations in the lung microbiome and metabolic profile of mice exposed to fungal spores. Our study uncovered significant modifications in both the lung microbiome and metabolic profile post-exposure to fungal spores. Additionally, fungal spore exposure elicited noticeable changes in α and β diversity, with these microorganisms being closely associated with inflammatory factors. Employing non-targeted metabolomics analysis via GC-TOF-MS, a total of 215 metabolites were identified, among which 42 exhibited significant differences. These metabolites are linked to various metabolic pathways, with amino sugar and nucleotide sugar metabolism, as well as galactose metabolism, standing out as the most notable pathways. Cysteine and methionine metabolism, along with glycine, serine and threonine metabolism, emerged as particularly crucial pathways. Moreover, these metabolites demonstrated a strong correlation with inflammatory factors and exhibited significant associations with microbial production. Overall, our findings suggest that disruptions to the microbiome and metabolome may hold substantial relevance in the mechanism underlying fungal spore-induced lung damage in mice.
Collapse
Affiliation(s)
- Bing Wu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jinyou Li
- Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yuting Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jin Yang
- Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yongli Ye
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jiadi Sun
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Lina Sheng
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Mengying Wu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yinzhi Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yajun Gong
- College of Food Science and Pharmacy, Xinjiang Agricultural University, No. 311 Nongda Dong Road, Ürümqi 830052 Xinjiang Uygur Autonomous Region, China
| | - Jianzhong Zhou
- College of Food Science and Pharmacy, Xinjiang Agricultural University, No. 311 Nongda Dong Road, Ürümqi 830052 Xinjiang Uygur Autonomous Region, China
| | - Jian Ji
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, China; College of Food Science and Pharmacy, Xinjiang Agricultural University, No. 311 Nongda Dong Road, Ürümqi 830052 Xinjiang Uygur Autonomous Region, China.
| | - Xiulan Sun
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
13
|
Eriksen E, Afanou AK, Madsen AM, Straumfors A, Graff P. An assessment of occupational exposure to bioaerosols in automated versus manual waste sorting plants. ENVIRONMENTAL RESEARCH 2023; 218:115040. [PMID: 36521541 DOI: 10.1016/j.envres.2022.115040] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/07/2022] [Accepted: 12/09/2022] [Indexed: 06/17/2023]
Abstract
Occupational exposure during waste sorting is associated with several health outcomes. This study obtained knowledge about the impact of work in fully automated waste sorting plants (AWSP; n = 3) vs manual waste sorting plants (MWSP; n = 3) on personal exposure (n = 71) to bioaerosols and exposure-related health effects. Personal full-shift air samples were collected using various filter-based active sampling devices that were placed in the workers' breathing zone. Personal exposure to inhalable and thoracic dust, endotoxin and microorganisms varied considerably between and within types of waste sorting plants (WSP). Workers at AWSP were on average exposed to 0.34 mg/m3 inhalable dust, 0.15 mg/m3 thoracic dust, and 51 EU/m3 endotoxins (geometric mean (GM) levels), whereas GM exposure levels at MWSP were 0.66 mg/m3 for inhalable dust, 0.44 mg/m3 for thoracic dust, and 32 EU/m3 for endotoxins. Exposure to submicronic fungal fragments did not differ between types of plants and ranged from levels below the detection limit (limit of detection, LOD) to levels in the order of 106 fragments/m3. Higher levels of fungal fragments and fungal spores were found at AWSP compared to MWSP with a GM of 2.1 × 105 spores/m3and with a GM of 1.2 × 105 spores/m3, respectively. Actinobacterial spores were found in samples from AWSP only, with exposure levels ranging from 1.9 × 104 to 1.1 × 107 spores/m3. Exposure to microbial DNA varied within and between WSP and was on average in the order of 104 copies/m3 for fungi and 105 copies/m3 for bacteria. Health symptoms, such as sneezing, congested nose and runny nose were significantly more common among exposed workers compared to the unexposed control group.
Collapse
Affiliation(s)
- Elke Eriksen
- STAMI, National Institute of Occupational Health, Gydas Vei 8, 0363, Oslo, Norway.
| | - Anani Komlavi Afanou
- STAMI, National Institute of Occupational Health, Gydas Vei 8, 0363, Oslo, Norway
| | - Anne Mette Madsen
- The National Research Center for Work Environment, Lersø Parkallé 105, 2100, Copenhagen, Denmark
| | - Anne Straumfors
- STAMI, National Institute of Occupational Health, Gydas Vei 8, 0363, Oslo, Norway
| | - Pål Graff
- STAMI, National Institute of Occupational Health, Gydas Vei 8, 0363, Oslo, Norway
| |
Collapse
|
14
|
Madsen AM, Zhang F, Zeng Y, Frederiksen MW. Airborne methicillin-resistant Staphylococcus aureus, other bacteria, fungi, endotoxin, and dust in a pigeon exhibition. ENVIRONMENTAL RESEARCH 2023; 216:114642. [PMID: 36306875 DOI: 10.1016/j.envres.2022.114642] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/15/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
Pigeon breeding is associated with exposure to airborne microorganisms and endotoxin and with symptoms of the airways. Antibiotic resistance is a threat to human health. Some pigeons participate in national and international indoor exhibitions. This study aims to obtain knowledge about the potential human exposure to dust, endotoxin, fungi, and bacteria including the methicillin-resistant Staphylococcus aureus (MRSA) in a pigeon exhibition in Denmark. In walking areas for visitors, airborne microorganisms in different size fractions able to enter the airways were sampled and following identified. The average concentrations were: 5000 cfu fungi/m3, 1.8 × 104 cfu bacteria/m3, 37 endotoxin units/m3, and 0.18 mg dust/m3 air with the highest concentrations in-between rows with pigeon cages. The fungal species Wallemia sp. and Aspergillus versicolor and the bacterial species S. equorum and S. aureus were found in high concentrations. MRSA spa type t034 described to be associated with livestock was found in the air. Most of the S. aureus was present in the size fraction of 1.1-2.1 μm, which are particles able to enter the human terminal bronchi. In conclusion, fungi, bacteria, and endotoxin, respectively, were found in concentrations 10, 2000, and 200 times higher than outdoor references. The airborne bacteria in the exhibition were mainly species found previously in pigeon coops showing that the pigeons are the sources of exposure. The presence of airborne MRSA in the pigeon exhibition highlights the importance of also considering this environment as a potential place of exchange of resistant bacteria between animals and between animals and humans.
Collapse
Affiliation(s)
- Anne Mette Madsen
- National Research Centre for the Working Environment, Lersø Parkallé 105, 2100, Copenhagen, Denmark.
| | - Fei Zhang
- National Research Centre for the Working Environment, Lersø Parkallé 105, 2100, Copenhagen, Denmark; Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China.
| | - Yonghui Zeng
- Department of Plant and Environmental Sciences, University of Copenhagen 1871 Frederiksberg C, Copenhagen, Denmark.
| | - Margit W Frederiksen
- National Research Centre for the Working Environment, Lersø Parkallé 105, 2100, Copenhagen, Denmark.
| |
Collapse
|
15
|
van Kersen W, Bossers A, de Steenhuijsen Piters WAA, de Rooij MMT, Bonten M, Fluit AC, Heederik D, Paganelli FL, Rogers M, Viveen M, Bogaert D, Leavis HL, Smit LAM. Air pollution from livestock farms and the oropharyngeal microbiome of COPD patients and controls. ENVIRONMENT INTERNATIONAL 2022; 169:107497. [PMID: 36088872 DOI: 10.1016/j.envint.2022.107497] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 06/22/2022] [Accepted: 08/30/2022] [Indexed: 06/15/2023]
Abstract
Air pollution from livestock farms is known to affect respiratory health of patients with chronic obstructive pulmonary disease (COPD). The mechanisms behind this relationship, however, remain poorly understood. We hypothesise that air pollutants could influence respiratory health through modulation of the airway microbiome. Therefore, we studied associations between air pollution exposure and the oropharyngeal microbiota (OPM) composition of COPD patients and controls in a livestock-dense area. Oropharyngeal swabs were collected from 99 community-based (mostly mild) COPD cases and 184 controls (baseline), and after 6 and 12 weeks. Participants were non-smokers or former smokers. Annual average livestock-related outdoor air pollution at the home address was predicted using dispersion modelling. OPM composition was analysed using 16S rRNA-based sequencing in all baseline samples and 6-week and 12-week repeated samples of 20 randomly selected subjects (n = 323 samples). A random selection of negative control swabs, taken every sampling day, were also included in the downstream analysis. Both farm-emitted endotoxin and PM10 levels were associated with increased OPM richness in COPD patients (p < 0.05) but not in controls. COPD case-control status was not associated with community structure, while correcting for known confounders (multivariate PERMANOVA p > 0.05). However, members of the genus Streptococcus were more abundant in COPD patients (Benjamini-Hochberg adjusted p < 0.01). Moderate correlation was found between ordinations of 20 subjects analysed at 0, 6, and 12 weeks (Procrustes r = 0.52 to 0.66; p < 0.05; Principal coordinate analysis of Bray-Curtis dissimilarity), indicating that the OPM is relatively stable over a 12 week period and that a single sample sufficiently represents the OPM. Air pollution from livestock farms is associated with OPM richness of COPD patients, suggesting that the OPM of COPD patients is susceptible to alterations induced by exposure to air pollutants.
Collapse
Affiliation(s)
- Warner van Kersen
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | - Alex Bossers
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | - Wouter A A de Steenhuijsen Piters
- University Medical Center Utrecht, Utrecht, the Netherlands; Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | - Myrna M T de Rooij
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | - Marc Bonten
- University Medical Center Utrecht, Utrecht, the Netherlands
| | - Ad C Fluit
- University Medical Center Utrecht, Utrecht, the Netherlands
| | - Dick Heederik
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | | | - Malbert Rogers
- University Medical Center Utrecht, Utrecht, the Netherlands
| | - Marco Viveen
- University Medical Center Utrecht, Utrecht, the Netherlands
| | - Debby Bogaert
- University Medical Center Utrecht, Utrecht, the Netherlands; University of Edinburgh Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Helen L Leavis
- University Medical Center Utrecht, Utrecht, the Netherlands
| | - Lidwien A M Smit
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands.
| |
Collapse
|
16
|
Rasuli L, Dehghani MH, Aghaei M, Mahvi AH, Mubarak NM, Karri RR. Occurrence and fate of bacterial endotoxins in the environment (air, water, wastewater) and remediation technologies: An overview. CHEMOSPHERE 2022; 303:135089. [PMID: 35623438 DOI: 10.1016/j.chemosphere.2022.135089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 05/10/2022] [Accepted: 05/21/2022] [Indexed: 12/07/2022]
Abstract
Endotoxins as the outer membrane of most Gram-Negative Bacteria (GNB) and typical toxic biochemical produced by microorganisms are identified as one of the emerging pollutants. These microbial by-products are harmful compounds that can be present in various environments including air, water, soil, and other ecosystems which were discussed in detail in this review. Environmental and occupational exposure caused by endotoxin occurs in water and wastewater treatment plants, industrial plants, farming, waste recovery, and composting facilities. Even though the health risk related to endotoxin injection in intravenous and dialysis are well identified, the harmful effects of ingestion, inhalation, and other way of exposure are not well quantified and there is insufficient information on the potential health risks of endotoxins exposure in water environments, and another exposure. Because of limited studies, the outbreaks of diseases related to endotoxins in the various source of exposure not been well documented. Endotoxin removal from different environments are investigated in this review. The results of various studies have shown that conventional treatment methods have been unable to remove endotoxins from water and wastewater, therefore, monitoring the effectiveness of these processes in controlling this contaminant and also using the appropriate removal method is essential. However, management of water and wastewater treatment processes and the use of advanced processes such as Advanced Oxidation Processes (AOPs) can be effective in monitoring and reducing endotoxin levels during water and wastewater treatment. One of the limitations of endotoxin monitoring is the lack of sufficient information to develop monitoring levels. In addition, the lack of guidelines and methods of controlling them at high levels may cause irreparable disaster.
Collapse
Affiliation(s)
- Leila Rasuli
- Qazvin University of Medical Science, Qazvin, Iran
| | - Mohammad Hadi Dehghani
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran; Institute for Environmental Research, Center for Solid Waste Research, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mina Aghaei
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Hossein Mahvi
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran; Institute for Environmental Research, Center for Solid Waste Research, Tehran University of Medical Sciences, Tehran, Iran
| | - Nabisab Mujawar Mubarak
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan, BE1410, Brunei Darussalam
| | - Rama Rao Karri
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan, BE1410, Brunei Darussalam
| |
Collapse
|
17
|
Occupational Exposure to Trichloramine and Endotoxins. J Occup Environ Med 2022; 64:361-369. [DOI: 10.1097/jom.0000000000002483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
18
|
Lad N, Murphy A, Parenti C, Nelson C, Williams N, Sharpe G, McTernan P. Asthma and obesity: endotoxin another insult to add to injury? Clin Sci (Lond) 2021; 135:2729-2748. [PMID: 34918742 PMCID: PMC8689194 DOI: 10.1042/cs20210790] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 11/29/2021] [Accepted: 12/06/2021] [Indexed: 12/20/2022]
Abstract
Low-grade inflammation is often an underlying cause of several chronic diseases such as asthma, obesity, cardiovascular disease, and type 2 diabetes mellitus (T2DM). Defining the mediators of such chronic low-grade inflammation often appears dependent on which disease is being investigated. However, downstream systemic inflammatory cytokine responses in these diseases often overlap, noting there is no doubt more than one factor at play to heighten the inflammatory response. Furthermore, it is increasingly believed that diet and an altered gut microbiota may play an important role in the pathology of such diverse diseases. More specifically, the inflammatory mediator endotoxin, which is a complex lipopolysaccharide (LPS) derived from the outer membrane cell wall of Gram-negative bacteria and is abundant within the gut microbiota, and may play a direct role alongside inhaled allergens in eliciting an inflammatory response in asthma. Endotoxin has immunogenic effects and is sufficiently microscopic to traverse the gut mucosa and enter the systemic circulation to act as a mediator of chronic low-grade inflammation in disease. Whilst the role of endotoxin has been considered in conditions of obesity, cardiovascular disease and T2DM, endotoxin as an inflammatory trigger in asthma is less well understood. This review has sought to examine the current evidence for the role of endotoxin in asthma, and whether the gut microbiota could be a dietary target to improve disease management. This may expand our understanding of endotoxin as a mediator of further low-grade inflammatory diseases, and how endotoxin may represent yet another insult to add to injury.
Collapse
Affiliation(s)
- Nikita Lad
- Department of Biosciences, School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, U.K
| | - Alice M. Murphy
- Department of Biosciences, School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, U.K
| | - Cristina Parenti
- SHAPE Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, U.K
| | - Carl P. Nelson
- Department of Biosciences, School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, U.K
| | - Neil C. Williams
- SHAPE Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, U.K
| | - Graham R. Sharpe
- SHAPE Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, U.K
| | - Philip G. McTernan
- Department of Biosciences, School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, U.K
| |
Collapse
|
19
|
Tustin AW, Cooney R, Lamson GE, Hodgson MJ. A cluster of hypersensitivity pneumonitis associated with exposure to metalworking fluids. Am J Ind Med 2021; 64:915-923. [PMID: 34390259 DOI: 10.1002/ajim.23284] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/02/2021] [Accepted: 08/02/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND Workers exposed to metalworking fluids (MWF) can develop respiratory illnesses including hypersensitivity pneumonitis (HP). These respiratory manifestations are likely due to microbial contamination of aerosolized MWF. This paper reports a cluster of HP and respiratory symptoms at a manufacturing plant where MWF and workplace air were contaminated with bacterial endotoxin despite frequent negative bacterial cultures of MWF. METHODS A pulmonologist assessed and treated three workers with respiratory symptoms. The Occupational Safety and Health Administration (OSHA) inspected the plant. OSHA's investigation included bacterial culture of MWF, measurement of endotoxin concentrations in MWF and workplace air, review of the employer's fluid management program, and distribution of a cross-sectional symptom questionnaire. RESULTS Three workers had biopsy-confirmed HP. In addition, 30.8% of questionnaire respondents reported work-related respiratory symptoms. OSHA detected endotoxin levels as high as 92,000 endotoxin units (EU)/ml in MWF and 3200 EU/m3 in air. Endotoxin concentrations and risk of MWF inhalation were highest near an unenclosed multistation computer numerical control machine. A contractor had tested this machine's MWF for bacterial growth weekly during the preceding three years, and most (96.0%) of those tests were negative. CONCLUSIONS Contaminated MWF can cause severe occupational lung disease even if microorganisms do not grow in fluid cultures. Endotoxin testing can increase the sensitivity of detection of microbial contamination. However, employers should not rely solely upon MWF testing data to protect workers. Medical surveillance and meticulous source control, such as engineering controls to suppress MWF mist and prevent its inhalation, can reduce the likelihood of respiratory disease.
Collapse
Affiliation(s)
- Aaron W. Tustin
- Office of Occupational Medicine and Nursing, Directorate of Technical Support and Emergency Management, Occupational Safety and Health Administration Washington District of Columbia USA
| | - Ryan Cooney
- Appleton Area Office, Occupational Safety and Health Administration Appleton Wisconsin USA
| | - Glenn E. Lamson
- Salt Lake Technical Center, Directorate of Technical Support and Emergency Management, Occupational Safety and Health Administration Salt Lake City Utah USA
| | - Michael J. Hodgson
- Office of Occupational Medicine and Nursing, Directorate of Technical Support and Emergency Management, Occupational Safety and Health Administration Washington District of Columbia USA
| |
Collapse
|
20
|
Hwang S, Kim SY, Choi S, Lee S, Park DU. Correlation between levels of airborne endotoxin and heavy metals in subway environments in South Korea. Sci Rep 2021; 11:17086. [PMID: 34429439 PMCID: PMC8385047 DOI: 10.1038/s41598-021-95860-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 08/02/2021] [Indexed: 11/09/2022] Open
Abstract
This study aimed to evaluate the exposure levels and variation in airborne endotoxin and heavy metals such as aluminum, chromium (Cr), iron (Fe), manganese (Mn), nickel (Ni), zinc, and lead (Pb) in the three different South Korean subway environments (driver room, station office, and underground tunnel) and identify subway characteristics influencing endotoxin and heavy metals levels. Air samples were collected and analyzed using the kinetic Limulus Amebocyte Lysate assay and inductively coupled plasma mass spectrometers. The geometric mean was determined for endotoxin levels (0.693 EU/m3). It was also found that Fe (5.070 µg/m3) had the highest levels in subway environments while Pb (0.008 µg/m3) had the lowest levels. Endotoxin levels were higher in the underground tunnel and lower in the station office; the total heavy metal levels showed the same pattern with endotoxin levels. Endotoxins and total heavy metal levels were higher in the morning than at night. Positive correlations were found between endotoxin and Cr, Fe, Mn, and Ni levels. Given the correlation between airborne endotoxins and heavy metals, further studies with larger sample sizes are needed to identify the correlation between levels of airborne endotoxin and heavy metals.
Collapse
Affiliation(s)
- Sungho Hwang
- National Cancer Control Institute, National Cancer Center, Ilsan, 10408, Republic of Korea
| | - So-Yeon Kim
- Changwon Fatima Hospital, Changwon, 51394, Republic of Korea
| | - Sangjun Choi
- Department of Preventive Medicine, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Sangwon Lee
- National Cancer Control Institute, National Cancer Center, Ilsan, 10408, Republic of Korea
| | - Dong-Uk Park
- Department of Environmental Health, Korea National Open University, 86 Daehak-ro, Seoul, 03087, Republic of Korea.
| |
Collapse
|
21
|
Concentrations, Size Distribution, and Community Structure Characteristics of Culturable Airborne Antibiotic-Resistant Bacteria in Xinxiang, Central China. ATMOSPHERE 2021. [DOI: 10.3390/atmos12081077] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Antimicrobial resistance is considered an important threat to global health and has recently attracted significant attention from the public. In this study, the concentrations and size distribution characteristics of culturable airborne total bacteria (TB) and four antibiotic-resistant bacteria (tetracycline-resistant bacteria (TRB), ciprofloxacin-resistant bacteria (CRB), erythromycin-resistant bacteria (ERB), and ampicillin-resistant bacteria (ARB)) were investigated for approximately one year to explore their variations under different seasons, diurnal periods, and air quality levels. The concentrations of TB and four antibiotic-resistant bacteria in winter and night were higher than during other seasons and diurnal periods. Their maximum concentrations were detected from air under moderate pollution or heavy pollution. PM2.5, PM10, SO2, and NO2 were positively related to TB and four antibiotic-resistant bacteria (p < 0.01), whereas O3 and wind speed were negatively related to them (p < 0.05). The particle size of TB and four antibiotic-resistant bacteria were mainly distributed in stage V (1.1–2.2 µm). Bacillus was the dominant genus of ARB (75.97%) and CRB (25.67%). Staphylococcus and Macrococcus were the dominant genera of TRB (46.05%) and ERB (47.67%), respectively. The opportunistic pathogens of Micrococcus, Sphingomonas, Enterococcus, Rhodococcus, and Stenotrophomonas were also identified. This study provides important references for understanding the threat of bioaerosols to human health.
Collapse
|
22
|
Riccardi C, Di Filippo P, Pomata D, Simonetti G, Castellani F, Uccelletti D, Bruni E, Federici E, Buiarelli F. Comparison of analytical approaches for identifying airborne microorganisms in a livestock facility. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 783:147044. [PMID: 34088133 DOI: 10.1016/j.scitotenv.2021.147044] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 04/06/2021] [Accepted: 04/06/2021] [Indexed: 06/12/2023]
Abstract
An intensive study, applied to a site characterized by multiple sources of microorganisms, was aimed at understanding the best approach to study bioaerosol. Culture-based, molecular biological, and chemical methods were applied to Particulate Matter (PM) samples collected in a livestock facility, during spring and autumn seasons, in two different outdoor areas. The first one was close to a place where feed was stored and handled and the second next to an open cowshed. Qualitative analysis of bacteria was performed by sequencing techniques applied to DNA extracted from both isolated culturable bacteria and particulate matter samples. Quantification of microorganisms was achieved through three distinct approaches. Microorganism colonies were counted, after incubation at 28 °C, and expressed as colony-forming units (CFU) per m3. Chemical method consisted in the identification of individual biomarkers, and their conversion to number of microorganisms per m3, using proper conversion factors. Finally, qPCR was applied to DNA extracted from PM samples, and the results were expressed as total amount of bacteria present in the bioaerosol (UG/m3). The presence of airborne sterols was also studied to broaden the knowledge of bioaerosol components in atmosphere. Small seasonal differences and major sampling site differences occurred. Obviously, culture-dependent method identified less and different bacteria, than culture-independent approach. The chemical approach and the culture independent metagenomic method were in good agreement. As expected, CFU/m3 accounted for not more than 0.3% of bacteria calculated as the average of chemical and culture independent metagenomic methods. The complexity of the obtained results shows that the different approaches are complementary to obtain an exhaustive description of bioaresol in terms of concentration, speciation, viability, pathogenicity.
Collapse
Affiliation(s)
| | | | | | - Giulia Simonetti
- Department of Chemistry, Sapienza University of Rome, 00185 Rome, Italy
| | | | - Daniela Uccelletti
- Department of Biology and Biotechnology "C. Darwin", Sapienza University of Rome, 00185 Rome, Italy
| | - Erika Bruni
- Department of Biology and Biotechnology "C. Darwin", Sapienza University of Rome, 00185 Rome, Italy
| | - Ermanno Federici
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123 Perugia, Italy
| | | |
Collapse
|
23
|
Qian L, Yin X, Ji J, Chen Z, Fang H, Li H, Zhu F, Chang F. Tumor necrosis factor-α small interfering RNA alveolar epithelial cell-targeting nanoparticles reduce lung injury in C57BL/6J mice with sepsis. J Int Med Res 2021; 49:300060520984652. [PMID: 33435767 PMCID: PMC7809319 DOI: 10.1177/0300060520984652] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Background The role of tumor necrosis factor (TNF)-α small interfering (si)RNA alveolar epithelial cell (AEC)-targeting nanoparticles in lung injury is unclear. Methods Sixty C57BL/6J mice with sepsis were divided into normal, control, sham, 25 mg/kg, 50 mg/kg, and 100 mg/kg siRNA AEC-targeting nanoparticles groups (n = 10 per group). The wet:dry lung weight ratio, and hematoxylin and eosin staining, western blotting, and enzyme-linked immunosorbent assays for inflammatory factors were conducted to compare differences among groups. Results The wet:dry ratio was significantly lower in control and sham groups than other groups. TNF-α siRNA AEC-targeting nanoparticles significantly reduced the number of eosinophils, with significantly lower numbers in the 50 mg/kg group than in 25 mg/kg and 100 mg/kg groups. The nanoparticles also significantly reduced the expression of TNF-α, B-cell lymphoma-2, caspase 3, interleukin (IL)-1β, and IL-6, with TNF-α expression being significantly lower in the 50 mg/kg group than in 25 mg/kg and 100 mg/kg groups. Conclusion TNF-α siRNA AEC-targeting nanoparticles appear to be effective at improving lung injury-related sepsis, and 50 mg/kg may be a preferred dose option for administration.
Collapse
Affiliation(s)
- Like Qian
- Department of Burn and Plastic Surgery, The Affiliated Zhangjiagang Hospital of Soochow University, Zhangjiagang, China
| | - Xi Yin
- Department of Burn and Plastic Surgery, The Affiliated Zhangjiagang Hospital of Soochow University, Zhangjiagang, China
| | - Jiahao Ji
- Department of Burn and Plastic Surgery, The Affiliated Zhangjiagang Hospital of Soochow University, Zhangjiagang, China
| | - Zhengli Chen
- Burn Institute of PLA, Department of Burn Surgery, The First Affiliated Hospital. Naval Medical University, Shanghai, China
| | - He Fang
- Burn Institute of PLA, Department of Burn Surgery, The First Affiliated Hospital. Naval Medical University, Shanghai, China
| | - Hu Li
- Department of Burn and Plastic Surgery, The Affiliated Zhangjiagang Hospital of Soochow University, Zhangjiagang, China
| | - Feng Zhu
- Burn Institute of PLA, Department of Burn Surgery, The First Affiliated Hospital. Naval Medical University, Shanghai, China
| | - Fei Chang
- Department of Burn and Plastic Surgery, The Affiliated Zhangjiagang Hospital of Soochow University, Zhangjiagang, China
| |
Collapse
|
24
|
Vijayakumar R, Abdulaziz Alfaiz F, Al-Malki ES, Sandle T. Assessment of airborne endotoxin in sandstorm dust and indoor environments using a novel passive sampling device in Al Zulfi city, Saudi Arabia - Establishing threshold exposure levels. Saudi J Biol Sci 2021; 28:1257-1266. [PMID: 33613055 PMCID: PMC7878821 DOI: 10.1016/j.sjbs.2020.12.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 12/03/2020] [Accepted: 12/06/2020] [Indexed: 12/21/2022] Open
Abstract
The impact of sandstorm dust events affects local air quality and public health. These issues are becoming of greater concern in Saudi Arabia. There is a significant lack of research on airborne endotoxin exposure and analysis in the Middle East countries and no coherent body of research exists focusing on sandstorm dust in worldwide. In this study, we used a novel design of an aluminum foil plate (AFP) electrostatic dust cloth (EDC) for the passive air sampling of sandstorm dust. A total of 38 sandstorm dust samples were collected during sandstorm episodes occurring between January and April 2020 in both indoor (7 days, n = 20) and outdoor environments (24 h, n = 18). After exposure, and following an extraction procedure, bacterial endotoxin levels were measured using the Limulus Amoebocyte Lysate (LAL) gel clot method. The study highlights that the airborne endotoxin level observed was between 10 and 200 EU/m2 in both indoor and outdoor environments, during a sandstorm event. Agricultural activities and farmhouses observed higher airborne endotoxin levels. In general, increased endotoxin levels were related to the severity of the sandstorms. Given that the observed values were high as per existing guidelines for respiratory health, we recommend the setting an occupational airborne exposure limit for bacterial endotoxin. This is the first report and further studies across various sandstorm-hit regions will need to be undertaken, together with various sampling methods, in order to assess for seasonal and geographic trends.
Collapse
Affiliation(s)
- Rajendran Vijayakumar
- Department of Biology, College of Science in Zulfi, Majmaah University, Majmaah 11952, Saudi Arabia
- Corresponding author at: Department of Biology, College of Science in Zulfi, Majmaah University, Majmaah 11952, Saudi Arabia.
| | - Faiz Abdulaziz Alfaiz
- Department of Biology, College of Science in Zulfi, Majmaah University, Majmaah 11952, Saudi Arabia
| | - Esam S. Al-Malki
- Department of Biology, College of Science in Zulfi, Majmaah University, Majmaah 11952, Saudi Arabia
| | - Tim Sandle
- Head of Microbiology, Risk Management and Sterility Assurance, Bio Products Laboratory, Elstree, United Kingdom
| |
Collapse
|
25
|
Secondo LE, Sagona JA, Calderón L, Wang Z, Plotnik D, Senick J, Sorensen-Allacci M, Wener R, Andrews CJ, Mainelis G. Estimating Lung Deposition of Fungal Spores Using Actual Airborne Spore Concentrations and Physiological Data. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:1852-1863. [PMID: 33476134 PMCID: PMC10794981 DOI: 10.1021/acs.est.0c05540] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Exposure to bioaerosols has been implicated in adverse respiratory symptoms, infectious diseases, and bioterrorism. Although these particles have been measured within residential and occupational settings in multiple studies, the deposition of bioaerosol particles within the human respiratory system has been only minimally explored. This paper uses real-world environmental measurement data of total fungal spores using Air-o-Cell cassettes in 16 different apartments and residents' physiological data in those apartments to predict respiratory deposition of the spores. The airborne spore concentrations were measured during the spring, summer, and fall. The respiratory deposition of five most prevalent spore genera-Ascospores, Aspergillus, Basidiospores, Cladosporium, and Myxomycetes-was predicted using three empirical models: the Multiple Path Particle Dosimetry model, using both the Yeh and age-specific versions, and the Bioaerosol Adaptation of the International Committee on Radiological Protection's Lung deposition model. The predicted total deposited number of spores was highest for Ascospores and Cladosporium. While the majority of spores deposit were in the extrathoracic region, there is a significant deposition for both Aspergillus and Cladosporium in the alveolar region, potentially leading to the development of aspergillosis or allergic asthma. Although the dose-response relationship is unknown, the estimate of the actual spore deposition could be the first step in determining such a relationship.
Collapse
Affiliation(s)
- Lynn E. Secondo
- Environmental and Occupational Health Science Institute, Rutgers University, Piscataway, NJ 08854 USA
- Department of Environmental Sciences, Rutgers University, New Brunswick, NJ 08901 USA
| | - Jessica A. Sagona
- Department of Environmental Sciences, Rutgers University, New Brunswick, NJ 08901 USA
| | - Leonardo Calderón
- Department of Environmental Sciences, Rutgers University, New Brunswick, NJ 08901 USA
| | - Zuocheng Wang
- Department of Environmental Sciences, Rutgers University, New Brunswick, NJ 08901 USA
| | - Deborah Plotnik
- Edward J. Bloustein School of Planning and Public Policy, Rutgers University, New Brunswick, NJ 08901 USA
| | - Jennifer Senick
- Edward J. Bloustein School of Planning and Public Policy, Rutgers University, New Brunswick, NJ 08901 USA
| | - MaryAnn Sorensen-Allacci
- Edward J. Bloustein School of Planning and Public Policy, Rutgers University, New Brunswick, NJ 08901 USA
| | - Richard Wener
- Department of Technology, Culture & Society, Polytechnic Institute of New York University, 6 MetroTech Center, Brooklyn, NY 11201, USA
| | - Clinton J. Andrews
- Edward J. Bloustein School of Planning and Public Policy, Rutgers University, New Brunswick, NJ 08901 USA
| | - Gediminas Mainelis
- Department of Environmental Sciences, Rutgers University, New Brunswick, NJ 08901 USA
| |
Collapse
|
26
|
Gonzalez-Mora AF, Larios AD, Rousseau AN, Godbout S, Morin C, Palacios JH, Grenier M, Fournel S. Assessing Environmental Control Strategies in Cage-Free Egg Production Systems: Effect on Spatial Occupancy and Natural Behaviors. Animals (Basel) 2020; 11:ani11010017. [PMID: 33374226 PMCID: PMC7824247 DOI: 10.3390/ani11010017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/18/2020] [Accepted: 12/18/2020] [Indexed: 12/22/2022] Open
Abstract
Simple Summary An increment pattern in the worldwide egg production, as well as in the farm’s capacity in laying hen housing systems, have been observed for the last fifty years. Also, animal welfare has become a subject of interest due to consumer awareness. These issues have introduced new challenges to respond to international markets’ demands while ensuring animal welfare and environmental footprint. Cage-free systems have been alternative systems to ensure the well-being of laying hens. Likewise, environmental control strategies have been implemented to improve air quality since airborne contaminants’ concentration can be high inside these systems. Thus, the analysis of the effect of these strategies on natural behavior and flock distribution is essential to assess a comprehensive analysis. Four strategies and a control were tested in an experimental cage-free system. Spatial occupancy and animal behaviors were tracked using video recordings. Neither the four environmental strategies nor the control applied in this experiment affected the natural behaviors of hens. However, changes in flock distribution and stress patterns were identified in the treatment with a reduction in litter allowance. This study provides evidence that it is possible to implement strategies to improve air quality without disrupting natural animal behaviors in cage-free systems. Abstract Animal welfare concerns have been a challenging issue for producers and international marketing. In laying hen production, cage-free systems (CFS) have been identified as an alternative to ensure the laying hens’ well-being. Nevertheless, in CFS, important environmental issues have been reported, decreasing indoor air quality. Environmental control strategies (ECS) have been designed to enhance indoor air quality in CFSs. However, little information exists about the effect of these ECSs on natural animal behaviors. Four strategies and one control were tested in an experimental CFS, previously designed to track behavioral variables using video recordings over seven time-lapses of 1 hour per day. Spatial occupancy (SO) and laying hen behaviors (LHB) were registered. One statistical analysis was applied to evaluate the effect of ECS on SO and LHB using a multinomial response model. Results show lower chances to use litter area within the reduction of litter allowance treatment (T17) (p < 0.05). Neither the four ECSs nor the control implemented in this experiment affected the natural behaviors of the hens. However, stress patterns and high activity were reported in the T17 treatment. This study shows that it is possible to use these ECSs without disrupting laying hens’ natural behaviors.
Collapse
Affiliation(s)
- Andrés F. Gonzalez-Mora
- Centre Eau Terre Environnement (ETE), Institut National de la Recherche Scientifique (INRS), 490 rue de la Couronne, Quebec, QC G1K 9A9, Canada;
- Correspondence:
| | - Araceli D. Larios
- Agri-Food Engineering Division, Research and Development Institute for the Agri-Environment (IRDA), 2700 rue Einstein, Quebec, QC GIP 3W8, Canada; (A.D.L.); (S.G.); (C.M.); (J.H.P.); (M.G.)
- Département des sols et de Génie Agroalimentaire, Faculté des Sciences de l’Agriculture et de l’Alimentation, Université Laval. 2425, rue de l’Agriculture, Quebec, QC, G1V 0A6, Canada;
- Dirección Académica, Tecnológico Nacional de México, TecNM, Campus Perote, Km 2.5. Carretera Perote, México, Perote 91270, Mexico
| | - Alain N. Rousseau
- Centre Eau Terre Environnement (ETE), Institut National de la Recherche Scientifique (INRS), 490 rue de la Couronne, Quebec, QC G1K 9A9, Canada;
| | - Stéphane Godbout
- Agri-Food Engineering Division, Research and Development Institute for the Agri-Environment (IRDA), 2700 rue Einstein, Quebec, QC GIP 3W8, Canada; (A.D.L.); (S.G.); (C.M.); (J.H.P.); (M.G.)
| | - Cédric Morin
- Agri-Food Engineering Division, Research and Development Institute for the Agri-Environment (IRDA), 2700 rue Einstein, Quebec, QC GIP 3W8, Canada; (A.D.L.); (S.G.); (C.M.); (J.H.P.); (M.G.)
| | - Joahnn H. Palacios
- Agri-Food Engineering Division, Research and Development Institute for the Agri-Environment (IRDA), 2700 rue Einstein, Quebec, QC GIP 3W8, Canada; (A.D.L.); (S.G.); (C.M.); (J.H.P.); (M.G.)
| | - Michèle Grenier
- Agri-Food Engineering Division, Research and Development Institute for the Agri-Environment (IRDA), 2700 rue Einstein, Quebec, QC GIP 3W8, Canada; (A.D.L.); (S.G.); (C.M.); (J.H.P.); (M.G.)
| | - Sébastien Fournel
- Département des sols et de Génie Agroalimentaire, Faculté des Sciences de l’Agriculture et de l’Alimentation, Université Laval. 2425, rue de l’Agriculture, Quebec, QC, G1V 0A6, Canada;
| |
Collapse
|
27
|
Li X, Chen H, Yao M. Microbial emission levels and diversities from different land use types. ENVIRONMENT INTERNATIONAL 2020; 143:105988. [PMID: 32717647 DOI: 10.1016/j.envint.2020.105988] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 07/13/2020] [Accepted: 07/14/2020] [Indexed: 05/14/2023]
Abstract
Bioaerosol particles, originated from many different earth ground sources, have unique health impacts, including respiratory infections, allergic reactions, and toxic effects. Here, we applied a portable high-flow sampler HighBioTrap to collect and investigate bioaerosol emissions from 13 different land types (forest, wetland, lake, bare soil, cropland, wastewater treatment facility, street, livestock farm, smeltery and garden) that are heavily or less affected by humans. Plate cultivation, real-time quantitative PCR analysis (q-PCR) and high-throughput gene sequencing analysis were used to characterize bacterial and fungal levels as well as their community structures emitted from different land use types. Results showed that there were statistically significant differences in biological emission levels (up to 100-fold difference) and diversity among different land use types. Cropland, sewage plant street and smeltery heavily affected by human activities were found to exhibit higher bioaerosol emission levels, with Massilia genus detected as the dominant species. In contrast, some land types (lakes, forests, gardens, and wetland) less affected by humans were found to emit lower bioaerosol levels but with higher culturability, e.g., up to 16% for wetland. In addition, the microbiological structures of these land-use types usually had higher species richness and diversity, yet different dominant species. For some land types such as streets in Beijing, the microbial community appeared to be skewed with an over 80% relative abundance of a specific dominant species such as Massilia. Other detected dominant species also included Acinetobacter and Brevundimonas for street, and Sphingomonas for wetland. For fungal community, Naganishia, Alternaria, Penicillium, and Aureobasidium were detected to be most abundant. RDA analysis showed metals and ions could to some extent affect the microbial community structures. This work highlights that the human activities could substantially affect the airborne microbiota, which in turn could affect local human health and ecosystems. On the other hand, the results here provide important references for quantitatively estimating the microbial emissions from the earth into the atmosphere.
Collapse
Affiliation(s)
- Xinyue Li
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Haoxuan Chen
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Maosheng Yao
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
28
|
Aghaei M, Yaghmaeian K, Hassanvand MS, Hedayati MH, Yousefian F, Janjani H, Nabizadeh R, Yunesian M. Exposure to endotoxins and respiratory health in composting facilities. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 202:110907. [PMID: 32800242 DOI: 10.1016/j.ecoenv.2020.110907] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 06/14/2020] [Accepted: 06/15/2020] [Indexed: 05/21/2023]
Abstract
The impact of bioaerosols in municipal solid waste management is nowadays identified as a growing health concern worldwide. In this study, exposure to endotoxin in composting facilities and its association with lung function and clinical symptoms was investigated in Tehran municipal solid waste management complex (Aradkooh) as one of the largest solid waste management facilities in the Middle East. Airborne endotoxins were collected between June and July 2019 and the concentrations were determined by Limulus Amebocyte Lysate (LAL) method. Healthy workers with no history of respiratory disease were recruited and data on clinical symptoms (cough, phlegm, wheezing, dyspnea, fatigue, headache, eye irritation, runny nose, runny eyes, and sore throat) was obtained by the modified American Thoracic Society questionnaire, and spirometric measurement was performed by an expert. The binary logistic regression test was used and adjusted for confounding variables. The results didn't show any difference in lung function parameters (FEV1, FVC, FEV1/FVC, PEF, FEF25-75%), and most of the respiratory symptoms despite a relatively high difference in the concentration of endotoxin observed in air samples of different locations. Only the increased risk of cough (OR 10.5, 95% CI: 2.4 to 44.8 in the moderately exposed group and 7.8, 95% CI: 1.6 to 39.1 in highly exposed ones), fatigue (OR 3.7, 95% CI: 1.2 to 11.7), and headache (OR 6.02, 95% CI: 1.4 to 24.5) were found in the exposed groups compared to controls after adjusting for age, active and passive smoking. However, findings of the study might be underestimated due to some issues including healthy worker effect, intra and intersubject variability, and self-reporting bias, thereby the results should be interpreted with caution. Although we did not find any relationship, due to the high concentrations of endotoxins observed in some sites, it is recommended to consider some possible prevention measures such as using personal protective equipment to reduce the exposure of workers at an acceptable level.
Collapse
Affiliation(s)
- Mina Aghaei
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Kamyar Yaghmaeian
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran; Center for Solid Waste Management (CSWM), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Sadegh Hassanvand
- Center for Air Pollution Research (CAPR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran
| | | | - Fatemeh Yousefian
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Hosna Janjani
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Ramin Nabizadeh
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran; Center for Air Pollution Research (CAPR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran.
| | - Masud Yunesian
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran; Department of Research Methodology and Data Analysis, Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran. http://yunesian.tums.ac.ir
| |
Collapse
|
29
|
Liebers V, Brüning T, Raulf M. Occupational endotoxin exposure and health effects. Arch Toxicol 2020; 94:3629-3644. [DOI: 10.1007/s00204-020-02905-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 09/03/2020] [Indexed: 01/08/2023]
|
30
|
Roy R, Jan R, Joshi U, Bhor R, Pai K, Satsangi PG. Characterization, pro-inflammatory response and cytotoxic profile of bioaerosols from urban and rural residential settings in Pune, India. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 264:114698. [PMID: 32387676 PMCID: PMC7190302 DOI: 10.1016/j.envpol.2020.114698] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 04/17/2020] [Accepted: 04/28/2020] [Indexed: 06/11/2023]
Abstract
Microbiota associated with airborne particulate matter (PM) is an important indicator of indoor pollution as they can be pathogenic and cause serious health threats to the exposed occupants. Present study aimed to investigate the level of culturable microbes associated with PM and their toxicological characterization in urban and rural houses of Pune city. Highest concentration of bacterial aerosols observed to be associated with PM10 size fraction in urban site (2136 ± 285 CFU/m3) whereas maximum fungal concentration has been measured in rural houses (1521 ± 302 CFU/m3). Predominantly found bacterial species were Bacillus sp., S. aureus, and Pseudomonas aeruginosa and fungal species were Aspergillus sp., Cladosporium sp., and Penicillium sp. in both urban and rural residential premises. Concentration of endotoxin measured using the kinetic Limulus Amebocyte Lysate assay exhibited that the level of endotoxin in both urban and rural sites are associated with household characteristics and the activities performed in indoor as well as outdoor. Cell free DTT assay confirmed the ability of these airborne microbes to induce the production of reactive oxygen species (ROS) varying along with the types of microorganisms. On exposure of A549 cells to airborne microbes, a significant decrease in cell viability was observed in terms of both necrosis and apoptosis pathway. Elevated production of nitric oxide (NO) and proinflammatory cytokines in epithelial cells and macrophages clearly suggest the inflammatory nature of these airborne microbes. Results derived from the present study demonstrated that the indoor air of urban and rural houses of Pune is contaminated in terms of microbial load. Therefore, attention should be paid to control the factors favoring the microbial growth in order to safeguard the health of exposed inhabitants.
Collapse
Affiliation(s)
- Ritwika Roy
- Department of Chemistry, Savitribai Phule Pune University (Formerly University of Pune), Pune, 411007, India
| | - Rohi Jan
- Department of Chemistry, Savitribai Phule Pune University (Formerly University of Pune), Pune, 411007, India
| | - Uttara Joshi
- Department of Chemistry, Savitribai Phule Pune University (Formerly University of Pune), Pune, 411007, India
| | - Renuka Bhor
- Department of Zoology, Savitribai Phule Pune University (Formerly University of Pune), Pune, 411007, India
| | - Kalpana Pai
- Department of Zoology, Savitribai Phule Pune University (Formerly University of Pune), Pune, 411007, India
| | - P Gursumeeran Satsangi
- Department of Chemistry, Savitribai Phule Pune University (Formerly University of Pune), Pune, 411007, India.
| |
Collapse
|
31
|
Viegas C, Caetano LA, Cox J, Korkalainen M, Haines SR, Dannemiller KC, Viegas S, Reponen T. The effects of waste sorting in environmental microbiome, THP-1 cell viability and inflammatory responses. ENVIRONMENTAL RESEARCH 2020; 185:109450. [PMID: 32244107 DOI: 10.1016/j.envres.2020.109450] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/28/2020] [Accepted: 03/25/2020] [Indexed: 06/11/2023]
Abstract
Workers in the waste sorting industry are exposed to diverse bioaerosols. Characterization of these bioaerosols is necessary to more accurately assess the health risks of exposure. The use of high-throughput DNA sequencing for improved analysis of microbial composition of bioaerosols, in combination with their in vitro study in relevant cell cultures, represents an important opportunity to find answers on the biological effects of bioaerosols. This study aimed to characterize by high-throughput sequencing the biodiversity present in complex aerosol mixtures retained in forklift air conditioning filters of a waste-sorting industry and its effects on cytotoxicity and secretion of proinflammatory cytokines in vitro using human macrophages derived from monocytic THP-1 cells. Seventeen filters from the filtration system from forklifts operating in one waste sorting facility and one control filter (similar filter without prior use) were analyzed using high-throughput sequencing and toxicological tests in vitro. A trend of positive correlation was seen between the number of bacterial and fungal OTUs (r = 0.47, p = 0.06). Seven filters (39%) exhibited low or moderate cytotoxicity (p < 0.05). The highest cytotoxic responses had a reduction in cell viability between 17 and 22%. Filter samples evoked proinflammatory responses, especially the production of TNFα. No significant correlation was found between fungal richness and inflammatory responses in vitro. The data obtained stress the need of thorough exposure assessment in waste-sorting industry and to take immunomodulatory properties into consideration for bioaerosols hazard characterization. The broad spectrum of microbial contamination detected in this study demonstrates that adequate monitoring of bioaerosol exposure is necessary to evaluate and minimize risks. The combined techniques can support the implementation of effective environmental monitoring programs of public and occupational health importance.
Collapse
Affiliation(s)
- C Viegas
- H&TRC- Health & Technology Research Center, ESTeSL- Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, Portugal; NOVA National School of Public Health, Public Health Research Centre, Universidade NOVA de Lisboa, Portugal; Comprehensive Health Research Center (CHRC), Portugal.
| | - L A Caetano
- H&TRC- Health & Technology Research Center, ESTeSL- Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, Portugal; Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon, 649-003, Lisbon, Portugal
| | - J Cox
- Department of Environmental Health, University of Cincinnati, P.O. Box 670056, Cincinnati, OH, 45242, USA
| | - M Korkalainen
- Finnish Institute for Health and Welfare (THL), Environmental Health, P.O. Box 95, FIN-70701, Kuopio, Finland
| | - S R Haines
- Department of Civil, Environmental, and Geodetic Engineering, College of Engineering, The Ohio State University, Columbus, OH, USA; Division of Environmental Health Sciences, College of Public Health, The Ohio State University, Columbus, OH, USA; Environmental Science Graduate Program, The Ohio State University, Columbus, OH, USA
| | - K C Dannemiller
- Department of Civil, Environmental, and Geodetic Engineering, College of Engineering, The Ohio State University, Columbus, OH, USA; Division of Environmental Health Sciences, College of Public Health, The Ohio State University, Columbus, OH, USA
| | - S Viegas
- H&TRC- Health & Technology Research Center, ESTeSL- Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, Portugal; NOVA National School of Public Health, Public Health Research Centre, Universidade NOVA de Lisboa, Portugal; Comprehensive Health Research Center (CHRC), Portugal
| | - T Reponen
- Department of Environmental Health, University of Cincinnati, P.O. Box 670056, Cincinnati, OH, 45242, USA
| |
Collapse
|
32
|
Comparison of Two Models to Estimate Deposition of Fungi and Bacteria in the Human Respiratory Tract. ATMOSPHERE 2020. [DOI: 10.3390/atmos11060561] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Understanding the deposition of bioaerosols in the respiratory system may help determine the risk of disease; however, measuring deposition fraction in-situ is difficult. Computational models provide estimates of particle deposition fraction for given breathing and particle parameters; however, these models traditionally have not focused on bioaerosols. We calculated deposition fractions in an average-sized adult with a new bioaerosol-specific lung deposition model, BAIL, and with two multiple-path models for three different breathing scenarios: “default” (subject sitting upright and breathing nasally), “light exercise”, and “mouth breathing”. Within each scenario, breathing parameters and bioaerosol characteristics were kept the same across all three models. BAIL generally calculated a higher deposition fraction in the extrathoracic (ET) region and a lower deposition fraction in the alveolar region than the multiple-path models. Deposition fractions in the tracheobronchial region were similar among the three models; total deposition fraction patterns tended to be driven by the ET deposition fraction, with BAIL resulting in higher deposition in some scenarios. The difference between deposition fractions calculated by BAIL and other models depended on particle size, with BAIL generally indicating lower total deposition for bacteria-sized bioaerosols. We conclude that BAIL predicts somewhat lower deposition and, potentially, reduced risk of illness from smaller bioaerosols that cause illness due to deposition in the alveolar region. On the other hand, it suggests higher deposition in the ET region, especially for light exercise and mouth-breathing scenarios. Additional comparisons between the models for other breathing scenarios, people’s age, and different bioaerosol particles will help improve our understanding of bioaerosol deposition.
Collapse
|
33
|
Associations Between Bioaerosol Exposures and Lung Function Changes Among Dairy Workers in Colorado. J Occup Environ Med 2020; 62:424-430. [DOI: 10.1097/jom.0000000000001856] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
34
|
Cummings KJ, Stanton ML, Kreiss K, Boylstein RJ, Park JH, Cox-Ganser JM, Virji MA, Edwards NT, Segal LN, Blaser MJ, Weissman DN, Nett RJ. Work-related adverse respiratory health outcomes at a machine manufacturing facility with a cluster of bronchiolitis, alveolar ductitis and emphysema (BADE). Occup Environ Med 2020; 77:386-392. [PMID: 32132182 DOI: 10.1136/oemed-2019-106296] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 01/27/2020] [Accepted: 02/14/2020] [Indexed: 11/04/2022]
Abstract
OBJECTIVES Four machine manufacturing facility workers had a novel occupational lung disease of uncertain aetiology characterised by lymphocytic bronchiolitis, alveolar ductitis and emphysema (BADE). We aimed to evaluate current workers' respiratory health in relation to job category and relative exposure to endotoxin, which is aerosolised from in-use metalworking fluid. METHODS We offered a questionnaire and spirometry at baseline and 3.5 year follow-up. Endotoxin exposures were quantified for 16 production and non-production job groups. Forced expiratory volume in one second (FEV1) decline ≥10% was considered excessive. We examined SMRs compared with US adults, adjusted prevalence ratios (aPRs) for health outcomes by endotoxin exposure tertiles and predictors of excessive FEV1 decline. RESULTS Among 388 (89%) baseline participants, SMRs were elevated for wheeze (2.5 (95% CI 2.1 to 3.0)), but not obstruction (0.5 (95% CI 0.3 to 1.1)). Mean endotoxin exposures (range: 0.09-28.4 EU/m3) were highest for machine shop jobs. Higher exposure was associated with exertional dyspnea (aPR=2.8 (95% CI 1.4 to 5.7)), but not lung function. Of 250 (64%) follow-up participants, 11 (4%) had excessive FEV1 decline (range: 403-2074 mL); 10 worked in production. Wheeze (aPR=3.6 (95% CI 1.1 to 12.1)) and medium (1.3-7.5 EU/m3) endotoxin exposure (aPR=10.5 (95% CI 1.3 to 83.1)) at baseline were associated with excessive decline. One production worker with excessive decline had BADE on subsequent lung biopsy. CONCLUSIONS Lung function loss and BADE were associated with production work. Relationships with relative endotoxin exposure indicate work-related adverse respiratory health outcomes beyond the sentinel disease cluster, including an incident BADE case. Until causative factors and effective preventive strategies for BADE are determined, exposure minimisation and medical surveillance of affected workforces are recommended.
Collapse
Affiliation(s)
- Kristin J Cummings
- Respiratory Health Division, National Institute for Occupational Safety and Health, Morgantown, West Virginia, USA
| | - Marcia L Stanton
- Respiratory Health Division, National Institute for Occupational Safety and Health, Morgantown, West Virginia, USA
| | - Kathleen Kreiss
- Respiratory Health Division, National Institute for Occupational Safety and Health, Morgantown, West Virginia, USA
| | - Randy J Boylstein
- Respiratory Health Division, National Institute for Occupational Safety and Health, Morgantown, West Virginia, USA
| | - Ju-Hyeong Park
- Respiratory Health Division, National Institute for Occupational Safety and Health, Morgantown, West Virginia, USA
| | - Jean M Cox-Ganser
- Respiratory Health Division, National Institute for Occupational Safety and Health, Morgantown, West Virginia, USA
| | - M Abbas Virji
- Respiratory Health Division, National Institute for Occupational Safety and Health, Morgantown, West Virginia, USA
| | - Nicole T Edwards
- Respiratory Health Division, National Institute for Occupational Safety and Health, Morgantown, West Virginia, USA
| | - Leopoldo N Segal
- Department of Medicine, New York University School of Medicine, New York, New York, USA
| | - Martin J Blaser
- Department of Medicine, New York University School of Medicine, New York, New York, USA
| | - David N Weissman
- Respiratory Health Division, National Institute for Occupational Safety and Health, Morgantown, West Virginia, USA
| | - Randall J Nett
- Respiratory Health Division, National Institute for Occupational Safety and Health, Morgantown, West Virginia, USA
| |
Collapse
|
35
|
E Almeida LDO, Favaro A, Raimundo-Costa W, Anhê ACBM, Ferreira DC, Blanes-Vidal V, Dos Santos Senhuk APM. Influence of urban forest on traffic air pollution and children respiratory health. ENVIRONMENTAL MONITORING AND ASSESSMENT 2020; 192:175. [PMID: 32055978 DOI: 10.1007/s10661-020-8142-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 02/05/2020] [Indexed: 06/10/2023]
Abstract
This study aimed to assess the air quality, the prevalence of child respiratory morbidity, and the association between them, in urban areas where concentrations of pollutants are expected to be below national limits. The monitoring of PM10, NO2 and O3 was performed in five schools, during 9 months. Information about respiratory diseases and associated symptoms were collected from each student using a questionnaire based on the International Study of Asthma and Allergies in Childhood. The PM10 and NO2 concentrations were higher at points closer to roads and avenues with intense vehicle flow and lower at the point closer to a park, with dense vegetation. All sampling points exceeded the annual limit established by WHO for PM10. Some maximum PM10 concentrations recorded close to the road was six times higher than the international limit. In total, 340 answered questionnaires were collected (68% response rate). Respiratory symptoms such as wheezing, sneezing, running nose, tearing, and itchy eyes had positive and strong correlation to the primary pollutants (0.70 to 0.87), but the frequency of some symptoms was lower close to the urban forest. Therefore, our results confirm the importance of creating and maintaining green areas in urban space, considering all ecosystem services provided by them, especially the improvement of air quality. In addition, a continuous program to monitor and control atmospheric pollution is required in mid-sized counties located nearby important roads, with growing fleets of vehicles.
Collapse
Affiliation(s)
- Lucas de Oliveira E Almeida
- Department of Environmental Engineering, Institute of Technology and Exact Sciences, Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - André Favaro
- Department of Environmental Engineering, Institute of Technology and Exact Sciences, Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - William Raimundo-Costa
- Postgraduate Program in Environmental Science and Technology, Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Ana Carolina Borella Marfil Anhê
- Department of Environmental Engineering, Institute of Technology and Exact Sciences, Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
- Postgraduate Program in Environmental Science and Technology, Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Deusmaque Carneiro Ferreira
- Department of Environmental Engineering, Institute of Technology and Exact Sciences, Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
- Postgraduate Program in Environmental Science and Technology, Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Victoria Blanes-Vidal
- The Mærsk Mc-Kinney Møller Institute, University of Southern Denmark - SDU, Odense, Denmark
| | - Ana Paula Milla Dos Santos Senhuk
- Department of Environmental Engineering, Institute of Technology and Exact Sciences, Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil.
- Postgraduate Program in Environmental Science and Technology, Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil.
| |
Collapse
|
36
|
Airborne Survival of Escherichia coli under Different Culture Conditions in Synthetic Wastewater. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16234745. [PMID: 31783576 PMCID: PMC6926559 DOI: 10.3390/ijerph16234745] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 11/24/2019] [Accepted: 11/25/2019] [Indexed: 11/23/2022]
Abstract
Bioaerosol generated in wastewater treatment plants has potential to harm human health. Survival of bacteria in bioaerosol during suspension is one of the major factors that affect its biological risk. It is hypothesized that bacteria grown in different wastewater have different physiology and lead to variation in airborne survival. This study investigated the relationship between the cultured conditions and the bioaerosol survival. Synthetic wastewater was used as the culture medium to simulate the water quality of wastewater. Escherichia coli BW25113 were cultured in different conditions, including growth salinity, growth temperature, growth pH, and presence of pesticide. The fatty acid composition and the reduction in airborne survival of the E. coli cultured under these conditions were determined and compared. Results showed that increasing growth salinity and temperature led to a lower reduction in airborne survival of E. coli.E. coli cultured at pH 6 had a higher reduction in airborne survival than those cultured at pH 7 and 8. Moreover, a correlation was observed between the membrane fluidity (fluidity index) and the reduction airborne survival for both aerosolization and airborne suspension. A link between culture conditions, bacterial membrane fluidity, and airborne survival was established. Culture conditions (wastewater quality) that lead to a low membrane fluidity of bacteria increase the airborne survival of bioaerosol, and vice versa. This provides a new aspect to evaluate bioaerosol survival and improve assessment on biological risk of bioaerosols.
Collapse
|
37
|
Milanzi EB, Koppelman GH, Smit HA, Wijga AH, Vonk JM, Brunekreef B, Gehring U. Timing of secondhand smoke, pet, dampness or mould exposure and lung function in adolescence. Thorax 2019; 75:153-163. [PMID: 31748257 DOI: 10.1136/thoraxjnl-2019-213149] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 10/02/2019] [Accepted: 10/03/2019] [Indexed: 11/04/2022]
Abstract
BACKGROUND The relevance of timing of exposure in the associations of secondhand tobacco smoke (SHS), pets, and dampness or mould exposure with lung function is unclear. We investigated the relevance of timing of these exposures for lung function in adolescence. METHODS We used data from participants of the Dutch Prevention and Incidence of Asthma and Mite Allergy (PIAMA) cohort with spirometric measurements at ages 12 and 16 years (n=552). Data on residential exposure to SHS, pets, and dampness or mould were obtained by repeated parental questionnaires. We characterised timing of exposure through longitudinal patterns using latent class growth modelling and assessed associations of these patterns with FEV1 and FVC at ages 12 and 16 and FEV1 and FVC growth between ages 12 and 16 using linear regression models. RESULTS Childhood SHS exposure was associated with reduced FEV1 growth/year (95% CI) (-0.34% (-0.64% to -0.04%)). Late childhood and early life pet exposure was associated with increased FEV1 growth (0.41% (0.14% to 0.67%)) and reduced FVC growth (-0.28% (-0.53% to -0.03%)), respectively, compared with very low exposure. Early life dampness or mould exposure was associated with reduced lung function growth. All time windows of SHS exposure tended to be associated with lower attained lung function and pet exposure tended to be associated with higher FEV1. CONCLUSION SHS exposure during childhood could lead to reduced lung function growth and lower attained lung function in adolescence. While pet exposure in late childhood may not adversely affect lung function, early childhood pet exposure may slow down FVC growth in adolescence.
Collapse
Affiliation(s)
- Edith B Milanzi
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, The Netherlands
| | - Gerard H Koppelman
- Groningen Research Institute for Asthma and COPD (GRIAC), University Medical Center Groningen, Groningen, The Netherlands.,Department of Pediatric Pulmonology and Pediatric Allergology, Beatrix Children's Hospital, University Medical Center Groningen, Groningen, The Netherlands
| | - Henriette A Smit
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Alet H Wijga
- Centre for Nutrition, Prevention and Health Services, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Judith M Vonk
- Groningen Research Institute for Asthma and COPD (GRIAC), University Medical Center Groningen, Groningen, The Netherlands.,Department of Epidemiology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Bert Brunekreef
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, The Netherlands.,Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Ulrike Gehring
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
38
|
de Rooij MMT, Smit LAM, Erbrink HJ, Hagenaars TJ, Hoek G, Ogink NWM, Winkel A, Heederik DJJ, Wouters IM. Endotoxin and particulate matter emitted by livestock farms and respiratory health effects in neighboring residents. ENVIRONMENT INTERNATIONAL 2019; 132:105009. [PMID: 31387023 DOI: 10.1016/j.envint.2019.105009] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 07/09/2019] [Accepted: 07/10/2019] [Indexed: 05/21/2023]
Abstract
BACKGROUND Living in livestock-dense areas has been associated with health effects, suggesting airborne exposures to livestock farm emissions to be relevant for public health. Livestock farm emissions involve complex mixtures of various gases and particles. Endotoxin, a pro-inflammatory agent of microbial origin, is a constituent of livestock farm emitted particulate matter (PM) that is potentially related to the observed health effects. Quantification of livestock associated endotoxin exposure at residential addresses in relation to health outcomes has not been performed earlier. OBJECTIVES We aimed to assess exposure-response relations for a range of respiratory endpoints and atopic sensitization in relation to livestock farm associated PM10 and endotoxin levels. METHODS Self-reported respiratory symptoms of 12,117 persons participating in a population-based cross-sectional study were analyzed. For 2494 persons, data on lung function (spirometry) and serologically assessed atopic sensitization was additionally available. Annual-average PM10 and endotoxin concentrations at home addresses were predicted by dispersion modelling and land-use regression (LUR) modelling. Exposure-response relations were analyzed with generalized additive models. RESULTS Health outcomes were generally more strongly associated with exposure to livestock farm emitted endotoxin compared to PM10. An inverse association was observed for dispersion modelled exposure with atopic sensitization (endotoxin: p = .004, PM10: p = .07) and asthma (endotoxin: p = .029, PM10: p = .022). Prevalence of respiratory symptoms decreased with increasing endotoxin concentration at the lower range, while at the higher range prevalence increased with increasing concentration (p < .05). Associations between lung function parameters with exposure to PM10 and endotoxin were not statistically significant (p > .05). CONCLUSIONS Exposure to livestock farm emitted particulate matter is associated with respiratory health effects and atopic sensitization in non-farming residents. Results indicate endotoxin to be a potentially plausible etiologic agent, suggesting non-infectious aspects of microbial emissions from livestock farms to be important with respect to public health.
Collapse
Affiliation(s)
- Myrna M T de Rooij
- Institute for Risk Assessment Sciences, Utrecht University, the Netherlands.
| | - Lidwien A M Smit
- Institute for Risk Assessment Sciences, Utrecht University, the Netherlands
| | | | - Thomas J Hagenaars
- Wageningen Bioveterinary Research, Wageningen University and Research, the Netherlands
| | - Gerard Hoek
- Institute for Risk Assessment Sciences, Utrecht University, the Netherlands
| | - Nico W M Ogink
- Wageningen Livestock Research, Wageningen University and Research, the Netherlands
| | - Albert Winkel
- Wageningen Livestock Research, Wageningen University and Research, the Netherlands
| | - Dick J J Heederik
- Institute for Risk Assessment Sciences, Utrecht University, the Netherlands
| | - Inge M Wouters
- Institute for Risk Assessment Sciences, Utrecht University, the Netherlands
| |
Collapse
|
39
|
Shen F, Zheng Y, Niu M, Zhou F, Wu Y, Wang J, Zhu T, Wu Y, Wu Z, Hu M, Zhu T. Characteristics of biological particulate matters at urban and rural sites in the North China Plain. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 253:569-577. [PMID: 31330349 DOI: 10.1016/j.envpol.2019.07.033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 07/05/2019] [Accepted: 07/06/2019] [Indexed: 06/10/2023]
Abstract
Depending on their concentrations, sizes, and types, particulate matters of biological origins (bioPM) significantly affect human health. However, for different air environments, they are not well characterized and can vary considerably. As an example, we investigated the bioPM differences at an urban (Beijing) site and a rural (Wangdu) site in the North China Plain (NCP) using an online monitoring instrument, an ultraviolet aerodynamic particle sizer (UV-APS), the limulus amebocyte lysate (LAL) assay, and a high-throughput sequencing method. Generally, lower concentrations of viable bioPM (hourly mean: 1.3 × 103 ± 1.6 × 103 m-3) and endotoxin (0.66 ± 0.16 EU/m3) in Beijing were observed compared to viable bioPM (0.79 × 105 ± 1.4 × 105 m-3) and endotoxin (15.1 ± 23.96 EU/m3) at the Wangdu site. The percentage of viable bioPM number concentration in the total PM was 3.1% in Beijing and 6.4% in Wangdu. Approximately 80% of viable bioPM was found to be in the range from 1 to 2.5 μm. Nevertheless, the size distribution patterns for viable bioPM at the Beijing and Wangdu sites differed and were affected by PM pollution, leading to distinct lung deposition profiles. Moreover, the distinct diurnal variations in viable bioPM on clean days were dimmed by the PM pollution at both sites. Distinct bacterial community structures were found in the air from the Beijing and Wangdu sites. The bacterial community in urban Beijing was dominated by genus Lactococcus (49.5%) and Pseudomonas (15.1%), while the rural Wangdu site was dominated by Enterococcus (65%) and Paenibacillus (10%). Human-derived genera, including Myroides, Streptococcus, Propionibacterium, Dietzia, Helcococcus, and Facklamia, were higher in Beijing, suggesting bacterial emission from humans in the urban air environment. Our results show that different air harbors different biological species, and people residing in different environments thus could have very different biological particle exposure.
Collapse
Affiliation(s)
- Fangxia Shen
- School of Space and Environment, Beihang University, Beijing, 102206, China.
| | - Yunhao Zheng
- College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China; Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Mutong Niu
- School of Space and Environment, Beihang University, Beijing, 102206, China
| | - Feng Zhou
- School of Space and Environment, Beihang University, Beijing, 102206, China
| | - Yan Wu
- School of Environmental Science and Engineering, Shandong University, Qingdao, 250100, China
| | - Junxia Wang
- College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Tong Zhu
- College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Yusheng Wu
- College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Zhijun Wu
- College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Min Hu
- College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Tianle Zhu
- School of Space and Environment, Beihang University, Beijing, 102206, China
| |
Collapse
|
40
|
Couch JR, Grimes GR, Wiegand DM, Green BJ, Glassford EK, Zwack LM, Lemons AR, Jackson SR, Beezhold DH. Potential occupational and respiratory hazards in a Minnesota cannabis cultivation and processing facility. Am J Ind Med 2019; 62:874-882. [PMID: 31332812 DOI: 10.1002/ajim.23025] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/27/2019] [Indexed: 12/21/2022]
Abstract
BACKGROUND Cannabis has been legalized in some form for much of the United States. The National Institute for Occupational Safety and Health (NIOSH) received a health hazard evaluation request from a Minnesota cannabis facility and their union to undertake an evaluation. METHODS NIOSH representatives visited the facility in August 2016 and April 2017. Surface wipe samples were collected for analysis of delta-9 tetrahydrocannabinol (Δ9-THC), delta-9 tetrahydrocannabinol acid (Δ9-THCA), cannabidiol, and cannabinol. Environmental air samples were collected for volatile organic compounds (VOCs), endotoxins (limulus amebocyte lysate assay), and fungal diversity (NIOSH two-stage BC251 bioaerosol sampler with internal transcribed spacer region sequencing analysis). RESULTS Surface wipe samples identified Δ9-THC throughout the facility. Diacetyl and 2,3-pentanedione were measured in initial VOC screening and subsequent sampling during tasks where heat transference was greatest, though levels were well below the NIOSH recommended exposure limits. Endotoxin concentrations were highest during processing activities, while internal transcribed spacer region sequencing revealed that the Basidiomycota genus, Wallemia, had the highest relative abundance. CONCLUSIONS To the authors' knowledge, this is the first published report of potential diacetyl and 2,3-pentanedione exposure in the cannabis industry, most notably during cannabis decarboxylation. Endotoxin exposure was elevated during grinding, indicating that this is a potentially high-risk task. The findings indicate that potential health hazards of significance are present during cannabis processing, and employers should be aware of potential exposures to VOCs, endotoxin, and fungi. Further research into the degree of respiratory and dermal hazards and resulting health effects in this industry is recommended.
Collapse
Affiliation(s)
- James R. Couch
- Division of Field Studies and Engineering, National Institute for Occupational Safety and HealthCenters for Disease Control and Prevention Cincinnati Ohio
| | - George R. Grimes
- Division of Field Studies and Engineering, National Institute for Occupational Safety and HealthCenters for Disease Control and Prevention Cincinnati Ohio
- Epidemic Intelligence Service, Center of Surveillance, Epidemiology, and Laboratory ServicesCenters for Disease Control and Prevention Cincinnati Ohio
| | - Douglas M. Wiegand
- Division of Field Studies and Engineering, National Institute for Occupational Safety and HealthCenters for Disease Control and Prevention Cincinnati Ohio
| | | | - Eric K. Glassford
- Division of Field Studies and Engineering, National Institute for Occupational Safety and HealthCenters for Disease Control and Prevention Cincinnati Ohio
| | - Leonard M. Zwack
- Division of Field Studies and Engineering, National Institute for Occupational Safety and HealthCenters for Disease Control and Prevention Cincinnati Ohio
| | - Angela R. Lemons
- Health Effects Laboratory Division, National Institute for Occupational Safety and HealthCenters for Disease Control and Prevention Morgantown West Virginia
| | - Stephen R. Jackson
- Health Effects Laboratory Division, National Institute for Occupational Safety and HealthCenters for Disease Control and Prevention Morgantown West Virginia
| | - Donald H. Beezhold
- Health Effects Laboratory Division, National Institute for Occupational Safety and HealthCenters for Disease Control and Prevention Morgantown West Virginia
| |
Collapse
|
41
|
Mbareche H, Morawska L, Duchaine C. On the interpretation of bioaerosol exposure measurements and impacts on health. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION (1995) 2019; 69:789-804. [PMID: 30821643 DOI: 10.1080/10962247.2019.1587552] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Bioaerosols are recognized as one of the main transmission routes for infectious diseases and are responsible for other various types of health effects through inhalation and potential ingestion. Associating exposure with bioaerosol and health problems is challenging, and adequate exposure monitoring is a top priority for aerosol scientists. The multiple factors affecting bioaerosol content, the variability in the focus of each bioaerosol exposure study, and the variations in experimental design and the standardization of methods make bioaerosol exposure studies very difficult. Therefore, the health impacts of bioaerosol exposure are still poorly understood. This paper presents a brief description of a state-of-the-art development in bioaerosol exposure studies supported by studies on several related subjects. The main objective of this paper is to propose new considerations for bioaerosol exposure guidelines and the development of tools and study designs to better interpret bioaerosol data. The principal observations and findings are the discrepancy of the applicable methods in bioaerosol studies that makes result comparison impossible. Furthermore, the silo mentality helps in creating a bigger gap in the knowledge accumulated about bioaerosol exposure. Innovative and original ideas are presented for aerosol scientists and health scientists to consider and discuss. Although many examples cited herein are from occupational exposure, the discussion has relevance to any human environment. This work gives concrete suggestions for how to design a full bioaerosol study that includes all of the key elements necessary to help understand the real impacts of bioaerosol exposure in the short term. The creation of the proposed bioaerosol public database could give crucial information to control the public health. Implications: How can we move toward a bioaerosol exposure guidelines? The creation of the bioaerosol public database will help accumulate information for long-term association studies and help determine specific exposure biomarkers to bioaerosols. The implementation of such work will lead to a deeper understanding and more efficient utilization of bioaerosol studies to prevent public health hazards.
Collapse
Affiliation(s)
- Hamza Mbareche
- a Centre de recherche de l'institut universitaire de cardiologie et de pneumologie de Québec , Quebec City , Quebec , Canada
- b Département de biochimie, de microbiologie et de bio-informatique , Faculté des sciences et de génie, Université Laval , Quebec City , Quebec , Canada
| | - Lidia Morawska
- c School of Chemistry, Physics, and Mechanical Engineering, Department of Environmental Technologies , Queensland University of Technology , Brisbane , Queensland , Australia
| | - Caroline Duchaine
- a Centre de recherche de l'institut universitaire de cardiologie et de pneumologie de Québec , Quebec City , Quebec , Canada
- b Département de biochimie, de microbiologie et de bio-informatique , Faculté des sciences et de génie, Université Laval , Quebec City , Quebec , Canada
| |
Collapse
|
42
|
Asgedom AA, Bråtveit M, Moen BE. High Prevalence of Respiratory Symptoms among Particleboard Workers in Ethiopia: A Cross-Sectional Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:E2158. [PMID: 31216746 PMCID: PMC6617153 DOI: 10.3390/ijerph16122158] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 06/14/2019] [Accepted: 06/16/2019] [Indexed: 12/24/2022]
Abstract
Work in the wood industry might be associated with respiratory health problems. The production of particleboard used for furniture making and construction is increasing in many countries, and cause dust, endotoxin and formaldehyde exposure of the workers. The aim of the study was to assess the prevalence of respiratory symptoms and to measure lung function among Ethiopian particleboard workers using Eucalyptus trees as the raw material. In total 147 workers, 74 from particleboard production and 73 controls, participated in the study. Mean wood dust in the particleboard factories was measured to be above recommended limit values. Particleboard workers had a mean age of 28 years and the controls were 25 years. They had been working for 4 and 2 years, respectively. Lung function test was done using spirometry following American Thoracic Society (ATS) recommendations. Respiratory symptoms were collected using a standard questionnaire of ATS. Particleboard workers had higher prevalence of wheezing, cough, cough with sputum production, phlegm, and shortness of breath compared to controls. Lung function status was similar in the two groups. The symptoms might be related to the work in the factories. Longitudinal studies are recommended to explore the chronic impact of work in particleboard factories on respiratory health.
Collapse
Affiliation(s)
- Akeza Awealom Asgedom
- Center for International Health, Department of Global Public Health and Primary Care, Faculty of Medicine, University of Bergen, 5009 Bergen, Norway.
- Ethiopian Institute of Water Resources, Addis Ababa University, Addis Ababa, P.O. Box 150461, Ethiopia.
| | - Magne Bråtveit
- Department of Global Public Health and Primary Care, Faculty of Medicine, University of Bergen, 5020 Bergen, Norway.
| | - Bente Elisabeth Moen
- Center for International Health, Department of Global Public Health and Primary Care, Faculty of Medicine, University of Bergen, 5009 Bergen, Norway.
| |
Collapse
|
43
|
Luo B, Shi H, Zhang K, Wei Q, Niu J, Wang J, Hammond SK, Liu S. Cold stress provokes lung injury in rats co-exposed to fine particulate matter and lipopolysaccharide. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 168:9-16. [PMID: 30384172 DOI: 10.1016/j.ecoenv.2018.10.064] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 10/11/2018] [Accepted: 10/16/2018] [Indexed: 06/08/2023]
Abstract
Cold exposure aggravates respiratory diseases, which are also influenced by the exposures to particulate matter and endotoxin in the air. The aim of this study was to investigate the potential interactions among cold stress, fine particulate matter (PM2.5, particles with aerodynamic diameter of 2.5 µm or less) and lipopolysaccharide (LPS, pure chemical form of endotoxin) on rat lung and to explore the related possible mechanisms of the interactions. Wistar rats were randomly grouped to be exposed to, 1) normal saline (0.9% NaCl), 2) PM2.5, 3) LPS, and 4) PM2.5 and LPS (PM2.5 + LPS) through intratracheal instillation under cold stress (0 °C) and normal temperature (20 °C). Lung function, lung tissue histology, inflammatory response and oxidative stress levels were measured to examine the lung injury and to investigate the potential mechanisms. Exposure to PM2.5 or LPS substantially changed pulmonary function [indicated by peak inspiratory flow (PIF) and peak expiratory flow (PEF)], inflammatory cytokine levels [indicated by interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α)] and lung histology, compared to the non-exposed groups. Exposure to PM2.5 + LPS under cold stress induced the most significant changes, including the increases of IL-6, TNF-α and thiobarbituric acid-reactive substances (TBARS), the decreases of PIF and PEF and more severe lung injury, among all exposure scenarios. Glutathione peroxidase activity and, nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) were found to be suppressed under cold stress, whereas Nrf2 and HO-1 levels were observed to be upregulated by exposure to PM2.5 or LPS under normal temperature. In conclusion, cold stress may aggravate the lung injury in rats induced by simultaneous exposure to PM2.5 and LPS. The progress may involve the suppressing of Nrf2/HO-1 signal pathway.
Collapse
Affiliation(s)
- Bin Luo
- Institute of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou 730000, China; Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley 94720, USA.
| | - Hongxia Shi
- Health Management Center, Lanzhou University the Second Hospital, Lanzhou 730030, China
| | - Kai Zhang
- Institute of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Qiaozhen Wei
- Institute of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Jingping Niu
- Institute of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Junling Wang
- Institute of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Sally Katharine Hammond
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley 94720, USA
| | - Sa Liu
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley 94720, USA; Environmental & Occupational Health Sciences, School of Health Sciences, Purdue University, West Lafayette 47907, USA.
| |
Collapse
|