1
|
Itoh H, Harada KH, Hamada GS, Lyu Z, Fujitani T, Harada Sassa M, Yamaji T, Tsugane S, Iwasaki M. Plasma perfluoroalkyl substances and breast cancer risk in Brazilian women: a case-control study. Environ Health 2025; 24:13. [PMID: 40155936 PMCID: PMC11951677 DOI: 10.1186/s12940-025-01168-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 03/17/2025] [Indexed: 04/01/2025]
Abstract
BACKGROUND Per- and polyfluoroalkyl substances (PFAS) are persistent environmental pollutants, and have been detected in human blood. Although PFAS may increase the risk of breast cancer in humans, findings from previous epidemiological studies on the link between PFAS and breast cancer are controversial. Additionally, most studies of PFAS to date did not distinguish between isomers. Here, we examined the association of PFAS exposure and breast cancer risk in Brazilian women, who represent a racially and ethnically diverse group. METHODS We conducted a case-control study of 471 women with breast cancer and 471 matched controls attending hospitals in São Paulo, Brazil from 2001 to 2006. Plasma concentrations of PFAS congeners were measured using in-port arylation gas chromatography-isotope dilution mass spectrometry with electron capture negative ionization. Linear and branched PFAS isomers were isolated and quantified separately. We derived multivariable-adjusted odds ratios and 95% confidence intervals for breast cancer and hormone-receptor subtypes according to plasma PFAS concentration. RESULTS In overall analyses, higher plasma concentrations of n-perfluoroheptane sulfonate (n-PFHpS), perfluoro-3-methyl-heptane sulfonate (3 m-PFOS), and n-perfluorononanoic acid were significantly associated with increased risk of breast cancer. Adjusted odds ratios for low, medium, and high n-PFHpS concentrations were 1.00, 1.28, and 2.00 (95% confidence interval = 1.15, 3.48), respectively (P for trend = 0.015). Furthermore, plasma 3 m-PFOS concentration and total perfluorooctanoic acid concentration were significantly associated with increased risk of breast cancer among mixed-ethnicity women. In Caucasian women, a higher plasma perfluoro-4-methyl-heptane sulfonate concentration was also associated with increased risk of breast cancer. Increased plasma n-PFHpS concentration was significantly associated with higher risk of hormone receptor-positive breast cancer but not with increased risk of hormone receptor-negative breast cancer. CONCLUSIONS Several plasma PFAS appear to increase the risk of breast cancer. Our findings suggest the importance of isomer analysis, subgroup analysis by ethnicity, and breast cancer subtype analysis for accurately characterizing this risk. CLINICAL TRIAL NUMBER Not applicable.
Collapse
Affiliation(s)
- Hiroaki Itoh
- Department of Epidemiology and Environmental Health, Juntendo University Faculty of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan.
- Division of Epidemiology, National Cancer Center Institute for Cancer Control, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan.
| | - Kouji H Harada
- Department of Health and Environmental Sciences, Kyoto University Graduate School of Medicine, Yoshida, Kyoto, 606-8501, Japan
| | | | - Zhaoqing Lyu
- Department of Health and Environmental Sciences, Kyoto University Graduate School of Medicine, Yoshida, Kyoto, 606-8501, Japan
| | - Tomoko Fujitani
- Department of Health and Environmental Sciences, Kyoto University Graduate School of Medicine, Yoshida, Kyoto, 606-8501, Japan
| | - Mariko Harada Sassa
- Department of Health and Environmental Sciences, Kyoto University Graduate School of Medicine, Yoshida, Kyoto, 606-8501, Japan
| | - Taiki Yamaji
- Division of Epidemiology, National Cancer Center Institute for Cancer Control, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Shoichiro Tsugane
- Department of Epidemiology and Social Medicine, International University of Health and Welfare Graduate School of Public Health, 4-1-26 Akasaka, Minato-ku, Tokyo, 107-8402, Japan
- Division of Cohort Research, National Cancer Center Institute for Cancer Control, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Motoki Iwasaki
- Division of Epidemiology, National Cancer Center Institute for Cancer Control, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
- Division of Cohort Research, National Cancer Center Institute for Cancer Control, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| |
Collapse
|
2
|
Seyyedsalehi MS, Maria Kappil E, Zhang S, Zheng T, Boffetta P. Per- And Poly-Fluoroalkyl Substances (PFAS) Exposure and Risk of Breast, and Female Genital Cancers: A Systematic Review and Meta-Analysis. LA MEDICINA DEL LAVORO 2024; 115:e2024043. [PMID: 39697081 PMCID: PMC11734636 DOI: 10.23749/mdl.v115i6.16330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 11/11/2024] [Indexed: 12/20/2024]
Abstract
BACKGROUND PFASs, synthetic chemicals, can be encountered by humans through occupational or environmental exposure, and some reports suggest that they can disrupt endocrine and hormonal activities. In this comprehensive review and meta-analysis, we explored the connection between exposure to PFASs and the risks of breast and female genital cancers. METHODS We systematically reviewed the literature from IARC Monographs, ATSDR documents, and PubMed (as of January 2024) for cohort, case-control, and ecological studies on PFAS exposure and breast or female genital cancers. Four reviewers independently screened studies, and data extraction included study design, patient characteristics, and effect size measures. The quality of studies was assessed using the modified version of the Newcastle-Ottawa Scale (NOS). Forest plots of relative risks (RR) were constructed for breast and female genital cancer. Meta-analyses were conducted using random-effects models, stratified analyses, dose-response assessments, and publication bias evaluation. RESULTS The meta-analysis included 24 studies, comprising 10 cohort, 13 case-control, and one ecological study. The summary relative risk (RR) of breast cancer for PFOA exposure was 1.08 (95% CI = 0.97-1.20; n=21), and for PFOS was 1.00 (95% CI = 0.85-1.18; n=12). The RR for ovarian cancer and PFAS was 1.07 (95% CI = 1.04-1.09; n=12). The stratification by quality score, year of publication, and exposure source did not reveal any differences. However, analysis by geographical region (p=0.01) and study design (p=0.03) did show differences, particularly in terms of incidence. Stratified analyses of the dose-response relationship did not reveal a trend in the risk of breast cancer or female genital cancers, and no publication bias was found for either cancer type. No results were available for cervical and endometrial cancers. CONCLUSION In summary, we have found an association between PFAS exposure and ovarian cancer and a possible effect on breast cancer incidence in some specific groups. Although potential bias and confounding prevent conclusions regarding causality, these findings may hold significance for females who encounter such pollutants in their occupational or daily environments.
Collapse
Affiliation(s)
| | | | - Sirui Zhang
- Brown University School of Public Health, Providence, RI, USA
| | - Tongzhang Zheng
- Brown University School of Public Health, Providence, RI, USA
| | - Paolo Boffetta
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
- Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY, USA
- Department of Family, Population and Preventive Medicine, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| |
Collapse
|
3
|
Dou Q, Bai Y, Li Y, Zheng S, Wang M, Wang Z, Sun J, Zhang D, Yin C, Ma L, Lu Y, Zhang L, Chen R, Cheng Z. Perfluoroalkyl substances exposure and the risk of breast cancer: A nested case-control study in Jinchang Cohort. ENVIRONMENTAL RESEARCH 2024; 262:119909. [PMID: 39222733 DOI: 10.1016/j.envres.2024.119909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/28/2024] [Accepted: 08/31/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND As persistent organic pollutants (POPs), perfluoroalkyl substances (PFAS) may potentially impact human health. Our study aimed to investigate the prospective association between PFAS exposure and the incidence risk of breast cancer in females. METHODS By fully following the Jinchang Cohort after a decade, we conducted this nested case-control study with 135 incidence cases of breast cancer (BC) and 540 bias-paired controls. The PFAS levels were tested by baseline serum samples. Conditional logistic regression and a restricted cubic spline model were employed to investigate the BC incidence risks and the dose-response associated with single PFAS component exposure. Furthermore, the Quantile g-computation model (Qgc), random forest model (RFM), and bayesian kernel machine regression models (BKMR) were integrated to estimate the mixed effects of PFAS exposure on the incidence risk of BC. RESULTS Exposures to specific PFAS components were positively associated with an increased incidence risk of breast cancer. By grouping the study population into different baseline menopausal statuses, PFHxS, PFNA, PFBA, PFUdA, PFOS, and PFDA demonstrated a similarly positive correlation with BC incidence risks. However, the increased incidence risks of BC associated with PFOA, PFOS, PFUdA, and 9CL-PF3ONS exposure were exclusively found in the premenopausal population. Both BKMR and Qgc revealed that exposure to mixed PFAS was associated with an increased risk of breast cancer, with Qgc specifically indicating an odds ratio (OR) of 2.21 (95% CI: 1.53, 3.19). Random forests showed that PFBA, PFOS, PFHxS, and PFDA emerged as predominant factors potentially influencing breast cancer incidence. CONCLUSION Our findings suggest a strong association between PFAS exposure and the incidence of breast cancer. Premenopausal women should exercise more caution regarding PFAS exposure.
Collapse
Affiliation(s)
- Qian Dou
- Department of Epidemiology and Health Statistics, School of Public Health, Lanzhou University, Lanzhou, 730000, Gansu, China.
| | - Yana Bai
- Department of Epidemiology and Health Statistics, School of Public Health, Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Yongjun Li
- Gansu Provincial Center for Disease Control and Prevention, Lanzhou, 730000, China
| | - Shan Zheng
- Department of Epidemiology and Health Statistics, School of Public Health, Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Minzhen Wang
- Department of Epidemiology and Health Statistics, School of Public Health, Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Zhongge Wang
- Department of Epidemiology and Health Statistics, School of Public Health, Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Jianyun Sun
- Gansu Provincial Center for Disease Control and Prevention, Lanzhou, 730000, China
| | - Desheng Zhang
- Workers' Hospital of Jinchuan Group Co., Ltd., Jinchang, 737100, Gansu, China
| | - Chun Yin
- Workers' Hospital of Jinchuan Group Co., Ltd., Jinchang, 737100, Gansu, China
| | - Li Ma
- Department of Epidemiology and Health Statistics, School of Public Health, Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Yongbin Lu
- Center for Evidence-Based Medicine, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Lizhen Zhang
- Department of Epidemiology and Health Statistics, School of Public Health, Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Ruirui Chen
- Department of Epidemiology and Health Statistics, School of Public Health, Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Zhiyuan Cheng
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China.
| |
Collapse
|
4
|
Huang C, Murgulet I, Liu L, Zhang M, Garcia K, Martin L, Xu W. The effects of perfluorooctanoic acid on breast cancer metastasis depend on the phenotypes of the cancer cells: An in vivo study with zebrafish xenograft model. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 362:124975. [PMID: 39293659 DOI: 10.1016/j.envpol.2024.124975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/03/2024] [Accepted: 09/14/2024] [Indexed: 09/20/2024]
Abstract
Per- and polyfluorinated substances (PFAS) have been associated with numerous human diseases. Recent in vitro studies have implicated the association of PFAS with an increased risk of breast cancer in humans. This study aimed to assess the toxic effects of PFAS during the development of human breast cancer using a zebrafish xenograft model. Perfluorooctanoic acid (PFOA) was used as a PFAS chemical of interest for this study. Two common breast cancer cell lines, MCF-7 and MDA-MB-231, were used to represent the diversity of breast cancer phenotypes. Human preadipocytes were co-implanted with the breast cancer cells into the zebrafish embryos to optimize the microenvironment for tumor cells in vivo. With this modified model, we evaluated the potential effects of the PFOA on the metastatic potential of the two types of breast cancer cells. The presence of human preadipocytes resulted in an enhancement to the metastasis progress of the two types of cells, including the promotion of cell in vivo migration and proliferation, and the increased expression levels of metastatic biomarkers. The enhancement of MCF-7 proliferation by preadipocytes was observed after 2 days post injection (dpi) while the increase of MDA-MB-231 proliferation was seen after 6 dpi. The breast cancer metastatic biomarkers, cadherin 1 (cdh1), and small breast epithelial mucin (sbem) genes demonstrated significant down- and upregulations respectively, by the co-injection of preadipocytes. In the optimized xenograft model, the PFOA consistently promoted cell proliferation and migration and altered the metastatic biomarker expression in MCF-7, which suggested a metastatic effect of PFOA on MCF-7. However, those effects were not consistently observed in MDA-MB-231. The presence of the preadipocytes in the xenograft model may provide a necessary microenvironment for the progress of tumor cells in zebrafish embryos. The finding suggested that the impacts of PFOA exposure on different phenotypes of breast cancers may differ.
Collapse
Affiliation(s)
- Chi Huang
- Department of Life Sciences, College of Science, Texas A&M University - Corpus Christi, Corpus Christi, TX, 78412, United States
| | - Ioana Murgulet
- Department of Life Sciences, College of Science, Texas A&M University - Corpus Christi, Corpus Christi, TX, 78412, United States; Department of BioSciences, Rice University, 6100 Main St., Houston, TX, 77005, United States
| | - Linda Liu
- Department of Life Sciences, College of Science, Texas A&M University - Corpus Christi, Corpus Christi, TX, 78412, United States
| | - Mona Zhang
- Department of Life Sciences, College of Science, Texas A&M University - Corpus Christi, Corpus Christi, TX, 78412, United States
| | - Kaitlin Garcia
- Department of Life Sciences, College of Science, Texas A&M University - Corpus Christi, Corpus Christi, TX, 78412, United States
| | - Leisha Martin
- Department of Life Sciences, College of Science, Texas A&M University - Corpus Christi, Corpus Christi, TX, 78412, United States
| | - Wei Xu
- Department of Life Sciences, College of Science, Texas A&M University - Corpus Christi, Corpus Christi, TX, 78412, United States.
| |
Collapse
|
5
|
Yang J, Zhang K, Shi J, Li Z, Dai H, Yang W. Perfluoroalkyl and polyfluoroalkyl substances and Cancer risk: results from a dose-response Meta-analysis. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2024; 22:455-469. [PMID: 39464822 PMCID: PMC11499464 DOI: 10.1007/s40201-024-00899-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 03/06/2024] [Indexed: 10/29/2024]
Abstract
Background Perfluoroalkyl and polyfluoroalkyl substances (PFASs) are persistent organic pollutants in the environment. While some studies suggest that PFASs may contribute to cancer development, the link between PFAS exposure and cancer risk remains debated. Methods This dose-response meta-analysis explores the relationship between PFASs and cancer. It employs odds ratio (OR) and standardized mean difference (SMD), along with their 95% confidence interval (CI), to assess the effects of PFASs on cancer risk. Relevant studies were sourced from Web of Science, PubMed, Embase, Medline, and CNKI databases. The dose-response relationship was assessed by the fixed-effects model and least-squares regression. Results Forty studies, involving a total of 748,188 participants, were included in this meta-analysis. Out of these, 13 studies were specifically analyzed for the dose-response relationship. Findings revealed that exposure to PFASs, especially PFDA, significantly raises the risk of genitourinary cancers, and PFDA exposure shows a dose-dependent increase in overall and breast cancer risk. Additionally, PFOS exposure is associated with an increased cancer risk, and elevated PFOA levels were significantly observed in breast cancer patients. Conclusions The findings suggest that PFAS exposure is a potential cancer risk factor, with the carcinogenic potential of PFDA being dose-dependent. Supplementary Information The online version contains supplementary material available at 10.1007/s40201-024-00899-w.
Collapse
Affiliation(s)
- Jingxuan Yang
- Department of Physiology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041 People’s Republic of China
| | - Kui Zhang
- Department of Forensic Pathology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041 People’s Republic of China
| | - Jingyi Shi
- Department of Physiology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041 People’s Republic of China
| | - Zhuo Li
- Department of Forensic Pathology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041 People’s Republic of China
| | - Hao Dai
- Department of Forensic Pathology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041 People’s Republic of China
| | - Wenxing Yang
- Department of Physiology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041 People’s Republic of China
| |
Collapse
|
6
|
Sezavar AH, Rastegar-Pouyani N, Rahimi Kakavandi N, Fakhari F, Jafarzadeh E, Aliebrahimi S, Ostad SN. Examining the relationship between per-and polyfluoroalkyl substances and breast, colorectal, prostate, and ovarian cancers: a meta-analysis. Crit Rev Toxicol 2024; 54:981-995. [PMID: 39636584 DOI: 10.1080/10408444.2024.2425669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/30/2024] [Accepted: 10/30/2024] [Indexed: 12/07/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are synthetic chemicals used widely in industrial and commercial applications. Concerns exist about their potential link to cancer risk as possible endocrine-disrupting chemicals. We conducted a meta-analysis to evaluate the dose-response relationship between PFAS, perfluorooctane sulfonate (PFOS), perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), perfluorodecanoic acid (PFDA), perfluorohexanesulfonic acid (PFHxS) exposure and risk of breast, prostate, colorectal, and ovarian cancers. We systematically searched major databases through May 2022 and identified 13 observational studies for inclusion. Using random-effects models, we calculated summary odds ratios (ORs) and 95% confidence intervals (CIs) comparing the highest versus lowest PFAS exposure categories. Additionally, we analyzed the dose-response correlation between PFAS and cancer risk in a subset of studies. The study revealed no substantial correlation between exposure to PFASs and the incidence of breast cancer (BC) (ORPFOS = 1.15, 95% CI = 0.91-1.46, ORPFOA = 1.01, 95% CI = 0.68-1.50, ORPFNA = 0.88, 95% CI = 0.64-1.21, ORPFHxS = 1.22, 95% CI = 0.40-3.77, and ORPFDA = 1.29, 95% CI = 0.41-4.10), ovarian cancer (ORPFOA = 1.43, 95% CI = 0.84-2.42), prostate cancer (ORPFOA = 1.05, 95% CI = 0.88-1.26), and colorectal cancer (ORPFOA = 0.77, 95% CI = 0.53-1.12) in the highest versus lowest exposure analysis. However, dose-response analysis showed that for every 1 ng/ml increase in PFNA and 2 ng/ml increase in PFOA, the relative risk for BC decreased significantly (RR 0.67, 95% CI 0.45-0.99 and RR 0.94, 95% CI 0.89-0.98, respectively). Non-linear dose-response analysis found no significant changes in BC risk with increasing PFAS levels. In conclusion, while the highest versus lowest analysis does not support associations between PFAS exposure and the risk of these cancers, linear dose-response analysis suggests potential inverse relationships between PFNA/PFOA levels and BC risk. Further research is warranted on these potential protective effects.
Collapse
Affiliation(s)
- Ahmad Habibian Sezavar
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rastegar-Pouyani
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Nader Rahimi Kakavandi
- Department of Occupational Health Engineering, School of Health, Ilam University of Medical Sciences, Ilam, Iran
| | - Fatemeh Fakhari
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Emad Jafarzadeh
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Shima Aliebrahimi
- Department of Medical Education, Virtual University of Medical Sciences, Tehran, Iran
| | - Seyed Nasser Ostad
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Dehghani Z, Ranjbar S, Shahabinezhad F, Sabouri P, Mohammadi Bardbori A. A toxicogenomics-based identification of potential mechanisms and signaling pathways involved in PFCs-induced cancer in human. Toxicol Res (Camb) 2024; 13:tfae151. [PMID: 39323479 PMCID: PMC11420517 DOI: 10.1093/toxres/tfae151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 08/14/2024] [Accepted: 09/16/2024] [Indexed: 09/27/2024] Open
Abstract
Introduction The number of new diagnosed cancer cases and cancer deaths are increasing worldwide. Perfluorinated compounds (PFCs) are synthetic chemicals, which are possible inducers of cancer in human and laboratory animals. Studies showed that PFCs induce breast, prostate, kidney, liver and pancreas cancer by inducing genes being involved in carcinogenic pathways. Methodology This study reviews the association between PFCs induced up-regulation/down-regulation of genes and signaling pathways that are important in promoting different types of cancer. To obtain chemical-gene interactions, an advanced search was performed in the Comparative Toxicogenomics Database platform. Results Five most prevalent cancers were studied and the maps of their signaling pathways were drawn, and colored borders indicate significantly differentially expressed genes if there had been reports of alterations in expression in the presence of PFCs. Conclusion In general, PFCs are capable of inducing cancer in human via altering PPARα and PI3K pathways, evading apoptosis, inducing sustained angiogenesis, alterations in proliferation and blocking differentiation. However, more epidemiological data and mechanistic studies are needed to better understand the carcinogenic effects of PFCs in human.
Collapse
Affiliation(s)
- Zahra Dehghani
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz
University of Medical Sciences, Rokn Abad, Karafarin St., 7146864685,
Shiraz, Iran
| | - Sara Ranjbar
- Pharmaceutical Sciences Research Center, Shiraz University of Medical
Sciences, Rokn Abad, Karafarin St., 7146864685, Shiraz, Iran
| | - Farbod Shahabinezhad
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz
University of Medical Sciences, Rokn Abad, Karafarin St., 7146864685,
Shiraz, Iran
| | - Pooria Sabouri
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz
University of Medical Sciences, Rokn Abad, Karafarin St., 7146864685,
Shiraz, Iran
| | - Afshin Mohammadi Bardbori
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz
University of Medical Sciences, Rokn Abad, Karafarin St., 7146864685,
Shiraz, Iran
| |
Collapse
|
8
|
Jia C, Li Y, Cao Y, Zhou Z, Liu Y, Guo Y, Liu W, Yang L. Association between perfluoroalkyl substances and breast cancer on the National Health and Nutrition Examination Survey Database and meta-analysis. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135219. [PMID: 39053068 DOI: 10.1016/j.jhazmat.2024.135219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 07/10/2024] [Accepted: 07/14/2024] [Indexed: 07/27/2024]
Abstract
The relationship between perfluoroalkyl substances (PFASs) and the risk of breast cancer has been controversial. Here, we used the National Health and Nutrition Examination Survey (NHANES) database and a meta-analysis to examine the association between PFASs and breast cancer incidence. From the NHANES database, we obtained data on PFASs and breast cancer from 2003 to 2014. We searched PubMed, Web of Science, Scopus and PsycINFO from the establishment of the databases to August 24, 2023, for research on PFASs related to breast cancer. A meta-analysis was performed using Stata 12.0. A total of 1430 subjects aged 20 years or older were selected from the NHANES. The logistic regression results indicated that there was no correlation between breast cancer and PFASs (P > 0.05). The meta-analysis, included nine studies with a total of 2399 breast cancer patients, included in the meta-analysis, revealed no statistically significant association between PFASs and the risk of breast cancer (odds ratio = 1.04; 95 % confidence interval, 0.88-1.21; P > 0.05). The results show that PFASs are not associated with breast cancer risk.
Collapse
Affiliation(s)
- Conghui Jia
- Department of Epidemiology and Statistics, School of Public Health, Hebei Key Laboratory of Environment and Human Health, Hebei Medical University, Shijiazhuang, China
| | - Yanchao Li
- Department of Epidemiology and Statistics, School of Public Health, Hebei Key Laboratory of Environment and Human Health, Hebei Medical University, Shijiazhuang, China
| | - Yuxuan Cao
- Department of Epidemiology and Statistics, School of Public Health, Hebei Key Laboratory of Environment and Human Health, Hebei Medical University, Shijiazhuang, China
| | - Zilin Zhou
- Department of Epidemiology and Statistics, School of Public Health, Hebei Key Laboratory of Environment and Human Health, Hebei Medical University, Shijiazhuang, China
| | - Yuan Liu
- Department of Epidemiology and Statistics, School of Public Health, Hebei Key Laboratory of Environment and Human Health, Hebei Medical University, Shijiazhuang, China
| | - Yang Guo
- Department of Epidemiology and Statistics, School of Public Health, Hebei Key Laboratory of Environment and Human Health, Hebei Medical University, Shijiazhuang, China
| | - Wenxuan Liu
- Department of Epidemiology and Statistics, School of Public Health, Hebei Key Laboratory of Environment and Human Health, Hebei Medical University, Shijiazhuang, China.
| | - Lei Yang
- Department of Epidemiology and Statistics, School of Public Health, Hebei Key Laboratory of Environment and Human Health, Hebei Medical University, Shijiazhuang, China.
| |
Collapse
|
9
|
Ning YS, Getz KR, Kyeyune JK, Jeon MS, Luo C, Luo J, Toriola AT. PFAS Levels, Early Life Factors, and Mammographic Breast Density in Premenopausal Women. ENVIRONMENTAL HEALTH PERSPECTIVES 2024; 132:97008. [PMID: 39292675 PMCID: PMC11410150 DOI: 10.1289/ehp14065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/20/2024]
Abstract
BACKGROUND Mammographic breast density (MBD) is a strong risk factor and an intermediate phenotype for breast cancer, yet there are limited studies on how environmental pollutants are associated with MBD. OBJECTIVE We investigated associations of perfluorooctane sulfonate (PFOS), perfluorooctanoic acid (PFOA), and perfluorohexane sulfonate (PFHxS) levels with measures of MBD and evaluated if early life factors modified any associations. METHODS Metabolon performed metabolomics analysis using ultrahigh-performance liquid chromatography/tandem accurate mass spectrometry in fasting blood from 705 premenopausal women completing their annual screening mammogram in St. Louis, Missouri. We calculated least square means (LSM) of mammographic volumetric percent density (VPD), dense volume (DV), and nondense volume (NDV) by quartiles (Q) of PFOS, PFOA, and PFHxS from multivariable linear regression modeling overall and stratified by recruitment period, race, age at menarche, and body shape at age 10. Models were adjusted for age, age at menarche, body fat percentage, race, family history of breast cancer, oral contraceptive use, alcohol consumption, parity/age at first birth, and body shape at age 10. RESULTS PFOS, PFOA, and PFHxS were not significantly associated with VPD or NDV. PFHxS was significantly positively associated with DV (Q 1 = 67.64 cm 3 , Q 2 = 69.91 cm 3 , Q 3 = 69.06 cm 3 , Q 4 = 75.79 cm 3 ; p -trend = 0.03 ). PFOS was positively associated with DV (Q 1 = 65.45 cm 3 , Q 2 = 70.74 cm 3 , Q 3 = 73.31 cm 3 , Q 4 = 73.52 cm 3 ; p -trend = 0.06 ) with DV being 8.1%, 12%, and 12.3% higher in Q2, Q3, and Q4 compared to Q1. Among women who were underweight/normal weight at age 10, PFOS was positively associated with VPD (Q 1 = 9.02 % , Q 2 = 9.11 % , Q 3 = 9.48 % , Q 4 = 9.92 % ; p -trend = 0.04 ) while there was an inverse association among women who were overweight/obese at age 10 (Q 1 = 7.46 % , Q 2 = 6.94 % , Q 3 = 6.78 % , Q 4 = 5.47 % ; p -trend = 0.005 ) (p -interaction = 0.04 ). DISCUSSION We report novel associations of PFHxS and PFOS with DV in premenopausal women. PFOS, PFOA, and PFHxS were not associated with VPD and NDV. In addition, body shape at age 10 may modify the associations of PFOS with MBD. Further studies are needed to validate our findings and to evaluate the associations of other per- and polyfluoroalkyl substances (PFAS), as well as mixtures of PFAS, with MBD. https://doi.org/10.1289/EHP14065.
Collapse
Affiliation(s)
- Yitao S Ning
- Division of Public Health Sciences, Department of Surgery, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Kayla R Getz
- Division of Public Health Sciences, Department of Surgery, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Joy K Kyeyune
- Department of Medicine, University of Missouri School of Medicine, Columbia, Missouri, USA
| | - Myung Sik Jeon
- Division of Public Health Sciences, Department of Surgery, Washington University School of Medicine, St. Louis, Missouri, USA
- Siteman Cancer Center Biostatistics Shared Resource, Division of Public Health Sciences, Department of Surgery, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Chongliang Luo
- Division of Public Health Sciences, Department of Surgery, Washington University School of Medicine, St. Louis, Missouri, USA
- Siteman Cancer Center Biostatistics Shared Resource, Division of Public Health Sciences, Department of Surgery, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Jingqin Luo
- Division of Public Health Sciences, Department of Surgery, Washington University School of Medicine, St. Louis, Missouri, USA
- Siteman Cancer Center Biostatistics Shared Resource, Division of Public Health Sciences, Department of Surgery, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Adetunji T Toriola
- Division of Public Health Sciences, Department of Surgery, Washington University School of Medicine, St. Louis, Missouri, USA
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
10
|
Chang CJ, Ish JL, Chang VC, Daniel M, Jones RR, White AJ. Exposure to per- and polyfluoroalkyl substances and breast cancer risk: a systematic review and meta-analysis of epidemiologic studies. Am J Epidemiol 2024; 193:1182-1196. [PMID: 38400646 PMCID: PMC11299034 DOI: 10.1093/aje/kwae010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 02/01/2024] [Accepted: 02/20/2024] [Indexed: 02/25/2024] Open
Abstract
We synthesized the epidemiologic evidence on the associations between per- and polyfluoroalkyl substances (PFAS) exposure and breast cancer risk. Our systematic review and meta-analysis included 18 and 11 articles, respectively, covering studies up to February 2023. The summary relative risks (RRs) estimated by random-effects meta-analyses did not support an association between PFAS and overall breast cancer risk (eg, a natural log (ln)-unit increase in serum/plasma concentrations [ng/mL] for perfluorooctanoate [PFOA] RR = 0.95; 95% CI, 0.77-1.18; perfluorooctane sulfonate [PFOS] RR = 0.98; 95% CI, 0.87-1.11). However, when limiting to studies that assessed exposures prior to a breast cancer diagnosis, we observed a positive association with PFOA (a ln-unit increase, RR = 1.16; 95% CI, 0.96-1.40). We also observed some possible heterogeneous associations by tumor estrogen and progesterone receptor status among postmenopausal breast cancer cases. No meaningful changes were observed after excluding the studies with high risk of bias (Tier 3). Based on the evaluation tool developed by the National Toxicology Program, given the heterogeneity across studies and the variability in timing of exposure measurements, the epidemiologic evidence needed to determine the association between PFAS exposure and breast cancer remains inadequate. Our findings support the need for future studies with improved study designs to determine this association.
Collapse
Affiliation(s)
- Che-Jung Chang
- Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, United States
| | - Jennifer L Ish
- Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, United States
| | - Vicky C Chang
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD 20850, United States
| | - Meklit Daniel
- Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, United States
| | - Rena R Jones
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD 20850, United States
| | - Alexandra J White
- Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, United States
| |
Collapse
|
11
|
Pesonen M, Vähäkangas K. Involvement of per- and polyfluoroalkyl compounds in tumor development. Arch Toxicol 2024; 98:1241-1252. [PMID: 38478087 PMCID: PMC10965717 DOI: 10.1007/s00204-024-03685-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 01/22/2024] [Indexed: 03/27/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are a large group of synthetic persistent chemicals, which are used in many industrial and commercial applications. Hundreds of different PFAS have been identified in the environment and they are commonly found also in human blood. Due to the chemical stability and extensive use, PFAS pose a risk for human health and wildlife. Mounting evidence indicates that PFAS-exposure adversely affects many organs including liver, kidney, and reproductive tissues and induces tumors in laboratory rodents. Epidemiological studies show association between PFAS-exposure and some tumors also in humans. Effects of PFAS-exposure are complex and obviously do not depend only on the concentration and the structure of PFAS, but also on age and sex of the exposed individuals. It has been difficult to show a causal link between PFAS-exposure and tumors. Moreover, molecular mechanisms of the PFAS effects in different tissues are poorly understood. PFAS are not directly mutagenic and they do not induce formation of DNA binding metabolites, and thus are assumed to act more through non-genotoxic mechanisms. In this review, we discuss the involvement of PFAS-compounds in tumor development in tissues where PFAS exposure has been associated with cancer in epidemiological and animal studies (liver, kidney, testicle and breast). We will focus on molecular pathways and mechanisms related to tumor formation following PFAS-exposure.
Collapse
Affiliation(s)
- Maija Pesonen
- Faculty of Health Sciences, School of Pharmacy/Toxicology, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland.
| | - Kirsi Vähäkangas
- Faculty of Health Sciences, School of Pharmacy/Toxicology, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland
| |
Collapse
|
12
|
Hopkins ZR, Knappe DRU. Predicting per- and polyfluoroalkyl substances removal in pilot-scale granular activated carbon adsorbers from rapid small-scale column tests. AWWA WATER SCIENCE 2024; 6:e1369. [PMID: 39781100 PMCID: PMC11706541 DOI: 10.1002/aws2.1369] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 03/04/2024] [Indexed: 01/12/2025]
Abstract
Per- and polyfluoroalkyl substances (PFAS) occur widely in drinking water, and consumption of contaminated drinking water is an important human exposure route. Granular activated carbon (GAC) adsorption can effectively remove PFAS from water. To support the design of GAC treatment systems, a rapid bench-scale testing procedure and scale-up approach are needed to assess the effects of GAC type, background water matrix, and empty bed contact time (EBCT) on GAC use rates. The overarching goal of this study was to predict PFAS breakthrough curves obtained at the pilot-scale from rapid small-scale column test (RSSCT) data. The scale-up protocol was developed for pilot data obtained with coagulated/settled surface water (TOC = 2.3 mg/L), three GACs, and two EBCTs. Between 7 and 11 PFAS breakthrough curves were available for each pilot column. RSSCT designs were investigated that assumed intraparticle diffusivity is independent of GAC particle size (i.e., constant diffusivity [CD]) or linearly dependent on GAC particle size (i.e., proportional diffusivity [PD]). CD-RSSCTs effectively predicted the bed volumes of water that could be treated at the pilot-scale to reach 50% breakthrough (BV 50 % ) of individual PFAS. In contrast, PD-RSSCTs overpredictedBV 50 % obtained at the pilot-scale by a factor of ~2-3. The shape of PFAS breakthrough curves obtained with CD-RSSCTs deviated from those obtained at the pilot-scale, indicating that intraparticle diffusivity was dependent on GAC particle diameter ( d p ) . Using the pore surface diffusion model (PSDM), intraparticle diffusivity was found to be proportional to ( d p ) 0.25 when considering data up to about 70% PFAS breakthrough. This proportionality factor can be used to design RSSCTs or scale up existing CD-RSSCT data using the PSDM. Using pilot-scale data obtained with groundwater and wastewater-impacted groundwater as well as with additional GACs, the developed RSSCT scale-up approach was validated for PFAS breakthrough percentages up to 70%. The presented methodology permits the rapid prediction of GAC use rates for PFAS removal.
Collapse
Affiliation(s)
- Zachary R Hopkins
- Department of Civil, Construction, and Environmental Engineering, North, Carolina State University, Raleigh, North, Carolina, USA
| | - Detlef R U Knappe
- Department of Civil, Construction, and Environmental Engineering, North, Carolina State University, Raleigh, North, Carolina, USA
| |
Collapse
|
13
|
Pan J, Liu P, Yu X, Zhang Z, Liu J. The adverse role of endocrine disrupting chemicals in the reproductive system. Front Endocrinol (Lausanne) 2024; 14:1324993. [PMID: 38303976 PMCID: PMC10832042 DOI: 10.3389/fendo.2023.1324993] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 12/26/2023] [Indexed: 02/03/2024] Open
Abstract
Reproductive system diseases pose prominent threats to human physical and mental well-being. Besides being influenced by genetic material regulation and changes in lifestyle, the occurrence of these diseases is closely connected to exposure to harmful substances in the environment. Endocrine disrupting chemicals (EDCs), characterized by hormone-like effects, have a wide range of influences on the reproductive system. EDCs are ubiquitous in the natural environment and are present in a wide range of industrial and everyday products. Currently, thousands of chemicals have been reported to exhibit endocrine effects, and this number is likely to increase as the testing for potential EDCs has not been consistently required, and obtaining data has been limited, partly due to the long latency of many diseases. The ability to avoid exposure to EDCs, especially those of artificially synthesized origin, is increasingly challenging. While EDCs can be divided into persistent and non-persistent depending on their degree of degradation, due to the recent uptick in research studies in this area, we have chosen to focus on the research pertaining to the detrimental effects on reproductive health of exposure to several EDCs that are widely encountered in daily life over the past six years, specifically bisphenol A (BPA), phthalates (PAEs), polychlorinated biphenyls (PCBs), parabens, pesticides, heavy metals, and so on. By focusing on the impact of EDCs on the hypothalamic-pituitary-gonadal (HPG) axis, which leads to the occurrence and development of reproductive system diseases, this review aims to provide new insights into the molecular mechanisms of EDCs' damage to human health and to encourage further in-depth research to clarify the potentially harmful effects of EDC exposure through various other mechanisms. Ultimately, it offers a scientific basis to enhance EDCs risk management, an endeavor of significant scientific and societal importance for safeguarding reproductive health.
Collapse
Affiliation(s)
- Jing Pan
- The First Clinical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Pengfei Liu
- Gynecology Department, Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan, Shandong, China
| | - Xiao Yu
- Gynecology Department, Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan, Shandong, China
| | - Zhongming Zhang
- Zhang Zhongjing College of Chinese Medicine, Nanyang Institute of Technology, Nanyang, Henan, China
| | - Jinxing Liu
- Gynecology Department, Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan, Shandong, China
| |
Collapse
|
14
|
Winquist A, Hodge JM, Diver WR, Rodriguez JL, Troeschel AN, Daniel J, Teras LR. Case-Cohort Study of the Association between PFAS and Selected Cancers among Participants in the American Cancer Society's Cancer Prevention Study II LifeLink Cohort. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:127007. [PMID: 38088576 PMCID: PMC10718084 DOI: 10.1289/ehp13174] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 10/31/2023] [Accepted: 11/06/2023] [Indexed: 12/18/2023]
Abstract
BACKGROUND Previous epidemiological studies found associations between exposure to per- and polyfluoroalkyl substances (PFAS) and some cancer types. Many studies considered highly exposed populations, so relevance to less-exposed populations can be uncertain. Additionally, many studies considered only cancer site, not histology. OBJECTIVES We conducted a case-cohort study within the American Cancer Society's prospective Cancer Prevention Study II (CPS-II) LifeLink cohort to examine associations between PFAS exposure and risk of selected cancers, considering histologic subtypes. METHODS Serum specimens were collected from cohort participants during the period 1998-2001. This study included a subcohort (500 men, 499 women) randomly selected from participants without prior cancer diagnoses at serum collection, and all participants with incident (after serum collection) first cancers of the breast (females only, n = 786 ), bladder (n = 401 ), kidney (n = 158 ), pancreas (n = 172 ), prostate (males only, n = 1,610 ) or hematologic system (n = 635 ). PFAS concentrations [perfluorooctanoic acid (PFOA), perfluorooctane sulfonate (PFOS), perfluorohexane sulfonic acid (PFHxS), and perfluorononanoic acid (PFNA)] were measured in stored serum. We assessed associations between PFAS concentrations and incident cancers, by site and histologic subtype, using multivariable Cox proportional hazards models stratified by sex and controlling for age and year at blood draw, education, race/ethnicity, smoking, and alcohol use. RESULTS Serum PFOA concentrations were positively associated with renal cell carcinoma of the kidney among women [hazard ratio (HR) and 95% confidence interval (CI) per PFOA doubling: 1.54 (95% CI: 1.05, 2.26)] but not men. Among men, we observed a positive association between PFHxS concentrations and chronic lymphocytic leukemia/small lymphocytic lymphoma [CLL/SLL, HR and 95% CI per PFHxS doubling: 1.34 (95% CI: 1.02, 1.75)]. We observed some heterogeneity of associations by histologic subtype within sites. DISCUSSION This study supports the previously observed association between PFOA and renal cell carcinoma among women and suggests an association between PFHxS and CLL/SLL among men. Consideration of histologic subtypes might be important in future studies of PFAS-cancer associations. https://doi.org/10.1289/EHP13174.
Collapse
Affiliation(s)
- Andrea Winquist
- Division of Environmental Health Science and Practice, National Center for Environmental Health, U.S. Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - James M. Hodge
- Department of Population Science, American Cancer Society, Atlanta, Georgia, USA
| | - W. Ryan Diver
- Department of Population Science, American Cancer Society, Atlanta, Georgia, USA
| | - Juan L. Rodriguez
- Division of Cancer Prevention and Control, National Center for Chronic Disease Prevention and Health Promotion, U.S. Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Alyssa N. Troeschel
- Division of Environmental Health Science and Practice, National Center for Environmental Health, U.S. Centers for Disease Control and Prevention, Atlanta, Georgia, USA
- Epidemic Intelligence Service, Center for Surveillance, Epidemiology and Laboratory Services, U.S. Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Johnni Daniel
- Division of Environmental Health Science and Practice, National Center for Environmental Health, U.S. Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Lauren R. Teras
- Department of Population Science, American Cancer Society, Atlanta, Georgia, USA
| |
Collapse
|
15
|
Chang VC, Rhee J, Berndt SI, Moore SC, Freedman ND, Jones RR, Silverman DT, Gierach GL, Hofmann JN, Purdue MP. Serum perfluorooctane sulfonate and perfluorooctanoate and risk of postmenopausal breast cancer according to hormone receptor status: An analysis in the Prostate, Lung, Colorectal and Ovarian Cancer Screening Trial. Int J Cancer 2023; 153:775-782. [PMID: 36843273 PMCID: PMC10405832 DOI: 10.1002/ijc.34487] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 01/27/2023] [Accepted: 02/16/2023] [Indexed: 02/28/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are highly persistent endocrine-disrupting chemicals that may contribute to breast cancer development; however, epidemiologic evidence is limited. We investigated associations between prediagnostic serum levels of perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) and postmenopausal breast cancer risk, overall and by hormone receptor status, in a nested case-control study of 621 cases and 621 matched controls in the Prostate, Lung, Colorectal and Ovarian Cancer Screening Trial. PFOS and PFOA levels were determined based on serum metabolomic profiling performed using ultraperformance liquid chromatography-tandem mass spectrometry. We used multivariable conditional logistic regression to estimate odds ratios (ORs) and 95% confidence intervals (CIs) for the association between each PFAS and breast cancer risk, overall, by estrogen receptor (ER) or progesterone receptor (PR) status, and by joint ER/PR status. We found little evidence of association between PFOS or PFOA and breast cancer risk overall. However, in subtype-specific analyses, we observed statistically significant increased risks of ER+, PR+, and ER+/PR+ tumors for the third vs lowest quartile of serum PFOS (ORs [95% CIs] = 1.59 [1.01-2.50], 2.34 [1.29-4.23], and 2.19 [1.21-3.98], respectively) and elevated but nonstatistically significant ORs for the fourth quartile. Conversely, for PFOA, modest positive associations with ER-, PR-, ER+/PR-, and ER-/PR- tumors were generally seen in the upper quartiles. Our findings contribute evidence supporting positive associations between serum PFOS and hormone receptor-positive tumors, and possibly between PFOA and receptor-negative tumors. Future prospective studies incorporating tumor hormone receptor status are needed to better understand the role of PFAS in breast cancer etiology.
Collapse
Affiliation(s)
- Vicky C. Chang
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
| | - Jongeun Rhee
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
| | - Sonja I. Berndt
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
| | - Steven C. Moore
- Metabolic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
| | - Neal D. Freedman
- Metabolic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
| | - Rena R. Jones
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
| | - Debra T. Silverman
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
| | - Gretchen L. Gierach
- Integrative Tumor Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
| | - Jonathan N. Hofmann
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
| | - Mark P. Purdue
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
| |
Collapse
|
16
|
Cong X, Liu Q, Li W, Wang L, Feng Y, Liu C, Guo LQ, Wang L, Shi C, Li P. Systematic review and meta-analysis of breast cancer risks in relation to 2,3,7,8-tetrachlorodibenzo-p-dioxin and per- and polyfluoroalkyl substances. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:86540-86555. [PMID: 37420152 DOI: 10.1007/s11356-023-28592-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 06/30/2023] [Indexed: 07/09/2023]
Abstract
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) and per- and polyfluoroalkyl substances (PFAS) are endocrine disrupting chemicals that may cause breast cancer. However, there lacks consistent research on the association between TCDD, PFAS exposure, and breast cancer. To this end, a meta-analysis was carried out in this review to explore the relationship between these two endocrine disruptors and breast cancer. Relevant literature was searched from 5 databases: Medline, Scopus, Embase, PubMed, and Web of Science. Odds ratios (OR) with 95% confidence intervals (CIs) were pooled by fixed-effects and random-effects meta-analysis models. A total of 17 publications were finally included for quantitative evaluation. Meta-analysis showed that TCDD (OR = 1.00, 95% CI = 0.89-1.12, I2 = 39.3%, P = 0.144), PFOA (OR = 1.07, 95% CI = 0.84-1.38, I2 = 85.9%, P < 0.001), PFOS (OR = 1.01, 95% CI = 0.95-1.08, I2 = 65.7%, P < 0.001), PFNA (OR = 0.89, 95% CI = 0.67-1.19, I2 = 74.4%, P < 0.001), and PFHxS (OR = 0.90, 95% CI = 0.72-1.13, I2 = 74%, P < 0.001) were not significantly correlated with breast cancer. Internal exposure, however, showed a significant positive correlation between TCDD and BC (OR = 2.85, 95% CI = 1.23-6.59, I2 = 0.0%, P = 0.882). No statistically significant association between TCDD, PFAS exposure, and breast cancer was observed in this meta-analysis.
Collapse
Affiliation(s)
- Xiangru Cong
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin, 300384, China
- Tianjin Key Laboratory of Hazardous Waste Safety Disposal and Recycling Technology, Tianjin, 300384, China
| | - Qisijing Liu
- Research Institute of Public Health, School of Medicine, Nankai University, 300350, Tianjin, People's Republic of China
| | - Weixia Li
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin, 300384, China
- Tianjin Key Laboratory of Hazardous Waste Safety Disposal and Recycling Technology, Tianjin, 300384, China
| | - Lei Wang
- Hebei Research Center for Geoanalysis, Baoding, 071000, Hebei, China
| | - Yuanyuan Feng
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin, 300384, China
- Tianjin Key Laboratory of Hazardous Waste Safety Disposal and Recycling Technology, Tianjin, 300384, China
| | - Chunyu Liu
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin, 300384, China
- Tianjin Key Laboratory of Hazardous Waste Safety Disposal and Recycling Technology, Tianjin, 300384, China
| | - Li-Qiong Guo
- Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou, 325000, China
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, 300072, China
| | - Liping Wang
- Hebei Research Center for Geoanalysis, Baoding, 071000, Hebei, China
| | - Chang Shi
- Hebei Research Center for Geoanalysis, Baoding, 071000, Hebei, China
| | - Penghui Li
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin, 300384, China.
- Tianjin Key Laboratory of Hazardous Waste Safety Disposal and Recycling Technology, Tianjin, 300384, China.
| |
Collapse
|
17
|
Iwasaki M, Itoh H, Sawada N, Tsugane S. Exposure to environmental chemicals and cancer risk: epidemiological evidence from Japanese studies. Genes Environ 2023; 45:10. [PMID: 36949525 PMCID: PMC10031963 DOI: 10.1186/s41021-023-00268-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 03/02/2023] [Indexed: 03/24/2023] Open
Abstract
Exposure to certain chemicals in the environment may contribute to the risk of developing cancer. Although cancer risk from environmental chemical exposure among general populations is considered low compared to that in occupational settings, many people may nevertheless be chronically exposed to relatively low levels of environmental chemicals which vary by such various factors as residential area, lifestyle, and dietary habits. It is therefore necessary to assess population-specific exposure levels and examine their association with cancer risk. Here, we reviewed epidemiological evidence on cancer risk and exposure to dichlorodiphenyltrichloroethane (DDT), hexachlorocyclohexane (HCH), polychlorinated biphenyls (PCBs), per- and polyfluoroalkyl substances (PFASs), cadmium, arsenic, and acrylamide. Japanese are widely exposed to these chemicals, mainly through the diet, and an association with increased cancer risk is suspected. Epidemiological evidence from Japanese studies to date does not support a positive association between blood concentrations of DDT, HCH, PCBs, and PFASs and risk of breast or prostate cancer. We established assessment methods for dietary intake of cadmium, arsenic, and acrylamide using a food frequency questionnaire. Overall, dietary intakes of cadmium, arsenic, and acrylamide were not significantly associated with increased risk of total cancer and major cancer sites in the Japan Public Health Center-based Prospective Study. However, statistically significant positive associations were observed between dietary cadmium intake and risk of estrogen receptor-positive breast cancer among postmenopausal women, and dietary arsenic intake and risk of lung cancer among male smokers. In addition, studies using biomarkers as exposure assessment revealed statistically significant positive associations between urinary cadmium concentration and risk of breast cancer, and between ratio of hemoglobin adducts of acrylamide and glycidamide and risk of breast cancer. Epidemiological studies of general populations in Japan are limited and further evidence is required. In particular, studies of the association of organochlorine and organofluorine compounds with risk of cancer sites other than breast and prostate cancer are warranted, as are large prospective studies of the association between biomarkers of exposure and risk of cancer.
Collapse
Affiliation(s)
- Motoki Iwasaki
- Division of Epidemiology, National Cancer Center Institute for Cancer Control, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan.
- Division of Cohort Research, National Cancer Center Institute for Cancer Control, Tokyo, Japan.
| | - Hiroaki Itoh
- Division of Epidemiology, National Cancer Center Institute for Cancer Control, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan
- Department of Epidemiology and Environmental Health, , Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Norie Sawada
- Division of Cohort Research, National Cancer Center Institute for Cancer Control, Tokyo, Japan
| | - Shoichiro Tsugane
- Division of Cohort Research, National Cancer Center Institute for Cancer Control, Tokyo, Japan
- National Institute of Health and Nutrition, National Institutes of Biomedical Innovation, Health and Nutrition, Tokyo, Japan
| |
Collapse
|
18
|
Jain RB. Co-variate adjusted associations between serum concentrations of selected perfluoroalkyl substances and urinary concentrations of selected arsenic species. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:34750-34759. [PMID: 36520294 DOI: 10.1007/s11356-022-24745-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 12/09/2022] [Indexed: 06/17/2023]
Abstract
Data from National Health and Nutrition Examination Survey for 2011-2012 were used to estimate associations of the serum concentrations of perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), perfluorodecanoic acid (PFDA), perfluorohexane sulfonate (PFHxS), perfluorooctane sulfonate (PFOS), perfluoroundecanoic acid (PFUnDA), and 2-(N-methyl-perfluorooctane sulfonamido) acetic acid (Me-PFOSA) with urinary concentrations of total arsenic (UAS), inorganic arsenic (IAS), arsenobetaine (UAB), and dimethyl arsinic acid (UDMA) among US adults aged > = 20 years. Concentrations of PFNA were positively associated with all four arsenic variables but statistical significance was observed for IAS only (β = 0.33364, P = 0.04). Concentrations of PFDA were positively associated with UAS (β = 0.20688, P = 0.01), IAS (β = 0.23712, P = 0.02), and UAB (β = 0.26049, P = 0.02). Concentrations of PFUnDA were positively associated with UAS (β = 0.49946, P < 0.01), IAS (β = 0.51782, P < 0.01), UAB (β = 0.62924, P < 0.01), and UDMA (β = 0.26375, P < 0.01). Concentrations of Me-PFOSA with PFAS were inversely associated with every PFAS but statistical significance was observed for UDMA only (β = - 0.05613, P = 0.03). PFOA, PFHxS, and PFOS were, in general, negatively associated with concentrations of all four arsenic variables but without reaching statistical significance. Positive associations of PFDA, PFNA, and PFUnDA with arsenic necessitate investigation about impact of the co-exposure of these PFAS with arsenic and their impact on health. Fluorinated carbon chain length > 8 as opposed to ≤ 8 may have a role in defining associations of PFAS with arsenic.
Collapse
Affiliation(s)
- Ram B Jain
- 4331 Kendrick Circle, Loganville, GA, 30052, USA.
| |
Collapse
|
19
|
Itoh H, Harada KH, Kasuga Y, Yokoyama S, Onuma H, Nishimura H, Kusama R, Yokoyama K, Zhu J, Harada Sassa M, Yoshida T, Tsugane S, Iwasaki M. Association between serum concentrations of perfluoroalkyl substances and global DNA methylation levels in peripheral blood leukocytes of Japanese women: A cross-sectional study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:159923. [PMID: 36356761 DOI: 10.1016/j.scitotenv.2022.159923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 10/05/2022] [Accepted: 10/30/2022] [Indexed: 06/16/2023]
Abstract
Global DNA methylation levels in peripheral blood leukocytes can be a biomarker for cancer risk; however, levels can be changed by various factors such as environmental pollutants. We investigated the association between serum concentrations of perfluoroalkyl substances (PFASs) and global DNA methylation levels of leukocytes in a cross-sectional study using the control group of a Japanese breast cancer case-control study [397 women with a mean age of 54.1 (SD 10.1) years]. Importantly, our analysis distinguished branched PFAS isomers as different from linear isomers. The serum concentrations of 20 PFASs were measured by in-port arylation gas-chromatography negative chemical ionization mass spectrometry. Global DNA methylation levels in peripheral blood leukocytes were measured using a luminometric methylation assay. Associations between log10-transformed serum PFAS concentrations and global DNA methylation levels were evaluated by regression coefficients in multivariable robust linear regression analyses. Serum concentrations of 13 PFASs were significantly associated with increased global DNA methylation levels in leukocytes. Global DNA methylation was significantly increased by 1.45 %-3.96 % per log10-unit increase of serum PFAS concentration. Our results indicate that exposure to PFASs may increase global DNA methylation levels in peripheral blood leukocytes of Japanese women.
Collapse
Affiliation(s)
- Hiroaki Itoh
- Department of Epidemiology and Environmental Health, Juntendo University Faculty of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan; Division of Epidemiology, National Cancer Center Institute for Cancer Control, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan.
| | - Kouji H Harada
- Department of Health and Environmental Sciences, Kyoto University Graduate School of Medicine, Yoshida, Kyoto 606-8501, Japan
| | - Yoshio Kasuga
- Department of Surgery, Nagano Matsushiro General Hospital, 183 Matsushiro, Matsushiro-cho, Nagano, Nagano 381-1231, Japan; Department of Surgery, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan
| | - Shiro Yokoyama
- Department of Breast and Thyroid Surgery, Nagano Red Cross Hospital, 5-22-1 Wakasato, Nagano, Nagano 380-8582, Japan
| | - Hiroshi Onuma
- Department of Breast and Thyroid Surgery, Nagano Red Cross Hospital, 5-22-1 Wakasato, Nagano, Nagano 380-8582, Japan
| | - Hideki Nishimura
- Department of Chest Surgery and Breast Surgery, Nagano Municipal Hospital, 1333-1 Tomitake, Nagano, Nagano 381-8551, Japan
| | - Ritsu Kusama
- Department of Surgery, Hokushin General Hospital, 1-5-63 Nishi, Nakano, Nagano 383-8505, Japan
| | - Kazuhito Yokoyama
- Department of Epidemiology and Environmental Health, Juntendo University Faculty of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan; Department of Epidemiology and Social Medicine, International University of Health and Welfare Graduate School of Public Health, 4-1-26 Akasaka, Minato-ku, Tokyo 107-8402, Japan
| | - Jing Zhu
- Department of Health and Environmental Sciences, Kyoto University Graduate School of Medicine, Yoshida, Kyoto 606-8501, Japan; Department of Sanitary Technology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610061, China
| | - Mariko Harada Sassa
- Department of Health and Environmental Sciences, Kyoto University Graduate School of Medicine, Yoshida, Kyoto 606-8501, Japan
| | - Teruhiko Yoshida
- Division of Genetics, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Shoichiro Tsugane
- Division of Cohort Research, National Cancer Center Institute for Cancer Control, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Motoki Iwasaki
- Division of Epidemiology, National Cancer Center Institute for Cancer Control, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; Division of Cohort Research, National Cancer Center Institute for Cancer Control, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| |
Collapse
|
20
|
Pierozan P, Kosnik M, Karlsson O. High-content analysis shows synergistic effects of low perfluorooctanoic acid (PFOS) and perfluorooctane sulfonic acid (PFOA) mixture concentrations on human breast epithelial cell carcinogenesis. ENVIRONMENT INTERNATIONAL 2023; 172:107746. [PMID: 36731186 DOI: 10.1016/j.envint.2023.107746] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/04/2023] [Accepted: 01/09/2023] [Indexed: 06/18/2023]
Abstract
Perfluoroalkyl substances (PFAS) have been associated with cancer, but the potential underlying mechanisms need to be further elucidated and include studies of PFAS mixtures. This mechanistic study revealed that very low concentrations (500 pM) of the binary PFOS and PFOA mixture induced synergistic effects on human epithelial breast cell (MCF-10A) proliferation. The cell proliferation was mediated by pregnane X receptor (PXR) activation, an increase in cyclin D1 and CDK6/4 levels, decrease in p21 and p53 levels, and by regulation of phosphor-Akt and β-catenin. The PFAS mixture also altered histone modifications, epigenetic mechanisms implicated in tumorigenesis, and promoted cell migration and invasion by reducing the levels of occludin. High-content screening using the cell painting assay, revealed that hundreds of cell features were affected by the PFAS mixture even at the lowest concentration tested (100 pM). The detailed phenotype profiling further demonstrated that the PFAS mixture altered cell morphology, mostly in parameters related to intensity and texture associated with mitochondria, endoplasmic reticulum, and nucleoli. Exposure to higher concentrations (≥50 µM) of the PFOS and PFOA mixture caused cell death through synergistic interactions that induced oxidative stress, DNA/RNA damage, and lipid peroxidation, illustrating the complexity of mixture toxicology. Increased knowledge about mixture-induced effects is important for better understanding of PFAS' possible role in cancer etiology, and may impact the risk assessment of these and other compounds. This study shows the potential of image-based multiplexed fluorescence assays and high-content screening for development of new approach methodologies in toxicology.
Collapse
Affiliation(s)
- Paula Pierozan
- Science for Life Laboratory, Department of Environmental Science, Stockholm University, Stockholm 114 18, Sweden
| | - Marissa Kosnik
- Science for Life Laboratory, Department of Environmental Science, Stockholm University, Stockholm 114 18, Sweden
| | - Oskar Karlsson
- Science for Life Laboratory, Department of Environmental Science, Stockholm University, Stockholm 114 18, Sweden.
| |
Collapse
|
21
|
Critical endpoints of PFOA and PFOS exposure for regulatory risk assessment in drinking water: Parameter choices impacting estimates of safe exposure levels. Regul Toxicol Pharmacol 2023; 138:105323. [PMID: 36599390 DOI: 10.1016/j.yrtph.2022.105323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 01/02/2023]
Abstract
USEPA issued drinking water interim health advisories (iHA) for PFOA and PFOS. The Agency's choice for critical effect, toxic point-of-departure (PoD), benchmark dose (BMD), pharmacokinetic (PK) model extrapolation to ingested dose, and use of uncertainty factors, resulted in the iHA for PFOS and PFOA being lowered from 70 ppt to 0.04-0.2 ppt. This review addresses key steps in the iHA derivation that influence changes in iHA values and suggests analysis and modeling changes for higher confidence in the iHA derivation, and re-evaluation of critical endpoint data for immunotoxicity and associated BMD modeling to derive a serum antibody PoD in the clinically adverse range. Movement from empirical PK modeling of ingested human dose to a platform that captures biological realism will more accurately reflect PFAS elimination, which impacts model-optimized ingested dose. The uncertainty factor (UF) for human variability should be reconsidered, as in utero and neonate exposures used to derive the iHA represent the likely susceptible populations. Although not part of the iHA derivation, cancer was considered in the drinking water maximum contaminant level goal (MCLG) technical evaluation. We discuss weaknesses in the cancer epidemiological data that require re-evaluation as the drinking water regulation process proceeds to a national standard.
Collapse
|
22
|
Goines S, Dick JE. Investigating the cytotoxic redox mechanism of PFOS within Hep G2 by hyperspectral-assisted scanning electrochemical microscopy. Analyst 2022; 147:4356-4364. [PMID: 36043461 PMCID: PMC10308698 DOI: 10.1039/d2an00904h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
Perfluorooctane sulfonate (PFOS) is one of the most lethal per- and poly-fluoroalkyl substances (PFAS). Generally, exposure effects are studied through case-controlled studies, cohort studies, or cell assays. Unfortunately, most studies involving two-dimensional cell cultures require cell lysis or fixation. For in vitro studies, fluorescence microscopy has been useful, but methods to simultaneously discern phototoxic effects during an experiment are limited. Here, we use hepatocarcinoma (Hep G2) cells to examine the redox mechanism of PFOS cytotoxicity in vitro, while using hyperspectral-assisted scanning electrochemical microscopy (SECM) to differentiate between PFOS and redox mediator induced stress. Specifically, we correlate an increase in the electrochemical response of ferrocenemethanol oxidation with an increase in intracellular reactive oxygen species. Corresponding hyperspectral images of redox indicative-fluorophores implicate superoxide in the cytotoxic redox mechanism.
Collapse
Affiliation(s)
- Sondrica Goines
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jeffrey E Dick
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
23
|
Li X, Song F, Liu X, Shan A, Huang Y, Yang Z, Li H, Yang Q, Yu Y, Zheng H, Cao XC, Chen D, Chen KX, Chen X, Tang NJ. Perfluoroalkyl substances (PFASs) as risk factors for breast cancer: a case-control study in Chinese population. Environ Health 2022; 21:83. [PMID: 36085159 PMCID: PMC9463854 DOI: 10.1186/s12940-022-00895-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 08/27/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Perfluoroalkyl substances (PFASs) are a large family of synthetic chemicals, some of which are mammary toxicants and endocrine disruptors. Recent studies have implicated exposure to PFASs as a risk factor for breast cancer in Europe and America. Little is known about the role of PFASs with respect to breast cancer in the Chinese population. METHODS Participants who were initially diagnosed with breast cancer at Tianjin Medical University Cancer Institute and Hospital between 2012 and 2016 were recruited as cases. The controls were randomly selected from the participants with available blood samples in the Chinese National Breast Cancer Screening Program (CNBCSP) cohort. Ultimately, we enrolled 373 breast cancer patients and 657 controls. Plasma PFASs were measured by an ultra-performance liquid chromatography (UPLC) system coupled to a 5500 Q-Trap triple quadrupole mass spectrometer. A logistic regression model with least absolute shrinkage and selection operator (LASSO) regularization was used to calculate odds ratios (ORs) and 95% confidence intervals (CIs) to assess the relationships between PFASs and breast cancer. The three most predictive variables in the LASSO model were selected from 17 PFASs, which was based on the optimal penalty coefficient (λ = 0.0218) identified with the minimum criterion. Additionally, Bayesian kernel machine regression (BKMR) and quantile g-computation models were applied to evaluate the associations between separate and mixed exposure to PFASs and breast cancer. RESULTS Perfluorooctanesulfonic acid (PFOS) exhibited the highest concentration in both the cases and controls. Perfluorooctanoic acid (PFOA) and perfluoro-n-decanoic acid (PFDA) were positively associated with breast cancer, and perfluoro-n-tridecanoic acid (PFTrDA) was negatively associated with breast cancer according to both the continuous-PFASs and the quartile-PFASs logistic regression models. Of note, PFOA was associated with the occurrence of estrogen receptor (ER)-, progesterone receptor (PR)-, and human epidermal growth factor receptor 2 (HER2)-positive breast cancer (ORER+ = 1.47, 95% CI: 1.19, 1.80; ORPR+ = 1.36, 95% CI: 1.09, 1.69; ORHER2 = 1.62, 95% CI: 1.19, 2.21). CONCLUSIONS Overall, we observed that PFASs were associated with breast cancer in Chinese women. Prospective cohort studies and mechanistic experiments are warranted to elucidate whether these associations are causal.
Collapse
Affiliation(s)
- Xuejun Li
- Department of Occupational and Environmental Health, School of Public Health, Center for International Collaborative Research on Environment, Nutrition, and Public Health, Tianjin Key Laboratory of Environment, Nutrition, and Public Health, Tianjin Medical University, No.22 Qixiangtai Road, Heping District, Tianjin, 300070, China
| | - Fengju Song
- Department of Epidemiology and Biostatistics, Key Laboratory of Breast Cancer Prevention and Therapy in Ministry of Education, Key Laboratory of Molecular Cancer Epidemiology of Tianjin, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
| | - Xiaotu Liu
- School of Environment, Guangzhou Key Laboratory of Environmental Exposure and Health, and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, 510632, China
| | - Anqi Shan
- Department of Occupational and Environmental Health, School of Public Health, Center for International Collaborative Research on Environment, Nutrition, and Public Health, Tianjin Key Laboratory of Environment, Nutrition, and Public Health, Tianjin Medical University, No.22 Qixiangtai Road, Heping District, Tianjin, 300070, China
| | - Yubei Huang
- Department of Epidemiology and Biostatistics, Key Laboratory of Breast Cancer Prevention and Therapy in Ministry of Education, Key Laboratory of Molecular Cancer Epidemiology of Tianjin, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
| | - Zhengjun Yang
- The First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Haixin Li
- Department of Epidemiology and Biostatistics, Key Laboratory of Breast Cancer Prevention and Therapy in Ministry of Education, Key Laboratory of Molecular Cancer Epidemiology of Tianjin, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
| | - Qiaoyun Yang
- Department of Occupational and Environmental Health, School of Public Health, Center for International Collaborative Research on Environment, Nutrition, and Public Health, Tianjin Key Laboratory of Environment, Nutrition, and Public Health, Tianjin Medical University, No.22 Qixiangtai Road, Heping District, Tianjin, 300070, China
| | - Yue Yu
- The First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Hong Zheng
- Department of Epidemiology and Biostatistics, Key Laboratory of Breast Cancer Prevention and Therapy in Ministry of Education, Key Laboratory of Molecular Cancer Epidemiology of Tianjin, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
| | - Xu-Chen Cao
- The First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Da Chen
- School of Environment, Guangzhou Key Laboratory of Environmental Exposure and Health, and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, 510632, China
| | - Ke-Xin Chen
- Department of Epidemiology and Biostatistics, Key Laboratory of Breast Cancer Prevention and Therapy in Ministry of Education, Key Laboratory of Molecular Cancer Epidemiology of Tianjin, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
| | - Xi Chen
- Department of Occupational and Environmental Health, School of Public Health, Center for International Collaborative Research on Environment, Nutrition, and Public Health, Tianjin Key Laboratory of Environment, Nutrition, and Public Health, Tianjin Medical University, No.22 Qixiangtai Road, Heping District, Tianjin, 300070, China.
| | - Nai-Jun Tang
- Department of Occupational and Environmental Health, School of Public Health, Center for International Collaborative Research on Environment, Nutrition, and Public Health, Tianjin Key Laboratory of Environment, Nutrition, and Public Health, Tianjin Medical University, No.22 Qixiangtai Road, Heping District, Tianjin, 300070, China.
| |
Collapse
|
24
|
Jane L Espartero L, Yamada M, Ford J, Owens G, Prow T, Juhasz A. Health-related toxicity of emerging per- and polyfluoroalkyl substances: Comparison to legacy PFOS and PFOA. ENVIRONMENTAL RESEARCH 2022; 212:113431. [PMID: 35569538 DOI: 10.1016/j.envres.2022.113431] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 04/26/2022] [Accepted: 05/02/2022] [Indexed: 06/15/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are highly persistent, manufactured chemicals used in various manufacturing processes and found in numerous commercial products. With over 9000 compounds belonging to this chemical class, there is increasing concern regarding human exposure to these compounds due to their persistent, bioaccumulative, and toxic nature. Human exposure to PFAS may occur from a variety of exposure sources, including, air, food, indoor dust, soil, water, from the transfer of PFAS from non-stick wrappers to food, use of cosmetics, and other personal care products. This critical review presents recent research on the health-related impacts of PFAS exposure, highlighting compounds other than Perfluorooctanoic acid (PFOA) and Perfluoroctane sulfonate (PFOS) that cause adverse health effects, updates the current state of knowledge on PFAS toxicity, and, where possible, elucidates cause-and-effect relationships. Recent reviews identified that exposure to PFAS was associated with adverse health impacts on female and male fertility, metabolism in pregnancy, endocrine function including pancreatic dysfunction and risk of developing Type 2 diabetes, lipid metabolism and risk of childhood adiposity, hepatic and renal function, immune function, cardiovascular health (atherosclerosis), bone health including risk for dental cavities, osteoporosis, and vitamin D deficiency, neurological function, and risk of developing breast cancer. However, while cause-and-effect relationships for many of these outcomes were not able to be clearly elucidated, it was identified that 1) the evidence derived from both animal models and humans suggested that PFAS may exert harmful impacts on both animals and humans, however extrapolating data from animal to human studies was complicated due to differences in exposure/elimination kinetics, 2) PFAS precursor kinetics and toxicity mechanism data are still limited despite ongoing exposures, and 3) studies in humans, which provide contrasting results require further investigation of the long-term-exposed population to better evaluate the biological toxicity of chronic exposure to PFAS.
Collapse
Affiliation(s)
- Lore Jane L Espartero
- Future Industries Institute (FII), University of South Australia, Mawson Lakes, South Australia, Australia
| | - Miko Yamada
- Future Industries Institute (FII), University of South Australia, Mawson Lakes, South Australia, Australia
| | - Judith Ford
- University of Sydney, New South Wales, United Kingdom
| | - Gary Owens
- Future Industries Institute (FII), University of South Australia, Mawson Lakes, South Australia, Australia
| | - Tarl Prow
- Future Industries Institute (FII), University of South Australia, Mawson Lakes, South Australia, Australia; Skin Research Centre, York Biomedical Research Institute, Hull York Medical School, University of York, United Kingdom
| | - Albert Juhasz
- Future Industries Institute (FII), University of South Australia, Mawson Lakes, South Australia, Australia.
| |
Collapse
|
25
|
Feng Y, Bai Y, Lu Y, Chen M, Fu M, Guan X, Cao Q, Yuan F, Jie J, Li M, Meng H, Wang C, Hong S, Zhou Y, Zhang X, He M, Guo H. Plasma perfluoroalkyl substance exposure and incidence risk of breast cancer: A case-cohort study in the Dongfeng-Tongji cohort. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 306:119345. [PMID: 35472559 DOI: 10.1016/j.envpol.2022.119345] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 04/18/2022] [Accepted: 04/20/2022] [Indexed: 06/14/2023]
Abstract
Experimental studies have suggested perfluoroalkyl substances (PFASs) as mammary toxicants, but few studies evaluated the prospective associations of PFASs with breast cancer risk. We performed a case-cohort study within the Dongfeng-Tongji cohort, including incident breast cancer cases (n = 226) and a random sub-cohort (n = 990). Baseline plasma concentrations of four perfluorinated carboxylic acids (PFCAs) [perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), perfluorodecanoic acid (PFDA), and perfluoroheptanoic acid (PFHpA)] and two perfluorinated sulfonic acids (PFSAs) [perfluorooctane sulfonic acid (PFOS) and perfluorohexane sulfonic acid (PFHxS)] were measured. Barlow-weighted Cox regression models revealed that each 1-unit increase in ln-transformed PFOA and PFHpA was associated with a separate 35% and 20% elevated incident risk of breast cancer [HR(95%CI) = 1.35(1.03, 1.78) and 1.20(1.02, 1.40), respectively], which were also significant among postmenopausal females [HR(95%CI) = 1.34(1.01, 1.77) and 1.23 (1.02, 1.48), respectively]. Quantile g-computation analysis observed a 19% increased incident risk of breast cancer along with each simultaneous quartile increase in all ln-transformed PFCA concentrations [HR(95%CI) = 1.19(1.01, 1.41)], with PFOA accounting for 56% of the positive effect. Our findings firstly revealed the impact of short-chain PFHpA on increased incident risk of breast cancer, suggested exposure to PFASs as a risk factor for breast cancer, and shed light on breast cancer prevention by regulating PFASs as a chemical class.
Collapse
Affiliation(s)
- Yue Feng
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yansen Bai
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanjun Lu
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mengshi Chen
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha, China
| | - Ming Fu
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Guan
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiang Cao
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fangfang Yuan
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiali Jie
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mengying Li
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hua Meng
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chenming Wang
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shiru Hong
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuhan Zhou
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaomin Zhang
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Meian He
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huan Guo
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
26
|
Girardi P, Lupo A, Mastromatteo LY, Scrimin S. Mothers living with contamination of perfluoroalkyl substances: an assessment of the perceived health risk and self-reported diseases. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:60491-60507. [PMID: 35426015 DOI: 10.1007/s11356-022-20085-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 03/31/2022] [Indexed: 06/14/2023]
Abstract
Widespread contamination of the superficial, drinking, and groundwater by perfluoroalkyl substances (PFASs) was discovered in the Veneto Region (northeast of Italy) in 2013. Mothers from the contaminated area were concerned about the effects of PFAS on their own and their children's health. We determined the factors that influenced the perceived risk of PFAS and the presence of self-reported diseases by conducting a study with 384 mothers of children aged 1-13 years living in the contaminated area (Red Zone, Veneto, Italy). Information on demography, the sources of exposure, and the health condition of the mothers was collected through an online survey. The serum PFAS concentration was recorded for some of the participants. We determined the factors influencing the perceived risk, risk of health outcomes, and serum PFAS levels through regression analyses. The PFAS perceived risk of the mothers increased with an increase in the trust in scientific institutions and social media, and when many friends were present, trust in politics and full-time employment had a protective effect. The PFAS perceived risk increased the occurrences of self-reported and autoimmune diseases. Longer residence (> 20 years) in the most exposed area (Red Zone A) increased the frequency of some health outcomes. Serum PFAS concentrations decreased with breastfeeding, but increased with tap water consumption, residence in Red Zone A, and residence time. The PFAS perceived risk of the mothers was associated with many factors that influenced reporting of health issues. The association between PFAS exposure and health outcomes needs further investigation.
Collapse
Affiliation(s)
- Paolo Girardi
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, via Torino 155, 30172, Venezia-Mestre, Italy.
| | - Alice Lupo
- Department of Developmental Psychology and Socialization, University of Padova, Padova, Italy
| | | | - Sara Scrimin
- Department of Developmental Psychology and Socialization, University of Padova, Padova, Italy
| |
Collapse
|
27
|
Jiang H, Liu H, Liu G, Yu J, Liu N, Jin Y, Bi Y, Wang H. Associations between Polyfluoroalkyl Substances Exposure and Breast Cancer: A Meta-Analysis. TOXICS 2022; 10:toxics10060318. [PMID: 35736926 PMCID: PMC9227283 DOI: 10.3390/toxics10060318] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/28/2022] [Accepted: 05/31/2022] [Indexed: 01/09/2023]
Abstract
Polyfluoroalkyl substances (PFASs) are persistent pollutants that may cause breast cancer. However, associations between exposure to PFASs and the risk of breast cancer are controversial. We retrieved studies on the association between PFASs—perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), perfluorohexane sulfonic acid (PFHxS), and perfluorooctane sulfonic acid (PFOS)—and breast cancer risk in women from PubMed, Embase, and the Web of Science. The pooled odds ratios (ORs) or relative risks (RRs) and their 95% confidence intervals (CIs) were extracted or calculated from provided data. Moreover, subgroup and metaregression analyses were performed to distinguish the potential sources of heterogeneity between studies. Lastly, eight original studies were included in the meta-analysis. PFOA and PFHxS were positively correlated with breast cancer risk, and the pooled ORs (and 95% CIs) were 1.32 (1.19 and 1.46) and 1.79 (1.51 and 2.11), respectively. PFNA was negatively correlated with breast cancer risk and the pooled OR (and 95% CIs) was 0.76 (0.6 and 0.96), and PFOS was shown to have no correlation with breast cancer risk and the pooled OR (and 95% CIs) was 1.01 (0.87 and 1.17). All results were merged in a random-effects model with significant heterogeneities (I2 > 90%, p < 0.001). The results demonstrated that PFASs might be potential risk factors for breast cancer, and the compounds in low exposure levels could have a more harmful impact on human health.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Hong Wang
- Correspondence: ; Tel.: +027-6875-8591
| |
Collapse
|
28
|
Santaliz Casiano A, Lee A, Teteh D, Madak Erdogan Z, Treviño L. Endocrine-Disrupting Chemicals and Breast Cancer: Disparities in Exposure and Importance of Research Inclusivity. Endocrinology 2022; 163:6553110. [PMID: 35325096 PMCID: PMC9391683 DOI: 10.1210/endocr/bqac034] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Indexed: 01/09/2023]
Abstract
Endocrine-disrupting chemicals (EDCs) are known contributors to breast cancer development. Exposures to EDCs commonly occur through food packaging, cookware, fabrics, and personal care products, as well as external environmental sources. Increasing evidence highlights disparities in EDC exposure across racial/ethnic groups, yet breast cancer research continues to lack the inclusion necessary to positively impact treatment response and overall survival in socially disadvantaged populations. Additionally, the inequity in environmental exposures has yet to be remedied. Exposure to EDCs due to structural racism poses an unequivocal risk to marginalized communities. In this review, we summarize recent epidemiological and molecular studies on 2 lesser-studied EDCs, the per- and polyfluoroalkyl substances (PFAS) and the parabens, the health disparities that exist in EDC exposure between populations, and their association with breast carcinogenesis. We discuss the importance of understanding the relationship between EDC exposure and breast cancer development, particularly to promote efforts to mitigate exposures and improve breast cancer disparities in socially disadvantaged populations.
Collapse
Affiliation(s)
- Ashlie Santaliz Casiano
- Food Science and Human Nutrition Department, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA
| | - Annah Lee
- Department of Population Sciences, Division of Health Equities, City of Hope, Duarte, CA, 91010, USA
| | - Dede Teteh
- Department of Population Sciences, Division of Health Equities, City of Hope, Duarte, CA, 91010, USA
- Department of Health Sciences, Crean College of Health and Behavioral Sciences, Chapman University, Orange, CA 92866, USA
| | - Zeynep Madak Erdogan
- Food Science and Human Nutrition Department, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA
- Department of Food Science and Human Nutrition, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA
- Cancer Center at Illinois, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA
- Carle Illinois, College of Medicine, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA
- Correspondence: Zeynep Madak Erdogan, PhD, Food Science and Human Nutrition Department, University of Illinois, Urbana-Champaign, 1201 W. Gregory Dr., Urbana, IL 61801, USA.
| | - Lindsey Treviño
- Department of Population Sciences, Division of Health Equities, City of Hope, Duarte, CA, 91010, USA
- Correspondence: Lindsey S. Treviño, PhD, Department of Population Sciences, Division of Health Equities, Duarte - Main Campus, City of Hope Comprehensive Cancer Center, 1500 East Duarte Road, Duarte, CA 91010, USA.
| |
Collapse
|
29
|
Li H, Hammarstrand S, Midberg B, Xu Y, Li Y, Olsson DS, Fletcher T, Jakobsson K, Andersson EM. Cancer incidence in a Swedish cohort with high exposure to perfluoroalkyl substances in drinking water. ENVIRONMENTAL RESEARCH 2022; 204:112217. [PMID: 34662573 DOI: 10.1016/j.envres.2021.112217] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 09/17/2021] [Accepted: 10/11/2021] [Indexed: 05/20/2023]
Abstract
BACKGROUND The use of firefighting foams at a military airport resulted in high levels of perfluorinated substances (PFAS) in the drinking water distributed to one-third of households in the Swedish municipality of Ronneby between the mid-1980s and the end of 2013. METHOD The Ronneby Register Cohort, a large cohort comprising all individuals (N = 60,507) who ever lived in the Ronneby municipality during the period of drinking water contamination, was linked to the Swedish Cancer Register 1985-2016. Individual exposure was classified based on comprehensive data on yearly residential address and water distribution. External analysis explored standardized cancer incidence ratios (SIR) for residents never, or ever, residing in the contaminated water district, compared with those residing in other towns in the same county as reference population. Cox models provided hazard ratios (HR) for different exposure groups within the cohort. RESULTS 5,702 individuals with cancer were identified. SIR for overall cancer was 1.04 for men (95%CI 0.96-1.12) and 0.89 for women (95%CI 0.82-0.96) who ever lived in the contaminated drinking water area. Kidney cancer, which was reported with increased risk in C8 study, showed somewhat elevated HR in this study (HR 1.27; 95%CI 0.85-1.89). The HR was modestly elevated for bladder cancer (HR 1.32; 95%CI 1.01-1.72), and reduced for prostate cancer (HR 0.83; 95%CI 0.71-0.98). In subjects who ever lived in the contaminated water area during 2005-2013, when exposure was estimated to be highest, higher risks for kidney cancer (HR 1.84; 95%CI 1.00-3.37) but lower for prostate cancer (HR 0.76; 95%CI 0.59-0.98) were observed. CONCLUSION Analysis of this large cohort exposed to high levels of PFAS, dominated by PFHxS and PFOS, revealed no evidence for an overall increased risk of cancer. A moderately increased risk of kidney cancer was observed, in accordance with previous findings after PFAS exposure dominated by PFOA.
Collapse
Affiliation(s)
- Huiqi Li
- School of Public Health and Community Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, 405 30, Gothenburg, Sweden.
| | - Sofia Hammarstrand
- School of Public Health and Community Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, 405 30, Gothenburg, Sweden; Department of Occupational and Environmental Medicine, Sahlgrenska University Hospital, 413 46, Gothenburg, Sweden
| | - Bo Midberg
- Department of Cancer Epidemiology, Clinical Sciences, Lund University, Box 188, 221 00, Lund, Sweden
| | - Yiyi Xu
- School of Public Health and Community Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, 405 30, Gothenburg, Sweden
| | - Ying Li
- School of Public Health and Community Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, 405 30, Gothenburg, Sweden
| | - Daniel S Olsson
- Department of Endocrinology, Sahlgrenska University Hospital, 413 46, Gothenburg, Sweden; Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, 405 30, Gothenburg, Sweden
| | - Tony Fletcher
- London School of Hygiene and Tropical Medicine, London, UK
| | - Kristina Jakobsson
- School of Public Health and Community Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, 405 30, Gothenburg, Sweden; Department of Occupational and Environmental Medicine, Sahlgrenska University Hospital, 413 46, Gothenburg, Sweden
| | - Eva M Andersson
- School of Public Health and Community Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, 405 30, Gothenburg, Sweden; Department of Occupational and Environmental Medicine, Sahlgrenska University Hospital, 413 46, Gothenburg, Sweden
| |
Collapse
|
30
|
Frenoy P, Perduca V, Cano-Sancho G, Antignac JP, Severi G, Mancini FR. Application of two statistical approaches (Bayesian Kernel Machine Regression and Principal Component Regression) to assess breast cancer risk in association to exposure to mixtures of brominated flame retardants and per- and polyfluorinated alkylated substances in the E3N cohort. Environ Health 2022; 21:27. [PMID: 35216589 PMCID: PMC8881807 DOI: 10.1186/s12940-022-00840-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 02/16/2022] [Indexed: 05/07/2023]
Abstract
BACKGROUND Brominated flame retardants (BFR) and per- and polyfluorinated alkylated substances (PFAS) are two groups of substances suspected to act as endocrine disruptors. Such substances could therefore be implicated in the occurrence of breast cancer, nevertheless, previous studies have led to inconstant results. Due to the large correlation between these substances, and the possibly non-linear effects they exert, evaluating their joint impact as mixtures on health remains challenging. This exploratory study aimed to generate hypotheses on the relationship between circulating levels of 7 BFR (6 polybrominated diphenyl ethers and 1 polybrominated biphenyls) and 11 PFAS and the risk of breast cancer in a case-control study nested in the E3N French prospective cohort by performing two methods: Principal Component Regression (PCR) models, and Bayesian Kernel Machine Regression (BKMR) models. METHODS 194 post-menopausal breast cancer cases and 194 controls were included in the present study. Circulating levels of BFR and PFAS were measured by gas chromatography coupled to high-resolution mass spectrometry and liquid chromatography coupled to tandem mass spectrometry, respectively. The first statistical approach was based on Principal Component Analysis (PCA) followed by logistic regression models that included the identified principal components as main exposure variables. The second approach used BKMR models with hierarchical variable selection, this latter being suitable for highly correlated exposures. Both approaches were also run separately for Estrogen Receptor positive (ER +) and Estrogen Receptor negative (ER-) breast cancer cases. RESULTS PCA identified four principal components accounting for 67% of the total variance. Component 3 showed a marginal association with ER + breast cancer risk. No clear association between BFR and PFAS mixtures and breast cancer was identified using BKMR models, and the credible intervals obtained were very wide. Finally, the BKMR models suggested a negative cumulative effect of BFR and PFAS on ER- breast cancer risk, and a positive cumulative effect on ER + breast cancer risk. CONCLUSION Although globally no clear association was identified, both approaches suggested a differential effect of BFR and PFAS mixtures on ER + and ER- breast cancer risk. However, the results for ER- breast cancer should be interpreted carefully due to the small number of ER- cases included in the study. Further studies evaluating mixtures of substances on larger study populations are needed.
Collapse
Affiliation(s)
- Pauline Frenoy
- Paris-Saclay University, UVSQ, Inserm, Gustave Roussy, "Exposome and Heredity" Team, CESP UMR1018, 94805, Villejuif, France
| | - Vittorio Perduca
- Paris-Saclay University, UVSQ, Inserm, Gustave Roussy, "Exposome and Heredity" Team, CESP UMR1018, 94805, Villejuif, France
- Laboratoire MAP5 (UMR CNRS 8145), Université de Paris, Paris, France
| | | | | | - Gianluca Severi
- Paris-Saclay University, UVSQ, Inserm, Gustave Roussy, "Exposome and Heredity" Team, CESP UMR1018, 94805, Villejuif, France
- Department of Statistics, Computer Science, Applications "G. Parenti", University of Florence, Florence, Italy
| | - Francesca Romana Mancini
- Paris-Saclay University, UVSQ, Inserm, Gustave Roussy, "Exposome and Heredity" Team, CESP UMR1018, 94805, Villejuif, France.
| |
Collapse
|
31
|
Pierozan P, Cattani D, Karlsson O. Tumorigenic activity of alternative per- and polyfluoroalkyl substances (PFAS): Mechanistic in vitro studies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 808:151945. [PMID: 34843762 DOI: 10.1016/j.scitotenv.2021.151945] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/29/2021] [Accepted: 11/20/2021] [Indexed: 06/13/2023]
Abstract
Environmental contaminants including long-chain per- and polyfluoroalkyl substances (PFAS) have been linked to cancer, which is a central cause of mortality in humans and many wildlife species. Today shorter-chain PFAS are extensively used as replacement compounds and commonly found in the environment. Mechanistic studies are important for a better understanding of their toxicological potential and possible role in cancer etiology. Here, we treated normal human breast epithelial cells (MCF-10A) with 500 pM to 500 μM of perfluorohexane sulfonate (PFHxS), undecafluorohexanoic acid (PFHxA), hexafluoropropylene oxide-dimer acid (GenX), perfluoro 3,6 dioxaoctanoic acid (PFO2OA), heptafluorobutyric acid (HFBA) and perfluorobutanesulfonic acid (PFBS) for 72 h to investigate potential effects on cell proliferation and neoplastic transformation. PFHxA, GenX, PFO2OA, HFBA and PFBS induced no alterations compared to controls at any of the concentrations tested. Exposure to 100 μM PFHxS on the other hand was shown to affect important regulatory cell-cycle proteins (cyclin D1, CDK6, p27, p53 and ERK) and induced cell proliferation, at least in part through activation of the constitutive androstane receptor (CAR) and the peroxisome proliferator-activated receptor alpha (PPARα). PFHxS also altered histone modifications and induced cell malignance by reducing the levels of adhesion proteins (E-cadherin and β-integrin) and promoting cell migration and invasion. These results demonstrate that five out of six alternative PFAS tested are clearly less harmful to MCF-10A cells than previously studied PFOS and PFOA, but raise concerns about PFHxS that also has been associated with breast cancer in epidemiological studies.
Collapse
Affiliation(s)
- Paula Pierozan
- Science for Life Laboratory, Department of Environmental Science, Stockholm University, Stockholm 114 18, Sweden
| | - Daiane Cattani
- Science for Life Laboratory, Department of Environmental Science, Stockholm University, Stockholm 114 18, Sweden
| | - Oskar Karlsson
- Science for Life Laboratory, Department of Environmental Science, Stockholm University, Stockholm 114 18, Sweden.
| |
Collapse
|
32
|
Rickard BP, Rizvi I, Fenton SE. Per- and poly-fluoroalkyl substances (PFAS) and female reproductive outcomes: PFAS elimination, endocrine-mediated effects, and disease. Toxicology 2022; 465:153031. [PMID: 34774661 PMCID: PMC8743032 DOI: 10.1016/j.tox.2021.153031] [Citation(s) in RCA: 148] [Impact Index Per Article: 49.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 09/29/2021] [Accepted: 11/08/2021] [Indexed: 01/17/2023]
Abstract
Per- and poly-fluoroalkyl substances (PFAS) are widespread environmental contaminants frequently detected in drinking water supplies worldwide that have been linked to a variety of adverse reproductive health outcomes in women. Compared to men, reproductive health effects in women are generally understudied while global trends in female reproduction rates are declining. Many factors may contribute to the observed decline in female reproduction, one of which is environmental contaminant exposure. PFAS have been used in home, food storage, personal care and industrial products for decades. Despite the phase-out of some legacy PFAS due to their environmental persistence and adverse health effects, alternative, short-chain and legacy PFAS mixtures will continue to pollute water and air and adversely influence women's health. Studies have shown that both long- and short-chain PFAS disrupt normal reproductive function in women through altering hormone secretion, menstrual cyclicity, and fertility. Here, we summarize the role of a variety of PFAS and PFAS mixtures in female reproductive tract dysfunction and disease. Since these chemicals may affect reproductive tissues directly or indirectly through endocrine disruption, the role of PFAS in breast, thyroid, and hypothalamic-pituitary-gonadal axis function are also discussed as the interplay between these tissues may be critical in understanding the long-term reproductive health effects of PFAS in women. A major research gap is the need for mechanism of action data - the targets for PFAS in the female reproductive and endocrine systems are not evident, but the effects are many. Given the global decline in female fecundity and the ability of PFAS to negatively impact female reproductive health, further studies are needed to examine effects on endocrine target tissues involved in the onset of reproductive disorders of women.
Collapse
Affiliation(s)
- Brittany P Rickard
- Curriculum in Toxicology & Environmental Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, North Carolina State University, Raleigh, NC 27599, USA
| | - Imran Rizvi
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, North Carolina State University, Raleigh, NC 27599, USA; Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Suzanne E Fenton
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, 111 TW Alexander Dr., Rm E121A, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
33
|
Velarde MC, Chan AFO, Sajo MEJV, Zakharevich I, Melamed J, Uy GLB, Teves JMY, Corachea AJM, Valparaiso AP, Macalindong SS, Cabaluna ND, Dofitas RB, Giudice LC, Gerona RR. Elevated levels of perfluoroalkyl substances in breast cancer patients within the Greater Manila Area. CHEMOSPHERE 2022; 286:131545. [PMID: 34293563 DOI: 10.1016/j.chemosphere.2021.131545] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 07/06/2021] [Accepted: 07/10/2021] [Indexed: 06/13/2023]
Abstract
Several studies have reported exposure of humans to various endocrine disrupting chemicals (EDCs) worldwide. However, there is a lack of data regarding EDC exposures in humans living in Southeast Asian countries, such as the Philippines. Hence, this study measured levels of 41 EDCs in women residing in the Greater Manila Area, home to the second largest city in Southeast Asia. Urine samples from women with versus without breast cancer were analyzed for 11 phthalate metabolites, 8 environmental phenols, and 10 bisphenols, while serum samples were analyzed for 12 perfluoroalkyl substances (PFAS). Out of the four groups of EDCs analyzed, PFAS were significantly associated with breast cancer (adjusted OR = 13.63, 95% CI: 3.24-94.88 p-trend = 0.001 for PFDoA; adjusted OR = 9.26, 95% CI 2.54-45.10, p-trend = 0.002 for PFDA; and adjusted OR = 2.66, 95% CI: 0.95-7.66, p-trend = 0.004 for PFHxA). Long-chain PFAS levels were positively correlated with age and were significantly higher in women from Region IV-A, a heavily industrialized region, than from the National Capital Region. Overall, this study showed baseline information regarding the level of EDCs in Filipinas, providing a glimpse of EDC exposure in women living in a megalopolis city in Southeast Asia.
Collapse
Affiliation(s)
- Michael C Velarde
- Institute of Biology, College of Science, University of the Philippines Diliman, Quezon City, Philippines.
| | - Alison Faye O Chan
- Institute of Biology, College of Science, University of the Philippines Diliman, Quezon City, Philippines
| | - Ma Easter Joy V Sajo
- Institute of Biology, College of Science, University of the Philippines Diliman, Quezon City, Philippines; Department of Biology, College of Science, University of the Philippines Baguio, Baguio City, Philippines
| | - Igor Zakharevich
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Jonathan Melamed
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Gemma Leonora B Uy
- Department of Surgery, Philippine General Hospital, University of the Philippines Manila, Manila, Philippines
| | - Joji Marie Y Teves
- Institute of Biology, College of Science, University of the Philippines Diliman, Quezon City, Philippines
| | - Allen Joy M Corachea
- Institute of Biology, College of Science, University of the Philippines Diliman, Quezon City, Philippines
| | - Apple P Valparaiso
- Department of Surgery, Philippine General Hospital, University of the Philippines Manila, Manila, Philippines
| | - Shiela S Macalindong
- Department of Surgery, Philippine General Hospital, University of the Philippines Manila, Manila, Philippines
| | - Nelson D Cabaluna
- Department of Surgery, Philippine General Hospital, University of the Philippines Manila, Manila, Philippines
| | - Rodney B Dofitas
- Department of Surgery, Philippine General Hospital, University of the Philippines Manila, Manila, Philippines
| | - Linda C Giudice
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Roy R Gerona
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
34
|
Itoh H, Harada KH, Kasuga Y, Yokoyama S, Onuma H, Nishimura H, Kusama R, Yokoyama K, Zhu J, Harada Sassa M, Tsugane S, Iwasaki M. Serum perfluoroalkyl substances and breast cancer risk in Japanese women: A case-control study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 800:149316. [PMID: 34392213 DOI: 10.1016/j.scitotenv.2021.149316] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 07/23/2021] [Accepted: 07/24/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Perfluoroalkyl substances (PFASs) may contribute to causing breast cancer; however, associations between exposure to PFASs and risk of breast cancer are controversial. OBJECTIVES In the present study, we newly distinguished branched isomers of PFASs from their linear isomers and aimed to investigate the association between serum PFAS concentrations and breast cancer risk in Japanese women. METHODS We used a case-control design to study 405 eligible matched pairs attending four hospitals in Nagano Prefecture, Japan from May 2001 to September 2005. We used in-port arylation gas-chromatography mass spectrometry with negative chemical ionization to measure serum concentrations of 20 PFAS congeners. We calculated multivariable-adjusted odds ratios (ORs) and 95% confidence intervals (CIs) of breast cancer and its hormone-receptor subtypes by quartiles or tertiles of serum PFASs. RESULTS After multivariable adjustment for breast cancer risk factors, we found that serum concentrations of 20 PFAS congeners were significantly inversely associated with risk of breast cancer. Comparing the extreme quartiles of linear isomers of perfluorooctane sulfonate or perfluorooctanoic acid, ORs were 0.15 (95% CI: 0.07, 0.33 P for trend <0.0001) and 0.21 95% CI: 0.10, 0.44 P for trend <0.0001). Among postmenopausal women, whereas we found the linear isomer of perfluorotridecanoic acid to be inversely associated with breast cancer risk, a medium degree of exposure to the branched isomer of perfluorotridecanoic acid was associated with a marginally increased risk of breast cancer (OR [95% CI] = 1.74 [0.98, 3.09]). DISCUSSION In our case-control study, we found overall no association between serum PFAS concentrations and increased risk of breast cancer. Many inverse associations between serum PFAS concentrations and breast cancer risk were found.
Collapse
Affiliation(s)
- Hiroaki Itoh
- Department of Epidemiology and Environmental Health, Juntendo University Faculty of Medicine, Tokyo, Japan; Division of Epidemiology, Center for Public Health Sciences, National Cancer Center, Tokyo, Japan.
| | - Kouji H Harada
- Department of Health and Environmental Sciences, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yoshio Kasuga
- Department of Surgery, Nagano Matsushiro General Hospital, Nagano, Japan; Department of Surgery, Shinshu University School of Medicine, Matsumoto, Nagano, Japan
| | - Shiro Yokoyama
- Department of Breast and Thyroid Surgery, Nagano Red Cross Hospital, Nagano, Japan
| | - Hiroshi Onuma
- Department of Breast and Thyroid Surgery, Nagano Red Cross Hospital, Nagano, Japan
| | - Hideki Nishimura
- Department of Chest Surgery and Breast Surgery, Nagano Municipal Hospital, Nagano, Japan
| | - Ritsu Kusama
- Department of Surgery, Hokushin General Hospital, Nakano, Nagano, Japan
| | - Kazuhito Yokoyama
- Department of Epidemiology and Environmental Health, Juntendo University Faculty of Medicine, Tokyo, Japan; Department of Epidemiology and Social Medicine, International University of Health and Welfare Graduate School of Public Health, Tokyo, Japan
| | - Jing Zhu
- Department of Health and Environmental Sciences, Kyoto University Graduate School of Medicine, Kyoto, Japan; Department of Sanitary Technology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Mariko Harada Sassa
- Department of Health and Environmental Sciences, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Shoichiro Tsugane
- Center for Public Health Sciences, National Cancer Center, Tokyo, Japan
| | - Motoki Iwasaki
- Division of Epidemiology, Center for Public Health Sciences, National Cancer Center, Tokyo, Japan
| |
Collapse
|
35
|
Liu H, Cheng J, Zhou Y, Liu F, Griffin N, Faulkner S, Wang L. Interactions of perfluorooctanoic acid with acyl-CoA thioesterase 1 (Acot1). Comp Biochem Physiol C Toxicol Pharmacol 2021; 250:109159. [PMID: 34365018 DOI: 10.1016/j.cbpc.2021.109159] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/29/2021] [Accepted: 08/01/2021] [Indexed: 11/19/2022]
Abstract
Perfluorooctanoic acid (PFOA), a typical representative of per- and polyfluoroalkyl substances (PFASs), is a widely utilized persistent organic pollutant (POP) known to induce liver toxicity in laboratory animals and wildlife. Evidence suggests that PFOA interacts with Acyl-CoA thioesterase 1 (Acot1) to modulate levels of β-oxidation. Specifically, PFOA accelerates β-oxidation, while Acot1 is inhibitory. Few studies have investigated the specific relationship between PFOA and Acot1 and the mechanism of their interaction remains unclear. In the following study, purified rat Acot1 protein was synthesized via bacterial recombination and the structural features that facilitate its binding to PFOA were assessed via molecular docking technology. Additionally, through use of circular dichroism spectroscopy (CD) and isothermal titration calorimetry (ITC) we demonstrate that PFOA binds to WT-Acot1 through electrostatic attraction and low strength non-covalent hydrogen bonding at a molar ratio of 1:1. Furthermore, we identify N326 and H373 amino acid residues as key regulators of the binding process. Together, these findings clarify the interaction pattern of PFOA and Acot1 proteins and provide insight into the specific molecular mechanisms that induce PFOA toxicity in humans and animals.
Collapse
Affiliation(s)
- Hui Liu
- Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical College, Bengbu 233030, PR China.
| | - Jingjing Cheng
- Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical College, Bengbu 233030, PR China
| | - Yongbing Zhou
- School of Public Health, Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical College, Bengbu 233030, PR China
| | - Fangfang Liu
- Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical College, Bengbu 233030, PR China
| | - Nathan Griffin
- Department of Cell and Tissue Biology, University of California, San Francisco, CA, USA
| | - Sam Faulkner
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia; Hunter Medical Research Institute, University of Newcastle, New Lambton, NSW, Australia
| | - Li Wang
- School of Public Health, Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical College, Bengbu 233030, PR China.
| |
Collapse
|
36
|
Jain RB. Impact of the increasing concentrations of selected perfluoroalkyl acids on the observed concentrations of red blood cell folate among US adults aged ≥20 years. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:52357-52369. [PMID: 34009570 DOI: 10.1007/s11356-021-14454-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 05/13/2021] [Indexed: 06/12/2023]
Abstract
For the first time (N = 6291), a study was undertaken to estimate associations between the concentratio ns of red blood cell folate (RBCF) and concentration of six perfluoroalkyl acids (PFAAs), namely, perfluorooctanoic acid (PFOA), perfluorooctane sulfonic acid (PFOS), perfluorohexane sulfonic acid (PFHxS), perfluorodecanoic acid (PFDA), perfluorononanoic acid (PFNA), and perfluoroundecanoic acid (PFUnDA) for US adults aged ≥20 years by fitting regression models for the data from National Health and Nutrition Examination Survey for 2007-2014. In almost consistent fashion, increasing concentrations of PFAAs were associated with decreasing concentrations of RBCF. For the total population, for a 10% increase in the concentrations of PFOA, PFOS, PFDA, PFHxS, PFNA, and PFUnDA, percent decreases in RBCF concentrations were found to be 0.33%, 0.66%, 0.83%, 0.16%, 0.89%, and 0.43%, respectively. RBCF concentrations of PFAAs were found to be 1104, 1042, 100, and 936 nmol/L across the four quartiles of PFOS; 112, 1068, 1009, and 948 nmol/L across the four quartiles of PFDA; 1125, 1054, 1005, and 967 nmol/L across the four quartiles of PFNA; and 1099, 1094, 989, and 952 nmol/L across the four quartiles of PFUnDA. Perfluorinated carboxylic acids with carbon chain length > 8 decreased concentrations of RBCF to a greater degree than those carbon chain length ≤ 8. Perfluorinated chemicals with a sulfonic group with carbon chain length > 6 decreased concentrations of RBCF to a greater degree than those carbon chain length ≤ 6. The degree to which concentrations of RBCF decrease varied by age, gender, and race/ethnicity. Non-Hispanic blacks as compared to non-Hispanic whites and Hispanics had the lowest decreases in RBCF concentrations. Mechanisms responsible for negative associations between RBCF and PFAA concentrations are not known and will need to be researched further.
Collapse
|
37
|
Junk food-induced obesity- a growing threat to youngsters during the pandemic. ACTA ACUST UNITED AC 2021; 26:100364. [PMID: 34580647 PMCID: PMC8459649 DOI: 10.1016/j.obmed.2021.100364] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/03/2021] [Accepted: 08/09/2021] [Indexed: 12/19/2022]
Abstract
Introduction Obesity has been declared an epidemic that does not discriminate based on age, gender, or ethnicity and thus needs urgent containment and management. Since the third wave of COVID-19 is expected to affect children the most, these children and adolescents should be more cautious while having junk foods, during covid situations due to the compromise of Immunity in the individuals and further exacerbating the organ damage. Methodology A PAN India survey organized by the Centre for Science and Environment (CSE) among 13,274 children between the ages 9–14 years reported that 93% of the children ate packed food and 68% consumed packaged sweetened beverages more than once a week, and 53% ate these products at least once in a day. Almost 25% of the School going children take ultra-processed food with high levels of sugar, salt, fat, such as pizza and burgers, from fast food outlets more than once a week. Children and adolescents who consume more junk food or addicted to such consumption might be even more vulnerable during the third wave, which will significantly affect the younger category. Conclusion There is an urgent need to spread awareness among children and young adults about these adverse effects of junk food. There is no better time than now to build a supportive environment nurturing children and young adults in society and promising good health.
Collapse
|
38
|
Jain RB. Associations between perfluoroalkyl acids in serum and lead and mercury in whole blood among US children aged 3-11 years. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:31933-31940. [PMID: 33616824 DOI: 10.1007/s11356-021-13042-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 02/15/2021] [Indexed: 06/12/2023]
Abstract
Data for 639 US children aged 3-11 years who participated in the National Health and Nutrition Examination Survey during 2013-2014 were analyzed by fitting regression models with log10-transformed values of blood lead and methyl and total mercury as dependent variables and log10-transformed values of perfluoroalkyl acids (PFAA) as one of the independent variables. PFAAs considered were 2-(N-methyl-perfluorooctane sulfonamido) acetic acid (MPAH), linear isomer of perfluorooctanoic acid (NPFOA), perfluorononanoic acid (PFNA), perfluorodecanoic acid (PFDA), perfluorohexane sulfonic acid (PFHxS), linear isomer of perfluorooctane sulfonic acid (NPFOS), and monomethyl branch isomer of perfluorooctane sulfonic acid (MPFOS). Adjusted regression slopes (β) indicating associations between the concentrations of PFAAs with blood lead and mercury were estimated. Statistically significant associations between concentrations of each PFAA and blood lead were observed. For 10% increases in concentrations of MPAH, NPFOA, PFNA, PFDA, PFHxS, NPFOS, and MPFOS, percent increases in the concentrations of blood lead were 0.45%, 1.59%, 0.78%, 0.32%, 0.65%, 1.32%, and 0.89% respectively. For 10% increases in concentrations of MPAH, PFNA, PFDA, and NPFOS, percent increases in the concentrations of total mercury in the blood were 1.62%, 1.44%, and 3.24% respectively. For 10% increases in concentrations of PFDA and NPFOS, percent increases in the concentrations of methyl mercury in the blood were 2.07% and 4.57% respectively. While concentrations of each of the seven PFAAs were positively associated with the concentrations of blood lead, concentrations of only PFDA and NPFOS were positively associated with increases in total and methyl mercury. PFAAs having positive associations with lead and mercury imply co-exposure and/or co-existence of high concentrations of PFAAs and lead/mercury. Since PFAAs as well as lead/mercury are known to be neurotoxic, nephrotoxic, and endocrine disruptors, their co-existence/co-exposure may lead to neurodevelopmental deficits that are additive/synergistic than neurodevelopmental deficits associated with exposures to PFAAs and lead/mercury alone. Future studies are needed to investigate additive/synergistic neurodevelopmental deficits associated with co-exposures to PFAAs and lead/mercury.
Collapse
|
39
|
Jain RB. Associations between concentrations of selected perfluoroalkyl acids and concentrations of blood cadmium, lead, and total mercury. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:26537-26544. [PMID: 33483932 DOI: 10.1007/s11356-021-12493-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 01/11/2021] [Indexed: 06/12/2023]
Abstract
Data (N = 2552) from National Health and Nutrition Examination Survey for US adults aged ≥ 20 years for 2011-2016 were analyzed to estimate the associations between the concentrations of blood cadmium, lead, and total mercury and the concentrations of seven perfluoroalkyl acids (PFAA), namely, 2-(N-Methyl-perfluorooctane sulfonamido) acetic acid (MPAH), perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), perfluorodecanoic acid (PFDA), perfluoroundecanoic acid (PFUnDA), perfluorohexane sulfonic acid (PFHxS), and perfluorooctane sulfonic acid (PFOS). Concentrations of blood cadmium were negatively associated with the concentrations of PFHxS (β = - 0.05428, p < 0.01) and PFOS (β = - 0.0212, p = 0.02). Concentrations of blood lead were positively associated with the concentrations of MPAH (β = 0.03301, p < 0.01), PFOA (β = 0.04783, p = 0.01), PFNA (β = 0.11761, p < 0.01), PFDA (β = 0.08007, p < 0.01), PFUA (β = 0.11382, p < 0.01), and PFOS (β = 0.04996, p = 0.02). Percent increases in the concentration of blood lead were 0.32%, 0.46%, 1.13%, 0.77%, 1.09%, and 0.48% for 10% increases in the concentrations of MPAH, PFOA, PFNA, PFDA, PFUA, and PFOS, respectively. Concentrations of blood total mercury were positively associated with the concentrations of PFNA (β = 0.37105, p < 0.01), PFDA (β = 0.46875, p < 0.01), PFUA (β = 0.56934, p < 0.01), and PFOS (β = 0.17557, p < 0.01). Percent increases in the concentration of blood total mercury were 3.6%, 4.57%, 5.58%, and 1.69% for 10% increases in the concentrations of PFNA, PFDA, PFUA, and PFOS, respectively. Associations between the concentrations of PFAAs with blood total mercury were substantially stronger than the concentrations with blood lead. Higher the carbon chain length for PFAAs, stronger were the associations between PFAAs with lead and mercury.
Collapse
Affiliation(s)
- Ram B Jain
- 2959 Estate View Court, Dacula, GA, 30019, USA.
| |
Collapse
|
40
|
Houghton SC, Hankinson SE. Cancer Progress and Priorities: Breast Cancer. Cancer Epidemiol Biomarkers Prev 2021; 30:822-844. [PMID: 33947744 PMCID: PMC8104131 DOI: 10.1158/1055-9965.epi-20-1193] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/13/2020] [Accepted: 02/19/2021] [Indexed: 12/24/2022] Open
Affiliation(s)
- Serena C Houghton
- Department of Biostatistics and Epidemiology, University of Massachusetts Amherst, Amherst, Massachusetts.
| | - Susan E Hankinson
- Department of Biostatistics and Epidemiology, University of Massachusetts Amherst, Amherst, Massachusetts
| |
Collapse
|
41
|
Han J, Kiss L, Mei H, Remete AM, Ponikvar-Svet M, Sedgwick DM, Roman R, Fustero S, Moriwaki H, Soloshonok VA. Chemical Aspects of Human and Environmental Overload with Fluorine. Chem Rev 2021; 121:4678-4742. [PMID: 33723999 PMCID: PMC8945431 DOI: 10.1021/acs.chemrev.0c01263] [Citation(s) in RCA: 186] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Indexed: 12/24/2022]
Abstract
Over the last 100-120 years, due to the ever-increasing importance of fluorine-containing compounds in modern technology and daily life, the explosive development of the fluorochemical industry led to an enormous increase of emission of fluoride ions into the biosphere. This made it more and more important to understand the biological activities, metabolism, degradation, and possible environmental hazards of such substances. This comprehensive and critical review focuses on the effects of fluoride ions and organofluorine compounds (mainly pharmaceuticals and agrochemicals) on human health and the environment. To give a better overview, various connected topics are also discussed: reasons and trends of the advance of fluorine-containing pharmaceuticals and agrochemicals, metabolism of fluorinated drugs, withdrawn fluorinated drugs, natural sources of organic and inorganic fluorine compounds in the environment (including the biosphere), sources of fluoride intake, and finally biomarkers of fluoride exposure.
Collapse
Affiliation(s)
- Jianlin Han
- Jiangsu
Co-Innovation Center of Efficient Processing and Utilization of Forest
Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Loránd Kiss
- University
of Szeged, Institute of Pharmaceutical Chemistry
and Interdisciplinary Excellence Centre, Eötvös u. 6, 6720 Szeged, Hungary
| | - Haibo Mei
- Jiangsu
Co-Innovation Center of Efficient Processing and Utilization of Forest
Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Attila Márió Remete
- University
of Szeged, Institute of Pharmaceutical Chemistry
and Interdisciplinary Excellence Centre, Eötvös u. 6, 6720 Szeged, Hungary
| | - Maja Ponikvar-Svet
- Department
of Inorganic Chemistry and Technology, Jožef
Stefan Institute, Jamova
cesta 39, 1000 Ljubljana, Slovenia
| | - Daniel Mark Sedgwick
- Departamento
de Química Orgánica, Universidad
de Valencia, 46100 Burjassot, Valencia Spain
| | - Raquel Roman
- Departamento
de Química Orgánica, Universidad
de Valencia, 46100 Burjassot, Valencia Spain
| | - Santos Fustero
- Departamento
de Química Orgánica, Universidad
de Valencia, 46100 Burjassot, Valencia Spain
| | - Hiroki Moriwaki
- Hamari
Chemicals Ltd., 1-19-40, Nankokita, Suminoe-ku, Osaka 559-0034, Japan
| | - Vadim A. Soloshonok
- Department
of Organic Chemistry I, Faculty of Chemistry, University of the Basque Country UPV/EHU, 20018 San Sebastian, Spain
- IKERBASQUE,
Basque Foundation for Science, 48011 Bilbao, Spain
| |
Collapse
|
42
|
Wan MLY, Co VA, El-Nezami H. Endocrine disrupting chemicals and breast cancer: a systematic review of epidemiological studies. Crit Rev Food Sci Nutr 2021; 62:6549-6576. [PMID: 33819127 DOI: 10.1080/10408398.2021.1903382] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
BACKGROUND Endocrine-disrupting compounds (EDCs) are ubiquitous substances that are found in our everyday lives, including pesticides, plasticizers, pharmaceutical agents, personal care products, and also in food products and food packaging. Increasing epidemiological evidence suggest that EDCs may affect the development or progression of breast cancer and consequently lead to lifelong harmful health consequences, especially when exposure occurs during early life in humans. Yet so far no appraisal of the available evidence has been conducted on this topic. OBJECTIVE To systematically review all the available epidemiological studies about the association of the levels of environmental exposures of EDCs with breast cancer risk. METHODS The search was performed in accordance with the PRISMA guidelines. We retrieved articles from PubMed (MEDLINE) until 10 March 2021. The key words used in this research were: "Endocrine disruptor(s)" OR "Endocrine disrupting chemical(s)" OR any of the EDCs mentioned below AND "Breast cancer" to locate all relevant articles published. We included only cohort studies and case-control studies. All relevant articles were accessed in full text and were evaluated and summarized in tables. RESULTS We identified 131 studies that met the search criteria and were included in this systematic review. EDCs reviewed herein included pesticides (e.g. p,p'-dichlorodiphenyltrichloroethane (DDT), p,p'-dichlorodiphenyldichloroethylene (DDE), atrazine, 2,3,7,8-tetrachloridibenzo-p-dioxin (TCDD or dioxin)), synthetic chemicals (e.g. bisphenol A (BPA), phthalates, per- and polyfluoroalkyl substances (PFAS), parabens, polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs), contraceptive pills), phytoestrogens (e.g. genistein, resveratrol), and certain mycotoxins (e.g. zearalenone). Most studies assessed environmental EDCs exposure via biomarker measurements. CONCLUSION We identified certain EDC exposures could potentially elevate the risk of breast cancer. As majority of EDCs are highly persistent in the environment and bio-accumulative, it is essential to assess the long-term impacts of EDC exposures, especially multi-generational and transgenerational. Also, since food is often a major route of exposure to EDCs, well-designed exposure assessments of potential EDCs in food and food packing are necessary and their potential link to breast cancer development need to be carefully evaluated for subsequent EDC policy making and regulations.
Collapse
Affiliation(s)
- Murphy Lam Yim Wan
- Faculty of Science, School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong S.A.R.,Department of Microbiology, Immunology and Glycobiology, Institute of Laboratory Medicine, Lund University, Lund, Sweden
| | - Vanessa Anna Co
- Faculty of Science, School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong S.A.R
| | - Hani El-Nezami
- Faculty of Science, School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong S.A.R.,Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
43
|
Zhang Y, Xu Y, Ding H, Yu W, Chen L. Prenatal exposure of female mice to perfluorononanoic acid delays pubertal activation of the reproductive endocrine axis through enhanced hepatic FGF21 production. CHEMOSPHERE 2021; 269:128776. [PMID: 33131727 DOI: 10.1016/j.chemosphere.2020.128776] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 10/20/2020] [Accepted: 10/25/2020] [Indexed: 06/11/2023]
Abstract
The developmental toxicity of perfluorononanoic acid (PFNA), a ubiquitous environmental contaminant, has been associated with the activation of PPARα. This study investigated influence of prenatal exposure to PFNA in pubertal activation of reproductive endocrine axis in female mice and explored underlying molecular mechanisms. Herein, we show that when PFNA (3 mg kg-1 body weight) was orally administered during gestational days 1-18, dams showed an increase in liver weight and hepatic FGF21 synthesis via PPARα activation, and their female offspring (PFNA mice) showed an increase in liver weight and hepatic FGF21 synthesis from postnatal day (PND) 1 to PND21, which were corrected by the administration of the PPARα antagonist GW6471 from PND1-14 (pup-GW). Expression of vasopressin (VAP) in the hypothalamic suprachiasmatic nucleus (SCN) was reduced in PND14-30 PFNA mice, and could be rescued by pup-GW. Pubertal activation of kisspeptin neurons in anteroventral periventricular nucleus (AVPV) and hypothalamic GnRH neurons in PND21-30 PFNA mice was obviously suppressed, but were recovered by pup-GW or PND21-30 application of VAP. The times of vaginal opening and first estrus were delayed in PFNA mice with a decrease in ovary size and the numbers of primary, secondary and antral follicles, and corpora lutea, which were relieved by pup-GW or application of VAP. The findings indicate that prenatal exposure to PFNA through increased FGF21 production in postnatal female offspring impedes postnatal activation of SCN-VAP neurons, which suppresses pubertal onset in AVPV-kisspeptin neurons and reproductive endocrine axis, leading to delayed puberty and dysfunction of ovaries.
Collapse
Affiliation(s)
- Yajie Zhang
- Department of Physiology, Nanjing Medical University, Nanjing, 211166, China
| | - Ye Xu
- Department of Physiology, Nanjing Medical University, Nanjing, 211166, China
| | - Hong Ding
- Department of Physiology, Nanjing Medical University, Nanjing, 211166, China; Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wenfeng Yu
- Key Laboratory of Endemic and Ethnic Diseases of Education Ministry, Guizhou Medical University, Guian New District, Guizhou, 550025, China.
| | - Ling Chen
- Department of Physiology, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
44
|
Steenland K, Winquist A. PFAS and cancer, a scoping review of the epidemiologic evidence. ENVIRONMENTAL RESEARCH 2021; 194:110690. [PMID: 33385391 PMCID: PMC7946751 DOI: 10.1016/j.envres.2020.110690] [Citation(s) in RCA: 195] [Impact Index Per Article: 48.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 12/24/2020] [Accepted: 12/25/2020] [Indexed: 05/19/2023]
Abstract
BACKGROUND The number of studies addressing per- and polyfluoroalkyl substances (PFAS) and cancer is increasing. Many communities have had water contaminated by PFAS, and cancer is one of the important community concerns related to PFAS exposure. OBJECTIVES We critically reviewed the evidence relating to PFAS and cancer from an epidemiologic standpoint to highlight directions for future research that would be the most likely to meaningfully increase knowledge. METHODS We conducted a search in PubMed for studies of cancer and PFAS (through 9/20/2020). We identified epidemiologic studies that provided a quantitative estimate for some measure of the association between PFAS and cancer. Here, we review that literature, including several aspects of epidemiologic study design that impact the usefulness of study results. RESULTS We identified 16 cohort (or case-cohort) studies, 10 case-control studies (4 nested within cohorts and 6 non-nested), 1 cross sectional study and 1 ecologic study. The cancer sites with the most evidence of an association with PFAS are testicular and kidney cancer. There are also some suggestions in a few studies of an association with prostate cancer, but the data are inconsistent. DISCUSSION Each study's design has strengths and limitations. Weaknesses in study design and methods can, in some cases, lead to questionable associations, but in other cases can make it more difficult to detect true associations, if they are present. Overall, the evidence for an association between cancer and PFAS remains sparse. A variety of studies with different strengths and weaknesses can be helpful to clarify associations between PFAS and cancer. Long term follow-up of large-sized cohorts with large exposure contrasts are most likely to be informative.
Collapse
Affiliation(s)
- Kyle Steenland
- Rollins School of Public Health, Emory University, 1518 Clifton Road NE, Atlanta, GA, 30322, USA
| | - Andrea Winquist
- National Center for Environmental Health, Centers for Disease Control and Prevention, 4770 Buford Highway, MS S 106-6, Atlanta, GA, 30341, USA.
| |
Collapse
|
45
|
Mokra K. Endocrine Disruptor Potential of Short- and Long-Chain Perfluoroalkyl Substances (PFASs)-A Synthesis of Current Knowledge with Proposal of Molecular Mechanism. Int J Mol Sci 2021; 22:2148. [PMID: 33670069 PMCID: PMC7926449 DOI: 10.3390/ijms22042148] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/08/2021] [Accepted: 02/18/2021] [Indexed: 01/25/2023] Open
Abstract
Endocrine disruptors are a group of chemical compounds that, even in low concentrations, cause a hormonal imbalance in the body, contributing to the development of various harmful health disorders. Many industry compounds, due to their important commercial value and numerous applications, are produced on a global scale, while the mechanism of their endocrine action has not been fully understood. In recent years, per- and polyfluoroalkyl substances (PFASs) have gained the interest of major international health organizations, and thus more and more studies have been aimed to explain the toxicity of these compounds. PFASs were firstly synthesized in the 1950s and broadly used in the industry in the production of firefighting agents, cosmetics and herbicides. The numerous industrial applications of PFASs, combined with the exceptionally long half-life of these substances in the human body and extreme environmental persistence, result in a common and chronic exposure of the general population to their action. Available data have suggested that human exposure to PFASs can occur during different stages of development and may cause short- or/and long-term health effects. This paper synthetizes the current literature reports on the presence, bioaccumulation and, particularly, endocrine toxicity of selected long- and short-chain PFASs, with a special emphasis on the mechanisms underlying their endocrine actions.
Collapse
Affiliation(s)
- Katarzyna Mokra
- Department of Environmental Pollution Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143 St., 90-236 Lodz, Poland
| |
Collapse
|
46
|
Legacy and Emerging Per- and Polyfluoroalkyl Substances: Analytical Techniques, Environmental Fate, and Health Effects. Int J Mol Sci 2021; 22:ijms22030995. [PMID: 33498193 PMCID: PMC7863963 DOI: 10.3390/ijms22030995] [Citation(s) in RCA: 139] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 01/24/2023] Open
Abstract
Due to their unique chemical properties, per- and polyfluoroalkyl substances (PFAS) have been used extensively as industrial surfactants and processing aids. While several types of PFAS have been voluntarily phased out by their manufacturers, these chemicals continue to be of ecological and public health concern due to their persistence in the environment and their presence in living organisms. Moreover, while the compounds referred to as “legacy” PFAS remain in the environment, alternative compounds have emerged as replacements for their legacy predecessors and are now detected in numerous matrices. In this review, we discuss the historical uses of PFAS, recent advances in analytical techniques for analysis of these compounds, and the fate of PFAS in the environment. In addition, we evaluate current biomonitoring studies of human exposure to legacy and emerging PFAS and examine the associations of PFAS exposure with human health impacts, including cancer- and non-cancer-related outcomes. Special focus is given to short-chain perfluoroalkyl acids (PFAAs) and ether-substituted, polyfluoroalkyl alternatives including hexafluoropropylene oxide dimer acid (HFPO-DA; tradename GenX), 4,8-dioxa-3H-perfluorononanoic acid (DONA), and 6:2 chlorinated polyfluoroethersulfonic acid (6:2 Cl-PFESA; tradename F-53B).
Collapse
|
47
|
Buoso E, Masi M, Racchi M, Corsini E. Endocrine-Disrupting Chemicals' (EDCs) Effects on Tumour Microenvironment and Cancer Progression: Emerging Contribution of RACK1. Int J Mol Sci 2020; 21:E9229. [PMID: 33287384 PMCID: PMC7729595 DOI: 10.3390/ijms21239229] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/26/2020] [Accepted: 12/01/2020] [Indexed: 02/06/2023] Open
Abstract
Endocrine disruptors (EDCs) can display estrogenic and androgenic effects, and their exposure has been linked to increased cancer risk. EDCs have been shown to directly affect cancer cell regulation and progression, but their influence on tumour microenvironment is still not completely elucidated. In this context, the signalling hub protein RACK1 (Receptor for Activated C Kinase 1) could represent a nexus between cancer and the immune system due to its roles in cancer progression and innate immune activation. Since RACK1 is a relevant EDCs target that responds to steroid-active compounds, it could be considered a molecular bridge between the endocrine-regulated tumour microenvironment and the innate immune system. We provide an analysis of immunomodulatory and cancer-promoting effects of different EDCs in shaping tumour microenvironment, with a final focus on the scaffold protein RACK1 as a pivotal molecular player due to its dual role in immune and cancer contexts.
Collapse
Affiliation(s)
- Erica Buoso
- Dipartimento di Scienze del Farmaco, Università Degli Studi di Pavia, Viale Taramelli 12/14, 27100 Pavia, Italy; (M.M.); (M.R.)
| | - Mirco Masi
- Dipartimento di Scienze del Farmaco, Università Degli Studi di Pavia, Viale Taramelli 12/14, 27100 Pavia, Italy; (M.M.); (M.R.)
- Classe di Scienze Umane e della Vita (SUV), Scuola Universitaria Superiore IUSS, Piazza della Vittoria 15, 27100 Pavia, Italy
| | - Marco Racchi
- Dipartimento di Scienze del Farmaco, Università Degli Studi di Pavia, Viale Taramelli 12/14, 27100 Pavia, Italy; (M.M.); (M.R.)
| | - Emanuela Corsini
- Laboratory of Toxicology, Dipartimento di Scienze Politiche ed Ambientali, Università Degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy;
| |
Collapse
|
48
|
Zeinomar N, Oskar S, Kehm RD, Sahebzeda S, Terry MB. Environmental exposures and breast cancer risk in the context of underlying susceptibility: A systematic review of the epidemiological literature. ENVIRONMENTAL RESEARCH 2020; 187:109346. [PMID: 32445942 PMCID: PMC7314105 DOI: 10.1016/j.envres.2020.109346] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 03/02/2020] [Accepted: 03/02/2020] [Indexed: 05/07/2023]
Abstract
BACKGROUND The evidence evaluating environmental chemical exposures (ECE) and breast cancer (BC) risk is heterogeneous which may stem in part as few studies measure ECE during key BC windows of susceptibility (WOS). Another possibility may be that most BC studies are skewed towards individuals at average risk, which may limit the ability to detect signals from ECE. OBJECTIVES We reviewed the literature on ECE and BC focusing on three types of studies or subgroup analyses based on higher absolute BC risk: BC family history (Type 1); early onset BC (Type 2); and/or genetic susceptibility (Type 3). METHODS We systematically searched the PubMed database to identify epidemiologic studies examining ECE and BC risk published through June 1, 2019. RESULTS We identified 100 publications in 56 unique epidemiologic studies. Of these 56 studies, only 2 (3.6%) were enriched with BC family history and only 11% of studies (6/56) were specifically enriched with early onset cases. 80% of the publications from these 8 enriched studies (Type 1: 8/10 publications; Type 2: 8/10 publications) supported a statistically significant association between ECE and BC risk including studies of PAH, indoor cooking, NO2, DDT; PCBs, PFOSA; metals; personal care products; and occupational exposure to industrial dyes. 74% of Type 3 publications (20/27) supported statistically significant associations for PAHs, traffic-related air pollution, PCBs, phthalates, and PFOSAs in subgroups of women with greater genetic susceptibility due to variants in carcinogen metabolism, DNA repair, oxidative stress, cellular apoptosis and tumor suppressor genes. DISCUSSION Studies enriched for women at higher BC risk through family history, younger age of onset and/or genetic susceptibility consistently support an association between an ECE and BC risk. In addition to measuring exposures during WOS, designing studies that are enriched with women at higher absolute risk are necessary to robustly measure the role of ECE on BC risk.
Collapse
Affiliation(s)
- Nur Zeinomar
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Sabine Oskar
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Rebecca D Kehm
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Shamin Sahebzeda
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Mary Beth Terry
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
49
|
Kahn LG, Philippat C, Nakayama SF, Slama R, Trasande L. Endocrine-disrupting chemicals: implications for human health. Lancet Diabetes Endocrinol 2020; 8:703-718. [PMID: 32707118 PMCID: PMC7437820 DOI: 10.1016/s2213-8587(20)30129-7] [Citation(s) in RCA: 416] [Impact Index Per Article: 83.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 03/03/2020] [Accepted: 04/02/2020] [Indexed: 12/27/2022]
Abstract
Since reports published in 2015 and 2016 identified 15 probable exposure-outcome associations, there has been an increase in studies in humans of exposure to endocrine-disrupting chemicals (EDCs) and a deepened understanding of their effects on human health. In this Series paper, we have reviewed subsequent additions to the literature and identified new exposure-outcome associations with substantial human evidence. Evidence is particularly strong for relations between perfluoroalkyl substances and child and adult obesity, impaired glucose tolerance, gestational diabetes, reduced birthweight, reduced semen quality, polycystic ovarian syndrome, endometriosis, and breast cancer. Evidence also exists for relations between bisphenols and adult diabetes, reduced semen quality, and polycystic ovarian syndrome; phthalates and prematurity, reduced anogenital distance in boys, childhood obesity, and impaired glucose tolerance; organophosphate pesticides and reduced semen quality; and occupational exposure to pesticides and prostate cancer. Greater evidence has accumulated than was previously identified for cognitive deficits and attention-deficit disorder in children following prenatal exposure to bisphenol A, organophosphate pesticides, and polybrominated flame retardants. Although systematic evaluation is needed of the probability and strength of these exposure-outcome relations, the growing evidence supports urgent action to reduce exposure to EDCs.
Collapse
Affiliation(s)
- Linda G Kahn
- Department of Pediatrics, New York University, New York, NY, USA
| | - Claire Philippat
- University Grenoble Alpes, Inserm, CNRS, Team of Environmental Epidemiology applied to Reproduction and Respiratory Health, Institute for Advanced Biosciences, Grenoble, France
| | - Shoji F Nakayama
- Center for Health and Environmental Risk Research, National Institute for Environmental Studies, Tsukuba, Japan
| | - Rémy Slama
- University Grenoble Alpes, Inserm, CNRS, Team of Environmental Epidemiology applied to Reproduction and Respiratory Health, Institute for Advanced Biosciences, Grenoble, France
| | - Leonardo Trasande
- Department of Pediatrics, New York University, New York, NY, USA; Department of Environmental Medicine, and Department of Population Health, New York University Grossman School of Medicine and New York University School of Global Public Health, New York University, New York, NY, USA.
| |
Collapse
|
50
|
Liu W, Irudayaraj J. Perfluorooctanoic acid (PFOA) exposure inhibits DNA methyltransferase activities and alters constitutive heterochromatin organization. Food Chem Toxicol 2020; 141:111358. [PMID: 32315686 DOI: 10.1016/j.fct.2020.111358] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 03/13/2020] [Accepted: 04/12/2020] [Indexed: 12/20/2022]
Abstract
Perfluorooctanoic acid (PFOA) is a persistent and widespread industry-made chemical. Emerging evidence indicates that PFOA exposure could be meditated through DNA methylation, yet, the molecular mechanisms governing the epigenetic states have not been well established. In this study, we investigated the epigenetic alterations and inhibitory mechanisms upon PFOA exposure by identifying changes related to DNA methyltransferase (DNMT) with fluorescence correlation spectroscopy and stimulated emission depletion nanoscopy in human breast epithelial cells (MCF7). PFOA exposure at 100 and 200 μM altered the mobility of DNMT3A and inhibited the enzymatic activity of DNMT, resulting in global DNA demethylation. Moreover, PFOA significantly altered the heterochromatin organization, as noted by the distribution profile of histone 3 lysine 9 tri-methylation (H3K9me3) at 200 and 400 μM exposure levels with super-resolution microscopy. An increased redistribution around the periphery of the nucleus was noted with a more diffused distribution beyond the 200 μM exposure. Overall, exposure of PFOA resulted in DNA demethylation accompanied by altered expression patterns of DNMT1 and DNMT3A. These findings provided new insights on the epigenetic alterations and revealed an altered heterochromatin packaging upon exposure to PFOA, implicating a mechanistic mode of action of DNA demethylation through direct impacts on DNMTs and increasing susceptibility to diseases such as cancer.
Collapse
Affiliation(s)
- Wenjie Liu
- Department of Bioengineering, Cancer Center at Illinois, Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA; Biomedical Research Center in Mills Breast Cancer Institute, Carles Foundation Hospital, Urbana, IL, 61801, USA
| | - Joseph Irudayaraj
- Department of Bioengineering, Cancer Center at Illinois, Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA; Biomedical Research Center in Mills Breast Cancer Institute, Carles Foundation Hospital, Urbana, IL, 61801, USA.
| |
Collapse
|