1
|
Ibrahim FM, Saleh RO, Uinarni H, Bokov DO, Menon SV, Zarifovich KB, Misra N, Al-Hamdani MM, Husseen B, Jawad MA. Exosomal noncoding RNA (ncRNA) in breast cancer pathogenesis and therapy; two sides of the same coin. Exp Cell Res 2025; 444:114359. [PMID: 39608481 DOI: 10.1016/j.yexcr.2024.114359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/22/2024] [Accepted: 11/25/2024] [Indexed: 11/30/2024]
Abstract
Over the past few years, breast cancer has become the most prevalent type of cancer globally, with the primary cause of death from the disease being metastatic cancer. This has led to the development of early detection techniques, mainly using non-invasive biomarkers in a range of body fluids. Exosomes are unique extracellular vesicles (EVs) transmitting cellular signals over great distances via various cargo. They are readily apparent in physiological fluids due to release by breast cancer cells or breast cancer-tumor microenvironment (TME) cells. In light of this, numerous biological and functional facets of human tumours, such as breast cancer, are intimately associated with exosomal noncoding RNAs (ncRNAs), containing miRNAs (microRNAs), lncRNAs (long noncoding RNAs), and circRNAs (circular RNAs). Exosomal ncRNAs serve a critical role in various steps of breast cancer development, enabling the exchange of genetic information between cancer cells and other cells (e.g., immune cells), thus regulating tumour angiogenesis, growth, metastasis, immune responses and drug resistance. They interact with multiple regulatory complexes with dissimilar enzymatic actions, which, in turn, modify the chromatin sceneries, including nucleosome modifications, DNA methylation, and histone modifications. Herein, we look into the exosomes' underlying regulatory mechanisms in breast cancer. Furthermore, we inspect the existing understanding of the functions of exosomal miRNAs, lncRNAs, and circRNAs in breast cancer to authenticate their possible significance in identifying biomarkers, deciphering their role in immune escape and drug resistance, and finally, analyzing treatment practices.
Collapse
Affiliation(s)
- Fatma Magdi Ibrahim
- Community Health Nursing, RAK Medical and Health Sciences University, Dubai, United Arab Emirates; Geriatric Department, Mansoura University, Mansoura, Egypt.
| | - Raed Obaid Saleh
- Department of Medical Laboratory Techniques, Al-Maarif University College, Al-Anbar, Iraq.
| | - Herlina Uinarni
- Department of Anatomy, School of Medicine and Health Sciences, the Atma Jaya Catholic University of Indonesia, Jakarta, Indonesia; Radiology Department of Pantai Indah Kapuk Hospital Jakarta, Jakarta, Indonesia.
| | - Dmitry Olegovich Bokov
- Institute of Pharmacy, Sechenov First Moscow State Medical University, 8 Trubetskaya St., bldg. 2, Moscow, 119991, Russian Federation; Laboratory of Food Chemistry, Federal Research Center of Nutrition, Biotechnology and Food Safety, 2/14 Ustyinsky pr., Moscow, 109240, Russian Federation.
| | - Soumya V Menon
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India.
| | | | - Neeti Misra
- Department of Management, Uttaranchal Institute of Management, Uttaranchal University, Dehradun 248007, India.
| | | | - Beneen Husseen
- Medical Laboratory Technique College, the Islamic University, Najaf, Iraq; Medical Laboratory Technique College, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq; Medical Laboratory Technique College, the Islamic University of Babylon, Babylon, Iraq.
| | | |
Collapse
|
2
|
Kadian LK, Verma D, Lohani N, Yadav R, Ranga S, Gulshan G, Pal S, Kumari K, Chauhan SS. Long non-coding RNAs in cancer: multifaceted roles and potential targets for immunotherapy. Mol Cell Biochem 2024; 479:3229-3254. [PMID: 38413478 DOI: 10.1007/s11010-024-04933-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 01/05/2024] [Indexed: 02/29/2024]
Abstract
Cancer remains a major global health concern with high mortality rates mainly due to late diagnosis and poor prognosis. Long non-coding RNAs (lncRNAs) are emerging as key regulators of gene expression in human cancer, functioning through various mechanisms including as competing endogenous RNAs (ceRNAs) and indirectly regulating miRNA expression. LncRNAs have been found to have both oncogenic and tumor-suppressive roles in cancer, with the former promoting cancer cell proliferation, migration, invasion, and poor prognosis. Recent research has shown that lncRNAs are expressed in various immune cells and are involved in cancer cell immune escape and the modulation of the tumor microenvironment, thus highlighting their potential as targets for cancer immunotherapy. Targeting lncRNAs in cancer or immune cells could enhance the anti-tumor immune response and improve cancer immunotherapy outcomes. However, further research is required to fully understand the functional roles of lncRNAs in cancer and the immune system and their potential as targets for cancer immunotherapy. This review offers a comprehensive examination of the multifaceted roles of lncRNAs in human cancers, with a focus on their potential as targets for cancer immunotherapy. By exploring the intricate mechanisms underlying lncRNA-mediated regulation of cancer cell proliferation, invasion, and immune evasion, we provide insights into the diverse therapeutic applications of these molecules.
Collapse
Affiliation(s)
- Lokesh K Kadian
- Dept of Biochemistry, All India Institute of Medical Sciences, New Delhi, 110029, India
- Dept of Dermatology, Indiana University School of Medicine, Indianapolis, 46202, USA
| | - Deepika Verma
- Dept of Biochemistry, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Neelam Lohani
- Dept of Biochemistry, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Ritu Yadav
- Dept of Genetics, MD University, Rohtak, 124001, India
| | - Shalu Ranga
- Dept of Genetics, MD University, Rohtak, 124001, India
| | - Gulshan Gulshan
- Department of Biosciences and Bioengineering, IIT Bombay, Mumbai, Maharashtra, India
| | - Sanghapriya Pal
- Dept of Biochemistry, Maulana Azad Medical College and Associated Hospital, New Delhi, 110002, India
| | - Kiran Kumari
- Dept of Forensic Science, Lovely Professional University, Jalandhar, Punjab, 144411, India
| | - Shyam S Chauhan
- Dept of Biochemistry, All India Institute of Medical Sciences, New Delhi, 110029, India.
| |
Collapse
|
3
|
Wang R, Li Q, Chu X, Li N, Liang H, He F. Nanoparticles (NPs)-meditated si-lncRNA NONHSAT159592.1 inhibits glioblastoma progression and invasion through targeting the ITGA3/FAK/PI3K/AKT pathway. Metab Brain Dis 2024; 40:31. [PMID: 39570470 DOI: 10.1007/s11011-024-01471-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 09/09/2024] [Indexed: 11/22/2024]
Abstract
The study aims to investigate the regulatory role of NPs lncRNA NONHSAT159592.1 in glioblastoma cells and its molecular mechanism. We have designed a reduction-responsive nanoparticle (NP) platform for efficient delivery of si-lncRNA (si-lnc). The size of siRNA nanoparticles was observed and determined by transmission electron microscopy. The distribution size of nanoparticles was analyzed by the NanoSight nanoparticle tracking analyzer. The fluorescence spectrum and UV spectrum were determined. The level of lncRNA in glioblastoma cells was detected by RT-qPCR analysis. The localization of lncRNA NONHSAT159592.1 in glioblastoma cells was detected by fluorescence in situ hybridization. Cell proliferation activity was evaluated by clonal formation experiment and CCK-8 kit. Cell migration and invasion were detected by wound healing assay and Transwell experiment. Western blot assay was used to detect the expression level of EMT-related proteins in cells. EdU staining was used to detect cell proliferation. NPs or PBS and IR780 were injected intravenously into nude mice with tumors, and fluorescence imaging was performed in vivo to evaluate the proliferation of tumor tissue. The positive rate of Ki67 and Vimentin in tumor tissue was detected by immunohistochemical staining. We found that lncRNA NONHSAT159592.1 was significantly down-regulated in glioblastoma cell lines, localized in the nucleus and cytoplasm. In U87 and U251 cells, we found that NPs-si-lncRNA NONHSAT159592.1 significantly inhibited glioblastoma cell proliferation, invasion, and EMT progression. In the orthotopic xenograft model, we found that silencing lncRNA could significantly inhibit tumor proliferation and prolong the survival time of tumor-bearing mice. Further studies confirmed that overexpression of ITGA3 reversed the inhibitory effects of NPs-si-lnc on the proliferation, invasion, and migration of glioblastoma cell lines. Our study suggested that NPs (si-lnc) could inhibit the malignant development of glioma by a mechanism that may be linked to the activation of the ITGA3/FAK/PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Renjie Wang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
- Institute of Traumatic Brain Injury and Neurology, Characteristic Medical Center of Chinese People's Armed Police Force, Tianjin, 300162, China
| | - Qi Li
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Xiaolei Chu
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Nan Li
- Institute of Traumatic Brain Injury and Neurology, Characteristic Medical Center of Chinese People's Armed Police Force, Tianjin, 300162, China
| | - Haiqian Liang
- Institute of Traumatic Brain Injury and Neurology, Characteristic Medical Center of Chinese People's Armed Police Force, Tianjin, 300162, China.
| | - Feng He
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China.
| |
Collapse
|
4
|
De Landtsheer S, Badkas A, Kulms D, Sauter T. Model ensembling as a tool to form interpretable multi-omic predictors of cancer pharmacosensitivity. Brief Bioinform 2024; 25:bbae567. [PMID: 39494610 PMCID: PMC11532660 DOI: 10.1093/bib/bbae567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/23/2024] [Accepted: 10/22/2024] [Indexed: 11/05/2024] Open
Abstract
Stratification of patients diagnosed with cancer has become a major goal in personalized oncology. One important aspect is the accurate prediction of the response to various drugs. It is expected that the molecular characteristics of the cancer cells contain enough information to retrieve specific signatures, allowing for accurate predictions based solely on these multi-omic data. Ideally, these predictions should be explainable to clinicians, in order to be integrated in the patients care. We propose a machine-learning framework based on ensemble learning to integrate multi-omic data and predict sensitivity to an array of commonly used and experimental compounds, including chemotoxic compounds and targeted kinase inhibitors. We trained a set of classifiers on the different parts of our dataset to produce omic-specific signatures, then trained a random forest classifier on these signatures to predict drug responsiveness. We used the Cancer Cell Line Encyclopedia dataset, comprising multi-omic and drug sensitivity measurements for hundreds of cell lines, to build the predictive models, and validated the results using nested cross-validation. Our results show good performance for several compounds (Area under the Receiver-Operating Curve >79%) across the most frequent cancer types. Furthermore, the simplicity of our approach allows to examine which omic layers have a greater importance in the models and identify new putative markers of drug responsiveness. We propose several models based on small subsets of transcriptional markers with the potential to become useful tools in personalized oncology, paving the way for clinicians to use the molecular characteristics of the tumors to predict sensitivity to therapeutic compounds.
Collapse
Affiliation(s)
- Sébastien De Landtsheer
- Department of Life Sciences and Medicine, University of Luxembourg, 2, place de l’Université, L4365 Esch-sur-Alzette, Luxembourg
| | - Apurva Badkas
- Department of Life Sciences and Medicine, University of Luxembourg, 2, place de l’Université, L4365 Esch-sur-Alzette, Luxembourg
| | - Dagmar Kulms
- Experimental Dermatology, Department of Dermatology, Technische Universität-Dresden, 01307 Dresden, Germany
- National Center for Tumor Diseases, Technische Universität-Dresden, 01307 Dresden, Germany
| | - Thomas Sauter
- Department of Life Sciences and Medicine, University of Luxembourg, 2, place de l’Université, L4365 Esch-sur-Alzette, Luxembourg
| |
Collapse
|
5
|
Li J, Xiao F, Wang S, Fan X, He Z, Yan T, Zhang J, Yang M, Yang D. LncRNAs are involved in regulating ageing and age-related disease through the adenosine monophosphate-activated protein kinase signalling pathway. Genes Dis 2024; 11:101042. [PMID: 38966041 PMCID: PMC11222807 DOI: 10.1016/j.gendis.2023.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 06/15/2023] [Indexed: 07/06/2024] Open
Abstract
A long noncoding RNA (lncRNA) is longer than 200 bp. It regulates various biological processes mainly by interacting with DNA, RNA, or protein in multiple kinds of biological processes. Adenosine monophosphate-activated protein kinase (AMPK) is activated during nutrient starvation, especially glucose starvation and oxygen deficiency (hypoxia), and exposure to toxins that inhibit mitochondrial respiratory chain complex function. AMPK is an energy switch in organisms that controls cell growth and multiple cellular processes, including lipid and glucose metabolism, thereby maintaining intracellular energy homeostasis by activating catabolism and inhibiting anabolism. The AMPK signalling pathway consists of AMPK and its upstream and downstream targets. AMPK upstream targets include proteins such as the transforming growth factor β-activated kinase 1 (TAK1), liver kinase B1 (LKB1), and calcium/calmodulin-dependent protein kinase β (CaMKKβ), and its downstream targets include proteins such as the mechanistic/mammalian target of rapamycin (mTOR) complex 1 (mTORC1), hepatocyte nuclear factor 4α (HNF4α), and silencing information regulatory 1 (SIRT1). In general, proteins function relatively independently and cooperate. In this article, a review of the currently known lncRNAs involved in the AMPK signalling pathway is presented and insights into the regulatory mechanisms involved in human ageing and age-related diseases are provided.
Collapse
Affiliation(s)
- Jiamei Li
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Feng Xiao
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Siqi Wang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Xiaolan Fan
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Zhi He
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Taiming Yan
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Jia Zhang
- Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610017, China
| | - Mingyao Yang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Deying Yang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| |
Collapse
|
6
|
Aria H, Azizi M, Nazem S, Mansoori B, Darbeheshti F, Niazmand A, Daraei A, Mansoori Y. Competing endogenous RNAs regulatory crosstalk networks: The messages from the RNA world to signaling pathways directing cancer stem cell development. Heliyon 2024; 10:e35208. [PMID: 39170516 PMCID: PMC11337742 DOI: 10.1016/j.heliyon.2024.e35208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 07/08/2024] [Accepted: 07/24/2024] [Indexed: 08/23/2024] Open
Abstract
Cancer stem cells (CSCs) are one of the cell types that account for cancer heterogeneity. The cancer cells arrest in G0 and generate non-CSC progeny through self-renewal and pluripotency, resulting in tumor recurrence, metastasis, and resistance to chemotherapy. They can stimulate tumor relapse and re-grow a metastatic tumor. So, CSCs is a promising target for eradicating tumors, and developing an anti-CSCs therapy has been considered. In recent years competing endogenous RNA (ceRNA) has emerged as a significant class of post-transcriptional regulators that affect gene expression via competition for microRNA (miRNA) binding. Furthermore, aberrant ceRNA expression is associated with tumor progression. Recent findings show that ceRNA network can cause tumor progression through the effect on CSCs. To overcome therapeutic resistance due to CSCs, we need to improve our current understanding of the mechanisms by which ceRNAs are implicated in CSC-related relapse. Thus, this review was designed to discuss the role of ceRNAs in CSCs' function. Targeting ceRNAs may open the path for new cancer therapeutic targets and can be used in clinical research.
Collapse
Affiliation(s)
- Hamid Aria
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahdieh Azizi
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Shima Nazem
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Behnam Mansoori
- Pediatrics Department, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Farzaneh Darbeheshti
- Department of Radiation Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Anoosha Niazmand
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Abdolreza Daraei
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
- Department of Medical Genetics, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Yaser Mansoori
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
- Department of Medical Genetics, Fasa University of Medical Sciences, Fasa, Iran
| |
Collapse
|
7
|
Rehman SU, Ullah N, Zhang Z, Zhen Y, Din AU, Cui H, Wang M. Recent insights into the functions and mechanisms of antisense RNA: emerging applications in cancer therapy and precision medicine. Front Chem 2024; 11:1335330. [PMID: 38274897 PMCID: PMC10809404 DOI: 10.3389/fchem.2023.1335330] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 12/19/2023] [Indexed: 01/27/2024] Open
Abstract
The antisense RNA molecule is a unique DNA transcript consisting of 19-23 nucleotides, characterized by its complementary nature to mRNA. These antisense RNAs play a crucial role in regulating gene expression at various stages, including replication, transcription, and translation. Additionally, artificial antisense RNAs have demonstrated their ability to effectively modulate gene expression in host cells. Consequently, there has been a substantial increase in research dedicated to investigating the roles of antisense RNAs. These molecules have been found to be influential in various cellular processes, such as X-chromosome inactivation and imprinted silencing in healthy cells. However, it is important to recognize that in cancer cells; aberrantly expressed antisense RNAs can trigger the epigenetic silencing of tumor suppressor genes. Moreover, the presence of deletion-induced aberrant antisense RNAs can lead to the development of diseases through epigenetic silencing. One area of drug development worth mentioning is antisense oligonucleotides (ASOs), and a prime example of an oncogenic trans-acting long noncoding RNA (lncRNA) is HOTAIR (HOX transcript antisense RNA). NATs (noncoding antisense transcripts) are dysregulated in many cancers, and researchers are just beginning to unravel their roles as crucial regulators of cancer's hallmarks, as well as their potential for cancer therapy. In this review, we summarize the emerging roles and mechanisms of antisense RNA and explore their application in cancer therapy.
Collapse
Affiliation(s)
- Shahab Ur Rehman
- College of Animals Science and Technology Yangzhou University, Yangzhou, China
| | - Numan Ullah
- College of Animals Science and Technology Yangzhou University, Yangzhou, China
| | - Zhenbin Zhang
- College of Animals Science and Technology Yangzhou University, Yangzhou, China
| | - Yongkang Zhen
- College of Animals Nutrition Yangzhou University, Yangzhou, China
| | - Aziz-Ud Din
- Department of Human Genetics, Hazara University Mansehra, Mansehra, Pakistan
| | - Hengmi Cui
- College of Animals Science and Technology Yangzhou University, Yangzhou, China
- Institute of Epigenetics and Epigenomics Yangzhou University, College of Animal Nutrition Yangzhou University, Yangzhou, China
| | - Mengzhi Wang
- College of Animals Science and Technology Yangzhou University, Yangzhou, China
- College of Animals Nutrition Yangzhou University, Yangzhou, China
| |
Collapse
|
8
|
Yang Z, Huang T, Sheng C, Wang K, Li Y, Feng Y, Huo D, Duan F. Prognostic value of lncRNA AFAP1-AS1 in breast cancer: a meta-analysis and validated study in Chinese population. Cancer Rep (Hoboken) 2024; 7:e1923. [PMID: 37916733 PMCID: PMC10809272 DOI: 10.1002/cnr2.1923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 09/26/2023] [Accepted: 10/11/2023] [Indexed: 11/03/2023] Open
Abstract
BACKGROUND Long non encoding RNA (lncRNA) plays a crucial role in breast cancer. However, the prognostic role of AFAP1-AS1 in breast cancer remains unclear. AIMS To investigate the relationship between the expression of long non-coding RNA actin filament-associated protein1 antisense RNA1 (AFAP1-AS1) and prognosis of breast cancer. METHODS AND RESULTS Meta-analysis was performed to explore the correlation between AFAP1-AS1 and breast cancer. The AFAP1-AS1expression in patients with breast cancer tissue and adjacent normal tissue from 153 patients was determined by qRT-PCR. Bioinformatics and Cox proportional-hazards risk model were used to explore the relationship between expression of AFAP1-AS1 and prognosis. The combined analysis revealed a significant correlation between AFAP1-AS1 expression and both overall survival (hazard ratios, HR = 2.33, 95%Cl: 1.94-2.81, p < 0.001) as well as disease-free survival/progression-free survival (HR = 2.94, 95%CI: 2.35-3.67, p < 0.001). The relation between expression of AFAP1-AS1 and breast cancer was determined in 153 breast cancer and adjacent normal tissues. The findings revealed a significantly higher AFAP1-AS1expression levels in breast cancer tissues compared to adjacent normal tissues (p < 0.001). Additionally, patients exhibiting heightened levels of AFAP1-AS1 expression were correlated with an unfavorable prognosis (HR = 2.35, 95%CI: 1.47-3.74, p < 0.001), which aligns consistently with the findings of the pooled analysis. The subgroup analysis of clinical characteristics revealed a significant association between high expression of AFAP1-AS1 and TNM stage (HR = 1.72, 95%CI: 1.11-2.65, p = 0.015). CONCLUSION This study demonstrated that AFAP1-AS1 acts as an oncogene and may serve as a novel prognostic marker for breast cancer, particularly in the Chinese population.
Collapse
Affiliation(s)
- Zhenxing Yang
- Department of Medical Research Officethe Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer HospitalZhengzhouChina
| | - Tao Huang
- Department of Medical Research Officethe Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer HospitalZhengzhouChina
| | - Chong Sheng
- College of Public HealthZhengzhou UniversityZhengzhouChina
| | - Kaijuan Wang
- College of Public HealthZhengzhou UniversityZhengzhouChina
| | - Yilin Li
- Department of Medical Research Officethe Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer HospitalZhengzhouChina
| | - Yajing Feng
- Department of Hospital Infection Managementthe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Dandan Huo
- Department of Medical Research Officethe Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer HospitalZhengzhouChina
| | - Fujiao Duan
- Department of Medical Research Officethe Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer HospitalZhengzhouChina
| |
Collapse
|
9
|
Wang H, Li Z, Tao Y, Ou S, Ye J, Ran S, Luo K, Guan Z, Xiang J, Yan G, Wang Y, Ma T, Yu S, Song Y, Huang R. Characterization of endoplasmic reticulum stress unveils ZNF703 as a promising target for colorectal cancer immunotherapy. J Transl Med 2023; 21:713. [PMID: 37821882 PMCID: PMC10566095 DOI: 10.1186/s12967-023-04547-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 09/20/2023] [Indexed: 10/13/2023] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is one of the most common malignant tumors globally, with high morbidity and mortality. Endoplasmic reticulum is a major organelle responsible for protein synthesis, processing, and transport. Endoplasmic reticulum stress (ERS) refers to the abnormal accumulation of unfolded and misfolded proteins in the endoplasmic reticulum, which are involved in tumorigenesis and cancer immunity. Nevertheless, the clinical significance of ERS remains largely unexplored in CRC. METHODS In present study, we performed an unsupervised clustering to identify two types of ERS-related subtypes [ERS clusters, and ERS-related genes (ERSGs) clusters] in multiple large-scale CRC cohorts. Through the utilization of machine learning techniques, we have successfully developed an uncomplicated yet robust gene scoring system (ERSGs signature). Furthermore, a series of analyses, including GO, KEGG, Tumor Immune Dysfunction and Exclusion (TIDE), the Consensus Molecular Subtypes (CMS), were used to explore the underlying biological differences and clinical significance between these groups. And immunohistochemical and bioinformatics analyses were performed to explore ZNF703, a gene of ERSGs scoring system. RESULTS We observed significant differences in prognosis and tumor immune status between the ERS clusters as well as ERSGs clusters. And the ERSGs scoring system was an independent risk factor for overall survival; and exhibited distinct tumor immune status in multicenter CRC cohorts. Besides, analyses of TNM stages, CMS groups demonstrated that patients in advanced stage and CMS4 had higher ERSGs scores. In addition, the ERSGs scores inversely correlated with positive ICB response predictors (such as, CD8A, CD274 (PD-L1), and TIS), and directly correlated with negative ICB response predictors (such as, TIDE, T cell Exclusion, COX-IS). Notably, immunohistochemical staining and bioinformatics analyses revealed that ZNF70 correlated with CD3 + and CD8 + T cells infiltration. CONCLUSION Based on large-scale and multicenter transcriptomic data, our study comprehensively revealed the essential role of ERS in CRC; and constructed a novel ERSGs scoring system to predict the prognosis of patients and the efficacy of ICB treatment. Furthermore, we identified ZNF703 as a potentially promising target for ICB therapy in CRC.
Collapse
Affiliation(s)
- Hufei Wang
- Department of Colorectal Cancer Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin, 150080, China
| | - Zhi Li
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yangbao Tao
- Department of Colorectal Cancer Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin, 150080, China
| | - Suwen Ou
- Department of Colorectal Cancer Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin, 150080, China
| | - Jinhua Ye
- Department of Colorectal Cancer Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin, 150080, China
| | - Songlin Ran
- Department of Colorectal Cancer Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin, 150080, China
| | - Kangjia Luo
- Department of Colorectal Cancer Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin, 150080, China
| | - Zilong Guan
- Department of Colorectal Cancer Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin, 150080, China
| | - Jun Xiang
- Department of Colorectal Cancer Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin, 150080, China
| | - Guoqing Yan
- Department of Colorectal Cancer Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin, 150080, China
| | - Yang Wang
- Department of Colorectal Cancer Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin, 150080, China
| | - Tianyi Ma
- Department of Colorectal Cancer Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin, 150080, China
| | - Shan Yu
- Department of Pathology, the Second Affiliated Hospital of Harbin Medical University, Harbin, 150080, China.
| | - Yanni Song
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China.
| | - Rui Huang
- Department of Colorectal Cancer Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin, 150080, China.
| |
Collapse
|
10
|
Hussen BM, Hidayat HJ, Abdullah SR, Mohamadtahr S, Rasul MF, Samsami M, Taheri M. Role of long non-coding RNAs and TGF-β signaling in the regulation of breast cancer pathogenesis and therapeutic targets. Cytokine 2023; 170:156351. [PMID: 37657235 DOI: 10.1016/j.cyto.2023.156351] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 08/22/2023] [Accepted: 08/25/2023] [Indexed: 09/03/2023]
Abstract
The cytokine known as transforming growth factor (TGF) is essential for cell development, differentiation, and apoptosis in BC. TGF-β dysregulation can either promote or inhibit tumor development, and it is a key signaling pathway in BC spread. A recently identified family of ncRNAs known as lncRNAs has received a great deal of effort and is an important regulator of many cellular processes, including transcription of genes, chromatin remodeling, progression of the cell cycle, and posttranscriptional processing. Furthermore, both TGF-β signaling and lncRNAs serve as important early-stage biomarkers for BC diagnosis and prognosis and also play a significant role in BC drug resistance. According to recent studies, lncRNAs can regulate TGF-β by modulating its cofactors in BC. However, the particular functions of lncRNAs and the TGF-β pathway in controlling BC progression are not well understood yet. This review explores the lncRNAs' functional properties in BC as tumor suppressors or oncogenes in the regulation of genes, with a focus on dysregulated TGF-β signaling. Further, we emphasize the functional roles of lncRNAs and TGF-β pathway in the progression of BC to discover new treatment strategies and better comprehend the fundamental cellular pathways.
Collapse
Affiliation(s)
- Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Kurdistan Region, Erbil, Iraq; Department of Biomedical Sciences, Cihan University-Erbil, Erbil, Kurdistan Region 44001, Iraq
| | - Hazha Jamal Hidayat
- Department of Biology, College of Education, Salahaddin University-Erbil, Kurdistan Region, Iraq
| | - Snur Rasool Abdullah
- Department of Medical Laboratory Science, College of Health Sciences, Lebanese French University, Kurdistan Region, Erbil, Iraq
| | - Sayran Mohamadtahr
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Kurdistan Region, Erbil, Iraq
| | - Mohammad Fatih Rasul
- Department of Pharmaceutical Basic Science, Faculty of Pharmacy, Tishk International University, Erbil, Kurdistan Region, Iraq
| | - Majid Samsami
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany; Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
11
|
Wang S, Liu R. Insights into the pleiotropic roles of ZNF703 in cancer. Heliyon 2023; 9:e20140. [PMID: 37810156 PMCID: PMC10559930 DOI: 10.1016/j.heliyon.2023.e20140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 09/05/2023] [Accepted: 09/12/2023] [Indexed: 10/10/2023] Open
Abstract
Zinc finger proteins (ZNFs) belong to the NET/NLZ protein family. In physiological functions, ZNF703 play significant roles in embryonic development, especially in the nervous system. As an transcription factors with zinc finger domains, abnormal regulation of the ZNF703 protein is associated with enhanced proliferation, invasion, and metastasis as well as drug resistance in many tumors, although mechanisms of action vary depending on the specific tumor microenvironment. ZNF703 lacks a nuclear localization sequence despite its function requiring nuclear DNA binding. The purpose of this review is to summarize the architecture of ZNF703, its roles in tumorigenesis, and tumor progression, as well as future oncology therapeutic prospects, which have implications for understanding tumor susceptibility and progression.
Collapse
Affiliation(s)
- Shuang Wang
- Department of Obstetrics and Gynaecology, Tianjin Central Hospital of Gynecology Obstetrics, No. 156 Nan Kai San Ma Lu, Tianjin, 300000, China
- Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin, 300000, China
- Department of Obstetrics and Gynaecology, Nankai University Maternity Hospital, Tianjin, 300000, China
| | - Rong Liu
- Department of Obstetrics and Gynecology, Tianjin First Center Hospital, Tianjin, China
| |
Collapse
|
12
|
Zhao J, Wen D, Zhang S, Jiang H, Di X. The role of zinc finger proteins in malignant tumors. FASEB J 2023; 37:e23157. [PMID: 37615242 DOI: 10.1096/fj.202300801r] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 07/19/2023] [Accepted: 08/10/2023] [Indexed: 08/25/2023]
Abstract
Zinc finger proteins (ZNFs) are the largest family of transcriptional factors in mammalian cells. Recently, their role in the development, progression, and metastasis of malignant tumors via regulating gene transcription and translation processes has become evident. Besides, their possible involvement in drug resistance has also been found, indicating that ZNFs have the potential to become new biological markers and therapeutic targets. In this review, we summarize the oncogenic and suppressive roles of various ZNFs in malignant tumors, including lung, breast, liver, gastric, colorectal, pancreatic, and other cancers, highlighting their role as prognostic markers, and hopefully provide new ideas for the treatment of malignant tumors in the future.
Collapse
Affiliation(s)
- Jia Zhao
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, China
| | - Doudou Wen
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, China
| | - Shubing Zhang
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, China
| | - Hao Jiang
- Department of Biomedical Informatics, School of Life Sciences, Central South University, Changsha, China
| | - Xiaotang Di
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, China
| |
Collapse
|
13
|
Ali R, Laskar SA, Khan NJ, Wahab S, Khalid M. Non-coding RNA's prevalence as biomarkers for prognostic, diagnostic, and clinical utility in breast cancer. Funct Integr Genomics 2023; 23:195. [PMID: 37270446 DOI: 10.1007/s10142-023-01123-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/19/2023] [Accepted: 05/25/2023] [Indexed: 06/05/2023]
Abstract
Noncoding RNAs (ncRNAs), which make up a significant portion of the mammalian transcriptome and plays crucial regulatory roles in expression of genes and other biological processes, have recently been found. The most extensively researched of the sncRNAs, microRNAs (miRNAs), have been characterized in terms of their synthesis, roles, and significance in the tumor development. Its crucial function in the stem cell regulation, another class of sncRNAs known as aspirRNAs, has attracted attention in cancer research. The investigations have shown that long non-coding RNAs have a crucial role in controlling developmental stages, such as mammary gland development. Additionally, it has been discovered that lncRNA dysregulation precedes the development of several malignancies, including breast cancer. The functions of sncRNAs (including miRNAs and piRNAs) and lncRNAs in the onset and development of the breast cancer are described in this study. Additionally, future perspectives of various ncRNA-based diagnostic, prognostic, and therapeutic approaches also discussed.
Collapse
Affiliation(s)
- Rafat Ali
- Department of Biosciences, Jamia Millia Islamia University, New Delhi, India
| | - Sorforaj A Laskar
- Department of Biosciences, Jamia Millia Islamia University, New Delhi, India
| | - Nida Jamil Khan
- Department of Biosciences, Jamia Millia Islamia University, New Delhi, India.
| | - Shadma Wahab
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha, 62529, Saudi Arabia
| | - Mohammad Khalid
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj, 11942, Saudi Arabia
| |
Collapse
|
14
|
Islam S, Mukherjee C. Molecular regulation of hypoxia through the lenses of noncoding RNAs and epitranscriptome. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1750. [PMID: 35785444 DOI: 10.1002/wrna.1750] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 05/27/2022] [Accepted: 06/06/2022] [Indexed: 11/09/2022]
Abstract
Cells maintain homeostasis in response to environmental stress through specific cell stress responses. Hypoxic stress, well known to be associated with diverse solid tumors, is one of the main reasons for cancer-related mortality. Although cells can balance themselves well during hypoxic stress, the underlying molecular mechanisms are not well understood. The enhanced appreciation of diverse roles played by noncoding transcriptome and epigenome in recent years has brought to light the involvement of noncoding RNAs and epigenetic modifiers in hypoxic regulation. The emergence of techniques like deep sequencing has facilitated the identification of large numbers of long noncoding RNAs (lncRNAs) that are differentially regulated in various cancers. Similarly, proteomic studies have identified diverse epigenetic modifiers such as HATs, HDACs, DNMTs, polycomb groups of proteins, and their possible roles in the regulation of hypoxia. The crosstalk between lncRNAs and epigenetic modifiers play a pivotal role in hypoxia-induced cancer initiation and progression. Besides the lncRNAs, several other noncoding RNAs like circular RNAs, miRNAs, and so forth are also expressed during hypoxic conditions. Hypoxia has a profound effect on the expression of noncoding RNAs and epigenetic modifiers. Conversely, noncoding RNAs/epigenetic modifies can regulate the hypoxia signaling axis by modulating the stability of the hypoxia-inducible factors (HIFs). The focus of this review is to illustrate the molecular orchestration underlying hypoxia biology, especially in cancers, which can help in identifying promising therapeutic targets in hypoxia-induced cancers. This article is categorized under: RNA Turnover and Surveillance > Regulation of RNA Stability RNA in Disease and Development > RNA in Disease RNA Structure and Dynamics > RNA Structure, Dynamics and Chemistry.
Collapse
Affiliation(s)
- Safirul Islam
- Institute of Health Sciences (erstwhile School of Biotechnology), Presidency University, Kolkata, India
| | - Chandrama Mukherjee
- Institute of Health Sciences (erstwhile School of Biotechnology), Presidency University, Kolkata, India
| |
Collapse
|
15
|
Pourramezan Z, Attar FA, Yusefpour M, Azizi M, Oloomi M. Circulating LncRNAs landscape as potential biomarkers in breast cancer. Cancer Rep (Hoboken) 2023; 6:e1722. [PMID: 36274054 PMCID: PMC9940007 DOI: 10.1002/cnr2.1722] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 07/01/2022] [Accepted: 09/07/2022] [Indexed: 02/22/2023] Open
Abstract
BACKGROUND In Iran, the delay in diagnosis and treatment of breast cancer results in low survival rates. AIM It is essential to characterize new therapeutic targets and prognostic breast cancer biomarkers. The rising evidence suggested that long non-coding RNAs (lncRNAs) expression levels are deregulated in human cancers and can use as biomarkers for the rapid diagnosis of breast cancer. METHODS In the present study, a quantitative real-time polymerase chain reaction (qRT-PCR) technique was used to measure 20 oncogenic and tumor suppressor lncRNAs expression levels in whole blood samples of female breast cancer patients and healthy women. Receiver operating characteristic curve (ROC) was used to assess the diagnostic value of each selected lncRNA as a biomarker. RESULTS The results revealed that some circulating lncRNAs (MEG3, NBAT1, NKILA, GAS5, EPB41L4A-AS2, Z38, and BC040587) were significantly down-regulated in breast cancer patients compared to healthy women. In contrast, other circulating lncRNAs (H19, SPRY4-IT1, XIST, UCA1, AC026904.1, CCAT1, CCAT2, ITGB2-AS, and AK058003) were significantly up-regulated in breast cancer patients compared to controls. It was shown that the expression levels of NKILA, and NBAT1 lncRNAs were related to tumor size, and BC040587 expression level related to age, node metastasis, tumor size, and grade (p < .05). The association between H19 and SPRY4-IT1 lncRNAs with HER-2 was confirmed statistically (p < .05). ROC curves illustrated that the blood levels of SPRY4-IT1, XIST, and H19 lncRNAs have excellent potential in discriminating breast cancer from the healthy controls, showing an AUC of 1.0 (95% CI 1.0-1.0, p = .00), 0.898 (95% CI 0.815-0.981, p = .00), and 0.848 (95% CI 0.701-0.995, p = .01), respectively. CONCLUSION In conclusion, the expression levels of circulating H19 and SPRY4-IT1 lncRNAs in breast cancer patients could consider as the prognostic biomarkers and therapeutic targets in breast cancer, because of their excellent power in discriminating breast cancer from healthy individuals and the significant correlation of H19, and SPRY4-IT1 lncRNAs with clinicopathological traits. We also suggest the possible application of BC040587 lncRNA as a diagnostic and prognostic indicator to assess tumor progression in case of verification in larger patients' cohorts.
Collapse
Affiliation(s)
| | | | - Maryam Yusefpour
- Department of Molecular BiologyPasteur Institute of IranTehranIran
| | - Masoumeh Azizi
- Department of Molecular MedicineBiotechnology Research Center, Pasteur Institute of IranTehranIran
| | - Mana Oloomi
- Department of Molecular BiologyPasteur Institute of IranTehranIran
| |
Collapse
|
16
|
Wang J, Chen Y, Wang Q, Xu H, Jiang Q, Wang M, Li S, Chen Y, Wu C, Yu P, Xiao Z, Chen W, Lan Q. LncRNA SPRY4‐IT1 facilitates cell proliferation and angiogenesis of glioma via the miR‐101‐3p/EZH2/VEGFA signaling axis. Cancer Med 2022; 12:7309-7326. [PMID: 36479622 PMCID: PMC10067065 DOI: 10.1002/cam4.5517] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 07/16/2022] [Accepted: 11/27/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND SPRY4-IT1 (SPRY4 intronic transcript 1) is a long non-coding RNA (lncRNA) that has been identified as a novel oncogene in various cancers, including glioma. However, its function and underlying mechanism in glioma remain largely unclear. Here, we investigated the role of SPRY4-IT1 in the development of glioma and its underlying mechanism. METHODS Bioinformatics analysis and RT-qPCR assay were used to examine the expression of SPRY4-IT1 in glioma tissues. The CCK-8, EdU, and Xenograft tumor assays wereperformed to assess the proliferation effect of glioma cells. The tube forming assay and Chick Embryo Chorioallantoic Membrane (CAM) assay were conducted to detect the angiogenesis effect of HUVECs. RNA-sequencing, western blotting, RT-qPCR, ELISA, and IHC assays were employed to verify the regulatory mechanism of the SPRY4-IT1/ miR-101-3p/EZH2/VEGFA axis. RESULTS Analysis of the TCGA dataset and data from our own cohort demonstrated that SPRY4-IT1 was overexpressed in patients with glioma, and high SPRY4-IT1 expression correlated with poor prognosis. In vitro and in vivo experiments showed that SPRY4-IT1 promoted the proliferation of glioma cells. RNA sequencing and Gene Ontology (GO) enrichment analysis indicated significant enrichment of angiogenesis. HUVEC tube forming assay and CAM assay confirmed that SPRY4-IT1 could induce angiogenesis of glioma cells in vitro and in vivo. Mechanistically, SPRY4-IT1 upregulated EZH2 expression by sponging miR-101-3p to induce VEGFA expression in glioma cells. Moreover, SPRY4-IT1 activated the VEGFR2/AKT/ERK1/2 pathway in HUVECs mediated by glioma cells. Rescue experiments further confirmed that SPRY4-IT1 promoted glioma cell proliferation and angiogenesis via the miR-101-3p/EZH2/VEGFA signaling axis. CONCLUSIONS Our findings provide compelling evidence showing that SPRY4-IT1 upregulated EZH2 to induce VEGFA by sponging miR-101-3p, thereby achieving cell proliferation and angiogenesis in glioma. Therefore, targeting SPRY4-IT1/miR-101-3p/EZH2/VEGFA axis may improve the outcomes of patients with glioma.
Collapse
Affiliation(s)
- Ji Wang
- Department of Neurosurgery The Second Affiliated Hospital of Soochow University Suzhou China
| | - Yanming Chen
- Department of Neurosurgery The Second Affiliated Hospital of Soochow University Suzhou China
| | - Qing Wang
- Department of Neurosurgery The Second Affiliated Hospital of Soochow University Suzhou China
| | - Hui Xu
- Department of Neurosurgery The Second Affiliated Hospital of Soochow University Suzhou China
| | - Qianqian Jiang
- Department of Neurosurgery The Second Affiliated Hospital of Soochow University Suzhou China
| | - Man Wang
- Department of Neurosurgery The Second Affiliated Hospital of Soochow University Suzhou China
| | - Shenggang Li
- Department of Neurosurgery The Second Affiliated Hospital of Soochow University Suzhou China
| | - Ying Chen
- Department of Neurosurgery The Second Affiliated Hospital of Soochow University Suzhou China
| | - Chunwang Wu
- Department of Neurosurgery The Second Affiliated Hospital of Soochow University Suzhou China
| | - Pei Yu
- Department of Neurosurgery The Second Affiliated Hospital of Soochow University Suzhou China
| | - Zongyu Xiao
- Department of Neurosurgery Dushu Lake Hospital Affiliated to Soochow University Suzhou China
| | - Wenjin Chen
- Department of Neurosurgery Peking University Shenzhen Hospital Shenzhen China
| | - Qing Lan
- Department of Neurosurgery The Second Affiliated Hospital of Soochow University Suzhou China
| |
Collapse
|
17
|
El-Helkan B, Emam M, Mohanad M, Fathy S, Zekri AR, Ahmed OS. Long non-coding RNAs as novel prognostic biomarkers for breast cancer in Egyptian women. Sci Rep 2022; 12:19498. [PMID: 36376369 PMCID: PMC9663553 DOI: 10.1038/s41598-022-23938-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
Breast cancer (BC), the most common type of malignant tumor, is the leading cause of death, having the highest incidence rate among women. The lack of early diagnostic tools is one of the clinical obstacles for BC treatment. The current study was designed to evaluate a panel of long non-coding RNAs (lncRNAs) BC040587, HOTAIR, MALAT1, CCAT1, CCAT2, PVT1, UCA1, SPRY4-IT1, PANDAR, and AK058003-and two mRNAs (SNCG, BDNF) as novel prognostic biomarkers for BC. This study was ethically approved by the Institutional Review Board of the National Cancer Institute, Cairo University. Our study included 75 women recently diagnosed with BC and 25 healthy women as normal controls. Patients were divided into three groups: 24 with benign breast diseases, 28 with metastatic breast cancer (MBC, stage IV), and 23 with non-metastatic breast cancer (NMBC, stage III). LncRNA and mRNA expression levels were measured in patient plasma using quantitative real-time PCR. We found that 10 lncRNAs (BCO40587, HOTAIR, PVT1, CCAT2, PANDAR, CCAT1, UCA1, SPRY4-IT1, AK058003, and MALAT1) and both mRNAs demonstrated at least a 2-fold change in expression with a more than 95% probability of significance. BCO40587 and SNCG were significantly up-regulated in MBC and NMBC patients (3.2- and 4-fold, respectively) compared with normal controls. The expression of UCA1 was repressed by 1.78-fold in MBC and NMBC patients compared with those with benign diseases. SPRY4-IT1 was down-regulated by 1.45-fold in MBC patients compared with NMBC and benign disease patients. Up-regulation of lncRNAs plays an important role in BC development. SNCG and BCO40587 may be potential prognostic markers for BC.The organization number is IORG0003381 (IRB No: IRB00004025).
Collapse
Affiliation(s)
- Basma El-Helkan
- grid.7269.a0000 0004 0621 1570Department of Biochemistry, Faculty of Science-Ain Shams University, Cairo, Egypt
| | - Manal Emam
- grid.7269.a0000 0004 0621 1570Department of Biochemistry, Faculty of Science-Ain Shams University, Cairo, Egypt
| | - Marwa Mohanad
- grid.440875.a0000 0004 1765 2064College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, 6th of October ,Giza, Egypt
| | - Shadia Fathy
- grid.7269.a0000 0004 0621 1570Department of Biochemistry, Faculty of Science-Ain Shams University, Cairo, Egypt
| | - Abdel Rahman Zekri
- grid.7776.10000 0004 0639 9286Virology and Immunology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Ola S. Ahmed
- grid.7776.10000 0004 0639 9286Virology and Immunology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| |
Collapse
|
18
|
The key role of differential broad H3K4me3 and H3K4ac domains in breast cancer. Gene 2022; 826:146463. [PMID: 35358653 DOI: 10.1016/j.gene.2022.146463] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/22/2022] [Accepted: 03/25/2022] [Indexed: 12/18/2022]
Abstract
Epigenetic processes are radically altered in cancer cells. The altered epigenetic events may include histone post-translational modifications (PTMs), DNA modifications, and/or alterations in the levels and modifications of chromatin modifying enzymes and chromatin remodelers. With changes in gene programming are changes in the genomic distribution of histone PTMs. Genes that are poised or transcriptionally active have histone H3 trimethylated lysine 4 (H3K4me3) located at the transcription start site and at the 5' end of the gene. However, a small population of genes that are involved in cell identity or cancer cell properties have a broad H3K4me3 domain that may stretch for several kilobases through the coding region of the gene. Each cancer cell type appears to mark a select set of cancer-related genes in this manner. In this study, we determined which genes were differentially marked with the broad H3K4me3 domain in normal-like (MCF10A), luminal-type breast cancer (MCF7), and triple-negative breast cancer (MDA-MB-231) cells. We also determined whether histone H3 acetylated lysine 4 (H3K4ac), also a mark of active promoters, had a broad domain configuration. We applied two peak callers (MACS2, PeakRanger) to analyze H3K4me3 and H3K4ac chromatin immunoprecipitation sequencing (ChIP-Seq) data. We identified genes with a broad H3K4me3 and/or H3K4ac domain specific to each cell line and show that the genes have critical roles in the breast cancer subtypes. Furthermore, we show that H3K4ac marks enhancers. The identified genes with the broad H3K4me3/H3K4ac domain have been targeted in clinical and pre-clinical studies including therapeutic treatments of breast cancer.
Collapse
|
19
|
Qin X, Yin Q, Gao J, Shi X, Tang J, Hao L, Li P, Zhu J, Wang Y. Prognostic role of SPRY4-IT1 in female breast carcinoma and malignant tumors of the reproductive system: A meta-analysis. Medicine (Baltimore) 2022; 101:e28969. [PMID: 35482980 PMCID: PMC9276090 DOI: 10.1097/md.0000000000028969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 02/01/2022] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND The prognostic value of SPRY4-Intronic transcript 1 (SPRY4-IT1) in women suffering from breast carcinoma and malignant tumors of the reproductive system remains to be ascertained. Therefore, this paper attempted to assess the relationship between SPRY4-IT1 with the clinicopathological indicators and survival analysis in women suffering from breast carcinoma and malignant tumors of their reproductive organs through meta-analysis. METHOD Related literature retrieved from Cochrane Library, Ovid, Embase, PubMed, the CNKI, and the Web of Science databases were reviewed. The latest article search was updated to September 1, 2021. The outcome indicators included as effective measures in the study were hazard ratio (HR), odds ratio (OR), and 95% confidence interval (CI). The Stata 12.0 software was used to analyze the data. RESULTS The elevated SPRY4-IT1 levels were indicative of poor overall survival (OS) [HR = 2.44, 95% CI = 1.35-4.43, P < .05], and were not related to Disease-Free Survival (DFS) [HR = 1.61, 95% CI = 0.50-5.18, P = .43] in female patients suffering from malignant tumors. In terms of lymph node metastasis (LNM) for the association between long noncoding RNA SPRY4-IT1(LncRNA SPRY4-IT1) and OS, elevated LncRNA SPRY4-IT1 implied poor OS with LNM [HR = 2.79, 95% CI: 1.81-4.28, P < .001]. Based on the aspect of the LNM for the association between LncRNA SPRY4-IT1 and DFS, SPRY4-IT1 was not correlated with DFS [HR = 0.97, 95% CI: 0.73-1.28, P = .81]. SPRY4-IT1 in the TNM stage was not related to OS [HR = 1.43, 95% CI: 0.55-3.70, P = .46]. In the TNM stage, SPRY4-IT1 was not related to DFS [HR = 1.68, 95% CI: 0.92-3.06, P = .09]. SPRY4-IT1 was found to be associated with lymph node metastasis (OR = 4.15, 95% CI: 2.75-6.25, P = .000) and TNM stage (OR = 2.89, 95% CI: 1.51-7.27 P = .02). No significant correlation was noted between SPRY4-IT1 and the age of the patients (OR = 0.89, 95% CI: 0.61-1.29 P = .54). CONCLUSIONS Thus, this study provides evidence-based medical evidence for the target treatment of female breast carcinoma and malignant tumors of the reproductive system. The elevated level of SPRY4-IT1 was associated with poor prognosis of female breast cancer patients and of those having malignant tumors in their reproductive organs. In addition, the SPRY4-IT1 expression was also associated with the disease progression and metastasis.
Collapse
Affiliation(s)
- Xiaoru Qin
- Hebei General Hospital, Shijiazhuang, Hebei, PR China
| | - Qifan Yin
- Hebei General Hospital, Shijiazhuang, Hebei, PR China
| | - Jin Gao
- Hebei General Hospital, Shijiazhuang, Hebei, PR China
| | - Xiaoming Shi
- Hebei General Hospital, Shijiazhuang, Hebei, PR China
| | - Jiachen Tang
- Hebei General Hospital, Shijiazhuang, Hebei, PR China
- North China University of Science and Technology, Tangshan, Hebei, PR China
| | - Lingling Hao
- Hebei General Hospital, Shijiazhuang, Hebei, PR China
- North China University of Science and Technology, Tangshan, Hebei, PR China
| | - Pengfei Li
- Hebei General Hospital, Shijiazhuang, Hebei, PR China
- North China University of Science and Technology, Tangshan, Hebei, PR China
| | - Jia Zhu
- Hebei General Hospital, Shijiazhuang, Hebei, PR China
- North China University of Science and Technology, Tangshan, Hebei, PR China
| | - Yuexin Wang
- Hebei General Hospital, Shijiazhuang, Hebei, PR China
| |
Collapse
|
20
|
Fang J, Li K, Huang C, Xue H, Ni Q. LncRNA TTN-AS1 confers tamoxifen resistance in breast cancer via sponging miR-107 to modulate PI3K/AKT signaling pathway. Am J Transl Res 2022; 14:2267-2279. [PMID: 35559394 PMCID: PMC9091103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 09/02/2020] [Indexed: 06/15/2023]
Abstract
OBJECTIVE Tamoxifen resistance of breast cancer (BC) is a significant hindrance in clinical therapy. The long-noncoding RNA (lncRNA) TTN-AS1 has been reported as a crucial tumor promoting factor in various cancers. In this study, we set out to discover the specific pathologic regulatory mechanisms of tamoxifen-resistance in breast cancer. METHODS MTT assay was conducted to evaluate the cell viability of the breast cancer cell lines MCF-7 and MCF-7/TAM. QRT-PCR and western blot assay were performed to estimate the expression of TTN-AS1, miR-107 and related proteins. Flow cytometry was conducted to identify degree of apoptosis and cell cycle. The invasive ability was estimated by transwell chamber assay. RESULTS Our findings revealed that TTN-AS1 can enhance tamoxifen-resistance in BC cells and augment the invasive ability of tamoxifen-resistant breast cancer cells by down-regulating miR-107, and thereby encourage the development of drug-resistant BC. Further investigation indicates that lncRNA TTN-AS1 worsens the course of tamoxifen-resistant BC by regulating zinc and ring finger 2 (ZNRF2) via miR-107 and activating the PI3K/AKT pathway. CONCLUSION Our findings suggest that the lncRNA TTN-AS1 can encourage tamoxifen-resistance in BC by modulating the miR-107/ZNRF2 axis and stimulating the PI3K/AKT pathway.
Collapse
Affiliation(s)
- Jun Fang
- Department of General Surgery, Affiliated Hospital of Nantong UniversityNantong 226001, Jiangsu, PR China
| | - Kun Li
- Department of Thyroid and Breast Surgery, Kunshan Hospital of Traditional Chinese MedicineKunshan 215300, Jiangsu, PR China
- Kunshan Affiliated Hospital of Nanjing University of Chinese MedicineKunshan 215300, Jiangsu, PR China
| | - Chen Huang
- Department of General Surgery, Affiliated Hospital of Nantong UniversityNantong 226001, Jiangsu, PR China
| | - Huimin Xue
- Department of General Surgery, Affiliated Hospital of Nantong UniversityNantong 226001, Jiangsu, PR China
| | - Qichao Ni
- Department of General Surgery, Affiliated Hospital of Nantong UniversityNantong 226001, Jiangsu, PR China
| |
Collapse
|
21
|
de la Cruz-Ojeda P, Flores-Campos R, Navarro-Villarán E, Muntané J. The Role of Non-Coding RNAs in Autophagy During Carcinogenesis. Front Cell Dev Biol 2022; 10:799392. [PMID: 35309939 PMCID: PMC8926078 DOI: 10.3389/fcell.2022.799392] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 01/18/2022] [Indexed: 12/12/2022] Open
Abstract
Macroautophagy (autophagy herein) is a cellular stress response and a survival pathway involved in self-renewal and quality control processes to maintain cellular homeostasis. The alteration of autophagy has been implicated in numerous diseases such as cancer where it plays a dual role. Autophagy serves as a tumor suppressor in the early phases of cancer formation with the restoration of homeostasis and eliminating cellular altered constituents, yet in later phases, autophagy may support and/or facilitate tumor growth, metastasis and may contribute to treatment resistance. Key components of autophagy interact with either pro- and anti-apoptotic factors regulating the proximity of tumor cells to apoptotic cliff promoting cell survival. Autophagy is regulated by key cell signaling pathways such as Akt (protein kinase B, PKB), mammalian target of rapamycin (mTOR) and AMP-activated protein kinase (AMPK) involved in cell survival and metabolism. The expression of critical members of upstream cell signaling, as well as those directly involved in the autophagic and apoptotic machineries are regulated by microRNAs (miRNAs) and long non-coding RNAs (lncRNAs). Consequently, non-coding RNAs play a relevant role in carcinogenesis and treatment response in cancer. The review is an update of the current knowledge in the regulation by miRNA and lncRNA of the autophagic components and their functional impact to provide an integrated and comprehensive regulatory network of autophagy in cancer.
Collapse
Affiliation(s)
- Patricia de la Cruz-Ojeda
- Institute of Biomedicine of Seville (IBiS), Hospital University "Virgen del Rocío"/CSIC/University of Seville, Seville, Spain.,Department of Medical Physiology and Biophysics, University of Seville, Seville, Spain.,Networked Biomedical Research Center Hepatic and Digestive Diseases (CIBEREHD o Ciberehd), Institute of Health Carlos III, Madrid, Spain
| | - Rocío Flores-Campos
- Institute of Biomedicine of Seville (IBiS), Hospital University "Virgen del Rocío"/CSIC/University of Seville, Seville, Spain
| | - Elena Navarro-Villarán
- Institute of Biomedicine of Seville (IBiS), Hospital University "Virgen del Rocío"/CSIC/University of Seville, Seville, Spain.,Department of Medical Physiology and Biophysics, University of Seville, Seville, Spain.,Networked Biomedical Research Center Hepatic and Digestive Diseases (CIBEREHD o Ciberehd), Institute of Health Carlos III, Madrid, Spain
| | - Jordi Muntané
- Institute of Biomedicine of Seville (IBiS), Hospital University "Virgen del Rocío"/CSIC/University of Seville, Seville, Spain.,Department of Medical Physiology and Biophysics, University of Seville, Seville, Spain.,Networked Biomedical Research Center Hepatic and Digestive Diseases (CIBEREHD o Ciberehd), Institute of Health Carlos III, Madrid, Spain
| |
Collapse
|
22
|
Zhang X, Mu X, Huang O, Wang Z, Chen J, Chen D, Wang G. ZNF703 promotes triple-negative breast cancer cells through cell-cycle signaling and associated with poor prognosis. BMC Cancer 2022; 22:226. [PMID: 35236318 PMCID: PMC8889678 DOI: 10.1186/s12885-022-09286-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 02/10/2022] [Indexed: 11/10/2022] Open
Abstract
Background The oncogenic drivers of triple-negative breast cancer (TNBC), which is characterized by worst prognosis compared with other subtypes, are poorly understood. Although next-generation sequencing technology has facilitated identifying potential targets, few of the findings have been translated into daily clinical practice. The present study is aimed to explore ZNF703 (Zinc finger 703) function and its underlying mechanism in TNBC. Methods ZNF703 expressions in tissue microarray were retrospectively examined by immunohistochemistry. The cell proliferation by SRB assay and colony formation assay, as well as cell cycle distribution by flow cytometry were assessed. The protein levels associated with possible underlying molecular mechanisms were evaluated by western blotting. Kaplan-Meier analysis was used to plot survival analysis. Results Our data suggest that ZNF703 expressed in 34.2% of triple-negative human breast tumors by immunohistochemistry. In vitro, ZNF703 knockdown had potent inhibitory effects on TNBC cell proliferation and cell cycle, with cyclin D1, CDK4, CDK6, and E2F1 downregulated, while Rb1 upregulated. Moreover, Kaplan-Meier analysis showed that high mRNA expression of ZNF703 was correlated to worse overall survival (HR for high expression was 3.04; 95% CI, 1.22 to 7.57, P = 0.017). Conclusions Taken together, the results identified that targeting ZNF703 contributed to the anti-proliferative effects in TNBC cells, due to induced G1-phase arrest. This study is the first to identify ZNF703 as a potentially important protein that is involved in TNBC progression. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-09286-w.
Collapse
Affiliation(s)
- Xi Zhang
- Department of Breast Oncology, The First Hospital of Quanzhou Affiliated to Fujian Medical University, Anji Rd, 362000, Quanzhou, China. .,Comprehensive Breast Health Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 200025, Shanghai, China.
| | - Xin Mu
- Department of Urology, The Second Affiliated Hospital of Fujian Medical University, 362000, Quanzhou, China
| | - Ou Huang
- Comprehensive Breast Health Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 200025, Shanghai, China
| | - Zhitang Wang
- Department of Breast Oncology, The First Hospital of Quanzhou Affiliated to Fujian Medical University, Anji Rd, 362000, Quanzhou, China
| | - Jialin Chen
- Department of Breast Oncology, The First Hospital of Quanzhou Affiliated to Fujian Medical University, Anji Rd, 362000, Quanzhou, China
| | - Debo Chen
- Department of Breast Oncology, The First Hospital of Quanzhou Affiliated to Fujian Medical University, Anji Rd, 362000, Quanzhou, China.
| | - Gen Wang
- Department of Pharmacology, School of Pharmacy, Fujian Provincial Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University, University Town, 1 Xue Yuan Road, 350122, Fuzhou, China.
| |
Collapse
|
23
|
Ghafouri-Fard S, Khoshbakht T, Taheri M, Shojaei S. A Review on the Role of SPRY4-IT1 in the Carcinogenesis. Front Oncol 2022; 11:779483. [PMID: 35096580 PMCID: PMC8792834 DOI: 10.3389/fonc.2021.779483] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 12/23/2021] [Indexed: 12/24/2022] Open
Abstract
Sprouty RTK signaling antagonist 4-intronic transcript 1 (SPRY4-IT1) is a long non-coding RNA (lncRNA) encoded by a gene located on 5q31.3. This lncRNA has a possible role in the regulation of cell growth, proliferation, and apoptosis. Moreover, since SPRY4-IT1 controls levels of lipin 2, it is also involved in the biosynthesis of lipids. During the process of biogenesis, SPRY4-IT1 is produced as a primary transcript which is then cleaved to generate a mature transcript which is localized in the cytoplasm. SPRY4-IT1 has oncogenic roles in diverse tissues. A possible route of participation of SPRY4-IT1 in the carcinogenesis is through sequestering miRNAs such as miR-101-3p, miR-6882-3p and miR-22-3p. The sponging effect of SPRY4-IT1 on miR-101 has been verified in colorectal cancer, osteosarcoma, cervical cancer, bladder cancer, gastric cancer and cholangiocarcinoma. SPRY4-IT1 has functional interactions with HIF-1α, NF-κB/p65, AMPK, ZEB1, MAPK and PI3K/Akt signaling. We explain the role of SPRY4-IT1 in the carcinogenesis according to evidence obtained from cell lines, xenograft models and clinical studies.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Tayyebeh Khoshbakht
- Men's Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Taheri
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyedpouzhia Shojaei
- Department of Critical Care Medicine, Imam Hossein Medical and Educational Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
24
|
Selem NA, Youness RA, Gad MZ. What is beyond LncRNAs in breast cancer: A special focus on colon cancer-associated Transcript-1 (CCAT-1). Noncoding RNA Res 2021; 6:174-186. [PMID: 34938928 PMCID: PMC8666458 DOI: 10.1016/j.ncrna.2021.11.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/28/2021] [Accepted: 11/29/2021] [Indexed: 02/07/2023] Open
Abstract
Long non-coding RNAs (LncRNAs) play a vital role in the process of malignant transformation. In breast cancer (BC), lncRNAs field is currently under intensive investigations. Yet, the role of lncRNAs as promising diagnostic and/or prognostic biomarkers and as therapeutic target/tool among BC patients still needs a special focus from the biomedical scientists. In BC, triple negative breast cancer patients (TNBC) are the unlucky group as they are always represented with the worst prognosis and the highest mortality rates. For that reason, a special focus on TNBC and associated lncRNAs was addressed in this review. Colon cancer-associated transcript 1 (CCAT-1) is a newly discovered oncogenic lncRNA that has been emerged as a vital biomarker for diagnosis, prognosis and therapeutic interventions in multiple malignancies and showed differential expression among TNBC patients. In this review, the authors shed the light onto the general role of lncRNAs in BC and the specific functional activities, molecular mechanisms, competing endogenous ncRNA role of CCAT-1 in TNBC.
Collapse
Affiliation(s)
- Noha A. Selem
- Biochemistry Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Egypt
| | - Rana A. Youness
- Molecular Genetics Research Team (MGRT), Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Egypt
- School of Life and Medical Sciences, University of Hertfordshire Hosted By Global Academic Foundation, New Administrative Capital, 11586, Cairo, Egypt
| | - Mohamed Z. Gad
- Biochemistry Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Egypt
| |
Collapse
|
25
|
Jin H, Du W, Huang W, Yan J, Tang Q, Chen Y, Zou Z. lncRNA and breast cancer: Progress from identifying mechanisms to challenges and opportunities of clinical treatment. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 25:613-637. [PMID: 34589282 PMCID: PMC8463317 DOI: 10.1016/j.omtn.2021.08.005] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Breast cancer is a malignant tumor that has a high mortality rate and mostly occurs in women. Although significant progress has been made in the implementation of personalized treatment strategies for molecular subtypes in breast cancer, the therapeutic response is often not satisfactory. Studies have reported that long non-coding RNAs (lncRNAs) are abnormally expressed in breast cancer and closely related to the occurrence and development of breast cancer. In addition, the high tissue and cell-type specificity makes lncRNAs particularly attractive as diagnostic biomarkers, prognostic factors, and specific therapeutic targets. Therefore, an in-depth understanding of the regulatory mechanisms of lncRNAs in breast cancer is essential for developing new treatment strategies. In this review, we systematically elucidate the general characteristics, potential mechanisms, and targeted therapy of lncRNAs and discuss the emerging functions of lncRNAs in breast cancer. Additionally, we also highlight the advantages and challenges of using lncRNAs as biomarkers for diagnosis or therapeutic targets for drug resistance in breast cancer and present future perspectives in clinical practice.
Collapse
Affiliation(s)
- Huan Jin
- Genetic and Prenatal Diagnosis Center, Department of Gynecology and Obstetrics, First Affiliated Hospital, Zhengzhou University, Zhengzhou 450052, China.,MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Wei Du
- Department of Neurosurgery, First Affiliated Hospital, Zhengzhou University, Zhengzhou 450052, China
| | - Wentao Huang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China.,Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Jiajing Yan
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China.,Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Qing Tang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China.,Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Yibing Chen
- Genetic and Prenatal Diagnosis Center, Department of Gynecology and Obstetrics, First Affiliated Hospital, Zhengzhou University, Zhengzhou 450052, China
| | - Zhengzhi Zou
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China.,Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China.,Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| |
Collapse
|
26
|
Lu C, Wei D, Zhang Y, Wang P, Zhang W. Long Non-Coding RNAs as Potential Diagnostic and Prognostic Biomarkers in Breast Cancer: Progress and Prospects. Front Oncol 2021; 11:710538. [PMID: 34527584 PMCID: PMC8436618 DOI: 10.3389/fonc.2021.710538] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 08/09/2021] [Indexed: 01/05/2023] Open
Abstract
Breast cancer is the most common malignancy among women worldwide, excluding non-melanoma skin cancer. It is now well understood that breast cancer is a heterogeneous entity that exhibits distinctive histological and biological features, treatment responses and prognostic patterns. Therefore, the identification of novel ideal diagnostic and prognostic biomarkers is of utmost importance. Long non-coding RNAs (lncRNAs) are commonly defined as transcripts longer than 200 nucleotides that lack coding potential. Extensive research has shown that lncRNAs are involved in multiple human cancers, including breast cancer. LncRNAs with dysregulated expression can act as oncogenes or tumor-suppressor genes to regulate malignant transformation processes, such as proliferation, invasion, migration and drug resistance. Intriguingly, the expression profiles of lncRNAs tend to be highly cell-type-specific, tissue-specific, disease-specific or developmental stage-specific, which makes them suitable biomarkers for breast cancer diagnosis and prognosis.
Collapse
Affiliation(s)
- Cuicui Lu
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Duncan Wei
- Department of Pharmacy, The First Affiliated Hospital of Medical College of Shantou University, Shantou, China
| | - Yahui Zhang
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Peng Wang
- Department of Pharmacy, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Wen Zhang
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
27
|
Dai R, Jiang Q, Zhou Y, Lin R, Lin H, Zhang Y, Zhang J, Gao X. Lnc-STYK1-2 regulates bladder cancer cell proliferation, migration, and invasion by targeting miR-146b-5p expression and AKT/STAT3/NF-kB signaling. Cancer Cell Int 2021; 21:408. [PMID: 34332611 PMCID: PMC8325849 DOI: 10.1186/s12935-021-02114-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/24/2021] [Indexed: 02/07/2023] Open
Abstract
Background Epigenetic modulation by noncoding RNAs substantially contributes to human cancer development, but noncoding RNAs involvement in bladder cancer remains poorly understood. This study investigated the role of long noncoding RNA (lncRNA) lnc-STYK1-2 in tumorigenesis in cancerous bladder cells. Methods Differential lncRNA and mRNA profiles were characterized by high-throughput RNA sequencing combined with validation via quantitative PCR. Bladder cancer cell proliferation was assessed through MTS, and bladder cancer cell migration and invasion were assessed through a Transwell system. The in vivo tumorigenesis of bladder cancer cells was evaluated using the cancer cell line-based xenograft model. The dual-luciferase reporter assay verified the association of miR-146b-5p with lnc-STYK1-2 and the target gene. Protein abundances and phosphorylation were detected by Western blotting. Results Alterations in lncRNA profiles, including decreased lnc-STYK1-2 expression, were detected in bladder cancer tissues compared with adjacent noncancerous tissues. lnc-STYK1-2 silencing effectively promoted proliferation, migration, and invasion in two bladder cancer cell lines, 5637 and T24, and their tumorigenesis in nude mice. lnc-STYK1-2 siRNA promoted miR-146b-5p and reduced ITGA2 expression in bladder cancer cells. Moreover, miR-146b-5p suppressed ITGA2 expression in bladder cancer cells through direct association. Also, lnc-STYK1-2 directly associated with miR-146b-5p. Finally, miR-146b-5p inhibitors abrogated the alterations in bladder cell functions, ITGA2 expression, and phosphorylation of AKT, STAT3, and P65 proteins in 5637 and T24 cells induced by lnc-STYK1-2 silencing. Conclusion lnc-STYK1-2 inhibited bladder cancer cell proliferation, migration, and tumorigenesis by targeting miR-146b-5p to regulate ITGA2 expression and AKT/STAT3/NF-kB signaling.
Collapse
Affiliation(s)
- Ranran Dai
- Guangdong Key Laboratory of Urology, Guangzhou Medical University, Guangzhou, China
| | - Qingping Jiang
- Department of Pathology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - You Zhou
- Guangdong Key Laboratory of Urology, Guangzhou Medical University, Guangzhou, China
| | - Ruifeng Lin
- Guangdong Key Laboratory of Urology, Guangzhou Medical University, Guangzhou, China
| | - Hai Lin
- Guangdong Key Laboratory of Urology, Guangzhou Medical University, Guangzhou, China
| | - Yumin Zhang
- Department of Children's Stomatology, Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jinhu Zhang
- Guangdong Key Laboratory of Urology, Guangzhou Medical University, Guangzhou, China
| | - Xingcheng Gao
- Guangdong Key Laboratory of Urology, Guangzhou Medical University, Guangzhou, China. .,Department of Urology, Minimally Invasive Surgery Center, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang road, Yuexiu district, Guangzhou, 510120, China.
| |
Collapse
|
28
|
Zhao X, Liu Y, Luo C, Zuo Y. AGAP2-AS1/miR-628-5p/FOXP2 feedback loop facilitates the growth of prostate cancer via activating WNT pathway. Carcinogenesis 2021; 42:1270-1280. [PMID: 34255057 DOI: 10.1093/carcin/bgab062] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 06/27/2021] [Accepted: 07/12/2021] [Indexed: 11/14/2022] Open
Abstract
Increasing studies have indicated the critical roles of long non-coding RNAs (lncRNAs) in the tumorigenesis of cancers. LncRNA AGAP2 antisense RNA 1 (AGAP2-AS1) can serve as an oncogenic role in some cancers, including prostate cancer (PCa). However, the underling mechanism of such lncRNA in PCa has not been fully studied. Therefore, it's meaningful to investigate the role and underlying mechanism of AGAP2-AS1 in PCa. AGAP2-AS1 was confirmed to be highly expressed in PCa cells. Functionally, AGAP2-AS1 silencing inhibited cell proliferation, migration, invasion and EMT process, and induced apoptosis. According to mechanism assays, AGAP2-AS1 sponged miR-628-5p, which was found to restrain PCa cell growth. Besides, FOXP2 was identified as a target gene of miR-628-5p, and its expression was negatively regulated by miR-628-5p and positively modulated by AGAP2-AS1. Importantly, we found that FOXP2 could function as the upstream gene of AGAP2-AS1. Through rescue experiments, we discovered that FOXP2 up-regulation countered AGAP2-AS1 knockdown-mediated inhibition on PCa cell growth. Finally, it was found that AGAP2-AS1 could activate WNT pathway, and LiCl could reverse the influence of AGAP2-AS1 on PCa biological behaviors. To conclude, AGAP2-AS1/miR-628-5p/FOXP2 feedback loop facilitated PCa cell growth via activating WNT pathway.
Collapse
Affiliation(s)
- Xu Zhao
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Urology, The People's Hospital of Guizhou Province, Guiyang, Guizhou, China
| | - Yajun Liu
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Chenggong Luo
- Department of Urology, The People's Hospital of Guizhou Province, Guiyang, Guizhou, China
- Department of Urology, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Yali Zuo
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
29
|
Wasson MCD, Brown JM, Venkatesh J, Fernando W, Marcato P. Datasets exploring putative lncRNA-miRNA-mRNA axes in breast cancer cell lines. Data Brief 2021; 37:107241. [PMID: 34235238 PMCID: PMC8250161 DOI: 10.1016/j.dib.2021.107241] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/09/2021] [Accepted: 06/21/2021] [Indexed: 11/28/2022] Open
Abstract
Long non-coding RNA (lncRNA)/microRNA (miRNA)/messenger RNA (mRNA) interactions regulate oncogenesis and tumour suppression in breast cancer. Oncogenic lncRNA/miRNA/mRNA axes may offer novel therapeutic targets; therefore, identifying such axes is a clinically relevant undertaking. To explore miRNAs regulated by oncogenic lncRNAs, we queried the NCBI Gene Expression Omnibus (GEO) database to find datasets that profiled gene expression changes upon lncRNA knockdown in breast cancer. We identified four microarray datasets that permitted our interrogation of genes regulated by lncRNAs LincK, LincIN, SPRY4-IT1 and AC009283.1. We specifically analysed changes in miRNA transcripts within these datasets to study miRNAs regulated by each of the four lncRNAs. We subsequently identified the predicted mRNA targets for these miRNAs to uncover possible lncRNA/miRNA/mRNAs axes in breast cancer. These axes may be candidates for future investigation of gene regulation in breast cancer.
Collapse
Affiliation(s)
| | - Justin M Brown
- Department of Pathology, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | | | - Wasundara Fernando
- Department of Pathology, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - Paola Marcato
- Department of Pathology, Dalhousie University, Halifax, NS, B3H 4R2, Canada.,Department of Microbiology & Immunology, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| |
Collapse
|
30
|
Fang K, Hu C, Zhang X, Hou Y, Gao D, Guo Z, Li L. LncRNA ST8SIA6-AS1 promotes proliferation, migration and invasion in breast cancer through the p38 MAPK signalling pathway. Carcinogenesis 2021; 41:1273-1281. [PMID: 31784750 DOI: 10.1093/carcin/bgz197] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 11/11/2019] [Accepted: 11/29/2019] [Indexed: 01/10/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) are regarded as important functional regulators of various biological processes and are also known to be involved in the occurrence and development of human cancers, including breast cancer (BC). In our present study, the RNA expression profiling data for a large cohort of human BC samples were obtained from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases, and the differentially expressed lncRNAs were screened out. We found that the expression of ST8SIA6-AS1 was elevated in BC tumour tissues compared with the adjacent normal tissues in the samples from the TCGA and GEO datasets, as well as in 138 BC tissue samples obtained by us. The high expression of ST8SIA6-AS1 was associated with estrogen receptor-negative, progesterone receptor-negative, advanced tumour-node-metastasis stage and worse survival in BC patients. In vitro functional studies revealed that high expression of ST8SIA6-AS1 promoted proliferation, invasion and migration of BC cell lines. The results of the in vivo studies indicated that upregulation of ST8SIA6-AS1 promoted xenograft tumour growth of BC. Mechanistically, ST8SIA6-AS1 regulated AKT1 and p38 mitogen-activated protein kinase (MAPK) gene expression by affecting their mRNA and protein levels, respectively, and it also affected the phosphorylation of AKT1 protein. Rescue experiments indicated that ST8SIA6-AS1 promoted BC cell proliferation, invasion and migration in a p38 MAPK signalling-mediated manner. Together, our data suggest that ST8SIA6-AS1 plays an important role in the occurrence and development of BC and may therefore serve as a promising therapeutic target.
Collapse
Affiliation(s)
- Kai Fang
- Department of Oncology Institute, The Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Caixia Hu
- Department of Oncology Institute, The Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Xiufen Zhang
- Department of Oncology Institute, The Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Yafei Hou
- Department of Immunology, Institute of Immunology, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Danfeng Gao
- Department of Oncology Institute, The Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Zijian Guo
- Department of Oncological Surgery, The Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Lihua Li
- Department of Oncology Institute, The Affiliated Hospital of Jiangnan University, Wuxi, China
| |
Collapse
|
31
|
Shahrzad MK, Gharehgozlou R, Fadaei S, Hajian P, Mirzaei HR. Vitamin D and Non-coding RNAs: New Insights into the Regulation of Breast Cancer. Curr Mol Med 2021; 21:194-210. [PMID: 32652908 DOI: 10.2174/1566524020666200712182137] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 06/09/2020] [Accepted: 06/11/2020] [Indexed: 11/22/2022]
Abstract
Breast cancer, a life-threatening serious disease with a high incident rate among women, is responsible for thousands of cancer-associated death worldwide. Numerous investigations have evaluated the possible mechanisms related to this malignancy. Among them, non-coding RNAs (ncRNAs), i.e., microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs have recently attracted attention of researchers. In addition to recent studies for evaluating the role of ncRNAs in breast cancer etiology, some investigations have revealed that vitamin D has regulatory and therapeutic roles in breast cancer. Moreover, an important link between vitamin D and ncRNAs in cancer therapy has been highlighted. Herein, the aim of this study was to discuss the available data on the mentioned link in breast cancer.
Collapse
Affiliation(s)
- Mohammad Karim Shahrzad
- Department of Internal Medicine and endocrinology, Shohadae Tajrish Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reyhaneh Gharehgozlou
- Cancer Research Center, Shohada Tajrish Hospital, Department of Radiation Oncology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sara Fadaei
- Department of Internal Medicine and endocrinology, Beheshti University of Medical Sciences, Tehran, Iran
| | - Parastoo Hajian
- Cancer Research Center, Shohada Tajrish Hospital, Department of Radiation Oncology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamid Reza Mirzaei
- Cancer Research Center, Shohada Tajrish Hospital, Department of Radiation Oncology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
32
|
Hegde M, Joshi MB. Comprehensive analysis of regulation of DNA methyltransferase isoforms in human breast tumors. J Cancer Res Clin Oncol 2021; 147:937-971. [PMID: 33604794 PMCID: PMC7954751 DOI: 10.1007/s00432-021-03519-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 01/10/2021] [Indexed: 12/14/2022]
Abstract
Significant reprogramming of epigenome is widely described during pathogenesis of breast cancer. Transformation of normal cell to hyperplastic cell and to neoplastic phenotype is associated with aberrant DNA (de)methylation, which, through promoter and enhancer methylation changes, activates oncogenes and silence tumor suppressor genes in variety of tumors including breast. DNA methylation, one of the major epigenetic mechanisms is catalyzed by evolutionarily conserved isoforms namely, DNMT1, DNMT3A and DNMT3B in humans. Over the years, studies have demonstrated intricate and complex regulation of DNMT isoforms at transcriptional, translational and post-translational levels. The recent findings of allosteric regulation of DNMT isoforms and regulation by other interacting chromatin modifying proteins emphasizes functional integrity and their contribution for the development of breast cancer and progression. DNMT isoforms are regulated by several intrinsic and extrinsic parameters. In the present review, we have extensively performed bioinformatics analysis of expression of DNMT isoforms along with their transcriptional and post-transcriptional regulators such as transcription factors, interacting proteins, hormones, cytokines and dietary elements along with their significance during pathogenesis of breast tumors. Our review manuscript provides a comprehensive understanding of key factors regulating DNMT isoforms in breast tumor pathology and documents unsolved issues.
Collapse
Affiliation(s)
- Mangala Hegde
- Manipal School of Life Sciences, Manipal Academy of Higher Education, Planetarium Complex, Manipal, 576104, India
| | - Manjunath B Joshi
- Manipal School of Life Sciences, Manipal Academy of Higher Education, Planetarium Complex, Manipal, 576104, India.
| |
Collapse
|
33
|
Qie P, Yin Q, Xun X, Song Y, Zhou S, Liu H, Feng J, Tian Z. Long non-coding RNA SPRY4-IT1 as a promising indicator for three field lymph-node dissection of thoracic esophageal carcinoma. J Cardiothorac Surg 2021; 16:48. [PMID: 33757566 PMCID: PMC7988958 DOI: 10.1186/s13019-021-01433-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 03/16/2021] [Indexed: 01/04/2023] Open
Abstract
Background Esophageal squamous cell carcinoma(ESCC) is one of the most common tumors worldwide. Esophagectomy with three-field lymph node dissection(3FLND) is the radical surgical procedure for esophageal cancer. However, 3FLND is not widely used due to it’s higher mortality rate and higher incidence of postoperative complications. There is an urgent need to identify novel biomarkers that can guide the most proper lymph-node dissection in esophageal cancer patients. Method Ninety-two patients with thoracic ESCC undergoing 3FLND were enrolled into our study from the Department of Thoracic Surgery of the Fourth Hospital affiliated to the Hebei Medical University and Hebei General Hospital between Jun 2011 and Dec 2015. Retrospectively collected data from these 92 patients was used to explore the relationship between the lymph-node metastasis、recurrence and the SPRY4-IT1 expression level and to determine whether 3FLND should be performed in patients with thoracic ESCC. Results The findings revealed that the SPRY4-IT1 expression was significantly higher in esophageal cancer tissues than in adjacent noncancerous tissues. (P < 0.01). Furthermore, the high expression of SPRY4-IT1 was significantly correlated with tumor differentiation (P = 0.029), T classification (P = 0.013), lymph node metastasis(P = 0.022) and pathological stage (P = 0.001). The increased expression of SPRY4-IT1 was associated with a higher risk of cervical and superior mediastinal lymph-node metastasis(P = 0.039).However, no significant association was observed between the risk of cervical and superior mediastinal lymph-node recurrence and the SPRY4-IT1 expression level in the thoracic ESCC patients performed 3FLND(P = 0.509). Conclusions Our data support the assumption that the high expression of SPRY4-IT1 is associated with a high risk of lymph node metastasis and it has potential application as a indicator for guiding on three-field lymph node dissection in patients with thoracic ESCC. Randomized controlled trials with a large cohort of patients will be needed to confirm this conclusion in the future.
Collapse
Affiliation(s)
- Peng Qie
- Hebei Medical University, Shijiazhuang, 050017, Hebei Province, People's Republic of China
| | - Qifan Yin
- Hebei General Hospital, 348,West He-Ping Road, Shijiazhuang, 050051, Hebei Province, People's Republic of China
| | - Xuejiao Xun
- Hebei General Hospital, 348,West He-Ping Road, Shijiazhuang, 050051, Hebei Province, People's Republic of China
| | - Yongbin Song
- Hebei General Hospital, 348,West He-Ping Road, Shijiazhuang, 050051, Hebei Province, People's Republic of China
| | - Shaohui Zhou
- Hebei General Hospital, 348,West He-Ping Road, Shijiazhuang, 050051, Hebei Province, People's Republic of China
| | - Huining Liu
- Hebei General Hospital, 348,West He-Ping Road, Shijiazhuang, 050051, Hebei Province, People's Republic of China
| | - Junpeng Feng
- Hebei Chest Hospital, Shijiazhuang, 050041, Hebei Province, People's Republic of China
| | - Ziqiang Tian
- Hebei Medical University Fourth Affiliated Hospital and Hebei Provincial Tumor Hospital, Shijiazhuang, 050035, Hebei Province, People's Republic of China. .,Thoracic Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050035, Hebei Province, People's Republic of China.
| |
Collapse
|
34
|
Bresesti C, Vezzoli V, Cangiano B, Bonomi M. Long Non-Coding RNAs: Role in Testicular Cancers. Front Oncol 2021; 11:605606. [PMID: 33767982 PMCID: PMC7986848 DOI: 10.3389/fonc.2021.605606] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 01/05/2021] [Indexed: 12/13/2022] Open
Abstract
In the last few years lncRNAs have gained increasing attention among the scientific community, thanks to the discovery of their implication in many physio-pathological processes. In particular, their contribution to tumor initiation, progression, and response to treatment has attracted the interest of experts in the oncologic field for their potential clinical application. Testicular cancer is one of the tumors in which lncRNAs role is emerging. Said malignancies already have very effective treatments, which although lead to the development of quite serious treatment-related conditions, such as secondary tumors, infertility, and cardiovascular diseases. It is therefore important to study the impact of lncRNAs in the tumorigenesis of testicular cancer in order to learn how to exploit them in a clinical setting and to substitute more toxic treatments. Eventually, the use of lncRNAs as biomarkers, drug targets, or therapeutics for testicular cancer may represent a valid alternative to that of conventional tools, leading to a better management of this malignancy and its related conditions, and possibly even to the treatment of poor prognosis cases.
Collapse
Affiliation(s)
- Chiara Bresesti
- Department of Endocrine and Metabolic Medicine, IRCCS Istituto Auxologico Italiano, Milan, Italy
- Lab of Endocrine and Metabolic Researches, IRCCS Istituto Auxologico Italiano, Cusano Milanino, Italy
| | - Valeria Vezzoli
- Department of Endocrine and Metabolic Medicine, IRCCS Istituto Auxologico Italiano, Milan, Italy
- Lab of Endocrine and Metabolic Researches, IRCCS Istituto Auxologico Italiano, Cusano Milanino, Italy
| | - Biagio Cangiano
- Department of Endocrine and Metabolic Medicine, IRCCS Istituto Auxologico Italiano, Milan, Italy
- Lab of Endocrine and Metabolic Researches, IRCCS Istituto Auxologico Italiano, Cusano Milanino, Italy
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Marco Bonomi
- Department of Endocrine and Metabolic Medicine, IRCCS Istituto Auxologico Italiano, Milan, Italy
- Lab of Endocrine and Metabolic Researches, IRCCS Istituto Auxologico Italiano, Cusano Milanino, Italy
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| |
Collapse
|
35
|
Akhavan Attar F, Oloomi M, Irani S, Azizi M, Geranpayeh L. LncRNAs AK058003 and MVIH Overexpression in the Blood Samples of Iranian Breast Cancer Patients. IRANIAN BIOMEDICAL JOURNAL 2021; 25:93-8. [PMID: 33462225 PMCID: PMC7921519 DOI: 10.29252/ibj.25.2.93] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Accepted: 05/02/2020] [Indexed: 11/24/2022]
Abstract
Background Long non-coding RNAs (LncRNAs) are considered as novel biological regulators and potential cancer biomarkers. LncRNAs microvascular invasion in hepatocellular carcinoma (HCC; microvascular invasion [MVIH]) and AK058003 are associated with MVIH in HCC. In breast cancer (BC), upregulated MVIH and AK058003 expression levels have been shown to promote cell proliferation, though LncRNA-AK058003 acts as a tumor suppressor in HCC. Methods Blood samples were collected from 30 healthy women and 30 female BC patients. RNA was extracted from the blood of both groups, and cDNA was then synthesized. A real-time PCR technique was conducted to measure the expression level of LncRNA-AK058003 and MVIH. Results The expression level of two LncRNAs in the blood samples of BC patients increased significantly compared with healthy individuals. The levels of AK058003 and MVIH were not associated with lymph node metastasis (p = 0.402 and p = 0.39), tumor size (p = 0.76 and p = 0.461), and tumor size; lymph nodes, metastasis stage (TNM; p = 0.574 and p = 0.711), respectively. Conclusion As per our findings, LncRNA-AK058003 could serve as a suitable indicator for low stage of BC. In addition, the increased level of LncRNA-MVIH could be considered as a biomarker for BC, which needs more evaluation in the future.
Collapse
Affiliation(s)
- Fatemeh Akhavan Attar
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mana Oloomi
- Department of Molecular Biology, Pasteur Institute of Iran, Tehran, Iran
| | - Shiva Irani
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Masoumeh Azizi
- Department of Molecular Medicine, Biotechnology Research Center; Pasteur Institute of Iran, Tehran, Iran
| | | |
Collapse
|
36
|
Ji H, Wang J, Lu B, Li J, Zhou J, Wang L, Xu S, Peng P, Hu X, Wang K. SP1 induced long non-coding RNA AGAP2-AS1 promotes cholangiocarcinoma proliferation via silencing of CDKN1A. Mol Med 2021; 27:10. [PMID: 33522895 PMCID: PMC7852216 DOI: 10.1186/s10020-020-00222-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 09/29/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND LncRNA can regulate gene at various levels such as apparent genetics, alternative splicing, and regulation of mRNA degradation. However, the molecular mechanism of LncRNA in cholangiocarcinoma is still unclear. This deserves further exploration. METHODS We investigated the expression of AGAP2-AS1 in 32 CCA tissues and two CCA cell lines. We found a LncRNA AGAP2-AS1 which induced by SP1 has not been reported in CCA, and Knockdown and overexpression were used to investigate the biological role of AGAP2-AS1 in vitro. CHIP and RIP were performed to verify the putative targets of AGAP2-AS1. RESULTS AGAP2-AS1 was significantly upregulated in CCA tumor tissues. SP1 induced AGAP2-AS1 plays an important role in tumorigenesis. AGAP2-AS1 knockdown significantly inhibited proliferation and caused apoptosis in CCA cells. In addition, we demonstrated that AGAP2-AS1 promotes the proliferation of CCA. CONCLUSIONS We conclude that the long non-coding RNA AGAP2-AS1 plays a role in promoting the proliferation of cholangiocarcinoma.
Collapse
Affiliation(s)
- Hao Ji
- Department of Oncology, Second Affiliated Hospital, Nanjing Medical University, Nanjing, 210000 Jiangsu People’s Republic of China
- The Second Clinical Medical College of Nanjing Medical University, Nanjing, China
| | - Juan Wang
- Department of Oncology, Second Affiliated Hospital, Nanjing Medical University, Nanjing, 210000 Jiangsu People’s Republic of China
- The Second Clinical Medical College of Nanjing Medical University, Nanjing, China
| | - Binbin Lu
- Department of Oncology, Second Affiliated Hospital, Nanjing Medical University, Nanjing, 210000 Jiangsu People’s Republic of China
- The Second Clinical Medical College of Nanjing Medical University, Nanjing, China
| | - Juan Li
- Department of Oncology, Second Affiliated Hospital, Nanjing Medical University, Nanjing, 210000 Jiangsu People’s Republic of China
- The Second Clinical Medical College of Nanjing Medical University, Nanjing, China
| | - Jing Zhou
- Department of Oncology, Second Affiliated Hospital, Nanjing Medical University, Nanjing, 210000 Jiangsu People’s Republic of China
- The Second Clinical Medical College of Nanjing Medical University, Nanjing, China
| | - Li Wang
- Department of Oncology, Second Affiliated Hospital, Nanjing Medical University, Nanjing, 210000 Jiangsu People’s Republic of China
- The Second Clinical Medical College of Nanjing Medical University, Nanjing, China
| | - Shufen Xu
- Department of Oncology, Second Affiliated Hospital, Nanjing Medical University, Nanjing, 210000 Jiangsu People’s Republic of China
- The Second Clinical Medical College of Nanjing Medical University, Nanjing, China
| | - Peng Peng
- Department of Oncology, Second Affiliated Hospital, Nanjing Medical University, Nanjing, 210000 Jiangsu People’s Republic of China
- The Second Clinical Medical College of Nanjing Medical University, Nanjing, China
| | - Xuezhen Hu
- Jiangsu Provincial Hospital of Traditional Chinese Medicine, Nanjing, China
- Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210000 Jiangsu People’s Republic of China
| | - Keming Wang
- Department of Oncology, Second Affiliated Hospital, Nanjing Medical University, Nanjing, 210000 Jiangsu People’s Republic of China
- The Second Clinical Medical College of Nanjing Medical University, Nanjing, China
| |
Collapse
|
37
|
Kumar S, Gonzalez EA, Rameshwar P, Etchegaray JP. Non-Coding RNAs as Mediators of Epigenetic Changes in Malignancies. Cancers (Basel) 2020; 12:E3657. [PMID: 33291485 PMCID: PMC7762117 DOI: 10.3390/cancers12123657] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/01/2020] [Accepted: 12/03/2020] [Indexed: 12/12/2022] Open
Abstract
Non-coding RNAs (ncRNAs) are untranslated RNA molecules that regulate gene expressions. NcRNAs include small nuclear RNAs (snRNAs), small nucleolar RNAs (snoRNAs), ribosomal RNAs (rRNAs), transfer RNAs (tRNAs), circular RNAs (cRNAs) and piwi-interacting RNAs (piRNAs). This review focuses on two types of ncRNAs: microRNAs (miRNAs) or short interfering RNAs (siRNAs) and long non-coding RNAs (lncRNAs). We highlight the mechanisms by which miRNAs and lncRNAs impact the epigenome in the context of cancer. Both miRNAs and lncRNAs have the ability to interact with numerous epigenetic modifiers and transcription factors to influence gene expression. The aberrant expression of these ncRNAs is associated with the development and progression of tumors. The primary reason for their deregulated expression can be attributed to epigenetic alterations. Epigenetic alterations can cause the misregulation of ncRNAs. The experimental evidence indicated that most abnormally expressed ncRNAs impact cellular proliferation and apoptotic pathways, and such changes are cancer-dependent. In vitro and in vivo experiments show that, depending on the cancer type, either the upregulation or downregulation of ncRNAs can prevent the proliferation and progression of cancer. Therefore, a better understanding on how ncRNAs impact tumorigenesis could serve to develop new therapeutic treatments. Here, we review the involvement of ncRNAs in cancer epigenetics and highlight their use in clinical therapy.
Collapse
Affiliation(s)
- Subhasree Kumar
- Department of Biological Sciences, Rutgers University, Newark, NJ 07102, USA; (S.K.); (E.A.G.)
| | - Edward A. Gonzalez
- Department of Biological Sciences, Rutgers University, Newark, NJ 07102, USA; (S.K.); (E.A.G.)
| | - Pranela Rameshwar
- Department of Medicine, Hematology/Oncology, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, NJ 07103, USA
| | - Jean-Pierre Etchegaray
- Department of Biological Sciences, Rutgers University, Newark, NJ 07102, USA; (S.K.); (E.A.G.)
| |
Collapse
|
38
|
Wang Y, Wu Z, Li Y, Zheng Z, Yan J, Tian S, Han L. Long Non-Coding RNA H19 Promotes Proliferation, Migration and Invasion and Inhibits Apoptosis of Breast Cancer Cells by Targeting miR-491-5p/ZNF703 Axis. Cancer Manag Res 2020; 12:9247-9258. [PMID: 33061615 PMCID: PMC7532042 DOI: 10.2147/cmar.s246009] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 08/25/2020] [Indexed: 12/24/2022] Open
Abstract
Background Breast cancer is one of the most common cancers worldwide. Long non-coding RNAs and microRNAs act as important regulators in human cancers. This study aims to explore the molecular mechanism among H19, miR-491-5p and zinc finger 703 (ZNF703) in breast cancer. Materials and Methods Quantitative real-time polymerase chain reaction (qRT-PCR) was conducted to detect the expression of H19, miR-491-5p and ZNF703. Cell Counting Kit 8 (CCK-8) assay was performed to evaluate cell proliferation. Cell apoptosis was assessed by flow cytometry assay. The number of migrated and invaded cells was counted by transwell assay. Dual luciferase reporter assay was carried out to test luciferase activity. Protein level of ZNF703 was measured by Western blot assay. Results H19 was highly expressed in breast tissues and cells. H19 knockdown inhibited proliferation, induced apoptosis and blocked migration and invasion. Moreover, H19 bound to miR-491-5p and negatively regulated miR-491-5p expression. MiR-491-5p inhibition abrogated the activities of proliferation, apoptosis, migration and invasion affected by H19 knockdown. Furthermore, miR-491-5p directly targeted ZNF703 and inversely modulated ZNF703 expression. ZNF703 up-regulation rescued the effects of miR-491-5p overexpression on proliferation, apoptosis, migration and invasion. In addition, H19 knockdown reduced ZNF703 expression by targeting miR-491-5p/ZNF703 axis. Conclusion H19 promoted proliferation, migration and invasion and retarded apoptosis of breast cancer cells via sponging miR-491-5p to down-regulate ZNF703 expression.
Collapse
Affiliation(s)
- Yongkun Wang
- Department of Thyroid Surgery, Liaocheng People's Hospital (Clinical Hospital of Shandong First Medical University) Liaocheng, Shandong, People's Republic of China
| | - Zhen Wu
- Department of Thyroid Surgery, Liaocheng People's Hospital (Clinical Hospital of Shandong First Medical University) Liaocheng, Shandong, People's Republic of China
| | - Yingxue Li
- Department of Pathology, Liaocheng People's Hospital (Clinical Hospital of Shandong First Medical University) Liaocheng, Shandong, People's Republic of China
| | - Zheng Zheng
- Department of Pathology, Liaocheng People's Hospital (Clinical Hospital of Shandong First Medical University) Liaocheng, Shandong, People's Republic of China
| | - Jinqiang Yan
- Department of Pathology, Liaocheng People's Hospital (Clinical Hospital of Shandong First Medical University) Liaocheng, Shandong, People's Republic of China
| | - Shuyan Tian
- Department of Pathology, Liaocheng People's Hospital (Clinical Hospital of Shandong First Medical University) Liaocheng, Shandong, People's Republic of China
| | - Lin Han
- Department of Pathology, Liaocheng People's Hospital (Clinical Hospital of Shandong First Medical University) Liaocheng, Shandong, People's Republic of China
| |
Collapse
|
39
|
Li H, Wang P, Liu J, Liu W, Wu X, Ding J, Kang J, Li J, Lu J, Pan G. Hypermethylation of lncRNA MEG3 impairs chemosensitivity of breast cancer cells. J Clin Lab Anal 2020; 34:e23369. [PMID: 32618397 PMCID: PMC7521317 DOI: 10.1002/jcla.23369] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 03/13/2020] [Accepted: 04/02/2020] [Indexed: 01/01/2023] Open
Abstract
Background Chemoresistance posed a barrier to successful treatment of breast cancer (BC), and lncRNA MEG3 has been documented to implicate in BC development. However, whether MEG3 methylation, which led to low MEG3 expression, was relevant to BC progression and chemoresistance remained uncertain. Methods In the aggregate, 374 pairs of tumor tissues and adjacent normal tissues were collected from pathologically confirmed BC patients, and four BC cell lines, including MDA‐MB‐231, Bcap‐37, MCF‐7, and SK‐BR‐3, were purchased. Moreover, methylation‐specific polymerase chain reaction (PCR) was adopted to evaluate the methylation status of BC tissues and cell lines, and chemo‐tolerance of BC cell lines was assessed by performing MTT assay. Concurrently, transwell assay and scratch assay were carried out to estimate the migratory and invasive capability of BC cell lines. Results Methylated MEG3, lowly expressed MEG3, large tumor size (≥2 cm), advanced TNM grade and lymphatic metastasis were potentially symbolic of poor prognosis among BC patients (P < .05). Besides, MDA‐MB‐231 cell line exhibited the strongest resistance against paclitaxel, adriamycin, and vinorelbine (P < .05), while MCF‐7 cell line seemed more sensitive against these drugs than any other BC cell line (P < .05). Furthermore, pcDNA3.1‐MEG3 and 5‐Aza‐dC markedly sensitized MDA‐MB‐231 and MCF‐7 cell lines against the drug treatments (P < .05). Simultaneously, proliferation and metastasis of the BC cell lines were slowed down under the force of pcDNA3.1‐MEG3 and 5‐Aza‐dC (P < .05). Conclusion Preventing methylation of MEG3 might matter in lessening BC chemoresistance, owing to its hindering proliferation and metastasis of BC cells.
Collapse
Affiliation(s)
- Hongchang Li
- Department of General Surgery, Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai, China
| | - Puhua Wang
- Department of General Surgery, Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai, China
| | - Jiazhe Liu
- Department of General Surgery, Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai, China
| | - Weiyan Liu
- Department of General Surgery, Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai, China
| | - Xubo Wu
- Department of General Surgery, Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai, China
| | - Junbin Ding
- Department of General Surgery, Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai, China
| | - Jie Kang
- Department of General Surgery, Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai, China
| | - Jindong Li
- Department of General Surgery, Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai, China
| | - Jingfeng Lu
- Department of General Surgery, Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai, China
| | - Gaofeng Pan
- Department of General Surgery, Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai, China
| |
Collapse
|
40
|
Bai Z, Wu Y, Bai S, Yan Y, Kang H, Ma W, Zhang J, Gao Y, Hui B, Ma H, Li R, Zhang X, Ren J. Long non-coding RNA SNGH7 Is activated by SP1 and exerts oncogenic properties by interacting with EZH2 in ovarian cancer. J Cell Mol Med 2020; 24:7479-7489. [PMID: 32420685 PMCID: PMC7339223 DOI: 10.1111/jcmm.15373] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/19/2020] [Accepted: 04/22/2020] [Indexed: 11/28/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are key regulators or a range of diseases and chronic conditions such as cancers, but how they function in the context of ovarian cancer (OC) is poorly understood. The Coding-Potential Assessment Tool was used to assess the likely protein-coding potential of SNHG7. SNHG7 expression was elevated in ovarian tumour tissues measured by qRT-PCR. The online database JASPAR was used to predict the transcription factors binding to SNHG7. Twenty-four-well Transwell plates were used for invasion assays. RNA immunoprecipitation was performed to determine RNA-protein associations. EdU assay was introduced to detect cell proliferation. Chromatin immunoprecipitation was performed to confirm the directly interaction between DNA and protein. We discovered that in the context of OC there is a significant up-regulation of the lncRNA SNHG7. Knocking down this lncRNA disrupted both OC cell invasion and proliferation, while its overexpression had the opposite effect. SP1 binding sites were present in the SNHG7 promoter, and chromatin immunoprecipitation (ChIP) confirmed direct SP1 binding to this region, activating SNHG7 transcription. We found that at a mechanistic level in OC cells, KLF2 is a probable SNHG7 target, as we found that SHNCCC16 directly interacts with EZH2 and thus represses KLF2 expression. In summary, this research demonstrates that lncRNA SNHG7 is an SP1-activated molecule that contributes to OC progression by providing a scaffold whereby EZH2 can repress KLF2 expression.
Collapse
MESH Headings
- Animals
- Base Sequence
- Carcinogenesis/genetics
- Carcinogenesis/pathology
- Cell Line, Tumor
- Cell Movement/genetics
- Cell Proliferation/genetics
- Enhancer of Zeste Homolog 2 Protein/metabolism
- Epigenesis, Genetic
- Epithelial-Mesenchymal Transition/genetics
- Female
- Gene Expression Regulation, Neoplastic
- Humans
- Kruppel-Like Transcription Factors/genetics
- Kruppel-Like Transcription Factors/metabolism
- Mice, Inbred BALB C
- Mice, Nude
- Neoplasm Invasiveness
- Neoplasm Metastasis
- Ovarian Neoplasms/genetics
- Ovarian Neoplasms/pathology
- Promoter Regions, Genetic/genetics
- Protein Binding/genetics
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Sp1 Transcription Factor/metabolism
- Transcription, Genetic
- Up-Regulation/genetics
Collapse
Affiliation(s)
- Zhuanli Bai
- Department of Plastic and Aesthetic Maxillofacial SurgeryFirst Affiliated Hospital of Xi'an Jiao Tong UniversityXi’anChina
| | - YinYing Wu
- Department of Chemotherapy, Oncology DepartmentFirst Affiliated Hospital of Xi’an Jiaotong UniversityXi’anChina
| | - Shuheng Bai
- Department of Radiotherapy, Oncology DepartmentFirst Affiliated Hospital of Xi’an Jiaotong UniversityXi’anChina
| | - Yanli Yan
- Department of Radiotherapy, Oncology DepartmentFirst Affiliated Hospital of Xi’an Jiaotong UniversityXi’anChina
| | - Haojing Kang
- Department of Radiotherapy, Oncology DepartmentFirst Affiliated Hospital of Xi’an Jiaotong UniversityXi’anChina
| | - Wen Ma
- Medical SchoolXi’an Jiaotong University Xi’anXi’anChina
| | | | - Ying Gao
- Department of Radiotherapy, Oncology DepartmentFirst Affiliated Hospital of Xi’an Jiaotong UniversityXi’anChina
| | - Beina Hui
- Department of Radiotherapy, Oncology DepartmentFirst Affiliated Hospital of Xi’an Jiaotong UniversityXi’anChina
| | - Hailin Ma
- Department of Radiotherapy, Oncology DepartmentFirst Affiliated Hospital of Xi’an Jiaotong UniversityXi’anChina
| | - Rong Li
- Department of Radiotherapy, Oncology DepartmentFirst Affiliated Hospital of Xi’an Jiaotong UniversityXi’anChina
| | - Xiaozhi Zhang
- Department of Radiotherapy, Oncology DepartmentFirst Affiliated Hospital of Xi’an Jiaotong UniversityXi’anChina
| | - Juan Ren
- Department of Radiotherapy, Oncology DepartmentFirst Affiliated Hospital of Xi’an Jiaotong UniversityXi’anChina
| |
Collapse
|
41
|
Zhang C, Wang J, Zhang J, Qu H, Tang X. LINC00461 Overexpression Can Induce Docetaxel Resistance in Breast Cancer by Interacting with miR-411-5p. Onco Targets Ther 2020; 13:5551-5562. [PMID: 32606770 PMCID: PMC7297459 DOI: 10.2147/ott.s247776] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 05/14/2020] [Indexed: 12/25/2022] Open
Abstract
Purpose Breast cancer (BC) is the most common malignant cancer in women worldwide. Recently, long non-coding RNAs (LncRNAs) have been reported to have essential roles in BC tumorigenesis. Patients and Methods Tumor and adjacent non-tumor tissue samples were collected from patients with BC (n = 168) for comparison of LncRNA and miRNA expression levels. Patient clinical, demographic, and molecular data were analyzed by univariate and multivariate methods to identify factors associated with patient survival, and a nomogram was generated using significant risk/protective factors. Further, analyses of LINC00461 and miR-411-5p expression and function were conducted in BC and normal breast epithelial cell lines, by quantitative RT-PCR, cell proliferation, wound-healing, RNA pull-down, RNA immunoprecipitation, and luciferase assays. Docetaxel (DTX)-resistant BC cell lines were also generated and used to assess the roles of LINC00461 and miR-411-5p in drug resistance. Results LINC00461 was up-regulated in BC tissues relative to adjacent non-tumor samples, and expression of LINC00461 was correlated with poor patient prognosis. LINC00461 knockdown could inhibit proliferation of BC cells in vitro. Further, LINC00461 expression was higher in DTX-resistant than in non-resistant BC cell lines. Our data support a role for LINC00461 as a competitive endogenous RNA sponge involved in regulation of miR-411-5p expression in BC. miR-411-5p was down-regulated in both BC tissues and cell lines, with levels negatively correlated with those of LINC00461. Moreover, miR-411-5p was down-regulated in DTX-resistant BC cell lines compared with non-resistant cell lines. Conclusion In conclusion, LINC00461 promotes proliferation, migration, and DTX-resistance in BC by acting as a sponge for miR-411-5p. This process represents a potential therapeutic target for patients with BC.
Collapse
Affiliation(s)
- Cheng Zhang
- Department of Thoracic Surgery, First Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710061, Shaanxi Province, People's Republic of China
| | - Jizhao Wang
- Department of Thoracic Surgery, First Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710061, Shaanxi Province, People's Republic of China
| | - Jiawei Zhang
- Department of Thoracic Surgery, First Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710061, Shaanxi Province, People's Republic of China
| | - Hangying Qu
- Department of Thoracic Surgery, First Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710061, Shaanxi Province, People's Republic of China
| | - Xiaojiang Tang
- Department of Breast Surgery, First Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710061, Shaanxi Province, People's Republic of China
| |
Collapse
|
42
|
Peng X, Zhang K, Ma L, Xu J, Chang W. The Role of Long Non-Coding RNAs in Thyroid Cancer. Front Oncol 2020; 10:941. [PMID: 32596158 PMCID: PMC7300266 DOI: 10.3389/fonc.2020.00941] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 05/13/2020] [Indexed: 12/15/2022] Open
Abstract
Thyroid cancer, the most common endocrine malignancy, has become the most commonly diagnosed malignant solid tumor. Moreover, some cases have poor prognosis, and the survival period is only 3-5 months. Long noncoding RNAs (lncRNAs) are a group of functional RNA molecules more than 200 nucleotides in length that lack the ability to encode protein but participate in all aspects of gene regulation. Functionally, many lncRNAs play essential roles in epigenetic regulation at transcriptional and post-transcriptional levels via various molecular mechanisms. Recent studies have discovered important roles for lncRNAs during the complex process of carcinogenesis in thyroid cancer. In this review, we focus on lncRNAs dysregulated in thyroid cancer and summarize recently reported associations between lncRNAs and thyroid cancer in order to demonstrate the significant value of lncRNAs in diagnosis and treatment.
Collapse
Affiliation(s)
- Xuejiao Peng
- Department of Thyroid Surgery, Second Affiliated Hospital of Jilin University, Changchun, China
| | - Kun Zhang
- Medical Research Center, Second Affiliated Hospital of Jilin University, Changchun, China
| | - Li Ma
- Department of Thyroid Surgery, Second Affiliated Hospital of Jilin University, Changchun, China
| | - Junfeng Xu
- Department of Thyroid Surgery, Second Affiliated Hospital of Jilin University, Changchun, China
| | - Weiqin Chang
- Department of Thyroid Surgery, Second Affiliated Hospital of Jilin University, Changchun, China
| |
Collapse
|
43
|
Qin S, Zhang Y, Zhang J, Tian F, Sun L, He X, Ma X, Zhang J, Liu XR, Zeng W, Lin Y. SPRY4 regulates trophoblast proliferation and apoptosis via regulating IFN-γ-induced STAT1 expression and activation in recurrent miscarriage. Am J Reprod Immunol 2020; 83:e13234. [PMID: 32196809 DOI: 10.1111/aji.13234] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/27/2020] [Accepted: 03/16/2020] [Indexed: 12/21/2022] Open
Abstract
PROBLEM The dysregulation of trophoblast functions is one of the leading causes of recurrent miscarriage (RM), which frustrates 1%-5% of couples of childbearing ages. Sprouty 4 (SPRY4) is considered as a tumour suppressor and exerts a negative role in cell viability. However, its role in regulating trophoblast behaviors at the maternal-fetal interface remains largely unknown. METHOD OF STUDY First-trimester villous samples were collected from RM patients and healthy controls (HCs) to determine the SPRY4 expression in human placenta during early pregnancy. The HTR8/SVneo cell line was introduced to clarify trophoblast cell functions via transfecting with specific short interfering RNA against SPRY4 or SPRY4-overexpressing lentivirus in vitro. In addition, gene expression microarray analysis was performed to explore the downstream molecules and pathways. RESULTS Our results revealed that SPRY4 expression was significantly increased in the first-trimester cytotrophoblasts of RM patients compared with HCs. Furthermore, SPRY4 overexpression inhibited trophoblast proliferation and accelerated apoptosis in vitro, while SPRY4 knockdown reversed these effects. Mechanistically, IFN-γ -induced STAT1 expression and activation were involved in the regulation of trophoblast proliferation and apoptosis by SPRY4, and IFN-γ promoted SPRY4 expression and STAT1 phosphorylation through PI3K/AKT pathway. Additionally, both STAT1 and phosphorylated STAT (p-STAT) levels were also upregulated in trophoblasts from RM patients and positively correlated with SPRY4 expression. CONCLUSION Our findings indicate that SPRY4 may act as a negative regulator of trophoblast functions through upregulating IFN-γ/PI3K/AKT-induced STAT1 activation. High levels of SPRY4 and STAT1 may contribute to RM development and progression, and blocking of either target could be a novel therapeutic strategy for RM patients.
Collapse
Affiliation(s)
- Shi Qin
- Shanghai Key Laboratory of Embryo Original Diseases, the International Peace Maternity & Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Zhang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jing Zhang
- Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fuju Tian
- Shanghai Key Laboratory of Embryo Original Diseases, the International Peace Maternity & Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liqun Sun
- Shanghai Key Laboratory of Embryo Original Diseases, the International Peace Maternity & Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoying He
- Shanghai Key Laboratory of Embryo Original Diseases, the International Peace Maternity & Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoling Ma
- Shanghai Key Laboratory of Embryo Original Diseases, the International Peace Maternity & Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun Zhang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiao-Rui Liu
- Shanghai Key Laboratory of Embryo Original Diseases, the International Peace Maternity & Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weihong Zeng
- Shanghai Key Laboratory of Embryo Original Diseases, the International Peace Maternity & Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi Lin
- Shanghai Key Laboratory of Embryo Original Diseases, the International Peace Maternity & Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
44
|
Ye Y, Gu J, Liu P, Wang H, Jiang L, Lei T, Yu S, Han G, Wang Z. Long Non-Coding RNA SPRY4-IT1 Reverses Cisplatin Resistance by Downregulating MPZL-1 via Suppressing EMT in NSCLC. Onco Targets Ther 2020; 13:2783-2793. [PMID: 32308413 PMCID: PMC7135170 DOI: 10.2147/ott.s232769] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 03/08/2020] [Indexed: 01/18/2023] Open
Abstract
PURPOSE Long non-coding RNA (lncRNA) SPRY4 intronic transcript 1 (SPRY4-IT1) is reported to play important roles in the occurrence and development of many tumors. However, the possible role of SPRY4-IT1 in cisplatin (DDP) resistance of non-small-cell lung cancer (NSCLC) remains unclear. The aim of this study is to investigate the functions and molecular mechanisms underlying SPRY4-IT1 of cisplatin resistance in NSCLC. METHODS Expression of SPRY4-IT1 was analyzed in A549 and cisplatin-resistant A549/DDP cell lines by quantitative real-time polymerase chain reaction (RT-qPCR). Overexpression techniques were applied to investigate the biological functions of SPRY4-IT1 in cisplatin-resistant A549/DDP cells. The effects of SPRY4-IT1 on proliferation and apoptosis were evaluated using cell counting kit-8 (CCK8) assays, colony formation assay and flow-cytometric analysis. The expressions of epithelial-mesenchymal transition (EMT)-associated proteins, including E-cadherin and Vimentin, were detected by Western blot. Microarray analysis was performed to identify the putative targets of SPRY4-IT1, which were further verified by Western blotting and RT-qPCR. A549/DDP cells transfected with pCDNA-SPRY4-IT1 were injected into nude mice in order to verify the effect of SPRY4-IT1 on cisplatin resistance in vivo. RESULTS The present study demonstrated that SPRY4-IT1 expression was decreased in A549/DDP cells compared with parental A549 cells. Upregulation of SPRY4-IT1 suppressed cell proliferation and caused apoptosis of A549/DDP cells both in vitro and in vivo. MPZL-1 was negatively regulated by SPRY4-IT1. Furthermore, upregulation of SPRY4-IT1 and downregulation of MPZL-1 could suppress epithelial-mesenchymal transition (EMT), which was characterized by increased E-cadherin expression and decreased Vimentin expression. CONCLUSION Upregulation of SPRY4-IT1 reversed the cisplatin-resistant phenotype of NSCLC partially by downregulating MPZL-1 via inhibiting EMT process.
Collapse
Affiliation(s)
- Yunyao Ye
- Department of Oncology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
- Department of Oncology, Taizhou People’s Hospital, Taizhou, Jiangsu, People’s Republic of China
| | - Jingyao Gu
- Department of Oncology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| | - Pei Liu
- Department of Oncology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
- Department of Digestive Oncology, The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| | - He Wang
- Department of Oncology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
- Department of Oncology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| | - Lihua Jiang
- Department of Oncology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| | - Tianyao Lei
- Department of Oncology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| | - Shanxun Yu
- Department of Oncology, Taizhou People’s Hospital, Taizhou, Jiangsu, People’s Republic of China
| | - Gaohua Han
- Department of Oncology, Taizhou People’s Hospital, Taizhou, Jiangsu, People’s Republic of China
| | - Zhaoxia Wang
- Department of Oncology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| |
Collapse
|
45
|
Crudele F, Bianchi N, Reali E, Galasso M, Agnoletto C, Volinia S. The network of non-coding RNAs and their molecular targets in breast cancer. Mol Cancer 2020; 19:61. [PMID: 32188472 PMCID: PMC7079433 DOI: 10.1186/s12943-020-01181-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 03/05/2020] [Indexed: 02/06/2023] Open
Abstract
Background Non-coding RNAs are now recognized as fundamental components of the cellular processes. Non-coding RNAs are composed of different classes, including microRNAs (miRNAs) and long non-coding RNAs (lncRNAs). Their detailed roles in breast cancer are still under scrutiny. Main body We systematically reviewed from recent literature the many functional and physical interactions of non-coding RNAs in breast cancer. We used a data driven approach to establish the network of direct, and indirect, interactions. Human curation was essential to de-convolute and critically assess the experimental approaches in the reviewed articles. To enrol the scientific papers in our article cohort, due to the short time span (shorter than 5 years) we considered the journal impact factor rather than the citation number. The outcome of our work is the formal establishment of different sub-networks composed by non-coding RNAs and coding genes with validated relations in human breast cancer. This review describes in a concise and unbiased fashion the core of our current knowledge on the role of lncRNAs, miRNAs and other non-coding RNAs in breast cancer. Conclusions A number of coding/non-coding gene interactions have been investigated in breast cancer during recent years and their full extent is still being established. Here, we have unveiled some of the most important networks embracing those interactions, and described their involvement in cancer development and in its malignant progression.
Collapse
Affiliation(s)
- Francesca Crudele
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy.,LTTA, University of Ferrara, Ferrara, Italy
| | - Nicoletta Bianchi
- Department of Biomedical Sciences and Specialist Surgery, University of Ferrara, 44121, Ferrara, Italy
| | - Eva Reali
- IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| | - Marco Galasso
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Chiara Agnoletto
- Area of Neuroscience, International School for Advanced Studies (SISSA-ISAS), Trieste, Italy
| | - Stefano Volinia
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy. .,LTTA, University of Ferrara, Ferrara, Italy.
| |
Collapse
|
46
|
Abolghasemi M, Tehrani SS, Yousefi T, Karimian A, Mahmoodpoor A, Ghamari A, Jadidi-Niaragh F, Yousefi M, Kafil HS, Bastami M, Edalati M, Eyvazi S, Naghizadeh M, Targhazeh N, Mihanfar A, Yousefi B, Safa A, Majidinia M, Rameshknia V. Critical roles of long noncoding RNAs in breast cancer. J Cell Physiol 2020; 235:5059-5071. [PMID: 31951025 DOI: 10.1002/jcp.29442] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Accepted: 08/26/2019] [Indexed: 12/22/2022]
Abstract
Breast cancer is a major clinical challenge that affects a wide range of the female population and heavily burdens the health system. In the past few decades, attempts have been made to understand the etiology of breast cancer, possible environmental risk factors, and the genetic predispositions, pathogenesis, and molecular aberrations involved in the process. Studies have shown that breast cancer is a heterogeneous entity; each subtype has its specific set of aberrations in different cell signaling pathways, such as Notch, Wnt/β-catenin, transforming growth factor-β, and mitogen-activated protein kinase pathways. One novel group of molecules that have been shown to be inducted in the regulation of multiple cell signaling pathways is the long noncoding RNAs (lncRNAs). These molecules have important implications in the regulation of multiple signaling pathways by interacting with various genes, affecting the transcription process, and finally, playing roles in posttranslational control of these genes. There is growing evidence that lncRNAs are involved in the process of breast cancer formation by effecting the aforementioned signaling pathways, and that this involvement can have significant diagnostic and prognostic values in clinical contexts. The present review aims to elicit the significance of lncRNAs in the regulation of cell signaling pathways, and the resulting changes in cell survival, proliferation, and invasion, which are the hallmarks of breast cancer.
Collapse
Affiliation(s)
- Maryam Abolghasemi
- Cellular and Molecular Biology Research Center, Babol University of Medical Sciences, Babol, Iran.,Student Research Committee, Babol University of medical sciences, Babol, Iran
| | - Sadra S Tehrani
- Department of Clinical Biochemistry, Tehran University of Medical Sciences, Tehran, Iran.,Student Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Tooba Yousefi
- Cellular and Molecular Biology Research Center, Babol University of Medical Sciences, Babol, Iran.,Student Research Committee, Babol University of medical sciences, Babol, Iran
| | - Ansar Karimian
- Cellular and Molecular Biology Research Center, Babol University of Medical Sciences, Babol, Iran.,Student Research Committee, Babol University of medical sciences, Babol, Iran
| | - Ata Mahmoodpoor
- Anesthesiology Research Team, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Aliakbar Ghamari
- Anesthesiology Research Team, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Mehdi Yousefi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein S Kafil
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Milad Bastami
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdi Edalati
- Department of Laboratory Sciences, Paramedical Faculty, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shirin Eyvazi
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohsen Naghizadeh
- Department of Clinical Biochemistry, Tehran University of Medical Sciences, Tehran, Iran.,Student Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Niloufar Targhazeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ainaz Mihanfar
- Solid Tumor Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Bahman Yousefi
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amin Safa
- Institute of Research and Development, Duy Tan University, Da Nang, Vietnam
| | - Maryam Majidinia
- Solid Tumor Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Vahid Rameshknia
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Faculty of Medicine, Islamic Azad University, Tabriz, Iran
| |
Collapse
|
47
|
Ma W, Chen X, Wu X, Li J, Mei C, Jing W, Teng L, Tu H, Jiang X, Wang G, Chen Y, Wang K, Wang H, Wei Y, Liu Z, Yuan Y. Long noncoding RNA SPRY4-IT1 promotes proliferation and metastasis of hepatocellular carcinoma via mediating TNF signaling pathway. J Cell Physiol 2020; 235:7849-7862. [PMID: 31943198 DOI: 10.1002/jcp.29438] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 12/23/2019] [Indexed: 01/17/2023]
Abstract
Our previous studies have indicated that long noncoding RNA (lncRNA) SPRY4 intronic transcript 1 (SPRY4-IT1) was highly expressed in hepatocellular carcinoma (HCC). However, it still remained unclear how SPRY4-IT1 worked in tumorgenesis in HCC. In this study, we tested the overexpression of SPRY4-IT1 in HCC tissues and cells through a quantitative real-time polymerase chain reaction. Statistical analyses showed that the upregulation had an association with the tumor node metastasis stage, thrombin time, and alkaline phosphatase. Furthermore, SPRY4-IT1 could be involved in cell proliferation, metastasis, and the epithelial-to-mesenchymal transition (EMT) process in HCC in vitro and in vivo. RNA-sequencing and transcriptome analysis were carried out to explore the mechanism of SPRY4-IT1 in HCC. With SPRY4-IT1 being knocked down or overexpressed, the level of proteins in the tumor necrosis factor (TNF) signaling pathway changed. We detected the RNA binding protein heterogeneous nuclear ribonucleoprotein L (HNRNPL) as a SPRY4-IT1 interacting protein through RNA pull-down assay and liquid chromatography-mass spectrometry, then verified through RNA immunoprecipitation. Downregulation of HNRNPL induced the change of proteins observed on SPRY4-IT1 downregulation revealing the SPRY4-IT1: HNRNPL complex in the TNF signaling pathway and EMT process in HCC. In general, our experimental data and analysis demonstrated the role of SPRY4-IT1 in promoting progress and metastasis of HCC by the TNF signaling pathway.
Collapse
Affiliation(s)
- Weijie Ma
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xi Chen
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xiaoling Wu
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jinghua Li
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Chengjie Mei
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Wei Jing
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Li Teng
- Department of Pathology, Wuhan Women and Children Medical Care Center, Wuhan, China
| | - Honglei Tu
- Department of Clinical Hematology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xiang Jiang
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Ganggang Wang
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yiran Chen
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Kunlei Wang
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Haitao Wang
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yongchang Wei
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zhisu Liu
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yufeng Yuan
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
48
|
Chen Z, Lei T, Chen X, Gu J, Huang J, Lu B, Wang Z. Long non-coding RNA in lung cancer. Clin Chim Acta 2019; 504:190-200. [PMID: 31790697 DOI: 10.1016/j.cca.2019.11.031] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 11/21/2019] [Accepted: 11/22/2019] [Indexed: 02/07/2023]
Abstract
Lung cancer is the leading cause of cancer-related death worldwide. Owing to the difficulty in early diagnosis and the lack of effective treatment strategies, the 5-year survival rates for lung cancer remain very low. With the development of whole genome and transcriptome sequencing technology, long non-coding RNA (lncRNA) has attracted increasing attention. LncRNAs regulate gene expression at the epigenetic, transcriptional and post-transcriptional levels and are widely involved in a variety of diseases, including tumorigenesis. In lung cancer studies, multiple differentially expressed lncRNAs have been identified; several lncRNAs were identified as oncogenic lncRNAs with tumor-driving effects, while other lncRNAs play a role in tumor inhibition and are called tumor-suppressive lncRNAs. These tumor-suppressive lncRNAs are involved in multiple physiological processes such as cell proliferation, apoptosis, and metastasis and thus participate in tumor progression. In this review, we discussed the oncogenic and tumor-suppressive lncRNAs in lung cancer, as well as their biological functions and regulatory mechanisms. Furthermore, we found the potential significance of lncRNAs in clinical diagnosis and treatment.
Collapse
Affiliation(s)
- Zhenyao Chen
- Cancer Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, Jiangsu, PR China
| | - Tianyao Lei
- Cancer Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, Jiangsu, PR China
| | - Xin Chen
- Cancer Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, Jiangsu, PR China
| | - Jingyao Gu
- Cancer Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, Jiangsu, PR China
| | - Jiali Huang
- Cancer Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, Jiangsu, PR China
| | - Binbin Lu
- Cancer Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, Jiangsu, PR China.
| | - Zhaoxia Wang
- Cancer Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, Jiangsu, PR China.
| |
Collapse
|
49
|
Song X, Zhang X, Wang X, Chen L, Jiang L, Zheng A, Zhang M, Zhao L, Wei M. LncRNA SPRY4-IT1 regulates breast cancer cell stemness through competitively binding miR-6882-3p with TCF7L2. J Cell Mol Med 2019; 24:772-784. [PMID: 31736268 PMCID: PMC6933354 DOI: 10.1111/jcmm.14786] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 09/08/2019] [Accepted: 09/23/2019] [Indexed: 12/24/2022] Open
Abstract
SPRY4-intronic transcript 1 has been found in several kinds of cancers, but the role of SPRY4-IT1 in breast cancer stem cells has not been studied. We investigated whether SPRY4-IT1 is involved in the promotion of breast cancer stem cells (BCSCs). We used qRT-PCR to detect the expression of SPRY4-IT1 in MCF-7 cells and MCF-7 cancer stem cells (MCF-7 CSCs). The effects of SPRY4-IT1 on the proliferation and renewal ability of breast cancer cells were investigated by in vitro and in vivo assays (ie in situ hybridization, colony formation assay, sphere formation assay, flow cytometry assay, western blotting, xenograft model and immunohistochemistry). The mechanism of SPPRY4-IT1 as a ceRNA was studied by a dual-luciferase reporter assay and bioinformatic analysis. In our study, SPRY4-IT1 was up-regulated in MCF-7 CSCs compared with MCF-7 cells, and high SPRY4-IT1 expression was related to reduced breast cancer patient survival. Furthermore, SPRY4-IT1 overexpression promoted breast cancer cell proliferation and stemness in vitro and in vivo. In addition, SPRY4-IT1 knockdown suppressed BCSC renewal ability and stemness maintenance in vivo and in vitro. The dual-luciferase reporter assays indicated that SPRY4-IT1 as a sponge for miR-6882-3p repressed transcription factor 7-like 2 (TCF7L2) expression. Taken together, these findings demonstrated that SPRY4-IT1 promotes proliferation and stemness of breast cancer cells as well as renewal ability and stemness maintenance of BCSCs by increasing the expression of TCF7L2 through targeting miR-6882-3p.
Collapse
Affiliation(s)
- Xinyue Song
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang, China
| | - Xiaoxue Zhang
- Department of Medical Imaging, Cancer Hospital of China Medical University, Shenyang, China
| | - Xinnan Wang
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang, China
| | - Lianze Chen
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang, China
| | - Longyang Jiang
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang, China
| | - Ang Zheng
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Ming Zhang
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang, China
| | - Lin Zhao
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang, China
| | - Minjie Wei
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang, China
| |
Collapse
|
50
|
Yao N, Fu Y, Chen L, Liu Z, He J, Zhu Y, Xia T, Wang S. Long non-coding RNA NONHSAT101069 promotes epirubicin resistance, migration, and invasion of breast cancer cells through NONHSAT101069/miR-129-5p/Twist1 axis. Oncogene 2019; 38:7216-7233. [PMID: 31444414 DOI: 10.1038/s41388-019-0904-5] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 06/09/2019] [Accepted: 07/17/2019] [Indexed: 12/17/2022]
Abstract
Drug resistance, including epirubicin-based therapeutic resistance, is one of the major reasons responsible for the unfavorable prognosis of patients diagnosed with breast cancer (BC). Acquired chemoresistance and metastatic properties have been identified to be closely associated with the process of epithelial-mesenchymal transition (EMT). Recently, dysregulation of long non-coding RNAs (lncRNAs) have been increasingly reported to perform promotive or suppressive functions in chemoresistance and EMT process in multiple cancers. However, relevant novel lncRNA participating in epirubicin resistance and EMT and its underlying molecular mechanisms remain unknown in BC. Herein, we established the epirubicin-resistant breast cancer cell subline (MCF-7/ADR), which presented mesenchymal phenotype and increased metastatic potential. A panel of differentially expressed lncRNAs, including 268 upregulated and 49 downregulated lncRNAs, were identified by high-flux microarray investigation in MCF-7 and MCF-7/ADR cells. The novel lncRNA NONHSAT101069 was significantly overexpressed in BC specimens, BC cell lines, and epirubicin-resistant cell sublines. The knockdown of NONHSAT101069 significantly repressed, whereas overexpression of NONHSAT101069 promoted the epirubicin resistance, migration, invasion and EMT process of BC cells both in vitro and in vivo. Further mechanism-related researches uncovered that NONHSAT101069 functioned as a ceRNA (competing endogenous RNA) via sponging miR-129-5p. Twist1 was a direct downstream protein of NONHSAT101069/miR-129-5p axis in BC cells. To conclude, NONHSAT101069 was upregulated in BC tissues and promoted epirubicin resistance, migration and invasion of BC cells via regulation of NONHSAT101069/miR-129-5p/Twist1 axis, highlighting its potential as an oncogene and a therapeutic biomarker for BC.
Collapse
Affiliation(s)
- Na Yao
- Breast Disease Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu Province, P. R. China
- Department of Thyroid & Breast Surgery, The Affiliated Hospital of Nanjing University of TCM, Wuxi City Hospital of TCM, Wuxi, 214000, Jiangsu Province, P. R. China
| | - Yue Fu
- Department of General Surgery, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, 213000, Jiangsu Province, P. R. China
| | - Lie Chen
- Breast Disease Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu Province, P. R. China
| | - Zhao Liu
- Department of Thyroid & Breast Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 222100, Jiangsu Province, P. R. China
| | - Jing He
- Department of Surgical Oncology, The Affiliated Hospital of Jiangnan University, Wuxi, 214000, Jiangsu Province, P. R. China
| | - Yichao Zhu
- Department of Physiology, Nanjing Medical University, Nanjing, 211166, Jiangsu Province, P. R. China.
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, Jiangsu Province, P. R. China.
| | - Tiansong Xia
- Breast Disease Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu Province, P. R. China.
| | - Shui Wang
- Breast Disease Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu Province, P. R. China.
| |
Collapse
|