1
|
Xu M, Xu C, Wang R, Tang Q, Zhou Q, Wu W, Wan X, Mo H, Pan J, Wang S. Treating human cancer by targeting EZH2. Genes Dis 2025; 12:101313. [PMID: 40028035 PMCID: PMC11870178 DOI: 10.1016/j.gendis.2024.101313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 03/01/2024] [Accepted: 03/07/2024] [Indexed: 03/05/2025] Open
Abstract
Enhancer of zeste homolog 2 (EZH2), an epigenetic regulator that primarily inhibits downstream gene expression by tri-methylating histone H3, which is usually overexpressed in tumors and participates in many processes such as tumor occurrence and development, invasion, migration, drug resistance, and anti-tumor immunity as an oncogene, making it an important biomarker in cancer therapy. Collectively, several transcription factors and RNAs cooperate to facilitate the elevated expression of EZH2 in cancer. Although the significance of blocking EZH2 in cancer for inhibiting cancer progression is widely recognized, the clinical application of EZH2 inhibitors continues to encounter numerous challenges. In this review, drawing upon our comprehensive understanding of the factual underpinnings of EZH2's role in cancer, we aim to clarify the crucial importance of targeting EZH2 in cancer treatment. Furthermore, we summarize the current research landscape surrounding targeted EZH2 inhibitors and offer insights into potential future applications of these inhibitors.
Collapse
Affiliation(s)
- Mengfei Xu
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, China
- Department of Oncology, Clinical and Basic Research Team of TCM Prevention and Treatment of NSCLC, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangzhou, Guangdong 510120, China
| | - Chunyan Xu
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, China
| | - Rui Wang
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, China
- Department of Oncology, Clinical and Basic Research Team of TCM Prevention and Treatment of NSCLC, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangzhou, Guangdong 510120, China
| | - Qing Tang
- Department of Oncology, Clinical and Basic Research Team of TCM Prevention and Treatment of NSCLC, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangzhou, Guangdong 510120, China
| | - Qichun Zhou
- Department of Oncology, Clinical and Basic Research Team of TCM Prevention and Treatment of NSCLC, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangzhou, Guangdong 510120, China
| | - Wanyin Wu
- Department of Oncology, Clinical and Basic Research Team of TCM Prevention and Treatment of NSCLC, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangzhou, Guangdong 510120, China
| | - Xinliang Wan
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, China
- Department of Oncology, Clinical and Basic Research Team of TCM Prevention and Treatment of NSCLC, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangzhou, Guangdong 510120, China
| | - Handan Mo
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, China
- Department of Oncology, Clinical and Basic Research Team of TCM Prevention and Treatment of NSCLC, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangzhou, Guangdong 510120, China
| | - Jun Pan
- Department of Urology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, China
| | - Sumei Wang
- Department of Oncology, Clinical and Basic Research Team of TCM Prevention and Treatment of NSCLC, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangzhou, Guangdong 510120, China
| |
Collapse
|
2
|
Kumar RR, Mohanta A, Rana MK, Uttam V, Tuli HS, Jain A. LncRNAs SOX2-OT and NEAT1 act as a potential biomarker for esophageal squamous cell carcinoma. Discov Oncol 2024; 15:693. [PMID: 39576275 PMCID: PMC11584831 DOI: 10.1007/s12672-024-01589-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 11/13/2024] [Indexed: 11/25/2024] Open
Abstract
Despite strides in diagnostic and therapeutic approaches for ESCC, patient survival rates remain relatively low. Recent studies highlight the pivotal role of long non-coding RNAs (lncRNAs) in regulating diverse cellular activities in humans. Dysregulated lncRNAs have emerged as potential diagnostic indicators across various cancers, including ESCC. However, further research is necessary to effectively leverage ESCC-associated lncRNAs in clinical settings. Understanding their clinical significance for ESCC diagnosis and their mechanisms can pave the way for more effective therapeutic strategies. Our qRT-PCR analysis revealed significant downregulation of SOX2-OT (~ 2.02-fold) and NEAT1 (~ 1.53-fold) in ESCC blood samples. These lncRNAs show potential as biomarkers for distinguishing ESCC patients from healthy individuals, with ROC curves and AUC values of 0.736 for SOX2-OT and 0.621 for NEAT1. Further analysis examined the correlation between SOX2-OT and NEAT1 expression and various clinicopathological factors, including age, gender, smoking, alcohol use, hot beverage intake, tumor grade, and TNM stages. In-silico studies highlighted their roles in miRNA sponging via mTOR and MAPK pathways, while co-expression network analysis identified associated genes. This research paves the way for future studies on ESCC prognosis using SOX2-OT and NEAT1 as predictive markers. By thoroughly investigating the functions of these lncRNAs, we aim to deepen our understanding of their potential as diagnostic markers and their role in facilitating effective therapeutic interventions for esophageal squamous cell carcinoma (ESCC) within clinical contexts.
Collapse
Affiliation(s)
- Rajiv Ranjan Kumar
- Non-Coding RNA and Cancer Biology Laboratory, Department of Zoology, Central University of Punjab, Bathinda, Punjab, 151401, India
- Department of Medical Oncology, Dr. B.R.A. Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India
| | - Adrija Mohanta
- Non-Coding RNA and Cancer Biology Laboratory, Department of Zoology, Central University of Punjab, Bathinda, Punjab, 151401, India
| | - Manjit Kaur Rana
- Department of Pathology/Laboratory Medicine, All India Institute of Medical Sciences, Bathinda, India
| | - Vivek Uttam
- Non-Coding RNA and Cancer Biology Laboratory, Department of Zoology, Central University of Punjab, Bathinda, Punjab, 151401, India
| | | | - Aklank Jain
- Non-Coding RNA and Cancer Biology Laboratory, Department of Zoology, Central University of Punjab, Bathinda, Punjab, 151401, India.
| |
Collapse
|
3
|
Ge X, Shen Z, Yin Y. Comprehensive review of LncRNA-mediated therapeutic resistance in non-small cell lung cancer. Cancer Cell Int 2024; 24:369. [PMID: 39522033 PMCID: PMC11549762 DOI: 10.1186/s12935-024-03549-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
Long non-coding RNAs (lncRNAs) are emerging as crucial regulators of gene expression through diverse mechanisms, including regulation of protein localization, sequestration of miRNAs, recruitment of chromatin modifiers, and modulation of signaling pathways. Accumulating evidence highlights their pivotal roles in tumor initiation, progression, and the development of therapeutic resistance. In this review, we comprehensively summarized the existing literature to identify lncRNAs associated with treatment responses in non-small cell lung cancer (NSCLC). Specifically, we categorized these lncRNAs based on their mechanisms of action in mediating resistance to chemotherapy, targeted therapy, and radiotherapy. Our analysis revealed that aberrant expression of various lncRNAs contributes to the development, metastasis, and therapeutic resistance in NSCLC, ultimately leading to poor clinical outcomes. By elucidating the intricate mechanisms through which lncRNAs modulate therapeutic responses, this review aims to provide mechanistic insights into the heterogeneous treatment outcomes observed in NSCLC patients and unveil potential therapeutic targets for overcoming drug resistance.
Collapse
Affiliation(s)
- Xin Ge
- Peking University First Hospital, Beijing, 100034, China
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking-Tsinghua Center of Life Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Zichu Shen
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking-Tsinghua Center of Life Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Yuxin Yin
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking-Tsinghua Center of Life Sciences, Peking University Health Science Center, Beijing, 100191, China.
- Institute of Precision Medicine, Peking University Shenzhen Hospital, Shenzhen, 518036, China.
| |
Collapse
|
4
|
Wu Y, Guo X, Jin L, Huang G, Niu L, Zhao Y. Lnc-LINC00511 promotes gastric cancer progression by regulating MiR-29c-3p/TRIP13 axis through AKT/mTOR pathway. Int J Biol Macromol 2024; 281:136455. [PMID: 39389496 DOI: 10.1016/j.ijbiomac.2024.136455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/18/2024] [Accepted: 10/07/2024] [Indexed: 10/12/2024]
Abstract
Thyroid hormone receptor-interacting factor 13 (TRIP13) contributes to the development of several cancers, including hepatocellular carcinoma (HCC). Although these studies have found that TRIP13 is involved in other cancers, its specific function in gastric cancer requires further investigation. Therefore, this study aimed to investigate the hypothesis that LINC00511 may act as an oncogenic factor in gastric cancer by influencing and regulating the expression level of TRIP13. This relationship has the potential to reveal the molecular mechanisms driving gastric cancer progression and further elucidate the roles of LINC00511 and TRIP13 in gastric cancer. In this study, we confirmed that LINC00511 could act as a ceRNA targeting miR-29c-3p to further regulate the expression of TRIP13. LINC00511 was also found to be able to be positively regulated by the transcription factor IRF9. In addition, TRIP13 could activate the AKT/mTOR pathway by interacting with its downstream protein ACTN2, thus promoting the proliferation of GC cells. lnc-LINC00511 could promote GC progression by regulating the miR-29c-3p/TRIP13 axis and activating the AKT/mTOR pathway.
Collapse
Affiliation(s)
- Yanyan Wu
- Department of Ultrasonic, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xuanyan Guo
- Department of Ultrasonic, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Li Jin
- State Key Laboratory of Quality Research in Chinese Medicine, School of Pharmacy, Macau University of Science and Technology, Taipa 999078, China
| | - Guixiang Huang
- Department of Emergency Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, No. 32, West Section 2, Yihuan Road, Qingyang District, Chengdu 610000, China
| | - Liangbo Niu
- Department of Emergency Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, No. 32, West Section 2, Yihuan Road, Qingyang District, Chengdu 610000, China.
| | - Yu Zhao
- Department of Emergency Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, No. 32, West Section 2, Yihuan Road, Qingyang District, Chengdu 610000, China.
| |
Collapse
|
5
|
Chen X, Li J, Guan X, Bai Y, Wang K. Abnormal activation of genomic LINE1 elements caused by DNA demethylation contributes to lncRNA CASC9 overexpression in esophageal squamous cell carcinoma. Heliyon 2024; 10:e32857. [PMID: 38975080 PMCID: PMC11226909 DOI: 10.1016/j.heliyon.2024.e32857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 05/22/2024] [Accepted: 06/11/2024] [Indexed: 07/09/2024] Open
Abstract
Long noncoding RNA (lncRNA) cancer susceptibility 9 (CASC9) has been found to be overexpressed and functions as an oncogene in many cancer types. We investigated the molecular mechanism underlying CASC9 overexpression in esophageal squamous cell carcinoma (ESCC). Transcripts containing exons 2 and 6 and exons 4 and 6 showed the highest CASC9 expression levels in ESCC, no transcripts were detected in the normal esophageal epithelial Het1A cell line. The Long Interspersed Nuclear Element-1 (LINE1 or L1) element in the genome was found to participate in the evolution of lncRNA CASC9, the antisense promoter (ASP) of L1 provides the cis-regulatory elements necessary for CASC9 activation, and the antisense chain of L1 participates in the formation of exons of CASC9. The activation of the antisense promoter was due to the aberrant hypomethylation of L1 elements. An active enhancer element was identified in the downstream region of CASC9 gene by ChIP-seq and ChIP-qPCR. The interaction between ASP and the enhancer elements was confirmed by chromosome conformation capture (3C). Thus, our results suggest that the L1 ASP activation due to aberrant hypomethylation and downstream enhancer interaction plays a key role in the overexpression of lncRNA CASC9 in ESCC.
Collapse
Affiliation(s)
- Xuedan Chen
- Department of Medical Genetics, Department of Basic Medicine, Army Medical University, Chongqing 400038, China
| | - Juan Li
- Department of Medical Genetics, Department of Basic Medicine, Army Medical University, Chongqing 400038, China
- Jinfeng Laboratory, Chongqing 400038, China
| | - Xingying Guan
- Department of Medical Genetics, Department of Basic Medicine, Army Medical University, Chongqing 400038, China
| | - Yun Bai
- Department of Medical Genetics, Department of Basic Medicine, Army Medical University, Chongqing 400038, China
| | - Kai Wang
- Department of Medical Genetics, Department of Basic Medicine, Army Medical University, Chongqing 400038, China
| |
Collapse
|
6
|
Li Y, Yuan S, Zhou Y, Zhou J, Zhang X, Zhang P, Xiao W, Zhang Y, Deng J, Lou S. Long non-coding RNA PXN-AS1 promotes glutamine synthetase-mediated chronic myeloid leukemia BCR::ABL1-independent resistance to Imatinib via cell cycle signaling pathway. Cancer Cell Int 2024; 24:186. [PMID: 38811958 PMCID: PMC11138077 DOI: 10.1186/s12935-024-03363-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 05/08/2024] [Indexed: 05/31/2024] Open
Abstract
BACKGROUND Chronic myeloid leukemia (CML) is a common hematological malignancy, and tyrosine kinase inhibitors (TKIs) represent the primary therapeutic approach for CML. Activation of metabolism signaling pathway has been connected with BCR::ABL1-independent TKIs resistance in CML cells. However, the specific mechanism by which metabolism signaling mediates this drug resistance remains unclear. Here, we identified one relationship between glutamine synthetase (GS) and BCR::ABL1-independent Imatinib resistance in CML cells. METHODS GS and PXN-AS1 in bone marrow samples of CML patients with Imatinib resistance (IR) were screened and detected by whole transcriptome sequencing. GS expression was upregulated using LVs and blocked using shRNAs respectively, then GS expression, Gln content, and cell cycle progression were respectively tested. The CML IR mice model were established by tail vein injection, prognosis of CML IR mice model were evaluated by Kaplan-Meier analysis, the ratio of spleen/body weight, HE staining, and IHC. PXN-AS1 level was blocked using shRNAs, and the effects of PXN-AS1 on CML IR cells in vitro and in vivo were tested the same as GS. Several RNA-RNA tools were used to predict the potential target microRNAs binding to both GS and PXN-AS1. RNA mimics and RNA inhibitors were used to explore the mechanism through which PXN-AS1 regulates miR-635 or miR-635 regulates GS. RESULTS GS was highly expressed in the bone marrow samples of CML patients with Imatinib resistance. In addition, the lncRNA PXN-AS1 was found to mediate GS expression and disorder cell cycle in CML IR cells via mTOR signaling pathway. PXN-AS1 regulated GS expression by binding to miR-635. Additionally, knockdown of PXN-AS1 attenuated BCR::ABL1-independent Imatinib resistance in CML cells via PXN-AS1/miR-635/GS/Gln/mTOR signaling pathway. CONCLUSIONS Thus, PXN-AS1 promotes GS-mediated BCR::ABL1-independent Imatinib resistance in CML cells via cell cycle signaling pathway.
Collapse
Affiliation(s)
- Yifei Li
- Department of Hematology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, 400010, China
| | - Shiyi Yuan
- Department of Hematology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, 400010, China
| | - Ying Zhou
- Department of Hematology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, 400010, China
| | - Jingwen Zhou
- Department of Hematology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, 400010, China
| | - Xuan Zhang
- Department of Oncology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400316, China
| | - Ping Zhang
- Department of Hematology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, 400010, China
| | - Wenrui Xiao
- Department of Hematology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, 400010, China
| | - Ying Zhang
- Department of Hematology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, 400010, China.
| | - Jianchuan Deng
- Department of Hematology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, 400010, China.
| | - Shifeng Lou
- Department of Hematology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, 400010, China.
| |
Collapse
|
7
|
Si Y, Wen J, Hu C, Chen H, Lin L, Xu Y, Ren D, Meng X, Wang Y, Xia E, Bhandari A, Wang O. LINC00891 Promotes Tumorigenesis and Metastasis of Thyroid Cancer by Regulating SMAD2/3 via EZH2. Curr Med Chem 2024; 31:3818-3833. [PMID: 37221682 DOI: 10.2174/0929867330666230522115945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 04/11/2023] [Accepted: 04/14/2023] [Indexed: 05/25/2023]
Abstract
BACKGROUND Thyroid cancer (TC), the most common endocrine malignant tumor, is increasingly causing a huge threat to our health nowadays. METHODS To explore the tumorigenesis mechanism of thyroid cancer, we identified that long intergenic non-coding RNA-00891 (LINC00891) was upregulated in TC using the Cancer Genome Atlas (TCGA), Gene Expression Omnibus (GEO), and local databases. LINC00891 expression was correlated with histological type and lymph node metastasis (LNM). The high expression of LINC00891 could serve as a diagnostic marker for TC and its LNM. In vitro experiments demonstrated that LINC00891 knockdown could inhibit cell proliferation, migration, invasion and prompt apoptosis and G1 arrest of TC cells. We also investigated the related mechanisms of LINC00891 promoting TC progression using RNA sequencing, Gene Set Enrichment Analysis, and Western blotting. RESULTS Our experiments demonstrated that LINC00891 promoted TC progression via the EZH2-SMAD2/3 signaling axis. In addition, overexpression of EZH2 could reverse the suppressive epithelial-to-mesenchymal transition (EMT) caused by LINC00891 knockdown. CONCLUSION In conclusion, the LINC00891/EZH2/SMAD2/3 regulatory axis participated in tumorigenesis and metastasis of thyroid cancer, which may provide a novel target for treatment.
Collapse
Affiliation(s)
- Yuhao Si
- Department of Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, PR, China
| | - Jialiang Wen
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, PR, China
| | - Chunlei Hu
- Department of Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, PR, China
| | - Hao Chen
- Department of Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, PR China
| | - Lizhi Lin
- Department of Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, PR, China
| | - Yiying Xu
- Department of Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, PR, China
| | - Disuo Ren
- Department of Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, PR, China
| | - Xinyu Meng
- Department of Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, PR, China
| | - Yinghao Wang
- Department of Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, PR, China
| | - Erjie Xia
- Department of Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, PR, China
| | - Adheesh Bhandari
- Department of Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, PR, China
- Department of Surgery, Breast and Thyroid Unit, Primera Hospital, Kathmandu, Nepal
| | - Ouchen Wang
- Department of Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, PR, China
| |
Collapse
|
8
|
Han LQ, Cui TT, Xiao NJ, Li W. Prognostic analysis and treatment utilization of different treatment strategies in elderly esophageal cancer patients with distant metastases: a SEER database analysis. J Cancer Res Clin Oncol 2023; 149:15413-15423. [PMID: 37644234 DOI: 10.1007/s00432-023-05260-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 08/07/2023] [Indexed: 08/31/2023]
Abstract
PURPOSE The purpose of this study was to explore which therapeutic strategy is more beneficial for elderly esophageal cancer (EC) patients with distant metastasis, the treatment utilization status and the screening of factors related to prognosis, so as to better guide the treatment of these patients. METHODS Patients in the Surveillance Epidemiology and End Results (SEER) database were divided into chemoradiotherapy (Group A), chemotherapy (Group B), radiotherapy (Group C), and no treatment (Group D) according to different treatment methods. Propensity score matching (PSM) was performed to adjust for baseline differences between the two groups. Overall survival (OS) and esophageal cancer-specific survival (ECSS) was calculated using the Kaplan-Meier method and compared using the log-rank test. RESULTS A total of 7027 patients were included in this study, 5739 males (81.7%) and 1288 females (18.3%) with the median age was 70 (60-98). In the original cohort, the number of patients in the four groups was 2260 (Group A), 2087 (Group B), 945 (Group C) and 1735 (Group D), respectively. After PSM, there was no significant difference in mean OS (A vs B, 13.5 months VS 13.4 months, P = 0.511) and mean ECSS (A vs B, 15.6 vs 15.5 months, P = 0.374), while both OS (B vs C, 7 vs 3 months, P < 0.001) and ECSS (B vs C, 8 vs 3 months, P < 0.001) of chemotherapy alone were significantly better than those of radiotherapy alone. Subgroup analysis of patients older than 80 years showed that the median OS (A vs B, 7 vs 6 months) and median ECSS (A vs B, 8 vs 7 months) of Group A were significantly better than those of Group B (P < 0.05). In addition, all patients were randomly divided into a training set and a validation set with a ratio of 7:3. Based on the independent risk factors for OS, a nomogram model was constructed and validated. CONCLUSION For elderly EC patients with distant metastasis, aggressive treatment was still necessary after a comprehensive assessment of the patient's physical condition, especially for patients over 80 years old, and chemoradiotherapy maybe still the first choice. In addition, a nomogram model was constructed to intuitively and accurately evaluate the prognosis of this population.
Collapse
Affiliation(s)
| | - Ting-Ting Cui
- Department of Gastroenterology, Air Force Medical Center, Air Force Medical University, Beijing, China
| | - Nian-Jun Xiao
- Medical School of Chinese People's Liberation Army (PLA), Beijing, China
- Department of Gastroenterology and Hepatology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Wen Li
- School of Medicine, Nankai University, Tianjin, China.
- Medical School of Chinese People's Liberation Army (PLA), Beijing, China.
- Department of Gastroenterology and Hepatology, The First Medical Center, Chinese PLA General Hospital, Beijing, China.
- Minimally Invasive Digestive Disease Center, Beijing United Family Hospital, Beijing, China.
| |
Collapse
|
9
|
Moutabian H, Radi UK, Saleman AY, Adil M, Zabibah RS, Chaitanya MNL, Saadh MJ, Jawad MJ, Hazrati E, Bagheri H, Pal RS, Akhavan-Sigari R. MicroRNA-155 and cancer metastasis: Regulation of invasion, migration, and epithelial-to-mesenchymal transition. Pathol Res Pract 2023; 250:154789. [PMID: 37741138 DOI: 10.1016/j.prp.2023.154789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 08/24/2023] [Accepted: 09/01/2023] [Indexed: 09/25/2023]
Abstract
Among the leading causes of death globally has been cancer. Nearly 90% of all cancer-related fatalities are attributed to metastasis, which is the growing of additional malignant growths out of the original cancer origin. Therefore, a significant clinical need for a deeper comprehension of metastasis exists. Beginning investigations are being made on the function of microRNAs (miRNAs) in the metastatic process. Tiny non-coding RNAs called miRNAs have a crucial part in controlling the spread of cancer. Some miRNAs regulate migration, invasion, colonization, cancer stem cells' properties, the epithelial-mesenchymal transition (EMT), and the microenvironment, among other processes, to either promote or prevent metastasis. One of the most well-conserved and versatile miRNAs, miR-155 is primarily distinguished by overexpression in a variety of illnesses, including malignant tumors. It has been discovered that altered miR-155 expression is connected to a number of physiological and pathological processes, including metastasis. As a result, miR-155-mediated signaling pathways were identified as possible cancer molecular therapy targets. The current research on miR-155, which is important in controlling cancer cells' invasion, and metastasis as well as migration, will be summarized in the current work. The crucial significance of the lncRNA/circRNA-miR-155-mRNA network as a crucial regulator of carcinogenesis and a player in the regulation of signaling pathways or related genes implicated in cancer metastasis will be covered in the final section. These might provide light on the creation of fresh treatment plans for controlling cancer metastasis.
Collapse
Affiliation(s)
- Hossein Moutabian
- Radiation Sciences Research Center (RSRC), AJA University of Medical Sciences, Tehran, Iran
| | - Usama Kadem Radi
- College of Pharmacy, National University of Science and Technology, Dhi Qar, Iraq
| | | | | | - Rahman S Zabibah
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Mv N L Chaitanya
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144402, India
| | - Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman 11831, Jordan; Applied Science Research Center. Applied Science Private University, Amman, Jordan
| | | | - Ebrahi Hazrati
- Trauma Research Center, AJA University of Medical Sciences, Tehran, Iran
| | - Hamed Bagheri
- Radiation Sciences Research Center (RSRC), AJA University of Medical Sciences, Tehran, Iran; Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Rashmi Saxena Pal
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144402, India
| | - Reza Akhavan-Sigari
- Department of Neurosurgery, University Medical Center, Tuebingen, Germany; Department of Health Care Management and Clinical Research, Collegium Humanum Warsaw Management University, Warsaw, Poland
| |
Collapse
|
10
|
Huang K, Chen X, Geng Z, Xiong X, Cong Y, Pan X, Liu S, Ge L, Xu J, Jia X. LncRNA SLC25A21-AS1 increases the chemosensitivity and inhibits the progression of ovarian cancer by upregulating the expression of KCNK4. Funct Integr Genomics 2023; 23:110. [PMID: 36995496 DOI: 10.1007/s10142-023-01035-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/20/2023] [Accepted: 03/21/2023] [Indexed: 03/31/2023]
Abstract
Owing to high mortality rate, ovarian cancer seriously threatens women's health. Extensive abdominal metastasis and chemoresistance are the leading causes of ovarian cancer deaths. Through lncRNA sequencing, our previous study identified lncRNA SLC25A21-AS1, which was significantly downregulated in chemoresistant ovarian cancer cells. In this study, we aimed to evaluate the role and mechanism of SLC25A21-AS1 in ovarian cancer. The expression of SLC25A21-AS1 was analyzed by qRT-PCR and online database GEPIA. The biological functions of SLC25A21-AS1 and KCNK4 were analyzed by CCK-8, transwell, and flow cytometry. The specific mechanism was analyzed by RNA-sequencing, RNA binding protein immunoprecipitation, rescue experiments, and bioinformatic analysis. SLC25A21-AS1 was decreased in ovarian cancer tissues and cell lines. Overexpression of SLC25A21-AS1 enhanced the sensitivity of ovarian cancer cells to paclitaxel and cisplatin, and inhibited cell proliferation, invasion, and migration, while SLC25A21-AS1-silencing showed the opposite effect. Potassium channel subfamily K member 4 (KCNK4) was significantly up-regulated upon enforced expression of SLC25A21-AS1. Overexpression of KCNK4 inhibited cell proliferation, invasion, migration ability, and enhanced the sensitivity of ovarian cancer cells to paclitaxel and cisplatin. Meanwhile, KNCK4-overexpression rescued the promotive effect of SLC25A21-AS1-silencing on cell proliferation, invasion and migration. In addition, SLC25A21-AS1 could interact with the transcription factor Enhancer of Zeste Homolog 2 (EZH2), while EZH2 knockdown increased the expression of KCNK4 in some of the ovarian cancer cell lines. SLC25A21-AS1 enhanced the chemosensitivity and inhibited the proliferation, migration, and invasion ability of ovarian cancer cells at least partially by blocking EZH2-mediated silencing of KCNK4.
Collapse
|
11
|
Zhou J, Song G, Su M, Zhang H, Yang T, Song Z. Long noncoding RNA CASC9 promotes pancreatic cancer progression by acting as a ceRNA of miR-497-5p to upregulate expression of CCND1. ENVIRONMENTAL TOXICOLOGY 2023; 38:1251-1264. [PMID: 36947456 DOI: 10.1002/tox.23761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 01/17/2023] [Accepted: 02/20/2023] [Indexed: 05/18/2023]
Abstract
BACKGROUND Pancreatic cancer (PC) is an aggressive malignancy with poor prognosis. Accumulating studies have showed that long non-coding RNA (lncRNA) is a crucial regulator in various tumorigenesis and progression including PC. This research aims to explore the roles and molecular mechanism of lncRNA cancer susceptibility candidate 9 (CASC9) in PC. METHODS The expression levels of lncRNA CASC9 and miR-497-5p were evaluated in PC tissues and paired adjacent healthy tissues by quantitative real-time PCR. PC cell lines were transfected with lentivirus targeting lncRNA CASC9, and cells proliferation, migration and invasion tests were conducted. Dual luciferase reporter assays were also carried out to explore the relationship between lncRNA CASC9, miR-497-5p and Cyclin D1 (CCND1). RESULTS LncRNA CASC9 was significantly up-regulated in PC tissues, while miR-497-5p expression was down-regulated. Down-regulation of lncRNA CASC9 in PC cells can significantly suppress the cell aggressiveness both in vitro and in vivo; moreover, knock-down of miR-497-5p could neutralize this impact. Additionally, the luciferase activity assay has assured that CCND1 was a downstream target of miR-497-5p. CONCLUSION LncRNA CASC9 can promote the PC progression by modulating miR-497-5p/CCND1 axis, which is potential target for PC treatment.
Collapse
Affiliation(s)
- Jia Zhou
- Department of General Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
- Department of General Surgery, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guodong Song
- Department of General Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Gastrointestinal Surgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, China
| | - Mingqi Su
- Department of General Surgery, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui Zhang
- Department of General Surgery, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tingsong Yang
- Department of General Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zhenshun Song
- Department of General Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
12
|
Liang F, Luo Q, Han H, Zhang J, Yang Y, Chen J. Long noncoding RNA LINC01088 inhibits esophageal squamous cell carcinoma progression by targeting the NPM1-HDM2-p53 axis. Acta Biochim Biophys Sin (Shanghai) 2023; 55:367-381. [PMID: 36942988 PMCID: PMC10160232 DOI: 10.3724/abbs.2023021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is characterized by extensive metastasis and poor prognosis. Long noncoding RNAs (lncRNAs) have been shown to play important roles in ESCC. However, the specific roles of lncRNAs in ESCC tumorigenesis and metastasis remain largely unknown. Here, we investigate LINC01088 in ESCC. Differentially expressed LINC01088 levels are screened from the GEO database. We find that LINC01088 is expressed at low level in collected clinical samples and is correlated with vascular tumor emboli and poor overall survival time of patients after surgery. LINC01088 inhibits not only ESCC cell migration and invasion in vitro, but also tumorigenesis and metastasis in vivo. Mechanistically, LINC01088 directly interacts with nucleophosmin (NPM1) and increases the expression of NPM1 in the nucleoplasm compared to that in the nucleolar region. LINC01088 decreases mutant p53 (mut-p53) expression and rescues the transcriptional activity of p53 by targeting the NPM1-HDM2-p53 axis. LINC01088 may also interfere with the DNA repair function of NPM1 by affecting its translocation. Our results highlight the potential of LINC01088 as a prognostic biomarker and therapeutic target of ESCC.
Collapse
Affiliation(s)
- Fan Liang
- Department of Thoracic Surgery II, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Qiuli Luo
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100020, China
| | - Haibo Han
- Department of Clinical Laboratory, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Jianzhi Zhang
- Department of Thoracic Surgery II, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Yue Yang
- Department of Thoracic Surgery II, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Jinfeng Chen
- Department of Thoracic Surgery II, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, Beijing 100142, China
| |
Collapse
|
13
|
Bao J, Zhang C, Chen J, Xuan H, Wang C, Wang S, Yin J, Liu Y, Li D, Xu T. LncRNA JPX targets SERCA2a to mitigate myocardial ischemia/reperfusion injury by binding to EZH2. Exp Cell Res 2023; 427:113572. [PMID: 36990422 DOI: 10.1016/j.yexcr.2023.113572] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 03/21/2023] [Accepted: 03/26/2023] [Indexed: 03/29/2023]
Abstract
BACKGROUND Long non-coding RNAs (lncRNAs) are pivotal regulators in heart disease, including myocardial ischemia/reperfusion (I/R) injury. LncRNA just proximal to XIST (JPX) is a molecular switch for X-chromosome inactivation. Enhancer of zeste homolog 2 (EZH2) is a core catalytic subunit of the polycomb repressive complex 2 (PRC2), which is involved in chromatin compaction and gene repression. This study aims to explore the mechanism of JPX regulating the expression of Sarcoplasmic/endoplasmic reticulum Ca2+ ATPase 2a (SERCA2a) by binding to EZH2 and preventing cardiomyocyte I/R damage in vivo and in vitro. METHODS The adenovirus transfection technology was utilized before establishing the mouse myocardial I/R or HL1 cells hypoxia/reoxygenation injury model. Functional studies performed western blotting, qRT-PCR, ELISA, echocardiography, TTC-Evans blue staining, and TUNEL staining. Western blotting was used to determine the expression of EZH2, SERCA2a, anti-apoptosis protein Bcl2/Bax, cleaved-caspase 3/caspase 3, and cleaved-caspase 9/caspase 9. Fluorescence in situ hybridization (FISH) and native RNA immunoprecipitations (RIP) assays were employed to verify the interaction between JPX and EZH2. Chromatin immunoprecipitation (ChIP) assay was used to further explore the relationship between EZH2 and SERCA2a on the molecular level. RESULTS JPX overexpression alleviated cardiomyocyte apoptosis in vivo and in vitro, reduced the I/R-induced infarct size in mouse hearts, lowered the serum cTnI concentration, and promoted mouse cardiac systolic function. The evidence implies that JPX can alleviate I/R-induced acute cardiac damage. Mechanistically, the FISH and RIP assays showed that JPX could bind to EZH2. The ChIP assay revealed EZH2 enrichment at the promoter region of SERCA2a. Both the EZH2 and H3K27me3 levels at the promoter region of SERCA2a were reduced in the JPX overexpression group compared to those in the Ad-EGFP group (P < 0.01). CONCLUSIONS LncRNA JPX is directly bound to EZH2 and reduced the EZH2-mediated H3K27me3 in the SERCA2a promoter region, protecting the heart from acute myocardial I/R injury. Therefore, JPX might be a potential therapeutic target for I/R injury.
Collapse
|
14
|
Cheng W, Yang F, Ma Y. lncRNA TPT1-AS1 promotes cell migration and invasion in esophageal squamous-cell carcinomas by regulating the miR-26a/HMGA1 axis. Open Med (Wars) 2023; 18:20220533. [PMID: 36820066 PMCID: PMC9938642 DOI: 10.1515/med-2022-0533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 07/01/2022] [Accepted: 07/11/2022] [Indexed: 02/16/2023] Open
Abstract
lncRNA TPT1-AS1 plays an oncogenic role in ovarian and cervical cancers. However, its involvement in the pathological progress of esophageal squamous-cell carcinomas (ESCCs) is unclear. lncRNA TPT1-AS1 was mainly localized in the cytoplasm of ESCC cells and interacted with miR-26a. In ESCC tissues, lncRNA TPT1-AS1 level was obviously increased, while miR-26a level was decreased. Interestingly, lncRNA TPT1-AS1 level was not significantly correlated with miR-26a level but was positively correlated with HMGA1 mRNA, a target of miR-26a. In ESCC cell lines KYSE510 and KYSE-30, lncRNA TPT1-AS1 overexpression enhanced HMGA1 expression, while it had no effect on miR-26a expression. Cell migration and proliferation assays indicated that lncRNA TPT1-AS1 and HMGA1 overexpression promoted ESCC cell migration and invasion, while their effects were alleviated by miR-26a overexpression. The migration and invasion of ESCC cells were suppressed by lncRNA TPT1-AS1 knockdown. In conclusion, lncRNA TPT1-AS1 plays an oncogenic role in ESCC and might function by upregulating HMGA1 via sponging miR-26a.
Collapse
Affiliation(s)
- Wenhua Cheng
- The 3rd Department of Digestion, Shanxi Province Cancer Hospital, Shanxi Hospital Affifiliated to Cancer Hospital, Chinese Academy of Medical Sciences, Cancer Hospital Affifiliated to Shanxi Medical University, Taiyuan City, Shanxi Province, 030013, P. R. China
| | - Fang Yang
- Radiotherapy Head and Neck Department, Shanxi Province Cancer Hospital, Shanxi Hospital Affifiliated to Cancer Hospital, Chinese Academy of Medical Sciences, Cancer Hospital Affifiliated to Shanxi Medical University, Taiyuan City, Shanxi Province, 030013, P. R. China
| | - Yong Ma
- The 2nd Department of Chest Surgery, Shanxi Province Cancer Hospital, Shanxi Hospital Affifiliated to Cancer Hospital, Chinese Academy of Medical Sciences, Cancer Hospital Affifiliated to Shanxi Medical University, No. 3 Workers Xin Jie, Xinghualing District, Taiyuan City, Shanxi Province, 030013, P. R. China
| |
Collapse
|
15
|
Li Y, Li F, Sun Z, Li J. A review of literature: role of long noncoding RNA TPT1-AS1 in human diseases. CLINICAL & TRANSLATIONAL ONCOLOGY : OFFICIAL PUBLICATION OF THE FEDERATION OF SPANISH ONCOLOGY SOCIETIES AND OF THE NATIONAL CANCER INSTITUTE OF MEXICO 2023; 25:306-315. [PMID: 36112261 DOI: 10.1007/s12094-022-02947-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 09/01/2022] [Indexed: 01/27/2023]
Abstract
Human diseases are multifactorial processes mainly driven by the intricate interactions of genetic and environmental factors. Long noncoding RNAs (lncRNAs) represent a type of non-coding RNAs with more than 200 nucleotides. Multiple studies have demonstrated that the dysregulation of lncRNAs is associated with complex biological as well as pathological processes through various mechanism, especially the regulation of gene transcription and related signal transduction pathways. Moreover, an increasing number of studies have explored lncRNA-based clinical applications in different diseases. For instance, the lncRNA Tumor Protein Translationally Controlled 1 (TPT1) Antisense RNA 1 (TPT1-AS1) was found to be dysregulated in several types of disease and strongly associated with patient prognosis and diverse clinical features. Recent studies have also documented that TPT1-AS1 modulates numerous biological processes through multiple mechanisms, including cell proliferation, apoptosis, autophagy, invasion, migration, radiosensitivity, chemosensitivity, stemness, and extracellular matrix (ECM) synthesis. Furthermore, TPT1-AS1 was regarded as a promising biomarker for the diagnosis, prognosis and treatment of several human diseases. In this review, we summarize the role of TPT1-AS1 in human diseases with the aspects of its expression, relevant clinical characteristics, molecular mechanisms, biological functions, and subsequent clinical applications.
Collapse
Affiliation(s)
- Yi Li
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshedong Road, Erqi District, Zhengzhou, 450052, China
| | - Fulei Li
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshedong Road, Erqi District, Zhengzhou, 450052, China
| | - Zongzong Sun
- Department of Obstetrics and Gynaecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Juan Li
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshedong Road, Erqi District, Zhengzhou, 450052, China.
| |
Collapse
|
16
|
Ma J, Luo Y, Liu Y, Chen C, Chen A, Liang L, Wang W, Song Y. Exosome-mediated lnc-ABCA12-3 promotes proliferation and glycolysis but inhibits apoptosis by regulating the toll-like receptor 4/nuclear factor kappa-B signaling pathway in esophageal squamous cell carcinoma. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2023; 27:61-73. [PMID: 36575934 PMCID: PMC9806635 DOI: 10.4196/kjpp.2023.27.1.61] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/23/2022] [Accepted: 11/03/2022] [Indexed: 12/29/2022]
Abstract
Esophageal squamous cell carcinoma (ESCC) is a kind of malignant tumor with high incidence and mortality in the digestive system. The aim of this study is to explore the function of lnc-ABCA12-3 in the development of ESCC and its unique mechanisms. RT-PCR was applied to detect gene transcription levels in tissues or cell lines like TE-1, EC9706, and HEEC cells. Western blot was conducted to identify protein expression levels of mitochondrial apoptosis and toll-like receptor 4 (TLR4)/nuclear factor kappa-B (NF-κB) signaling pathway. CCK-8 and EdU assays were carried out to measure cell proliferation, and cell apoptosis was examined by flow cytometry. ELISA was used for checking the changes in glycolysis-related indicators. Lnc-ABCA12-3 was highly expressed in ESCC tissues and cells, which preferred it to be a candidate target. The TE-1 and EC9706 cells proliferation and glycolysis were obviously inhibited with the downregulation of lnc-ABCA12-3, while apoptosis was promoted. TLR4 activator could largely reverse the apoptosis acceleration and relieved the proliferation and glycolysis suppression caused by lnc-ABCA12-3 downregulation. Moreover, the effect of lnc-ABCA12-3 on ESCC cells was actualized by activating the TLR4/NF-κB signaling pathway under the mediation of exosome. Taken together, the lnc-ABCA12-3 could promote the proliferation and glycolysis of ESCC, while repressing its apoptosis probably by regulating the TLR4/NF-κB signaling pathway under the mediation of exosome.
Collapse
Affiliation(s)
- Junliang Ma
- Department of Thoracic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, China,Correspondence Junliang Ma, E-mail:
| | - Yijun Luo
- Department of Thoracic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, China
| | - Yingjie Liu
- Department of Cardiovascular Surgery, Affiliated Hospital of Zuinyi Medical University, Zunyi, Guizhou 563003, China
| | - Cheng Chen
- Department of Thoracic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, China
| | - Anping Chen
- Department of Thoracic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, China
| | - Lubiao Liang
- Department of Thoracic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, China
| | - Wenxiang Wang
- The Second Department of Thoracic Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410031, China
| | - Yongxiang Song
- Department of Thoracic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, China
| |
Collapse
|
17
|
Guan H, Lv P, Han P, Zhou L, Liu J, Wu W, Yan M, Xing Q, Cao W. Long non-coding RNA ESCCAL-1/miR-590/LRP6 signaling pathway participates in the progression of esophageal squamous cell carcinoma. Cancer Med 2023; 12:445-458. [PMID: 35655441 PMCID: PMC9844631 DOI: 10.1002/cam4.4915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 05/12/2022] [Accepted: 05/24/2022] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Long non-coding RNAs (lncRNAs) have critical functions within esophageal squamous cell carcinoma (ESCC). However, the function and mechanism underlying ESCC-associated lncRNA-1 (ESCCAL-1) in ESCC tumorigenesis have not been well clarified. METHODS ESCCAL-1, miR-590 and LRP6 were quantified using qRT-PCR. Cell viability, migration and invasion abilities were measured using CCK-8 assay and transwell assays. The protein pression was determined with western blot assay. The xenograft model assays were used to examine the impact of ESCCAL-1 on tumorigenic effect in vivo. Direct relationships among ESCCAL-1, miR-590 and LRP6 were confirmed using dual-luciferase reporter assays. RESULTS The present work discovered the ESCCAL-1 up-regulation within ESCC. Furthermore, ESCCAL-1 was found to interact with miR-590 and consequently restrict its expression. Functionally, knocking down ESCCAL-1 or over-expressing miR-590 hindered ESCC cell growth, invasion, and migration in vitro. Moreover, inhibition of miR-590 could reverse the effect of knockdown of ESCCAL-1 on cells. Importantly, it was confirmed that LRP6 was miR-590's downstream target and LRP6 over-expression also partly abolished the role of miR-590 overexpression in ESCC cells. CONCLUSION We have uncovered a novel regulatory network comprising aberrant interaction of ESCCAL-1/miR-590/LRP6 participated in ESCC progression.
Collapse
Affiliation(s)
- Hongya Guan
- Department of translational Medical CenterZhengzhou Central Hospital Affiliated to Zhengzhou UniversityZhengzhouChina
| | - Pengju Lv
- Department of translational Medical CenterZhengzhou Central Hospital Affiliated to Zhengzhou UniversityZhengzhouChina
| | - Pengli Han
- Department of translational Medical CenterZhengzhou Central Hospital Affiliated to Zhengzhou UniversityZhengzhouChina
| | - Lijuan Zhou
- Department of translational Medical CenterZhengzhou Central Hospital Affiliated to Zhengzhou UniversityZhengzhouChina
| | - Jia Liu
- Department of translational Medical CenterZhengzhou Central Hospital Affiliated to Zhengzhou UniversityZhengzhouChina
| | - Wei Wu
- Department of MedicineUniversity of California, San FranciscoSan FranciscoCAUSA
| | - Ming Yan
- Basic Medical CollegeZhengzhou UniversityZhengzhouChina
| | - Qinghe Xing
- Institutes of Biomedical Sciences and Children's HospitalFudan UniversityShanghaiChina
| | - Wei Cao
- Department of translational Medical CenterZhengzhou Central Hospital Affiliated to Zhengzhou UniversityZhengzhouChina
- Henan Diagnosis of Tumor Pathology Postdoctoral WorkstationZhengzhouChina
| |
Collapse
|
18
|
Akbari A, Abbasi S, Borumandnia N, Eshkiki ZS, Sedaghat M, Tabaeian SP, Kashani AF, Talebi A. Epigenetic regulation of gastrointestinal cancers mediated by long non-coding RNAs. Cancer Biomark 2022; 35:359-377. [PMID: 36404536 DOI: 10.3233/cbm-220142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Long noncoding RNAs (lncRNAs), as well-known modulator of the epigenetic processes, have been shown to contribute to normal cellular physiological and pathological conditions such as cancer. Through the interaction with epigenetic regulators, an aberrant regulation of gene expression can be resulted due to their dysregulation, which in turn, can be involved in tumorigenesis. In the present study, we reviewed the lncRNAs' function and mechanisms that contributed to aberrant epigenetic regulation, which is directly related to gastrointestinal cancer (GI) development and progression. Findings indicated that epigenetic alterations may involve in tumorigenesis and are valuable biomarkers in case of diagnosing, assessing of risk factors, and predicting of GI cancers. This review summarized the accumulated evidence for biological and clinical application to use lncRNAs in GI cancers, including colorectal, gastric, oral, liver, pancreatic and oesophageal cancer.
Collapse
Affiliation(s)
- Abolfazl Akbari
- Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran.,Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Somayeh Abbasi
- Department of Mathematics, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran
| | - Nasrin Borumandnia
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Shokati Eshkiki
- Alimentary Tract Research Center, Clinical Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Meghdad Sedaghat
- Department of Internal Medicine, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seidamir Pasha Tabaeian
- Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran.,Department of Internal Medicine, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - Atefeh Talebi
- Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
19
|
Wang Q, Zhang W, Yin D, Tang Z, Zhang E, Wu W. Gene amplification-driven lncRNA SNHG6 promotes tumorigenesis via epigenetically suppressing p27 expression and regulating cell cycle in non-small cell lung cancer. Cell Death Dis 2022; 8:485. [PMID: 36494339 PMCID: PMC9734177 DOI: 10.1038/s41420-022-01276-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 11/17/2022] [Accepted: 11/25/2022] [Indexed: 12/13/2022]
Abstract
Long non-coding RNAs (lncRNAs) have been validated to play essential roles in non-small cell lung carcinoma (NSCLC) progression. In this study, through systematically screening GSE33532 and GSE29249 from Gene Expression Omnibus (GEO) database and bioinformatics analysis, we found the significant upregulation of SNHG6 in NSCLC. The activation of SNHG6 was driven by copy number amplification and high expression of SNHG6 indicated a poor prognosis. Functionally, the knockdown of SNHG6 inhibited NSCLC cell proliferation, migration, and suppressed the G1/S transition of the cell cycle. SNHG6 overexpression had the opposite effects. Mechanically, SNHG6 recruited EZH2 to the promoter region of p27 and increased H3K27me3 enrichment, thus epigenetically repressing the expression of p27, regulating the cell cycle, and promoting tumorigenesis of NSCLC. SNHG6 silencing restrained tumor growth in vivo and suppressed the expressions of cell cycle-related proteins in the G1/S transition. In conclusion, our study uncovered a novel mechanism of SNHG6 activation and its function. SNHG6 can be considered a potential target for the diagnosis and treatment of NSCLC in the future.
Collapse
Affiliation(s)
- Qi Wang
- grid.412676.00000 0004 1799 0784Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wei Zhang
- grid.412676.00000 0004 1799 0784Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Dandan Yin
- grid.410745.30000 0004 1765 1045Clinical Research Center, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Zhong Fu Road, Gulou District, Nanjing, Jiangsu 210003 PR China
| | - Zaibin Tang
- grid.412676.00000 0004 1799 0784Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Erbao Zhang
- grid.89957.3a0000 0000 9255 8984Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China ,grid.89957.3a0000 0000 9255 8984Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Weibing Wu
- grid.412676.00000 0004 1799 0784Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
20
|
Qiu H, Yang D, Li X, Feng F. LncRNA CASC9 promotes cell proliferation and invasion in osteosarcoma through targeting miR-874-3p/SOX12 axis. J Orthop Surg Res 2022; 17:460. [PMID: 36266695 PMCID: PMC9585709 DOI: 10.1186/s13018-022-03340-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 06/21/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Osteosarcoma (OS) is a common primary malignant bone tumor. This study aimed to explore the biological role of long on-coding RNA (lncRNA) CASC9 and its regulatory mechanism in OC. METHODS The CASC9 expressions in OS cells and tissues were measured using qRT-PCR. The functional role of CASC9 in OC was studied using MTT assay, colony formation assay, transwell invasion assay, and xenograft tumor assay. In addition, the mechanism of CASC9 function was determined using luciferase reporter assay. Western blot was used to analyze protein expressions in our paper. RESULTS LncRNA CASC9 was found to be up-regulated in OS. Knockdown of CASC9 inhibited the proliferation and invasion of OS cells. Besides, miR-874-3p was identified as the target of CASC9, and SOX12 acted as a potential target of miR-874-3p. The down-regulation of miR-874-3p recovered the reduction in cell invasion and proliferation in vitro which were induced by CASC9 knockdown and delayed the tumor progression in vivo. CONCLUSION LncRNA CASC9 promotes cell proliferation and invasion in OS via miR-874-3p/SOX12 axis. Our study might provide novel biomarkers and potential therapeutic targets for OS treatment.
Collapse
Affiliation(s)
- Haiyan Qiu
- Department of Endocrinology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310004, China
| | - Di Yang
- Center for Plastic and Reconstructive Surgery, Department of Orthopedics, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), No.158 Shangtang Road, Hangzhou, 310014, Zhejiang, China
| | - Xiaolin Li
- Center for Plastic and Reconstructive Surgery, Department of Orthopedics, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), No.158 Shangtang Road, Hangzhou, 310014, Zhejiang, China
| | - Fabo Feng
- Center for Plastic and Reconstructive Surgery, Department of Orthopedics, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), No.158 Shangtang Road, Hangzhou, 310014, Zhejiang, China.
| |
Collapse
|
21
|
Ren T, Wang D, Gu J, Hou X. LncRNA SNHG3 promoted cell proliferation, migration, and metastasis of esophageal squamous cell carcinoma via regulating miR-151a-3p/PFN2 axis. Open Med (Wars) 2022. [DOI: 10.1515/med-2022-0548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Abstract
Esophageal squamous cell carcinoma (ESCC) is an aggressive malignant tumor with a poor prognosis. The dysregulation of long non-coding RNAs (lncRNAs) is closely related to the tumorigenesis and progression of ESCC. However, the effects of lncRNA small nucleolar RNA host gene 3 (lncRNA SNHG3) in ESCC are still unclear. Therefore, a series of experiments methods, such as quantitative real-time polymerase chain reaction, function gain/loss experiments, western blots, and animal xenograft tumor model, were employed to explore the biological function and molecular mechanism of SNHG3 in ESCC. As results, we first reported that SNHG3 was significantly up-regulated in ESCC tissues and cells. SNHG3 knockdown obviously inhibited cell proliferation, migration, invasion, and promoted apoptosis. Mechanism analysis revealed that SNHG3 sponged miR-151a-3p to regulate PFN2. Inhibition of miR-151a-3p and overexpression of PFN2 attenuated the positive effect of SNHG3 knockdown on suppressing tumor progression. Furthermore, the anti-tumor effects of SNHG3 knockdown were also observed in vivo. In summary, our results indicated that SNHG3 knockdown suppressed tumor development via the miR-151a-3p/PFN2 axis, and targeting SNHG3 may provide a new opportunity for ESCC patients.
Collapse
Affiliation(s)
- Tiejun Ren
- Department of Medical Oncology, Luoyang Central Hospital Affiliated to Zhengzhou University , 288 Zhongzhou Middle Road, Xigong District , Luoyang , 471000, Henan , China
| | - Dingyi Wang
- Department of Medical Oncology, Xinxiang Medical University , Xinxiang , 453003, Henan , China
| | - Jinjin Gu
- Department of Medical Oncology, Xinxiang Medical University , Xinxiang , 453003, Henan , China
| | - Xiaozhen Hou
- Department of Medical Oncology, Xinxiang Medical University , Xinxiang , 453003, Henan , China
| |
Collapse
|
22
|
Kulkarni A, Gayathrinathan S, Nair S, Basu A, Al-Hilal TA, Roy S. Regulatory Roles of Noncoding RNAs in the Progression of Gastrointestinal Cancers and Health Disparities. Cells 2022; 11:2448. [PMID: 35954293 PMCID: PMC9367924 DOI: 10.3390/cells11152448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 07/31/2022] [Accepted: 08/03/2022] [Indexed: 01/17/2023] Open
Abstract
Annually, more than a million individuals are diagnosed with gastrointestinal (GI) cancers worldwide. With the advancements in radio- and chemotherapy and surgery, the survival rates for GI cancer patients have improved in recent years. However, the prognosis for advanced-stage GI cancers remains poor. Site-specific GI cancers share a few common risk factors; however, they are largely distinct in their etiologies and descriptive epidemiologic profiles. A large number of mutations or copy number changes associated with carcinogenesis are commonly found in noncoding DNA regions, which transcribe several noncoding RNAs (ncRNAs) that are implicated to regulate cancer initiation, metastasis, and drug resistance. In this review, we summarize the regulatory functions of ncRNAs in GI cancer development, progression, chemoresistance, and health disparities. We also highlight the potential roles of ncRNAs as therapeutic targets and biomarkers, mainly focusing on their ethnicity-/race-specific prognostic value, and discuss the prospects of genome-wide association studies (GWAS) to investigate the contribution of ncRNAs in GI tumorigenesis.
Collapse
Affiliation(s)
- Aditi Kulkarni
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX 79968, USA
- Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX 79968, USA
| | - Sharan Gayathrinathan
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX 79968, USA
| | - Soumya Nair
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX 79968, USA
| | - Anamika Basu
- Copper Mountain College, Joshua Tree, CA 92252, USA
- Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Taslim A. Al-Hilal
- Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX 79968, USA
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, El Paso, TX 79968, USA
| | - Sourav Roy
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX 79968, USA
- Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX 79968, USA
| |
Collapse
|
23
|
Yang S, Zhou J, Chen Z, Sun Q, Zhang D, Feng Y, Wang X, Sun Y. A novel m7G-related lncRNA risk model for predicting prognosis and evaluating the tumor immune microenvironment in colon carcinoma. Front Oncol 2022; 12:934928. [PMID: 35992788 PMCID: PMC9386370 DOI: 10.3389/fonc.2022.934928] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 07/07/2022] [Indexed: 12/19/2022] Open
Abstract
N7-Methylguanosine (m7G) modifications are a common type of posttranscriptional RNA modifications. Its function in the tumor microenvironment (TME) has garnered widespread focus in the past few years. Long non-coding RNAs (lncRNAs) played an essential part in tumor development and are closely associated with the tumor immune microenvironment. In this study, we employed a comprehensive bioinformatics approach to develop an m7G-associated lncRNA prognostic model based on the colon adenocarcinoma (COAD) database from The Cancer Genome Atlas (TCGA) database. Pearson’s correlation analysis was performed to identify m7G-related lncRNAs. Differential gene expression analysis was used to screen lncRNAs. Then, we gained 88 differentially expressed m7G-related lncRNAs. Univariate Cox analysis and Lasso regression analysis were performed to build an eight-m7G-related-lncRNA (ELFN1-AS1, GABPB1-AS1, SNHG7, GS1-124K5.4, ZEB1-AS1, PCAT6, C1RL-AS1, MCM3AP-AS1) risk model. Consensus clustering analysis was applied to identify the m7G-related lncRNA subtypes. We also verified the risk prediction effect of a gene signature in the GSE17536 test set (177 patients). A nomogram was constructed to predict overall survival rates. Furthermore, we analyzed differentially expressed genes (DEGs) between high-risk and low-risk groups. Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were conducted with the analyzed DEGs. At last, single-sample gene set enrichment analysis (ssGSEA), CIBERSORT, MCP-COUNTER, and Estimation of STromal and Immune cells in MAlignant Tumor tissues using Expression data (ESTIMATE) algorithms were utilized to discover the relationship between the risk model and the TME. Consequently, the m7G-related lncRNA risk model for COAD patients could be a viable prognostic tool and treatment target.
Collapse
Affiliation(s)
- Sheng Yang
- First Clinical Medical College, Nanjing Medical University, Nanjing, China
| | - Jiahui Zhou
- First Clinical Medical College, Nanjing Medical University, Nanjing, China
| | - Zhihao Chen
- First Clinical Medical College, Nanjing Medical University, Nanjing, China
| | - Qingyang Sun
- First Clinical Medical College, Nanjing Medical University, Nanjing, China
| | - Dongsheng Zhang
- First Clinical Medical College, Nanjing Medical University, Nanjing, China
| | - Yifei Feng
- First Clinical Medical College, Nanjing Medical University, Nanjing, China
| | - Xiaowei Wang
- First Clinical Medical College, Nanjing Medical University, Nanjing, China
- *Correspondence: Yueming Sun, ; Xiaowei Wang,
| | - Yueming Sun
- Department of General Surgery, First Affiliated Hospital, Nanjing Medical University, Nanjing, China
- *Correspondence: Yueming Sun, ; Xiaowei Wang,
| |
Collapse
|
24
|
Ke S, Fang M, Li R, Wang J, Lu J. Downregulation of long noncoding RNA breast cancer anti-estrogen resistance 4 inhibits cell proliferation, invasion, and migration in esophageal squamous cell carcinoma by regulating the microRNA-181c-5p/LIM and SH3 protein 1 axis. Bioengineered 2022; 13:12998-13010. [PMID: 35611706 PMCID: PMC9275979 DOI: 10.1080/21655979.2022.2060720] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Recently, abnormal expression of long non-coding RNAs (lncRNAs) has been observed in esophageal squamous cell carcinoma (ESCC). In various human cancers, breast cancer anti‑estrogen resistance 4 (BCAR4) was reported to be highly expressed, while the biological roles of BCAR4 in ESCC remain unclear. In ESCC cells and tissues, BCAR4 and microRNA −181c-5p (miR-181c-5p) expression, and phosphorylated signal transducer and activator of transcription (p-STAT3) and COX2 expression were evaluated by real-time reverse transcription PCR (qRT-PCR) and Western blot analysis. Cell function was evaluated by colony formation, CCK-8 assay, transwell and flow cytometer assays. Interactions between BCAR4 and miR-181c-5p, as well as miR-181c-5p and LIM and SH3 protein 1 (LASP1) were evaluated by RIP and luciferase reporter assay. ESCC cell malignancy with inhibition of BCAR4 was confirmed by a tumor xenograft model in vivo. In both ESCC tissues and cell lines, BCAR4 was upregulated. Downregulation of BCAR4 effectively induced cell apoptosis and inhibited invasion and migration in vitro, and reduced tumorigenesis in nude mice. BCAR4 was a sponge of miR-181c-5p to upregulate LASP1. Moreover, knockdown of BCAR4 and overexpression of miR-181c-5p inhibited the activation of the STAT3/COX2 signaling, which was reversed by overexpression of LASP1. In conclusion, BCAR4 promotes ESCC tumorigenesis by targeting the miR-181c-5p/LASP1 axis, which may act as a treatment and diagnosis biomarker for ESCC.
Collapse
Affiliation(s)
- Shun Ke
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan City, Hubei Province, China
| | - Minghao Fang
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan City, Hubei Province, China
| | - Ruichao Li
- Department of General Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan City, Hubei Province, China
| | - Jing Wang
- Department of Clinical Oncology, Remin Hospital of Wuhan University, Wuhan City, Hubei Province, China
| | - Jun Lu
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan City, Hubei Province, China
| |
Collapse
|
25
|
LINC00114 stimulates growth and glycolysis of esophageal cancer cells by recruiting EZH2 to enhance H3K27me3 of DLC1. Clin Epigenetics 2022; 14:51. [PMID: 35414117 PMCID: PMC9006613 DOI: 10.1186/s13148-022-01258-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 02/27/2022] [Indexed: 11/15/2022] Open
Abstract
Objective LINC00114 could promote the development of colorectal cancer, but its mechanism has been rarely discussed in esophageal cancer (EC). Herein, we explored the molecular mechanism of LINC00114 via mediating enhancer of zeste homolog 2/deleted in liver cancer 1 (EZH2/DLC1) axis in EC.
Methods LINC00114, EZH2 and DLC1 expression in EC tissues and cells were tested. LINC00114, EZH2 and DLC1 expression were altered in EC cells through transfection with different constructs, and cell proliferation, migration, invasion, apoptosis and glycolysis were subsequently observed. The interaction between LINC00114 and EZH2 and that between EZH2 and DLC1 were explored. Tumor formation was also conducted to confirm the in vitro results. Results The expression levels of LINC00114 and EZH2 were elevated while those of DLC1 were reduced in EC. Inhibiting LINC00114 or reducing EZH2 blocked cell proliferation, migration, invasion and glycolysis and induce cell apoptosis in EC. LINC00114 promoted H3K27 trimethylation of DLC1 by recruiting EZH2. Knockdown of DLC1 stimulated cell growth and glycolysis in EC and even mitigated the role of LINC00114 inhibition in EC. In vivo experiment further confirmed the anti-tumor effect of LINC00114 inhibition in EC. Conclusion The data indicate that LINC00114 promotes the development of EC by recruiting EZH2 to enhance H3K27me3 of DLC1. Supplementary Information The online version contains supplementary material available at 10.1186/s13148-022-01258-y.
Collapse
|
26
|
Yang C, Chen K. Long Non-Coding RNA in Esophageal Cancer: A Review of Research Progress. Pathol Oncol Res 2022; 28:1610140. [PMID: 35241975 PMCID: PMC8885534 DOI: 10.3389/pore.2022.1610140] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 01/26/2022] [Indexed: 12/24/2022]
Abstract
In recent years, there has been significant progress in the diagnosis and treatment of esophageal cancer. However, owing to the lack of early diagnosis strategies and treatment targets, the prognosis of patients with esophageal cancer remains unsatisfactory. There is an urgent need to identify novel biomarkers and treatment targets for esophageal cancer. With the development of genomics, long-chain non-coding RNAs (LncRNAs), which were once considered transcriptional “noise,” are being identified and characterized rapidly in large numbers. Recent research shows that LncRNAs are closely related to a series of steps in tumor development and play an important regulatory role in DNA replication, transcription, and post-transcriptional regulation. The abnormal expression of LncRNAs leads to tumor cell proliferation, migration, invasion, and treatment resistance. This review focuses on the latest progress in research on the abnormal expression and functional mechanisms of LncRNAs in esophageal cancer. Further, it discusses the potential applications of these findings towards achieving an early diagnosis, improving treatment efficacy, and evaluating the prognosis of esophageal cancer.
Collapse
Affiliation(s)
- Chenbo Yang
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Tumor Pathology, Zhengzhou University, Zhengzhou, China
| | - Kuisheng Chen
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Tumor Pathology, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
27
|
Yang T, Hui R, Nouws J, Sauler M, Zeng T, Wu Q. Untargeted metabolomics analysis of esophageal squamous cell cancer progression. J Transl Med 2022; 20:127. [PMID: 35287685 PMCID: PMC8919643 DOI: 10.1186/s12967-022-03311-z] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 02/14/2022] [Indexed: 02/08/2023] Open
Abstract
Abstract90% of esophageal cancer are esophageal squamous cell carcinoma (ESCC) and ESCC has a very poor prognosis and high mortality. Nevertheless, the key metabolic pathways associated with ESCC progression haven’t been revealed yet. Metabolomics has become a new platform for biomarker discovery over recent years. We aim to elucidate dominantly metabolic pathway in all ESCC tumor/node/metastasis (TNM) stages and adjacent cancerous tissues. We collected 60 postoperative esophageal tissues and 15 normal tissues adjacent to the tumor, then performed Liquid Chromatography with tandem mass spectrometry (LC–MS/MS) analyses. The metabolites data was analyzed with metabolites differential and correlational expression heatmap according to stage I vs. con., stage I vs. stage II, stage II vs. stage III, and stage III vs. stage IV respectively. Metabolic pathways were acquired by Kyoto Encyclopedia of Genes and Genomes. (KEGG) pathway database. The metabolic pathway related genes were obtained via Gene Set Enrichment Analysis (GSEA). mRNA expression of ESCC metabolic pathway genes was detected by two public datasets: gene expression data series (GSE)23400 and The Cancer Genome Atlas (TCGA). Receiver operating characteristic curve (ROC) analysis is applied to metabolic pathway genes. 712 metabolites were identified in total. Glycerophospholipid metabolism was significantly distinct in ESCC progression. 16 genes of 77 genes of glycerophospholipid metabolism mRNA expression has differential significance between ESCC and normal controls. Phosphatidylserine synthase 1 (PTDSS1) and Lysophosphatidylcholine Acyltransferase1 (LPCAT1) had a good diagnostic value with Area under the ROC Curve (AUC) > 0.9 using ROC analysis. In this study, we identified glycerophospholipid metabolism was associated with the ESCC tumorigenesis and progression. Glycerophospholipid metabolism could be a potential therapeutic target of ESCC progression.
Collapse
|
28
|
Mirzaei S, Gholami MH, Hushmandi K, Hashemi F, Zabolian A, Canadas I, Zarrabi A, Nabavi N, Aref AR, Crea F, Wang Y, Ashrafizadeh M, Kumar AP. The long and short non-coding RNAs modulating EZH2 signaling in cancer. J Hematol Oncol 2022; 15:18. [PMID: 35236381 PMCID: PMC8892735 DOI: 10.1186/s13045-022-01235-1] [Citation(s) in RCA: 122] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 02/09/2022] [Indexed: 02/08/2023] Open
Abstract
Non-coding RNAs (ncRNAs) are a large family of RNA molecules with no capability in encoding proteins. However, they participate in developmental and biological processes and their abnormal expression affects cancer progression. These RNA molecules can function as upstream mediators of different signaling pathways and enhancer of zeste homolog 2 (EZH2) is among them. Briefly, EZH2 belongs to PRCs family and can exert functional roles in cells due to its methyltransferase activity. EZH2 affects gene expression via inducing H3K27me3. In the present review, our aim is to provide a mechanistic discussion of ncRNAs role in regulating EZH2 expression in different cancers. MiRNAs can dually induce/inhibit EZH2 in cancer cells to affect downstream targets such as Wnt, STAT3 and EMT. Furthermore, miRNAs can regulate therapy response of cancer cells via affecting EZH2 signaling. It is noteworthy that EZH2 can reduce miRNA expression by binding to promoter and exerting its methyltransferase activity. Small-interfering RNA (siRNA) and short-hairpin RNA (shRNA) are synthetic, short ncRNAs capable of reducing EZH2 expression and suppressing cancer progression. LncRNAs mainly regulate EZH2 expression via targeting miRNAs. Furthermore, lncRNAs induce EZH2 by modulating miRNA expression. Circular RNAs (CircRNAs), like lncRNAs, affect EZH2 expression via targeting miRNAs. These areas are discussed in the present review with a focus on molecular pathways leading to clinical translation.
Collapse
Affiliation(s)
- Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | | | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology and Zoonoses, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Farid Hashemi
- Department of Comparative Biosciences, Faculty of Veterinary Medicine, University of Tehran, 1417466191, Tehran, Iran
| | - Amirhossein Zabolian
- Department of Orthopedics, School of Medicine, 5th Azar Hospital, Golestan University of Medical Sciences, Gorgan, Golestan, Iran
| | - Israel Canadas
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul, 34396, Turkey
| | - Noushin Nabavi
- Department of Urological Sciences and Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, V6H3Z6, Canada
| | - Amir Reza Aref
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Department of Translational Sciences, Xsphera Biosciences Inc., Boston, MA, USA
| | - Francesco Crea
- Cancer Research Group-School of Life Health and Chemical Sciences, The Open University, Walton Hall, Milton Keynes, MK7 6AA, UK
| | - Yuzhuo Wang
- Department of Urological Sciences and Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, V6H3Z6, Canada.
| | - Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, Istanbul, 34956, Turkey.
| | - Alan Prem Kumar
- Cancer Science Institute of Singapore and Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore.
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
29
|
Wu K, Wang Z, Huang Y, Yao L, Kang N, Ge W, Zhang R, He W. LncRNA PTPRG-AS1 facilitates glycolysis and stemness properties of esophageal squamous cell carcinoma cells through miR-599/PDK1 axis. J Gastroenterol Hepatol 2022; 37:507-517. [PMID: 34676588 DOI: 10.1111/jgh.15719] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/15/2021] [Accepted: 09/22/2021] [Indexed: 12/22/2022]
Abstract
BACKGROUND AND AIM Esophageal squamous cell carcinoma (ESCC) is the most significant subtype of esophageal cancer featured with high occurrence. Long noncoding RNAs (lncRNAs) have been proved to modulate the biological properties of cancer cells, including cell proliferation, invasion, migration, and apoptosis. LncRNA protein tyrosine phosphatase receptor type G-antisense RNA 1 (PTPRG-AS1) has been reported to play as an oncogene in diverse cancers. However, the detailed function PTPRG-AS1 may exert in ESCC is unclear. METHODS PTPRG-AS1 expression in ESCC cells was investigated via quantitative reverse transcription real-time polymerase chain reaction (RT-qPCR). The effects of PTPRG-AS1 on ESCC cell proliferation, migration, glycolysis, and stemness were verified through functional assays. Mechanism assays including RIP assay, RNA pull down assay, and luciferase reporter assays were performed to verify the molecular mechanism of PTPRG-AS1. RESULTS PTPRG-AS1 silencing hindered the proliferation, migration, glycolysis and stemness of ESCC cells. PTPRG-AS1 regulated pyruvate dehydrogenase kinase 1 (PDK1) expression via sponging miR-599. The PTPRG-AS1/miR-599/PDK1 axis was further verified to aggravate the progression of ESCC cells. CONCLUSION PTPRG-AS1 sponged miR-599 to up-regulate PDK1 expression, thereby promoting the proliferation and migration as well as glycolysis and stemness properties of ESCC cells.
Collapse
Affiliation(s)
- Kaiming Wu
- Department of Thoracic Surgery, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Ziao Wang
- Department of Thoracic Surgery, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yunlong Huang
- Department of Thoracic Surgery, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Long Yao
- Department of Thoracic Surgery, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Ningning Kang
- Department of Thoracic Surgery, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Wei Ge
- Department of Thoracic Surgery, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Renquan Zhang
- Department of Thoracic Surgery, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Wei He
- School of Basic Medical Science, Anhui Medical University, Hefei, China
| |
Collapse
|
30
|
Huo XL, Wang SF, Yang Q, Yu XL, Gu T, Hua HX, Yang M, Bai LL, Zhang XL. Diagnostic and prognostic value of genomic instability-derived long non-coding RNA signature of endometrial cancer. Taiwan J Obstet Gynecol 2022; 61:96-101. [PMID: 35181055 DOI: 10.1016/j.tjog.2021.11.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/05/2021] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVE To investigate whether genomic instability (GI)-derived long non-coding RNAs (lncRNAs) have a prognostic impact on the patients with endometrial cancer. MATERIAL AND METHODS Patients with Uterine Corpus Endometrial Carcinoma (UCEC) were selected from The Cancer Genome Atlas (TCGA) database. Systematic bioinformatics analyses were performed, including Pearson correlations, GO and KEGG enrichment analysis, bivariate and multiple logistic regression analysis, and Kaplan-Meier (KM) method. RESULTS A total of 552 UCEC samples were included in the study. The differentially expressed lncRNAs (DELs) were identified, including 79 down-regulated lncRNAs and 31 up-regulated lncRNAs. Bivariate logistic regression analysis showed that 19 GI-derived lncRNAs were prognostic factors. By further multivariate logistic regression analysis, AC005256.1 (estimated coefficient = -0.474), AC026336.3 (estimated coefficient = -0.030), AL161618.1 (estimated coefficient = -1.661), and BX322234.1 (estimated coefficient = 1.511) were used to construct a prognostic risk model. In the train set and test set, the risk model was shown to have both a high prognostic and a diagnostic value. CONCLUSION We developed a novel GI-derived 4-lncRNA signature for the diagnosis and prognosis of patients with endometrial cancer. These findings offered a novel perspective in the clinical management of endometrial cancer.
Collapse
Affiliation(s)
- Xin-Long Huo
- Department of Oncology, The First Hospital of Qinhuangdao City, Qinhuangdao, 066000, China.
| | - Shu-Fang Wang
- Department of Obstetrics and Gynecology, Maternal and Child Health Care Hospital of Qinhuangdao, Qinhuangdao, 066000, China
| | - Qing Yang
- Department of Obstetrics and Gynecology, Maternal and Child Health Care Hospital of Qinhuangdao, Qinhuangdao, 066000, China
| | - Xiao-Lin Yu
- Department of Oncology, The First Hospital of Qinhuangdao City, Qinhuangdao, 066000, China
| | - Tao Gu
- Department of Oncology, The First Hospital of Qinhuangdao City, Qinhuangdao, 066000, China
| | - Hai-Xia Hua
- Department of Oncology, The First Hospital of Qinhuangdao City, Qinhuangdao, 066000, China
| | - Mo Yang
- Department of Obstetrics and Gynecology, Maternal and Child Health Care Hospital of Qinhuangdao, Qinhuangdao, 066000, China
| | - Li-Li Bai
- Department of Oncology, The First Hospital of Qinhuangdao City, Qinhuangdao, 066000, China
| | - Xiao-Lu Zhang
- Department of Oncology, The First Hospital of Qinhuangdao City, Qinhuangdao, 066000, China
| |
Collapse
|
31
|
Yao J, Fu J, Liu Y, Qu W, Wang G, Yan Z. LncRNA CASC9 promotes proliferation, migration and inhibits apoptosis of hepatocellular carcinoma cells by down-regulating miR-424-5p. Ann Hepatol 2022; 23:100297. [PMID: 33346094 DOI: 10.1016/j.aohep.2020.100297] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 12/07/2020] [Accepted: 12/08/2020] [Indexed: 02/04/2023]
Abstract
INTRODUCTION AND OBJECTIVES CASC9 and miR-424-5p are closely related with hepatocellular carcinoma (HCC) progression. This study aimed to evaluate the effect of CASC9 involved with miR-424-5p on the development of HCC. MATERIALS AND METHODS qRT-PCR was performed to determine the mRNA expressions of CASC9 and miR-424-5p in HCC tissues/cells and adjacent normal tissues/human hepatic epithelial cells, and to analyze the relationship of CASC9 with the clinico-pathological characteristics and prognosis of HCC patients. Then, cell proliferation was measured by CCK-8 and1 clone formation assays. Apoptosis of HCC cells was measured by flow cytometry. Besides, cell migration and invasion were determined by scratch wound-healing and Transwell assays, respectively. DIANA-LncBase V2 and dual luciferase reporter gene assay were used to verify the targeted relationship between CASC9 and miR-424-5p. Bcl-2, Bax and cleaved caspase-3 expressions were detected by Western blot. RESULTS Higher expression of CASC9 was observed in HCC tissues/ cells than in adjacent normal tissues/ human hepatic epithelial cells, and was closely linked to poor prognosis of HCC, tumor size, TNM stage, differentiation degree, lymph node metastasis and alpha-fetoprotein (AFP). Down-regulation of CASC9 decreased the proliferation, invasion and migration of HCC cells while enhancing apoptosis. Besides, CASC9 was negatively correlated with miR-424-5p. MiR-424-5p inhibitor enhanced cell proliferation, invasion and migration while decreasing apoptosis. Interestingly, siRNA-CASC9 partially offset the effects of miR-424-5p inhibitor on HCC cells. CONCLUSION CASC9 promoted proliferation, invasion and migration and inhibited apoptosis in HCC cells by inhibiting miR-424-5p.
Collapse
Affiliation(s)
- Jingjing Yao
- Department of Gastroenterology, People's Hospital of Rizhao, China
| | - Jindong Fu
- Department of Gastroenterology, People's Hospital of Rizhao, China
| | | | - Wei Qu
- Department of Gastroenterology, People's Hospital of Rizhao, China
| | - Guangdong Wang
- Department of Gastroenterology, People's Hospital of Rizhao, China
| | - Zaojun Yan
- Infection Department, People's Hospital of Rizhao, China.
| |
Collapse
|
32
|
Chang Q, Wu J, An Y, Liu H, Sun Y. Propofol suppresses proliferation, migration, invasion, and tumor growth of liver cancer cells via suppressing cancer susceptibility candidate 9/phosphatase and tensin homolog/AKT serine/threonine kinase/mechanistic target of rapamycin kinase axis. Hum Exp Toxicol 2022; 41:9603271211065972. [PMID: 35238236 DOI: 10.1177/09603271211065972] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Propofol is a commonly used drug for sedation and general anesthesia during cancer surgery. Previous studies indicate that propofol exerts anti-tumor effect in various cancers. The aim of this study was to investigate the underlying molecular mechanism of propofol in liver cancer. The effects of propofol on liver cancer cells were evaluated by cell viability assay, colony formation assay, and tumor xenograft model. Dysregulated lncRNAs of propofol-treated liver cancer cells were evaluated by transcriptome RNA sequencing. The underlying molecular mechanisms of lncRNA cancer susceptibility candidate 9 (CASC9) in propofol-induced anti-tumor effects were evaluated by western blot, quantitative real-time polymerase chain reaction (qRT-PCR), wound scratch healing assay, transwell cell migration and invasion assay, TUNEL staining, fluorescence in situ hybridization, RNA immunoprecipitation (RIP), and chromatin immunoprecipitation (ChIP). We found that propofol suppressed proliferation, migration, invasion, and tumor xenograft growth of liver cancer cells in a dose-dependent manner. Exosomes transfer from propofol-treated cells inhibited proliferation, migration, and invasion and promoted apoptosis of liver cancer cells. Transcriptional profiling of propofol-treated liver cancer cells identified CASC9 as significantly downregulated lncRNA in cells and exosomes. Enforced CASC9 expression partially rescued the inhibitory effects of propofol on liver cancer cells. Furthermore, CASC9 was found to interact directly with EZH2 and epigenetically regulated PTEN expression. Restoration of CASC9 partially abrogated the inhibition of propofol on Akt/mTOR signaling. Our results indicated that propofol exerted anti-tumor effects by downregulating CASC9, and subsequently suppressed Akt/mTOR signaling. Our findings provided a novel insight into propofol-induced anti-tumor effects in liver cancer.
Collapse
Affiliation(s)
- Qing Chang
- Department of anesthesiology, Heilongjiang Provincal Hospital(Harbin Institute of Technology, Heilongjiang Provincal Hospital), No. 82 Zhongshan Rd, Harbin 150036, China
| | - Jun Wu
- Department of anesthesiology, Heilongjiang Provincal Hospital(Harbin Institute of Technology, Heilongjiang Provincal Hospital), No. 82 Zhongshan Rd, Harbin 150036, China
| | - Yang An
- Department of anesthesiology, Heilongjiang Provincal Hospital(Harbin Institute of Technology, Heilongjiang Provincal Hospital), No. 82 Zhongshan Rd, Harbin 150036, China
| | - Haiyan Liu
- Department of anesthesiology, Heilongjiang Provincal Hospital(Harbin Institute of Technology, Heilongjiang Provincal Hospital), No. 82 Zhongshan Rd, Harbin 150036, China
| | - Yang Sun
- Department of anesthesiology, Heilongjiang Provincal Hospital(Harbin Institute of Technology, Heilongjiang Provincal Hospital), No. 82 Zhongshan Rd, Harbin 150036, China
| |
Collapse
|
33
|
Zhang Y, Li R, Ding X, He M, Zhang R. Long noncoding RNA SNHG6 promotes oesophageal squamous cell carcinoma by downregulating the miR-101-3p/EZH2 pathway. J Biochem Mol Toxicol 2021; 36:e22959. [PMID: 34766670 DOI: 10.1002/jbt.22959] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 09/01/2021] [Accepted: 10/26/2021] [Indexed: 12/28/2022]
Abstract
Long noncoding RNAs (LncRNAs) have been reported to play a vital role in the development of oesophageal squamous cell carcinoma (OSCC). Our previous study revealed that the significant upregulation of the LncRNA small nucleolar RNA host gene 6 (SNHG6) in OSCC promotes OSCC tumourigenesis. However, the mechanisms underlying the dynamics of SNHG6 expression in OSCC have rarely been studied. In this study, we verified the tumour-promoting effect of SNHG6 through sponging miR-101-3p, and their levels were negatively correlated in human samples of OSCC. In addition, miR-101-3p overexpression reversed the effect of SNHG6. Moreover, we confirmed that SNHG6/miR-101-3p affects OSCC by regulating the expression of the enhancer of zeste 2 (EZH2). The effect of EZH2 silencing resembled closely that of SNHG6 knockdown. EZH2 silencing inhibited the expression of protein cyclin D1 and β-catenin, but in contrast, it enhanced the expression of E-cadherin. These findings demonstrated the oncogenic role of SNHG6, which promotes OSCC progression by regulating the expression of EZH2 through its interaction with miR-101-3p. These findings may help in improving the diagnosis and treatment methods of OSCC.
Collapse
Affiliation(s)
- Yueli Zhang
- Department of Clinical Pharmacy, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Ruijia Li
- Department of Pharmacy, The Eight Hospital of Xian, Xian, China
| | - Xiaoliang Ding
- Department of Clinical Pharmacy, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Meng He
- Department of Clinical Pharmacy, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Rui Zhang
- Emergency Department, Shaanxi Provincial Cancer Hospital, College of Medicine, Xi'an Jiaotong University, Xian, China
| |
Collapse
|
34
|
Wang X, Liu H, Zhang Q, Zhang X, Qin Y, Zhu G, Dang J, Wang F, Yang X, Fan R. LINC00514 promotes lipogenesis and tumor progression in esophageal squamous cell carcinoma by sponging miR‑378a‑5p to enhance SPHK1 expression. Int J Oncol 2021; 59:86. [PMID: 34533201 PMCID: PMC8460062 DOI: 10.3892/ijo.2021.5266] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 08/23/2021] [Indexed: 02/06/2023] Open
Abstract
Increasing evidence has demonstrated that long non‑coding RNAs serve pivotal roles in tumor development, progression, metastasis and metabolism. However, to the best of our knowledge, the roles and molecular mechanisms of long intergenic nonprotein‑coding RNA 00514 (LINC00514) in esophageal squamous cell carcinoma (ESCC) remain unknown. The present study found that LINC00514 and sphingosine kinase 1 (SPHK1) were both upregulated in ESCC tissues and cells, and their high expression levels were closely associated with Tumor‑Node‑Metastasis stage, lymph node metastasis and poor prognosis of patients with ESCC. Functionally, knockdown of LINC00514 inhibited cell proliferation and invasion, and led to the downregulation of lipogenesis‑related proteins, including SPHK1, fatty acid synthase, acetyl‑coenzyme (Co)A carboxylase α and stearoyl‑CoA desaturase 1, whereas LINC00514 overexpression promoted cell proliferation and invasion in ESCC KYSE150 and KYSE30 cells, and upregulated expression of lipogenesis‑related proteins. Mechanistically, LINC00514 functioned as a competing endogenous RNA by sponging microRNA (miR)‑378a‑5p, resulting in the upregulation of SPHK1, which was accompanied by the activation of lipogenesis‑related pathways, to promote ESCC cell proliferation and invasion. Taken together, these findings suggest that LINC00514 may participate in ESCC lipogenesis, and targeting the LINC00514/miR‑378a‑5p/SPHK1 signaling axis may be a novel and promising therapeutic strategy for management of patients with ESCC.
Collapse
Affiliation(s)
- Xin Wang
- Department of Radiotherapy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Hongtao Liu
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Qing Zhang
- Translational Medicine Research Center, Zhengzhou People's Hospital, Zhengzhou, Henan 450003, P.R. China
| | - Xueying Zhang
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Yue Qin
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Guangzhao Zhu
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Jinghan Dang
- Department of Clinical Medicine, Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Feng Wang
- Institute of Genomic Medicine, College of Pharmacy, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Xiangxiang Yang
- Department of Radiotherapy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Ruitai Fan
- Department of Radiotherapy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| |
Collapse
|
35
|
Hao A, Wang Y, Stovall DB, Wang Y, Sui G. Emerging Roles of LncRNAs in the EZH2-regulated Oncogenic Network. Int J Biol Sci 2021; 17:3268-3280. [PMID: 34512145 PMCID: PMC8416728 DOI: 10.7150/ijbs.63488] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 07/16/2021] [Indexed: 12/15/2022] Open
Abstract
Cancer is a life-threatening disease, but cancer therapies based on epigenetic mechanisms have made great progress. Enhancer of zeste homolog 2 (EZH2) is the key catalytic component of Polycomb repressive complex 2 (PRC2) that mediates the tri-methylation of lysine 27 on histone 3 (H3K27me3), a well-recognized marker of transcriptional repression. Mounting evidence indicates that EZH2 is elevated in various cancers and associates with poor prognosis. In addition, many studies revealed that EZH2 is also involved in transcriptional repression dependent or independent of PRC2. Meanwhile, long non-coding RNAs (lncRNAs) have been reported to regulate numerous and diverse signaling pathways in oncogenesis. In this review, we firstly discuss functional interactions between EZH2 and lncRNAs that determine PRC2-dependent and -independent roles of EZH2. Secondly, we summarize the lncRNAs regulating EZH2 expression at transcription, post-transcription and post-translation levels. Thirdly, we review several oncogenic pathways cooperatively regulated by lncRNAs and EZH2, including the Wnt/β-catenin and p53 pathways. In conclusion, lncRNAs play a key role in the EZH2-regulated oncogenic network with many fertile directions to be explored.
Collapse
Affiliation(s)
- Aixin Hao
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Yunxuan Wang
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Daniel B Stovall
- College of Arts and Sciences, Winthrop University, Rock Hill, SC 29733, the United States
| | - Yu Wang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Guangchao Sui
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin 150040, China
| |
Collapse
|
36
|
Ye GY, Zhang ZZ, Zhu CC, Cong ZJ, Cui Z, Chen L, Zhao G. Long Non-Coding RNA LINC01569 Promotes Proliferation and Metastasis in Colorectal Cancer by miR-381-3p/RAP2A Axis. Front Oncol 2021; 11:727698. [PMID: 34422671 PMCID: PMC8378226 DOI: 10.3389/fonc.2021.727698] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 07/19/2021] [Indexed: 01/05/2023] Open
Abstract
Background Long non-coding RNAs (lncRNAs) display regulatory function flexibly in tumor onset and developments. Our study aimed to delve into the roles of lncRNA LINC01569 (LINC01569) in colorectal cancer (CRC) progression to study the potential mechanisms. Methods The genetic expression profiles of miR-381-3p and LINC01569 were measured by RT-PCR. The subcellular localization of LINC01569 in CRC cells was identified using subcellular fractionation location. Loss-of-function assays were performed to explore the potential effects of LINC01569 on CRC progression. Dual-luciferase reporter analysis was employed to verify the binding connections among LINC01569, miR-381-3p, and RAP2A. Results LINC01569 expression was distinctly increased in CRC. Curiously, if LINC01569 is removed, CRC cells will not migrate, proliferate, and invade remarkably. Molecular mechanism exploration uncovered that LINC01569 acted as a ceRNA competing with RAP2A to bind with miR-381-3p. Furthermore, rescue experiments corroborated the fact that miR-381-3p suppression reversed the inhibitory actions of LINC01569 knockdown on the expression of RAP2A and CRC progression. Conclusion Overall, our findings indicate that LINC01569 plays a key role in CRC development by means of aiming at the miR-381-3p/RAP2A axis and can be equivalent to an underlying medicinal target to save CRC patients.
Collapse
Affiliation(s)
- Guang-Yao Ye
- Department of Gastrointestinal Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zi-Zhen Zhang
- Department of Gastrointestinal Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Chun-Chao Zhu
- Department of Gastrointestinal Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhi-Jie Cong
- Department of Gastrointestinal Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhe Cui
- Department of Gastrointestinal Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lu Chen
- Department of Gastrointestinal Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Gang Zhao
- Department of Gastrointestinal Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
37
|
Li Y, Tian M, Zhang D, Zhuang Y, Li Z, Xie S, Sun K. Long Non-Coding RNA Myosin Light Chain Kinase Antisense 1 Plays an Oncogenic Role in Gallbladder Carcinoma by Promoting Chemoresistance and Proliferation. Cancer Manag Res 2021; 13:6219-6230. [PMID: 34393514 PMCID: PMC8357316 DOI: 10.2147/cmar.s323759] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 07/29/2021] [Indexed: 12/20/2022] Open
Abstract
Background Long non-coding RNAs (lncRNAs) have been reported to play critical roles in human tumours, including gallbladder carcinoma (GBC). However, their biological functions and molecular mechanisms in tumorigenesis and progression remain largely unknown. Methods Quantitative polymerase chain reaction (qPCR) was used to verify the expression of lncRNA myosin light chain kinase antisense RNA 1 (MYLK-AS1) in 120 pairs of GBC tissues and paired adjacent non-tumour tissues, as well as in six different GBC cell lines (NOZ, EH-GB1, OCUG-1, GBC-SD, SGC-996 and QBC-939). Cell counting kit 8 was applied to explore cell proliferation and drug sensitivity assays. The target miRNAs (miR) of MYLK-AS1 and downstream target genes were predicted using Starbase 3.0 software and confirmed by double luciferase reporting test. The expression of proteins was assessed using Western blot assay. Results Here, we demonstrated that MYLK-AS1 was significantly upregulated and correlated with a poor prognosis and poor clinical characteristics in GBC. Furthermore, the forced expression of MYLK-AS1 significantly promoted GBC cell proliferation and resistance to gemcitabine in vitro. Mechanistically, MYLK-AS1 functioned as an efficient miR-217 sponge, thereby releasing the inhibition of enhancer of zeste 2 polycomb repressive complex 2 (EZH2) subunit expression. MYLK-AS1 promoted GBC cell proliferation and resistance to gemcitabine by upregulating EZH2 expression, and EZH2 was confirmed as a direct target of miR-217. Discussion Our results confirmed that the chemoresistant driver MYLK-AS1 might be a promising candidate as a therapeutic target for the treatment of advanced GBC.
Collapse
Affiliation(s)
- Yongliang Li
- Department of Emergency, Minhang Hospital, Fudan University, Shanghai, 200040, People's Republic of China
| | - Mi Tian
- Department of Intensive Care Unit, Huashan Hospital, Fudan University, Shanghai, 200040, People's Republic of China
| | - Dongqing Zhang
- Department of Emergency, Minhang Hospital, Fudan University, Shanghai, 200040, People's Republic of China
| | - Yifei Zhuang
- Department of Emergency, Minhang Hospital, Fudan University, Shanghai, 200040, People's Republic of China
| | - Zhimin Li
- Department of Emergency, Minhang Hospital, Fudan University, Shanghai, 200040, People's Republic of China
| | - Shenqi Xie
- Department of Emergency, Minhang Hospital, Fudan University, Shanghai, 200040, People's Republic of China
| | - Keyu Sun
- Department of Emergency, Minhang Hospital, Fudan University, Shanghai, 200040, People's Republic of China
| |
Collapse
|
38
|
Zhang Y, Zhu H, Sun N, Zhang X, Liang G, Zhu J, Xia L, Kou Y, Lu J. Linc00941 regulates esophageal squamous cell carcinoma via functioning as a competing endogenous RNA for miR-877-3p to modulate PMEPA1 expression. Aging (Albany NY) 2021; 13:17830-17846. [PMID: 34254950 PMCID: PMC8312468 DOI: 10.18632/aging.203286] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 02/01/2021] [Indexed: 12/13/2022]
Abstract
Esophageal squamous cell carcinoma (ESCC) represents one of the most common malignancies and is the fifth leading cause of cancer-related deaths. Long intergenic non-coding RNAs (lincRNAs) have been suggested to be dysregulated in various types of cancers, and a growing number of lincRNAs have been implicated to be functional in the ESCC progression. In this study, we examined the role of linc00941 in the ESCC progression and explored the underlying molecular mechanisms. The bioinformatics analysis identified the up-regulation of linc00941 in the ESCC tissues. Further in vitro studies showed that linc00941 was up-regulated in ESCC cell lines. The loss-of-function studies demonstrated that linc00941 knockdown suppressed ESCC cell proliferation, invasion and migration, and also suppressed the in vivo tumor growth. Furthermore, bioinformatics prediction along with luciferase reporter assay and RNA immunoprecipitation assay implied that linc00941 acted as a competing endogenous RNA for miR-877-3p, and linc00941 regulated ESCC cell progression via at least targeting miR-877-3p. Subsequently, miR-877-3p targeted prostate transmembrane protein, androgen induced 1 (PMEPA1) 3' untranslated region and repressed PMEPA1 expression in ESCC cells; overexpression of PMEPA1 attenuated the inhibitory effects of linc00941 knockdown on the ESCC cell progression. Linc00941 knockdown suppressed epithelial-mesenchymal transition (EMT) via targeting miR-877-3p/PMEPA1 axis in ESCC cells. In conclusion, our results indicated the oncogenic role of linc00941 in ESCC, and knockdown of linc00941 suppressed ESCC cell proliferation, invasion, migration and EMT via interacting with miR-877-3p/PMEPA1 axis.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Medical Oncology, Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research and the Affiliated Cancer Hospital of Nanjing Medical University, Nanjing 210009, China
| | - Huayun Zhu
- Department of Medical Oncology, Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research and the Affiliated Cancer Hospital of Nanjing Medical University, Nanjing 210009, China
| | - Ning Sun
- Department of Medical Oncology, Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research and the Affiliated Cancer Hospital of Nanjing Medical University, Nanjing 210009, China
| | - Xiaomei Zhang
- Department of Medical Oncology, Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research and the Affiliated Cancer Hospital of Nanjing Medical University, Nanjing 210009, China
| | - Geyu Liang
- School of Public Health, Southeast University, Nanjing 210009, China
| | - Jiali Zhu
- Department of Medical Oncology, Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research and the Affiliated Cancer Hospital of Nanjing Medical University, Nanjing 210009, China
| | - Lei Xia
- Department of Medical Oncology, Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research and the Affiliated Cancer Hospital of Nanjing Medical University, Nanjing 210009, China
| | - Yingying Kou
- Department of Medical Oncology, Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research and the Affiliated Cancer Hospital of Nanjing Medical University, Nanjing 210009, China
| | - Jianwei Lu
- Department of Medical Oncology, Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research and the Affiliated Cancer Hospital of Nanjing Medical University, Nanjing 210009, China
| |
Collapse
|
39
|
Zhang C, Lian H, Xie L, Yin N, Cui Y. LncRNA ELFN1-AS1 promotes esophageal cancer progression by up-regulating GFPT1 via sponging miR-183-3p. Biol Chem 2021; 401:1053-1061. [PMID: 32229685 DOI: 10.1515/hsz-2019-0430] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 03/16/2020] [Indexed: 12/29/2022]
Abstract
Accumulating studies highlight the critical role of long non-coding RNAs (lncRNAs) in the development of various human cancers. Extracellular leucine rich repeat and fibronectin type III domain containing 1-antisense RNA 1 (ELFN1-AS1) was shown to be a newly found lncRNA that abnormally expressed in human tumors. However, till now the specific function of this lncRNA in esophageal cancer (ESCA) remains unknown. In this study, we discovered that higher ELFN1-AS1 expression indicated shorter patient survival in pan-cancer, including ESCA, using online The Cancer Genome Atlas (TCGA) tools. The lncRNA ELFN1-AS1 was significantly up-regulated in ESCA tissues and cell lines when compared with the counterparts. Down-regulation of ELFN1-AS1 restrained cell proliferation, migration, and invasion of ESCA in vitro. In addition, we found that the expression of microRNA-183-3p (miR-183-3p) and ELFN1-AS1 or glutamine-fructose-6-phosphate transaminase 1 (GFPT1) were inversely correlated in ESCA. Both ELFN1-AS1 and GFPT1 are direct targets of miR-183-3p in ESCA. The effects of ELFN1-AS1 knockdown on ESCA progression were partially rescued by inhibition of miR-183-3p or over-expression of GFPT1. In summary, the results of this study suggest that the lncRNA ELFN1-AS1 facilitates the progression of ESCA by acting as a competing endogenous RNA (ceRNA) to promote GFPT1 expression via sponging miR-183-3p.
Collapse
Affiliation(s)
- Chunyan Zhang
- Department of Clinical Laboratory, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, 450007, China
| | - Hongkai Lian
- Department of Orthopedics, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, 450007, China
| | - Linsen Xie
- Department of Clinical Laboratory, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, 450007, China
| | - Ningwei Yin
- Department of General Surgery, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, 450007, China
| | - Yuanbo Cui
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China.,Translational Medicine Center, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, 450007, China
| |
Collapse
|
40
|
Pan Q, Li B, Zhang J, Du X, Gu D. LncRNA THAP9-AS1 accelerates cell growth of esophageal squamous cell carcinoma through sponging miR-335-5p to regulate SGMS2. Pathol Res Pract 2021; 224:153526. [PMID: 34273804 DOI: 10.1016/j.prp.2021.153526] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 06/09/2021] [Accepted: 06/14/2021] [Indexed: 01/20/2023]
Abstract
Esophageal squamous cell carcinoma (ESCC) is kind of common and aggressive malignant tumors with high incidence and mortality all over the world. Accumulating studies have reported that long non-coding RNAs (lncRNAs) can play a vital regulatory role in human cancers. THAP9 antisense RNA 1 (THAP9-AS1) has been identified as an oncogene in several cancers. But its role in ESCC remains to be studied. In our research, THAP9-AS1 expression in ESCC cell lines was analyzed by real-time quantitative polymerase chain reaction (RT-qPCR). Cell proliferation, migration, invasion and apoptosis as well as EMT process were analyzed by 5-Ethynyl-2'-deoxyuridine ( EdU), Transwell, Terminal deoxynucleotidyl transferase dUTP Nick-End Labeling (TUNEL) and western blot experiments. The interplay of THAP9-AS1, miR-335-5p and sphingomyelin synthase 2 (SGMS2) was analyzed by luciferase reporter assay and RNA immunoprecipitation (RIP) assay. We discovered that THAP9-AS1 was highly expressed in ESCC cell lines and that the knockdown of THAP9-AS1 inhibited proliferation, migration, and invasion as well as EMT of ECSS cells but enhanced cell apoptosis. Furthermore, miR-335-5p was proved to be sponged by THAP9-AS1 and its up-regulation could repress ESCC progression. Additionally, SGMS2 was verified to be the target gene of miR-335-5p. In rescue assay, SGMS2 overexpression could offset the suppressive role of THAP9-AS1 depletion on ESCC progression. In short, THAP9-AS1 accelerated cell growth of ESCC through sponging miR-335-5p to regulate SGMS2.
Collapse
Affiliation(s)
- Qingchun Pan
- Department of Otolaryngology, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan, China
| | - Bei Li
- Department of Otolaryngology, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan, China
| | - Jin Zhang
- Department of Pathology, Suzhou Science & Technology Town Hospital, Suzhou 215153, Jiangsu, China
| | - Xiuluan Du
- Department of Pathology, Suzhou Science & Technology Town Hospital, Suzhou 215153, Jiangsu, China
| | - Donghua Gu
- Department of Pathology, Suzhou Science & Technology Town Hospital, Suzhou 215153, Jiangsu, China.
| |
Collapse
|
41
|
Qi Y, Song C, Zhang J, Guo C, Yuan C. Oncogenic LncRNA CASC9 in Cancer Progression. Curr Pharm Des 2021; 27:575-582. [PMID: 32940174 DOI: 10.2174/1381612826666200917150130] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 08/07/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Long non-coding RNAs (LncRNAs), with the length of over 200 nucleotides, that originate from intergenic, antisense, or promoter-proximal regions, are a large family of RNAs that lack coding capacity. Emerging evidences illustrated that LncRNAs played significant roles in a variety of cellular functions and biological processes in profuse human diseases, especially in cancers. Cancer susceptibility candidate 9 (CASC9), as a member of the LncRNAs group, firstly found its oncogenic function in esophageal cancer. In the following recent studies, a growing amount of human malignancies are verified to be correlated with CASC9, most of which are derived from the squamous epithelium tissue. This present review attempts to highlight the latest insights into the expression, functional roles, and molecular mechanisms of CASC9 in different human malignancies. METHODS In this review, the latest findings related to the pathophysiological processes of CASC9 in human cancers were summarized and analyzed, and the associated studies collected in systematic retrieval of PubMed used lncRNA and CASA9 as keywords. RESULTS CASC9 expression is identified to be aberrantly elevated in a variety of malignancies. The over-expression of CASC9 has been suggested to accelerate cell proliferation, migration, cell growth and drug resistance of cancer cells, while depressing cell apoptosis, revealing its role as an oncogene. Moreover, the current review demonstrated CASC9 as closely related to the neoplastic transformation of squamous epithelial cells and squamous metaplasia in non-squamous epithelial tissues. Finally, we discuss the limitations and tremendous diagnostic/ therapeutic potential of CASC9 in various human cancers. CONCLUSION Long non-coding RNA CASC9 likely serve as useful disease biomarkers or therapeutic targets which be effectively applied in the treatment of different kinds of cancers.
Collapse
Affiliation(s)
- Yuying Qi
- China Three Gorges University, School of Medicine, Yichang, 443002, China
| | - Chaoying Song
- China Three Gorges University, School of Medicine, Yichang, 443002, China
| | - Jiali Zhang
- China Three Gorges University, School of Medicine, Yichang, 443002, China
| | - Chong Guo
- China Three Gorges University, School of Medicine, Yichang, 443002, China
| | - Chengfu Yuan
- China Three Gorges University, School of Medicine, Yichang, 443002, China
| |
Collapse
|
42
|
Kong D, Long D, Liu B, Pei D, Cao N, Zhang G, Xia Z, Luo M. Downregulation of long non-coding RNA LOC101928477 correlates with tumor progression by regulating the epithelial-mesenchymal transition in esophageal squamous cell carcinoma. Thorac Cancer 2021; 12:1303-1311. [PMID: 33713583 PMCID: PMC8088935 DOI: 10.1111/1759-7714.13858] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/09/2021] [Accepted: 01/09/2021] [Indexed: 02/07/2023] Open
Abstract
Background Esophageal squamous cell carcinoma (ESCC) is one of the deadliest malignancies. There is a growing body of evidence showing that long non‐coding RNAs (lncRNAs) play critical roles in ESCC oncogenesis. The present study aimed to explore the role of LOC101928477, a newly discovered lncRNA, in the development and metastasis of ESCC. Methods In this study, real‐time PCR, western blotting, cell counting kit‐8 (CCK‐8), flow cytometry, colony formation, wound healing, transwell migration/invasion assay, immunofluorescence, and immunohistochemistry were used. We also applied an in situ xenograft mouse model and a lung metastasis mouse model to verify our findings. Results We determined that LOC101928477 expression was inhibited in ESCC tissue and ESCC cell lines when compared with controls. Moreover, forced expression of LOC101928477 effectively inhibited ESCC cell proliferation, colony formation, migration, and invasion via suppression of epithelial‐mesenchymal transition (EMT). Furthermore, LOC101928477 overexpression inhibited in situ tumor growth and lung metastasis in a mouse model. Conclusions Together, our results suggested that LOC101928477 could be a novel suppressor gene involved in ESCC progression.
Collapse
Affiliation(s)
- Demiao Kong
- Department of Thoracic Surgery, Guizhou Provincial People's Hospital, Guiyang, China
| | - Dali Long
- Department of Intensive Care Unit, Guizhou Provincial People's Hospital, Guiyang, China
| | - Bo Liu
- Department of Thoracic Surgery, Guizhou Provincial People's Hospital, Guiyang, China
| | - Dengke Pei
- Department of Thoracic Surgery, Guizhou Provincial People's Hospital, Guiyang, China
| | - Na Cao
- Department of Logistics, Guizhou Provincial People's Hospital, Guizhou, Guiyang, China
| | - Guihua Zhang
- Department of Thoracic Surgery, Guizhou Provincial People's Hospital, Guiyang, China
| | - Zhenkun Xia
- Department of Thoracic Surgery, Guizhou Provincial People's Hospital, Guiyang, China
| | - Meng Luo
- Department of Thoracic Surgery, Guizhou Provincial People's Hospital, Guiyang, China
| |
Collapse
|
43
|
Tan Z, Zhou P, Zhu Z, Wang Y, Guo Z, Shen M, Xiao Y, Shen W, Wu D. Upregulated long non‑coding RNA LincIN promotes tumor progression via the regulation of nuclear factor 90/microRNA‑7/HOXB13 in esophageal squamous cell carcinoma. Int J Mol Med 2021; 47:78. [PMID: 33693959 PMCID: PMC7979264 DOI: 10.3892/ijmm.2021.4911] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 02/18/2021] [Indexed: 12/09/2022] Open
Abstract
Long non-coding RNA LincIN has been reported to be overexpressed and to be involved in the metastasis of breast cancer. However, the expression and role of LincIN in esophageal squamous cell carcinoma (ESCC) remain unsolved. In the present study, LincIN expression was examined in ESCC by RT-qPCR, and the roles of LincIN in ESCC were determined using cell growth, migration and invasion assays. In addition, the effects of LincIN on nuclear factor 90 (NF90) and microRNA/miR (miR)-7 were examined by RNA immunoprecipitation assay, RT-qPCR, dual-luciferase reporter assay and western blot analysis. The results revealed that LincIN expression was significantly increased in ESCC tissues and cell lines. The increased expression of LincIN was positively associated with invasion depth, lymph node metastasis, TNM stage and a poor prognosis. Functional assays revealed that the overexpression of LincIN promoted ESCC cell growth, migration and invasion. Mechanistic analysis revealed that LincIN physically bound to NF90, enhanced the binding between NF90 and primary miR-7 (pri-miR-7), and further enhanced the inhibitory effects of NF90 on miR-7 biogenesis. Therefore, LincIN downregulated miR-7 expression in ESCC. The expression of miR-7 inversely correlated with that of LincIN in ESCC tissues. By downregulating miR-7, LincIN increased the expression of HOXB13, a target of miR-7. The overexpression of miR-7 or the depletion of HOXB13 both attenuated the tumor-promoting roles of LincIN in ESCC cell growth, migration and invasion. On the whole, the findings of the present study suggest that LincIN is overexpressed and plays an oncogenic role in ESCC via the regulation of the NF90/miR-7/HOXB13 axis. Thus, LincIN may prove to be a promising prognostic biomarker and therapeutic target for ESCC.
Collapse
Affiliation(s)
- Zhibo Tan
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Peitao Zhou
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Zhenru Zhu
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Ying Wang
- Department of Medical Oncology, National Cancer Centre/National Clinical Research Centre for Cancer/Cancer Hospital and Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, Guangdong 518116, P.R. China
| | - Zeqin Guo
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Mengying Shen
- Hepatology Unit and Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Yazhi Xiao
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Weixi Shen
- Department of Oncology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong 518100, P.R. China
| | - Dehua Wu
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| |
Collapse
|
44
|
Li M, Yu X, Zheng Q, Zhang Q, He Y, Guo W. Promising role of long non-coding RNA PCAT6 in malignancies. Biomed Pharmacother 2021; 137:111402. [PMID: 33761616 DOI: 10.1016/j.biopha.2021.111402] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/10/2021] [Accepted: 02/10/2021] [Indexed: 12/17/2022] Open
Abstract
Long non-coding RNAs (lncRNAs), a newly identified class of non-coding RNA (ncRNA), are defined as RNA molecules at least 200 nucleotides in length that are not translated into proteins. LncRNAs contribute to a wide range of biological processes and are master regulators of disease occurrence, development, and response to therapy in human malignancies. The lncRNA prostate cancer‑associated transcript 6 (PCAT6) is upregulated in various human malignancies, including lung cancer, hepatocellular carcinoma, cervical cancer, osteosarcoma, glioblastoma, colorectal cancer, breast cancer, gastric cancer, gastrointestinal stromal tumors, and pancreatic ductal adenocarcinoma. High expression of PCAT6 is closely correlated with aggressive clinicopathological characteristics and poor prognosis in cancer patients, suggesting it is an oncogenic lncRNA. PCAT6 overexpression also facilitates cell proliferation, invasion, and migration while attenuating apoptosis, indicating that it might serve as a new prognostic biomarker and therapeutic target for malignancies. Here, we discuss the molecular mechanisms, regulatory functions, and potential clinical applications of PCAT6 in cancer.
Collapse
Affiliation(s)
- Mingxing Li
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou 450052, China; Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou 450052, China
| | - Xiao Yu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou 450052, China; Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou 450052, China
| | - Qingyuan Zheng
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou 450052, China; Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou 450052, China
| | - Qiyao Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou 450052, China; Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou 450052, China
| | - Yuting He
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou 450052, China; Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou 450052, China.
| | - Wenzhi Guo
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou 450052, China; Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou 450052, China.
| |
Collapse
|
45
|
Xue W, Zheng Y, Shen Z, Li L, Fan Z, Wang W, Zhu Z, Zhai Y, Zhao J, Kan Q. Involvement of long non-coding RNAs in the progression of esophageal cancer. Cancer Commun (Lond) 2021; 41:371-388. [PMID: 33605567 PMCID: PMC8118593 DOI: 10.1002/cac2.12146] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 12/12/2020] [Accepted: 02/02/2021] [Indexed: 02/06/2023] Open
Abstract
Esophageal cancer (EC) is one of the most common malignant tumors of the digestive system with high incidence and mortality rate worldwide. Therefore, exploring the pathogenesis of EC and searching for new targeted therapies are the current research hotspot for EC treatment. Long non‐coding RNAs (lncRNAs) are endogenous RNAs with more than 200 nucleotides, but without protein‐coding function. In recent years, lncRNAs have gradually become the focuses in the field of non‐coding RNA. Some lncRNAs have been proved to be closely related to the pathogenesis of EC. Many lncRNAs are abnormally expressed in EC and participate in many biological processes including cell proliferation, apoptosis, and metastasis by inhibiting or promoting target gene expression. LncRNAs can also regulate the progression of EC through epithelial‐mesenchymal transformation (EMT), which is closely related to the occurrence, development, and prognosis of EC. In this article, we review and discuss the involvement of lncRNAs in the progression of EC.
Collapse
Affiliation(s)
- Wenhua Xue
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, P. R. China.,Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, Henan, 450052, P. R. China
| | - Yuanyuan Zheng
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, P. R. China.,Internet Medical and System Applications of National Engineering Laboratory, Zhengzhou, Henan, 450052, P. R. China
| | - Zhibo Shen
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, P. R. China.,Department of Oncology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, P. R. China.,Internet Medical and System Applications of National Engineering Laboratory, Zhengzhou, Henan, 450052, P. R. China
| | - Lifeng Li
- Department of Oncology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, P. R. China.,Internet Medical and System Applications of National Engineering Laboratory, Zhengzhou, Henan, 450052, P. R. China
| | - Zhirui Fan
- Department of Oncology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, P. R. China
| | - Wenbin Wang
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, P. R. China
| | - Zijia Zhu
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, P. R. China
| | - Yunkai Zhai
- Internet Medical and System Applications of National Engineering Laboratory, Zhengzhou, Henan, 450052, P. R. China
| | - Jie Zhao
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, P. R. China.,Internet Medical and System Applications of National Engineering Laboratory, Zhengzhou, Henan, 450052, P. R. China
| | - Quancheng Kan
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, P. R. China.,Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, Henan, 450052, P. R. China
| |
Collapse
|
46
|
Khajehdehi M, Khalaj-Kondori M, Ghasemi T, Jahanghiri B, Damaghi M. Long Noncoding RNAs in Gastrointestinal Cancer: Tumor Suppression Versus Tumor Promotion. Dig Dis Sci 2021; 66:381-397. [PMID: 32185664 DOI: 10.1007/s10620-020-06200-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 03/07/2020] [Indexed: 01/17/2023]
Abstract
Approximately 80% of the human genome harbors biochemical marks of active transcription that its majority transcribes to noncoding RNAs, namely long noncoding RNAs (lncRNAs). LncRNAs are heterogeneous RNA transcripts that regulate critical biological processes such as cell survival and death. They involve in the progression of different cancers by affecting transcriptional and post-transcriptional modifications as well as epigenetic control of numerous tumor suppressors and oncogenes. Recent findings show that aberrant expression of lncRNAs is associated with tumor initiation, progression, invasion, and overall survival of patients with gastrointestinal (GI) cancers. Some lncRNAs play as tumor suppressors in all GI cancers, but others play as tumor promoters. However, some other lncRNAs might function as a tumor suppressor in one GI cancer, but as a tumor promoter in another GI cancer type. This fact highlights possible context dependency of the expression patterns and roles of at least some lncRNAs in GI cancer development and progression. Here, we review the functional relation of lncRNAs involved in the development and progression of GI cancer by focusing on their roles as tumor suppressor and tumor promoter genes.
Collapse
Affiliation(s)
- Mina Khajehdehi
- Department of Animal Biology, Faculty of Natural Science, University of Tabriz, Tabriz, Iran
| | - Mohammad Khalaj-Kondori
- Department of Animal Biology, Faculty of Natural Science, University of Tabriz, Tabriz, Iran.
| | - Tayyebeh Ghasemi
- Department of Animal Biology, Faculty of Natural Science, University of Tabriz, Tabriz, Iran
| | - Babak Jahanghiri
- Department of Molecular Medicine, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Mehdi Damaghi
- Department of Oncologic Sciences, Morsani College of Medicine, University of South Florida, Tampa, 33612, FL, USA
| |
Collapse
|
47
|
Li R, Han K, Xu D, Chen X, Lan S, Liao Y, Sun S, Rao S. A Seven-Long Non-coding RNA Signature Improves Prognosis Prediction of Lung Adenocarcinoma: An Integrated Competing Endogenous RNA Network Analysis. Front Genet 2021; 11:625977. [PMID: 33584817 PMCID: PMC7876394 DOI: 10.3389/fgene.2020.625977] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 12/21/2020] [Indexed: 12/13/2022] Open
Abstract
Early and precise prediction is an important way to reduce the poor prognosis of lung adenocarcinoma (LUAD) patients. Nevertheless, the widely used tumor, node, and metastasis (TNM) staging system based on anatomical information only often could not achieve adequate performance on foreseeing the prognosis of LUAD patients. This study thus aimed to examine whether the long non-coding RNAs (lncRNAs), known highly involved in the tumorigenesis of LUAD through the competing endogenous RNAs (ceRNAs) mechanism, could provide additional information to improve prognosis prediction of LUAD patients. To prove the hypothesis, a dataset consisting of both RNA sequencing data and clinical pathological data, obtained from The Cancer Genome Atlas (TCGA) database, was analyzed. Then, differentially expressed RNAs (DElncRNAs, DEmiRNAs, and DEmRNAs) were identified and a lncRNA-miRNA-mRNA ceRNA network was constructed based on those differentially expressed RNAs. Functional enrichment analysis revealed that this ceRNA network was highly enriched in some cancer-associated signaling pathways. Next, lasso-Cox model was run 1,000 times to recognize the potential survival-related combinations of the candidate lncRNAs in the ceRNA network, followed by the "best subset selection" to further optimize these lncRNA-based combinations, and a seven-lncRNA prognostic signature with the best performance was determined. Based on the median risk score, LUAD patients could be well distinguished into high-/low-risk subgroups. The Kaplan-Meier survival curve showed that LUAD patients in the high-risk group had significantly shorter overall survival than those in the low-risk group (log-rank test P = 4.52 × 10-9). The ROC curve indicated that the clinical genomic model including both the TNM staging system and the signature had a superior performance in predicting the patients' overall survival compared to the clinical model with the TNM staging system only. Further stratification analysis suggested that the signature could work well in the different strata of the stage, gender, or age, rendering it to be a wide application. Finally, a ceRNA subnetwork related to the signature was extracted, demonstrating its high involvement in the tumorigenesis mechanism of LUAD. In conclusion, the present study established a lncRNA-based molecular signature, which can significantly improve prognosis prediction for LUAD patients.
Collapse
Affiliation(s)
- Rang Li
- Institute of Medical Systems Biology, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Kedong Han
- Department of Cardiology, Maoming People's Hospital, Maoming, China
| | - Dehua Xu
- Institute of Medical Systems Biology, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Xiaolin Chen
- Institute of Medical Systems Biology, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Shujin Lan
- Institute of Medical Systems Biology, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Yuanjun Liao
- Institute of Medical Systems Biology, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Shengnan Sun
- Institute of Medical Systems Biology, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Shaoqi Rao
- Institute of Medical Systems Biology, School of Public Health, Guangdong Medical University, Dongguan, China
| |
Collapse
|
48
|
Zhang L, Ye F, Zuo Z, Cao D, Peng Y, Li Z, Huang J, Duan L. Long noncoding RNA TPT1-AS1 promotes the progression and metastasis of colorectal cancer by upregulating the TPT1-mediated FAK and JAK-STAT3 signalling pathways. Aging (Albany NY) 2021; 13:3779-3797. [PMID: 33428595 PMCID: PMC7906141 DOI: 10.18632/aging.202339] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 10/02/2020] [Indexed: 12/11/2022]
Abstract
Tumour protein translationally controlled 1 (TPT1) antisense RNA 1 (TPT1-AS1) is known to be involved in the development and metastasis of cervical and ovarian cancers; however, its biological role in colorectal cancer (CRC) remains unknown. This study aimed to determine the function and mechanism of action of TPT1-AS1 in the progression and metastasis of CRC. Elevated TPT1-AS1 levels were observed in CRC tissues. Furthermore, the high expression levels were found to be correlated with unfavourable clinicopathological characteristics in CRC. Cell function experiments demonstrated that TPT1-AS1 depletion impeded cell proliferation, migration and invasion and enhanced cell adhesion; it also attenuated tumorigenesis and metastasis in vivo. Additionally, TPT1-AS1 was predominately located in the nuclei of the cells and could upregulate the expression of TPT1 by recruiting mixed lineage leukaemia protein-1 (MLL1), which increased the trimethylation of H3K4 me3 in the TPT1 promoter region and subsequently activated FAK and JAK-STAT3 signalling cascades. The inhibition of FAK activation by PF573228 significantly attenuated the oncogenic effect of TPT1-AS1. These findings indicated that TPT1-AS1 promoted tumour progression and metastasis in CRC by upregulating TPT1 levels and activating the FAK and JAK-STAT3 signalling pathways. Thus, TPT1-AS1 may be considered as a potential therapeutic target for CRC.
Collapse
Affiliation(s)
- Leiyi Zhang
- Department of Minimally Invasive Surgery, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Fei Ye
- Department of Minimally Invasive Surgery, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Zhongkun Zuo
- Department of Minimally Invasive Surgery, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Ding Cao
- Department of Minimally Invasive Surgery, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Yu Peng
- Department of Minimally Invasive Surgery, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Zedong Li
- Department of Minimally Invasive Surgery, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Jiangsheng Huang
- Department of Minimally Invasive Surgery, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Lunxi Duan
- Department of Minimally Invasive Surgery, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| |
Collapse
|
49
|
Cheng W, Shi X, Lin M, Yao Q, Ma J, Li J. LncRNA MAGI2-AS3 Overexpression Sensitizes Esophageal Cancer Cells to Irradiation Through Down-Regulation of HOXB7 via EZH2. Front Cell Dev Biol 2020; 8:552822. [PMID: 33330444 PMCID: PMC7732634 DOI: 10.3389/fcell.2020.552822] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 09/29/2020] [Indexed: 12/31/2022] Open
Abstract
Background Accumulating evidence has suggested that aberrant expression of long non-coding RNAs (lncRNAs) may contribute to cancer progression in association with radioresistance. The current study aimed to identify the potential role of lncRNA MAGI2-AS3 and the underlying mechanism in its regulation of the radio-sensitivity of esophageal cancer cells. Methods and Results Initially, we detected high expression of HOXB7 from microarray-based gene expression profiling of esophageal cancer. Then, we identified the interactions among MAGI2-AS3, HOXB7, and EZH2 by dual-luciferase reporter gene assay, RNA pull-down assay, RIP assay and ChIP assay. HOXB7 was highly-expressed, while MAGI2-AS3 was poorly-expressed in esophageal cancer tissues and cells. The effect of MAGI2-AS3 and HOXB7 on esophageal cancer cell proliferation and apoptosis as well as tumorigenicity of radioresistant cells was examined by gain- and loss-of-function experiments. Interestingly, MAGI2-AS3 down-regulated HOXB7 through interaction with EZH2, which promoted cell apoptosis and inhibited proliferation and radio-resistance. Besides, down-regulation of MAGI2-AS3 exerted a promoting effect on these malignant phenotypes. Conclusion Taken together, our results reveal the potential role of MAGI2-AS3 over-expression in controlling esophageal cancer resistance to radiotherapy by down-regulating HOXB7, this providing a candidate biomarker for resistance to radiotherapy.
Collapse
Affiliation(s)
- Wenfang Cheng
- Department of Radiation Oncology, Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fuzhou, China
| | - Xiuling Shi
- Department of Radiation Oncology, Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fuzhou, China
| | - Mingqiang Lin
- Department of Radiation Oncology, Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fuzhou, China
| | - Qiwei Yao
- Department of Radiation Oncology, Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fuzhou, China
| | - Jiayu Ma
- Department of Radiation Oncology, Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fuzhou, China
| | - Jiancheng Li
- Department of Radiation Oncology, Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fuzhou, China
| |
Collapse
|
50
|
Chen Y, Sheng HG, Deng FM, Cai LL. Downregulation of the long noncoding RNA SNHG1 inhibits tumor cell migration and invasion by sponging miR-195 through targeting Cdc42 in oesophageal cancer. Kaohsiung J Med Sci 2020; 37:181-191. [PMID: 33171523 DOI: 10.1002/kjm2.12318] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 09/14/2020] [Accepted: 10/14/2020] [Indexed: 12/13/2022] Open
Abstract
Despite the poor prognosis of oesophageal cancer (EC), the molecular mechanisms of EC are still unclear. In recent years, role of lncRNA in cancer development attracted much attention. The present study aimed to investigate the effects of the long noncoding RNA SNHG1 on the migration and invasion of EC cells and the possible mechanisms involved. The effects of SNHG1 on cell proliferation, migration, and invasion were determined and its relationship with miR-195/Cdc42 axis was investigated. It was found SNHG1 and Cdc42 were significantly upregulated, and miR-195 was significantly downregulated in both EC tissues and cell lines. In addition, the inhibition of either SNHG1 or Cdc42 resulted in suppression of cell proliferation, migration, and invasion, while inhibition of miR-195 led to opposite results and reversed the effects of si-SNHG1. We also observed that higher SNHG1 predicted poorer prognosis of EC patients. In summary, inhibition of SNHG1 can suppress the cell migration and invasion of EC cells by sponging miR-195 through targeting Cdc42. This study might provide deeper insights into the SNHG1/miR-195/Cdc42 axis in EC.
Collapse
Affiliation(s)
- Yu Chen
- Jiangxi Provincial Key Laboratory of Laboratory Medicine, Nanchang, China.,Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Hong-Guang Sheng
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Fu-Mou Deng
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Li-Ly Cai
- Jiangxi Provincial Key Laboratory of Laboratory Medicine, Nanchang, China.,Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|