1
|
Zeng Z, Yi Z, Xu B. The biological and technical challenges facing utilizing circulating tumor DNA in non-metastatic breast cancer patients. Cancer Lett 2025; 616:217574. [PMID: 39983895 DOI: 10.1016/j.canlet.2025.217574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 02/13/2025] [Accepted: 02/18/2025] [Indexed: 02/23/2025]
Abstract
Breast cancer is one of the most prevalent cancers and has emerged as a major global challenge. Circulating tumor DNA (ctDNA), a liquid biopsy method, overcomes the accessibility limitations of tissue-based testing and is widely used for monitoring minimal residual disease and molecular relapse, predicting prognosis, evaluating the response of neoadjuvant therapy, and optimizing treatment decisions in non-metastatic breast cancer. However, the application of ctDNA still faces many challenges. Here, we survey the clinical applications of ctDNA in non-metastatic breast cancer and discuss the significant biological and technical challenges of utilizing ctDNA. Importantly, we investigate potential avenues for addressing the challenges. In addition, emerging technologies, including fragmentomics detection, methylation sequencing, and long-read sequencing, have clinical potential and could be a future direction. Proper utilization of machine learning facilitates the identification of meaningful patterns from complex fragment and methylation profiles of ctDNA. There is still a lack of clinical trials focused on the subsets of ctDNA (e.g., circulating mitochondrial DNA), ctDNA-inferred drug-resistant clonal evolution, tumor heterogeneity, and ctDNA-guided clinical decision-making in non-metastatic breast cancer. Due to regional differences in the number of registered clinical trials, it is essential to enhance communication and foster global collaboration to advance the field.
Collapse
Affiliation(s)
- Zihang Zeng
- Department of Radiation and Medical Oncology, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, 430071, Wuhan, China
| | - Zongbi Yi
- Department of Radiation and Medical Oncology, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, 430071, Wuhan, China.
| | - Binghe Xu
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China.
| |
Collapse
|
2
|
Ou X, Chen P, Liu BF. Liquid Biopsy on Microfluidics: From Existing Endogenous to Emerging Exogenous Biomarkers Analysis. Anal Chem 2025. [PMID: 40247704 DOI: 10.1021/acs.analchem.4c05407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2025]
Abstract
Liquid biopsy is an appealing approach for early diagnosis and assessment of treatment efficacy in cancer. Typically, liquid biopsy involves the detection of endogenous biomarkers, including circulating tumor cells (CTCs), extracellular vesicles (EVs), circulating tumor DNA (ctDNA), circulating tumor RNA (ctRNA), and proteins. The levels of these endogenous biomarkers are higher in cancer patients compared to those in healthy individuals. However, the clinical application of liquid biopsy using endogenous biomarker analysis faces challenges due to its low abundance and poor stability in circulation. Recently, a promising strategy involving the engineering of exogenous probes has been developed to overcome these limitations. These exogenous probes are activated within the tumor microenvironment, generating distinct exogenous markers that can be easily distinguished from background biological signals. Alternatively, these exogenous probes can be labeled with intrinsic endogenous biomarkers in vivo and detected in vitro after metabolic processes. In this review, we primarily focus on microfluidic-based liquid biopsy techniques that allow for the transition from analyzing existing endogenous biomarkers to emerging exogenous ones. First, we introduce common endogenous biomarkers, as well as synthetic exogenous ones. Next, we discuss recent advancements in microfluidic-based liquid biopsy techniques for analyzing both existing endogenous and emerging exogenous biomarkers. Lastly, we provide insights into future directions for liquid biopsy on microfluidic systems.
Collapse
Affiliation(s)
- Xiaowen Ou
- Hubei Key Laboratory of Purification and Application of Plant Anti-Cancer Active Ingredients, Department of Chemistry and Life Science, Hubei University of Education, Wuhan, 430205, China
| | - Peng Chen
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Bi-Feng Liu
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
3
|
Araujo-Abad S, Berna JM, Lloret-Lopez E, López-Cortés A, Saceda M, de Juan Romero C. Exosomes: from basic research to clinical diagnostic and therapeutic applications in cancer. Cell Oncol (Dordr) 2025; 48:269-293. [PMID: 39298081 PMCID: PMC11997007 DOI: 10.1007/s13402-024-00990-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/30/2024] [Indexed: 09/21/2024] Open
Abstract
Cancer continues to pose a global threat despite potent anticancer drugs, often accompanied by undesired side effects. To enhance patient outcomes, sophisticated multifunctional approaches are imperative. Small extracellular vesicles (EVs), a diverse family of naturally occurring vesicles derived from cells, offer advantages over synthetic carriers. Among the EVs, the exosomes are facilitating intercellular communication with minimal toxicity, high biocompatibility, and low immunogenicity. Their tissue-specific targeting ability, mediated by surface molecules, enables precise transport of biomolecules to cancer cells. Here, we explore the potential of exosomes as innovative therapeutic agents, including cancer vaccines, and their clinical relevance as biomarkers for clinical diagnosis. We highlight the cargo possibilities, including nucleic acids and drugs, which make them a good delivery system for targeted cancer treatment and contrast agents for disease monitoring. Other general aspects, sources, and the methodology associated with therapeutic cancer applications are also reviewed. Additionally, the challenges associated with translating exosome-based therapies into clinical practice are discussed, together with the future prospects for this innovative approach.
Collapse
Affiliation(s)
- Salomé Araujo-Abad
- Cancer Research Group, Faculty of Engineering and Applied Sciences, Universidad de Las Américas, Quito, 170124, Ecuador
| | - José Marcos Berna
- Unidad de Investigación, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana (FISABIO), Hospital General Universitario de Elche, Camí de l'Almazara 11, Elche, Alicante, 03203, Spain
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández, Avda. Universidad s/n, Ed. Torregaitán, Elche, Alicante, 03202, Spain
| | - Elena Lloret-Lopez
- Unidad de Investigación, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana (FISABIO), Hospital General Universitario de Elche, Camí de l'Almazara 11, Elche, Alicante, 03203, Spain
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández, Avda. Universidad s/n, Ed. Torregaitán, Elche, Alicante, 03202, Spain
| | - Andrés López-Cortés
- Cancer Research Group (CRG), Faculty of Medicine, Universidad de Las Américas, Quito, 170124, Ecuador
| | - Miguel Saceda
- Unidad de Investigación, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana (FISABIO), Hospital General Universitario de Elche, Camí de l'Almazara 11, Elche, Alicante, 03203, Spain
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández, Avda. Universidad s/n, Ed. Torregaitán, Elche, Alicante, 03202, Spain
| | - Camino de Juan Romero
- Unidad de Investigación, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana (FISABIO), Hospital General Universitario de Elche, Camí de l'Almazara 11, Elche, Alicante, 03203, Spain.
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández, Avda. Universidad s/n, Ed. Torregaitán, Elche, Alicante, 03202, Spain.
| |
Collapse
|
4
|
Heeke S, Gandhi S, Tran HT, Lam VK, Byers LA, Gibbons DL, Gay CM, Altan M, Antonoff MB, Le X, Tu J, Saad MB, Pek M, Poh J, Ngeow KC, Tsao A, Cascone T, Negrao MV, Wu J, Blumenschein GR, Heymach JV, Elamin YY. Longitudinal Tracking of ALK-Rearranged NSCLC From Plasma Using Circulating Tumor RNA and Circulating Tumor DNA. JTO Clin Res Rep 2025; 6:100795. [PMID: 40160974 PMCID: PMC11952838 DOI: 10.1016/j.jtocrr.2025.100795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 12/05/2024] [Accepted: 01/03/2025] [Indexed: 04/02/2025] Open
Abstract
Background Although the administration of tyrosine-kinase inhibitors in ALK-rearranged NSCLC has revolutionized precision medicine, the detection of gene rearrangements from liquid biopsies remains challenging. RNA-based detection has revealed promising sensitivity for rearrangement detection and thus we hypothesize that a liquid biopsy assay analyzing circulating tumor RNA (ctRNA) in addition to circulating tumor DNA (ctDNA) will improve detection. Furthermore, we hypothesize that the detection of gene fusions at baseline will correlate with clinical outcomes. Methods We retrospectively analyzed 86 plasma samples from 33 patients enrolled in the BRIGHTSTAR clinical trial assessing local consolidative therapy (LCT) and brigatinib in patients with stage IV or recurrent NSCLC and confirmed ALK rearrangement (NCT03707938) using a targeted next-generation sequencing assay that analyzes ctDNA to detect gene rearrangements and mutations in 80 genes and ctRNA to detect gene arrangements in 36 genes. Results ALK rearrangements were detected in 15 of 28 patients (54%) at baseline, of which eight were detected in both ctDNA and ctRNA. ALK rearrangements were detected in two patients pre-LCT, exclusively in ctRNA, but cleared completely post-LCT. The detection of ALK fusion at baseline was associated with significantly worse progression-free survival (p = 0.033). Plasma cell-free DNA concentrations for patients with detectable ALK rearrangements at baseline were significantly higher than for those without detectable gene fusions (12.3 ng/mL versus 20.2 ng/mL, p = 0.0046). Conclusions The inclusion of ctRNA in liquid biopsies increased detection of ALK rearrangements and detection at baseline was associated with significantly worse progression-free survival highlighting the added benefit of ctRNA.
Collapse
Affiliation(s)
- Simon Heeke
- Department of Thoracic Head & Neck Medical Oncology, UT MD Anderson Cancer Center, Houston, Texas
| | - Saumil Gandhi
- Department of Radiation Oncology, UT MD Anderson Cancer Center, Houston, Texas
| | - Hai T. Tran
- Department of Thoracic Head & Neck Medical Oncology, UT MD Anderson Cancer Center, Houston, Texas
| | - Vincent K. Lam
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins, Baltimore, Maryland
| | - Lauren A. Byers
- Department of Thoracic Head & Neck Medical Oncology, UT MD Anderson Cancer Center, Houston, Texas
| | - Don L. Gibbons
- Department of Thoracic Head & Neck Medical Oncology, UT MD Anderson Cancer Center, Houston, Texas
| | - Carl M. Gay
- Department of Thoracic Head & Neck Medical Oncology, UT MD Anderson Cancer Center, Houston, Texas
| | - Mehmet Altan
- Department of Thoracic Head & Neck Medical Oncology, UT MD Anderson Cancer Center, Houston, Texas
| | - Mara B. Antonoff
- Department of Thoracic and Cardiovascular Surgery, UT MD Anderson Cancer Center, Houston, Texas
| | - Xiuning Le
- Department of Thoracic Head & Neck Medical Oncology, UT MD Anderson Cancer Center, Houston, Texas
| | - Janet Tu
- Department of Thoracic Head & Neck Medical Oncology, UT MD Anderson Cancer Center, Houston, Texas
| | | | | | | | | | - Anne Tsao
- Department of Thoracic Head & Neck Medical Oncology, UT MD Anderson Cancer Center, Houston, Texas
| | - Tina Cascone
- Department of Thoracic Head & Neck Medical Oncology, UT MD Anderson Cancer Center, Houston, Texas
| | - Marcelo V. Negrao
- Department of Thoracic Head & Neck Medical Oncology, UT MD Anderson Cancer Center, Houston, Texas
| | - Jia Wu
- Department of Thoracic Head & Neck Medical Oncology, UT MD Anderson Cancer Center, Houston, Texas
- Department of Imaging Physics, UT MD Anderson Cancer Center, Houston, Texas
| | - George R. Blumenschein
- Department of Thoracic Head & Neck Medical Oncology, UT MD Anderson Cancer Center, Houston, Texas
| | - John V. Heymach
- Department of Thoracic Head & Neck Medical Oncology, UT MD Anderson Cancer Center, Houston, Texas
| | - Yasir Y. Elamin
- Department of Thoracic Head & Neck Medical Oncology, UT MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
5
|
Capasso I, Nero C, Anderson G, Del Re M, Perrone E, Fanfani F, Scambia G, Cucinella G, Mariani A, Choong G, Reynolds E. Circulating tumor DNA in endometrial cancer: clinical significance and implications. Int J Gynecol Cancer 2025; 35:101656. [PMID: 39955181 DOI: 10.1016/j.ijgc.2025.101656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/15/2025] [Accepted: 01/19/2025] [Indexed: 02/17/2025] Open
Abstract
Circulating tumor DNA (ctDNA) is a promising non-invasive tool that has been demonstrated to be a clinically useful biomarker in several tumor types for risk stratification, prognosis, and early detection of recurrence. However, there are limited data on the clinical utility of ctDNA in endometrial cancer (EC) compared with other solid tumors. The evolution of EC management through the integration of molecular characterization into the treatment algorithm has intensified the need to develop more effective predictive biomarkers to optimize treatment and reduce clinical toxicities. Given its non-invasive nature and its ability to represent and complement tumor multiclonal spatial and temporal heterogeneity, ctDNA could act as a valid surrogate for tissue sampling. In addition to plasma ctDNA detection being associated with clinicopathologic features of tumor aggressiveness at pre-operative assessment, an association with reduced disease-free survival and overall survival has been observed in patients with detectable ctDNA. Moreover, the half-life of ctDNA is significantly shorter than CA125, and plasma levels are reported to be completely cleared from the blood within 1 week from surgical debulking. Therefore, ctDNA may serve as a dynamic biomarker for occult microscopic residual disease when assessed within the first 4 to 8 weeks after eradicative surgery. Few studies have reported high sensitivity of ctDNA in detecting disease recurrence at longitudinal follow-up, although there are limited data comparing ctDNA and traditional serum biomarkers (CA125 and HE4) in identifying recurrence. In the perspective of personalized oncology, ctDNA may potentially help improve adjuvant therapeutic management by escalating/de-escalating treatment based on ctDNA detection after surgery, during maintenance, or in the recurrent/metastatic setting, in addition to acting as a sensitive biomarker for early detection of recurrence. Several challenges hinder the use of ctDNA in EC, including the lack of standardized protocols, the low mutational burden, tumor heterogeneity, and background normal DNA, which limit assay sensitivity and specificity. In addition, the high cost of ctDNA analysis, particularly, next-generation sequencing, restricts its accessibility. Future trials should focus on cost-effective approaches to ensure sustainability and efficient resource allocation.
Collapse
Affiliation(s)
- Ilaria Capasso
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Department of Women Children and Public Health Sciences, Gynecologic Oncology Unit, Rome, Italy; Mayo Clinic, Department of Obstetrics and Gynecology, Rochester, MN, USA
| | - Camilla Nero
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Department of Women Children and Public Health Sciences, Gynecologic Oncology Unit, Rome, Italy
| | - Gloria Anderson
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Department of Women Children and Public Health Sciences, Gynecologic Oncology Unit, Rome, Italy
| | - Marzia Del Re
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Department of Women Children and Public Health Sciences, Gynecologic Oncology Unit, Rome, Italy; Department of Faculty Medicine, Saint Camillus International University of Health and Medical Sciences, Rome, Italy
| | - Emanuele Perrone
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Department of Women Children and Public Health Sciences, Gynecologic Oncology Unit, Rome, Italy
| | - Francesco Fanfani
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Department of Women Children and Public Health Sciences, Gynecologic Oncology Unit, Rome, Italy
| | - Giovanni Scambia
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Department of Women Children and Public Health Sciences, Gynecologic Oncology Unit, Rome, Italy
| | - Giuseppe Cucinella
- Mayo Clinic, Department of Obstetrics and Gynecology, Rochester, MN, USA
| | - Andrea Mariani
- Mayo Clinic, Department of Obstetrics and Gynecology, Rochester, MN, USA
| | - Grace Choong
- Mayo Clinic, Department of Oncology, Rochester, MN, USA
| | - Evelyn Reynolds
- Mayo Clinic, Department of Obstetrics and Gynecology, Rochester, MN, USA.
| |
Collapse
|
6
|
Miao Y, Wang K, Liu X, Wang X, Hu Y, Yuan Z, Deng D. Multifunctional biomimetic liposomal nucleic acid scavengers inhibit the growth and metastasis of breast cancer. Biomater Sci 2025. [PMID: 40152107 DOI: 10.1039/d4bm01721h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Chemotherapy and surgery, though effective in cancer treatment, trigger the release of nucleic acid-containing pro-inflammatory compounds from damaged tumor cells, known as nucleic acid-associated damage-associated molecular patterns (NA-DAMPs). This inflammation promotes tumor metastasis, and currently, no effective treatment exists for this treatment-induced inflammation and subsequent tumor metastasis. To address this challenge, we developed a biomimetic liposome complex (Lipo-Rh2) incorporating a hybrid structure of liposomes and dendritic polymers, mimicking cell membrane morphology. Lipo-Rh2 leverages the multivalent surface properties of dendritic polymers to clear cell-free nucleic acids while serving as both a structural stabilizer and targeting ligand via embedded ginsenoside Rh2. Experimental data show that Lipo-Rh2 effectively reduces free nucleic acids in mouse serum through charge interactions, downregulates Toll-like receptor expression, decreases inflammatory cytokine secretion, and inhibits both primary tumor growth and metastasis. Compared to the current nucleic acid scavenger PAMAM-G3, Lipo-Rh2 demonstrates stronger antitumor effects, lower toxicity, and enhanced targeting capabilities. This biomimetic liposome-based nucleic acid scavenger represents a novel approach to nucleic acid clearance, expanding the framework for designing effective therapeutic agents.
Collapse
Affiliation(s)
- Yuhang Miao
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 211198, China.
| | - Kaizhen Wang
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 211198, China.
| | - Xin Liu
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Xin Wang
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 211198, China.
| | - Yanwei Hu
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Zhenwei Yuan
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 211198, China.
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Dawei Deng
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 211198, China.
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
7
|
Pinto E, Lazzarini E, Pelizzaro F, Gambato M, Santarelli L, Potente S, Zanaga P, Zappitelli T, Cardin R, Burra P, Farinati F, Romualdi C, Boscarino D, Tosello V, Indraccolo S, Russo FP. Somatic Copy Number Alterations in Circulating Cell-Free DNA as a Prognostic Biomarker for Hepatocellular Carcinoma: Insights from a Proof-of-Concept Study. Cancers (Basel) 2025; 17:1115. [PMID: 40227625 PMCID: PMC11988118 DOI: 10.3390/cancers17071115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 03/13/2025] [Accepted: 03/21/2025] [Indexed: 04/15/2025] Open
Abstract
BACKGROUND/OBJECTIVES Despite advances in hepatocellular carcinoma (HCC) management, prognosis remains poor. Advanced-stage diagnosis often excludes curative treatments, and current biomarkers (e.g., alpha-fetoprotein [AFP]) have limited utility in early detection. Liquid biopsy has emerged as a promising cancer detection tool, with circulating cell-free DNA (ccfDNA) showing significant diagnostic potential. This proof-of-concept study aimed to investigate the potential role of tumor fraction (TF) within ccfDNA as a biomarker in HCC patients. METHODS A total of sixty patients were recruited, including thirteen with chronic liver disease (CLD), twenty-four with cirrhosis, and twenty-three with HCC. Plasma samples were collected, and ccfDNA was extracted for shallow whole genome sequencing (sWGS) analysis. The TF was calculated by focusing on somatic copy number alterations (SCNAs) within the ccfDNA. RESULTS Among patients with CLD and cirrhosis (n = 37), ctDNA was undetectable in all but one cirrhotic patient who exhibited a significant tumor fraction (TF) of 17% and subsequently developed HCC. Conversely, five out of twenty-three HCC patients (21.7%) displayed detectable ctDNA with TF levels ranging from 3.0% to 32.6%. Patients with detectable ctDNA were characterized by more aggressive oncological features, including a higher number of nodules (p = 0.005), advanced-stage disease (60% BCLC C, p = 0.010), and poorer response to therapy (80% PD, p = 0.001). Moreover, the overall survival (OS) was significantly reduced in patients with detectable ctDNA (median OS: 17 months; CI 95% 4.5-26.5) compared to those without (median OS: 24.0 months; CI 95% 7.0-66.0; log-rank p = 0.002). CONCLUSIONS Our results suggest that the analysis of TF by sWGS is a promising non-invasive tool for the identification of HCC with aggressive clinical behavior, whereas it is not sensitive enough for early HCC detection. This molecular assay can improve prognostic stratification in HCC patients.
Collapse
Affiliation(s)
- Elisa Pinto
- Department of Surgery, Oncology and Gastroenterology, University of Padova, 35121 Padua, Italy; (E.P.); (F.P.); (M.G.); (P.Z.); (T.Z.); (P.B.); (F.F.); (S.I.)
- Gastroenterology Unit, Azienda Ospedale-Università di Padova, 35121 Padua, Italy;
| | - Elisabetta Lazzarini
- Basic and Translational Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, 35121 Padua, Italy; (E.L.); (L.S.); (V.T.)
| | - Filippo Pelizzaro
- Department of Surgery, Oncology and Gastroenterology, University of Padova, 35121 Padua, Italy; (E.P.); (F.P.); (M.G.); (P.Z.); (T.Z.); (P.B.); (F.F.); (S.I.)
- Gastroenterology Unit, Azienda Ospedale-Università di Padova, 35121 Padua, Italy;
| | - Martina Gambato
- Department of Surgery, Oncology and Gastroenterology, University of Padova, 35121 Padua, Italy; (E.P.); (F.P.); (M.G.); (P.Z.); (T.Z.); (P.B.); (F.F.); (S.I.)
- Gastroenterology Unit, Azienda Ospedale-Università di Padova, 35121 Padua, Italy;
| | - Laura Santarelli
- Basic and Translational Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, 35121 Padua, Italy; (E.L.); (L.S.); (V.T.)
| | - Sara Potente
- Department of Biology, University of Padova, 35121 Padua, Italy; (S.P.); (C.R.)
| | - Paola Zanaga
- Department of Surgery, Oncology and Gastroenterology, University of Padova, 35121 Padua, Italy; (E.P.); (F.P.); (M.G.); (P.Z.); (T.Z.); (P.B.); (F.F.); (S.I.)
- Gastroenterology Unit, Azienda Ospedale-Università di Padova, 35121 Padua, Italy;
| | - Teresa Zappitelli
- Department of Surgery, Oncology and Gastroenterology, University of Padova, 35121 Padua, Italy; (E.P.); (F.P.); (M.G.); (P.Z.); (T.Z.); (P.B.); (F.F.); (S.I.)
- Gastroenterology Unit, Azienda Ospedale-Università di Padova, 35121 Padua, Italy;
| | - Romilda Cardin
- Gastroenterology Unit, Azienda Ospedale-Università di Padova, 35121 Padua, Italy;
| | - Patrizia Burra
- Department of Surgery, Oncology and Gastroenterology, University of Padova, 35121 Padua, Italy; (E.P.); (F.P.); (M.G.); (P.Z.); (T.Z.); (P.B.); (F.F.); (S.I.)
- Gastroenterology Unit, Azienda Ospedale-Università di Padova, 35121 Padua, Italy;
| | - Fabio Farinati
- Department of Surgery, Oncology and Gastroenterology, University of Padova, 35121 Padua, Italy; (E.P.); (F.P.); (M.G.); (P.Z.); (T.Z.); (P.B.); (F.F.); (S.I.)
- Gastroenterology Unit, Azienda Ospedale-Università di Padova, 35121 Padua, Italy;
| | - Chiara Romualdi
- Department of Biology, University of Padova, 35121 Padua, Italy; (S.P.); (C.R.)
| | | | - Valeria Tosello
- Basic and Translational Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, 35121 Padua, Italy; (E.L.); (L.S.); (V.T.)
| | - Stefano Indraccolo
- Department of Surgery, Oncology and Gastroenterology, University of Padova, 35121 Padua, Italy; (E.P.); (F.P.); (M.G.); (P.Z.); (T.Z.); (P.B.); (F.F.); (S.I.)
- Basic and Translational Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, 35121 Padua, Italy; (E.L.); (L.S.); (V.T.)
| | - Francesco Paolo Russo
- Department of Surgery, Oncology and Gastroenterology, University of Padova, 35121 Padua, Italy; (E.P.); (F.P.); (M.G.); (P.Z.); (T.Z.); (P.B.); (F.F.); (S.I.)
- Gastroenterology Unit, Azienda Ospedale-Università di Padova, 35121 Padua, Italy;
| |
Collapse
|
8
|
Zhou Y, Wang R, Zeng M, Liu S. Circulating tumor DNA: a revolutionary approach for early detection and personalized treatment of bladder cancer. Front Pharmacol 2025; 16:1551219. [PMID: 40191434 PMCID: PMC11968738 DOI: 10.3389/fphar.2025.1551219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Accepted: 02/25/2025] [Indexed: 04/09/2025] Open
Abstract
Bladder cancer is a malignant tumor with a high global incidence and recurrence rate. Traditional diagnostic methods, such as cystoscopy and urine cytology, have limitations in sensitivity and specificity, particularly in detecting low-grade bladder cancer. Circulating tumor DNA (ctDNA) offers a non-invasive alternative, reflecting tumor genetic characteristics through blood samples. It demonstrates high sensitivity and repeatability, making it a promising tool for early detection, recurrence monitoring, and treatment evaluation. Clinical studies have shown that ctDNA not only detects tumor burden but also captures dynamic tumor mutations, aiding in personalized treatment strategies. Despite its potential, clinical implementation of ctDNA faces challenges, including optimization of detection techniques, standardization, and the cost of testing. This paper explores the role of ctDNA in advancing bladder cancer diagnosis and treatment, with a focus on refining its clinical application and guiding future research toward improved patient outcomes.
Collapse
Affiliation(s)
- Yan Zhou
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, China
| | - Rongzhong Wang
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, China
| | - Mingtang Zeng
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, China
| | - Sijia Liu
- West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
9
|
Xie M, Pan S, Plebani M. Liquid biopsy in oncology: navigating technical hurdles and future transition for precision medicine. Clin Chem Lab Med 2025:cclm-2025-0271. [PMID: 40097315 DOI: 10.1515/cclm-2025-0271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Affiliation(s)
- Mengxiao Xie
- Department of Laboratory Medicine, 74734 The First Affiliated Hospital with Nanjing Medical University , Nanjing, China
| | - Shiyang Pan
- Department of Laboratory Medicine, 74734 The First Affiliated Hospital with Nanjing Medical University , Nanjing, China
| | | |
Collapse
|
10
|
Fina E, Vitale E, De Summa S, Gadaleta-Caldarola G, Tommasi S, Massafra R, Brunetti O, Rizzo A. Liquid biopsy for guiding breast cancer immunotherapy. Immunotherapy 2025:1-15. [PMID: 40083311 DOI: 10.1080/1750743x.2025.2479426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Accepted: 03/11/2025] [Indexed: 03/16/2025] Open
Abstract
Liquid biopsy is a laboratory test used to detect and analyze circulating tumor cells (CTCs), circulating tumor DNA (ctDNA), and other tumor-derived components, in a blood sample. In the context of breast cancer (BC), liquid biopsies hold significant promise for guiding the use of immune checkpoint inhibitors and immune-based combinations, offering real-time insights into tumor dynamics, treatment response, and resistance mechanisms. This review explores the role of liquid biopsy in BC immunotherapy, focusing on its applications, benefits, issues, and current and future research directions.
Collapse
Affiliation(s)
- Emanuela Fina
- Thoracic Surgery Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Elsa Vitale
- Scientific Directorate, IRCCS Istituto Tumori "Giovanni Paolo II, Bari, Italy
| | - Simona De Summa
- Unità di Diagnostica Molecolare e Farmacogenetica, IRCCS Istituto Tumori Giovanni Paolo II Bari, Bari, Italy
| | | | - Stefania Tommasi
- Unità di Diagnostica Molecolare e Farmacogenetica, IRCCS Istituto Tumori Giovanni Paolo II Bari, Bari, Italy
| | - Raffaella Massafra
- Scientific Directorate, IRCCS Istituto Tumori "Giovanni Paolo II, Bari, Italy
| | - Oronzo Brunetti
- S.S.D. C.O.r.O. Bed Management Presa in Carico, TDM, IRCCS Istituto Tumori "Giovanni Paolo II, Bari, Italy
| | - Alessandro Rizzo
- S.S.D. C.O.r.O. Bed Management Presa in Carico, TDM, IRCCS Istituto Tumori "Giovanni Paolo II, Bari, Italy
| |
Collapse
|
11
|
Zhao Y, Zhang Z, Qiu JH, Li RY, Sun ZG. Catching cancer signals in the blood: Innovative pathways for early esophageal cancer diagnosis. World J Gastroenterol 2025; 31:101838. [PMID: 40093671 PMCID: PMC11886526 DOI: 10.3748/wjg.v31.i10.101838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 01/23/2025] [Accepted: 02/05/2025] [Indexed: 02/26/2025] Open
Abstract
In recent years, significant progress has been made in the application of DNA methylation for the early detection of esophageal cancer (EC). As an epigenetic modification, DNA methylation allows for noninvasive screening by detecting the methylation status of circulating tumor DNA. Studies have shown that the methylation of genes such as SHOX2, SEPTIN9, EPO, and RNF180 significantly improves diagnostic sensitivity and specificity. Currently, SEPTIN9 has been approved by the Food and Drug Administration for colorectal cancer screening, while SHOX2 and EPO show promising results in EC, and RNF180 has potential in gastrointestinal tumors. This editorial reviews the study by Liu et al, which demonstrated the potential of combining the methylation of these four genes for early EC screening. In addition to their roles in early diagnosis, DNA methylation markers are gaining attention because of their roles in predicting recurrence and in postoperative follow-up. By monitoring changes in methylation levels, these markers can provide valuable insights into treatment efficacy and long-term management. As research progresses, liquid biopsy technology is expected to become an essential tool in the precision diagnosis and treatment of EC, benefiting patients significantly.
Collapse
Affiliation(s)
- Yue Zhao
- Department of Thoracic Surgery, Qilu Hospital of Shandong University, Jinan 250063, Shandong Province, China
| | - Zhan Zhang
- Department of Thoracic Surgery, Qilu Hospital of Shandong University, Jinan 250063, Shandong Province, China
| | - Jian-Hao Qiu
- Department of Thoracic Surgery, The First Affiliated Hospital of Shandong First Medical University, Shandong Provincial Qianfoshan Hospital, Jinan 250063, Shandong Province, China
| | - Rong-Yang Li
- Department of Thoracic Surgery, Qilu Hospital of Shandong University, Jinan 250063, Shandong Province, China
| | - Zhen-Guo Sun
- Department of Thoracic Surgery, Qilu Hospital of Shandong University, Jinan 250063, Shandong Province, China
| |
Collapse
|
12
|
Li Y, Li Y, Hu Y, Liu R, Lv Y. CRISPR-Cas12a/Cas13a Multiplex Bioassay for ctDNA and miRNA by Mass Spectrometry. Anal Chem 2025; 97:5049-5056. [PMID: 39980302 DOI: 10.1021/acs.analchem.4c05961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2025]
Abstract
The CRISPR-Cas system, particularly CRISPR-Cas12a and CRISPR-Cas13a, has been widely utilized in constructing various biosensors due to their "trans-cleavage" ability as a means of signal amplification. However, this universal "trans-cleavage" characteristic also presents a challenge for realizing CRISPR-Cas multiplexed bioanalysis. Besides, potential signal cascading interference and complicated design are notable obstacles in CRISPR-Cas multiplexed bioanalysis. Herein, we propose a mass spectrometry method that leverages the CRISPR-Cas12a/13a system to achieve simultaneous detection of ctDNA and miRNA. Based on the properties of the CRISPR-Cas12a/13a system, two types of nanoparticle reporter probes have been engineered, using cancer-related biomarkers ctDNA and miR-21 as our model analytes. The nanoparticle tags, which intrinsically incorporated millions of detectable atoms, combined with the CRISPR-Cas12a/Cas13a system's "trans-cleavage" ability, allow the proposed mass spectrometry strategy to achieve fmol-level detection limits without any nucleic acid amplification procedures. The assay was successfully applied to human serum samples, demonstrating its potential for early disease diagnosis and progression tracking.
Collapse
Affiliation(s)
- Yan Li
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, Sichuan, China
| | - Yichen Li
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, Sichuan, China
| | - Yueli Hu
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, Sichuan, China
| | - Rui Liu
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, Sichuan, China
| | - Yi Lv
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, Sichuan, China
- Analytical and Testing Center, Sichuan University, Chengdu 610064, Sichuan, China
| |
Collapse
|
13
|
Normanno N, Morabito A, Rachiglio AM, Sforza V, Landi L, Bria E, Delmonte A, Cappuzzo F, De Luca A. Circulating tumour DNA in early stage and locally advanced NSCLC: ready for clinical implementation? Nat Rev Clin Oncol 2025; 22:215-231. [PMID: 39833354 DOI: 10.1038/s41571-024-00985-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2024] [Indexed: 01/22/2025]
Abstract
Circulating tumour DNA (ctDNA) can be released by cancer cells into biological fluids through apoptosis, necrosis or active release. In patients with non-small-cell lung cancer (NSCLC), ctDNA levels correlate with clinical and pathological factors, including histology, tumour size and proliferative status. Currently, ctDNA analysis is recommended for molecular profiling in patients with advanced-stage NSCLC. In this Review, we summarize the increasing evidence suggesting that ctDNA has potential clinical applications in the management of patients with early stage and locally advanced NSCLC. In those with early stage NSCLC, detection of ctDNA before and/or after surgery is associated with a greater risk of disease recurrence. Longitudinal monitoring after surgery can further increase the prognostic value of ctDNA testing and enables detection of disease recurrence earlier than the assessment of clinical or radiological progression. In patients with locally advanced NSCLC, the detection of ctDNA after chemoradiotherapy is also associated with a greater risk of disease progression. Owing to the limited number of patients enrolled and the different technologies used for ctDNA testing in most of the clinical studies performed thus far, their results are not sufficient to currently support the routine clinical use of ctDNA monitoring in patients with early stage or locally advanced NSCLC. Therefore, we discuss the need for interventional studies to provide evidence for implementing ctDNA testing in this setting.
Collapse
Affiliation(s)
- Nicola Normanno
- Scientific Directorate, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy.
| | - Alessandro Morabito
- Thoracic Department, Istituto Nazionale Tumori - IRCCS - Fondazione G. Pascale, Napoli, Italy
| | - Anna Maria Rachiglio
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori - IRCCS - Fondazione G. Pascale, Napoli, Italy
| | - Vincenzo Sforza
- Thoracic Department, Istituto Nazionale Tumori - IRCCS - Fondazione G. Pascale, Napoli, Italy
| | - Lorenza Landi
- Clinical Trials Center: Phase 1 and Precision Medicine, IRCCS "Regina Elena" National Cancer Institute, Rome, Italy
| | - Emilio Bria
- Medical Oncology Unit, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Roma, Italy
- Medical Oncology, Ospedale Isola Tiberina Gemelli Isola, Roma, Italy
| | - Angelo Delmonte
- Medical Oncology Department, IRCCS IRST "Dino Amadori", Meldola, Italy
| | - Federico Cappuzzo
- Division of Medical Oncology 2, IRCCS "Regina Elena" National Cancer Institute, Rome, Italy
| | - Antonella De Luca
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori - IRCCS - Fondazione G. Pascale, Napoli, Italy
| |
Collapse
|
14
|
Guo G, Zhang Z, Zhang J, Wang D, Xu S, Wu S, Deng K, Bu Y, Sheng Z, Yu J, Gao Y, Yan Z, Zhao R, Wang M, Li T, Bu X. Dynamic Monitoring of Circulating Tumor DNA to Predict the Risk of Non In Situ Recurrence of Postoperative Glioma: A Prospective Cohort Study. Cancer Med 2025; 14:e70733. [PMID: 40022576 PMCID: PMC11871513 DOI: 10.1002/cam4.70733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 07/30/2024] [Accepted: 09/02/2024] [Indexed: 03/03/2025] Open
Abstract
BACKGROUND Glioma recurrence can be divided into in situ recurrence and non-in situ recurrence, and the mutation evolution of gliomas with different recurrence patterns is still unknown. We used sequential sequencing of circulating tumor DNA (ctDNA) to compare the somatic mutation profile and clonal evolution of gliomas with different recurrence patterns. To investigate the value of ctDNA in predicting early postoperative tumor recurrence and guiding prognosis stratification in patients with glioma. METHODS We prospectively recruited 92 patients with near-total resection of gliomas from our center. Two hundred and thirty-four postoperative tissue and Tumor In Situ Fluid (TISF) samples from 69 eligible patients were included in ctDNA analysis. RESULTS Among the 69 patients, 37 glioblastoma (GBM) patients experienced recurrence, and the median progression-free survival (mPFS) was not significantly different between the situ recurrence group and the non-in situ recurrence group (8.6 vs. 6.1 months). The ctDNA of recurrent tissue and TISF were significantly consistent. Before and after initial treatment, TISF-ctDNA mutant allele fraction (MAF), subclonal mutation, and alterations in related pathways (lysine degradation and PI3K pathway) were negatively correlated with treatment response and PFS. Among recurrent GBM patients, EGFR mutations were the most common. Mutations related to the RTK-RAS pathway (NF1) were most common in patients with situ recurrent GBM, while mutations in the MUC family and TP53 pathway (MUC16, CHEK2) were prevalent and continuously increased in patients with non-in situ recurrent GBM. CONCLUSIONS In glioma patients undergoing primary surgery, dynamic monitoring of ctDNA and genotyping can be used for early risk stratification, efficacy monitoring, and early recurrence detection, and provide a basis for clinical research to evaluate early therapeutic intervention.
Collapse
Affiliation(s)
- Guangzhong Guo
- Department of Neurosurgery, Juha International Center for NeurosurgeryZhengzhou University People's HospitalZhengzhouHenanChina
| | - Ziyue Zhang
- Department of Neurosurgery, Juha International Center for NeurosurgeryZhengzhou University People's HospitalZhengzhouHenanChina
| | - Jiubing Zhang
- Department of Neurosurgery, Juha International Center for NeurosurgeryZhengzhou University People's HospitalZhengzhouHenanChina
| | - Dayang Wang
- Department of Neurosurgery, Juha International Center for NeurosurgeryZhengzhou University People's HospitalZhengzhouHenanChina
| | - Sensen Xu
- Department of Neurosurgery, Juha International Center for NeurosurgeryZhengzhou University People's HospitalZhengzhouHenanChina
| | - Shuang Wu
- Department of Neurosurgery, Juha International Center for NeurosurgeryZhengzhou University People's HospitalZhengzhouHenanChina
| | - Kaiyuan Deng
- Department of Neurosurgery, Juha International Center for NeurosurgeryZhengzhou University People's HospitalZhengzhouHenanChina
| | - Yage Bu
- Department of Neurosurgery, Juha International Center for NeurosurgeryZhengzhou University People's HospitalZhengzhouHenanChina
| | - Zhiyuan Sheng
- Department of Neurosurgery, Juha International Center for NeurosurgeryZhengzhou University People's HospitalZhengzhouHenanChina
| | - Jinliang Yu
- Department of Neurosurgery, Juha International Center for NeurosurgeryZhengzhou University People's HospitalZhengzhouHenanChina
| | - Yushuai Gao
- Department of Neurosurgery, Juha International Center for NeurosurgeryZhengzhou University People's HospitalZhengzhouHenanChina
| | - Zhaoyue Yan
- Department of Neurosurgery, Juha International Center for NeurosurgeryZhengzhou University People's HospitalZhengzhouHenanChina
| | - Ruijiao Zhao
- Department of PathologyZhengzhou University People's Hospital, Henan Provincial People's Hospital, Henan University People's HospitalZhengzhouHenanChina
| | - Meiyun Wang
- Department of RadiologyZhengzhou University People's Hospital, Henan Provincial People's Hospital, Henan University People's HospitalZhengzhouHenanChina
| | - Tianxiao Li
- Henan Provincial Neurointerventional Engineering Research Center, Henan International Joint Laboratory of Cerebrovascular Disease, Henan Engineering Research Center of Cerebrovascular Intervention InnovationZhengzhouHenanChina
- Department of Cerebrovascular DiseaseZhengzhou University People's Hospital, Henan Provincial People's Hospital, Henan University People's HospitalZhengzhouHenanChina
| | - Xingyao Bu
- Department of Neurosurgery, Juha International Center for NeurosurgeryZhengzhou University People's HospitalZhengzhouHenanChina
| |
Collapse
|
15
|
Codrich M, Biasotto A, D’Aurizio F. Circulating Biomarkers of Thyroid Cancer: An Appraisal. J Clin Med 2025; 14:1582. [PMID: 40095491 PMCID: PMC11900207 DOI: 10.3390/jcm14051582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/16/2025] [Accepted: 02/23/2025] [Indexed: 03/19/2025] Open
Abstract
Thyroid cancer is the most prevalent endocrine cancer. The prognosis depends on the type and stage at diagnosis. Thyroid cancer treatments involve surgery, possibly followed by additional therapeutic options such as hormone therapy, radiation therapy, targeted therapy and chemotherapy. Besides the well-known thyroid tumor biomarkers, new circulating biomarkers are now emerging. Advances in genomic, transcriptomic and proteomic technologies have allowed the development of novel tumor biomarkers. This review explores the current literature data to critically analyze the benefits and limitations of routinely measured circulating biomarkers for the diagnosis and monitoring of thyroid cancer. The review also sheds light on new circulating biomarkers, focusing on the challenges of their use in the clinical management of thyroid cancer, underlining the need for the identification of a new generation of circulating biomarkers.
Collapse
Affiliation(s)
- Marta Codrich
- Department of Medicine (DMED), University of Udine, 33100 Udine, Italy; (M.C.); (A.B.)
| | - Alessia Biasotto
- Department of Medicine (DMED), University of Udine, 33100 Udine, Italy; (M.C.); (A.B.)
- Institute of Clinical Pathology, Academic Hospital “Santa Maria della Misericordia”, Azienda Sanitaria Universitaria Friuli Centrale, 33100 Udine, Italy
| | - Federica D’Aurizio
- Department of Medicine (DMED), University of Udine, 33100 Udine, Italy; (M.C.); (A.B.)
- Institute of Clinical Pathology, Academic Hospital “Santa Maria della Misericordia”, Azienda Sanitaria Universitaria Friuli Centrale, 33100 Udine, Italy
| |
Collapse
|
16
|
Asante DB, Tierno D, Grassi G, Scaggiante B. Circulating Tumour DNA for Ovarian Cancer Diagnosis and Treatment Monitoring: What Perspectives for Clinical Use? Int J Mol Sci 2025; 26:1889. [PMID: 40076521 PMCID: PMC11900478 DOI: 10.3390/ijms26051889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/04/2025] [Accepted: 02/19/2025] [Indexed: 03/14/2025] Open
Abstract
Globally, ovarian cancer (OC) is the eighth most common malignant tumour in women. Unfortunately, its symptoms-especially at the early stages-are vague and non-specific, and, thus, most patients are diagnosed at the advanced stages of the disease (stage III and IV) when treatment is not curative. The currently available approved biomarkers are not sufficient for effective screening, prognosis, or monitoring of OC. Liquid biopsy tests such as circulating tumour DNA (ctDNA) analysis has the advantage of monitoring response to treatment in real time and providing a comprehensive genotypic profile of primary, metastatic, and recurrent tumours. Thus, ctDNA analysis can be used as a complementary test for effective diagnosis and monitoring of OC. We comprehensively review current studies (2019-2024) on OC, critically highlighting recent developments and applications of ctDNA for the diagnosis and management of the disease.
Collapse
Affiliation(s)
- Du-Bois Asante
- Department of Biomedical and Forensic Sciences, University of Cape Coast, Cape Coast P.O. Box CCLN 33, Ghana;
| | - Domenico Tierno
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Strada di Fiume 447, I-34149 Trieste, Italy; (D.T.); (G.G.)
| | - Gabriele Grassi
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Strada di Fiume 447, I-34149 Trieste, Italy; (D.T.); (G.G.)
| | - Bruna Scaggiante
- Department of Life Sciences, University of Trieste, Via Valerio 28, I-34127 Trieste, Italy
| |
Collapse
|
17
|
Ghidini M, Hahne JC, Senti C, Heide T, Proszek PZ, Shaikh R, Carter P, Hubank M, Trevisani F, Garrone O, Cappelletti MR, Generali D, Cattaneo M, Gnocchi N, Donati G, Gobbi A, Grizzi G, Lampis A, Elghadi R, Tanzi G, Tomasello G, Ratti M, Pinato DJ, Fassan M, Vlachogiannis G, Sottoriva A, Cortellini A, Passalacqua R, Valeri N. Circulating Tumor DNA Dynamics and Clinical Outcome in Metastatic Colorectal Cancer Patients Undergoing Front-Line Chemotherapy. Clin Cancer Res 2025; 31:707-718. [PMID: 39688961 DOI: 10.1158/1078-0432.ccr-24-0924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 08/01/2024] [Accepted: 12/13/2024] [Indexed: 12/19/2024]
Abstract
PURPOSE We tested whether circulating tumor DNA (ctDNA) changes may be used to assess early response and clinical outcomes in patients with metastatic colorectal cancer (mCRC) undergoing first-line systemic anticancer therapy (SACT). EXPERIMENTAL DESIGN Eight hundred sixty-two plasma samples were collected 4-weekly from baseline (BL) until disease progression in patients with mCRC receiving first-line SACT. ctDNA was tested using tissue-agnostic next-generation sequencing panels. ctDNA normalization was defined as ≥99% clearance after 1 month of therapy (Mo1) in the three variants with the highest allele frequency in BL ctDNA. RESULTS Eighty-three paired samples from 75 patients were available for analysis. Twelve pairs (14.4%) showed no variants in either BL or Mo1. In the remaining 71 comparisons (65 patients), 37 (52.1%) showed ctDNA normalization at Mo1. Patients who cleared ctDNA had significantly longer overall (45.6 months) and progression-free survival (13.9 months) compared with nonnormalized patients [overall survival = 22.6 months (log-rank P = 0.01) and progression-free survival = 10.7 months (log-rank P = 0.036), respectively]. In addition, a higher response rate was observed in patients with ctDNA clearance (72.9%) compared with nonnormalized cases (38.2%). Longitudinal sequencing of at least four time points in patients with a progression-free survival of >10 months showed emerging variants in 47.8% of cases; in all these patients, the trajectory of these new "outlier" variants seemed in stark contrast with the clinical-radiological course of disease and the trend in other mutations. CONCLUSIONS ctDNA clearance represents an early indicator of benefit from SACT in patients with mCRC; serial tracking of multiple variants is warranted to improve specificity and avoid misleading information due to the emergence of mutations of unknown clinical significance.
Collapse
Affiliation(s)
- Michele Ghidini
- Division of Medical Oncology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Jens Claus Hahne
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, United Kingdom
- CRUK Experimental Cancer Centre and NIHR Biomedical Research Centre, University of Leicester, Leicester, United Kingdom
| | - Chiara Senti
- Division of Medical Oncology, ASST of Cremona, Hospital of Cremona, Cremona, Italy
| | | | - Paula Z Proszek
- Clinical Genomics Translational Research Laboratory, Royal Marsden Hospital, London, United Kingdom
| | - Ridwan Shaikh
- Clinical Genomics Translational Research Laboratory, Royal Marsden Hospital, London, United Kingdom
| | - Paul Carter
- Clinical Genomics Translational Research Laboratory, Royal Marsden Hospital, London, United Kingdom
| | - Mike Hubank
- Clinical Genomics Translational Research Laboratory, Royal Marsden Hospital, London, United Kingdom
| | - Francesco Trevisani
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, United Kingdom
| | - Ornella Garrone
- Division of Medical Oncology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Maria Rosa Cappelletti
- Multidisciplinary Unit of Breast Pathology and Translational Research, Cremona Hospital, Cremona, Italy
| | - Daniele Generali
- Multidisciplinary Unit of Breast Pathology and Translational Research, Cremona Hospital, Cremona, Italy
| | - Monica Cattaneo
- Division of Medical Oncology, ASST of Cremona, Hospital of Cremona, Cremona, Italy
| | - Nicoletta Gnocchi
- Division of Medical Oncology, ASST of Cremona, Hospital of Cremona, Cremona, Italy
| | - Gianvito Donati
- Division of Medical Oncology, ASST of Cremona, Hospital of Cremona, Cremona, Italy
| | - Angela Gobbi
- Division of Medical Oncology, ASST of Cremona, Hospital of Cremona, Cremona, Italy
| | - Giulia Grizzi
- Division of Medical Oncology, ASST of Cremona, Hospital of Cremona, Cremona, Italy
| | - Andrea Lampis
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, United Kingdom
| | - Raghad Elghadi
- Division of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Giulia Tanzi
- Division of Pathology, ASST of Cremona, Hospital of Cremona, Cremona, Italy
| | - Gianluca Tomasello
- Division of Medical Oncology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Margherita Ratti
- Division of Medical Oncology, ASST of Cremona, Hospital of Cremona, Cremona, Italy
| | - David J Pinato
- Division of Surgery and Cancer, Imperial College London, London, United Kingdom
- Division of Oncology, Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
| | - Matteo Fassan
- Istituto Oncologico Veneto, Istituto di Ricovero e Cura a Carattere Scientifico, Padua, Italy
- Department of Medicine, Surgical Pathology Unit, University of Padua, Padua, Italy
| | - Georgios Vlachogiannis
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, United Kingdom
- Division of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Andrea Sottoriva
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, United Kingdom
- Human Technopole, Milan, Italy
| | - Alessio Cortellini
- Division of Surgery and Cancer, Imperial College London, London, United Kingdom
- Medical Oncology, Fondazione Policlinico Universitario Campus Bio-Medico, Roma, Italy
| | - Rodolfo Passalacqua
- Division of Medical Oncology, ASST of Cremona, Hospital of Cremona, Cremona, Italy
| | - Nicola Valeri
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, United Kingdom
- Division of Surgery and Cancer, Imperial College London, London, United Kingdom
| |
Collapse
|
18
|
Koo KM, Farhana FZ, Ross AG, Shiddiky MJA. Enhancing Electrochemical Biosensing of Circulating Nucleic Acids at the Electrode-Biomolecule-Electrolyte Interfaces. Anal Chem 2025; 97:2579-2587. [PMID: 39878560 DOI: 10.1021/acs.analchem.4c05771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
The detection and analysis of circulating cell-free nucleic acid (ccfNA) biomolecules are redefining a new era of molecular targeted cancer therapies. However, the clinical translation of electrochemical ccfNA biosensing remains hindered by unresolved challenges in analytical specificity and sensitivity. In this Perspective, we present a novel electrochemical framework for improving ccfNA biosensor performance by optimizing the critical electrode-biomolecules-electrolyte interfaces. We highlight and elucidate related research works on modification-free electrode sensor surfaces, nucleic acids as biological scaffolds, and redesigning redox reporter systems. We conclude by providing an outlook into the future research developments of ccfNA electrochemical biosensing, emphasizing the potential to overcome current analytical limitations by controlling the complex interplay of target biomolecules and redox species at the electrode surface. These advances are poised to significantly impact the development of electrochemical ccfNA technologies, improving both cancer diagnostics and therapeutic monitoring.
Collapse
Affiliation(s)
- Kevin M Koo
- The University of Queensland Centre for Clinical Research (UQCCR), Brisbane, Queensland 4029, Australia
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Fatema Zerin Farhana
- Rural Health Research Institute, Charles Sturt University, Orange, New South Wales 2800, Australia
| | - Allen G Ross
- Rural Health Research Institute, Charles Sturt University, Orange, New South Wales 2800, Australia
| | - Muhammad J A Shiddiky
- Rural Health Research Institute, Charles Sturt University, Orange, New South Wales 2800, Australia
| |
Collapse
|
19
|
Fiorica F, Mandarà M, Giuliani J, Tebano U, Franceschetto A, Gabbani M, Rampello E, Condarelli G, Napoli G, Luca N, Mangiola D, Muraro M, Singh N, Remo A, Giorgi C, Pinton P. Circulating DNA in Rectal Cancer to Unravel the Prognostic Potential for Radiation Oncologist: A Meta-analysis. Am J Clin Oncol 2025; 48:83-91. [PMID: 39439084 DOI: 10.1097/coc.0000000000001148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
OBJECTIVES Liquid biopsy, with its noninvasive nature and ability to detect tumor-specific genetic alterations, emerges as an ideal biomarker for monitoring recurrences for locally advanced rectal cancer (LARC). Completed studies have small sample sizes and different experimental methods. To consolidate and assess the collective evidence regarding the prognostic role of circulating DNA (ctDNA) detection in LARC patients undergoing neoadjuvant chemoradiotherapy (nCRT). METHODS Computerized bibliographic searches of MEDLINE and CANCERLIT (2000 to 2023) were supplemented with hand searches of reference lists. Study selection: studies evaluating oncological outcomes of patients with LARC treated with a nCRT comparing patients with positive and negative liquid biopsy at baseline and after nCRT. Data extraction: data on population, intervention, and outcomes were extracted from each study, in accordance with the intention to treat method, by 2 independent observers, and combined using the DerSimonian method and Laird method. RESULTS Nine studies follow inclusion criteria including 678 patients treated with nCRT. The pooled RD rate of ctDNA negative between measure at baseline and after nCRT is statistically significant 61% (95% CI: 53-70, P =0.0002). The hazard ratio (HR) of progression-free survival between ct-DNA negative and positive is significant 7.41 (95% CI: 4.87-11.289, P <0.00001). CONCLUSIONS ctDNA can identify patients with different recurrence risks following nCRT and assess prognosis in patients with LARC. Further prospective study is necessary to determine the utility of ctDNA in personalised therapy for patients with LARC.
Collapse
Affiliation(s)
- Francesco Fiorica
- Department of Clinical Oncology, Section of Radiation Oncology and Nuclear Medicine
- Department of Clinical Oncology, Section of Medical Oncology
| | - Marta Mandarà
- Department of Clinical Oncology, Section of Medical Oncology
| | - Jacopo Giuliani
- Department of Clinical Oncology, Section of Medical Oncology
| | - Umberto Tebano
- Department of Clinical Oncology, Section of Radiation Oncology and Nuclear Medicine
| | | | - Milena Gabbani
- Department of Clinical Oncology, Section of Radiation Oncology and Nuclear Medicine
| | - Elvira Rampello
- Department of Clinical Oncology, Section of Medical Oncology
| | - Giorgia Condarelli
- Department of Clinical Oncology, Section of Radiation Oncology and Nuclear Medicine
| | - Giuseppe Napoli
- Department of Clinical Oncology, Section of Radiation Oncology and Nuclear Medicine
| | - Nicoletta Luca
- Department of Clinical Oncology, Section of Radiation Oncology and Nuclear Medicine
| | | | - Marco Muraro
- Department of Clinical Oncology, Section of Radiation Oncology and Nuclear Medicine
| | - Navdeep Singh
- Department of Clinical Oncology, Section of Radiation Oncology and Nuclear Medicine
| | - Andrea Remo
- Department of Pathology, AULSS 9 Scaligera, Verona
| | - Carlotta Giorgi
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Paolo Pinton
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| |
Collapse
|
20
|
Hsu CL, Chang YS, Li HP. Molecular diagnosis of nasopharyngeal carcinoma: Past and future. Biomed J 2025; 48:100748. [PMID: 38796105 PMCID: PMC11772973 DOI: 10.1016/j.bj.2024.100748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 05/01/2024] [Accepted: 05/12/2024] [Indexed: 05/28/2024] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a malignant tumor originated from the nasopharynx epithelial cells and has been linked with Epstein-Barr virus (EBV) infection, dietary habits, environmental and genetic factors. It is a common malignancy in Southeast Asia, especially with gender preference among men. Due to its non-specific symptoms, NPC is often diagnosed at a late stage. Thus, the molecular diagnosis of NPC plays a crucial role in early detection, treatment selection, disease monitoring, and prognosis prediction. This review aims to provide a summary of the current state and the latest emerging molecular diagnostic techniques for NPC, including EBV-related biomarkers, gene mutations, liquid biopsy, and DNA methylation. Challenges and potential future directions of NPC molecular diagnosis will be discussed.
Collapse
Affiliation(s)
- Cheng-Lung Hsu
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan, Taiwan
- School of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yu-Sun Chang
- Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan, Taiwan
- Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan
- Department of Otolaryngology-Head and Neck Surgery, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan, Taiwan
| | - Hsin-Pai Li
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan, Taiwan
- Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan, Taiwan
- Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan
- Department of Microbiology and Immunology, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
21
|
Dakal TC, Kumar A, Maurya PK. CircRNA-miRNA-mRNA interactome analysis in endometrial cancer. J Biomol Struct Dyn 2025; 43:1486-1497. [PMID: 38084757 DOI: 10.1080/07391102.2023.2291834] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 11/23/2023] [Indexed: 01/16/2025]
Abstract
In recent years, exploring the potential of miRNAs as novel diagnostic, prognostic and diagnostic markers have gained much attention. In current study, we conducted an in-depth circRNA-miRNA-mRNA interactome to reveal significant molecular processes and biological pathways putatively associated with endometrial cancer (EC). Firstly, we retrieved two circRNAs from circad, hsa_circ_0002577 & hsa_circ_0109046, based on their association with the EC. Subsequently, we predicted miRNAs sponging sites in the two circRNAs and the potential target mRNAs of the predicted miRNAs. Sequestered miRNAs target a number of oncogenes (CBL, MET, KRAS), tumor suppressor (CFT R), receptor protein kinases & GT Pase (MET, KRAS, RAB1B), methyltransferases (SET D8), receptors associated factors (T RAF2, GRB2), growth factors (FGF20), autophagy (BECN1, AT G14), apoptotic regulators (BCL2), transcription factors (T Fs) (CREB1, RUNX1, RUNX2) and gene regulators (CCND1, HIF1A); and others, including some novel gene candidates (CREB1, FGF20, IFI27), that have never been implicated in EC earlier. The expression of hsa-miR-433-3p showed significant predictive relevance (Fold Change = 1.8, AUC = 0.736, Mann-Whitney test p-value = 6.1 e- 14) suggesting its predictive relevance in assessing patients' response to chemotherapy. The hsamiR- 188-3p targets autophagic and apoptotic regulators and its upregulation in endometriosis may be used as for the early stage diagnostic purpose. The hsa-miR-502-5p targets SET D8, T RAF2 and others and suggests additional genomic/epigenomic molecular targets for promising therapeutic interventions in EC. Predicted miRNAs target a number of mRNAs having varied functional impacts and offer an in-depth mechanistic insights for expatiating the biological and regulatory role in EC.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Tikam Chand Dakal
- Genome and Computational Biology Lab, Department of Biotechnology, Mohanlal Sukhadia University, Udaipur, Rajasthan 313001, India
| | - Abhishek Kumar
- International Technology Park, Whitefield, Bangalore, India
- Manipal Academy of Higher Education, Manipal, India
| | - Pawan Kumar Maurya
- Department of Biochemistry, Central University of Haryana, Mahendergarh, India
| |
Collapse
|
22
|
Kaorey N, Dickinson K, Agnihotram VR, Zeitouni A, Sadeghi N, Burnier JV. The role of ctDNA from liquid biopsy in predicting survival outcomes in HPV-negative head and neck cancer: A meta-analysis. Oral Oncol 2025; 161:107148. [PMID: 39742703 DOI: 10.1016/j.oraloncology.2024.107148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 12/17/2024] [Indexed: 01/04/2025]
Abstract
The incidence of head and neck cancer (HNC) is on the rise, making it a significant clinical challenge. Human papillomavirus (HPV)-related and HPV-negative HNC exhibit distinct etiopathogenesis and prognoses, requiring targeted approaches for effective management. Conventional tissue biopsies are essential for confirming the diagnosis and locating solid tumors. However, they have limitations in detecting microscopic disease, tracking treatment response, and capturing the dynamic heterogeneity of the mutational profile within the tumor. Liquid biopsy using circulating tumor DNA (ctDNA) analysis has emerged as a promising non-invasive tool to overcome the drawbacks of conventional biopsy for comprehensive molecular profiling. This meta-analysis aims to colligate available evidence on the clinical utility of ctDNA analysis in predicting survival outcomes, specifically in HPV-negative HNC. Our systematic search of six electronic databases identified eight publications (N = 886 patients) meeting the inclusion criteria. The included studies reported data from HPV-negative HNC patients, employing ctDNA analysis to report survival outcomes. Our findings reveal a significant association between mutation or methylation in ctDNA and worsened survival outcomes in HPV-negative HNC cases. The presence of ctDNA mutations in TP53 and methylation of SEPT9 and SHOX2 was linked to reduced overall survival, disease-free survival, and progression-free survival. Subgroup analyses demonstrated consistent associations across different survival outcomes, ctDNA detection methods, and blood collection tubes used. Our study underscores the need for future research endeavors prioritizing larger, well-designed prospective studies with standardized methodologies to further elucidate the role of ctDNA analysis in guiding personalized treatment approaches and optimizing patient care in this specific HNC cohort.
Collapse
Affiliation(s)
- Nivedita Kaorey
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montreal, Canada; Department of Pathology, McGill University, Montreal, Canada.
| | - Kyle Dickinson
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montreal, Canada.
| | | | - Anthony Zeitouni
- Department of Otolaryngology-Head and Neck Surgery, McGill University, Montreal, Canada.
| | - Nader Sadeghi
- Gerald Bronfman Department of Oncology, McGill University, Montreal, Canada; Department of Otolaryngology-Head and Neck Surgery, McGill University, Montreal, Canada.
| | - Julia V Burnier
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montreal, Canada; Department of Pathology, McGill University, Montreal, Canada; Gerald Bronfman Department of Oncology, McGill University, Montreal, Canada.
| |
Collapse
|
23
|
Wang Y, Guo Q, Huang Z, Song L, Zhao F, Gu T, Feng Z, Wang H, Li B, Wang D, Zhou B, Guo C, Xu Y, Song Y, Zheng Z, Bing Z, Li H, Yu X, Fung KL, Xu H, Shi J, Chen M, Hong S, Jin H, Tong S, Zhu S, Zhu C, Song J, Liu J, Li S, Li H, Sun X, Liang N. Cell-free epigenomes enhanced fragmentomics-based model for early detection of lung cancer. Clin Transl Med 2025; 15:e70225. [PMID: 39909829 PMCID: PMC11798665 DOI: 10.1002/ctm2.70225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/24/2024] [Accepted: 01/27/2025] [Indexed: 02/07/2025] Open
Abstract
BACKGROUND Lung cancer is a leading cause of cancer mortality, highlighting the need for innovative non-invasive early detection methods. Although cell-free DNA (cfDNA) analysis shows promise, its sensitivity in early-stage lung cancer patients remains a challenge. This study aimed to integrate insights from epigenetic modifications and fragmentomic features of cfDNA using machine learning to develop a more accurate lung cancer detection model. METHODS To address this issue, a multi-centre prospective cohort study was conducted, with participants harbouring suspicious malignant lung nodules and healthy volunteers recruited from two clinical centres. Plasma cfDNA was analysed for its epigenetic and fragmentomic profiles using chromatin immunoprecipitation sequencing, reduced representation bisulphite sequencing and low-pass whole-genome sequencing. Machine learning algorithms were then employed to integrate the multi-omics data, aiding in the development of a precise lung cancer detection model. RESULTS Cancer-related changes in cfDNA fragmentomics were significantly enriched in specific genes marked by cell-free epigenomes. A total of 609 genes were identified, and the corresponding cfDNA fragmentomic features were utilised to construct the ensemble model. This model achieved a sensitivity of 90.4% and a specificity of 83.1%, with an AUC of 0.94 in the independent validation set. Notably, the model demonstrated exceptional sensitivity for stage I lung cancer cases, achieving 95.1%. It also showed remarkable performance in detecting minimally invasive adenocarcinoma, with a sensitivity of 96.2%, highlighting its potential for early detection in clinical settings. CONCLUSIONS With feature selection guided by multiple epigenetic sequencing approaches, the cfDNA fragmentomics-based machine learning model demonstrated outstanding performance in the independent validation cohort. These findings highlight its potential as an effective non-invasive strategy for the early detection of lung cancer. KEYPOINTS Our study elucidated the regulatory relationships between epigenetic modifications and their effects on fragmentomic features. Identifying epigenetically regulated genes provided a critical foundation for developing the cfDNA fragmentomics-based machine learning model. The model demonstrated exceptional clinical performance, highlighting its substantial potential for translational application in clinical practice.
Collapse
Affiliation(s)
- Yadong Wang
- Department of Thoracic SurgeryPeking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Qiang Guo
- Department of Thoracic SurgeryAffiliated Hospital of Hebei UniversityBaodingChina
| | - Zhicheng Huang
- Department of Thoracic SurgeryPeking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Liyang Song
- Shanghai Weihe Medical Laboratory Co., LtdShanghaiChina
| | - Fei Zhao
- Shanghai Weihe Medical Laboratory Co., LtdShanghaiChina
| | - Tiantian Gu
- Shanghai Weihe Medical Laboratory Co., LtdShanghaiChina
| | - Zhe Feng
- Department of Cardiothoracic Surgerythe Sixth Hospital of BeijingBeijingChina
| | - Haibo Wang
- Department of Thoracic SurgeryAffiliated Hospital of Hebei UniversityBaodingChina
| | - Bowen Li
- Department of Thoracic SurgeryPeking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Daoyun Wang
- Department of Thoracic SurgeryPeking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Bin Zhou
- Department of Thoracic SurgeryAffiliated Hospital of Hebei UniversityBaodingChina
| | - Chao Guo
- Department of Thoracic SurgeryPeking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Yuan Xu
- Department of Thoracic SurgeryPeking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Yang Song
- Department of Thoracic SurgeryPeking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Zhibo Zheng
- Department of Thoracic SurgeryPeking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Zhongxing Bing
- Department of Thoracic SurgeryPeking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Haochen Li
- Department of Thoracic SurgeryPeking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Xiaoqing Yu
- Department of Thoracic SurgeryPeking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Ka Luk Fung
- Department of Thoracic SurgeryPeking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Heqing Xu
- Department of Thoracic SurgeryPeking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Jianhong Shi
- Department of Scientific ResearchAffiliated Hospital of Hebei UniversityBaodingChina
| | - Meng Chen
- Department of Scientific ResearchAffiliated Hospital of Hebei UniversityBaodingChina
| | - Shuai Hong
- Shanghai Weihe Medical Laboratory Co., LtdShanghaiChina
| | - Haoxuan Jin
- Shanghai Weihe Medical Laboratory Co., LtdShanghaiChina
| | - Shiyuan Tong
- Shanghai Weihe Medical Laboratory Co., LtdShanghaiChina
| | - Sibo Zhu
- Shanghai Weihe Medical Laboratory Co., LtdShanghaiChina
| | - Chen Zhu
- Shanghai Weihe Medical Laboratory Co., LtdShanghaiChina
| | - Jinlei Song
- Shanghai Weihe Medical Laboratory Co., LtdShanghaiChina
| | - Jing Liu
- Shanghai Weihe Medical Laboratory Co., LtdShanghaiChina
| | - Shanqing Li
- Department of Thoracic SurgeryPeking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Hefei Li
- Department of Thoracic SurgeryAffiliated Hospital of Hebei UniversityBaodingChina
| | - Xueguang Sun
- Shanghai Weihe Medical Laboratory Co., LtdShanghaiChina
| | - Naixin Liang
- Department of Thoracic SurgeryPeking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| |
Collapse
|
24
|
Yue S, Xu X, Jiang LP, Yao H, Zhu JJ. All-In-One Entropy-Driven DNA Nanomachine for Tumor Cell-Selective Fluorescence/SERS Dual-Mode Imaging of MicroRNA. Anal Chem 2025; 97:1739-1747. [PMID: 39806536 DOI: 10.1021/acs.analchem.4c05256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
An entropy-driven catalysis (EDC) strategy is appealing for amplified bioimaging of microRNAs in living cells; yet, complex operation procedures, lacking of cell selectivity, and insufficient accuracy hamper its further applications. Here, we introduce an ingenious all-in-one entropy-driven DNA nanomachine (termed as AIO-EDN), which can be triggered by endogenous apurinic/apyrimidinic endonuclease 1 (APE1) to achieve tumor cell-selective dual-mode imaging of microRNA. Compared with the traditional EDC strategy, the integrated design of AIO-EDN achieves autocatalytic signal amplification without extra fuel strands. Moreover, the AIO-EDN leverages an endogenous APE1 overexpressed in cancer cells to activate the EDC reaction, which, however, exerts no target sensing activity in normal cells. Combining fluorescence- and surface-enhanced Raman scattering (FL/SERS) dual-mode imaging techniques, this DNA nanomachine exhibits significantly improved accuracy and tumor cell selectivity for microRNA imaging in living cells. This study provides a new paradigm to develop an integrated EDC-based platform and shows great potential in in-depth cancer diagnosis with high precision.
Collapse
Affiliation(s)
- Shuzhen Yue
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, PR China
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Medicine, Linyi University, Linyi 276005, PR China
| | - Xuan Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, PR China
| | - Li-Ping Jiang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, PR China
| | - Huiqin Yao
- Department of Medical Chemistry, College of Basic Medicine, Ningxia Medical University, Yinchuan 750004, China
| | - Jun-Jie Zhu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, PR China
| |
Collapse
|
25
|
Moon GY, Dalkiran B, Park HS, Shin D, Son C, Choi JH, Bang S, Lee H, Doh I, Kim DH, Jeong WJ, Bu J. Dual Biomarker Strategies for Liquid Biopsy: Integrating Circulating Tumor Cells and Circulating Tumor DNA for Enhanced Tumor Monitoring. BIOSENSORS 2025; 15:74. [PMID: 39996976 PMCID: PMC11852634 DOI: 10.3390/bios15020074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 01/21/2025] [Accepted: 01/26/2025] [Indexed: 02/26/2025]
Abstract
The liquid biopsy has gained significant attention in cancer diagnostics, with circulating tumor cells (CTCs) and circulating tumor DNA (ctDNA) being recognized as key biomarkers for tumor detection and monitoring. However, each biomarker possesses inherent limitations that restrict its standalone clinical utility, such as the rarity and heterogeneity of CTCs and the variable sensitivity and specificity of ctDNA assays. This highlights the necessity of integrating both biomarkers to maximize diagnostic and prognostic potential, offering a more comprehensive understanding of the tumor biology and therapeutic response. In this review, we summarize clinical studies that have explored the combined analysis of CTCs and ctDNA as biomarkers, providing insights into their synergistic value in diverse tumor types. Specifically, this paper examines the individual advantages and limitations of CTCs and ctDNA, details the findings of combined biomarker studies across various cancers, highlights the benefits of dual biomarker approaches over single-biomarker strategies, and discusses future prospects for advancing personalized oncology through liquid biopsies. By offering a comprehensive overview of clinical studies combining CTCs and ctDNA, this review serves as a guideline for researchers and clinicians aiming to enhance biomarker-based strategies in oncology and informs biosensor design for improved biomarker detection.
Collapse
Affiliation(s)
- Ga Young Moon
- Department of Biological Sciences and Bioengineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea; (G.Y.M.); (B.D.); (H.S.P.); (D.S.); (C.S.); (J.H.C.); (S.B.); (H.L.)
| | - Basak Dalkiran
- Department of Biological Sciences and Bioengineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea; (G.Y.M.); (B.D.); (H.S.P.); (D.S.); (C.S.); (J.H.C.); (S.B.); (H.L.)
| | - Hyun Sung Park
- Department of Biological Sciences and Bioengineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea; (G.Y.M.); (B.D.); (H.S.P.); (D.S.); (C.S.); (J.H.C.); (S.B.); (H.L.)
| | - Dongjun Shin
- Department of Biological Sciences and Bioengineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea; (G.Y.M.); (B.D.); (H.S.P.); (D.S.); (C.S.); (J.H.C.); (S.B.); (H.L.)
| | - Chaeyeon Son
- Department of Biological Sciences and Bioengineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea; (G.Y.M.); (B.D.); (H.S.P.); (D.S.); (C.S.); (J.H.C.); (S.B.); (H.L.)
| | - Jung Hyun Choi
- Department of Biological Sciences and Bioengineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea; (G.Y.M.); (B.D.); (H.S.P.); (D.S.); (C.S.); (J.H.C.); (S.B.); (H.L.)
- Division of Biomedical Metrology, Korea Research Institute of Standards and Science, 267 Gajeongno, Yuseong-gu, Daejeon 34113, Republic of Korea; (I.D.); (D.H.K.)
| | - Seha Bang
- Department of Biological Sciences and Bioengineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea; (G.Y.M.); (B.D.); (H.S.P.); (D.S.); (C.S.); (J.H.C.); (S.B.); (H.L.)
| | - Hosu Lee
- Department of Biological Sciences and Bioengineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea; (G.Y.M.); (B.D.); (H.S.P.); (D.S.); (C.S.); (J.H.C.); (S.B.); (H.L.)
| | - Il Doh
- Division of Biomedical Metrology, Korea Research Institute of Standards and Science, 267 Gajeongno, Yuseong-gu, Daejeon 34113, Republic of Korea; (I.D.); (D.H.K.)
| | - Dong Hyung Kim
- Division of Biomedical Metrology, Korea Research Institute of Standards and Science, 267 Gajeongno, Yuseong-gu, Daejeon 34113, Republic of Korea; (I.D.); (D.H.K.)
| | - Woo-jin Jeong
- Department of Biological Sciences and Bioengineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea; (G.Y.M.); (B.D.); (H.S.P.); (D.S.); (C.S.); (J.H.C.); (S.B.); (H.L.)
- Department of Biological Engineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea
| | - Jiyoon Bu
- Department of Biological Sciences and Bioengineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea; (G.Y.M.); (B.D.); (H.S.P.); (D.S.); (C.S.); (J.H.C.); (S.B.); (H.L.)
- Department of Biological Engineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea
- Biohybrid Systems Research Center, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea
| |
Collapse
|
26
|
Zhu T, Li Y, Li R, Zhang J, Zhang W. Predictive value of preoperative circulating tumor cells combined with hematological indexes for liver metastasis after radical resection of colorectal cancer. Medicine (Baltimore) 2025; 104:e41264. [PMID: 39792713 PMCID: PMC11730839 DOI: 10.1097/md.0000000000041264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 12/11/2024] [Indexed: 01/12/2025] Open
Abstract
Colorectal cancer is one of the most common malignant tumors in the world, and about 50% of its advanced patients will have liver metastasis. Preoperative assessment of the risk of liver metastasis in patients with colorectal cancer is of great significance for making individualized treatment plans. Traditional imaging examinations and tumor markers have some limitations in predicting the risk of liver metastasis. Therefore, it is of great clinical value to explore more sensitive and specific predictive indicators for improving early detection and treatment effect. In recent years, circulating tumor cells (CTCs), as a new biomarker, have attracted much attention because of their close relationship with tumor metastasis and prognosis. The purpose of this study is to collect and analyze the data of colorectal cancer patients treated in our hospital, so as to determine the predictive value of circulating tumor cells before operation and related hematological indexes for liver metastasis after radical resection of colorectal cancer, and to establish the corresponding prediction model to provide gastrointestinal surgeons with more accurate identification of high-risk patients and guidance for treatment. A total of 88 patients were included in this study, and 26 of whom developed liver metastasis after colorectal cancer surgery. The possible related factors are included in the single factor logistic regression, and the results are obtained after analysis. Body mass index, carcinoembryonic antigen (CEA), carbohydrate antigen 19-9, tumor marker CA72-4 (CA72-4), cytokeratin-7 (CK-7), CTC count, and neutrophil-to-lymphocyte ratio (P < .2) are risk factors for liver metastasis after radical resection of colorectal cancer. Furthermore, the data obtained were included in multivariate regression analysis, and CEA, CA72-4, CK-7, and CTC counts were independent risk factors for liver metastasis after radical resection of colorectal cancer (P < .05). This study confirmed that CEA, CA72-4, CK-7, and CTC counts are independent risk factors for liver metastasis after radical resection of colorectal cancer. In addition, the prediction model of this study can help gastrointestinal surgeons accurately identify patients who are prone to liver metastasis after colorectal cancer surgery.
Collapse
Affiliation(s)
- Tianyi Zhu
- Department of Clinical Laboratory, The Third Hospital of Hebei Medical University, Shijiazhuang City, Hebei Province, China
| | - Yunsong Li
- Department of General Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang City, Hebei Province, China
| | - Rui Li
- Department of Clinical Laboratory, The Third Hospital of Hebei Medical University, Shijiazhuang City, Hebei Province, China
| | - Jingjing Zhang
- Department of Clinical Laboratory, The Third Hospital of Hebei Medical University, Shijiazhuang City, Hebei Province, China
| | - Wentao Zhang
- Department of General Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang City, Hebei Province, China
| |
Collapse
|
27
|
Hechtman JF, Baskovich B, Fussell A, Geiersbach KB, Iorgulescu JB, Sirohi D, Snow A, Sidiropoulos N. Charting the Genomic Frontier: 25 Years of Evolution and Future Prospects in Molecular Diagnostics for Solid Tumors. J Mol Diagn 2025; 27:6-11. [PMID: 39722285 DOI: 10.1016/j.jmoldx.2024.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 07/09/2024] [Accepted: 08/22/2024] [Indexed: 12/28/2024] Open
Affiliation(s)
- Jaclyn F Hechtman
- Solid Tumors Subdivision Leadership of the Association for Molecular Pathology, Rockville, Maryland; Caris Life Sciences, Irving, Texas.
| | - Brett Baskovich
- Solid Tumors Subdivision Leadership of the Association for Molecular Pathology, Rockville, Maryland; Mount Sinai Health System, New York, New York
| | - Amber Fussell
- The Association for Molecular Pathology, Rockville, Maryland
| | - Katherine B Geiersbach
- Solid Tumors Subdivision Leadership of the Association for Molecular Pathology, Rockville, Maryland; Mayo Clinic, Rochester, Minnesota
| | - J Bryan Iorgulescu
- Solid Tumors Subdivision Leadership of the Association for Molecular Pathology, Rockville, Maryland; Molecular Diagnostics Laboratory, Division of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Deepika Sirohi
- Solid Tumors Subdivision Leadership of the Association for Molecular Pathology, Rockville, Maryland; University of California San Francisco, San Fransico, California
| | - Anthony Snow
- Solid Tumors Subdivision Leadership of the Association for Molecular Pathology, Rockville, Maryland; University of Iowa Hospitals and Clinics, Iowa City, Iowa
| | - Nikoletta Sidiropoulos
- Solid Tumors Subdivision Leadership of the Association for Molecular Pathology, Rockville, Maryland; University of Vermont Medical Group, Burlington, Vermont
| |
Collapse
|
28
|
Rahadiani N, Stephanie M, Manatar AF, Krisnuhoni E. The Diagnostic Utility of cfDNA and ctDNA in Liquid Biopsies for Gastrointestinal Cancers over the Last Decade. Oncol Res Treat 2024; 48:125-141. [PMID: 39681095 DOI: 10.1159/000543030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 12/02/2024] [Indexed: 12/18/2024]
Abstract
BACKGROUND Cell-free DNA (cfDNA) is a fragmented DNA that is released into the blood through necrosis, apoptosis, phagocytosis, or active secretion. cfDNA includes a subclass called circulating tumor DNA (ctDNA) released from cancer cells and constitutes a varied proportion of the total cfDNA. Both cfDNA and ctDNA hold significant potential as diagnostic biomarkers in gastrointestinal cancers. SUMMARY cfDNA and ctDNA are promising diagnostic biomarkers for gastrointestinal cancers with varied diagnostic values in different types of cancers. cfDNA offers higher sensitivity that makes it more suitable for screening methods and constant monitoring, particularly in integration with conventional biomarkers or in a multimarker model. On the contrary, ctDNA gives a real-time picture of tumor genetics and is more suitable for definitive diagnosis due to its specificity for tumor-associated alterations. Different types of samples and methods of detection can influence sensitivity, and the amount of cfDNA is higher in serum but plasma is used for cfDNA analysis because it contains less cellular contamination. In summary, cfDNA is more sensitive than ctDNA, although they have comparable or slightly lower specificity. KEY MESSAGE Further studies are needed to create common guidelines, minimize the cost of analysis, and perform extensive clinical trials to demonstrate the utility of circulating cfDNA and ctDNA in the vast majority of gastrointestinal cancer stages. Therefore, with the advancement in these technologies, cfDNA and ctDNA will be highly beneficial and evolve cancer diagnostics and therapy.
Collapse
Affiliation(s)
- Nur Rahadiani
- Department of Anatomical Pathology, Faculty of Medicine, Universitas Indonesia/Dr. Cipto Mangunkusumo Hospital, Jakarta, Indonesia
| | - Marini Stephanie
- Department of Anatomical Pathology, Faculty of Medicine, Universitas Indonesia/Dr. Cipto Mangunkusumo Hospital, Jakarta, Indonesia
| | - Amelia Fossetta Manatar
- Department of Anatomical Pathology, Faculty of Medicine, Universitas Indonesia/Dr. Cipto Mangunkusumo Hospital, Jakarta, Indonesia
| | - Ening Krisnuhoni
- Department of Anatomical Pathology, Faculty of Medicine, Universitas Indonesia/Dr. Cipto Mangunkusumo Hospital, Jakarta, Indonesia
| |
Collapse
|
29
|
Wu Y, Li Y, Chen B, Zhang Y, Xing W, Guo B, Wang W. 18F-FDG PET/CT for early prediction of pathological complete response in breast cancer neoadjuvant therapy: a retrospective analysis. Oncologist 2024; 29:e1646-e1655. [PMID: 39045652 PMCID: PMC11630790 DOI: 10.1093/oncolo/oyae185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 05/23/2024] [Indexed: 07/25/2024] Open
Abstract
BACKGROUND Neoadjuvant treatment has been developed as a systematic approach for patients with early breast cancer and has resulted in improved breast-conserving rate and survival. However, identifying treatment-sensitive patients at the early phase of therapy remains a problem, hampering disease management and raising the possibility of disease progression during treatment. METHODS In this retrospective analysis, we collected 2-deoxy-2-[F-18] fluoro-d-glucose (18F-FDG) positron emission tomography (PET)/computed tomography (CT) images of primary tumor sites and axillary areas and reciprocal clinical pathological data from 121 patients who underwent neoadjuvant treatment and surgery in our center. The univariate and multivariate logistic regression analyses were performed to investigate features associated with pathological complete response (pCR). An 18F-FDG PET/CT-based prediction model was trained, and the performance was evaluated by receiver operating characteristic curves (ROC). RESULTS The maximum standard uptake values (SUVmax) of 18F-FDG PET/CT were a powerful indicator of tumor status. The SUVmax values of axillary areas were closely related to metastatic lymph node counts (R = 0.62). Moreover, the early SUVmax reduction rates (between baseline and second cycle of neoadjuvant treatment) were statistically different between pCR and non-pCR patients. The early SUVmax reduction rates-based model showed great ability to predict pCR (AUC = 0.89), with all molecular subtypes (HR+HER2-, HR+HER2+, HR-HER2+, and HR-HER2-) considered. CONCLUSION Our research proved that the SUVmax reduction rate of 18F-FDG PET/CT contributed to the early prediction of pCR, providing rationales for utilizing PET/CT in NAT in the future.
Collapse
Affiliation(s)
- Yilin Wu
- Department of Breast Surgery, China-Japan Union Hospital of Jilin University, Changchun 130033, People’s Republic of China
| | - Yanling Li
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150001, People’s Republic of China
| | - Bin Chen
- Department of Breast Surgery, China-Japan Union Hospital of Jilin University, Changchun 130033, People’s Republic of China
| | - Ying Zhang
- Department of Breast Surgery, China-Japan Union Hospital of Jilin University, Changchun 130033, People’s Republic of China
| | - Wanying Xing
- Department of Breast Surgery, China-Japan Union Hospital of Jilin University, Changchun 130033, People’s Republic of China
| | - Baoliang Guo
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150001, People’s Republic of China
| | - Wan Wang
- Department of Breast Surgery, China-Japan Union Hospital of Jilin University, Changchun 130033, People’s Republic of China
| |
Collapse
|
30
|
Zameer MZ, Jou E, Middleton M. The role of circulating tumor DNA in melanomas of the uveal tract. Front Immunol 2024; 15:1509968. [PMID: 39697328 PMCID: PMC11652350 DOI: 10.3389/fimmu.2024.1509968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 11/18/2024] [Indexed: 12/20/2024] Open
Abstract
Melanoma of the uveal tract or uveal melanoma (UM) originates from melanocytes of the eye and is the most common intraocular malignancy in adults. Despite considerable advances in diagnostic procedures and treatments, prognosis remains poor in those with advanced disease. Accordingly, although current treatments have an excellent local disease control rate, approximately 50% of patients develop metastatic relapse within 10 years. The high risk for metastatic disease with a variable and often long latency period is thought to be due to early spread of cancer cells disseminating into organs such as the liver, followed by a period of dormancy, before the eventual emergence of radiologically measurable disease. Early detection of disease relapse or metastasis is therefore crucial to allow timely treatment and ultimately improve patient outcome. Recently, advances in minimally-invasive liquid biopsy techniques and biomarkers such as circulating tumor DNA (ctDNA) have demonstrated potential to transform the field of cancer care by aiding diagnosis, prognosis and monitoring of various cancer types. UM is particularly suitable for ctDNA-based approaches due to the relatively well-characterized spectrum of genetic mutations, along with the inherent difficulties and risks associated with getting sufficient tumor samples via traditional biopsy methods. Key potential advantage of ctDNA are the detection of molecular residual disease (MRD) in patients post definitive treatment, and in the early identification of metastasis. This is particularly relevant contemporarily with the recent demonstration of tebentafusp improving survival in metastatic UM patients, and opens avenues for further research to investigate the potential utilization of tebentafusp combined with ctDNA-based strategies in adjuvant settings and early intervention for MRD. The present review illustrates the current understanding of ctDNA-based strategies in UM, discusses the potential clinical applications, explores the potential of utilizing ctDNA in UM MRD in the context of an ongoing clinical trial, and highlights the challenges that need to be overcome prior to routine clinical implementation.
Collapse
Affiliation(s)
- Mohammed Zeeshan Zameer
- Department of Oncology, Medical Sciences Division, University of Oxford, Oxford, United Kingdom
| | - Eric Jou
- Department of Oncology, Medical Sciences Division, University of Oxford, Oxford, United Kingdom
- Kellogg College, University of Oxford, Oxford, United Kingdom
| | - Mark Middleton
- Department of Oncology, Medical Sciences Division, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
31
|
Zhou Q, Meng X, Sun L, Huang D, Yang N, Yu Y, Zhao M, Zhuang W, Guo R, Hu Y, Pan Y, Shan J, Sun M, Yuan Y, Fan Y, Huang J, Liu L, Chu Q, Wang X, Xu C, Lin J, Huang J, Huang M, Sun J, Zhang S, Zhou H, Wu YL. Efficacy and Safety of KRASG12C Inhibitor IBI351 Monotherapy in Patients With Advanced NSCLC: Results From a Phase 2 Pivotal Study. J Thorac Oncol 2024; 19:1630-1639. [PMID: 39127176 DOI: 10.1016/j.jtho.2024.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/01/2024] [Accepted: 08/04/2024] [Indexed: 08/12/2024]
Abstract
INTRODUCTION KRAS glycine-to-cysteine substitution at codon 12 (G12C) mutation is a well-recognized and increasingly promising therapeutic target with huge unmet clinical needs in NSCLC patients. IBI351 is a potent covalent and irreversible inhibitor of KRAS G12C. Here, we present the efficacy and safety of IBI351 from an open-label, single-arm, phase 2 pivotal study. METHODS Eligible patients with NSCLC with KRAS G12C who failed standard therapy were enrolled. IBI351 was orally administered at a dose of 600 mg twice daily. The primary endpoint was confirmed objective response rate assessed by an independent radiological review committee (IRRC) as per Response Evaluation Criteria in Solid Tumors v1.1. Other endpoints were safety, IRRC-confirmed disease control rate, duration of response, progression-free survival (PFS), and overall survival. RESULTS As of December 13, 2023, 116 patients were enrolled (Eastern Cooperative Oncology Group Performance Status 1: 91.4%; brain metastasis: 30.2%; prior treatments with both anti-PD-1 or anti-PD-L1 inhibitors and platinum-based chemotherapy: 84.5%). As per the IRRC assessment, the confirmed objective response rate was 49.1% (95% confidence interval [CI]: 39.7-58.6), and the disease control rate was 90.5% (95% CI: 83.7-95.2). The median duration of response was not reached whereas disease progression or death events occurred in 22 patients (38.6%), and the median PFS was 9.7 months (95% CI: 5.6-11.0). overall survival data was immature. Treatment-related adverse events (TRAEs) occurred in 107 patients (92.2%) whereas 48 patients (41.4%) had equal to or higher than grade three TRAEs. Common TRAEs were anemia (44.8%), increased alanine aminotransferase (28.4%), increased aspartate aminotransferase (27.6%), asthenia (26.7%) and presence of protein in urine (25.0%). TRAEs leading to treatment discontinuation occurred in nine patients (7.8%). In biomarker evaluable patients (n = 95), all patients had positive KRAS G12C in tissue whereas 72 patients were blood-positive and 23 were blood-negative for KRAS G12C. Patients with KRAS G12C in both blood and tissue had higher tumor burden at baseline (p < 0.05) and worse PFS (p < 0.05). Tumor mutation profiling identified tumor protein p53 (45.3%), serine/threonine kinase 11 (STK11) (30.5%), and kelch-like ECH-associated protein 1 (21.1%) as the most common genes co-mutated with KRAS G12C. Among 13 genes with mutation frequency equal to or higher than 5%, mutations of six genes (STK11, kelch-like ECH-associated protein 1, phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit gamma, DNA polymerase epsilon, SMAD family member 4, and BMP/retinoic acid-inducible neural-specific protein 3) were significantly associated with worse PFS (p < 0.05). Mutation in STK11 was also found to have a significant association with higher tumor burden at baseline and lower response rate (p < 0.05). CONCLUSIONS IBI351 monotherapy demonstrated promising and sustained efficacy with manageable safety, supporting its potential as a new treatment option for KRAS G12C-mutant NSCLC.
Collapse
Affiliation(s)
- Qing Zhou
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, People's Republic of China
| | - Xiangjiao Meng
- Radiotherapy Department, Shandong First Medical University Affiliated Cancer Hospital, Jinan, People's Republic of China
| | - Longhua Sun
- Respiratory Department, The First Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| | - Dingzhi Huang
- Department of Pulmonary Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, People's Republic of China
| | - Nong Yang
- Department of Pulmonary Gastroenterology, Hunan Cancer Hospital, Changsha, People's Republic of China
| | - Yan Yu
- Respiratory Department, Cancer Hospital affiliated to Harbin Medical University, Harbin, People's Republic of China
| | - Mingfang Zhao
- Medical Oncology Ward 2, The First Affiliated Hospital of China Medical University, Shenyang, People's Republic of China
| | - Wu Zhuang
- Department of Medical Oncology, Fujian Cancer Hospital, Fuzhou, People's Republic of China
| | - Renhua Guo
- Department of Oncology, Jiangsu Province Hospital, Nanjing, People's Republic of China
| | - Yi Hu
- Department of Medical Oncology, The First Medical Center of the Chinese People's Liberation Army General Hospital, Beijing, People's Republic of China
| | - Yueyin Pan
- Department of Tumor Chemotherapy, Anhui Provincial Hospital, Hefei, People's Republic of China
| | - Jinlu Shan
- Department of Oncology, Army Specialty Medical Center of PLA, Chongqing, People's Republic of China
| | - Meili Sun
- Department of Medical Oncology, Central Hospital Affiliated to Shandong First Medical University, Jinan, People's Republic of China
| | - Ying Yuan
- Department of Medical Oncology, The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Yun Fan
- Department of Thoracic Oncology, Zhejiang Cancer Hospital, Hangzhou, People's Republic of China
| | - Jianan Huang
- Pneumology Department, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Lian Liu
- Department of Medical Oncology, Qilu Hospital of Shandong University, Jinan, People's Republic of China
| | - Qian Chu
- Department of Thoracic Oncology, Tongji Hospital Affiliated to Tongji Medical College Hust, Wuhan, People's Republic of China
| | - Xiuwen Wang
- Medical Oncology, Qilu Hospital of Shandong University (Qingdao), Qingdao, People's Republic of China
| | - Chongrui Xu
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, People's Republic of China
| | - Jiaxin Lin
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, People's Republic of China
| | - Jingjing Huang
- Department of Medical Oncology, Innovent Biologics (Suzhou) Co., Ltd., Suzhou, People's Republic of China
| | - Mengna Huang
- Department of Biostatistics, Innovent Biologics (Suzhou) Co., Ltd., Suzhou, People's Republic of China
| | - Jiya Sun
- Department of Translational Medicine, Innovent Biologics (Suzhou) Co., Ltd., Suzhou, People's Republic of China
| | - Sujie Zhang
- Department of Medical Oncology, Innovent Biologics (Suzhou) Co., Ltd., Suzhou, People's Republic of China
| | - Hui Zhou
- Department of Medical Oncology, Innovent Biologics (Suzhou) Co., Ltd., Suzhou, People's Republic of China
| | - Yi-Long Wu
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, People's Republic of China.
| |
Collapse
|
32
|
Kurma K, Eslami-S Z, Alix-Panabières C, Cayrefourcq L. Liquid biopsy: paving a new avenue for cancer research. Cell Adh Migr 2024; 18:1-26. [PMID: 39219215 PMCID: PMC11370957 DOI: 10.1080/19336918.2024.2395807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/21/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024] Open
Abstract
The current constraints associated with cancer diagnosis and molecular profiling, which rely on invasive tissue biopsies or clinical imaging, have spurred the emergence of the liquid biopsy field. Liquid biopsy involves the extraction of circulating tumor cells (CTCs), circulating free or circulating tumor DNA (cfDNA or ctDNA), circulating cell-free RNA (cfRNA), extracellular vesicles (EVs), and tumor-educated platelets (TEPs) from bodily fluid samples. Subsequently, these components undergo molecular characterization to identify biomarkers that are critical for early cancer detection, prognosis, therapeutic assessment, and post-treatment monitoring. These innovative biosources exhibit characteristics analogous to those of the primary tumor from which they originate or interact. This review comprehensively explores the diverse technologies and methodologies employed for processing these biosources, along with their principal clinical applications.
Collapse
Affiliation(s)
- Keerthi Kurma
- Laboratory of Rare Human Circulating Cells (LCCRH), University Medical Centre of Montpellier, Montpellier, France
- CREEC/CANECEV, MIVEGEC (CREES),
University of Montpellier, CNRS, IRD, Montpellier, France
- European Liquid Biopsy Society (ELBS), Hamburg, Germany
| | - Zahra Eslami-S
- Laboratory of Rare Human Circulating Cells (LCCRH), University Medical Centre of Montpellier, Montpellier, France
- CREEC/CANECEV, MIVEGEC (CREES),
University of Montpellier, CNRS, IRD, Montpellier, France
- European Liquid Biopsy Society (ELBS), Hamburg, Germany
| | - Catherine Alix-Panabières
- Laboratory of Rare Human Circulating Cells (LCCRH), University Medical Centre of Montpellier, Montpellier, France
- CREEC/CANECEV, MIVEGEC (CREES),
University of Montpellier, CNRS, IRD, Montpellier, France
- European Liquid Biopsy Society (ELBS), Hamburg, Germany
| | - Laure Cayrefourcq
- Laboratory of Rare Human Circulating Cells (LCCRH), University Medical Centre of Montpellier, Montpellier, France
- CREEC/CANECEV, MIVEGEC (CREES),
University of Montpellier, CNRS, IRD, Montpellier, France
- European Liquid Biopsy Society (ELBS), Hamburg, Germany
| |
Collapse
|
33
|
Sorg BS, Byun JS, Westbrook VA, Tricoli JV, Doroshow JH, Harris LN. NCI workshop on ctDNA in cancer treatment and clinical care. J Natl Cancer Inst 2024; 116:1890-1895. [PMID: 39087596 PMCID: PMC11630565 DOI: 10.1093/jnci/djae179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/23/2024] [Accepted: 07/26/2024] [Indexed: 08/02/2024] Open
Abstract
Detection of cell-free circulating tumor DNA (ctDNA) from solid tumors is a fast-evolving field with significant potential for improving patient treatment outcomes. The spectrum of applications for ctDNA assays is broad and includes very diverse intended uses that will require different strategies to demonstrate utility. On September 14-15, 2023, the National Cancer Institute held an in-person workshop in Rockville, MD titled "ctDNA in Cancer Treatment and Clinical Care." The goal of the workshop was to examine what is currently known and what needs to be determined for various ctDNA liquid biopsy use cases related to treatment and management of patients with solid tumors and to explore how the community can best assess the value of ctDNA assays and technology. Additionally, new approaches were presented that may show promise in the future. The information exchanged in this workshop will provide the community with a better understanding of this field and its potential to affect and benefit decision-making in the treatment of patients with solid tumors.
Collapse
Affiliation(s)
- Brian S Sorg
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jung S Byun
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - V Anne Westbrook
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - James V Tricoli
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - James H Doroshow
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Lyndsay N Harris
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
34
|
Martello M, Solli V, Mazzocchetti G, Solimando AG, Bezzi D, Taurisano B, Kanapari A, Poletti A, Borsi E, Armuzzi S, Vigliotta I, Pistis I, Desantis V, Marzocchi G, Rizzello I, Pantani L, Mancuso K, Tacchetti P, Testoni N, Nanni C, Zamagni E, Cavo M, Terragna C. High level of circulating cell-free tumor DNA at diagnosis correlates with disease spreading and defines multiple myeloma patients with poor prognosis. Blood Cancer J 2024; 14:208. [PMID: 39609411 PMCID: PMC11605000 DOI: 10.1038/s41408-024-01185-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 10/26/2024] [Accepted: 11/04/2024] [Indexed: 11/30/2024] Open
Abstract
Multiple myeloma (MM) is a plasma cell (PC) disorder characterized by skeletal involvement at the time of diagnosis. Recently, cell-free DNA (cfDNA) has been proven to recapitulate the heterogeneity of bone marrow (BM) disease. Our aim was to evaluate the prognostic role of cfDNA at diagnosis according to disease distribution, and to investigate the role of the MM microenvironment inflammatory state in supplying the release of cfDNA. A total of 162 newly diagnosed MM patients were screened using 18F-FDG PET/CT and assessed by ultra low-pass whole genome sequencing (ULP-WGS). High cfDNA tumor fraction (ctDNA) levels were correlated with different tumor mass markers, and patients with high ctDNA levels at diagnosis were more likely to present with metabolically active paraskeletal (PS) and extramedullary (EM) lesions. Moreover, we demonstrated that microenvironment cancer-associated fibroblast (CAFs)-mediated inflammation might correlate with high ctDNA levels. Indeed, a high cfDNA TF level at diagnosis predicted a poorer prognosis, independent of R-ISS III and 1q amplification; the inclusion of >12% ctDNA in the current R-ISS risk score enables a better identification of high-risk patients. ctDNA can be a reliable and less invasive marker for disease characterization, and can refine patient risk.
Collapse
Affiliation(s)
- Marina Martello
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy.
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia "Seràgnoli", Bologna, Italy.
| | - Vincenza Solli
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia "Seràgnoli", Bologna, Italy
| | - Gaia Mazzocchetti
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia "Seràgnoli", Bologna, Italy
| | - Antonio Giovanni Solimando
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe‑J), Unit of Internal Medicine "Guido Baccelli", University of Bari "Aldo Moro" Medical School, Bari, Italy
| | - Davide Bezzi
- Nuclear Medicine Unit, AUSL Romagna, Ravenna, Italy
| | - Barbara Taurisano
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Ajsi Kanapari
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Andrea Poletti
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Enrica Borsi
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia "Seràgnoli", Bologna, Italy
| | - Silvia Armuzzi
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Ilaria Vigliotta
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia "Seràgnoli", Bologna, Italy
| | - Ignazia Pistis
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia "Seràgnoli", Bologna, Italy
| | - Vanessa Desantis
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe‑J), Section of Pharmacology, University of Bari "Aldo Moro" Medical School, Bari, Italy
| | - Giulia Marzocchi
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia "Seràgnoli", Bologna, Italy
| | - Ilaria Rizzello
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia "Seràgnoli", Bologna, Italy
| | - Lucia Pantani
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Katia Mancuso
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia "Seràgnoli", Bologna, Italy
| | - Paola Tacchetti
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Nicoletta Testoni
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia "Seràgnoli", Bologna, Italy
| | - Cristina Nanni
- Nuclear Medicine, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Elena Zamagni
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia "Seràgnoli", Bologna, Italy
| | - Michele Cavo
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia "Seràgnoli", Bologna, Italy
| | - Carolina Terragna
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia "Seràgnoli", Bologna, Italy.
| |
Collapse
|
35
|
Pollard CA, Saito ER, Burns JM, Hill JT, Jenkins TG. Considering Biomarkers of Neurodegeneration in Alzheimer's Disease: The Potential of Circulating Cell-Free DNA in Precision Neurology. J Pers Med 2024; 14:1104. [PMID: 39590596 PMCID: PMC11595805 DOI: 10.3390/jpm14111104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 10/30/2024] [Accepted: 11/06/2024] [Indexed: 11/28/2024] Open
Abstract
Neurodegenerative diseases, such as Alzheimer's disease (AD), are a growing public health crisis, exacerbated by an aging global population and the lack of effective early disease-modifying therapies. Early detection of neurodegenerative disorders is critical to delaying symptom onset and mitigating disease progression, but current diagnostic tools often rely on detecting pathology once clinical symptoms have emerged and significant neuronal damage has already occurred. While disease-specific biomarkers, such as amyloid-beta and tau in AD, offer precise insights, they are too limited in scope for broader neurodegeneration screening for these conditions. Conversely, general biomarkers like neurofilament light chain (NfL) provide valuable staging information but lack targeted insights. Circulating cell-free DNA (cfDNA), released during cell death, is emerging as a promising biomarker for early detection. Derived from dying cells, cfDNA can capture both general neurodegenerative signals and disease-specific insights, offering multi-layered genomic and epigenomic information. Though its clinical potential remains under investigation, advances in cfDNA detection sensitivity, standardized protocols, and reference ranges could establish cfDNA as a valuable tool for early screening. cfDNA methylation signatures, in particular, show great promise for identifying tissue-of-origin and disease-specific changes, offering a minimally invasive biomarker that could transform precision neurology. However, further research is required to address technological challenges and validate cfDNA's utility in clinical settings. Here, we review recent work assessing cfDNA as a potential early biomarker in AD. With continued advances, cfDNA could play a pivotal role in shifting care from reactive to proactive, improving diagnostic timelines and patient outcomes.
Collapse
Affiliation(s)
- Chad A. Pollard
- Department of Cell Biology and Physiology, Brigham Young University, Provo, UT 84602, USA
- Resonant, Heber, UT 84032, USA
| | | | - Jeffrey M. Burns
- University of Kansas Alzheimer’s Disease Research Center, Fairway, KS 66205, USA
| | - Jonathon T. Hill
- Department of Cell Biology and Physiology, Brigham Young University, Provo, UT 84602, USA
| | - Timothy G. Jenkins
- Department of Cell Biology and Physiology, Brigham Young University, Provo, UT 84602, USA
- Resonant, Heber, UT 84032, USA
| |
Collapse
|
36
|
Čeri A, Somborac-Bačura A, Fabijanec M, Hulina-Tomašković A, Matusina M, Detel D, Verbanac D, Barišić K. Establishment of liquid biopsy procedure for the analysis of circulating cell free DNA, exosomes, RNA and proteins in colorectal cancer and adenoma patients. Sci Rep 2024; 14:26925. [PMID: 39506031 PMCID: PMC11541997 DOI: 10.1038/s41598-024-78497-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 10/31/2024] [Indexed: 11/08/2024] Open
Abstract
Liquid biopsy has an underexplored diagnostic potential in colorectal cancer (CRC). Sufficient quantity and quality of its elements (circulating cell-free DNA (ccfDNA), exosomes and exosomal RNA) are essential for accurate results. The present study aims to establish the optimal protocol for handling liquid biopsy samples. Samples were obtained by collecting peripheral blood from colorectal adenoma patients in CellSave tubes. Plasma was separated within six hours using differential centrifugation and aliquots stored at - 20/- 80 °C until further processing. Three methods for isolation of ccfDNA, and two combinations of kits for isolation of exosomes and exosomal RNA were tested. The quality and quantity of ccfDNA isolates were evaluated. Exosomes were characterised by determining size, concentration, and total and specific protein content. Expression of chosen microRNAs, miR-19a-3p and miR-92-3p, which have been implicated in CRC progression, were determined. The vacuum-column-based kit showed the highest quantities of isolated ccfDNA (P-value < 0.001). Kits for exosome isolation significantly differed in size (P-value = 0.016), concentration (P-value = 0.016) and protein content (P-value = 0.016). There was no significant difference in expressions of miR-19a-3p (P-value = 0.219) and miR-92a-3p (P-value = 0.094) between the two isolation kits. The new, adapted protocol described, enables simultaneous analysis of multiple elements when investigating potential biomarkers of CRC.
Collapse
Affiliation(s)
- Andrea Čeri
- Department of Medical Biochemistry and Haematology, University of Zagreb Faculty of Pharmacy and Biochemistry, Zagreb, 10000, Croatia.
| | - Anita Somborac-Bačura
- Department of Medical Biochemistry and Haematology, University of Zagreb Faculty of Pharmacy and Biochemistry, Zagreb, 10000, Croatia
| | - Marija Fabijanec
- Centre for Applied Medical Biochemistry, University of Zagreb Faculty of Pharmacy and Biochemistry, Zagreb, 10000, Croatia
| | - Andrea Hulina-Tomašković
- Department of Medical Biochemistry and Haematology, University of Zagreb Faculty of Pharmacy and Biochemistry, Zagreb, 10000, Croatia
| | - Marko Matusina
- Department of Medical Biochemistry and Haematology, University of Zagreb Faculty of Pharmacy and Biochemistry, Zagreb, 10000, Croatia
| | - Dijana Detel
- Department of Medical Chemistry, Biochemistry and Clinical Chemistry, University of Rijeka Faculty of Medicine, Rijeka, 51000, Croatia
| | - Donatella Verbanac
- Department of Medical Biochemistry and Haematology, University of Zagreb Faculty of Pharmacy and Biochemistry, Zagreb, 10000, Croatia
| | - Karmela Barišić
- Department of Medical Biochemistry and Haematology, University of Zagreb Faculty of Pharmacy and Biochemistry, Zagreb, 10000, Croatia
| |
Collapse
|
37
|
Luo J, Zhang C, Wu M, Yao X, Duan Y, Li Y. Excitation/emission-enhanced heterostructure photonic crystal array synergizing with "DD-A" FRET entropy-driven circuit for high-resolution and ultrasensitive analysis of ctDNA. Biosens Bioelectron 2024; 263:116615. [PMID: 39106690 DOI: 10.1016/j.bios.2024.116615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/21/2024] [Accepted: 07/29/2024] [Indexed: 08/09/2024]
Abstract
Circulating tumor DNA (ctDNA) is an emerging biomarker of liquid biopsy for cancer. But it remains a challenge to achieve simple, sensitive and specific detection of ctDNA because of low abundance and single-base mutation. In this work, an excitation/emission-enhanced heterostructure photonic crystal (PC) array synergizing with entropy-driven circuit (EDC) was developed for high-resolution and ultrasensitive analysis of ctDNA. The donor donor-acceptor FÖrster resonance energy transfer ("DD-A" FRET) was integrated in EDC based on the introduction of simple auxiliary strand, which exhibited higher sensitivity than that of traditional EDC. The heterostructure PC array was constructed with the bilayer periodic nanostructures of nanospheres. Because the heterostructure PC has the adjustable dual photonic band gaps (PBGs) by changing nanosphere sizes, and the "DD-A" FRET can offer the excitation and emission peak with enough distance, it helps the successful matches between the dual PBGs of heterostructure PC and the excitation/emission peaks of "DD-A" FRET; thus, the fluorescence from EDC can be enhanced effectively from both of excitation and emission processes on heterostructure PC array. Besides, high-resolution of single-base mutation was obtained through the strict recognition of EDC. Benefiting from the specific spectrum-matched and synergetic amplification of heterostructure PC and EDC with "DD-A" FRET, the proposed array obtained ultrasensitive detection of ctDNA with LOD of 12.9 fM, and achieved the analysis of mutation frequency as low as 0.01%. Therefore, the proposed strategy has the advantages of simple operation, mild conditions (enzyme-free and isothermal), high-sensitivity, high-resolution and high-throughput analysis, showing potential in bioassay and clinical application.
Collapse
Affiliation(s)
- Jie Luo
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Chuyan Zhang
- Precision Medicine Translational Research Center, Medical Equipment Innovation Research Center, Med-X Center for Manufacturing, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Mengfan Wu
- Research Center of Analytical Instrumentation, School of Mechanical Engineering, Sichuan University, Chengdu, Sichuan, 610065, PR China
| | - Xiuyuan Yao
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Yixiang Duan
- Research Center of Analytical Instrumentation, School of Mechanical Engineering, Sichuan University, Chengdu, Sichuan, 610065, PR China
| | - Yongxin Li
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China.
| |
Collapse
|
38
|
Gohil KM, Reddy JV, Mulla SK, Shah RS, Raghavendra SK, Singh R, Gohil SM. The ctDNA revolution: Insights on cancer care: A narrative review. Bioinformation 2024; 20:1287-1290. [PMID: 40092864 PMCID: PMC11904137 DOI: 10.6026/9732063002001287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/31/2024] [Accepted: 10/31/2024] [Indexed: 03/19/2025] Open
Abstract
Circulating tumor DNA (ctDNA) is a revolutionary tool in the detection and monitoring of cancer: a minimally invasive, highly sensitive approach to analysing tumor-specific DNA in the bloodstream. Therefore, it is of interest to explore the current and evolving landscape of cancer genomics as precision tools in quantifying tumor dynamics. Thus, the role of ctDNA in tracking minimum residual disease, relapse, recurrence and the tailoring of therapeutic strategies for effective management of tumours is reviewed.
Collapse
Affiliation(s)
- Krutika Mahendra Gohil
- Department of Internal Medicine, Hinduhridaysamrat Balasaheb Thackarey Medical College (HBTMC) and Dr. Rustom Narsi Cooper Municipal General Hospital, Mumbai, Maharashtra, India
| | | | - Saniya Kifayetulla Mulla
- Department of Internal Medicine, Hinduhridaysamrat Balasaheb Thackarey Medical College (HBTMC) and Dr. Rustom Narsi Cooper Municipal General Hospital, Mumbai, Maharashtra, India
| | - Rutu Snehal Shah
- Department of Medicine Dr. Vaishampayan Memorial Government Medical College, Solapur, Maharashtra, India
| | | | - Rishika Singh
- Department of Internal Medicine, Hinduhridaysamrat Balasaheb Thackarey Medical College (HBTMC) and Dr. Rustom Narsi Cooper Municipal General Hospital, Mumbai, Maharashtra, India
| | - Sagar Mahendra Gohil
- Department of Medicine Mahatma Gandhi Mission Institute of Health Sciences, Navi Mumbai, Maharashtra, India
| |
Collapse
|
39
|
Zhang Y, Tian L. Advances and challenges in the use of liquid biopsy in gynaecological oncology. Heliyon 2024; 10:e39148. [PMID: 39492906 PMCID: PMC11530831 DOI: 10.1016/j.heliyon.2024.e39148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 10/08/2024] [Accepted: 10/08/2024] [Indexed: 11/05/2024] Open
Abstract
Ovarian cancer, endometrial cancer, and cervical cancer are the three primary gynaecological cancers that pose a significant threat to women's health on a global scale. Enhancing global cancer survival rates necessitates advancements in illness detection and monitoring, with the goal of improving early diagnosis and prognostication of disease recurrence. Conventional methods for identifying and tracking malignancies rely primarily on imaging techniques and, when possible, protein biomarkers found in blood, many of which lack specificity. The process of collecting tumour samples necessitates intrusive treatments that are not suitable for specific purposes, such as screening, predicting, or evaluating the effectiveness of treatment, monitoring the presence of remaining illness, and promptly detecting relapse. Advancements in treatment are being made by the detection of genetic abnormalities in tumours, both inherited and acquired. Newly designed therapeutic approaches can specifically address some of these abnormalities. Liquid biopsy is an innovative technique for collecting samples that examine specific cancer components that are discharged into the bloodstream, such as circulating tumour DNA (ctDNA), circulating tumour cells (CTCs), cell-free RNA (cfRNA), tumour-educated platelets (TEPs), and exosomes. Mounting data indicates that liquid biopsy has the potential to improve the clinical management of gynaecological cancers through enhanced early diagnosis, prognosis prediction, recurrence detection, and therapy response monitoring. Understanding the distinct genetic composition of tumours can also inform therapy choices and the identification of suitable targeted treatments. The main benefits of liquid biopsy are its non-invasive characteristics and practicality, enabling the collection of several samples and the continuous monitoring of tumour changes over time. This review aims to provide an overview of the data supporting the therapeutic usefulness of each component of liquid biopsy. Additionally, it will assess the benefits and existing constraints associated with the use of liquid biopsy in the management of gynaecological malignancies. In addition, we emphasise future prospects in light of the existing difficulties and investigate areas where further research is necessary to clarify its rising clinical capabilities.
Collapse
Affiliation(s)
- Yingfeng Zhang
- University-Town Hospital of Chongqing Medical University, Chongqing, 401331, China
| | - Libi Tian
- University-Town Hospital of Chongqing Medical University, Chongqing, 401331, China
| |
Collapse
|
40
|
Pessei V, Macagno M, Mariella E, Congiusta N, Battaglieri V, Battuello P, Viviani M, Gionfriddo G, Lamba S, Lorenzato A, Oddo D, Idrees F, Cavaliere A, Bartolini A, Guarrera S, Linnebacher M, Monteonofrio L, Cardone L, Milella M, Bertotti A, Soddu S, Grassi E, Crisafulli G, Bardelli A, Barault L, Di Nicolantonio F. DNA demethylation triggers cell free DNA release in colorectal cancer cells. Genome Med 2024; 16:118. [PMID: 39385243 PMCID: PMC11462661 DOI: 10.1186/s13073-024-01386-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 09/18/2024] [Indexed: 10/12/2024] Open
Abstract
BACKGROUND Liquid biopsy based on cell-free DNA (cfDNA) analysis holds significant promise as a minimally invasive approach for the diagnosis, genotyping, and monitoring of solid malignancies. Human tumors release cfDNA in the bloodstream through a combination of events, including cell death, active and passive release. However, the precise mechanisms leading to cfDNA shedding remain to be characterized. Addressing this question in patients is confounded by several factors, such as tumor burden extent, anatomical and vasculature barriers, and release of nucleic acids from normal cells. In this work, we exploited cancer models to dissect basic mechanisms of DNA release. METHODS We measured cell loss ratio, doubling time, and cfDNA release in the supernatant of a colorectal cancer (CRC) cell line collection (N = 76) representative of the molecular subtypes previously identified in cancer patients. Association analyses between quantitative parameters of cfDNA release, cell proliferation, and molecular features were evaluated. Functional experiments were performed to test the impact of modulating DNA methylation on cfDNA release. RESULTS Higher levels of supernatant cfDNA were significantly associated with slower cell cycling and increased cell death. In addition, a higher cfDNA shedding was found in non-CpG Island Methylator Phenotype (CIMP) models. These results indicate a positive correlation between lower methylation and increased cfDNA levels. To explore this further, we exploited methylation microarrays to identify a subset of probes significantly associated with cfDNA shedding and derive a methylation signature capable of discriminating high from low cfDNA releasers. We applied this signature to an independent set of 176 CRC cell lines and patient derived organoids to select 14 models predicted to be low or high releasers. The methylation profile successfully predicted the amount of cfDNA released in the supernatant. At the functional level, genetic ablation of DNA methyl-transferases increased chromatin accessibility and DNA fragmentation, leading to increased cfDNA release in isogenic CRC cell lines. Furthermore, in vitro treatment of five low releaser CRC cells with a demethylating agent was able to induce a significant increase in cfDNA shedding. CONCLUSIONS Methylation status of cancer cell lines contributes to the variability of cfDNA shedding in vitro. Changes in methylation pattern are associated with cfDNA release levels and might be exploited to increase sensitivity of liquid biopsy assays.
Collapse
Affiliation(s)
- Valeria Pessei
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Turin, Italy
| | - Marco Macagno
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Turin, Italy
| | - Elisa Mariella
- Department of Oncology, University of Torino, Turin, Italy
- IFOM, the AIRC Institute of Molecular Oncology, Milan, Italy
| | - Noemi Congiusta
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Turin, Italy
- Department of Oncology, University of Torino, Turin, Italy
| | - Vittorio Battaglieri
- Department of Oncology, University of Torino, Turin, Italy
- IFOM, the AIRC Institute of Molecular Oncology, Milan, Italy
| | - Paolo Battuello
- Department of Oncology, University of Torino, Turin, Italy
- IFOM, the AIRC Institute of Molecular Oncology, Milan, Italy
| | - Marco Viviani
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Turin, Italy
- Department of Oncology, University of Torino, Turin, Italy
| | - Giulia Gionfriddo
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Turin, Italy
- Department of Oncology, University of Torino, Turin, Italy
| | - Simona Lamba
- Department of Oncology, University of Torino, Turin, Italy
| | | | - Daniele Oddo
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Turin, Italy
- Department of Oncology, University of Torino, Turin, Italy
| | - Fariha Idrees
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Turin, Italy
- Department of Oncology, University of Torino, Turin, Italy
| | - Alessandro Cavaliere
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Turin, Italy
- Department of Oncology, University of Torino, Turin, Italy
| | - Alice Bartolini
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Turin, Italy
| | - Simonetta Guarrera
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Turin, Italy
- IIGM-Italian Institute for Genomic Medicine, c/o IRCCS, Candiolo, Turin, Italy
| | - Michael Linnebacher
- Clinic of General Surgery, Molecular Oncology and Immunotherapy, UMR, Rostock, Germany
| | - Laura Monteonofrio
- Department of Research and Advanced Technologies, Regina Elena National Cancer Institute IRCCS, Rome, Italy
| | - Luca Cardone
- Department of Research and Advanced Technologies, Regina Elena National Cancer Institute IRCCS, Rome, Italy
| | - Michele Milella
- Section of Innovation Biomedicine - Oncology Area, Department of Engineering for Innovation Medicine, University of Verona and Verona University and Hospital Trust, Verona, Italy
| | - Andrea Bertotti
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Turin, Italy
- Department of Oncology, University of Torino, Turin, Italy
| | - Silvia Soddu
- Department of Research and Advanced Technologies, Regina Elena National Cancer Institute IRCCS, Rome, Italy
| | - Elena Grassi
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Turin, Italy
- Department of Oncology, University of Torino, Turin, Italy
| | | | - Alberto Bardelli
- Department of Oncology, University of Torino, Turin, Italy
- IFOM, the AIRC Institute of Molecular Oncology, Milan, Italy
| | - Ludovic Barault
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Turin, Italy.
- Department of Oncology, University of Torino, Turin, Italy.
| | - Federica Di Nicolantonio
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Turin, Italy.
- Department of Oncology, University of Torino, Turin, Italy.
| |
Collapse
|
41
|
Du Y, Zhang X, Sun M, Yang L, Long F, Qi S, Luo L, Lv X, Wang C, Wu X, Zhu L, Ou Q, Xiong H. Molecular characterization and biomarker identification in paediatric B-cell acute lymphoblastic leukaemia. J Cell Mol Med 2024; 28:e70126. [PMID: 39384181 PMCID: PMC11464031 DOI: 10.1111/jcmm.70126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 09/10/2024] [Accepted: 09/20/2024] [Indexed: 10/11/2024] Open
Abstract
B-cell acute lymphoblastic leukaemia (B-ALL) is the most prevalent hematologic malignancy in children and a leading cause of mortality. Managing B-ALL remains challenging due to its heterogeneity and relapse risk. This study aimed to delineate the molecular features of paediatric B-ALL and explore the clinical utility of circulating tumour DNA (ctDNA). We analysed 146 patients with paediatric B-ALL who received systemic chemotherapy. The mutational landscape was profiled in bone marrow (BM) and plasma samples using next-generation sequencing. Minimal residual disease (MRD) testing on day 19 of induction therapy evaluated treatment efficacy. RNA sequencing identified gene fusions in 61% of patients, including 37 novel fusions. Specifically, the KMT2A-TRIM29 novel fusion was validated in a boy who responded well to initial therapy but relapsed after 1 year. Elevated mutation counts and maximum variant allele frequency in baseline BM were associated with significantly poorer chemotherapy response (p = 0.0012 and 0.028, respectively). MRD-negative patients exhibited upregulation of immune-related pathways (p < 0.01) and increased CD8+ T cell infiltration (p = 0.047). Baseline plasma ctDNA exhibited high mutational concordance with the paired BM samples and was significantly associated with chemotherapy efficacy. These findings suggest that ctDNA and BM profiling offer promising prognostic insights for paediatric B-ALL management.
Collapse
Affiliation(s)
- Yu Du
- Department of HematologyWuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanHubeiChina
| | - Xiankai Zhang
- Precision Medical CenterWuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanHubeiChina
| | - Ming Sun
- Pediatric Hematological Tumor Disease LaboratoryWuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanHubeiChina
| | - Li Yang
- Pediatric Hematological Tumor Disease LaboratoryWuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanHubeiChina
| | - Fei Long
- Pediatric Hematological Tumor Disease LaboratoryWuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanHubeiChina
| | - Shanshan Qi
- Pediatric Hematological Tumor Disease LaboratoryWuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanHubeiChina
| | - Linlin Luo
- Department of HematologyWuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanHubeiChina
| | - Xiaoyan Lv
- Department of HematologyWuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanHubeiChina
| | | | - Xiaoying Wu
- Nanjing Geneseeq Technology IncNanjingJiangsuChina
| | - Liuqing Zhu
- Nanjing Geneseeq Technology IncNanjingJiangsuChina
| | - Qiuxiang Ou
- Nanjing Geneseeq Technology IncNanjingJiangsuChina
| | - Hao Xiong
- Department of HematologyWuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanHubeiChina
| |
Collapse
|
42
|
Bilen MA, Khilfeh I, Rossi C, Muser E, Morrison L, Hilts A, Diaz L, Lefebvre P, Pilon D, George DJ. Homologous Recombination Repair Testing Patterns and Outcomes in mCRPC by Alteration Status and Race. CLINICOECONOMICS AND OUTCOMES RESEARCH 2024; 16:657-674. [PMID: 39257456 PMCID: PMC11385689 DOI: 10.2147/ceor.s468680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 08/27/2024] [Indexed: 09/12/2024] Open
Abstract
Background Alterations in DNA damage repair genes in advanced prostate cancer (PC) may impact responses to therapy and clinical outcomes. This study described homologous recombination repair (HRR) testing patterns and clinical outcomes among patients with metastatic castration-resistant prostate cancer (mCRPC) by HRR alteration status and race in the United States (US). Methods Clinical data in the nationwide (US-based) Flatiron Health-Foundation Medicine, Inc. (FMI) Metastatic PC Clinico-Genomic Database were evaluated (01/01/2011-12/31/2022). Patients initiating first-line (1L) mCRPC therapy on or after mCRPC diagnosis were included. Testing patterns, time-to-next treatment, overall survival (OS), and time-to-prostate specific antigen response were described. Results Of the 1367 patients with mCRPC and at least one HRR panel test prior to or on the date of 1L mCRPC therapy initiation, 332 (24.3%) were HRR positive (White patients: n = 219 [66.0%]; Black patients: n = 37 [11.1%]) and 1035 (75.7%) were HRR negative (White patients: n = 702 [67.8%]; Black patients: n = 84 [8.1%]). The mean time between first positive test and 1L mCRPC therapy initiation date was 588 days (White patients: 589 days; Black patients: 639 days). Among HRR positive relative to negative patients, trends for faster progression (respective 12-month rate overall: 71.1% and 63.7%; White patients: 72.5% and 64.0%; Black patients: 65.4% and 56.4%), shorter OS (respective 24-month rate overall: 46.8% and 51.9%; White patients: 48.6% and 46.2%; Black patients: 52.8% and 54.1%), and decreased treatment response (respective 12-month rate overall: 24.3% and 37.9%; White patients: 24.5% and 35.2%; Black patients: 17.0% and 43.9%) were observed. Conclusion Patients with mCRPC positive for HRR alterations tended to exhibit poorer treatment responses and clinical outcomes than those with a negative status. These findings highlight the importance of timely genetic testing in mCRPC, particularly among Black patients, and the need for improved 1L targeted therapies to address the unmet need in HRR positive mCRPC.
Collapse
Affiliation(s)
- Mehmet Asim Bilen
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
| | | | | | - Erik Muser
- Janssen Scientific Affairs, LLC, Horsham, PA, USA
| | | | | | | | | | | | - Daniel J George
- Department of Medicine, Duke University Cancer Center, Durham, NC, USA
| |
Collapse
|
43
|
Attieh F, Boutros M, Kourie HR, Mahrous M. Turning the tide: pembrolizumab's triumph in adjuvant RCC therapy. Med Oncol 2024; 41:242. [PMID: 39237796 DOI: 10.1007/s12032-024-02486-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 08/22/2024] [Indexed: 09/07/2024]
Abstract
In recent years, kidney cancer has shown an increased worldwide incidence of more than 400 000 novel cases annually. Although more than half of patients are diagnosed at a localised stage, this disease presents a high-risk of relapse after surgery. Thus, there is a need for adjuvant therapy post-resection to reduce cancer recurrence and prolong disease-free and overall survival. Thorough investigation of adjuvant drugs for renal cell carcinoma (RCC) has shown little promise in the last fifty years, with no recorded overall survival benefits. This was the case until pembrolizumab, an immune checkpoint inhibitor, was introduced into the adjuvant RCC space through the KEYNOTE-564 trial. The adjuvant administration of this novel anti-PD-1 drug demonstrated a significant overall survival benefit which has led to an update in the current treatment guidelines of RCC. This substantial change in the standard of care also caused an investigation of possible treatment combinations and an adoption of innovative predictive biomarkers. In this review, we will present the evolution of past adjuvant ICI trials for the treatment of RCC, the implications of pembrolizumab's overall survival benefits and a discussion of future directions concerning new RCC drug trials and liquid biopsy-based biomarkers.
Collapse
Affiliation(s)
- Fouad Attieh
- Faculty of Medicine, Saint Joseph University of Beirut, Riad El Solh, 11-5076, Beirut, 11072180, Lebanon.
| | - Marc Boutros
- Faculty of Medicine, Saint Joseph University of Beirut, Riad El Solh, 11-5076, Beirut, 11072180, Lebanon
| | - Hampig Raphaël Kourie
- Department of Hematology-Oncology, Faculty of Medicine, Saint Joseph University of Beirut, Riad El Solh, 11-5076, Beirut, 11072180, Lebanon
| | - Mervat Mahrous
- Oncology Department, Prince Sultan Military Medical City, Makkah Al Mukarramah Rd, As Sulimaniyah, Riyadh, 12233, Kingdom of Saudi Arabia
- Oncology Department, Faculty of Medicine, Minia University, Minia, Egypt
| |
Collapse
|
44
|
Dickinson K, Sharma A, Agnihotram RKV, Altuntur S, Park M, Meterissian S, Burnier JV. Circulating Tumor DNA and Survival in Metastatic Breast Cancer: A Systematic Review and Meta-Analysis. JAMA Netw Open 2024; 7:e2431722. [PMID: 39235812 PMCID: PMC11378006 DOI: 10.1001/jamanetworkopen.2024.31722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/06/2024] Open
Abstract
Importance Metastatic breast cancer (MBC) poses a substantial clinical challenge despite advancements in diagnosis and treatment. While tissue biopsies offer a static snapshot of disease, liquid biopsy-through detection of circulating tumor DNA (ctDNA)-provides minimally invasive, real-time insight into tumor biology. Objective To determine the association between ctDNA and survival outcomes in patients with MBC. Data Sources An electronic search was performed in 5 databases (CINAHL, Cochrane Library, Embase, Medline, and Web of Science) and included all articles published from inception until October 23, 2023. Study Selection To be included in the meta-analysis, studies had to (1) include women diagnosed with MBC; (2) report baseline plasma ctDNA data; and (3) report overall survival, progression-free survival, or disease-free survival with associated hazards ratios. Data Extraction and Synthesis Titles and abstracts were screened independently by 2 authors. Data were pooled using a random-effects model. This study adhered to the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) reporting guideline, and quality was assessed using the Newcastle-Ottawa Scale. Main Outcomes and Measures The primary study outcome was the association between detection of specific genomic alterations in ctDNA with survival outcomes. Secondary objectives were associations of study methodology with survival. Results Of 3162 articles reviewed, 37 met the inclusion criteria and reported data from 4264 female patients aged 20 to 94 years. Aggregated analysis revealed a significant association between ctDNA detection and worse survival (hazard ratio, 1.40; 95% CI, 1.22-1.58). Subgroup analysis identified significant associations of TP53 and ESR1 alterations with worse survival (hazard ratios, 1.58 [95% CI, 1.34-1.81] and 1.28 [95% CI, 0.96-1.60], respectively), while PIK3CA alterations were not associated with survival outcomes. Stratifying by detection method, ctDNA detection through next-generation sequencing and digital polymerase chain reaction was associated with worse survival (hazard ratios, 1.48 [95% CI, 1.22-1.74] and 1.28 [95% CI, 1.05-1.50], respectively). Conclusions and Relevance In this systematic review and meta-analysis, detection of specific genomic alterations in ctDNA was associated with worse overall, progression-free, and disease-free survival, suggesting its potential as a prognostic biomarker in MBC. These results may help guide the design of future studies to determine the actionability of ctDNA findings.
Collapse
Affiliation(s)
- Kyle Dickinson
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Archi Sharma
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | | | - Selin Altuntur
- McConnell Resource Centre Medical Library, McGill University Health Centre, Montreal, Quebec, Canada
| | - Morag Park
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada
- Gerald Bronfman Department of Oncology, McGill University, Montreal, Quebec, Canada
| | - Sarkis Meterissian
- Gerald Bronfman Department of Oncology, McGill University, Montreal, Quebec, Canada
- Department of Surgery, McGill University Health Centre, Montreal, Quebec, Canada
| | - Julia V Burnier
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
- Gerald Bronfman Department of Oncology, McGill University, Montreal, Quebec, Canada
- Department of Pathology, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
45
|
Aran V, de Melo Junior JO, Pilotto Heming C, Zeitune DJ, Moura Neto V, Niemeyer Filho P. Unveiling the impact of corticosteroid therapy on liquid biopsy-detected cell-free DNA levels in meningioma and glioblastoma patients. THE JOURNAL OF LIQUID BIOPSY 2024; 5:100149. [PMID: 40027945 PMCID: PMC11863984 DOI: 10.1016/j.jlb.2024.100149] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 03/05/2025]
Abstract
The liquid biopsy era has brought several possibilities to improve precision in patient care. Among the different sources of analytes, the cfDNA has been explored as a possible disease indicator, especially in cancer. Intracranial tumors still represent a challenge for liquid biopsy due to the blood-brain barrier being able to restrain both the migrating tumor cells and the liberation of cfDNA into the blood circulation. The aim of this work was to compare the differences between the cfDNA concentration in the plasma from patients with central nervous system tumors, and for this we analyzed a cohort of 188 individuals with glioblastoma (N = 57), brain metastasis (N = 15), meningioma (N = 90) and schwannoma (N = 26). Plasma samples were obtained immediately before tumor excision, and the cfDNA was isolated from the samples and quantified. The results showed that cfDNA plasma levels vary according to the tumors analyzed, with glioblastoma and brain metastasis presenting higher median levels of cfDNA than meningiomas and schwannomas. In addition, corticosteroid treatment resulted in higher cfDNA levels in meningioma and glioblastoma patients and vasogenic brain edema resulted in higher cfDNA levels only in meningioma patients. We hypothesize that cfDNA evaluation might have clinical monitoring value and that other clinical variables, such as corticosteroid used, should be considered during the liquid biopsy clinical evaluation of intracranial tumors.
Collapse
Affiliation(s)
- Veronica Aran
- Instituto Estadual do Cérebro Paulo Niemeyer (IECPN), R. do Rezende, 156 – Centro, Rio de Janeiro, 20231-092, Brazil
| | - Jose Orlando de Melo Junior
- Instituto Estadual do Cérebro Paulo Niemeyer (IECPN), R. do Rezende, 156 – Centro, Rio de Janeiro, 20231-092, Brazil
| | - Carlos Pilotto Heming
- Instituto Estadual do Cérebro Paulo Niemeyer (IECPN), R. do Rezende, 156 – Centro, Rio de Janeiro, 20231-092, Brazil
| | - Daniel Jaime Zeitune
- Instituto Estadual do Cérebro Paulo Niemeyer (IECPN), R. do Rezende, 156 – Centro, Rio de Janeiro, 20231-092, Brazil
| | - Vivaldo Moura Neto
- Instituto Estadual do Cérebro Paulo Niemeyer (IECPN), R. do Rezende, 156 – Centro, Rio de Janeiro, 20231-092, Brazil
| | - Paulo Niemeyer Filho
- Instituto Estadual do Cérebro Paulo Niemeyer (IECPN), R. do Rezende, 156 – Centro, Rio de Janeiro, 20231-092, Brazil
| |
Collapse
|
46
|
Lee EH, Kwak SH, Kim KY, Kim CY, Lee SH, Heo SJ, Chang YS, Kim EY. Clinical utility of repeated rebiopsy for EGFR T790M mutation detection in non-small cell lung cancer. Front Oncol 2024; 14:1452947. [PMID: 39252953 PMCID: PMC11381297 DOI: 10.3389/fonc.2024.1452947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 08/05/2024] [Indexed: 09/11/2024] Open
Abstract
Purpose In cases where rebiopsy fails to find the epidermal growth factor receptor (EGFR) T790M mutation, the criteria for selecting patients for repeated rebiopsy remains unclear. This study aimed to assess the impact of repeated rebiopsy on T790M mutation detection in non-small cell lung cancer (NSCLC) patients. Methods Patients with advanced EGFR-mutated NSCLC between January 2018 and December 2021 at three-referral hospitals in South Korea underwent retrospective review. Of 682 patients who had rebiopsy after disease progression, T790M mutation status was assessed in plasma circulating tumor DNA (ctDNA) and/or tumor tissues. Results The overall T790M positivity rate increased from 40.8% after the first rebiopsy to 52.9% following multiple rebiopsies in the entire study population. Longer duration of initial EGFR TKI use (OR 1.792, ≥8 months vs. <8 months, p=0.004), better EGFR TKI responses (OR 1.611, complete or partial response vs. stable disease, p=0.006), presence of bone metastasis (OR 2.286, p<0.001) were correlated with higher T790M positivity. Longer EGFR TKI use and better responses increased T790M positivity in repeated tissue rebiopsy, while bone metastasis favored liquid rebiopsy. Additionally, T790M status has been shown to be positive over time through repeated rebiopsies ranging from several months to years, suggesting its dynamic nature. Conclusion In this study, among patients who initially tested negative for T790M in rebiopsy, repeated rebiopsies uncovered an additional 23.5% T790M positivity. Particularly, it is suggested that repeated rebiopsies may be valuable for patients with prolonged EGFR TKI usage, better responses to treatment, and bone metastasis.
Collapse
Affiliation(s)
- Eun Hye Lee
- Division of Pulmonology, Allergy and Critical Care Medicine, Department of Internal Medicine, Yongin Severance Hospital, Yonsei University College of Medicine, Gyeonggi-do, Republic of Korea
| | - Se Hyun Kwak
- Division of Pulmonology, Allergy and Critical Care Medicine, Department of Internal Medicine, Yongin Severance Hospital, Yonsei University College of Medicine, Gyeonggi-do, Republic of Korea
| | - Kyeong Yeon Kim
- Division of Pulmonology, Allergy and Critical Care Medicine, Department of Internal Medicine, Yongin Severance Hospital, Yonsei University College of Medicine, Gyeonggi-do, Republic of Korea
| | - Chi Young Kim
- Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sang Hoon Lee
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Seok-Jae Heo
- Division of Biostatistics, Department of Biomedical Systems Informatics, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yoon Soo Chang
- Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Eun Young Kim
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
47
|
Piana D, Iavarone F, De Paolis E, Daniele G, Parisella F, Minucci A, Greco V, Urbani A. Phenotyping Tumor Heterogeneity through Proteogenomics: Study Models and Challenges. Int J Mol Sci 2024; 25:8830. [PMID: 39201516 PMCID: PMC11354793 DOI: 10.3390/ijms25168830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 07/31/2024] [Accepted: 08/06/2024] [Indexed: 09/02/2024] Open
Abstract
Tumor heterogeneity refers to the diversity observed among tumor cells: both between different tumors (inter-tumor heterogeneity) and within a single tumor (intra-tumor heterogeneity). These cells can display distinct morphological and phenotypic characteristics, including variations in cellular morphology, metastatic potential and variability treatment responses among patients. Therefore, a comprehensive understanding of such heterogeneity is necessary for deciphering tumor-specific mechanisms that may be diagnostically and therapeutically valuable. Innovative and multidisciplinary approaches are needed to understand this complex feature. In this context, proteogenomics has been emerging as a significant resource for integrating omics fields such as genomics and proteomics. By combining data obtained from both Next-Generation Sequencing (NGS) technologies and mass spectrometry (MS) analyses, proteogenomics aims to provide a comprehensive view of tumor heterogeneity. This approach reveals molecular alterations and phenotypic features related to tumor subtypes, potentially identifying therapeutic biomarkers. Many achievements have been made; however, despite continuous advances in proteogenomics-based methodologies, several challenges remain: in particular the limitations in sensitivity and specificity and the lack of optimal study models. This review highlights the impact of proteogenomics on characterizing tumor phenotypes, focusing on the critical challenges and current limitations of its use in different clinical and preclinical models for tumor phenotypic characterization.
Collapse
Affiliation(s)
- Diletta Piana
- Department of Basic Biotechnological Sciences, Intensivological and Perioperative Clinics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (D.P.); (F.I.); (F.P.)
- Departmen Unity of Chemistry, Biochemistry and Clinical Molecular Biology, Department of Diagnostic and Laboratory Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (E.D.P.); (A.M.)
| | - Federica Iavarone
- Department of Basic Biotechnological Sciences, Intensivological and Perioperative Clinics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (D.P.); (F.I.); (F.P.)
- Departmen Unity of Chemistry, Biochemistry and Clinical Molecular Biology, Department of Diagnostic and Laboratory Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (E.D.P.); (A.M.)
| | - Elisa De Paolis
- Departmen Unity of Chemistry, Biochemistry and Clinical Molecular Biology, Department of Diagnostic and Laboratory Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (E.D.P.); (A.M.)
- Departmental Unit of Molecular and Genomic Diagnostics, Genomics Core Facility, Gemelli Science and Technology Park (G-STeP), Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Gennaro Daniele
- Phase 1 Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy;
| | - Federico Parisella
- Department of Basic Biotechnological Sciences, Intensivological and Perioperative Clinics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (D.P.); (F.I.); (F.P.)
| | - Angelo Minucci
- Departmen Unity of Chemistry, Biochemistry and Clinical Molecular Biology, Department of Diagnostic and Laboratory Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (E.D.P.); (A.M.)
- Departmental Unit of Molecular and Genomic Diagnostics, Genomics Core Facility, Gemelli Science and Technology Park (G-STeP), Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Viviana Greco
- Department of Basic Biotechnological Sciences, Intensivological and Perioperative Clinics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (D.P.); (F.I.); (F.P.)
- Departmen Unity of Chemistry, Biochemistry and Clinical Molecular Biology, Department of Diagnostic and Laboratory Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (E.D.P.); (A.M.)
| | - Andrea Urbani
- Department of Basic Biotechnological Sciences, Intensivological and Perioperative Clinics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (D.P.); (F.I.); (F.P.)
- Departmen Unity of Chemistry, Biochemistry and Clinical Molecular Biology, Department of Diagnostic and Laboratory Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (E.D.P.); (A.M.)
| |
Collapse
|
48
|
Linscott JA, Miyagi H, Murthy PB, Yao S, Grass GD, Vosoughi A, Xu H, Wang X, Yu X, Yu A, Zemp L, Gilbert SM, Poch MA, Sexton WJ, Spiess PE, Li R. From Detection to Cure - Emerging Roles for Urinary Tumor DNA (utDNA) in Bladder Cancer. Curr Oncol Rep 2024; 26:945-958. [PMID: 38837106 DOI: 10.1007/s11912-024-01555-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/20/2024] [Indexed: 06/06/2024]
Abstract
PURPOSE OF REVIEW This review sought to define the emerging roles of urinary tumor DNA (utDNA) for diagnosis, monitoring, and treatment of bladder cancer. Building from early landmark studies the focus is on recent studies, highlighting how utDNA could aid personalized care. RECENT FINDINGS Recent research underscores the potential for utDNA to be the premiere biomarker in bladder cancer due to the constant interface between urine and tumor. Many studies find utDNA to be more informative than other biomarkers in bladder cancer, especially in early stages of disease. Points of emphasis include superior sensitivity over traditional urine cytology, broad genomic and epigenetic insights, and the potential for non-invasive, real-time analysis of tumor biology. utDNA shows promise for improving all phases of bladder cancer care, paving the way for personalized treatment strategies. Building from current research, future comprehensive clinical trials will validate utDNA's clinical utility, potentially revolutionizing bladder cancer management.
Collapse
Affiliation(s)
- Joshua A Linscott
- Department of Genitourinary Oncology, Moffitt Cancer Center and Research Institute, Tampa, FL, USA.
| | - Hiroko Miyagi
- Department of Genitourinary Oncology, Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Prithvi B Murthy
- Department of Genitourinary Oncology, Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Sijie Yao
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - G Daniel Grass
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Aram Vosoughi
- Department of Pathology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Hongzhi Xu
- Department of Pathology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Xuefeng Wang
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Xiaoqing Yu
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Alice Yu
- Department of Genitourinary Oncology, Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Logan Zemp
- Department of Genitourinary Oncology, Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Scott M Gilbert
- Department of Genitourinary Oncology, Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Michael A Poch
- Department of Genitourinary Oncology, Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Wade J Sexton
- Department of Genitourinary Oncology, Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Philippe E Spiess
- Department of Genitourinary Oncology, Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Roger Li
- Department of Genitourinary Oncology, Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| |
Collapse
|
49
|
Puvvula PK, Johnson A, Bernal-Mizrachi L. Unveiling retrotransposon-derived DNA zip code for myeloma cell internalization. Oncoscience 2024; 11:58-64. [PMID: 39015604 PMCID: PMC11251427 DOI: 10.18632/oncoscience.606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Indexed: 07/18/2024] Open
Affiliation(s)
| | - Anthony Johnson
- Kodikaz Therapeutic Solutions, (INC), New York, NY 10014, USA
| | - Leon Bernal-Mizrachi
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
50
|
Seo SY, Youn SH, Bae JH, Lee SH, Lee SY. Detection and Characterization of Methylated Circulating Tumor DNA in Gastric Cancer. Int J Mol Sci 2024; 25:7377. [PMID: 39000483 PMCID: PMC11242052 DOI: 10.3390/ijms25137377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 07/16/2024] Open
Abstract
Gastric cancer is the fifth most common disease in the world and the fourth most common cause of death. It is diagnosed through esophagogastroduodenoscopy with biopsy; however, there are limitations in finding lesions in the early stages. Recently, research has been actively conducted to use liquid biopsy to diagnose various cancers, including gastric cancer. Various substances derived from cancer are reflected in the blood. By analyzing these substances, it was expected that not only the presence or absence of cancer but also the type of cancer can be diagnosed. However, the amount of these substances is extremely small, and even these have various variables depending on the characteristics of the individual or the characteristics of the cancer. To overcome these, we collected methylated DNA fragments using MeDIP and compared them with normal plasma to characterize gastric cancer tissue or patients' plasma. We attempted to diagnose gastric cancer using the characteristics of cancer reflected in the blood through the cancer tissue and patients' plasma. As a result, we confirmed that the consistency of common methylated fragments between tissue and plasma was approximately 41.2% and we found the possibility of diagnosing and characterizing cancer using the characteristics of the fragments through SFR and 5'end-motif analysis.
Collapse
Affiliation(s)
- Seung Young Seo
- Department of Internal Medicine, Jeonbuk National University Medical School, Jeonju-si 54907, Republic of Korea
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute, Jeonbuk National University Hospital, 634-18 Keuman-dong, Dukjin-gu, Jeonju-si 54907, Republic of Korea
| | - Sang Hee Youn
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute, Jeonbuk National University Hospital, 634-18 Keuman-dong, Dukjin-gu, Jeonju-si 54907, Republic of Korea
- Department of Radiation Oncology, Jeonbuk National University Medical School, Jeonju-si 54907, Republic of Korea
| | - Jin-Han Bae
- Research Center, Cancer Breaker, Yongin-si 16942, Republic of Korea
- Cancer Genomic Research Institute, Clinomics, Chungju-si 28161, Republic of Korea
| | - Sung-Hun Lee
- Cancer Genomic Research Institute, Clinomics, Chungju-si 28161, Republic of Korea
| | - Sun Young Lee
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute, Jeonbuk National University Hospital, 634-18 Keuman-dong, Dukjin-gu, Jeonju-si 54907, Republic of Korea
- Department of Radiation Oncology, Jeonbuk National University Medical School, Jeonju-si 54907, Republic of Korea
| |
Collapse
|