1
|
Zhu S, Kim B, Kim OS, Ma G, Kim S, Kim Y, Kang J, Wang W, Kim O. Epigallocatechin gallate with nobiletin as a novel combination therapy to induce autophagy and apoptosis in oral cancer. Toxicol Appl Pharmacol 2025; 500:117380. [PMID: 40348029 DOI: 10.1016/j.taap.2025.117380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 05/01/2025] [Accepted: 05/05/2025] [Indexed: 05/14/2025]
Abstract
Oral cancer (OC) represents a serious health and economic problem and the global prevalence of OC is still increasing. Epigallocatechin gallate (EGCG) is the most abundant polyphenol in green tea, and nobiletin (NOB) is a bioactive polyethoxylated flavone isolated from the peels of citrus fruits. Both have been proven to exert an anti-cancer effect in OC. Integrated stress response (ISR) is a key translation signaling network activated by oncogenic stress, modulating ISR activity is an innovative drug target in cancer therapy. Herein, we investigated combined EGCG and NOB in a ratio at 125 μM:25 μM additively decreased cell viability of OC cells most. Combination treatment with 125 μM EGCG and 25 μM NOB increased LC3 expression and autophagosome formation, and induced autophagic cell death. In addition, this combination increased cleaved caspase-3, cleaved caspase-9, and cleaved PARP levels, induced apoptotic cell death. Furthermore, we explored the effect of the EGCG and NOB combination in regulating ISR activity. Our results showed that this combination inhibited the GCN2/eIF2α axis and activated the PERK/ATF4/CHOP pathway. Results further demonstrated that silencing either GCN2 or PERK reversed EGCG+NOB-induced cell proliferation inhibition, autophagy and apoptosis. In this combined system, GCN2 and PERK are targets of EGCG-induced autophagy and NOB-induced apoptosis, EGCG and NOB produce additive effects to induce OC cell death. In summary, our study identified that EGCG combined with NOB, as a potent ISR mediator, cooperates to induce autophagy and apoptosis, further supporting the combination of EGCG and NOB as a promising strategy for OC treatment.
Collapse
Affiliation(s)
- Siyu Zhu
- Department of Oral Pathology, School of Dentistry, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Byunggook Kim
- Department of Oral Medicine, School of Dentistry, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Ok-Su Kim
- Department of Periodontology, School of Dentistry, Chonnam National University, Gwangju 61186, Republic of Korea; Hard-Tissue Biointerface Research Center, School of Dentistry, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Guowu Ma
- Department of Oral and Maxillofacial Surgery, School of Stomatology, Dalian Medical University, Dalian 116044, China
| | - Sunhun Kim
- Hard-Tissue Biointerface Research Center, School of Dentistry, Chonnam National University, Gwangju 61186, Republic of Korea; Department of Oral Anatomy, Dental Science Research Institute, School of Dentistry, Chonnam National University, Gwangju 500-757, Republic of Korea
| | - Young Kim
- Department of Oral Pathology, School of Dentistry, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Jaeseok Kang
- Department of Oral Pathology, School of Dentistry, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Weiyi Wang
- Department of Oral Pathology, School of Dentistry, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Okjoon Kim
- Department of Oral Pathology, School of Dentistry, Chonnam National University, Gwangju 61186, Republic of Korea.
| |
Collapse
|
2
|
Li J, Guo Y, Zhang W, Xia M, Liu G, Sun Y, Liu C, Zhong J. Cholesterol metabolism: A strategy for overcoming drug resistance in tumors. Biochem Pharmacol 2025; 238:116974. [PMID: 40348096 DOI: 10.1016/j.bcp.2025.116974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2025] [Revised: 04/17/2025] [Accepted: 05/05/2025] [Indexed: 05/14/2025]
Abstract
Despite significant advancements in targeted tumor therapies, the emergence of drug resistance remains a complex challenge. Cholesterol accumulation within tumor cells plays a crucial role in mediating drug resistance through various mechanisms, including altered membrane dynamics, enhanced drug efflux, and activation of survival signaling pathways. Targeting cholesterol metabolism presents an innovative strategy to enhance therapeutic sensitivity, particularly in breast cancer. Consequently, ongoing preclinical studies and clinical trials involving cholesterol-lowering agents indicate a promising direction for improving treatment outcomes in tumors. The combination of these agents with existing therapeutic regimens may lead to enhanced efficacy, highlighting the necessity for continued research in this vital area. This review examines the impact of cholesterol metabolism on drug resistance in tumors, particularly solid tumors, identifies therapeutic targets in this metabolic pathway (with a special focus on breast cancer), and discusses recent advances in cholesterol-lowering drugs in preclinical, as well as those that have entered clinical trials.
Collapse
Affiliation(s)
- Jiahui Li
- Clinical Medical Research Center, The First Affiliated Hospital, Hengyang Medical School, University of South China, 421001 Hengyang, Hunan, China; Institute of Cancer Research, The First Affiliated Hospital, Hengyang Medical School, University of South China, 421001 Hengyang, Hunan, China
| | - Yinping Guo
- Clinical Medical Research Center, The First Affiliated Hospital, Hengyang Medical School, University of South China, 421001 Hengyang, Hunan, China; Institute of Cancer Research, The First Affiliated Hospital, Hengyang Medical School, University of South China, 421001 Hengyang, Hunan, China
| | - Wenjie Zhang
- Clinical Medical Research Center, The First Affiliated Hospital, Hengyang Medical School, University of South China, 421001 Hengyang, Hunan, China; Institute of Cancer Research, The First Affiliated Hospital, Hengyang Medical School, University of South China, 421001 Hengyang, Hunan, China
| | - Min Xia
- Clinical Medical Research Center, The First Affiliated Hospital, Hengyang Medical School, University of South China, 421001 Hengyang, Hunan, China; Institute of Cancer Research, The First Affiliated Hospital, Hengyang Medical School, University of South China, 421001 Hengyang, Hunan, China
| | - Gaohua Liu
- Clinical Medical Research Center, The First Affiliated Hospital, Hengyang Medical School, University of South China, 421001 Hengyang, Hunan, China; Institute of Cancer Research, The First Affiliated Hospital, Hengyang Medical School, University of South China, 421001 Hengyang, Hunan, China
| | - Yan Sun
- Clinical Medical Research Center, The First Affiliated Hospital, Hengyang Medical School, University of South China, 421001 Hengyang, Hunan, China; Institute of Cancer Research, The First Affiliated Hospital, Hengyang Medical School, University of South China, 421001 Hengyang, Hunan, China
| | - Chang Liu
- Department of Endocrinology and Metabolism, The First People's Hospital of Chenzhou, The First Affiliated Clinical College, University of Xiangnan, 423000 Chenzhou, Hunan, China.
| | - Jing Zhong
- Clinical Medical Research Center, The First Affiliated Hospital, Hengyang Medical School, University of South China, 421001 Hengyang, Hunan, China; Institute of Cancer Research, The First Affiliated Hospital, Hengyang Medical School, University of South China, 421001 Hengyang, Hunan, China.
| |
Collapse
|
3
|
Sigamani S, Govindasamy B, Panneerselvam B, Kannupaiyan J, Magudeeswaran S, Ramamurthy D, Natarajan H. Exploring Antibacterial, Antioxidant, Cytotoxic Potential of Oscillatoria sp.-Derived Metabolites and Their Molecular Docking with Estrogen Receptor-α. Appl Biochem Biotechnol 2025:10.1007/s12010-025-05246-9. [PMID: 40327310 DOI: 10.1007/s12010-025-05246-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/21/2025] [Indexed: 05/07/2025]
Abstract
Anthropogenic activities have led to the accumulation of carcinogenic toxicants in the food chain, posing severe risks to both human and animal health. Bioactive molecules derived from terrestrial and aquatic systems offer promising solutions to various health challenges. Presently, the cyanobacterial metabolites from ethyl acetate extract of Oscillatoria sp. (EAEOs) were evaluated for its antiproliferative, antioxidant, and antimicrobial effects. The EAEOs resulted significant antibacterial zones (12 ± 2.5, 17 ± 1.7, 14 ± 0.3, and 14 ± 2.6 mm) on Staphylococcus aureus, Escherichia coli, Bacillus subtilis, and Bacillus cereus, respectively. EAEOs also exhibited free radical scavenging activity with IC50 values of 69.68 µg/mL (DPPH) and 144.4 µg/mL (hydroxyl radicals). Followed by, the EAEOs also exhibited significant inhibition of MCF-7 breast cancer cells (IC50: 54.25 µg/mL) compared to HepG2 and A549 cells (72.6 and 85.6 µg/mL), respectively The EAEOs induced apoptosis and chromosomal damage on targeted cancer cells, and their DNA fragmentation were evidenced. Totally, 17 compounds from EAEOs were identified from GC-MS, in which 2-cyclopenten-1-one, 2-hydroxy-3-methyl (23); piperidine, 1, 4-dimethyl (13); 17-pentatriacontene (7.88); and 3-octadecene (7.09%) are major ones. Molecular docking confirmed that acetamide, n-(2-benzoyl-4chlorophenyl)-2-(2-methylpiperidin-1-yl)- (compound-3) showed strong binding affinity (10.13 kcal/mol) with ERα. Overall, the biological potential of Oscillatoria metabolites were found to be significant. Hence, further screening of preponderant compounds and studying the mechanism are warranted to fulfill their applications in food, pharmaceuticals, and other industries.
Collapse
Affiliation(s)
- Santhosh Sigamani
- Center for Pharmaceutical Biotechnology, School of Medicine and Pharmacy, Duy Tan University, Da Nang, 550000, Vietnam
| | - Balasubramani Govindasamy
- Department of Product Development, Institute of Biotechnology, SIMATS Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, 602105, Tamil Nadu, India.
| | | | - Jothimani Kannupaiyan
- National Research and Innovation Agency (BRIN), Research Centre for Genetic Engineering, Research Organization for Life Sciences and Environment, KST Soekarno, Jl Raya Bogor Km. 46, Cibinong, 16911, Indonesia
| | - Sivanandam Magudeeswaran
- Department of Physics, Centre for Research and Development, KPR Institute of Engineering and Technology, Arasur 641 407, Coimbatore, Tamil Nadu, India
| | - Dhandapani Ramamurthy
- Department of Microbiology, School of Biosciences, Periyar University, Tamil Nadu, Salem, 636011, India
| | - Hemalatha Natarajan
- Department of Microbiology, School of Biosciences, Periyar University, Tamil Nadu, Salem, 636011, India.
| |
Collapse
|
4
|
Acar Halıcı C, Göker H, Kütük Ö, Çelik İ, Altuntaş TG. Design, synthesis, and biological evaluation of novel amidoxime or amidine analogues of some 4-anilino-6,7-dimethoxyquinazolines with a potent EGFR inhibitory effect. Bioorg Chem 2025; 158:108345. [PMID: 40073592 DOI: 10.1016/j.bioorg.2025.108345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 02/27/2025] [Accepted: 03/03/2025] [Indexed: 03/14/2025]
Abstract
A series of 6,7-dimethoxy-4-anilinoquinazoline derivatives, which have amidine (4a-4d, 5a-5c, 6a-6d) and amidoxime (4e, 5d, 6e) moieties, were synthesized and evaluated their anticancer activity on various cancerous cell lines (H1975, HCC827, and H23). Among the synthesized compounds, 4c was found to be the most potent inhibitor of EGFR, comparable to erlotinib, with higher than 10 μM EC50 values for H1975 and H23 and 0.16 μM EC50 value for HCC827 cells. 4c activated mitochondrial apoptosis signaling and suppresses EGFR downstream signaling, such as ERK1/2 and PI3K/Akt pathways in HCC827 NSCLC cells (EGFR Del19) as erlotinib. Molecular docking and molecular dynamics simulations studies were performed to evaluate the interaction and binding energies of all synthesized compounds against EGFR wild type, EGFR T790M/L858R, EGFR L858R, and EGFR exon-19 deletion mutant (del-747-749). 4c showed a similar binding profile with erlotinib as stable binding interaction values. Also, 4c formed additional hydrogen bonds via the amidine group in its structure, potentially increasing its affinity and stability within the binding pocket. Hence, 4c was selected as a lead compound for further pharmacomodulation.
Collapse
Affiliation(s)
- Cemre Acar Halıcı
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ankara University, 06100 Ankara, Türkiye; Graduate School of Health Sciences, Ankara University, Dışkapı, Ankara, Türkiye
| | - Hakan Göker
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ankara University, 06100 Ankara, Türkiye
| | - Özgür Kütük
- Faculty of Engineering and Natural Sciences, Molecular Biology, Genetics and Bioengineering Program, Sabanci University, 34956 Tuzla, Istanbul, Türkiye
| | - İsmail Çelik
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Erciyes University, 38280 Kayseri, Türkiye
| | - Tunca Gül Altuntaş
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ankara University, 06100 Ankara, Türkiye.
| |
Collapse
|
5
|
Huang D, Cai H, Huang H. Serine metabolism in tumor progression and immunotherapy. Discov Oncol 2025; 16:628. [PMID: 40295433 PMCID: PMC12037972 DOI: 10.1007/s12672-025-02358-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 04/09/2025] [Indexed: 04/30/2025] Open
Abstract
Serine plays a vital role in various metabolic processes including the synthesis of proteins and other amino acids, which are essential for the cell proliferation and growth. Cancer cells either absorb exogenous serine or produce it through the serine synthesis pathway, enabling the generation of intracellular glycine and one-carbon units, which are crucial for nucleotide biosynthesis. This metabolic process, referred to as serine-glycine-one-carbon (SGOC) metabolism, is essential for tumorigenesis and exhibits considerable complexity and clinical significance. Enzymes involved in the SGOC pathway are linked to tumor growth, metastasis, and resistance to therapies. The SGOC pathway is a vital metabolic network that facilitates cell survival and proliferation, especially in aggressive cancers. Understanding how this network is regulated is crucial for tackling tumor heterogeneity and recurrence. This review emphasizes recent advancements in understanding the roles and effects of the SGOC metabolic pathway in the context of cancer progression. Additionally, it outlines the complex influences of the SGOC metabolic pathway on the tumor microenvironment (TME), offering potential strategies to enhance cancer immunotherapy.
Collapse
Affiliation(s)
- Dong Huang
- Oncology Hematology Department, Fengdu General Hospital, Fengdu County, Chongqing, 408200, China
| | - Hui Cai
- Oncology Hematology Department, Fengdu General Hospital, Fengdu County, Chongqing, 408200, China
| | - HaiYu Huang
- Oncology Hematology Department, Fengdu General Hospital, Fengdu County, Chongqing, 408200, China.
| |
Collapse
|
6
|
Kumar KSP, Jyothi MN, Prashant A. CHD1 dysregulation in cancer: bridging chromatin instability, therapy resistance, and immune evasion. Mol Biol Rep 2025; 52:426. [PMID: 40278910 DOI: 10.1007/s11033-025-10536-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Accepted: 04/22/2025] [Indexed: 04/26/2025]
Abstract
Chromodomain-Helicase-DNA-binding protein 1 (CHD1) is a central regulator of chromatin dynamics, profoundly influencing gene expression, DNA repair, and genomic stability. This review critically explores CHD1's role in cancer biology, emphasizing its complex, context-dependent functions. In prostate cancer, CHD1 acts as both a tumour suppressor and a facilitator of neuroendocrine differentiation, with its loss linked to aggressive phenotypes, resistance to androgen receptor therapies, and synthetic lethality with PTEN loss. Beyond prostate cancer, CHD1 is implicated in breast, ovarian, and hematological cancers, where it modulates chromatin accessibility, transcription regulation, and therapy resistance. Despite its promise as a biomarker and therapeutic target, CHD1 presents challenges due to its dual roles and cancer-specific effects. The review also highlights critical gaps, including the need for high-resolution studies on CHD1's interactions with immune pathways, synthetic lethality mechanisms, and chromatin remodelling in treatment resistance. Leveraging CHD1's molecular complexities could show the way for innovative diagnostic and therapeutic strategies in cancer, but its role in non-prostate cancers remains underexplored, warranting further investigation.
Collapse
Affiliation(s)
- K S Praveen Kumar
- Department of Medical Genetics, JSS Medical College and Hospital, JSS-AHER, 570015, Mysuru, India, Karnataka.
| | - M N Jyothi
- Department of Medical Genetics, JSS Medical College and Hospital, JSS-AHER, 570015, Mysuru, India, Karnataka
| | - Akila Prashant
- Department of Biochemistry, JSS Medical College and Hospital, JSS-AHER, Karnataka, 570015, Mysuru, India
| |
Collapse
|
7
|
Lan JX, Huang LJ, Kang SS, Hao-Huang, Liu SL, Dai W, Xu XL, Wang JY, Shu GZ, Hou W. Design, synthesis, biological evaluation, and mechanism of action of new pyrazines as anticancer agents in vitro and in vivo. Bioorg Med Chem 2025; 121:118108. [PMID: 39955800 DOI: 10.1016/j.bmc.2025.118108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 02/02/2025] [Accepted: 02/10/2025] [Indexed: 02/18/2025]
Abstract
Cancer is the second leading cause of mortality worldwide. The development of innovative antitumor pharmaceuticals is urgently needed to alter this circumstance. N-heterocycles, pyrazines for example are prevalent pharmacophores in the architecture of anticancer medicines. This research involved the design and synthesis of seventy-seven new pyrazine derivatives, followed by an evaluation of their anticancer activity in vitro and in vivo. Several new pyrazines exhibiting remarkable antiproliferative activity and selectivity were identified. The links between structure and function were analyzed, and the mechanisms of action were examined. Our mechanistic investigations indicated that these chemicals triggered mitochondria-associated apoptosis in cancer cells. Moreover, they suppressed the phosphorylation of STAT3, concomitant with the down-regulation of BcL-2, BcL-XL, c-Myc, XIAP, GLI1, TAZ, MCL1, JAK1, JAK2 and up-regulation of Bax, p21. Furthermore, the lead compounds B-11 and C-27 demonstrated significant anticancer activity in vivo in the SKOV3 xenograft nude mouse model. Our research establishes a basis for the identification of pyrazines as JAK/STAT3 inhibition based anticancer lead compounds.
Collapse
Affiliation(s)
- Jin-Xia Lan
- Jiangxi Province Key Laboratory of Pharmacology of Traditional Chinese Medicine, National Engineering Research Center for Modernization of Traditional Chinese Medicine-Hakka Medical Resources Branch, School of Pharmacy, Gannan Medical University, Ganzhou 341000 PR China; School of Public Health and Health Management, Gannan Medical University, Ganzhou 341000 PR China
| | - Le-Jun Huang
- School of Rehabilitation, Gannan Medical University, Ganzhou 341000 PR China
| | - Si-Shuang Kang
- Jiangxi Province Key Laboratory of Pharmacology of Traditional Chinese Medicine, National Engineering Research Center for Modernization of Traditional Chinese Medicine-Hakka Medical Resources Branch, School of Pharmacy, Gannan Medical University, Ganzhou 341000 PR China
| | - Hao-Huang
- Jiangxi Province Key Laboratory of Pharmacology of Traditional Chinese Medicine, National Engineering Research Center for Modernization of Traditional Chinese Medicine-Hakka Medical Resources Branch, School of Pharmacy, Gannan Medical University, Ganzhou 341000 PR China
| | - Sheng-Lan Liu
- Jiangxi Province Key Laboratory of Pharmacology of Traditional Chinese Medicine, National Engineering Research Center for Modernization of Traditional Chinese Medicine-Hakka Medical Resources Branch, School of Pharmacy, Gannan Medical University, Ganzhou 341000 PR China
| | - Wei Dai
- Jiangxi Province Key Laboratory of Pharmacology of Traditional Chinese Medicine, National Engineering Research Center for Modernization of Traditional Chinese Medicine-Hakka Medical Resources Branch, School of Pharmacy, Gannan Medical University, Ganzhou 341000 PR China
| | - Xin-Liang Xu
- Jiangxi Province Key Laboratory of Pharmacology of Traditional Chinese Medicine, National Engineering Research Center for Modernization of Traditional Chinese Medicine-Hakka Medical Resources Branch, School of Pharmacy, Gannan Medical University, Ganzhou 341000 PR China
| | - Jin-Yang Wang
- Jiangxi Province Key Laboratory of Pharmacology of Traditional Chinese Medicine, National Engineering Research Center for Modernization of Traditional Chinese Medicine-Hakka Medical Resources Branch, School of Pharmacy, Gannan Medical University, Ganzhou 341000 PR China
| | - Guang-Zhao Shu
- Jiangxi Province Key Laboratory of Pharmacology of Traditional Chinese Medicine, National Engineering Research Center for Modernization of Traditional Chinese Medicine-Hakka Medical Resources Branch, School of Pharmacy, Gannan Medical University, Ganzhou 341000 PR China
| | - Wen Hou
- Jiangxi Province Key Laboratory of Pharmacology of Traditional Chinese Medicine, National Engineering Research Center for Modernization of Traditional Chinese Medicine-Hakka Medical Resources Branch, School of Pharmacy, Gannan Medical University, Ganzhou 341000 PR China.
| |
Collapse
|
8
|
Li Y, Yi Z, Li X, Wang R, Zhao M, Mi L, Zhang W, Guo R, Yan S, Song J. Research Progress of GPR137 in Malignant Tumors: A Review. Onco Targets Ther 2025; 18:545-558. [PMID: 40255680 PMCID: PMC12009054 DOI: 10.2147/ott.s511943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 04/04/2025] [Indexed: 04/22/2025] Open
Abstract
Receptors coupled with G proteins (GPCRs) are expressed in large numbers in multiple systems, such as endocrine, cardiovascular, digestive, immune, and reproductive systems. As an important signal transduction mediator, in recent years, the research on GPCRs has become more and more in-depth. Many articles have verified that in the gastrointestinal, reproductive, and urinary systems, GPCRs are contributed to the development and occurrence of cancerous tumors and have been associated with the infiltration of malignant tumors and metastasis. Currently, in clinical practice, GPCRs become the target of action for about 30% of drugs. However, it should be noted that there are still over 100 GPCRs collectively referred to as orphan GPCRs (OGPCRs) due to the lack of corresponding ligands. Despite the lack of known ligands, research in animals and experiments has proved that numerous OGPCRs regulate crucial physiological functions and are intriguing and undeveloped targets for therapeutics. GPR137 is a member of OGPCRS, which promotes carcinogenesis and progression of cancers, and its expression is elevated in various malignant tumor tissues. Additionally, GPR137 has been shown to play a role in promoting tumorigenesis and metastasis in colorectal, gastric, hepatocellular, ovarian and prostate cancers. Knockdown of the GPR137 leads to cell cycle arrest within cancer cells, effectively inhibiting their proliferation and colony-forming ability while promoting apoptosis. This highlights its potential therapeutic significance as a target for numerous cancers.
Collapse
Affiliation(s)
- Yangyang Li
- Department of Cardiothoracic Surgery, Affiliated Hospital 6 of Nantong University, Yancheng Third People’s Hospital, Yancheng, 224000, People’s Republic of China
| | - ZhongQuan Yi
- Department of Central Laboratory, Affiliated Hospital 6 of Nantong University, Yancheng Third People’s Hospital, Yancheng, 224000, People’s Republic of China
| | - Xia Li
- Department of General Medicine, Affiliated Hospital 6 of Nantong University, Yancheng Third People’s Hospital, Yancheng, 224000, People’s Republic of China
| | - Rui Wang
- Department of Cardiothoracic Surgery, Affiliated Hospital 6 of Nantong University, Yancheng Third People’s Hospital, Yancheng, 224000, People’s Republic of China
| | - Mengjie Zhao
- Department of Cardiothoracic Surgery, Affiliated Hospital 6 of Nantong University, Yancheng Third People’s Hospital, Yancheng, 224000, People’s Republic of China
| | - Lida Mi
- Department of Cardiothoracic Surgery, Affiliated Hospital 6 of Nantong University, Yancheng Third People’s Hospital, Yancheng, 224000, People’s Republic of China
| | - Weisong Zhang
- Department of Cardiothoracic Surgery, Affiliated Hospital 6 of Nantong University, Yancheng Third People’s Hospital, Yancheng, 224000, People’s Republic of China
| | - Rongqi Guo
- Department of Cardiothoracic Surgery, Affiliated Hospital 6 of Nantong University, Yancheng Third People’s Hospital, Yancheng, 224000, People’s Republic of China
| | - Song Yan
- Department of Thoracic Surgery, Sheyang County People’s Hospital, Yancheng, Jiangsu, People’s Republic of China
| | - JianXiang Song
- Department of Cardiothoracic Surgery, Affiliated Hospital 6 of Nantong University, Yancheng Third People’s Hospital, Yancheng, 224000, People’s Republic of China
| |
Collapse
|
9
|
Chen Z, Li W, Zhao Y, Liu D, Han J, Cai E. The Mechanism of a Novel Mitochondrial-Targeted Icaritin Derivative in Regulating Apoptosis of BEL-7402 Cells Based on the SIRT3 and CypD-Mediated ROS/p38 MAPK Signaling Pathway. Molecules 2025; 30:1667. [PMID: 40333582 PMCID: PMC12029982 DOI: 10.3390/molecules30081667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2025] [Revised: 04/05/2025] [Accepted: 04/05/2025] [Indexed: 05/09/2025] Open
Abstract
Tumorigenesis and progression are closely associated with apoptosis and primarily regulated by mitochondria, which are considered major targets for cancer therapy. In this study, twelve novel icaritin (ICT) derivatives were designed and synthesized, four of which were specifically targeted to mitochondria. Biological studies demonstrated that all compounds containing triphenylphosphine (TPP+) exhibited a substantial increase in antitumor activity compared to ICT and control compounds while also exhibiting notable selectivity for tumor cells over normal cells. Among these derivatives, Mito-ICT-4 exhibited the strongest antiproliferative effect, with an IC50 value of 0.73 ± 0.06 μM for BEL-7402 cells, which is 29 times lower than that of ICT, and an IC50 value of 67.11 ± 2.09 μM for HEK293 cells, indicating approximately 33-fold selectivity for tumor cells. High-performance liquid chromatography (HPLC) analysis revealed that Mito-ICT-4 significantly accumulated in the mitochondria of BEL-7402 cells, with the level of accumulation approximately 2.5 times greater than that of ICT. Further investigations demonstrated that upon entering the mitochondria of tumor cells, Mito-ICT-4 downregulated SIRT3 protein expression, disrupted intracellular redox homeostasis, and led to a substantial increase in mitochondrial ROS levels, abnormal CypD-dependent MPTP opening, mitochondrial membrane potential depolarization, and ROS release into the cytoplasm, ultimately triggering ROS-mediated apoptosis in BEL-7402 cells. Transcriptomic analysis identified differentially expressed genes and enriched pathways, highlighting the ROS-mediated p38-MAPK signaling pathway as a key mediator of Mito-ICT-4-induced mitochondria-dependent apoptosis. The effects of Mito-ICT-4 on the expression of key genes (SIRT3, CypD, P-MKK6, P-P38, and DDIT3) were further validated by qRT-PCR and Western blot analysis, with results aligning with transcriptomic data. The novel ICT derivatives synthesized in this study, with mitochondria-targeting functionality, provide a basis for the development of targeted antitumor drugs.
Collapse
Affiliation(s)
| | | | | | | | - Jiahong Han
- College of Chinese Medicinal Material, Jilin Agricultural University, 2888 Xincheng Street, Changchun 130118, China; (Z.C.); (W.L.); (Y.Z.); (D.L.)
| | - Enbo Cai
- College of Chinese Medicinal Material, Jilin Agricultural University, 2888 Xincheng Street, Changchun 130118, China; (Z.C.); (W.L.); (Y.Z.); (D.L.)
| |
Collapse
|
10
|
Zhu Z, Zheng X, Zhao P, Chen C, Xu G, Ke X. Potential of lactylation as a therapeutic target in cancer treatment (Review). Mol Med Rep 2025; 31:91. [PMID: 39950331 PMCID: PMC11836599 DOI: 10.3892/mmr.2025.13456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 01/24/2025] [Indexed: 02/21/2025] Open
Abstract
Post‑translational modifications (PTMs) of proteins influence their functionality by altering the structure of precursor proteins. These modifications are closely linked to tumor progression through the regulation of processes such as cell proliferation, apoptosis, angiogenesis and invasion. Tumors produce large amounts of lactic acid through aerobic glycolysis. Lactic acid not only serves an important role in cell metabolism, but also serves an important role in cell communication. Lactylation, a PTM involving lactate and lysine residues as substrates, serves as an epigenetic regulator that modulates intracellular signaling, gene expression and protein function, thereby serving a crucial role in tumorigenesis and progression. The identification of lactylation provides a key breakthrough in elucidating the interaction between tumor metabolic reprogramming and epigenetic modification. The present review primarily summarizes the occurrence of lactylation, its effect on tumor progression, drug resistance, the tumor microenvironment and gut microbiota, and its potential as a therapeutic target for cancer. The aim of the present review was to provide novel strategies for potential cancer therapies.
Collapse
Affiliation(s)
- Zhengfeng Zhu
- Department of Clinical Medicine, Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Xinzhe Zheng
- Department of Clinical Medicine, Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Pengfei Zhao
- Department of Clinical Medicine, Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Cheng Chen
- Department of Thoracic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Gang Xu
- Department of Thoracic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Xixian Ke
- Department of Thoracic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| |
Collapse
|
11
|
Hou R, Wu X, Wang C, Fan H, Zhang Y, Wu H, Wang H, Ding J, Jiang H, Xu J. Tumor‑associated neutrophils: Critical regulators in cancer progression and therapeutic resistance (Review). Int J Oncol 2025; 66:28. [PMID: 40017131 PMCID: PMC11900975 DOI: 10.3892/ijo.2025.5734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 02/11/2025] [Indexed: 03/01/2025] Open
Abstract
Cancer is the second leading cause of death among humans worldwide. Despite remarkable improvements in cancer therapies, drug resistance remains a significant challenge. The tumor microenvironment (TME) is intimately associated with therapeutic resistance. Tumor‑associated neutrophils (TANs) are a crucial component of the TME, which, along with other immune cells, play a role in tumorigenesis, development and metastasis. In the current review, the roles of TANs in the TME, as well as the mechanisms of neutrophil‑mediated resistance to cancer therapy, including immunotherapy, chemotherapy, radiotherapy and targeted therapy, were summarized. Furthermore, strategies for neutrophil therapy were discussed and TANs were explored as potential targets for cancer treatment. In conclusion, the need to explore the precise roles, recruitment pathways and mechanisms of action of TANs was highlighted for the purpose of developing therapies that precisely target TANs and reverse drug resistance.
Collapse
Affiliation(s)
- Rui Hou
- Department of Oncology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, Nanjing 214023, P.R. China
| | - Xi Wu
- Department of Oncology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, Nanjing 214023, P.R. China
| | - Cenzhu Wang
- Department of Oncology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, Nanjing 214023, P.R. China
| | - Hanfang Fan
- Department of Oncology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, Nanjing 214023, P.R. China
| | - Yuhan Zhang
- Department of Oncology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, Nanjing 214023, P.R. China
| | - Hanchi Wu
- Department of Oncology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, Nanjing 214023, P.R. China
| | - Huiyu Wang
- Department of Oncology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, Nanjing 214023, P.R. China
| | - Junli Ding
- Department of Oncology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, Nanjing 214023, P.R. China
| | - Huning Jiang
- Department of Oncology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, Nanjing 214023, P.R. China
| | - Junying Xu
- Department of Oncology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, Nanjing 214023, P.R. China
| |
Collapse
|
12
|
Jiang Z, Kan J, Wang D, Lv Y, Kong C, Wu L, Chen Y, Yang M, Gu Y, Chen S. Inhibition of GRK2 reduced doxorubicin-induced oxidative stress and apoptosis through upregulating ADH1. Toxicol Appl Pharmacol 2025; 497:117261. [PMID: 39914624 DOI: 10.1016/j.taap.2025.117261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 01/24/2025] [Accepted: 02/03/2025] [Indexed: 02/16/2025]
Abstract
OBJECTIVE Patients undergoing anti-cancer therapy with doxorubicin (DOX) face the risk of cumulative, irreversible cardiotoxicity. In failing hearts, the overexpressed and activated G protein-coupled receptor kinase 2 (GRK2) initiates pathological signaling, leading to cardiomyocyte death. This study aimed to investigate the potential role of GRK2 in DOX-induced cardiotoxicity (DIC). METHODS Mice were administered intraperitoneal injections of DOX (5 mg/kg) weekly for four weeks to induce DIC. Small interfering RNAs (siRNAs) targeting GRK2, ADH1, and PABPC1 were employed in H9c2 cells. Oxidative stress and cell apoptosis were assessed using Reactive Oxygen Species (ROS) staining and TUNEL staining, respectively. Co-immunoprecipitation (Co-IP) was utilized to detect the interaction between GRK2 and PABPC1. RNA immunoprecipitation (RIP) assay was employed to evaluate the binding between PABPC1 and ADH1 mRNA. RESULTS GRK2 was found to be upregulated in DOX-treated mouse hearts and H9c2 cells. Cardiomyocyte-specific GRK2 knockout partially mitigated oxidative stress, apoptosis, and cardiac dysfunction. Additionally, GRK2 knockdown attenuated DOX-induced oxidative damage and apoptosis both in vivo and in H9c2 cells. Furthermore, a reduction in ADH1 expression was observed in DOX-treated hearts and cardiomyocytes, with a pronounced increase following GRK2 knockdown. Notably, the beneficial effects of GRK2 knockdown in H9c2 cells were abolished after ADH1 knockdown. Mechanistically, GRK2 knockdown promoted the binding of PABPC1 to ADH1 mRNA, thereby inhibiting the degradation of ADH1 mRNA. Increased ADH1 expression alleviated DOX-induced oxidative stress and apoptosis in cardiomyocytes. CONCLUSION In conclusion, our study demonstrates that targeting GRK2 may represent a promising therapeutic strategy for mitigating DOX-associated cardiotoxicity.
Collapse
Affiliation(s)
- Zihao Jiang
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210000, China
| | - Junyan Kan
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210000, China
| | - Dongchen Wang
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210000, China
| | - Yifei Lv
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210000, China
| | - Chaohua Kong
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210000, China
| | - Lida Wu
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210000, China
| | - Yunwei Chen
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210000, China
| | - Meng Yang
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210000, China
| | - Yue Gu
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210000, China.
| | - ShaoLiang Chen
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210000, China.
| |
Collapse
|
13
|
Qin Y, Chen L, Zhao Z, Li Y, Tian X, Feng M, Tang J, Ji K. Dietary nutrient intake and cancer presence: evidence from a cross-sectional study. Front Nutr 2025; 12:1551822. [PMID: 40236640 PMCID: PMC11996664 DOI: 10.3389/fnut.2025.1551822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Accepted: 03/20/2025] [Indexed: 04/17/2025] Open
Abstract
BACKGROUND While the role of specific nutrients in cancer is established, associations between comprehensive between dietary nutrient intake and cancer presence remain underexplored. This cross-sectional study investigates global dietary nutrient profiles in relation to solid and blood cancers. METHODS A total of 42,732 mobile adults from the National Health and Nutrition Examination Survey (NHANES, 2001-2023) were enrolled in this study. The potential associations of dietary intakes of 34 nutrients and 4 common trace components with cancer presence were investigated by weighted logistic regression and restricted cubic spline. RESULTS Higher intake of saturated fatty acid (OR = 1.1082, 95% CI: 1.0110-1.2146), β-carotene (OR = 1.0431, 1.0096-1.0777) and vitamin K (OR = 1.0370, 1.0094-1.0654) was positively associated with overall cancer presence, while phosphorus intake (OR = 0.9016, 0.8218-0.9892) showed a protective association. For solid tumors, dietary intakes of saturated fatty acid (OR = 1.1099), α-carotene (OR = 1.0353), β-carotene (OR = 1.0484), and vitamin K (OR = 1.0405) exhibited positive associations. Retinol intake was linked to blood carcinoma (OR = 1.0935, 1.0222-1.1698). Dose-response analyses revealed linear relationships without non-linear thresholds. CONCLUSION Specific dietary nutrients, notably saturated fats, carotenoids, and vitamin K, are associated with increased cancer presence, whereas phosphorus intake is associated with the reduced cancer presence. Due to the cross-sectional nature of the study and the measurement of dietary intake after cancer diagnosis, a causal relationship could not be established. These findings underscore the need for longitudinal studies to establish causality and inform dietary interventions in cancer management.
Collapse
Affiliation(s)
- Youjia Qin
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Liu Chen
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Zilong Zhao
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Yuguan Li
- Department of Lymphoma, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xuan Tian
- College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Mingqian Feng
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
- College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Jing Tang
- Department of Lymphoma, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Kangkang Ji
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
- Department of Clinical Medical Research, Binhai County People’s Hospital, Clinical Medical College of Yangzhou University, Yancheng, Jiangsu, China
| |
Collapse
|
14
|
Gutiérrez Coronado O, Sandoval Salazar C, Muñoz Carrillo JL, Gutiérrez Villalobos OA, Miranda Beltrán MDLL, Soriano Hernández AD, Beltrán Campos V, Villalobos Gutiérrez PT. Functionalized Nanomaterials in Cancer Treatment: A Review. Int J Mol Sci 2025; 26:2633. [PMID: 40141274 PMCID: PMC11942109 DOI: 10.3390/ijms26062633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 03/04/2025] [Accepted: 03/07/2025] [Indexed: 03/28/2025] Open
Abstract
Cancer is one of the main causes of death worldwide. Chemotherapy, radiotherapy and surgery are currently the treatments of choice for cancer. However, conventional therapies have their limitations, such as non-specificity, tumor recurrence and toxicity to the target cells. Recently, nanomaterials have been considered as therapeutic agents against cancer. This is mainly due to their unique optical properties, biocompatibility, large surface area and nanoscale size. These properties are crucial as they can affect biocompatibility and uptake by the cell, reducing efficacy. However, because nanoparticles can be functionalized with biomolecules, they become more biocompatible, which improves uptake, and they can be specifically targeted against cancer cells, which improves their anticancer activity. In this review, we summarize some of the recent studies in which nanomaterials have been functionalized with the aim of increasing therapeutic efficacy in cancer treatment.
Collapse
Affiliation(s)
- Oscar Gutiérrez Coronado
- Centro Universitario de los Lagos, Universidad de Guadalajara, Lagos de Moreno 47460, Mexico; (O.G.C.); (M.d.l.L.M.B.); (A.D.S.H.)
| | - Cuauhtémoc Sandoval Salazar
- División de Ciencias de la Salud e Ingenierías, Campus Celaya-Salvatierra, Universidad de Guanajuato, Celaya 38060, Mexico; (C.S.S.); (V.B.C.)
| | - José Luis Muñoz Carrillo
- Centro Universitario de los Lagos, Universidad de Guadalajara, Lagos de Moreno 47460, Mexico; (O.G.C.); (M.d.l.L.M.B.); (A.D.S.H.)
| | | | - María de la Luz Miranda Beltrán
- Centro Universitario de los Lagos, Universidad de Guadalajara, Lagos de Moreno 47460, Mexico; (O.G.C.); (M.d.l.L.M.B.); (A.D.S.H.)
| | | | - Vicente Beltrán Campos
- División de Ciencias de la Salud e Ingenierías, Campus Celaya-Salvatierra, Universidad de Guanajuato, Celaya 38060, Mexico; (C.S.S.); (V.B.C.)
| | | |
Collapse
|
15
|
Zhu J, Jian Z, Liu F, Le L. The emerging landscape of small nucleolar RNA host gene 10 in cancer mechanistic insights and clinical relevance. Cell Signal 2025; 127:111590. [PMID: 39798772 DOI: 10.1016/j.cellsig.2025.111590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/14/2024] [Accepted: 01/03/2025] [Indexed: 01/15/2025]
Abstract
Small nucleolar RNA host gene 10 (SNHG10) is a newly recognized long non-coding RNA (lncRNA) with significant implications in cancer biology. Abnormal expression of SNHG10 has been observed in various solid tumors and hematological malignancies. Research conducted in vivo and in vitro has revealed that SNHG10 plays a pivotal role in numerous biological processes, including cell proliferation, apoptosis, invasion and migration, drug resistance, energy metabolism, immune evasion, as well as tumor growth and metastasis. SNHG10 regulates tumor development through several mechanisms, such as competing with microRNA (miRNA) for binding sites, modulating various signaling pathways, influencing transcriptional activity, and affecting epigenetic regulation. The diverse biological functions and intricate mechanisms of SNHG10 highlight its considerable clinical relevance, positioning it as a potential pan-cancer biomarker and therapeutic target. This review aims to summarize the role of SNHG10 in tumorigenesis and cancer progression, clarify the molecular mechanisms at play, and explore its clinical significance in cancer diagnosis and prognosis prediction, along with its therapeutic potential.
Collapse
Affiliation(s)
- Jingyu Zhu
- Second Clinical Medical School, Nanchang University, Nanchang, Jiangxi, China
| | - Zihao Jian
- Second Clinical Medical School, Nanchang University, Nanchang, Jiangxi, China
| | - Fangteng Liu
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330008, Jiangxi, China.
| | - Lulu Le
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330008, Jiangxi, China.
| |
Collapse
|
16
|
Rinaldi R, Laurino S, Salvia R, Russi S, De Stefano F, Galasso R, Sgambato A, Scieuzo C, Falco G, Falabella P. Biological Activity of Peptide Fraction Derived from Hermetia illucens L. (Diptera: Stratiomyidae) Larvae Haemolymph on Gastric Cancer Cells. Int J Mol Sci 2025; 26:1885. [PMID: 40076512 PMCID: PMC11899352 DOI: 10.3390/ijms26051885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 02/15/2025] [Accepted: 02/19/2025] [Indexed: 03/14/2025] Open
Abstract
Gastric cancer (GC) is one of the leading causes of cancer-related mortality worldwide, characterised by poor prognosis and limited responsiveness to chemotherapy. There is a need for new and more effective anticancer agents. Antimicrobial peptides (AMPs) represent a promising class of biomolecules for this purpose. Naturally occurring in the innate immune system, these peptides can also exert cytotoxic effects against cancer cells, earning them the designation of "anticancer peptides" (ACPs). They have the potential to be a viable support for current chemotherapy schedules due to their selectivity against cancer cells and minor propensity to induce chemoresistance in cells. Insects are an excellent source of AMPs. Among them, due to its ability to thrive in hostile and microorganism-rich environments, we isolated a peptide fraction from Hermetia illucens L. (Diptera: Stratiomyidae) haemolymph to evaluate a possible anticancer activity. We tested Peptide Fractions (PFs) against AGS and KATO III gastric cancer cell lines. Data obtained indicated that PFs, especially those resulting from Escherichia coli and Micrococcus flavus infection (to boost immune response), were able to inhibit tumour cell growth by inducing apoptosis or cell cycle arrest in a cell line-specific manner. These results support further investigation into the use of antimicrobial peptides produced from insects as possible anticancer agents.
Collapse
Affiliation(s)
- Roberta Rinaldi
- Department of Basic and Applied Sciences, University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy; (R.R.); (R.S.); (F.D.S.)
| | - Simona Laurino
- Centro di Riferimento Oncologico della Basilicata IRCCS (IRCCS-CROB), 85028 Rionero in Vulture, Italy; (S.L.); (S.R.); (R.G.)
| | - Rosanna Salvia
- Department of Basic and Applied Sciences, University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy; (R.R.); (R.S.); (F.D.S.)
- Spinoff XFlies S.R.L, University of Basilicata, Via Dell’Ateneo Lucano 10, 85100 Potenza, Italy
| | - Sabino Russi
- Centro di Riferimento Oncologico della Basilicata IRCCS (IRCCS-CROB), 85028 Rionero in Vulture, Italy; (S.L.); (S.R.); (R.G.)
| | - Federica De Stefano
- Department of Basic and Applied Sciences, University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy; (R.R.); (R.S.); (F.D.S.)
| | - Rocco Galasso
- Centro di Riferimento Oncologico della Basilicata IRCCS (IRCCS-CROB), 85028 Rionero in Vulture, Italy; (S.L.); (S.R.); (R.G.)
| | - Alessandro Sgambato
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
- Multiplex Spatial Profiling Facility, Fondazione Policlinico Universitario ‘Agostino Gemelli’ IRCCS, 00136 Rome, Italy
| | - Carmen Scieuzo
- Department of Basic and Applied Sciences, University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy; (R.R.); (R.S.); (F.D.S.)
- Spinoff XFlies S.R.L, University of Basilicata, Via Dell’Ateneo Lucano 10, 85100 Potenza, Italy
| | - Geppino Falco
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy;
| | - Patrizia Falabella
- Department of Basic and Applied Sciences, University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy; (R.R.); (R.S.); (F.D.S.)
- Spinoff XFlies S.R.L, University of Basilicata, Via Dell’Ateneo Lucano 10, 85100 Potenza, Italy
| |
Collapse
|
17
|
Berg SZ, Berg J. Microbes, macrophages, and melanin: a unifying theory of disease as exemplified by cancer. Front Immunol 2025; 15:1493978. [PMID: 39981299 PMCID: PMC11840190 DOI: 10.3389/fimmu.2024.1493978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 12/03/2024] [Indexed: 02/22/2025] Open
Abstract
It is widely accepted that cancer mostly arises from random spontaneous mutations triggered by environmental factors. Our theory challenges the idea of the random somatic mutation theory (SMT). The SMT does not fit well with Charles Darwin's theory of evolution in that the same relatively few mutations would occur so frequently and that these mutations would lead to death rather than survival of the fittest. However, it would fit well under the theory of evolution, if we were to look at it from the vantage point of pathogens and their supporting microbial communities colonizing humans and mutating host cells for their own benefit, as it does give them an evolutionary advantage and they are capable of selecting genes to mutate and of inserting their own DNA or RNA into hosts. In this article, we provide evidence that tumors are actually complex microbial communities composed of various microorganisms living within biofilms encapsulated by a hard matrix; that these microorganisms are what cause the genetic mutations seen in cancer and control angiogenesis; that these pathogens spread by hiding in tumor cells and M2 or M2-like macrophages and other phagocytic immune cells and traveling inside them to distant sites camouflaged by platelets, which they also reprogram, and prepare the distant site for metastasis; that risk factors for cancer are sources of energy that pathogens are able to utilize; and that, in accordance with our previous unifying theory of disease, pathogens utilize melanin for energy for building and sustaining tumors and metastasis. We propose a paradigm shift in our understanding of what cancer is, and, thereby, a different trajectory for avenues of treatment and prevention.
Collapse
Affiliation(s)
- Stacie Z. Berg
- Department of Translational Biology, William Edwards LLC, Baltimore, MD, United States
| | - Jonathan Berg
- Department of Translational Biology, William Edwards LLC, Baltimore, MD, United States
| |
Collapse
|
18
|
Alomari KB, Alrefaei AF, Almughathawi R, Halawani NM, Alqarni SA, Alharbi A, Katouah HA, El-Metwaly NM. New Benzothiazole-Thiadiazole-Based Ketones as Potential Antiviral and Anticancer Agents: Synthesis, DFT, and Molecular Docking Studies. Chem Biol Drug Des 2025; 105:e70073. [PMID: 39988945 DOI: 10.1111/cbdd.70073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/24/2025] [Accepted: 02/12/2025] [Indexed: 02/25/2025]
Abstract
Various substituted benzothiazole-thiadiazole-based ketones 4a-i and 6a-c were synthesized and characterized by the IR, NMR, and MS spectral data. The DFT study of the synthesized ketones 4 and 6 displayed matched configurations of their HOMO and LUMO, with the exception of the nitrophenyl derivatives, whose HOMO extended over the entire molecule. Meanwhile, the antiproliferative effectiveness of the produced ketones was evaluated against diverse cell lines and compared with the reference drug Erlotinib. The ketones exhibited variable inhibitory effects, for example, the ketone 6a has the most potent activity versus Panc-1 (IC50 = 9.34 ± 0.18 μM), whereas 4i showed proper effectiveness against HepG2 (IC50 = 10.91 ± 0.23 μM), and ketone 4a exhibited strong activity against MCF-7 cells (IC50 = 5.66 ± 0.16 μM). Moreover, the H5N1 antiviral efficacy was assessed via a plaque reduction assay, using amantadine as a reference drug. Ketones 2a, 4e, and 4g displayed 100% inhibition, while ketone 4e has the lowest toxic concentration (TC50 61 μg/μL). Furthermore, the molecular docking results revealed that ketone 4e had the highest binding score owing to several interactions with amino acids of 1JU6 residues. Finally, SwissADME analysis of the synthesized ketones provides key insights into their pharmacokinetic properties.
Collapse
Affiliation(s)
- Khadra B Alomari
- Jazan University, Department of Physical Sciences, Chemistry Division, Jazan, Kingdom of Saudi Arabia
| | - Abdulmajeed F Alrefaei
- Department of Biology/Genetic and Molecular Biology Central Laboratory (GMCL), Jamoum University College Umm Al-Qura University, Makkah, Saudi Arabia
| | - Renad Almughathawi
- Department of Physics, Faculty of Science, Taibah University, Madinah, Saudi Arabia
| | - Nuha M Halawani
- Department of Chemistry, Faculty of Science, Umm Al Qura University, Makkah, Saudi Arabia
| | - Sara A Alqarni
- Department of Chemistry, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Arwa Alharbi
- Department of Chemistry, Faculty of Science, Umm Al Qura University, Makkah, Saudi Arabia
| | - Hanadi A Katouah
- Department of Chemistry, Faculty of Science, Umm Al Qura University, Makkah, Saudi Arabia
| | - Nashwa M El-Metwaly
- Department of Chemistry, Faculty of Science, Umm Al Qura University, Makkah, Saudi Arabia
- Department of Chemistry, Faculty of Science, Mansoura University, Mansoura, Egypt
| |
Collapse
|
19
|
Wang H, Huo R, He K, Li W, Gao Y, He W, Yu M, Jiang SH, Xue J. Increased nerve density adversely affects outcome in colorectal cancer and denervation suppresses tumor growth. J Transl Med 2025; 23:112. [PMID: 39849539 PMCID: PMC11760110 DOI: 10.1186/s12967-025-06104-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 01/08/2025] [Indexed: 01/25/2025] Open
Abstract
BACKGROUND The colon and rectum are highly innervated, with neural components within the tumor microenvironment playing a significant role in colorectal cancer (CRC) progression. While perineural invasion (PNI) is associated with poor prognosis in CRC, the impact of nerve density and diameter on tumor behavior remains unclear. This study aims to evaluate the prognostic value of nerve characteristics in CRC and to verify the impact of nerves on tumor growth. METHODS Tissue samples from 129 CRC patients were stained with immunofluorescent markers NF-L and S100B to detect nerves. Nerve diameter and density were measured and normalized. Kaplan-Meier survival analysis and Cox regression models were used to identify prognostic factors. Prognostic models were established using receiver operating characteristic (ROC) curve analysis to assess the predictive value of neural factors. A murine chemical denervation model was employed to disrupt sympathetic nerves using 6-hydroxydopamine, inhibit muscarinic receptor 3 with darifenacin, and ablate sensory neurons with capsaicin. RESULTS The total nerve density was 0.72 ± 0.59/mm², with intratumoral (0.42 ± 0.40/mm²) being significantly lower than extratumoral regions (1.00 ± 0.75/mm²). The average nerve diameter was 28.14 ± 6.04 μm, with no significant difference between intratumoral (28.2 ± 7.65 μm) and extratumoral regions (27.86 ± 6.72 μm). PNI was observed in 65 patients (50.4%). PNI and high normalized nerve density (NND) were associated with shorter overall survival and disease-free survival in CRC patients, with PNI identified as an independent prognostic factor. Patients with PNI exhibit higher NND. Incorporating PNI and NND into ROC curve analysis improved the sensitivity and specificity of survival predictions. In the murine model, chemical denervation of sympathetic, parasympathetic, and sensory nerves significantly reduced rectal tumor volume. CONCLUSIONS PNI and NND are critical factors influencing CRC patient survival and enhance the accuracy of survival prediction models. Moreover, chemical denervation effectively inhibits rectal tumor growth in vivo, highlighting the potential of neural targeting as a therapeutic strategy in CRC.
Collapse
Affiliation(s)
- Hao Wang
- Department of Oncology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, P.R. China
| | - Ruixue Huo
- Department of Oncology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, P.R. China
| | - Kexin He
- Department of Oncology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, P.R. China
| | - Weihan Li
- Department of Oncology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, P.R. China
| | - Yuan Gao
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P.R. China
| | - Wei He
- Department of Pathology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P.R. China
| | - Minhao Yu
- Department of Gastrointestinal Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P.R. China.
| | - Shu-Heng Jiang
- State Key Laboratory of Systems Medicine for Cancer, Ren Ji Hospital, School of Medicine, Shanghai Cancer Institute, Shanghai Jiao Tong University, Shanghai, 200240, P.R. China.
| | - Junli Xue
- Department of Oncology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, P.R. China.
| |
Collapse
|
20
|
Ma Q, Zhang W, Wu K, Shi L. The roles of KRAS in cancer metabolism, tumor microenvironment and clinical therapy. Mol Cancer 2025; 24:14. [PMID: 39806421 PMCID: PMC11727292 DOI: 10.1186/s12943-024-02218-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Accepted: 12/25/2024] [Indexed: 01/16/2025] Open
Abstract
KRAS is one of the most mutated genes, driving alternations in metabolic pathways that include enhanced nutrient uptaking, increased glycolysis, elevated glutaminolysis, and heightened synthesis of fatty acids and nucleotides. However, the beyond mechanisms of KRAS-modulated cancer metabolisms remain incompletely understood. In this review, we aim to summarize current knowledge on KRAS-related metabolic alterations in cancer cells and explore the prevalence and significance of KRAS mutation in shaping the tumor microenvironment and influencing epigenetic modification via various molecular activities. Given that cancer cells rely on these metabolic changes to sustain cell growth and survival, targeting these processes may represent a promising therapeutic strategy for KRAS-driven cancers.
Collapse
Affiliation(s)
- Qinglong Ma
- RNA Oncology Group, School of Public Health, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Wenyang Zhang
- RNA Oncology Group, School of Public Health, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Kongming Wu
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, People's Republic of China.
- Cancer Center, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China.
| | - Lei Shi
- RNA Oncology Group, School of Public Health, Lanzhou University, Lanzhou, 730000, People's Republic of China.
- Cancer Research UK Manchester Institute, The University of Manchester, Wilmslow Road, Manchester, M20 4BX, UK.
| |
Collapse
|
21
|
Zhao Y, Zhou C, Zuo L, Yan H, Gu Y, Liu H, Yu G, Zhou X. Identification of cancer cell-intrinsic biomarkers associated with tumor progression and characterization of SFTA3 as a tumor suppressor in lung adenocarcinomas. BMC Cancer 2025; 25:36. [PMID: 39780110 PMCID: PMC11707868 DOI: 10.1186/s12885-024-13395-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 12/25/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Recent advancements in contemporary therapeutic approaches have increased the survival rates of lung cancer patients; however, the long-term benefits remain constrained, underscoring the pressing need for novel biomarkers. Surfactant-associated 3 (SFTA3), a long non-coding RNA predominantly expressed in normal lung epithelial cells, plays a crucial role in lung development. Nevertheless, its function in lung adenocarcinoma (LUAD) remains inadequately understood. METHODS Single-cell RNA sequencing data were utilized to identify novel cancer cell-intrinsic gene signatures associated with the progression of LUAD, and their roles in LUAD were comprehensively analyzed. Serum samples were collected to quantify the expression levels of SFTA3 in LUAD patients. Furthermore, a series of biological experiments, including cell viability assays, scratch wound healing assays, and colony formation assays, were conducted to demonstrate the tumor-suppressive effects of SFTA3. RNA sequencing was performed to elucidate the molecular mechanisms underlying the role of SFTA3 in lung cancer cells. RESULTS We constructed a prognostic model comprising eight genes: ALDOA, ATP5MD, SERPINH1, SFTA3, SLK, U2SURP, SCGB1A1, and SCGB1A3. The model effectively stratified patients into high- and low-risk categories, revealing that low-risk patients experienced superior clinical outcomes, exhibited an immunologically hot tumor microenvironment (TME), and had a greater probability of responding to immunotherapy. In contrast, the high-risk group exhibited a cold TME and may benefit more from chemotherapy. Furthermore, our study revealed that a progressive decrease in SFTA3 expression in cancer cells was correlated with tumor advancement. Notably, the serum levels of SFTA3 significantly decreased in patients with LUAD, suggesting its potential utility in liquid biopsy for LUAD diagnosis. Additionally, the knockdown of SFTA3 enhances the proliferation and migration of lung cancer cells, whereas its overexpression inhibits these phenotypes. The epithelial-mesenchymal transition pathway was significantly enriched following SFTA3 silencing, suggesting that SFTA3 may impact tumor progression by modulating this process. We also identified key transcription factors and epigenetic mechanisms implicated in the downregulation of SFTA3 in LUAD. CONCLUSION We developed a robust prognostic model and identified SFTA3 as a novel biomarker with potential applications in the diagnosis, prognosis, and personalized treatment of LUAD. Additionally, our findings offer new insights into the mechanisms underlying LUAD tumorigenesis and immune evasion.
Collapse
Affiliation(s)
- Yu Zhao
- Department of Immunology, Medical School of Nantong University, 19 Qixiu Road, Nantong, 226000, China
| | - Chengcheng Zhou
- Department of Immunology, Medical School of Nantong University, 19 Qixiu Road, Nantong, 226000, China
- Department of Hematology, Affiliated Hospital and Medical School of Nantong University, Nantong, China
| | - Ling Zuo
- Department of Immunology, Medical School of Nantong University, 19 Qixiu Road, Nantong, 226000, China
| | - Haoming Yan
- Department of Immunology, Medical School of Nantong University, 19 Qixiu Road, Nantong, 226000, China
| | - Yuhan Gu
- Department of Immunology, Medical School of Nantong University, 19 Qixiu Road, Nantong, 226000, China
| | - Hong Liu
- Department of Hematology, Affiliated Hospital and Medical School of Nantong University, Nantong, China
| | - Guiping Yu
- Department of Cardiothoracic Surgery, Jiangyin People's Hospital Affiliated to Nantong University, Jiangyin, China.
| | - Xiaorong Zhou
- Department of Immunology, Medical School of Nantong University, 19 Qixiu Road, Nantong, 226000, China.
| |
Collapse
|
22
|
Sukumar VK, Tai YK, Chan CW, Iversen JN, Wu KY, Fong CHH, Lim JSJ, Franco-Obregón A. Brief Magnetic Field Exposure Stimulates Doxorubicin Uptake into Breast Cancer Cells in Association with TRPC1 Expression: A Precision Oncology Methodology to Enhance Chemotherapeutic Outcome. Cancers (Basel) 2024; 16:3860. [PMID: 39594815 PMCID: PMC11592624 DOI: 10.3390/cancers16223860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/04/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024] Open
Abstract
Background/Objectives: Doxorubicin (DOX) is commonly used as a chemotherapeutic agent for the treatment of breast cancer. Nonetheless, its systemic delivery via intravenous injection and toxicity towards healthy tissues commonly result in a broad range of detrimental side effects. Breast cancer severity was previously shown to be correlated with TRPC1 channel expression that conferred upon it enhanced vulnerability to pulsed electromagnetic field (PEMF) therapy. PEMF therapy was also previously shown to enhance breast cancer cell vulnerability to DOX in vitro and in vivo that correlated with TRPC1 expression and mitochondrial respiratory rates. Methods: DOX uptake was assessed by measuring its innate autofluorescence within murine 4T1 or human MCF7 breast cancer cells following magnetic exposure. Cellular vulnerability to doxorubicin uptake was assessed by monitoring mitochondrial activity and cellular DNA content. Results: Here, we demonstrate that 10 min of PEMF exposure could augment DOX uptake into 4T1 and MCF7 breast cancer cells. DOX uptake could be increased by TRPC1 overexpression, whereas inhibiting the activity of TRPC1 channels with SKF-96356 or genetic knockdown, precluded DOX uptake. PEMF exposure enhances DOX-mediated killing of breast cancer cells, reducing the IC50 value of DOX by half, whereas muscle cells, representative of collateral tissues, were less sensitive to PEMF-enhanced DOX-mediated cytotoxicity. Vesicular loading of DOX correlated with TRPC1 expression. Conclusions: This study presents a novel TRPC1-mediated mechanism through which PEMF therapy may enhance DOX cytotoxicity in breast cancer cells, paving the way for the development of localized non-invasive PEMF platforms to improve cancer outcomes with lower systemic levels of DOX.
Collapse
Affiliation(s)
- Viresh Krishnan Sukumar
- NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore; (V.K.S.); (J.S.J.L.)
- BICEPS Lab (Biolonic Currents Electromagnetic Pulsing Systems), National University of Singapore, Singapore 117599, Singapore; (J.N.I.); (K.Y.W.); (C.H.H.F.)
- Institute of Health Technology and Innovation (iHealthtech), National University of Singapore, Singapore 117599, Singapore
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore;
| | - Yee Kit Tai
- NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore; (V.K.S.); (J.S.J.L.)
- BICEPS Lab (Biolonic Currents Electromagnetic Pulsing Systems), National University of Singapore, Singapore 117599, Singapore; (J.N.I.); (K.Y.W.); (C.H.H.F.)
- Institute of Health Technology and Innovation (iHealthtech), National University of Singapore, Singapore 117599, Singapore
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore;
| | - Ching Wan Chan
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore;
| | - Jan Nikolas Iversen
- BICEPS Lab (Biolonic Currents Electromagnetic Pulsing Systems), National University of Singapore, Singapore 117599, Singapore; (J.N.I.); (K.Y.W.); (C.H.H.F.)
- Institute of Health Technology and Innovation (iHealthtech), National University of Singapore, Singapore 117599, Singapore
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore;
| | - Kwan Yu Wu
- BICEPS Lab (Biolonic Currents Electromagnetic Pulsing Systems), National University of Singapore, Singapore 117599, Singapore; (J.N.I.); (K.Y.W.); (C.H.H.F.)
- Institute of Health Technology and Innovation (iHealthtech), National University of Singapore, Singapore 117599, Singapore
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore;
| | - Charlene Hui Hua Fong
- BICEPS Lab (Biolonic Currents Electromagnetic Pulsing Systems), National University of Singapore, Singapore 117599, Singapore; (J.N.I.); (K.Y.W.); (C.H.H.F.)
- Institute of Health Technology and Innovation (iHealthtech), National University of Singapore, Singapore 117599, Singapore
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore;
| | - Joline Si Jing Lim
- NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore; (V.K.S.); (J.S.J.L.)
- Experimental Therapeutics Programme, Cancer Science Institute, Singapore 117599, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University Singapore, Singapore 119228, Singapore
- Department of Haematology-Oncology, National University Cancer Institute, National University Hospital, Singapore 119074, Singapore
| | - Alfredo Franco-Obregón
- NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore; (V.K.S.); (J.S.J.L.)
- BICEPS Lab (Biolonic Currents Electromagnetic Pulsing Systems), National University of Singapore, Singapore 117599, Singapore; (J.N.I.); (K.Y.W.); (C.H.H.F.)
- Institute of Health Technology and Innovation (iHealthtech), National University of Singapore, Singapore 117599, Singapore
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore;
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore
| |
Collapse
|
23
|
Yang X, Zhang D, Li M, Shao Y, Zhang X, Xue Y. P4HA1: an important target for treating fibrosis related diseases and cancer. Front Pharmacol 2024; 15:1493420. [PMID: 39568592 PMCID: PMC11576223 DOI: 10.3389/fphar.2024.1493420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 10/28/2024] [Indexed: 11/22/2024] Open
Abstract
Fibrosis is significantly associated with a wide variety of diseases and is involved in their progression. Fibrosis activated under the influence of different combinations of factors is considered a double-edged sword. Although there has been much research on organ fibrosis in recent years, a variety of organ fibrosis diseases and cancers are not well controlled in terms of prevention, treatment, and prognosis. Clinical studies still lack exploration and discovery of effective targets for the pathogenesis of organ fibrosis. Prolyl 4-hydroxylase subunit alpha 1 (P4HA1) is a protein kinase and the synthesis and secretion of collagen are related to the sustained activation of P4HA1. As further studies are being conducted, the potential role of P4HA1 in the development of fibrosis-associated diseases and cancer is becoming clear. Consequently, we conducted a systematic review and discussion on the role of P4HA1 in the pathogenesis of various fibrosis-related diseases and cancers. We reviewed the possible strategies of P4HA1 in the diagnosis and treatment of fibrosis-related diseases and cancers, and analyzed its potential relevance as a biomarker in the diagnosis and treatment of fibrosis-related diseases and cancer.
Collapse
Affiliation(s)
- Xuewen Yang
- Department of Pharmacology, Institute of Pharmacokinetics and Liver Molecular Pharmacology, Baotou Medical College, Baotou, China
| | - Dong Zhang
- Department of Pharmacology, Institute of Pharmacokinetics and Liver Molecular Pharmacology, Baotou Medical College, Baotou, China
| | - Mengmeng Li
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, China
| | - Yingchun Shao
- The Affiliated Hospital of Qingdao University, Qingdao Cancer Institute, Qingdao University, Qingdao, China
| | - Xiyang Zhang
- Faculty of Basic Medicine, Chongqing Three Gorges Medical College, Chongqing, China
| | - Yongzhi Xue
- Department of Pharmacology, Institute of Pharmacokinetics and Liver Molecular Pharmacology, Baotou Medical College, Baotou, China
| |
Collapse
|
24
|
Yu N, Fu Y, Fan Q, Lin L, Ning Z, Leng D, Hu M, She T. Antitumor properties of griseofulvin and its toxicity. Front Pharmacol 2024; 15:1459539. [PMID: 39314753 PMCID: PMC11417533 DOI: 10.3389/fphar.2024.1459539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 08/19/2024] [Indexed: 09/25/2024] Open
Abstract
Griseofulvin (GF), which is mainly extracted from Penicillium griseofulvum, is a heat-resistant, chlorine-containing non-polyene antifungal antibiotic. Previous research shows that GF has a variety of pharmacological effects, such as anti-inflammatory, antifungal, antiviral, and antitumor effects. In recent years, GF has received extensive attention for its antitumor effects as a natural compound, offering a low price, a wide range of uses, and other beneficial characteristics. However, no comprehensive review of GF pharmacological activity in tumors has been published so far. In order to fully elucidate the antitumor activities of GF, this review focuses on the antitumor potential and toxicity of GF and its derivatives, based on a literature search using PubMed, Web of Science, and other databases, to lay a good foundation for further research of GF and the development of new drugs for antitumor activities.
Collapse
Affiliation(s)
- Nanqiong Yu
- Key Laboratory of Environmental Related Diseases and One Health, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Yixiao Fu
- Key Laboratory of Environmental Related Diseases and One Health, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Qingkui Fan
- Key Laboratory of Environmental Related Diseases and One Health, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Li Lin
- Key Laboratory of Environmental Related Diseases and One Health, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Zhifeng Ning
- Key Laboratory of Environmental Related Diseases and One Health, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Dongze Leng
- Key Laboratory of Environmental Related Diseases and One Health, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Meichun Hu
- Key Laboratory of Environmental Related Diseases and One Health, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Tonghui She
- Key Laboratory of Environmental Related Diseases and One Health, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
- School of Stomatology and Ophthalmology, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| |
Collapse
|