1
|
Pereira DE, de Cássia de Araújo Bidô R, da Costa Alves M, Frazão Tavares de Melo MF, Dos Santos Costa AC, Gomes Dutra LM, de Morais MM, Gomes da Câmara CA, Viera VB, Alves AF, de Araujo WJ, Leite EL, Bruno de Oliveira CJ, Rufino Freitas JC, Barbosa Soares JK. Maternal supplementation with Dipteryx alata Vog. modulates fecal microbiota diversity, accelerates reflex ontogeny, and improves non-associative and spatial memory in the offspring of rats. Brain Res 2025; 1850:149383. [PMID: 39647597 DOI: 10.1016/j.brainres.2024.149383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 11/09/2024] [Accepted: 12/03/2024] [Indexed: 12/10/2024]
Abstract
Maternal diet plays a crucial role in offspring development, directly affecting neural development and gut microbiota composition. This study aimed to assess if baru almond and oil (Dipteryx alata Vog.) could modulate intestinal microbiota, brain fatty acid profile, and enhance memory in offspring of rats treated during early life stages. Three groups were formed: Control- received distilled water by gavage; Oil- received 2000 mg/kg of baru oil, and Almond - received 2000 mg/kg of baru almond. Somatic development and reflex ontogenesis were evaluated in offspring during the first 21 days. In adolescence and adulthood, memory was tested using Open Field Habituation, Object Recognition, and Morris Water Maze. Brain histology and fatty acid were measured, and fecal microbiota analysis was performed. Both almond and oil groups showed increased PUFAs in breast milk and brains, accelerated reflex ontogeny, improved somatic development and better performance in the memory tests in both life stages (p < 0.05). Supplementation enhanced fecal microbiota abundance associated with neuroprotective effects. The almond group showed a 29 % increase in Eubacterium, Candidates-Arthromitus, Collinsella, and Christensenellaceae-R-7. Both oil and almond groups had higher Blautia and Clostridia-UCG-014 compared to controls. The oil group had about 10 % more Ruminococcus, UCG-005, Acetatifactor, Negativibacillus, and Lachnospiraceae-ND3007 than the others. With the present data, we can observe the safety of baru consumption by pregnant and lactating rats and verify its effects on modulating the microbiota, inducing adequate development of the offspring's nervous system, contributing to anticipated reflex maturation and improving memory.
Collapse
Affiliation(s)
- Diego Elias Pereira
- Program of Food Science and Technology, Federal University of Paraíba, João Pessoa, PB, Brazil; Laboratory of Experimental Nutrition, Department of Nutrition, Federal University of Campina Grande, Cuité, CG, Brazil
| | - Rita de Cássia de Araújo Bidô
- Program of Food Science and Technology, Federal University of Paraíba, João Pessoa, PB, Brazil; Laboratory of Experimental Nutrition, Department of Nutrition, Federal University of Campina Grande, Cuité, CG, Brazil
| | - Maciel da Costa Alves
- Department of Biofísica and Pharmacology, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | | | - Ana Carolina Dos Santos Costa
- Laboratory of Experimental Nutrition, Department of Nutrition, Federal University of Campina Grande, Cuité, CG, Brazil; Department of Rural Technology, Federal Rural University of Pernambuco, Recife, Brazil
| | - Larissa Maria Gomes Dutra
- Program of Food Science and Technology, Federal University of Paraíba, João Pessoa, PB, Brazil; Laboratory of Experimental Nutrition, Department of Nutrition, Federal University of Campina Grande, Cuité, CG, Brazil.
| | | | | | - Vanessa Bordin Viera
- Laboratory of Bromatology, Department of Nutrition, Federal University of Campina Grande, Cuité, CG, Brazil
| | - Adriano Francisco Alves
- Laboratory of General Pathology, Department of Physiology and General Pathology, Federal University of Paraíba, João Pessoa, PB, Brazil
| | - Wydemberg José de Araujo
- Laboratory for the Evaluation of Products of Animal Origin, Department of Animal Science, Federal University of Paraíba - Areia, PB, Brazil
| | - Elma Lima Leite
- Laboratory for the Evaluation of Products of Animal Origin, Department of Animal Science, Federal University of Paraíba - Areia, PB, Brazil
| | - Celso José Bruno de Oliveira
- Laboratory for the Evaluation of Products of Animal Origin, Department of Animal Science, Federal University of Paraíba - Areia, PB, Brazil
| | | | - Juliana Késsia Barbosa Soares
- Program of Food Science and Technology, Federal University of Paraíba, João Pessoa, PB, Brazil; Laboratory of Experimental Nutrition, Department of Nutrition, Federal University of Campina Grande, Cuité, CG, Brazil
| |
Collapse
|
2
|
Sarikahya MH, Cousineau SL, De Felice M, Szkudlarek HJ, Wong KKW, DeVuono MV, Lee K, Rodríguez-Ruiz M, Gummerson D, Proud E, Ng THJ, Hudson R, Jung T, Hardy DB, Yeung KKC, Schmid S, Rushlow W, Laviolette SR. Prenatal THC exposure induces long-term, sex-dependent cognitive dysfunction associated with lipidomic and neuronal pathology in the prefrontal cortex-hippocampal network. Mol Psychiatry 2023; 28:4234-4250. [PMID: 37525013 DOI: 10.1038/s41380-023-02190-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 07/11/2023] [Accepted: 07/13/2023] [Indexed: 08/02/2023]
Abstract
With increasing maternal cannabis use, there is a need to investigate the lasting impact of prenatal exposure to Δ9-tetrahydrocannabinol (THC), the main psychotropic compound in cannabis, on cognitive/memory function. The endocannabinoid system (ECS), which relies on polyunsaturated fatty acids (PUFAs) to function, plays a crucial role in regulating prefrontal cortical (PFC) and hippocampal network-dependent behaviors essential for cognition and memory. Using a rodent model of prenatal cannabis exposure (PCE), we report that male and female offspring display long-term deficits in various cognitive domains. However, these phenotypes were associated with highly divergent, sex-dependent mechanisms. Electrophysiological recordings revealed hyperactive PFC pyramidal neuron activity in both males and females, but hypoactivity in the ventral hippocampus (vHIPP) in males, and hyperactivity in females. Further, cortical oscillatory activity states of theta, alpha, delta, beta, and gamma bandwidths were strongly sex divergent. Moreover, protein expression analyses at postnatal day (PD)21 and PD120 revealed primarily PD120 disturbances in dopamine D1R/D2 receptors, NMDA receptor 2B, synaptophysin, gephyrin, GAD67, and PPARα selectively in the PFC and vHIPP, in both regions in males, but only the vHIPP in females. Lastly, using matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI IMS), we identified region-, age-, and sex-specific deficiencies in specific neural PUFAs, namely docosahexaenoic acid (DHA) and arachidonic acid (ARA), and related metabolites, in the PFC and hippocampus (ventral/dorsal subiculum, and CA1 regions). This study highlights several novel, long-term and sex-specific consequences of PCE on PFC-hippocampal circuit dysfunction and the potential role of specific PUFA signaling abnormalities underlying these pathological outcomes.
Collapse
Affiliation(s)
- Mohammed H Sarikahya
- Addiction Research Group, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, N6A 5C1, Canada
- Department of Anatomy and Cell Biology, Western University, London, Ontario, N6A 3K7, Canada
| | - Samantha L Cousineau
- Departments of Chemistry and Biochemistry, Western University, London, Ontario, N6A 3K7, Canada
| | - Marta De Felice
- Addiction Research Group, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, N6A 5C1, Canada
- Department of Anatomy and Cell Biology, Western University, London, Ontario, N6A 3K7, Canada
| | - Hanna J Szkudlarek
- Addiction Research Group, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, N6A 5C1, Canada
- Department of Anatomy and Cell Biology, Western University, London, Ontario, N6A 3K7, Canada
| | - Karen K W Wong
- Addiction Research Group, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, N6A 5C1, Canada
- Department of Anatomy and Cell Biology, Western University, London, Ontario, N6A 3K7, Canada
| | - Marieka V DeVuono
- Addiction Research Group, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, N6A 5C1, Canada
- Department of Anatomy and Cell Biology, Western University, London, Ontario, N6A 3K7, Canada
| | - Kendrick Lee
- Departments of Physiology and Pharmacology and Obstetrics and Gynaecology, Western University, London, Ontario, N6A 5C1, Canada
- Children's Health Research Institute, St. Josephs Health Care,, London, Ontario, N6C 2R5, Canada
| | - Mar Rodríguez-Ruiz
- Addiction Research Group, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, N6A 5C1, Canada
- Department of Anatomy and Cell Biology, Western University, London, Ontario, N6A 3K7, Canada
| | - Dana Gummerson
- Addiction Research Group, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, N6A 5C1, Canada
- Department of Anatomy and Cell Biology, Western University, London, Ontario, N6A 3K7, Canada
| | - Emma Proud
- Addiction Research Group, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, N6A 5C1, Canada
- Department of Anatomy and Cell Biology, Western University, London, Ontario, N6A 3K7, Canada
| | - Tsun Hay Jason Ng
- Addiction Research Group, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, N6A 5C1, Canada
- Department of Anatomy and Cell Biology, Western University, London, Ontario, N6A 3K7, Canada
| | - Roger Hudson
- Addiction Research Group, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, N6A 5C1, Canada
- Department of Anatomy and Cell Biology, Western University, London, Ontario, N6A 3K7, Canada
| | - Tony Jung
- Addiction Research Group, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, N6A 5C1, Canada
- Department of Anatomy and Cell Biology, Western University, London, Ontario, N6A 3K7, Canada
| | - Daniel B Hardy
- Department of Anatomy and Cell Biology, Western University, London, Ontario, N6A 3K7, Canada
- Departments of Physiology and Pharmacology and Obstetrics and Gynaecology, Western University, London, Ontario, N6A 5C1, Canada
- Children's Health Research Institute, St. Josephs Health Care,, London, Ontario, N6C 2R5, Canada
| | - Ken K-C Yeung
- Departments of Chemistry and Biochemistry, Western University, London, Ontario, N6A 3K7, Canada
| | - Susanne Schmid
- Department of Anatomy and Cell Biology, Western University, London, Ontario, N6A 3K7, Canada
- Department of Psychology, Western University, London, Ontario, N6A 3K7, Canada
| | - Walter Rushlow
- Addiction Research Group, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, N6A 5C1, Canada
- Department of Anatomy and Cell Biology, Western University, London, Ontario, N6A 3K7, Canada
- Lawson Health Research Institute, St. Josephs Health Care, London, Ontario, N6C 2R5, Canada
- Department of Psychiatry, Western University, London, Ontario, N6A 3K7, Canada
| | - Steven R Laviolette
- Addiction Research Group, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, N6A 5C1, Canada.
- Department of Anatomy and Cell Biology, Western University, London, Ontario, N6A 3K7, Canada.
- Lawson Health Research Institute, St. Josephs Health Care, London, Ontario, N6C 2R5, Canada.
- Department of Psychiatry, Western University, London, Ontario, N6A 3K7, Canada.
| |
Collapse
|
3
|
Jiang Y, Dang W, Nie H, Kong X, Jiang Z, Guo J. Omega-3 polyunsaturated fatty acids and/or vitamin D in autism spectrum disorders: a systematic review. Front Psychiatry 2023; 14:1238973. [PMID: 37654990 PMCID: PMC10466790 DOI: 10.3389/fpsyt.2023.1238973] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 07/31/2023] [Indexed: 09/02/2023] Open
Abstract
This systematic review aims to offer an updated understanding of the relationship between omega-3 supplementation and/or vitamin D and autism spectrum disorders (ASD). The databases PubMed, Cochrane Library, Web of Science, EMBASE, CINAHL, Vip, CNKI, Wanfang, China Biomedical Database databases were searched using keywords, and relevant literature was hand-searched. Papers (n = 1,151) were systematically screened and deemed eligible since 2002. Twenty clinical controlled studies were included in the final review. The findings were analyzed for intervention effects focusing on the core symptoms of ASD, included social functioning, behavioral functioning, speech function and biomarkers changes. The review found that the effects of omega-3 supplementation on ASD were too weak to conclude that core symptoms were alleviated. Vitamin D supplementation improved core symptoms, particularly behavioral functioning, however, the results of the literatures included in this study were slightly mixed, we cannot directly conclude that vitamin D supplementation has a beneficial effect on a specific symptom of ASD, but the overall conclusion is that vitamin D supplementation has a positive effect on behavioral functioning in ASD. Omega-3 and vitamin D combination supplementation has a good combined effect on social and behavioral outcomes in patients with ASD.
Collapse
Affiliation(s)
- Yuwei Jiang
- College of Rehabilitation Medicine, Jiamusi University, Jiamusi, Heilongjiang, China
| | - Wenjun Dang
- Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Hong Nie
- Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Xiangying Kong
- College of Rehabilitation Medicine, Jiamusi University, Jiamusi, Heilongjiang, China
| | - Zhimei Jiang
- College of Rehabilitation Medicine, Jiamusi University, Jiamusi, Heilongjiang, China
| | - Jin Guo
- College of Rehabilitation Medicine, Jiamusi University, Jiamusi, Heilongjiang, China
| |
Collapse
|
4
|
Chompre G, Sambolin L, Cruz ML, Sanchez R, Rodriguez Y, Rodríguez-Santiago RE, Yamamura Y, Appleyard CB. A one month high fat diet disrupts the gut microbiome and integrity of the colon inducing adiposity and behavioral despair in male Sprague Dawley rats. Heliyon 2022; 8:e11194. [PMID: 36387539 PMCID: PMC9663868 DOI: 10.1016/j.heliyon.2022.e11194] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 06/17/2022] [Accepted: 10/17/2022] [Indexed: 11/05/2022] Open
Abstract
High-fat diet (HFD) is associated with gut microbiome dysfunction and mental disorders. However, the time-dependence as to when this occurs is unclear. We hypothesized that a short-term HFD causes colonic tissue integrity changes resulting in behavioral changes. Rats were fed HFD or low-fat diet (LFD) for a month and gut microbiome, colon, and behavior were evaluated. Behavioral despair was found in the HFD group. Although obesity was absent, the HFD group showed increased percent weight gain, epididymal fat tissue, and leptin expression. Moreover, the HFD group had increased colonic damage, decreased expression of the tight junction proteins, and higher lipopolysaccharides (LPS) in serum. Metagenomic analysis revealed that the HFD group had more Bacteroides and less S24-7 which correlated with the decreased claudin-5. Finally, HFD group showed an increase of microglia percent area, increased astrocytic projections, and decreased phospho-mTOR. In conclusion, HFD consumption in a short period is still sufficient to disrupt gut integrity resulting in LPS infiltration, alterations in the brain, and behavioral despair even in the absence of obesity.
Collapse
Affiliation(s)
- Gladys Chompre
- Biology and Biotechnology Department, Pontifical Catholic University of Puerto Rico, Ponce, Puerto Rico
- Basic Sciences Department, Division of Physiology, Ponce Health Sciences University/Ponce Research Institute, Ponce, Puerto Rico
| | - Lubriel Sambolin
- Basic Sciences Department, Division of Pharmacology, Ponce Health Sciences University/Ponce Research Institute, Ponce, Puerto Rico
| | - Myrella L. Cruz
- Basic Sciences Department, Division of Physiology, Ponce Health Sciences University/Ponce Research Institute, Ponce, Puerto Rico
| | - Rafael Sanchez
- AIDS Research Infrastructure Program, Ponce Health Sciences University/Ponce Research Institute, Ponce, Puerto Rico
| | - Yarelis Rodriguez
- Basic Sciences Department, Division of Physiology, Ponce Health Sciences University/Ponce Research Institute, Ponce, Puerto Rico
| | - Ronald E. Rodríguez-Santiago
- AIDS Research Infrastructure Program, Ponce Health Sciences University/Ponce Research Institute, Ponce, Puerto Rico
| | - Yasuhiro Yamamura
- AIDS Research Infrastructure Program, Ponce Health Sciences University/Ponce Research Institute, Ponce, Puerto Rico
| | - Caroline B. Appleyard
- Basic Sciences Department, Division of Physiology, Ponce Health Sciences University/Ponce Research Institute, Ponce, Puerto Rico
| |
Collapse
|
5
|
Yang R, Wang L, Jin K, Cao S, Wu C, Guo J, Chen J, Tang H, Tang M. Omega-3 Polyunsaturated Fatty Acids Supplementation Alleviate Anxiety Rather Than Depressive Symptoms Among First-Diagnosed, Drug-Naïve Major Depressive Disorder Patients: A Randomized Clinical Trial. Front Nutr 2022; 9:876152. [PMID: 35903448 PMCID: PMC9315396 DOI: 10.3389/fnut.2022.876152] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 05/25/2022] [Indexed: 11/13/2022] Open
Abstract
Background Omega-3 polyunsaturated fatty acids (n-3 PUFAs) augmentation of antidepressants has shown great potential in the prevention and treatment of major depressive disorders (MDD). Objective To investigate the effect of n-3 PUFAs plus venlafaxine in patients with first-diagnosed, drug-naïve depression. Method A total of 72 outpatients with first-diagnosed depression were recruited. The daily dose of 2.4 g/day n-3 PUFAs or placebo plus venlafaxine was used for over 12 weeks. The outcomes were assessed by the Hamilton depression scale (HAMD), Hamilton anxiety scale (HAMA), Beck depression inventory (BDI), and Self-rating anxiety scale (SAS). Results Both groups exhibited improvement on clinical characteristics at week 4 and week 12 compared with baseline. The rate of responders for anxiety in n-3 PUFAs group (44.44%) was significantly higher than that in placebo group (21.21%) at week 4 (χ2 = 4.182, p = 0.041), while week 12 did not show a difference (χ2 = 0.900, p = 0.343). The rate of responders for depression at both week 4 (χ2 = 0.261, p = 0.609) and week 12 (χ2 = 1.443, p = 0.230) showed no significant difference between two groups. Further analysis found that Childhood Trauma Questionnaire (CTQ) had positive correlation with HAMA (r = 0.301, p = 0.012), SAS (r = 0.246, p = 0.015), HAMD (r = 0.252, p = 0.038) and BDI (r = 0.233, p = 0.022) with Pearson correlation analysis. Social Support Rating Scale (SSRS) had negative correlation with SAS (r = -0.244, p = 0.015) and BDI (r = -0.365, p = 0.000). Conclusion This trial found that n-3 PUFAs supplementation in favor of venlafaxine alleviated the anxiety symptoms rather than depressive symptoms at the early stage of treatment (4 weeks) for first-diagnosed, drug-naïve depressed patients. However, the advantage disappeared in long-term treatment. Furthermore, childhood abuse and social support are closely related to the clinical and biological characteristics of depression. Both childhood trauma and lack of social support might be predictors of poor prognosis in depression. Clinical Trial Registration [clinicaltrials.gov], identifier [NCT03295708].
Collapse
Affiliation(s)
- Rong Yang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Lu Wang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Kun Jin
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Song Cao
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Chujun Wu
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Jimin Guo
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, United States
| | - Jindong Chen
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Hui Tang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Mimi Tang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
6
|
Fatty Acids: A Safe Tool for Improving Neurodevelopmental Alterations in Down Syndrome? Nutrients 2022; 14:nu14142880. [PMID: 35889838 PMCID: PMC9323400 DOI: 10.3390/nu14142880] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 02/06/2023] Open
Abstract
The triplication of chromosome 21 causes Down syndrome (DS), a genetic disorder that is characterized by intellectual disability (ID). The causes of ID start in utero, leading to impairments in neurogenesis, and continue into infancy, leading to impairments in dendritogenesis, spinogenesis, and connectivity. These defects are associated with alterations in mitochondrial and metabolic functions and precocious aging, leading to the early development of Alzheimer’s disease. Intense efforts are currently underway, taking advantage of DS mouse models to discover pharmacotherapies for the neurodevelopmental and cognitive deficits of DS. Many treatments that proved effective in mouse models may raise safety concerns over human use, especially at early life stages. Accumulating evidence shows that fatty acids, which are nutrients present in normal diets, exert numerous positive effects on the brain. Here, we review (i) the knowledge obtained from animal models regarding the effects of fatty acids on the brain, by focusing on alterations that are particularly prominent in DS, and (ii) the progress recently made in a DS mouse model, suggesting that fatty acids may indeed represent a useful treatment for DS. This scenario should prompt the scientific community to further explore the potential benefit of fatty acids for people with DS.
Collapse
|
7
|
Curcumin Relieves Chronic Unpredictable Mild Stress-Induced Depression-Like Behavior through the PGC-1 α/FNDC5/BDNF Pathway. Behav Neurol 2021; 2021:2630445. [PMID: 34950248 PMCID: PMC8692045 DOI: 10.1155/2021/2630445] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/11/2021] [Accepted: 11/12/2021] [Indexed: 01/20/2023] Open
Abstract
Methods All rats were randomly divided into four groups, namely, control, CUMS, CUMS + CUR, and CUMS + CUR + SR18292 (PGC-1α inhibitor). Behavioral tests were conducted to assess the antidepressant-like effects of CUR. The expressions of PGC-1α, estrogen-related receptor alpha (ERRα), FNDC5, and BDNF were determined to investigate the regulatory effects of CUR on the PGC-1α/FNDC5/BDNF pathway. The PGC-1α inhibitor SR18292 was used to explore the role of PGC-1α in the induction of BDNF by CUR. Results Daily gavage of 100 mg/kg CUR successfully attenuated the abnormal behaviors induced by CUMS and effectively prevented CUMS-induced reduction of PGC-1α, ERRα, FNDC5, and BDNF expressions. CUR also enhanced PGC-1α and ERRα translocation from cytoplasm to nucleus. Furthermore, we found that CUR supplementation effectively promoted neurocyte proliferation and suppressed neuronal apoptosis induced by CUMS. Of note, the PGC-1α inhibitor SR18292 remarkably reversed the beneficial effects of CUR on depressed rats, indicating an important role of PGC-1α in the antidepressant-like effects of CUR. Conclusion Collectively, our data evaluating the neuroprotective action of CUR in the CUMS rats highlights the involvement of the PGC-1α/FNDC5/BDNF pathway in the antidepressant-like effects of CUR.
Collapse
|
8
|
Mattioli S, Collodel G, Signorini C, Cotozzolo E, Noto D, Cerretani D, Micheli L, Fiaschi AI, Brecchia G, Menchetti L, Moretti E, Oger C, De Felice C, Castellini C. Tissue Antioxidant Status and Lipid Peroxidation Are Related to Dietary Intake of n-3 Polyunsaturated Acids: A Rabbit Model. Antioxidants (Basel) 2021; 10:681. [PMID: 33925444 PMCID: PMC8146135 DOI: 10.3390/antiox10050681] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/15/2021] [Accepted: 04/24/2021] [Indexed: 12/14/2022] Open
Abstract
Polyunsaturated fatty acid (PUFA) metabolism and tissue distribution is modulated by the oxidation of these molecules. This research aimed to investigate the implication of dietary n-3 PUFA supplementation (precursor and long-chain PUFA) on the PUFA profile and oxidative status of the liver, testis, and brain of adult rabbit bucks. Twenty New Zealand White rabbit bucks were divided into four experimental groups (n = 5 per group) and were fed different diets for 110 days: control (CNT), standard diet containing 50 mg/kg alpha-tocopheryl acetate (vitamin E); CNT+, standard diet + 200 mg/kg vitamin E; FLAX, standard diet + 10% flaxseed + 200 mg/kg vitamin E; or FISH, standard diet + 3.5% fish oil + 200 mg/kg vitamin E. Antioxidants (enzymatic and non-enzymatic), oxidative status (malondialdehyde and isoprostanoids), and n-3 and n-6 PUFAs of tissues were analysed. A chain mechanism of oxidant/antioxidant molecules, which largely depended on the particular PUFA composition, was delineated in the different organs. The liver showed an oxidant/antioxidant profile and lipid pathways widely modulated by PUFA and vitamin E administration; on the other hand, the testis' oxidative profile rather than its lipid profile seemed to be particularly affected, an outcome opposite to that of the brain (modulation operated by dietary PUFA).
Collapse
Affiliation(s)
- Simona Mattioli
- Department of Agricultural, Environmental and Food Science, University of Perugia, Borgo 20 Giugno, 74, 06123 Perugia, Italy; (S.M.); (E.C.); (C.C.)
| | - Giulia Collodel
- Department of Molecular and Developmental Medicine, University of Siena, Policlinico Santa Maria alle Scotte, Viale Bracci 16, 53100 Siena, Italy; (C.S.); (D.N.); (E.M.)
| | - Cinzia Signorini
- Department of Molecular and Developmental Medicine, University of Siena, Policlinico Santa Maria alle Scotte, Viale Bracci 16, 53100 Siena, Italy; (C.S.); (D.N.); (E.M.)
| | - Elisa Cotozzolo
- Department of Agricultural, Environmental and Food Science, University of Perugia, Borgo 20 Giugno, 74, 06123 Perugia, Italy; (S.M.); (E.C.); (C.C.)
| | - Daria Noto
- Department of Molecular and Developmental Medicine, University of Siena, Policlinico Santa Maria alle Scotte, Viale Bracci 16, 53100 Siena, Italy; (C.S.); (D.N.); (E.M.)
| | - Daniela Cerretani
- Department of Medicine, Surgery and Neurosciences, University of Siena, Policlinico Santa Maria alle Scotte, Viale Bracci, 16, 53100 Siena, Italy; (D.C.); (L.M.); (A.I.F.)
| | - Lucia Micheli
- Department of Medicine, Surgery and Neurosciences, University of Siena, Policlinico Santa Maria alle Scotte, Viale Bracci, 16, 53100 Siena, Italy; (D.C.); (L.M.); (A.I.F.)
| | - Anna Ida Fiaschi
- Department of Medicine, Surgery and Neurosciences, University of Siena, Policlinico Santa Maria alle Scotte, Viale Bracci, 16, 53100 Siena, Italy; (D.C.); (L.M.); (A.I.F.)
| | - Gabriele Brecchia
- Department of Veterinary Medicine, University of Milan, Via dell’Università 6, 26900 Lodi, Italy;
| | - Laura Menchetti
- Department of Agricultural and Agri-Food Sciences and Technologies, University of Bologna, Viale Fanin 46, 40138 Bologna, Italy;
| | - Elena Moretti
- Department of Molecular and Developmental Medicine, University of Siena, Policlinico Santa Maria alle Scotte, Viale Bracci 16, 53100 Siena, Italy; (C.S.); (D.N.); (E.M.)
| | - Camille Oger
- Institut des Biomolécules Max Mousseron (IBMM), UMR, CNRS, Université de Montpellier, ENSCM, 5247 Montpellier, France;
| | - Claudio De Felice
- Neonatal Intensive Care Unit, Azienda Ospedaliera Universitaria Senese, 53100 Siena, Italy;
| | - Cesare Castellini
- Department of Agricultural, Environmental and Food Science, University of Perugia, Borgo 20 Giugno, 74, 06123 Perugia, Italy; (S.M.); (E.C.); (C.C.)
| |
Collapse
|
9
|
Sambra V, Echeverria F, Valenzuela A, Chouinard-Watkins R, Valenzuela R. Docosahexaenoic and Arachidonic Acids as Neuroprotective Nutrients throughout the Life Cycle. Nutrients 2021; 13:986. [PMID: 33803760 PMCID: PMC8003191 DOI: 10.3390/nu13030986] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/08/2021] [Accepted: 03/16/2021] [Indexed: 12/17/2022] Open
Abstract
The role of docosahexaenoic acid (DHA) and arachidonic acid (AA) in neurogenesis and brain development throughout the life cycle is fundamental. DHA and AA are long-chain polyunsaturated fatty acids (LCPUFA) vital for many human physiological processes, such as signaling pathways, gene expression, structure and function of membranes, among others. DHA and AA are deposited into the lipids of cell membranes that form the gray matter representing approximately 25% of the total content of brain fatty acids. Both fatty acids have effects on neuronal growth and differentiation through the modulation of the physical properties of neuronal membranes, signal transduction associated with G proteins, and gene expression. DHA and AA have a relevant role in neuroprotection against neurodegenerative pathologies such as Alzheimer's disease and Parkinson's disease, which are associated with characteristic pathological expressions as mitochondrial dysfunction, neuroinflammation, and oxidative stress. The present review analyzes the neuroprotective role of DHA and AA in the extreme stages of life, emphasizing the importance of these LCPUFA during the first year of life and in the developing/prevention of neurodegenerative diseases associated with aging.
Collapse
Affiliation(s)
- Verónica Sambra
- Department of Nutrition, Faculty of Medicine, University of Chile, Santiago 8380000, Chile; (V.S.); (F.E.)
| | - Francisca Echeverria
- Department of Nutrition, Faculty of Medicine, University of Chile, Santiago 8380000, Chile; (V.S.); (F.E.)
| | - Alfonso Valenzuela
- Faculty of Medicine, School of Nutrition, Universidad de Los Andes, Santiago 8380000, Chile;
| | - Raphaël Chouinard-Watkins
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON M5S1A8, Canada;
| | - Rodrigo Valenzuela
- Department of Nutrition, Faculty of Medicine, University of Chile, Santiago 8380000, Chile; (V.S.); (F.E.)
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON M5S1A8, Canada;
| |
Collapse
|
10
|
Eyles DW. How do established developmental risk-factors for schizophrenia change the way the brain develops? Transl Psychiatry 2021; 11:158. [PMID: 33686066 PMCID: PMC7940420 DOI: 10.1038/s41398-021-01273-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/08/2021] [Accepted: 02/05/2021] [Indexed: 12/21/2022] Open
Abstract
The recognition that schizophrenia is a disorder of neurodevelopment is widely accepted. The original hypothesis was coined more than 30 years ago and the wealth of supportive epidemiologically data continues to grow. A number of proposals have been put forward to suggest how adverse early exposures in utero alter the way the adult brain functions, eventually producing the symptoms of schizophrenia. This of course is extremely difficult to study in developing human brains, so the bulk of what we know comes from animal models of such exposures. In this review, I will summarise the more salient features of how the major epidemiologically validated exposures change the way the brain is formed leading to abnormal function in ways that are informative for schizophrenia symptomology. Surprisingly few studies have examined brain ontogeny from embryo to adult in such models. However, where there is longitudinal data, various convergent mechanisms are beginning to emerge involving stress and immune pathways. There is also a surprisingly consistent alteration in how very early dopamine neurons develop in these models. Understanding how disparate epidemiologically-validated exposures may produce similar developmental brain abnormalities may unlock convergent early disease-related pathways/processes.
Collapse
Affiliation(s)
- Darryl W Eyles
- Queensland Brain Institute, University of Queensland, Brisbane, 4072, QLD, Australia.
- Queensland Centre for Mental Health Research, The Park Centre for Mental Health, Wacol, 4076, QLD, Australia.
| |
Collapse
|
11
|
Vidal V, García-Cerro S, Rueda N, Puente A, Bartesaghi R, Martínez-Cué C. Early postnatal oleic acid administration enhances synaptic development and cognitive abilities in the Ts65Dn mouse model of Down syndrome. Nutr Neurosci 2020; 25:1400-1412. [PMID: 33345728 DOI: 10.1080/1028415x.2020.1861897] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
OBJECTIVES The brains of individuals with Down syndrome (DS) present defects in neurogenesis and synaptogenesis during prenatal and early postnatal stages that are partially responsible for their cognitive disabilities. Because oleic and linolenic fatty acids enhance neurogenesis, synaptogenesis, and cognitive abilities in rodents and humans, in this study we evaluated the ability of these compounds to restore these altered phenotypes in the Ts65Dn (TS) mouse model of DS during early postnatal stages. METHODS TS and euploid mice were treated with oleic or linolenic acid from PD3 to PD15, and the short- and long- term effects of these acids on neurogenesis and synaptogenesis were evaluated. The effects of these treatments on the cognitive abilities of TS mice during early adulthood were also evaluated. RESULTS Administration of oleic or linolenic acid did not modify cell proliferation immediately after treatment discontinuation or several weeks later. However, oleic acid increased the total number of DAPI+ cells (+ 26%), the percentage of BrdU+ cells that acquired a neural phenotype (+ 9.1%), the number of pre- (+ 29%) and post-synaptic (+ 32%) terminals and the cognitive abilities of TS mice (+ 18.1%). In contrast, linolenic acid only produced a slight cognitive improvement in TS mice. (+12.1%). DISCUSSION These results suggest that early postnatal administration of oleic acid could palliate the cognitive deficits of DS individuals.
Collapse
Affiliation(s)
- Verónica Vidal
- Faculty of Medicine, Department of Physiology and Pharmacology, University of Cantabria, Santander, Spain
| | - Susana García-Cerro
- Faculty of Medicine, Department of Physiology and Pharmacology, University of Cantabria, Santander, Spain
| | - Noemí Rueda
- Faculty of Medicine, Department of Physiology and Pharmacology, University of Cantabria, Santander, Spain
| | - Alba Puente
- Faculty of Medicine, Department of Physiology and Pharmacology, University of Cantabria, Santander, Spain
| | - Renata Bartesaghi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Carmen Martínez-Cué
- Faculty of Medicine, Department of Physiology and Pharmacology, University of Cantabria, Santander, Spain
| |
Collapse
|
12
|
Ekstrand B, Scheers N, Rasmussen MK, Young JF, Ross AB, Landberg R. Brain foods - the role of diet in brain performance and health. Nutr Rev 2020; 79:693-708. [PMID: 32989449 DOI: 10.1093/nutrit/nuaa091] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The performance of the human brain is based on an interplay between the inherited genotype and external environmental factors, including diet. Food and nutrition, essential in maintenance of brain performance, also aid in prevention and treatment of mental disorders. Both the overall composition of the human diet and specific dietary components have been shown to have an impact on brain function in various experimental models and epidemiological studies. This narrative review provides an overview of the role of diet in 5 key areas of brain function related to mental health and performance, including: (1) brain development, (2) signaling networks and neurotransmitters in the brain, (3) cognition and memory, (4) the balance between protein formation and degradation, and (5) deteriorative effects due to chronic inflammatory processes. Finally, the role of diet in epigenetic regulation of brain physiology is discussed.
Collapse
Affiliation(s)
- Bo Ekstrand
- Department of Biology and Biological Engineering, Food and Nutrition Science, Chalmers University of Technology, Gothenburg, Sweden
| | - Nathalie Scheers
- Department of Biology and Biological Engineering, Food and Nutrition Science, Chalmers University of Technology, Gothenburg, Sweden
| | | | | | - Alastair B Ross
- Department of Biology and Biological Engineering, Food and Nutrition Science, Chalmers University of Technology, Gothenburg, Sweden.,AgResearch, Lincoln, New Zealand
| | - Rikard Landberg
- Department of Biology and Biological Engineering, Food and Nutrition Science, Chalmers University of Technology, Gothenburg, Sweden
| |
Collapse
|
13
|
Horman T, Fernandes MF, Tache MC, Hucik B, Mutch DM, Leri F. Dietary n-6/ n-3 Ratio Influences Brain Fatty Acid Composition in Adult Rats. Nutrients 2020; 12:nu12061847. [PMID: 32575852 PMCID: PMC7353285 DOI: 10.3390/nu12061847] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/12/2020] [Accepted: 06/17/2020] [Indexed: 11/16/2022] Open
Abstract
There is mounting evidence that diets supplemented with polyunsaturated fatty acids (PUFA) can impact brain biology and functions. This study investigated whether moderately high-fat diets differing in n-6/n-3 fatty acid ratio could impact fatty acid composition in regions of the brain linked to various psychopathologies. Adult male Sprague Dawley rats consumed isocaloric diets (35% kcal from fat) containing different ratios of linoleic acid (n-6) and alpha-linolenic acid (n-3) for 2 months. It was found that the profiles of PUFA in the prefrontal cortex, hippocampus, and hypothalamus reflected the fatty acid composition of the diet. In addition, region-specific changes in saturated fatty acids and monounsaturated fatty acids were detected in the hypothalamus, but not in the hippocampus or prefrontal cortex. This study in adult rats demonstrates that fatty acid remodeling in the brain by diet can occur within months and provides additional evidence for the suggestion that diet could impact mental health.
Collapse
Affiliation(s)
- Thomas Horman
- Department of Psychology and Neuroscience, University of Guelph, Guelph, ON N1G 2W1, Canada; (T.H.); (M.F.F.)
| | - Maria F. Fernandes
- Department of Psychology and Neuroscience, University of Guelph, Guelph, ON N1G 2W1, Canada; (T.H.); (M.F.F.)
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada; (M.C.T.); (B.H.); (D.M.M.)
| | - Maria C. Tache
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada; (M.C.T.); (B.H.); (D.M.M.)
| | - Barbora Hucik
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada; (M.C.T.); (B.H.); (D.M.M.)
| | - David M. Mutch
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada; (M.C.T.); (B.H.); (D.M.M.)
| | - Francesco Leri
- Department of Psychology and Neuroscience, University of Guelph, Guelph, ON N1G 2W1, Canada; (T.H.); (M.F.F.)
- Correspondence:
| |
Collapse
|
14
|
García-Cerro S, Rueda N, Vidal V, Puente A, Campa V, Lantigua S, Narcís O, Velasco A, Bartesaghi R, Martínez-Cué C. Prenatal Administration of Oleic Acid or Linolenic Acid Reduces Neuromorphological and Cognitive Alterations in Ts65dn Down Syndrome Mice. J Nutr 2020; 150:1631-1643. [PMID: 32243527 DOI: 10.1093/jn/nxaa074] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 12/17/2019] [Accepted: 03/02/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The cognitive impairments that characterize Down syndrome (DS) have been attributed to brain hypocellularity due to neurogenesis impairment during fetal stages. Thus, enhancing prenatal neurogenesis in DS could prevent or reduce some of the neuromorphological and cognitive defects found in postnatal stages. OBJECTIVES As fatty acids play a fundamental role in morphogenesis and brain development during fetal stages, in this study, we aimed to enhance neurogenesis and the cognitive abilities of the Ts65Dn (TS) mouse model of DS by administering oleic or linolenic acid. METHODS In total, 85 pregnant TS females were subcutaneously treated from Embryonic Day (ED) 10 until Postnatal Day (PD) 2 with oleic acid (400 mg/kg), linolenic acid (500 mg/kg), or vehicle. All analyses were performed on their TS and Control (CO) male and female progeny. At PD2, we evaluated the short-term effects of the treatments on neurogenesis, cellularity, and brain weight, in 40 TS and CO pups. A total of 69 TS and CO mice were used to test the long-term effects of the prenatal treatments on cognition from PD30 to PD45, and on neurogenesis, cellularity, and synaptic markers, at PD45. Data were compared by ANOVAs. RESULTS Prenatal administration of oleic or linolenic acid increased the brain weight (+36.7% and +45%, P < 0.01), the density of BrdU (bromodeoxyuridine)- (+80% and +115%; P < 0.01), and DAPI (4',6-diamidino-2-phenylindole)-positive cells (+64% and +22%, P < 0.05) of PD2 TS mice with respect to the vehicle-treated TS mice. Between PD30 and PD45, TS mice prenatally treated with oleic or linolenic acid showed better cognitive abilities (+28% and +25%, P < 0.01) and a higher density of the postsynaptic marker PSD95 (postsynaptic density protein 95) (+65% and +44%, P < 0.05) than the vehicle-treated TS animals. CONCLUSION The beneficial cognitive and neuromorphological effects induced by oleic or linolenic acid in TS mice suggest that they could be promising pharmacotherapies for DS-associated cognitive deficits.
Collapse
Affiliation(s)
- Susana García-Cerro
- Department of Physiology and Pharmacology, Faculty of Medicine, University of Cantabria, Santander, Cantabria, Spain
| | - Noemí Rueda
- Department of Physiology and Pharmacology, Faculty of Medicine, University of Cantabria, Santander, Cantabria, Spain
| | - Verónica Vidal
- Department of Physiology and Pharmacology, Faculty of Medicine, University of Cantabria, Santander, Cantabria, Spain
| | - Alba Puente
- Department of Physiology and Pharmacology, Faculty of Medicine, University of Cantabria, Santander, Cantabria, Spain
| | - Víctor Campa
- Institute of Molecular Biology and Biomedicine (IBTECC), Santander, Cantabria, Spain
| | - Sara Lantigua
- Department of Physiology and Pharmacology, Faculty of Medicine, University of Cantabria, Santander, Cantabria, Spain
| | - Oriol Narcís
- Department of Physiology and Pharmacology, Faculty of Medicine, University of Cantabria, Santander, Cantabria, Spain
| | - Ana Velasco
- Department of Biochemistry and Molecular Biology, Institute of Neurosciences of Castilla and Leon (INCYL), University of Salamanca, Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | - Renata Bartesaghi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Carmen Martínez-Cué
- Department of Physiology and Pharmacology, Faculty of Medicine, University of Cantabria, Santander, Cantabria, Spain
| |
Collapse
|
15
|
Feltham BA, Louis XL, Eskin MNA, Suh M. Docosahexaenoic Acid: Outlining the Therapeutic Nutrient Potential to Combat the Prenatal Alcohol-Induced Insults on Brain Development. Adv Nutr 2020; 11:724-735. [PMID: 31989167 PMCID: PMC7231602 DOI: 10.1093/advances/nmz135] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 12/05/2019] [Accepted: 12/22/2019] [Indexed: 01/20/2023] Open
Abstract
Brain development is markedly affected by prenatal alcohol exposure, leading to cognitive and behavioral problems in the children. Protecting neuronal damage from prenatal alcohol could improve neural connections and functioning of the brain. DHA, a n-3 (ω-3) long-chain PUFA, is involved in the development of neurons. Insufficient concentrations of DHA impair neuronal development and plasticity of synaptic junctions and affect neurotransmitter concentrations in the brain. Alcohol consumption during pregnancy decreases the maternal DHA status and reduces the placental transfer of DHA to the fetus, resulting in less DHA being available for brain development. It is important to know whether DHA could induce beneficial effects on various physiological functions that promote neuronal development. This review will discuss the current evidence for the beneficial role of DHA in protecting against neuronal damage and its potential in mitigating the teratogenic effects of alcohol.
Collapse
Affiliation(s)
- Bradley A Feltham
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- Division of Neurodegenerative Disorders, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, Manitoba, Canada
- Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, Manitoba, Canada
| | - Xavier L Louis
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- Division of Neurodegenerative Disorders, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, Manitoba, Canada
- Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, Manitoba, Canada
| | - Michael N A Eskin
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Miyoung Suh
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- Division of Neurodegenerative Disorders, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, Manitoba, Canada
- Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, Manitoba, Canada
| |
Collapse
|
16
|
Yang R, Zhang MQ, Xue Y, Yang R, Tang MM. Dietary of n-3 polyunsaturated fatty acids influence neurotransmitter systems of rats exposed to unpredictable chronic mild stress. Behav Brain Res 2019; 376:112172. [DOI: 10.1016/j.bbr.2019.112172] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 08/19/2019] [Accepted: 08/21/2019] [Indexed: 12/21/2022]
|
17
|
Yang R, Zhang M, Xue Y, Yang R, Tang M, Dang R. Effects of maternal deprivation stress and maternal dietary of n-3 polyunsaturated fatty acids on the neurobehavioral development of male offspring. Nutr Neurosci 2019; 24:865-872. [PMID: 31679472 DOI: 10.1080/1028415x.2019.1684689] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Objectives: Early-life stress and polyunsaturated fatty acids (PUFAs) have profound effects on brain development. Polyunsaturated fatty acids (PUFAs) are essential nutrients and normal components for development. The aims of this study are to investigate the effects of maternal deprivation (MD) stress and maternal dietary of n-3 PUFAs on the physical and neurobiological developments of offspring.Methods: According to the content of n-3 PUFAs in diets, female dams were divided into three groups (n = 6-7): deficiency, control and supplementary. MD paradigm was performed 6 h a day from postnatal days (PND) 1 to PND 14. The physical parameters and neurobehavioral tests were measured.Results: Different effects of MD stress, maternal diet and time on physical and neurobehavioral developments were observed. There was an interaction among stress, diet and time on body weight. MD stress markedly decreased weight among different diet groups, while deficiency diet significantly increased weight on PND 21 in N-MD pups and on PND 14 in MD pups. Moreover, MD stress delayed fur appearance and eye opening, whereas deficiency diet accelerated eye opening. On cliff avoidance and rearing frequency, MD pups performed worse; however a subtle delay on the surface righting was observed in supplementary group. Additionally, MD pups performed worse on PND 14 in forelimb grip. Unfortunately, there were no significant effects on incisor eruption, locomotion frequency and negative geotaxis.Discussion: This study suggests that early MD and inadequate intake of n-3 PUFAs are harmful to optimal growth and neurobehavioral development.
Collapse
Affiliation(s)
- Rui Yang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, People's Republic of China.,Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Mengqi Zhang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Ying Xue
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, People's Republic of China.,Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Rong Yang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, People's Republic of China.,Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Mimi Tang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, People's Republic of China.,Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Ruili Dang
- Institute of Clinical Pharmacy, Jining First People's Hospital, Jining Medical University, Jining, People's Republic of China
| |
Collapse
|
18
|
Maternal n-3 PUFAs deficiency during pregnancy inhibits neural progenitor cell proliferation in fetal rat cerebral cortex. Int J Dev Neurosci 2019; 76:72-79. [PMID: 31299388 DOI: 10.1016/j.ijdevneu.2019.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 06/26/2019] [Accepted: 07/05/2019] [Indexed: 11/20/2022] Open
Abstract
The aim of this study was to evaluate the in vivo impacts of maternal n-3 polyunsaturated fatty acids (PUFAs) deficiency during pregnancy on the proliferation of neural progenitor cells (NPCs) in the developing cerebral cortex of fetal rats. Our results showed that about 5 weeks of maternal dietary n-3 PUFAs deprivation resulted in a substantial n-3 PUFA deficiency in fetal rat cerebral cortex. Importantly, by two survival schemes and two quantitative methods, we found that maternal intake of n-3 PUFAs deficient diet during the gestation significantly inhibited the proliferation of NPCs in fetal rat cerebral cortex. Moreover, the decreased cortical NPCs proliferation induced by nutritional n-3 PUFAs restriction did not originate from the increased NPCs apoptosis. Finally, our observations indicated that the down-regulation of cyclin E protein might be involved in the inhibitory effects of maternal n-3 PUFAs deficient diet on the proliferation of cortical NPCs. These findings highlight the importance of maternal intake of appropriate n-3 PUFAs and deepen our understanding of the exact effects of n-3 PUFAs on mammalian brain development.
Collapse
|
19
|
A Randomised-Controlled Trial of Vitamin D and Omega-3 Long Chain Polyunsaturated Fatty Acids in the Treatment of Core Symptoms of Autism Spectrum Disorder in Children. J Autism Dev Disord 2019; 49:1778-1794. [PMID: 30607782 DOI: 10.1007/s10803-018-3860-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
We evaluated the efficacy of vitamin D (VID), omega-3 long chain polyunsaturated fatty acids (omega-3 LCPUFA, OM), or both (VIDOM) on core symptoms of ASD. New Zealand children with ASD (n = 73; aged 2.5-8.0 years) received daily 2000 IU vitamin D3, 722 mg docosahexaenoic acid, both, or placebo. Outcome measures were Social Responsiveness Scale (SRS) and Sensory Processing Measure (SPM). Of 42 outcome measures comparisons (interventions vs. placebo), two showed greater improvements (P = 0.03, OM and VIDOM for SRS-social awareness) and four showed trends for greater improvements (P < 0.1, VIDOM for SRS-social communicative functioning, OM for SRS-total, VIDOM for SPM-taste/smell and OM for SPM-balance/motion). Omega-3 LCPUFA with and without vitamin D may improve some core symptoms of ASD but no definitive conclusions can be made.
Collapse
|
20
|
Kumari S, Mazumder AG, Bhardwaj A, Singh D. Early α-linolenic acid exposure to embryo reduces pentylenetetrazol-induced seizures in zebrafish larva. Prostaglandins Leukot Essent Fatty Acids 2019; 143:15-20. [PMID: 30975378 DOI: 10.1016/j.plefa.2019.02.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 02/28/2019] [Indexed: 11/16/2022]
Abstract
Over the past few years, there has been a tremendous increase in interest of general population toward food-based therapies for management of chronic clinical conditions due to their lesser adverse effects with prolonged use over pharmacotherapies. Foods enriched with omega-3 fatty acids have shown some promising results in case of epilepsy. The present study was envisioned to investigate the effect of early exposure of α-linolenic acid (ALA), an essential omega-3 fatty acid in developing zebrafish (Danio rerio) embryos toward pentylenetetrazol (PTZ)-induced seizure susceptibility. The healthy wild-type zebrafish embryos were incubated in system water or system water containing different ALA concentrations (1-20 µM) till 7 dpf (days post fertilization). Each larva at 7 dpf was placed in 8 mM PTZ solution and seizure event was recorded. ALA incubation at 10 µM and 20 µM concentrations showed a dose-dependent reduction in PTZ-mediated hyperactive responses in larvae indicated by a marked decrease in total distance travelled and speed, as compared to vehicle control. Furthermore, both the treated groups showed increase in the latency to PTZ-induced clonus-like seizures in larvae, as compared to vehicle control. ALA incubated larvae at 10 µM and 20 µM concentrations also showed a significant reduction in c-fos mRNA level. A marked increase in the level of ALA and docosahexaenoic acid was also observed in the larvae incubated at highest effective concentration of ALA. The present study concluded that embryonic exposure of ALA reduced PTZ-induced seizures in zebrafish larva.
Collapse
Affiliation(s)
- Savita Kumari
- Pharmacology and Toxicology Laboratory, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, Himachal Pradesh, India
| | - Arindam Ghosh Mazumder
- Pharmacology and Toxicology Laboratory, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, Himachal Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, Himachal Pradesh, India
| | - Avantika Bhardwaj
- Pharmacology and Toxicology Laboratory, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, Himachal Pradesh, India
| | - Damanpreet Singh
- Pharmacology and Toxicology Laboratory, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, Himachal Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, Himachal Pradesh, India.
| |
Collapse
|
21
|
Xu K, Bai M, Bin P, Duan Y, Wu X, Liu H, Yin Y. Negative effects on newborn piglets caused by excess dietary tryptophan in the morning in sows. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:3005-3016. [PMID: 30478950 DOI: 10.1002/jsfa.9514] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 11/22/2018] [Accepted: 11/22/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND This study investigated the effect of dynamic feeding models of dietary tryptophan on sows' performance during late pregnancy. RESULTS The average piglet birth weight and live farrowing rate from sows consuming a high-low tryptophan diet (0.39% Trp in the morning and 0.13% Trp in the afternoon) were decreased compared with those fed a 2×tryptophan diet (0.26% Trp in the morning and afternoon). Compared with the 2×tryptophan group, sow serum kynurenic acid and the newborn liver n-6:n-3 polyunsaturated fatty acid ratio were significantly higher, and sow serum taurine and newborn serum taurine, phosphoserine, cysteine and proline were lower in the high-low tryptophan diet group. Eighty-eight genes were differentially expressed in newborn piglets' livers between the 2×tryptophan and high-low groups. Genes related to cytotoxic effector regulation (major histocompatibility complex class I proteins), NADH oxidation, reactive oxygen species (ROS) metabolism and tissue development were differentially expressed between these two groups. CONCLUSION Together, the results provide information on new biomarkers in serum or liver and provide novel insights into variations in the fetal liver during exogenous stimulus response and biological processes of ROS metabolism in fetuses during late pregnancy caused by a single excessive tryptophan ingestion daily in the morning. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Kang Xu
- Key Laboratory of Agroecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
- Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha, China
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South Central, Ministry of Agriculture, Changsha, China
- Hangzhou King Techina Technology Company Academician Expert Workstation, Hangzhou King Techina Technology Co., Ltd., Hangzhou, China
| | - Miaomiao Bai
- Key Laboratory of Agroecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
- Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha, China
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South Central, Ministry of Agriculture, Changsha, China
- Hangzhou King Techina Technology Company Academician Expert Workstation, Hangzhou King Techina Technology Co., Ltd., Hangzhou, China
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, China
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Peng Bin
- Key Laboratory of Agroecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
- Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha, China
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South Central, Ministry of Agriculture, Changsha, China
- Hangzhou King Techina Technology Company Academician Expert Workstation, Hangzhou King Techina Technology Co., Ltd., Hangzhou, China
| | - Yehui Duan
- Key Laboratory of Agroecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
- Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha, China
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South Central, Ministry of Agriculture, Changsha, China
- Hangzhou King Techina Technology Company Academician Expert Workstation, Hangzhou King Techina Technology Co., Ltd., Hangzhou, China
| | - Xin Wu
- Key Laboratory of Agroecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
- Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha, China
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South Central, Ministry of Agriculture, Changsha, China
- Hangzhou King Techina Technology Company Academician Expert Workstation, Hangzhou King Techina Technology Co., Ltd., Hangzhou, China
| | - Hongnan Liu
- Key Laboratory of Agroecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
- Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha, China
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South Central, Ministry of Agriculture, Changsha, China
- Hangzhou King Techina Technology Company Academician Expert Workstation, Hangzhou King Techina Technology Co., Ltd., Hangzhou, China
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, China
- Hunan Co-Innovation Center of Animal Production Safety, CICAPS, Changsha, China
| | - Yulong Yin
- Key Laboratory of Agroecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
- Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha, China
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South Central, Ministry of Agriculture, Changsha, China
- Hangzhou King Techina Technology Company Academician Expert Workstation, Hangzhou King Techina Technology Co., Ltd., Hangzhou, China
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, China
- College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Kondarl Agro-pastoral Technology Co., Ltd., Dongguan, China
- Academician Workstation of Changsha Medical University, Changsha, China
| |
Collapse
|
22
|
The effects of omega-3 fatty acid deficiency during development on oxidative fatty acid degradation during maturity in a mouse model of Alzheimer's disease. Neurobiol Aging 2019; 79:66-74. [PMID: 31029017 DOI: 10.1016/j.neurobiolaging.2019.03.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 02/25/2019] [Accepted: 03/05/2019] [Indexed: 12/13/2022]
Abstract
Metabolic conditions during brain development may have long-term consequences on brain metabolism, thereby influencing the risk of neurodegenerative disease in later life. To ascertain the long-term consequences of omega-3 (ω3) fatty acid deficiency during brain development on oxidative fatty acid degradation in the brain and the development of Alzheimer-like pathology, wild-type (WT) female mice were fed diets that were either replete or deficient in ω3 fatty acids for 5 weeks. These females were then mated with hemizygous 5xFAD male transgenic (TG) mouse models of Alzheimer's disease, and the progeny were continued on diets that were either ω3-replete or ω3-deficient. When the progeny were 6 months of age, they received radiolabeled arachidonic acid (ARA) by intracerebroventricular injection. Five days after these injections, the brains were harvested and oxidative degradation of the radiolabeled ARA was characterized. Among the progeny of female mice on an ω3-replete diet, TG progeny had lower PSD-95 expression and higher oxidative ARA degradation than WT progeny. Progeny on an ω3-deficient diet, however, had no significant differences in PSD-95 expression between TG and WT mice, or in the extent of ARA degradation. In TG mice, an ω3-deficient diet reduced oxidative ARA degradation to a greater extent than in WT mice. The reductions in oxidative ARA degradation occurred even if the progeny of female mice on an ω3-deficient diet resumed an ω3-replete diet immediately on weaning. These results demonstrate that dietary ω3 fatty acid deficiency during development can cause long-term changes in the expression of a synaptic marker and long-term reductions in the rate of ARA degradation in the WT brain, which are not completely alleviated by an ω3-replete diet after weaning. The elimination of differences between TG and WT mice by an ω3-deficient diet suggests that mechanisms regulating PSD-95 expression and the oxidative degradation of ARA are related and that the timing of dietary ω3 intake during development may influence Alzheimer's disease-related pathological changes later in life.
Collapse
|
23
|
Maternal Dietary Docosahexaenoic Acid Alters Lipid Peroxidation Products and (n-3)/(n-6) Fatty Acid Balance in Offspring Mice. Metabolites 2019; 9:metabo9030040. [PMID: 30832208 PMCID: PMC6468482 DOI: 10.3390/metabo9030040] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 02/24/2019] [Accepted: 02/26/2019] [Indexed: 12/11/2022] Open
Abstract
The abundance of docosahexaenoic acid (DHA) in the mammalian brain has generated substantial interest in the search for its roles in regulating brain functions. Our recent study with a gene/stress mouse model provided evidence to support the ability for the maternal supplement of DHA to alleviate autism-associated behavior in the offspring. DHA and arachidonic acid (ARA) are substrates of enzymatic and non-enzymatic reactions, and lipid peroxidation results in the production of 4-hydroxyhexenal (4-HHE) and 4-hydroxynonenal (4-HNE), respectively. In this study, we examine whether a maternal DHA-supplemented diet alters fatty acids (FAs), as well as lipid peroxidation products in the pup brain, heart and plasma by a targeted metabolite approach. Pups in the maternal DHA-supplemented diet group showed an increase in DHA and a concomitant decrease in ARA in all brain regions examined. However, significant increases in 4-HHE, and not 4-HNE, were found mainly in the cerebral cortex and hippocampus. Analysis of heart and plasma showed large increases in DHA and 4-HHE, but a significant decrease in 4-HNE levels only in plasma. Taken together, the DHA-supplemented maternal diet alters the (n-3)/(n-6) FA ratio, and increases 4-HHE levels in pup brain, heart and plasma. These effects may contribute to the beneficial effects of DHA on neurodevelopment, as well as functional changes in other body organs.
Collapse
|
24
|
Mazahery H, Conlon CA, Beck KL, Mugridge O, Kruger MC, Stonehouse W, Camargo CA, Meyer BJ, Jones B, von Hurst PR. A randomised controlled trial of vitamin D and omega-3 long chain polyunsaturated fatty acids in the treatment of irritability and hyperactivity among children with autism spectrum disorder. J Steroid Biochem Mol Biol 2019; 187:9-16. [PMID: 30744880 DOI: 10.1016/j.jsbmb.2018.10.017] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 10/17/2018] [Accepted: 10/25/2018] [Indexed: 11/22/2022]
Abstract
Irritability and hyperactivity are common in children with Autism Spectrum Disorder (ASD). Because pharmacological treatments may have adverse effects, and despite limited evidence, caregivers/parents often use dietary supplements such as vitamin D and omega-3 fatty acids to address these behavioural symptoms. As a secondary objective of the VIDOMA (Vitamin D and Omega-3 in ASD) trial, we evaluated the efficacy of vitamin D, omega-3 long chain polyunsaturated fatty acid [omega-3 LCPUFA; docosahexaenoic acid (DHA)], or both on irritability and hyperactivity. New Zealand children with ASD (aged 2.5-8 years) participated in a 12-month randomized, double-blind, placebo-controlled trial of vitamin D (2000 IU/day, VID), omega-3 LCPUFA (722 mg/day DHA, OM), or both (2000 IU/day vitamin D + 722 mg/day DHA, VIDOM). The primary outcomes were the Aberrant Behaviour Checklist (ABC) domains of irritability and hyperactivity. Biomarkers (serum 25-hydroxyvitamin D [25(OH)D] and omega-3 index) and primary outcomes were measured at baseline and 12-months. Out of 111 children who completed baseline data collection, 66% completed the study (VID = 19, OM = 23, VIDOM = 15, placebo = 16). After 12 months, children receiving OM (-5.0 ± 5.0, P = 0.001) and VID (-4.0±4.9, P = 0.01) had greater reduction in irritability than placebo (0.8±6.1). Compared to placebo, children on VID also had greater reduction in hyperactivity (-5.2±6.3 vs. -0.8±5.6, P = 0.047). Serum 25(OH)D concentration (nmol/L, mean±SD) increased by 27±14 in VID and by 36±17 in VIDOM groups (P < 0.0001), and omega-3 index (%, median (25th, 75th percentiles)) by 4.4 (3.3, 5.9) in OM and by 4.0 (2.0, 6.0) in VIDOM groups (P < 0.0001), indicating a good compliance rate. The results indicate that vitamin D and omega-3 LCPUFA reduced irritability symptoms in children with ASD. Vitamin D also reduced hyperactivity symptoms in these children.
Collapse
Affiliation(s)
| | | | | | | | | | - Welma Stonehouse
- Commonwealth Scientific Industrial Research Organisation, Food and Nutrition Flagship, Australia.
| | - Carlos A Camargo
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, USA.
| | - Barbara J Meyer
- School of Medicine, Lipid Research Centre, Illawarra Health & Medical Research Institute, University of Wollongong, North (BJ) fields Ave, Wollongong, NSW, 2522, Australia.
| | | | | |
Collapse
|
25
|
Maternal diet of polyunsaturated fatty acid influence the physical and neurobehaviour of rat offspring. Int J Dev Neurosci 2018; 71:156-162. [DOI: 10.1016/j.ijdevneu.2018.09.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 08/30/2018] [Accepted: 09/10/2018] [Indexed: 11/21/2022] Open
|
26
|
Sun GY, Simonyi A, Fritsche KL, Chuang DY, Hannink M, Gu Z, Greenlief CM, Yao JK, Lee JC, Beversdorf DQ. Docosahexaenoic acid (DHA): An essential nutrient and a nutraceutical for brain health and diseases. Prostaglandins Leukot Essent Fatty Acids 2018; 136:3-13. [PMID: 28314621 PMCID: PMC9087135 DOI: 10.1016/j.plefa.2017.03.006] [Citation(s) in RCA: 182] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 03/06/2017] [Accepted: 03/09/2017] [Indexed: 01/01/2023]
Abstract
Docosahexaenoic acid (DHA), a polyunsaturated fatty acid (PUFA) enriched in phospholipids in the brain and retina, is known to play multi-functional roles in brain health and diseases. While arachidonic acid (AA) is released from membrane phospholipids by cytosolic phospholipase A2 (cPLA2), DHA is linked to action of the Ca2+-independent iPLA2. DHA undergoes enzymatic conversion by 15-lipoxygenase (Alox 15) to form oxylipins including resolvins and neuroprotectins, which are powerful lipid mediators. DHA can also undergo non-enzymatic conversion by reacting with oxygen free radicals (ROS), which cause the production of 4-hydoxyhexenal (4-HHE), an aldehyde derivative which can form adducts with DNA, proteins and lipids. In studies with both animal models and humans, there is evidence that inadequate intake of maternal n-3 PUFA may lead to aberrant development and function of the central nervous system (CNS). What is less certain is whether consumption of n-3 PUFA is important in maintaining brain health throughout one's life span. Evidence mostly from non-human studies suggests that DHA intake above normal nutritional requirements might modify the risk/course of a number of diseases of the brain. This concept has fueled much of the present interest in DHA research, in particular, in attempts to delineate mechanisms whereby DHA may serve as a nutraceutical and confer neuroprotective effects. Current studies have revealed ability for the oxylipins to regulation of cell redox homeostasis through the Nuclear factor (erythroid-derived 2)-like 2/Antioxidant response element (Nrf2/ARE) anti-oxidant pathway, and impact signaling pathways associated with neurotransmitters, and modulation of neuronal functions involving brain-derived neurotropic factor (BDNF). This review is aimed at describing recent studies elaborating these mechanisms with special regard to aging and Alzheimer's disease, autism spectrum disorder, schizophrenia, traumatic brain injury, and stroke.
Collapse
Affiliation(s)
- Grace Y Sun
- Biochemistry Department, University of Missouri, Columbia, MO, United States
| | - Agnes Simonyi
- Biochemistry Department, University of Missouri, Columbia, MO, United States
| | - Kevin L Fritsche
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, United States
| | - Dennis Y Chuang
- Department of Neurology, University Hospitals Cleveland Medical Center and Case Western Reserve University, Cleveland, OH, United States
| | - Mark Hannink
- Biochemistry Department, University of Missouri, Columbia, MO, United States
| | - Zezong Gu
- Department of Pathology and Anatomical Sciences, University of Missouri School of Medicine, Columbia, MO, United States
| | | | - Jeffrey K Yao
- Medical Research Service, VA Pittsburgh Healthcare System, and Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - James C Lee
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, United States
| | - David Q Beversdorf
- Department of Radiology, Neurology, and Psychological Sciences, and the Thompson Center, William and Nancy Thompson Endowed Chair in Radiology, University of Missouri School of Medicine, Columbia, MO, United States
| |
Collapse
|
27
|
Giacomini A, Stagni F, Emili M, Guidi S, Salvalai ME, Grilli M, Vidal-Sanchez V, Martinez-Cué C, Bartesaghi R. Treatment with corn oil improves neurogenesis and cognitive performance in the Ts65Dn mouse model of Down syndrome. Brain Res Bull 2018; 140:378-391. [PMID: 29935232 DOI: 10.1016/j.brainresbull.2018.06.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 06/07/2018] [Accepted: 06/18/2018] [Indexed: 12/12/2022]
Abstract
Individuals with Down syndrome (DS), a genetic condition due to triplication of Chromosome 21, are characterized by intellectual disability that worsens with age. Since impairment of neurogenesis and dendritic maturation are very likely key determinants of intellectual disability in DS, interventions targeted to these defects may translate into a behavioral benefit. While most of the neurogenesis enhancers tested so far in DS mouse models may pose some caveats due to possible side effects, substances naturally present in the human diet may be regarded as therapeutic tools with a high translational impact. Linoleic acid and oleic acid are major constituents of corn oil that positively affect neurogenesis and neuron maturation. Based on these premises, the goal of the current study was to establish whether treatment with corn oil improves hippocampal neurogenesis and hippocampus-dependent memory in the Ts65Dn model of DS. Four-month-old Ts65Dn and euploid mice were treated with saline or corn oil for 30 days. Evaluation of behavior at the end of treatment showed that Ts65Dn mice treated with corn oil underwent a large improvement in hippocampus-dependent learning and memory. Evaluation of neurogenesis and dendritogenesis showed that in treated Ts65Dn mice the number of new granule cells of the hippocampal dentate gyrus and their dendritic pattern became similar to those of euploid mice. In addition, treated Ts65Dn mice underwent an increase in body and brain weight. This study shows for the first time that fatty acids have a positive impact on the brain of the Ts65Dn mouse model of DS. These results suggest that a diet that is rich in fatty acids may exert beneficial effects on cognitive performance in individuals with DS without causing adverse effects.
Collapse
Affiliation(s)
- Andrea Giacomini
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Fiorenza Stagni
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Marco Emili
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Sandra Guidi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Maria Elisa Salvalai
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, Novara, Italy
| | - Mariagrazia Grilli
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, Novara, Italy
| | - Veronica Vidal-Sanchez
- Department of Physiology and Pharmacology, School of Medicine, University of Cantabria, Santander, Spain
| | - Carmen Martinez-Cué
- Department of Physiology and Pharmacology, School of Medicine, University of Cantabria, Santander, Spain
| | - Renata Bartesaghi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy.
| |
Collapse
|
28
|
Rey C, Nadjar A, Joffre F, Amadieu C, Aubert A, Vaysse C, Pallet V, Layé S, Joffre C. Maternal n-3 polyunsaturated fatty acid dietary supply modulates microglia lipid content in the offspring. Prostaglandins Leukot Essent Fatty Acids 2018; 133:1-7. [PMID: 29789127 DOI: 10.1016/j.plefa.2018.04.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 04/20/2018] [Accepted: 04/20/2018] [Indexed: 12/12/2022]
Abstract
The brain is highly enriched in long chain polyunsaturated fatty acids (LC-PUFAs) that are esterified into phospholipids, the major components of cell membranes. They accumulate during the perinatal period when the brain is rapidly developing. Hence, the levels of LC-PUFAs in the brains of the offspring greatly depend on maternal dietary intake. Perinatal n-3 PUFA consumption has been suggested to modulate the activity of microglial cells, the brain's innate immune cells which contribute to the shaping of neuronal network during development. However, the impact of maternal n-3 PUFA intake on microglial lipid composition in the offspring has never been studied. To investigate the impact of maternal dietary n-3 PUFA supply on microglia lipid composition, pregnant mice were fed with n-3 PUFA deficient, n-3 PUFA balanced or n-3 PUFA supplemented diets during gestation and lactation. At weaning, microglia were isolated from the pup's brains to analyze their fatty acid composition and phospholipid class levels. We here report that post-natal microglial cells displayed a distinctive lipid profile as they contained high levels of eicosapentaenoic acid (EPA), more EPA than docosahexaenoic acid (DHA) and large amount of phosphatidylinositol (PI) / phosphatidylserine (PS). Maternal n-3 PUFA supply increased DHA levels and decreased n-6 docosapentaenoic acid (DPA) levels whereas the PI/PS membrane content was inversely correlated to the quantity of PUFAs in the diet. These results raise the possibility of modulating microglial lipid profile and their subsequent activity in the developing brain.
Collapse
Affiliation(s)
- Charlotte Rey
- INRA, Nutrition et Neurobiologie Intégrée, UMR 1286, Bordeaux 33076, France; Bordeaux University, Nutrition et Neurobiologie Intégrée, UMR 1286, Bordeaux 33076, France; ITERG, Institut des corps gras, Canéjan 33610, France
| | - Agnès Nadjar
- INRA, Nutrition et Neurobiologie Intégrée, UMR 1286, Bordeaux 33076, France; Bordeaux University, Nutrition et Neurobiologie Intégrée, UMR 1286, Bordeaux 33076, France
| | | | - Camille Amadieu
- INRA, Nutrition et Neurobiologie Intégrée, UMR 1286, Bordeaux 33076, France; Bordeaux University, Nutrition et Neurobiologie Intégrée, UMR 1286, Bordeaux 33076, France
| | - Agnès Aubert
- INRA, Nutrition et Neurobiologie Intégrée, UMR 1286, Bordeaux 33076, France; Bordeaux University, Nutrition et Neurobiologie Intégrée, UMR 1286, Bordeaux 33076, France
| | - Carole Vaysse
- ITERG, Institut des corps gras, Canéjan 33610, France
| | - Véronique Pallet
- INRA, Nutrition et Neurobiologie Intégrée, UMR 1286, Bordeaux 33076, France; Bordeaux University, Nutrition et Neurobiologie Intégrée, UMR 1286, Bordeaux 33076, France
| | - Sophie Layé
- INRA, Nutrition et Neurobiologie Intégrée, UMR 1286, Bordeaux 33076, France; Bordeaux University, Nutrition et Neurobiologie Intégrée, UMR 1286, Bordeaux 33076, France
| | - Corinne Joffre
- INRA, Nutrition et Neurobiologie Intégrée, UMR 1286, Bordeaux 33076, France; Bordeaux University, Nutrition et Neurobiologie Intégrée, UMR 1286, Bordeaux 33076, France.
| |
Collapse
|
29
|
Tang M, Zhang M, Wang L, Li H, Cai H, Dang R, Jiang P, Liu Y, Xue Y, Wu Y. Maternal dietary of n-3 polyunsaturated fatty acids affects the neurogenesis and neurochemical in female rat at weaning. Prostaglandins Leukot Essent Fatty Acids 2018; 128:11-20. [PMID: 29413357 DOI: 10.1016/j.plefa.2017.11.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 10/16/2017] [Accepted: 11/08/2017] [Indexed: 12/17/2022]
Abstract
Long-chain polyunsaturated fatty acids (LC-PUFAs) are rapidly accumulated in brain during pre- and neonatal life, which is important for the development and function of central nervous system. Deficiency of biologically important n-3 PUFA docosahexaenoic acid (C22:6n-3, DHA) is associated with impaired visual, attention and cognition, and would precipitate psychiatric symptoms. However, clinical studies of the potential mechanism on the effect of dietary DHA deficiency on neural development remain unclear. In addition, the effects of n-6 PUFAs and n-3 PUFAs ingestion on the dynamic process of the cell proliferation in neurogenesis of offspring were investigated using immunefluorescence. And GC-MS was used to determine the fatty acid content in the liver of offspring. To further investigate the neurochemical influence on maternal PUFAs levels, we assessed the functioning of various neurotransmitter systems including glutamatergic, dopaminergic, norepinephrinergic and serotoninergic systems in the brain of female rats at weaning by HPLC-MS/MS. Lastly, we analyzed the turnover rates and between-metabolite ratios (the ratios between metabolites of monoamine neurotransmitters) to seek potential links between the neurotransmitters and dietary fatty acids compositions. There were significant differences between the deficiency group and the control or supplementary group in liver fatty acids compositions, showing that n-3 PUFAs were largely replaced by n-6 PUFAs. The generation of n-3 PUFAs deficiency rats exhibited abnormal neurogenesis and neurochemical. Altered dopamine or norepinephrine transmission and between-metabolite ratios in brain areas may be a key neuronal mechanism that contributes to the potential detrimental effects of n-3 PUFAs deficiency for mental health.
Collapse
Affiliation(s)
- Mimi Tang
- Institute of Clinical Pharmacy & Pharmacology, Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, PR China; School of Pharmaceutical Sciences, Central South University, Changsha, PR China.
| | - Min Zhang
- Institute of Clinical Pharmacy & Pharmacology, Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, PR China; School of Pharmaceutical Sciences, Central South University, Changsha, PR China.
| | - Lu Wang
- Institute of Clinical Pharmacy & Pharmacology, Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, PR China; Mental Health Institute of the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, PR China.
| | - Huande Li
- Institute of Clinical Pharmacy & Pharmacology, Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, PR China.
| | - Hualin Cai
- Institute of Clinical Pharmacy & Pharmacology, Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, PR China.
| | - Ruili Dang
- Institute of Clinical Pharmacy, Jining First People's Hospital, Jining Medical University, Jining 272000, PR China.
| | - Pei Jiang
- Institute of Clinical Pharmacy, Jining First People's Hospital, Jining Medical University, Jining 272000, PR China.
| | - Yiping Liu
- Institute of Clinical Pharmacy & Pharmacology, Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, PR China.
| | - Ying Xue
- Institute of Clinical Pharmacy & Pharmacology, Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, PR China; School of Pharmaceutical Sciences, Central South University, Changsha, PR China.
| | - Yanqin Wu
- Institute of Clinical Pharmacy & Pharmacology, Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, PR China; School of Pharmaceutical Sciences, Central South University, Changsha, PR China.
| |
Collapse
|
30
|
Tang M, Liu Y, Wang L, Li H, Cai H, Zhang M, Dang R, Xue Y, Wu Y. An Ω-3 fatty acid-deficient diet during gestation induces depressive-like behavior in rats: the role of the hypothalamo–pituitary–adrenal (HPA) system. Food Funct 2018; 9:3481-3488. [PMID: 29882567 DOI: 10.1039/c7fo01714f] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Low intake of omega-3 (Ω-3) polyunsaturated fatty acids (PUFAs) especially docosahexaenoic acid (DHA) is associated with postpartum depression.
Collapse
Affiliation(s)
- Mimi Tang
- Institute of Clinical Pharmacy & Pharmacology
- Second Xiangya Hospital
- Central South University
- Changsha
- PR China
| | - Yiping Liu
- Institute of Clinical Pharmacy & Pharmacology
- Second Xiangya Hospital
- Central South University
- Changsha
- PR China
| | - Lu Wang
- Institute of Clinical Pharmacy & Pharmacology
- Second Xiangya Hospital
- Central South University
- Changsha
- PR China
| | - Huande Li
- Institute of Clinical Pharmacy & Pharmacology
- Second Xiangya Hospital
- Central South University
- Changsha
- PR China
| | - Hualin Cai
- Institute of Clinical Pharmacy & Pharmacology
- Second Xiangya Hospital
- Central South University
- Changsha
- PR China
| | - Min Zhang
- Institute of Clinical Pharmacy & Pharmacology
- Second Xiangya Hospital
- Central South University
- Changsha
- PR China
| | - Ruili Dang
- Institute of Clinical Pharmacy
- Jining First People's Hospital
- Jining Medical University
- Jining 272000
- PR China
| | - Ying Xue
- Institute of Clinical Pharmacy & Pharmacology
- Second Xiangya Hospital
- Central South University
- Changsha
- PR China
| | - Yanqin Wu
- Institute of Clinical Pharmacy & Pharmacology
- Second Xiangya Hospital
- Central South University
- Changsha
- PR China
| |
Collapse
|
31
|
Jiao Y, Hannafon BN, Zhang RR, Fung KM, Ding WQ. Docosahexaenoic acid and disulfiram act in concert to kill cancer cells: a mutual enhancement of their anticancer actions. Oncotarget 2017; 8:17908-17920. [PMID: 28107189 PMCID: PMC5392296 DOI: 10.18632/oncotarget.14702] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 12/16/2016] [Indexed: 12/20/2022] Open
Abstract
We previously reported a synergistic anticancer action of clioquinol and docosahexaenoic acid (DHA) in human cancer cells. However, clioquinol has been banned from the clinic due to its neurotoxicity. This study identified disulfiram (DSF) as a substitute compound to clioquinol, acting in concert with DHA to more effectively kill cancer cells and suppress tumor growth. Treatment with DSF and DHA induced greater apoptotic cell death and suppression of tumor growth in vitro and in vivo, as compared to DSF and DHA used alone. Mechanistic studies demonstrated that DSF enhances DHA-induced cellular oxidative stress as evidenced by up-regulation of Nrf2-mediated heme oxygenase 1 (HO-1) gene transcription. On the other hand, DHA was found to enhance DSF-induced suppression of mammosphere formation and stem cell frequency in a selected cancer model system, indicating that alterations to cancer cell stemness are involved in the combinatory anticancer action of DSF and DHA. Thus, DHA and DSF, both clinically approved drugs, act in concert to more effectively kill cancer cells. This combinatory action involves an enhancement of cellular oxidative stress and suppression of cancer cell stemness.
Collapse
Affiliation(s)
- Yang Jiao
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.,School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou 215123, P.R. China
| | - Bethany N Hannafon
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Roy R Zhang
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Kar-Ming Fung
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.,Peggy and Charles Stephenson Cancer Center, Oklahoma City, OK 73104, USA
| | - Wei-Qun Ding
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.,Peggy and Charles Stephenson Cancer Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
32
|
Nock TG, Chouinard-Watkins R, Plourde M. Carriers of an apolipoprotein E epsilon 4 allele are more vulnerable to a dietary deficiency in omega-3 fatty acids and cognitive decline. Biochim Biophys Acta Mol Cell Biol Lipids 2017; 1862:1068-1078. [PMID: 28733268 DOI: 10.1016/j.bbalip.2017.07.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Revised: 07/05/2017] [Accepted: 07/15/2017] [Indexed: 01/29/2023]
Abstract
Carriers of an epsilon 4 allele (E4) of apolipoprotein E (APOE) develop Alzheimer's disease (AD) earlier than carriers of other APOE alleles. The metabolism of plasma docosahexaenoic acid (DHA, 22:6n-3), an omega-3 fatty acid (n-3 FA), taken up by the brain and concentrated in neurons, is disrupted in E4 carriers, resulting in lower levels of brain DHA. Behavioural and cognitive impairments have been observed in animals with lower brain DHA levels, with emphasis on loss of spatial memory and increased anxiety. E4 mice provided a diet deficient in n-3 FA had a greater depletion of n-3 FA levels in organs and tissues than mice carrying other APOE alleles. However, providing n-3 FA can restore levels of brain DHA in E4 animals and in other models of n-3 FA deficiency. In E4 carriers, supplementation with DHA as early as possible might help to prevent the onset of AD and could halt the progression of, and reverse some of the neurological and behavioural consequences of their higher vulnerability to n-3 FA deficiency.
Collapse
Affiliation(s)
- Tanya Gwendolyn Nock
- Research Center on Aging, Centre Intégré Universitaire de Santé et Services Sociaux de l'Estrie-Centre Hospitalier Universitaire de Sherbrooke, Canada; Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Canada; Institute of Nutrition and Functional Foods, Quebec City, Canada
| | - Raphaël Chouinard-Watkins
- Research Center on Aging, Centre Intégré Universitaire de Santé et Services Sociaux de l'Estrie-Centre Hospitalier Universitaire de Sherbrooke, Canada; Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Canada; Institute of Nutrition and Functional Foods, Quebec City, Canada
| | - Mélanie Plourde
- Research Center on Aging, Centre Intégré Universitaire de Santé et Services Sociaux de l'Estrie-Centre Hospitalier Universitaire de Sherbrooke, Canada; Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Canada; Institute of Nutrition and Functional Foods, Quebec City, Canada.
| |
Collapse
|
33
|
Fernandes MF, Mutch DM, Leri F. The Relationship between Fatty Acids and Different Depression-Related Brain Regions, and Their Potential Role as Biomarkers of Response to Antidepressants. Nutrients 2017; 9:nu9030298. [PMID: 28304335 PMCID: PMC5372961 DOI: 10.3390/nu9030298] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 03/13/2017] [Accepted: 03/14/2017] [Indexed: 12/22/2022] Open
Abstract
Depression is a complex disorder influenced by a variety of biological and environmental factors. Due to significant heterogeneity, there are remarkable differences in how patients respond to treatment. A primary objective of psychiatric research is to identify biological markers that could be used to better predict and enhance responses to antidepressant treatments. Diet impacts various aspects of health, including depression. The fatty acid composition of the Western diet, which has a high ratio of n-6:n-3 polyunsaturated fatty acids, is associated with increased incidence of depression. The brain is rich in lipids, and dietary fatty acids act within specific brain regions to regulate processes that impact emotional behavior. This manuscript reviews existing evidence demonstrating brain region-specific fatty acid profiles, and posits that specific fatty acids may serve as predictive biomarkers of response to antidepressants. Furthermore, increasing blood levels of certain fats, such as n-3s, via dietary intervention may serve as an adjunct to improve the efficacy of antidepressants. Notably, most of the existing research regarding fats and depression-related brain regions has focused on n-3s, as compared to n-6s, monounsaturated, and saturated fats. This review article will help guide future work investigating the relationships between fatty acids, brain regions, and antidepressant efficacy.
Collapse
Affiliation(s)
- Maria Fernanda Fernandes
- Department of Psychology and Neuroscience, University of Guelph, Guelph, ON N1G 2W1, Canada.
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada.
| | - David M Mutch
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada.
| | - Francesco Leri
- Department of Psychology and Neuroscience, University of Guelph, Guelph, ON N1G 2W1, Canada.
| |
Collapse
|
34
|
Relationship between Long Chain n-3 Polyunsaturated Fatty Acids and Autism Spectrum Disorder: Systematic Review and Meta-Analysis of Case-Control and Randomised Controlled Trials. Nutrients 2017; 9:nu9020155. [PMID: 28218722 PMCID: PMC5331586 DOI: 10.3390/nu9020155] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 02/08/2017] [Accepted: 02/13/2017] [Indexed: 12/29/2022] Open
Abstract
Omega-3 long chain polyunsaturated fatty acid supplementation (n-3 LCPUFA) for treatment of Autism Spectrum Disorder (ASD) is popular. The results of previous systematic reviews and meta-analyses of n-3 LCPUFA supplementation on ASD outcomes were inconclusive. Two meta-analyses were conducted; meta-analysis 1 compared blood levels of LCPUFA and their ratios arachidonic acid (ARA) to docosahexaenoic acid (DHA), ARA to eicosapentaenoic acid (EPA), or total n-6 to total n-3 LCPUFA in ASD to those of typically developing individuals (with no neurodevelopmental disorders), and meta-analysis 2 compared the effects of n-3 LCPUFA supplementation to placebo on symptoms of ASD. Case-control studies and randomised controlled trials (RCTs) were identified searching electronic databases up to May, 2016. Mean differences were pooled and analysed using inverse variance models. Heterogeneity was assessed using I2 statistic. Fifteen case-control studies (n = 1193) were reviewed. Compared with typically developed, ASD populations had lower DHA (−2.14 [95% CI −3.22 to −1.07]; p < 0.0001; I2 = 97%), EPA (−0.72 [95% CI −1.25 to −0.18]; p = 0.008; I2 = 88%), and ARA (−0.83 [95% CI, −1.48 to −0.17]; p = 0.01; I2 = 96%) and higher total n-6 LCPUFA to n-3 LCPUFA ratio (0.42 [95% CI 0.06 to 0.78]; p = 0.02; I2 = 74%). Four RCTs were included in meta-analysis 2 (n = 107). Compared with placebo, n-3 LCPUFA improved social interaction (−1.96 [95% CI −3.5 to −0.34]; p = 0.02; I2 = 0) and repetitive and restricted interests and behaviours (−1.08 [95% CI −2.17 to −0.01]; p = 0.05; I2 = 0). Populations with ASD have lower n-3 LCPUFA status and n-3 LCPUFA supplementation can potentially improve some ASD symptoms. Further research with large sample size and adequate study duration is warranted to confirm the efficacy of n-3 LCPUFA.
Collapse
|