1
|
Jiang J, Duo K, Zhu S, Wang Y, Xue H, Piao C, Ren Y, Lei X, Zhang Y, Liu J, Yang L, Zhang N. Investigation of the mechanism of Buyang Huanwu decoction in improving learning and memory impairment in Alzheimer's disease mice based on lipidomics. J Nat Med 2025:10.1007/s11418-025-01890-x. [PMID: 40195204 DOI: 10.1007/s11418-025-01890-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Accepted: 02/26/2025] [Indexed: 04/09/2025]
Abstract
In this study, a lipid disorder Alzheimer's disease (AD) model was developed with high-fat diet and D-galactose injected intraperitoneally (HFD & D-gal) to evaluate the activities of Buyang Huanwu Decoction (BYHWD) compared with donepezil hydrochloride. The learning and memory abilities of BYHWD were evaluated by Morris water maze test (MWM). The lipid levels in serum, histopathology, and immunohistochemistry of hyperphosphorylated tau protein in hippocampal neurons were conducted to prove the therapy effects of BYHWD. After the identification of constituents absorbed into the brain using LC-MS, UPLC-TQ-MS was employed to analyze endogenous lipid metabolites in the hippocampi of mice. Based on the validated differential markers identified through lipidomics analysis, we further substantiated potential therapeutic pathway of BYHWD through the application of molecular docking technology. The mechanism underlying BYHWD was subsequently confirmed by palmitic acid-injured HT22 cells. The results showed that BYHWD significantly improved the cognitive deficits and regulated the lipid levels of HFD & D-gal mice. BYHWD also protected the neuronal cell condition of hippocampal neurons, increased the density of dendritic spines, and reduced the expression of P-tau. Lipidomics revealed that 41 differential lipid metabolites were retuned after BYHWD administration, and this change may be related to the PPARγ pathway. Calycosin-7-glucoside showed good interaction with PPARγ in vivo composition analysis. Calycosin-7-glucoside increased the mRNA expression levels of lipid metabolism-related enzymes and PPARγ, as well as the expression of PPARγ protein in vitro study. BYHWD activated the PPARγ pathway to induce peroxisome proliferation and regulated lipid metabolism disorders in the AD mice brain.
Collapse
Affiliation(s)
- Jing Jiang
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
- Heilongjiang Institute for Drug Control, NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Harbin, Heilongjiang, China
| | - Kai Duo
- Heilongjiang Institute for Drug Control, NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Harbin, Heilongjiang, China
| | - Siyu Zhu
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Yitong Wang
- Heilongjiang Institute for Drug Control, NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Harbin, Heilongjiang, China
| | - Hui Xue
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Chengyu Piao
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Yifan Ren
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Xia Lei
- Jiangsu CM Clinical Innovation Center of Degenerative Bone & Joint Disease, Wuxi TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi, Jiangsu, China
| | - Yafeng Zhang
- Jiangsu CM Clinical Innovation Center of Degenerative Bone & Joint Disease, Wuxi TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi, Jiangsu, China.
| | - Jianxin Liu
- School of Pharmaceutical Sciences, China-Pakistan, International Science and Technology Innovation Cooperation Base for Ethnic Medicine Development in Hunan Province, Hunan University of Medicine, Huaihua, Hunan, China
| | - Lihong Yang
- Heilongjiang Institute for Drug Control, NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Harbin, Heilongjiang, China.
| | - Ning Zhang
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China.
| |
Collapse
|
2
|
Abdou HM, Hamaad FA, Elmageed GMA, Katano H, Ghoneum MH. Efficacy of Plasmalogens on Monosodium Glutamate-Induced Neurotoxicity in Male Rats Through NF- κB and p38 MAPK Signaling Pathways. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2025; 2025:3673280. [PMID: 40225414 PMCID: PMC11991862 DOI: 10.1155/omcl/3673280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 02/13/2025] [Indexed: 04/15/2025]
Abstract
Monosodium glutamate (MSG) is the most commonly used food additive and has well-known neurotoxic effects. The current study was carried out to assess the underlying mechanisms of the neurotoxicity of MSG on the hippocampus in male rats and examine the protective effect of plasmalogens (Pls) on nuclear factor-B (NF-κB) and p38 MAPK signaling pathways in the hippocampus using behavioral, biochemical, and immunohistochemical methods. Twenty-four male Wistar albino rats were divided into four groups for control or treatment with MSG (2 g/kg body weight) and/or Pls (100 mg/kg body weight). All doses were received orally for 28 days. Results show that plasmalogens ameliorate the levels of glucose, insulin, lipids, oxidative stress markers, antioxidant enzymes, AKT, and neurochemical markers. It also reduces the level of the inflammatory markers TNF-α, NF-κB, and p38 mitogen-activated protein kinase (MAPK). Histological and immunohistochemical alterations in hippocampal tissues were found to be augmented postexposure to Pls, suggesting that Pls have a potent ameliorative effect. We conclude that Pls exert anti-inflammatory, antioxidant, and antiapoptotic effects and counteract MSG-induced neurotoxicity by altering the NF-κB and p38 MAPK signaling pathways.
Collapse
Affiliation(s)
- Heba M. Abdou
- Department of Zoology, Alexandria University, Alexandria, Egypt
| | - Fatma A. Hamaad
- Department of Biochemistry, Alexandria University, Alexandria, Egypt
| | | | | | - Mamdooh H. Ghoneum
- Department of Surgery, Charles R. Drew University of Medicine and Science, Los Angeles, California, USA
- Department of Surgery, University of California Los Angeles, Los Angeles, California, USA
| |
Collapse
|
3
|
Radermacher J, Erhardt VKJ, Walzer O, Haas EC, Kuppler KN, Zügner JSR, Lauer AA, Hartmann T, Grimm HS, Grimm MOW. Influence of Ibuprofen on glycerophospholipids and sphingolipids in context of Alzheimer´s Disease. Biomed Pharmacother 2025; 185:117969. [PMID: 40073745 DOI: 10.1016/j.biopha.2025.117969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 02/21/2025] [Accepted: 03/05/2025] [Indexed: 03/14/2025] Open
Abstract
Alzheimer's disease (AD) is a multifactorial disorder associated with neuroinflammation, elevated oxidative stress, lipid alterations as well as amyloid-deposits and the formation of neurofibrillary tangles. Ibuprofen, a globally used analgesic, is discussed to influence disease progression due to its anti-inflammatory effect. However, changes in lipid-homeostasis induced by Ibuprofen have not yet been analyzed. Here we investigate the effect of Ibuprofen on lipid classes known to be associated with AD. Ibuprofen treatment leads to a significant increase in phosphatidylcholine, sphingomyelin and triacylglyceride (TAG) species whereas plasmalogens, which are highly susceptible for oxidation, were significantly decreased. The observed alterations in phosphatidylcholine and sphingomyelin levels in presence of Ibuprofen might counteract the reduced phosphatidylcholine- and sphingomyelin-levels found in AD brain tissue with potential positive aspects on synaptic plasticity and ceramide-induced apoptotic effects. On the other hand, Ibuprofen leads to elevated TAG-level resulting in the formation of lipid droplets which are associated with neuroinflammation. Reduction of plasmalogen-levels might accelerate decreased plasmalogen-levels found in AD brains. Treatment of Ibuprofen in terms of lipid-homeostasis reveals both potentially positive and negative changes relevant to AD. Therefore, understanding the influence of Ibuprofen on lipid-homeostasis may help to understand the heterogeneous results of studies treating AD with Ibuprofen.
Collapse
Affiliation(s)
| | | | - Oliver Walzer
- Experimental Neurology, Saarland University, Homburg, Saar 66424, Germany.
| | | | | | | | - Anna Andrea Lauer
- Experimental Neurology, Saarland University, Homburg, Saar 66424, Germany; Nutrition Therapy and Counseling, Campus Rheinland, SRH University of Applied Health Sciences, Leverkusen 51377, Germany.
| | - Tobias Hartmann
- Experimental Neurology, Saarland University, Homburg, Saar 66424, Germany; Deutsches Institut für Demenzprävention (DIDP), Saarland University, Homburg, Saar 66424, Germany.
| | - Heike Sabine Grimm
- Experimental Neurology, Saarland University, Homburg, Saar 66424, Germany; Nutrition Therapy and Counseling, Campus Rheinland, SRH University of Applied Health Sciences, Leverkusen 51377, Germany; Deutsches Institut für Demenzprävention (DIDP), Saarland University, Homburg, Saar 66424, Germany.
| | - Marcus Otto Walter Grimm
- Experimental Neurology, Saarland University, Homburg, Saar 66424, Germany; Nutrition Therapy and Counseling, Campus Rheinland, SRH University of Applied Health Sciences, Leverkusen 51377, Germany; Deutsches Institut für Demenzprävention (DIDP), Saarland University, Homburg, Saar 66424, Germany.
| |
Collapse
|
4
|
Chen Y, Gowda SGB, Gowda D, Jayaprakash J, Nath LR, Ikeda A, Bamai YA, Ketema RM, Kishi R, Chiba H, Hui SP. Application of Liquid Chromatography/Tandem Mass Spectrometry for Quantitative Analysis of Plasmalogens in Preadolescent Children-The Hokkaido Study. Diagnostics (Basel) 2025; 15:743. [PMID: 40150086 PMCID: PMC11941332 DOI: 10.3390/diagnostics15060743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 02/28/2025] [Accepted: 03/14/2025] [Indexed: 03/29/2025] Open
Abstract
Background: Plasmalogens (Pls) are phospholipids with a unique structure, abundant in the brain and heart. Due to their chemical instability and analytical difficulties, less information is available compared to other phospholipids. The importance of Pls in several cellular processes is known, one of which is their protective effect against oxidative damage. The physiological role of Pls in human development has not been elucidated. Despite their clinical importance, the quantitative analysis of Pls in children's plasma has been limited. Methods: This study aims to determine the plasma levels of Pls in prepubertal children using liquid chromatography/tandem mass spectrometry (LC-MS/MS). The plasma samples used were obtained from 9- to 12-year-old girls (n = 156) and boys (n = 178), n = 334 in total, who participated in the Hokkaido study. Results: Ethanolamine plasmalogen (PlsEtn) and choline plasmalogen (PlsCho), both carrying eicosapentaenoic acid, were significantly lower in girls than in boys. In both sexes, the plasmalogen levels for the 12-year-old children were lower than those for the 9-year-old children. PlsCho (16:0/18:2) was lower in the overweight children than in the normal-weight children for both sexes. PlsEtn (18:0/20:4) was the most abundant ethanolamine-type plasmalogen in both sexes. Conclusions: This study is the first report on plasmalogen levels and molecular types in children's plasma. This study provides the information needed to understand the role of Pls in human developmental processes and may open up new opportunities in the future to control age-related changes in Pls.
Collapse
Affiliation(s)
- Yifan Chen
- Faculty of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-ku, Sapporo 060-0812, Japan; (Y.C.); (S.G.B.G.); (D.G.); (A.I.); (R.M.K.)
| | - Siddabasave Gowda B. Gowda
- Faculty of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-ku, Sapporo 060-0812, Japan; (Y.C.); (S.G.B.G.); (D.G.); (A.I.); (R.M.K.)
- Graduate School of Global Food Resources, Hokkaido University, Kita-9, Nishi-9, Kita-ku, Sapporo 060-0809, Japan; (J.J.); (L.R.N.)
| | - Divyavani Gowda
- Faculty of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-ku, Sapporo 060-0812, Japan; (Y.C.); (S.G.B.G.); (D.G.); (A.I.); (R.M.K.)
| | - Jayashankar Jayaprakash
- Graduate School of Global Food Resources, Hokkaido University, Kita-9, Nishi-9, Kita-ku, Sapporo 060-0809, Japan; (J.J.); (L.R.N.)
| | - Lipsa Rani Nath
- Graduate School of Global Food Resources, Hokkaido University, Kita-9, Nishi-9, Kita-ku, Sapporo 060-0809, Japan; (J.J.); (L.R.N.)
| | - Atusko Ikeda
- Faculty of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-ku, Sapporo 060-0812, Japan; (Y.C.); (S.G.B.G.); (D.G.); (A.I.); (R.M.K.)
- Center for Environmental and Health Sciences, Hokkaido University, Kita-12, Nishi-7, Kita-ku, Sapporo 060-0812, Japan; (Y.A.B.); (R.K.)
| | - Yu Ait Bamai
- Center for Environmental and Health Sciences, Hokkaido University, Kita-12, Nishi-7, Kita-ku, Sapporo 060-0812, Japan; (Y.A.B.); (R.K.)
| | - Rahel Mesfin Ketema
- Faculty of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-ku, Sapporo 060-0812, Japan; (Y.C.); (S.G.B.G.); (D.G.); (A.I.); (R.M.K.)
- Center for Environmental and Health Sciences, Hokkaido University, Kita-12, Nishi-7, Kita-ku, Sapporo 060-0812, Japan; (Y.A.B.); (R.K.)
| | - Reiko Kishi
- Center for Environmental and Health Sciences, Hokkaido University, Kita-12, Nishi-7, Kita-ku, Sapporo 060-0812, Japan; (Y.A.B.); (R.K.)
| | - Hitoshi Chiba
- Department of Nutrition, Sapporo University of Health Sciences, Nakanuma Nishi-4-2-1-15, Higashi-ku, Sapporo 070-0894, Japan;
| | - Shu-Ping Hui
- Faculty of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-ku, Sapporo 060-0812, Japan; (Y.C.); (S.G.B.G.); (D.G.); (A.I.); (R.M.K.)
| |
Collapse
|
5
|
Zhang X, Wang Z, Liu C, Li W, Yuan Z, Li F, Yue X. Multi-omics analysis of chemical composition variation among different muscle types in Hu lamb. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:1850-1863. [PMID: 39400907 DOI: 10.1002/jsfa.13962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/24/2024] [Accepted: 09/30/2024] [Indexed: 10/15/2024]
Abstract
BACKGROUND Consumers' preferences for lamb meat vary greatly depending on the specific cut. Variations in the chemical composition across different muscle types play a crucial role in determining meat quality, particularly with regard to flavor. Therefore, it is essential to study the variations in chemical composition among different muscle types in lamb, as well as the mechanisms behind their formation, aiming to understand the flavor variation across the muscle types. RESULTS Flank muscles showed significantly higher intramuscular fat content and muscle fiber diameter compared to triceps brachii and biceps femoris (BF), at the same time as displaying a significantly lower percentage of type I muscle fibers. Forty-three differentially abundant volatile compounds (DAVC) were identified across five muscles, with the majority of DAVCs being more abundant in the BF. In total, 161 differentially abundant lipids were identified across five muscles, with triglycerides (TG), phosphatidylcholines (PC), phosphatidyl ethanolamines (PE) and phosphatidylmethanol (PMeOH) showing a strong correlation with DAVCs. A lipid-gene regulatory network was established, encompassing 664 lipids and 11 107 genes, leading to the identification of pathways and genes that regulate the metabolism of PEs, PMeOH, PCs and TGs. CONCLUSION The present study showed the significant variation in flavor compounds among the five edible muscles, as well as the potential reasons for their formation. The results potentially provide a theoretical foundation for improving the meat quality of lamb. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xueying Zhang
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry, Ministry of Education; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Zhongyu Wang
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry, Ministry of Education; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Chongyang Liu
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry, Ministry of Education; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Wenqiao Li
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry, Ministry of Education; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Zehu Yuan
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education, Yangzhou University, Yangzhou, China
| | - Fadi Li
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry, Ministry of Education; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Xiangpeng Yue
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry, Ministry of Education; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| |
Collapse
|
6
|
Neth BJ, Huynh K, Giles C, Wang T, Mellett NA, Duong T, Blach C, Schimmel L, Register TC, Blennow K, Zetterberg H, Batra R, Schweickart A, Dilmore AH, Martino C, Arnold M, Krumsiek J, Han X, Dorrestein PC, Knight R, Meikle PJ, Craft S, Kaddurah-Daouk R. Consuming a modified Mediterranean ketogenic diet reverses the peripheral lipid signature of Alzheimer's disease in humans. COMMUNICATIONS MEDICINE 2025; 5:11. [PMID: 39779882 PMCID: PMC11711287 DOI: 10.1038/s43856-024-00682-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 10/15/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is a major neurodegenerative disorder with significant environmental factors, including diet and lifestyle, influencing its onset and progression. Although previous studies have suggested that certain diets may reduce the incidence of AD, the underlying mechanisms remain unclear. METHOD In this post-hoc analysis of a randomized crossover study of 20 elderly adults, we investigated the effects of a modified Mediterranean ketogenic diet (MMKD) on the plasma lipidome in the context of AD biomarkers, analyzing 784 lipid species across 47 classes using a targeted lipidomics platform. RESULTS Here we identified substantial changes in response to MMKD intervention, aside from metabolic changes associated with a ketogenic diet, we identified a a global elevation across all plasmanyl and plasmenyl ether lipid species, with many changes linked to clinical and biochemical markers of AD. We further validated our findings by leveraging our prior clinical studies into lipid related changeswith AD (n = 1912), and found that the lipidomic signature with MMKD was inversely associated with the lipidomic signature of prevalent and incident AD. CONCLUSIONS Intervention with a MMKD was able to alter the plasma lipidome in ways that contrast with AD-associated patterns. Given its low risk and cost, MMKD could be a promising approach for prevention or early symptomatic treatment of AD.
Collapse
Affiliation(s)
- Bryan J Neth
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Kevin Huynh
- Baker Heart and Diabetes Institute, 75 Commercial Road, Melbourne, VIC, Australia
- Baker Department of Cardiovascular Research Translation and Implementation, La Trobe University, Bundoora, VIC, Australia
| | - Corey Giles
- Baker Heart and Diabetes Institute, 75 Commercial Road, Melbourne, VIC, Australia
- Baker Department of Cardiovascular Research Translation and Implementation, La Trobe University, Bundoora, VIC, Australia
| | - Tingting Wang
- Baker Heart and Diabetes Institute, 75 Commercial Road, Melbourne, VIC, Australia
| | - Natalie A Mellett
- Baker Heart and Diabetes Institute, 75 Commercial Road, Melbourne, VIC, Australia
| | - Thy Duong
- Baker Heart and Diabetes Institute, 75 Commercial Road, Melbourne, VIC, Australia
| | - Colette Blach
- Duke Molecular Physiology Institute, Duke University, Durham, NC, USA
| | - Leyla Schimmel
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA
| | - Thomas C Register
- Department of Pathology - Comparative Medicine, Wake Forest University School of Medicine, Winston Salem, NC, USA
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
- UK Dementia Research Institute at UCL, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Richa Batra
- Department of Physiology and Biophysics, Institute for Computational Biomedicine, Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Annalise Schweickart
- Department of Physiology and Biophysics, Institute for Computational Biomedicine, Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | | | - Cameron Martino
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | - Matthias Arnold
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA
- Institute of Computational Biology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
| | - Jan Krumsiek
- Department of Physiology and Biophysics, Institute for Computational Biomedicine, Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Xianlin Han
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Pieter C Dorrestein
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Rob Knight
- Departments of Pediatrics, Computer Science and Engineering, Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Peter J Meikle
- Baker Heart and Diabetes Institute, 75 Commercial Road, Melbourne, VIC, Australia
- Baker Department of Cardiovascular Research Translation and Implementation, La Trobe University, Bundoora, VIC, Australia
| | - Suzanne Craft
- Department of Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston Salem, NC, USA
| | - Rima Kaddurah-Daouk
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA.
- Duke Institute of Brain Sciences, Duke University, Durham, NC, USA.
- Department of Medicine, Duke University, Durham, NC, USA.
| |
Collapse
|
7
|
Matthews DG, Khorani M, Bobe G, Caruso M, Magana AA, Gray NE, Quinn JF, Stevens JF, Maier CS, Soumyanath A. Centella asiatica improves cognitive function and alters the hippocampal metabolome of aged Tg2576 and wild-type mice. J Alzheimers Dis Rep 2024; 8:1611-1638. [PMID: 40034352 PMCID: PMC11863750 DOI: 10.1177/25424823241296740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 09/23/2024] [Indexed: 03/05/2025] Open
Abstract
Background Alzheimer's disease (AD) is a growing public health problem in the aging population, with limited treatment options. We previously reported that Centella asiatica herb water extract (CAW) attenuates cognitive decline in murine models of AD and aging. Objective To explore changes in the hippocampal metabolome associated with CAW's modulation of cognitive function and amyloid-β (Aβ) plaque load in aged Tg2576 and wild-type (WT) mice. Methods We compared cognitive function, hippocampal Aβ plaque burden, and hippocampal metabolite profile in 20-month-old Tg2576 female mice and their WT littermates following 3-5 weeks treatment with CAW (0, 200, or 1000 mg/kg/d p.o.). Cognitive testing included contextual fear response (CFR) and novel object recognition task (NORT). Aβ plaque burden was measured via immunohistochemistry. Metabolomic profiles of mouse hippocampi were obtained using liquid chromatography coupled with high resolution tandem mass spectrometry. Results CAW treatment resulted in dose-related improvements in CFR and NORT performance of Tg2576 and WT mice. However, while CFR correlated with neurosignaling and glycosylated ceramide levels, NORT performance correlated with lysophosphatidylcholines and oxidized metabolites, and Aβ accumulation was linked to elevated excitatory and suppressed inhibitory neurotransmission. Only a subset of the metabolite changes induced by CAW in Tg2576 mice represented a reversal of metabolite differences between Tg2576 and WT mice, suggesting the involvement of other pathways in CAW's cognitive effects. Conclusions Mechanisms underlying CAW's cognitive effects extend beyond reversing metabolic effects of Aβ accumulation. The data support the potential use of CAW to manage memory challenges in aged individuals with or without AD.
Collapse
Affiliation(s)
- Donald G Matthews
- Department of Neurology, Oregon Health & Science University, Portland, OR, USA
| | - Mona Khorani
- Department of Chemistry, Oregon State University, Corvallis, OR, USA
| | - Gerd Bobe
- Linus Pauling Institute, Oregon State University, Corvallis, OR, USA
| | - Maya Caruso
- Department of Neurology, Oregon Health & Science University, Portland, OR, USA
| | | | - Nora E Gray
- Department of Neurology, Oregon Health & Science University, Portland, OR, USA
- BENFRA Botanical Dietary Supplements Research Center, Oregon Health & Science University, Portland, OR, USA
| | - Joseph F Quinn
- Department of Neurology, Oregon Health & Science University, Portland, OR, USA
- BENFRA Botanical Dietary Supplements Research Center, Oregon Health & Science University, Portland, OR, USA
- Parkinson's Disease Research Education and Clinical Care Center, Veterans’ Administration Portland Health Care System, Portland, OR, USA
| | - Jan F Stevens
- Linus Pauling Institute, Oregon State University, Corvallis, OR, USA
- BENFRA Botanical Dietary Supplements Research Center, Oregon Health & Science University, Portland, OR, USA
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR, USA
| | - Claudia S Maier
- Department of Chemistry, Oregon State University, Corvallis, OR, USA
- Linus Pauling Institute, Oregon State University, Corvallis, OR, USA
- BENFRA Botanical Dietary Supplements Research Center, Oregon Health & Science University, Portland, OR, USA
| | - Amala Soumyanath
- Department of Neurology, Oregon Health & Science University, Portland, OR, USA
- BENFRA Botanical Dietary Supplements Research Center, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
8
|
Shirokov A, Zlatogosrkaya D, Adushkina V, Vodovozova E, Kardashevskaya K, Sultanov R, Kasyanov S, Blokhina I, Terskov A, Tzoy M, Evsyukova A, Dubrovsky A, Tuzhilkin M, Elezarova I, Dmitrenko A, Manzhaeva M, Krupnova V, Semiachkina-Glushkovskaia A, Ilyukov E, Myagkov D, Tuktarov D, Popov S, Inozemzev T, Navolokin N, Fedosov I, Semyachkina-Glushkovskaya O. Plasmalogens Improve Lymphatic Clearance of Amyloid Beta from Mouse Brain and Cognitive Functions. Int J Mol Sci 2024; 25:12552. [PMID: 39684263 DOI: 10.3390/ijms252312552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/16/2024] [Accepted: 11/19/2024] [Indexed: 12/18/2024] Open
Abstract
Amyloid beta (Aβ) is a neuronal metabolic product that plays an important role in maintaining brain homeostasis. Normally, intensive brain Aβ formation is accompanied by its effective lymphatic removal. However, the excessive accumulation of brain Aβ is observed with age and during the development of Alzheimer's disease (AD) leading to cognitive impairment and memory deficits. There is emerging evidence that plasmalogens (Pls), as one of the key brain lipids, may be beneficial for AD and cognitive aging. Here, we studied the effects of Pls on cognitive functions and the lymphatic clearance of Aβ from the brain of AD mice and mice of different ages. The results showed that Pls effectively reduce brain Aβ levels and facilitate learning in aged but not old mice. In AD mice, Pls improve the lymphatic clearance of Aβ that is accompanied by an increase in general motor activity and an improvement of the emotional status and learning ability. Thus, these findings suggest that Pls could be a promising candidate for the alternative or concomitant therapy of AD and age-related brain diseases to enhance the lymphatic clearance of Aβ from the brain and cognitive functions.
Collapse
Affiliation(s)
- Alexander Shirokov
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, Prospekt Entuziastov 13, 410049 Saratov, Russia
- Department of Biology, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia
| | - Daria Zlatogosrkaya
- Department of Biology, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia
| | - Viktoria Adushkina
- Department of Biology, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia
| | - Elena Vodovozova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Ul. Miklukho-Maklaya, 16/10, 117997 Moscow, Russia
| | - Kristina Kardashevskaya
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Ul. Miklukho-Maklaya, 16/10, 117997 Moscow, Russia
| | - Ruslan Sultanov
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Palchevskogo Str. 17, 690041 Vladivostok, Russia
| | - Sergey Kasyanov
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Palchevskogo Str. 17, 690041 Vladivostok, Russia
| | - Inna Blokhina
- Department of Biology, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia
| | - Andrey Terskov
- Department of Biology, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia
| | - Maria Tzoy
- Physics Department, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia
| | - Arina Evsyukova
- Department of Biology, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia
| | - Alexander Dubrovsky
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Ul. Miklukho-Maklaya, 16/10, 117997 Moscow, Russia
| | - Matvey Tuzhilkin
- Department of Biology, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia
| | - Inna Elezarova
- Department of Biology, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia
| | - Alexander Dmitrenko
- Department of Biology, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia
| | - Maria Manzhaeva
- Department of Biology, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia
| | - Valeria Krupnova
- Department of Biology, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia
| | | | - Egor Ilyukov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Ul. Miklukho-Maklaya, 16/10, 117997 Moscow, Russia
| | - Dmitry Myagkov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Ul. Miklukho-Maklaya, 16/10, 117997 Moscow, Russia
| | - Dmitry Tuktarov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Ul. Miklukho-Maklaya, 16/10, 117997 Moscow, Russia
| | - Sergey Popov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Ul. Miklukho-Maklaya, 16/10, 117997 Moscow, Russia
| | - Tymophey Inozemzev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Ul. Miklukho-Maklaya, 16/10, 117997 Moscow, Russia
| | - Nikita Navolokin
- Department of Biology, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia
- Department of Pathological Anatomy, Saratov Medical State University, Bolshaya Kazachaya Str. 112, 410012 Saratov, Russia
| | - Ivan Fedosov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Ul. Miklukho-Maklaya, 16/10, 117997 Moscow, Russia
| | | |
Collapse
|
9
|
Toft-Bertelsen TL, Andreassen SN, Simonsen AH, Hasselbalch SG, MacAulay N. The CSF lipid profile in patients with probable idiopathic normal pressure hydrocephalus differs from control but does not differ between shunt responders and non-responders. Brain Commun 2024; 6:fcae388. [PMID: 39544703 PMCID: PMC11562123 DOI: 10.1093/braincomms/fcae388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 10/02/2024] [Accepted: 11/04/2024] [Indexed: 11/17/2024] Open
Abstract
Idiopathic normal pressure hydrocephalus is a common form of hydrocephalus in the elderly, characterized by enlarged ventricles combined with clinical symptoms presenting as gait impairment, urinary incontinence, and dementia. Idiopathic normal pressure hydrocephalus may be difficult to differentiate clinically from other neurodegenerative disorders, and up to 80% of cases may remain unrecognized and thus untreated. Consequently, there is a pressing demand for biomarkers that can confirm the diagnosis of idiopathic normal pressure hydrocephalus. In this exploratory study, CSF was sampled from the lumbar compartment of 21 control individuals and 19 probable idiopathic normal pressure hydrocephalus patients and analyzed by an untargeted mass spectroscopy-based platform to reveal a complete CSF lipid profile in these samples. Two hundred forty-four lipids from 17 lipid classes were detected in CSF. Various lipid classes, and select individual lipids, were reduced in the CSF obtained from patients with probable idiopathic normal pressure hydrocephalus, whereas a range of lipids belonging to the class of triacylglycerols was elevated. We detected no difference in the CSF lipid profile between probable idiopathic normal pressure hydrocephalus patients with and without clinical improvement following CSF shunting. In conclusion, the lipidomic profile of the CSF in patients with probable idiopathic normal pressure hydrocephalus, therefore, may serve as a sought after biomarker of the pathology, which may be employed to complement the clinical diagnosis.
Collapse
Affiliation(s)
| | | | - Anja Hviid Simonsen
- Department of Neurology, Section 6911, Danish Dementia Research Centre, Copenhagen University Hospital - Rigshospitalet, 2100 Copenhagen, Denmark
| | - Steen Gregers Hasselbalch
- Department of Neurology, Section 6911, Danish Dementia Research Centre, Copenhagen University Hospital - Rigshospitalet, 2100 Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Nanna MacAulay
- Department of Neuroscience, University of Copenhagen, 2200 Copenhagen, Denmark
| |
Collapse
|
10
|
Xu W, Yan J, Shao A, Lenahan C, Gao L, Wu H, Zheng J, Zhang J, Zhang JH. Peroxisome and pexophagy in neurological diseases. FUNDAMENTAL RESEARCH 2024; 4:1389-1397. [PMID: 39734532 PMCID: PMC11670711 DOI: 10.1016/j.fmre.2023.04.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 02/15/2023] [Accepted: 04/19/2023] [Indexed: 12/31/2024] Open
Abstract
Peroxisomes and pexophagy have gained increasing attention in their role within the central nervous system (CNS) in recent years. In this review, we comprehensively discussed the physiological and pathological mechanisms of peroxisomes and pexophagy in neurological diseases. Peroxisomes communicate with mitochondria, endoplasmic reticulum, and lipid bodies. Their types, sizes, and shapes vary in different regions of the brain. Moreover, peroxisomes play an important role in oxidative homeostasis, lipid synthesis, and degradation in the CNS, whereas its dysfunction causes various neurological diseases. Therefore, selective removal of dysfunctional or superfluous peroxisomes (pexophagy) provides neuroprotective effects, which indicate a promising therapeutic target. However, pexophagy largely remains unexplored in neurological disorders. More studies are needed to explore the pexophagy's crosstalk mechanisms in neurological pathology.
Collapse
Affiliation(s)
- Weilin Xu
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou 310009, China
| | - Jun Yan
- Department of Neurosurgery, Affiliated Tumor Hospital of Guangxi Medical University, Guangxi 537406, China
| | - Anwen Shao
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou 310009, China
| | - Cameron Lenahan
- Burrell College of Osteopathic Medicine, New Mexico State University, Las Cruces, NM 88001, USA
| | - Liansheng Gao
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou 310009, China
| | - Haijian Wu
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou 310009, China
| | - Jingwei Zheng
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou 310009, China
| | - Jianmin Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou 310009, China
| | - John H. Zhang
- Department of Physiology & Pharmacology Loma Linda University, Loma Linda, CA 92350, USA
- Department of Neurosurgery Loma Linda University, Loma Linda, CA 92350, USA
| |
Collapse
|
11
|
Han J, Zheng D, Liu PS, Wang S, Xie X. Peroxisomal homeostasis in metabolic diseases and its implication in ferroptosis. Cell Commun Signal 2024; 22:475. [PMID: 39367496 PMCID: PMC11451054 DOI: 10.1186/s12964-024-01862-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 09/30/2024] [Indexed: 10/06/2024] Open
Abstract
Peroxisomes are dynamic organelles involved in various cellular processes, including lipid metabolism, redox homeostasis, and intracellular metabolite transfer. Accumulating evidence suggests that peroxisomal homeostasis plays a crucial role in human health and disease, particularly in metabolic disorders and ferroptosis. The abundance and function of peroxisomes are regulated by a complex interplay between biogenesis and degradation pathways, involving peroxins, membrane proteins, and pexophagy. Peroxisome-dependent lipid metabolism, especially the synthesis of ether-linked phospholipids, has been implicated in modulating cellular susceptibility to ferroptosis, a newly discovered form of iron-dependent cell death. This review discusses the current understanding of peroxisome homeostasis, its roles in redox regulation and lipid metabolism, and its implications in human diseases. We also summarize the main mechanisms of ferroptosis and highlight recent discoveries on how peroxisome-dependent metabolism and signaling influence ferroptosis sensitivity. A better understanding of the interplay between peroxisomal homeostasis and ferroptosis may provide new insights into disease pathogenesis and reveal novel therapeutic strategies for peroxisome-related metabolic disorders and ferroptosis-associated diseases.
Collapse
Affiliation(s)
- Jiwei Han
- School of Life and Environmental Sciences, Shaoxing University, Shaoxing City, Zhejiang, China
| | - Daheng Zheng
- School of Life and Environmental Sciences, Shaoxing University, Shaoxing City, Zhejiang, China
| | - Pu-Ste Liu
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC
| | - Shanshan Wang
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangdong, China
| | - Xin Xie
- School of Life and Environmental Sciences, Shaoxing University, Shaoxing City, Zhejiang, China.
| |
Collapse
|
12
|
du Preez HN, Lin J, Maguire GEM, Aldous C, Kruger HG. COVID-19 vaccine adverse events: Evaluating the pathophysiology with an emphasis on sulfur metabolism and endotheliopathy. Eur J Clin Invest 2024; 54:e14296. [PMID: 39118373 DOI: 10.1111/eci.14296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 07/24/2024] [Indexed: 08/10/2024]
Abstract
In this narrative review, we assess the pathophysiology of severe adverse events that presented after vaccination with DNA and mRNA vaccines against COVID-19. The focus is on the perspective of an undersulfated and degraded glycocalyx, considering its impact on immunomodulation, inflammatory responses, coagulation and oxidative stress. The paper explores various factors that lead to glutathione and inorganic sulfate depletion and their subsequent effect on glycocalyx sulfation and other metabolites, including hormones. Components of COVID-19 vaccines, such as DNA and mRNA material, spike protein antigen and lipid nanoparticles, are involved in possible cytotoxic effects. The common thread connecting these adverse events is endotheliopathy or glycocalyx degradation, caused by depleted glutathione and inorganic sulfate levels, shear stress from circulating nanoparticles, aggregation and formation of protein coronas; leading to imbalanced immune responses and chronic release of pro-inflammatory cytokines, ultimately resulting in oxidative stress and systemic inflammatory response syndrome. By understanding the underlying pathophysiology of severe adverse events, better treatment options can be explored.
Collapse
Affiliation(s)
- Heidi N du Preez
- Catalysis and Peptide Research Unit, University of KwaZulu-Natal, Durban, South Africa
- College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Johnson Lin
- School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Glenn E M Maguire
- Catalysis and Peptide Research Unit, University of KwaZulu-Natal, Durban, South Africa
- School of Chemistry and Physics, University of KwaZulu-Natal, Durban, South Africa
| | - Colleen Aldous
- College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Hendrik G Kruger
- Catalysis and Peptide Research Unit, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
13
|
Bentley AR, Doumatey AP, Zhou J, Lei L, Meeks KAC, Heuston EF, Rotimi CN, Adeyemo AA. Lipidomics profiling and circulating triglyceride concentrations in sub-Saharan African individuals. Sci Rep 2024; 14:20834. [PMID: 39251667 PMCID: PMC11385232 DOI: 10.1038/s41598-024-71734-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 08/30/2024] [Indexed: 09/11/2024] Open
Abstract
Elevated triglycerides (TG) are a risk factor for cardiometabolic disorders. There are limited data on lipidomics profiles associated with serum triglycerides concentrations, although these could advance our understanding of the mechanisms underlying these associations. We conducted a lipidomics study of 308 Nigerians with replication in 199 Kenyans. Regression models were used to assess the association of TG with 480 lipid metabolites. Association and mediation analyses were conducted to determine the relationship among TG, metabolites, and several cardiometabolic traits. Ninety-nine metabolites were significantly associated with TG, and 91% of these associations replicated. Overrepresentation analysis identified enrichment of diacylglycerols, monoacylglycerols, diacylglycerophosphoethanolamines, monoacylglycerophosphocholines, ceramide phosphocholines, and diacylglycerophosphocholines. TG-cardiometabolic trait associations were largely mediated by TG-associated metabolites. Associations with type 2 diabetes, waist circumference, body mass index, total cholesterol, and low-density lipoprotein cholesterol concentration were independently mediated by metabolites in multiple subpathways. This lipidomics study in sub-Saharan Africans demonstrated that TG is associated with several non-TG lipids classes, including phosphatidylethanolamines, phosphatidylcholines, lysophospholipids, and plasmalogens, some of which may mediate the effect of TG as a risk factor for cardiometabolic disorders. The study identifies metabolites that are more proximal to cardiometabolic traits, which may be useful for understanding the underlying biology as well as differences in TG-trait associations across ancestries.
Collapse
Affiliation(s)
- Amy R Bentley
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, 12 South Drive, Building 12A Room 1025, Bethesda, MD, 20892-5635, USA.
| | - Ayo P Doumatey
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, 12 South Drive, Building 12A Room 1025, Bethesda, MD, 20892-5635, USA
| | - Jie Zhou
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, 12 South Drive, Building 12A Room 1025, Bethesda, MD, 20892-5635, USA
| | - Lin Lei
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, 12 South Drive, Building 12A Room 1025, Bethesda, MD, 20892-5635, USA
| | - Karlijn A C Meeks
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, 12 South Drive, Building 12A Room 1025, Bethesda, MD, 20892-5635, USA
| | - Elisabeth F Heuston
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, 12 South Drive, Building 12A Room 1025, Bethesda, MD, 20892-5635, USA
| | - Charles N Rotimi
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, 12 South Drive, Building 12A Room 1025, Bethesda, MD, 20892-5635, USA
| | - Adebowale A Adeyemo
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, 12 South Drive, Building 12A Room 1025, Bethesda, MD, 20892-5635, USA.
| |
Collapse
|
14
|
Shekho D, Mishra R, Kamal R, Bhatia R, Awasthi A. Breaking Barriers in Alzheimer's Disease: the Role of Advanced Drug Delivery Systems. AAPS PharmSciTech 2024; 25:207. [PMID: 39237748 DOI: 10.1208/s12249-024-02923-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 08/18/2024] [Indexed: 09/07/2024] Open
Abstract
Alzheimer's disease (AD), characterized by cognitive impairment, brain plaques, and tangles, is a global health concern affecting millions. It involves the build-up of amyloid-β (Aβ) and tau proteins, the formation of neuritic plaques and neurofibrillary tangles, cholinergic system dysfunction, genetic variations, and mitochondrial dysfunction. Various signaling pathways and metabolic processes are implicated in AD, along with numerous biomarkers used for diagnosis, risk assessment, and research. Despite these, there is no cure or effective treatment for AD. It is critically important to address this immediately to develop novel drug delivery systems (NDDS) capable of targeting the brain and delivering therapeutic agents to modulate the pathological processes of AD. This review summarizes AD, its pathogenesis, related signaling pathways, biomarkers, conventional treatments, the need for NDDS, and their application in AD treatment. It also covers preclinical, clinical, and ongoing trials, patents, and marketed AD formulations.
Collapse
Affiliation(s)
- Devank Shekho
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, 142001, Punjab, India
| | - Ritika Mishra
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, 142001, Punjab, India
| | - Raj Kamal
- Department of Quality Assurance, ISF College of Pharmacy, Moga, 142001, Punjab, India
| | - Rohit Bhatia
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Ankit Awasthi
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, 142001, Punjab, India.
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India.
| |
Collapse
|
15
|
Hossain MS, Mawatari S, Honsho M, Okauchi T, Fujino T. KIT-13, a novel plasmalogen derivative, attenuates neuroinflammation and amplifies cognition. Front Cell Dev Biol 2024; 12:1443536. [PMID: 39286482 PMCID: PMC11402709 DOI: 10.3389/fcell.2024.1443536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 08/20/2024] [Indexed: 09/19/2024] Open
Abstract
Plasmalogens (Pls) are specialized phospholipids integral to brain health, whose decline due to aging and stress contributes to cognitive impairment and neuroinflammation. This study explores the potential of a novel Pls derivative, KIT-13 (1-O-octadecyl-2-arachidonoyl-sn-glycerol-3-phosphoethanolamine), in mitigating neuroinflammation and enhancing cognition. When administered to mice, KIT-13 exhibited potent memory enhancement attributed to upregulated brain-derived neurotrophic factor (BDNF), a key player in cognitive processes. In vitro experiments with neuronal cells revealed KIT-13's ability to induce robust cellular signaling, surpassing natural plasmalogens. KIT-13 also promoted neurogenesis and inhibited apoptosis of neuronal-like cells, highlighting its potential in fostering neuronal growth and plasticity. Additionally, KIT-13 treatments reduced pro-inflammatory cytokine expression and attenuated glial activation in the brain. KIT-13's superior efficacy over natural Pls positions it as a promising therapeutic candidate for neurodegenerative conditions such as Alzheimer's disease, characterized by cognitive decline and neuroinflammation. This study presents KIT-13 as an innovative approach for addressing cognitive impairment and neuroinflammatory pathologies.
Collapse
Affiliation(s)
- Md Shamim Hossain
- Division of Lipid Cell Biology, Institute of Rheological Functions of Food, Fukuoka, Japan
| | - Shiro Mawatari
- Division of Lipid Cell Biology, Institute of Rheological Functions of Food, Fukuoka, Japan
| | - Masanori Honsho
- Department of Neuroinflammation and Brain Fatigue Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tatsuo Okauchi
- Department of Applied Chemistry, Kyushu Institute of Technology, Fukuoka, Japan
| | - Takehiko Fujino
- Division of Lipid Cell Biology, Institute of Rheological Functions of Food, Fukuoka, Japan
| |
Collapse
|
16
|
Guida F, Iannotta M, Lauritano A, Infantino R, Salviati E, Verde R, Luongo L, Sommella EM, Iannotti FA, Campiglia P, Maione S, Di Marzo V, Piscitelli F. Early biomarkers in the presymptomatic phase of cognitive impairment: changes in the endocannabinoidome and serotonergic pathways in Alzheimer's-prone mice after mTBI. Acta Neuropathol Commun 2024; 12:113. [PMID: 38992700 PMCID: PMC11241935 DOI: 10.1186/s40478-024-01820-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 06/10/2024] [Indexed: 07/13/2024] Open
Abstract
BACKGROUND Despite extensive studies on the neurobiological correlates of traumatic brain injury (TBI), little is known about its molecular determinants on long-term consequences, such as dementia and Alzheimer's disease (AD). METHODS Here, we carried out behavioural studies and an extensive biomolecular analysis, including inflammatory cytokines, gene expression and the combination of LC-HRMS and MALDI-MS Imaging to elucidate the targeted metabolomics and lipidomics spatiotemporal alterations of brains from wild-type and APP-SWE mice, a genetic model of AD, at the presymptomatic stage, subjected to mild TBI. RESULTS We found that brain injury does not affect cognitive performance in APP-SWE mice. However, we detected an increase of key hallmarks of AD, including Aβ1-42 levels and BACE1 expression, in the cortices of traumatized transgenic mice. Moreover, significant changes in the expanded endocannabinoid (eCB) system, or endocannabinoidome (eCBome), occurred, including increased levels of the endocannabinoid 2-AG in APP-SWE mice in both the cortex and hippocampus, and N-acylserotonins, detected for the first time in the brain. The gene expression of enzymes for the biosynthesis and inactivation of eCBs and eCB-like mediators, and some of their main molecular targets, also underwent significant changes. We also identified the formation of heteromers between cannabinoid 1 (CB1) and serotonergic 2A (5HT2A) receptors, whose levels increased in the cortex of APP-SWE mTBI mice, possibly contributing to the exacerbated pathophysiology of AD induced by the trauma. CONCLUSIONS Mild TBI induces biochemical changes in AD genetically predisposed mice and the eCBome may play a role in the pathogenetic link between brain injury and neurodegenerative disorders also by interacting with the serotonergic system.
Collapse
Affiliation(s)
- Francesca Guida
- Pharmacology Division, Department of Experimental Medicine, University of Campania "L. Vanvitelli", Naples, Italy
| | - Monica Iannotta
- Pharmacology Division, Department of Experimental Medicine, University of Campania "L. Vanvitelli", Naples, Italy
| | - Anna Lauritano
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry (ICB), National Research Council (CNR), Pozzuoli, (NA), Italy
| | - Rosmara Infantino
- Pharmacology Division, Department of Experimental Medicine, University of Campania "L. Vanvitelli", Naples, Italy
| | - Emanuela Salviati
- Dipartimento di Farmacia, Università Degli Studi di Salerno, Fisciano, (SA), Italy
| | - Roberta Verde
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry (ICB), National Research Council (CNR), Pozzuoli, (NA), Italy
| | - Livio Luongo
- Pharmacology Division, Department of Experimental Medicine, University of Campania "L. Vanvitelli", Naples, Italy
| | | | - Fabio Arturo Iannotti
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry (ICB), National Research Council (CNR), Pozzuoli, (NA), Italy
| | - Pietro Campiglia
- Dipartimento di Farmacia, Università Degli Studi di Salerno, Fisciano, (SA), Italy
| | - Sabatino Maione
- Pharmacology Division, Department of Experimental Medicine, University of Campania "L. Vanvitelli", Naples, Italy
| | - Vincenzo Di Marzo
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry (ICB), National Research Council (CNR), Pozzuoli, (NA), Italy.
- Institut Universitaire de Cardiologie et de Pneumologie de Québec and Institut sur la Nutrition et les Aliments Fonctionnels, Centre NUTRISS, Université Laval, Quebec City, Canada.
| | - Fabiana Piscitelli
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry (ICB), National Research Council (CNR), Pozzuoli, (NA), Italy.
| |
Collapse
|
17
|
Beyene HB, Huynh K, Wang T, Paul S, Cinel M, Mellett NA, Olshansky G, Meikle TG, Watts GF, Hung J, Hui J, Beilby J, Blangero J, Moses EK, Shaw JE, Magliano DJ, Giles C, Meikle PJ. Development and validation of a plasmalogen score as an independent modifiable marker of metabolic health: population based observational studies and a placebo-controlled cross-over study. EBioMedicine 2024; 105:105187. [PMID: 38861870 PMCID: PMC11215217 DOI: 10.1016/j.ebiom.2024.105187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/21/2024] [Accepted: 05/23/2024] [Indexed: 06/13/2024] Open
Abstract
BACKGROUND Decreased levels of circulating ethanolamine plasmalogens [PE(P)], and a concurrent increase in phosphatidylethanolamine (PE) are consistently reported in various cardiometabolic conditions. Here we devised, a plasmalogen score (Pls Score) that mirrors a metabolic signal that encompasses the levels of PE(P) and PE and captures the natural variation in circulating plasmalogens and perturbations in their metabolism associated with disease, diet, and lifestyle. METHODS We utilised, plasma lipidomes from the Australian Obesity, Diabetes and Lifestyle study (AusDiab; n = 10,339, 55% women) a nationwide cohort, to devise the Pls Score and validated this in the Busselton Health Study (BHS; n = 4,492, 56% women, serum lipidome) and in a placebo-controlled crossover trial involving Shark Liver Oil (SLO) supplementation (n = 10, 100% men). We examined the association of the Pls Score with cardiometabolic risk factors, type 2 diabetes mellitus (T2DM), cardiovascular disease and all-cause mortality (over 17 years). FINDINGS In a model, adjusted for age, sex and BMI, individuals in the top quintile of the Pls Score (Q5) relative to Q1 had an OR of 0.31 (95% CI 0.21-0.43), 0.39 (95% CI 0.25-0.61) and 0.42 (95% CI 0.30-0.57) for prevalent T2DM, incident T2DM and prevalent cardiovascular disease respectively, and a 34% lower mortality risk (HR = 0.66; 95% CI 0.56-0.78). Significant associations between diet and lifestyle habits and Pls Score exist and these were validated through dietary supplementation of SLO that resulted in a marked change in the Pls Score. INTERPRETATION The Pls Score as a measure that captures the natural variation in circulating plasmalogens, was not only inversely related to cardiometabolic risk and all-cause mortality but also associate with diet and lifestyle. Our results support the potential utility of the Pls Score as a biomarker for metabolic health and its responsiveness to dietary interventions. Further research is warranted to explore the underlying mechanisms and optimise the practical implementation of the Pls Score in clinical and population settings. FUNDING National Health and Medical Research Council (NHMRC grant 233200), National Health and Medical Research Council of Australia (Project grant APP1101320), Health Promotion Foundation of Western Australia, and National Health and Medical Research Council of Australia Senior Research Fellowship (#1042095).
Collapse
Affiliation(s)
- Habtamu B Beyene
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia; Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, Australia; Baker Department of Cardiovascular Research Translation and Implementation, La Trobe University, Melbourne, VIC, Australia
| | - Kevin Huynh
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia; Baker Department of Cardiovascular Research Translation and Implementation, La Trobe University, Melbourne, VIC, Australia; Baker Department of Cardiometabolic Health, Melbourne University, Melbourne, VIC, Australia
| | - Tingting Wang
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia; Baker Department of Cardiovascular Research Translation and Implementation, La Trobe University, Melbourne, VIC, Australia; Baker Department of Cardiometabolic Health, Melbourne University, Melbourne, VIC, Australia
| | - Sudip Paul
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia; Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, Australia
| | - Michelle Cinel
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | | | | | - Thomas G Meikle
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia; Baker Department of Cardiovascular Research Translation and Implementation, La Trobe University, Melbourne, VIC, Australia
| | - Gerald F Watts
- Medical School, University of Western Australia, Perth, WA, Australia; Cardiometabolic Service, Department of Cardiology and Internal Medicine, Royal Perth Hospital, Perth, WA, Australia
| | - Joseph Hung
- Medical School, University of Western Australia, Perth, WA, Australia
| | - Jennie Hui
- PathWest Laboratory Medicine of Western Australia, Queen Elizabeth II Medical Centre, Nedlands, WA, Australia; School of Population and Global Health, University of Western Australia, Crawley, WA, Australia
| | - John Beilby
- School of Biomedical Sciences, University of Western Australia, Crawley, WA, Australia
| | - John Blangero
- South Texas Diabetes and Obesity Institute, The University of Texas Rio Grande Valley, Brownsville, TX, USA
| | - Eric K Moses
- School of Biomedical Sciences, University of Western Australia, Crawley, WA, Australia; Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Jonathan E Shaw
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia; Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, Australia
| | - Dianna J Magliano
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia; Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, Australia
| | - Corey Giles
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia; Baker Department of Cardiovascular Research Translation and Implementation, La Trobe University, Melbourne, VIC, Australia; Baker Department of Cardiometabolic Health, Melbourne University, Melbourne, VIC, Australia.
| | - Peter J Meikle
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia; Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, Australia; Baker Department of Cardiovascular Research Translation and Implementation, La Trobe University, Melbourne, VIC, Australia; Baker Department of Cardiometabolic Health, Melbourne University, Melbourne, VIC, Australia.
| |
Collapse
|
18
|
Navolokin N, Adushkina V, Zlatogorskaya D, Telnova V, Evsiukova A, Vodovozova E, Eroshova A, Dosadina E, Diduk S, Semyachkina-Glushkovskaya O. Promising Strategies to Reduce the SARS-CoV-2 Amyloid Deposition in the Brain and Prevent COVID-19-Exacerbated Dementia and Alzheimer's Disease. Pharmaceuticals (Basel) 2024; 17:788. [PMID: 38931455 PMCID: PMC11206883 DOI: 10.3390/ph17060788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/02/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
The COVID-19 pandemic, caused by infection with the SARS-CoV-2 virus, is associated with cognitive impairment and Alzheimer's disease (AD) progression. Once it enters the brain, the SARS-CoV-2 virus stimulates accumulation of amyloids in the brain that are highly toxic to neural cells. These amyloids may trigger neurological symptoms in COVID-19. The meningeal lymphatic vessels (MLVs) play an important role in removal of toxins and mediate viral drainage from the brain. MLVs are considered a promising target to prevent COVID-19-exacerbated dementia. However, there are limited methods for augmentation of MLV function. This review highlights new discoveries in the field of COVID-19-mediated amyloid accumulation in the brain associated with the neurological symptoms and the development of promising strategies to stimulate clearance of amyloids from the brain through lymphatic and other pathways. These strategies are based on innovative methods of treating brain dysfunction induced by COVID-19 infection, including the use of photobiomodulation, plasmalogens, and medicinal herbs, which offer hope for addressing the challenges posed by the SARS-CoV-2 virus.
Collapse
Affiliation(s)
- Nikita Navolokin
- Department of Pathological Anatomy, Saratov Medical State University, Bolshaya Kazachaya Str. 112, 410012 Saratov, Russia;
- Department of Biology, Saratov State University, Astrakhanskaya 82, 410012 Saratov, Russia; (V.A.); (D.Z.); (V.T.); (A.E.)
| | - Viktoria Adushkina
- Department of Biology, Saratov State University, Astrakhanskaya 82, 410012 Saratov, Russia; (V.A.); (D.Z.); (V.T.); (A.E.)
| | - Daria Zlatogorskaya
- Department of Biology, Saratov State University, Astrakhanskaya 82, 410012 Saratov, Russia; (V.A.); (D.Z.); (V.T.); (A.E.)
| | - Valeria Telnova
- Department of Biology, Saratov State University, Astrakhanskaya 82, 410012 Saratov, Russia; (V.A.); (D.Z.); (V.T.); (A.E.)
| | - Arina Evsiukova
- Department of Biology, Saratov State University, Astrakhanskaya 82, 410012 Saratov, Russia; (V.A.); (D.Z.); (V.T.); (A.E.)
| | - Elena Vodovozova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997 Moscow, Russia;
| | - Anna Eroshova
- Department of Biotechnology, Leeners LLC, Nagornyi Proezd 3a, 117105 Moscow, Russia; (A.E.); (E.D.); (S.D.)
| | - Elina Dosadina
- Department of Biotechnology, Leeners LLC, Nagornyi Proezd 3a, 117105 Moscow, Russia; (A.E.); (E.D.); (S.D.)
| | - Sergey Diduk
- Department of Biotechnology, Leeners LLC, Nagornyi Proezd 3a, 117105 Moscow, Russia; (A.E.); (E.D.); (S.D.)
- Research Institute of Carcinogenesis of the N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia, Kashirskoe Shosse 24, 115522 Moscow, Russia
| | | |
Collapse
|
19
|
Sitton J, Ali A, Osborne L, Holman AP, Rodriguez A, Kurouski D. Plasmalogens Alter the Aggregation Rate of Transthyretin and Lower Toxicity of Transthyretin Fibrils. J Phys Chem Lett 2024; 15:4761-4766. [PMID: 38661515 PMCID: PMC11071038 DOI: 10.1021/acs.jpclett.4c00868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 04/26/2024]
Abstract
Heart tissue can experience a progressive accumulation of transthyretin (TTR), a small four subunit protein that transports holoretinol binding protein and thyroxine. This severe pathology is known as transthyretin amyloid cardiomyopathy. Numerous experimental studies indicated that the aggregation rate and toxicity of TTR fibrils could be altered by the presence of lipids; however, the role of plasmalogens in this process remains unknown. In this study, we investigate the effect of choline plasmalogens (CPs) with different lengths and saturations of fatty acids (FAs) on TTR aggregation. We found that CPs with saturated and unsaturated FAs strongly suppressed TTR aggregation. We also found that CPs with saturated FAs did not change the morphology of TTR fibrils; however, much thicker fibrillar species were formed in the presence of CPs with unsaturated FAs. Finally, we found that CPs with C16:0, C18:0, and C18:1 FAs substantially lowered the cytotoxicity of TTR fibrils that were formed in their presence.
Collapse
Affiliation(s)
- Jadon Sitton
- Department
of Biochemistry and Biophysics, Texas A&M
University, College
Station, Texas 77843, United States
| | - Abid Ali
- Department
of Biochemistry and Biophysics, Texas A&M
University, College
Station, Texas 77843, United States
| | - Luke Osborne
- Department
of Biochemistry and Biophysics, Texas A&M
University, College
Station, Texas 77843, United States
| | - Aidan P. Holman
- Department
of Entomology, Texas A&M University, College Station, Texas 77843, United States
| | - Axell Rodriguez
- Department
of Biochemistry and Biophysics, Texas A&M
University, College
Station, Texas 77843, United States
| | - Dmitry Kurouski
- Department
of Biochemistry and Biophysics, Texas A&M
University, College
Station, Texas 77843, United States
- Department
of Biomedical Engineering, Texas A&M
University, College
Station, Texas 77843, United States
| |
Collapse
|
20
|
Shields SWJ, Canez CR, Rosales CA, Roberts JA, Bourgaize H, Pallister PJ, Manthorpe JM, Smith JC. Optimized 13C-TrEnDi Enhances the Sensitivity of Plasmenyl Ether Glycerophospholipids and Demonstrates Compatibility with Other Derivatization Strategies. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:972-981. [PMID: 38551491 DOI: 10.1021/jasms.4c00015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
The identification and quantitation of plasmalogen glycerophospholipids is challenging due to their isobaric overlap with plasmanyl ether-linked glycerophospholipids, susceptibility to acid degradation, and their typically low abundance in biological samples. Trimethylation enhancement using diazomethane (TrEnDi) can be used to significantly enhance the signal of glycerophospholipids through the creation of quaternary ammonium groups producing fixed positive charges using 13C-diazomethane in complex lipid extracts. Although TrEnDi requires a strong acid for complete methylation, we report an optimized protocol using 10 mM HBF4 with the subsequent addition of a buffer solution that prevents acidic hydrolysis of plasmalogen species and enables the benefits of TrEnDi to be realized for this class of lipids. These optimized conditions were applied to aliquots of bovine liver extract (BLE) to achieve permethylation of plasmalogen lipids within a complex mixture. Treating aliquots of unmodified and TrEnDi-derivatized BLE samples with 80% formic acid and comparing their liquid chromatography mass spectrometry (LCMS) results to analogous samples not treated with formic acid, enabled the identification of 29 plasmalogen species. On average, methylated plasmalogen species from BLE demonstrated 2.81-fold and 28.1-fold sensitivity gains over unmodified counterparts for phosphatidylcholine and phosphatidylethanolamine plasmalogen species, respectively. Furthermore, the compatibility of employing 13C-TrEnDi and a previously reported iodoacetalization strategy was demonstrated to effectively identify plasmenyl-ether lipids in complex biological extracts at greater levels of sensitivity. Overall, we detail an optimized 13C-TrEnDi derivatization strategy that enables the analysis of plasmalogen glycerophospholipids with no undesired cleavage of radyl groups, boosting their sensitivity in LCMS and LCMS/MS analyses.
Collapse
Affiliation(s)
- Samuel W J Shields
- Department of Chemistry, Carleton University, Ottawa, Ontario K1S 5B6, Canada
- Carleton Mass Spectrometry Centre, Carleton University, Ottawa, Ontario K1S 5B6, Canada
| | - Carlos R Canez
- Institute of Biochemistry, Carleton University, Ottawa, Ontario K1S 5B6, Canada
- Carleton Mass Spectrometry Centre, Carleton University, Ottawa, Ontario K1S 5B6, Canada
| | - Christian A Rosales
- Department of Chemistry, Carleton University, Ottawa, Ontario K1S 5B6, Canada
- Carleton Mass Spectrometry Centre, Carleton University, Ottawa, Ontario K1S 5B6, Canada
| | - Joshua A Roberts
- Department of Chemistry, Carleton University, Ottawa, Ontario K1S 5B6, Canada
- Carleton Mass Spectrometry Centre, Carleton University, Ottawa, Ontario K1S 5B6, Canada
| | - Hillary Bourgaize
- Department of Chemistry, Carleton University, Ottawa, Ontario K1S 5B6, Canada
- Carleton Mass Spectrometry Centre, Carleton University, Ottawa, Ontario K1S 5B6, Canada
| | - Peter J Pallister
- Department of Chemistry, Carleton University, Ottawa, Ontario K1S 5B6, Canada
| | - Jeffrey M Manthorpe
- Department of Chemistry, Carleton University, Ottawa, Ontario K1S 5B6, Canada
- Institute of Biochemistry, Carleton University, Ottawa, Ontario K1S 5B6, Canada
- Carleton Mass Spectrometry Centre, Carleton University, Ottawa, Ontario K1S 5B6, Canada
| | - Jeffrey C Smith
- Department of Chemistry, Carleton University, Ottawa, Ontario K1S 5B6, Canada
- Institute of Biochemistry, Carleton University, Ottawa, Ontario K1S 5B6, Canada
- Carleton Mass Spectrometry Centre, Carleton University, Ottawa, Ontario K1S 5B6, Canada
| |
Collapse
|
21
|
Luo YX, Yang LL, Yao XQ. Gut microbiota-host lipid crosstalk in Alzheimer's disease: implications for disease progression and therapeutics. Mol Neurodegener 2024; 19:35. [PMID: 38627829 PMCID: PMC11020986 DOI: 10.1186/s13024-024-00720-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/18/2024] [Indexed: 04/19/2024] Open
Abstract
Trillions of intestinal bacteria in the human body undergo dynamic transformations in response to physiological and pathological changes. Alterations in their composition and metabolites collectively contribute to the progression of Alzheimer's disease. The role of gut microbiota in Alzheimer's disease is diverse and complex, evidence suggests lipid metabolism may be one of the potential pathways. However, the mechanisms that gut microbiota mediate lipid metabolism in Alzheimer's disease pathology remain unclear, necessitating further investigation for clarification. This review highlights the current understanding of how gut microbiota disrupts lipid metabolism and discusses the implications of these discoveries in guiding strategies for the prevention or treatment of Alzheimer's disease based on existing data.
Collapse
Affiliation(s)
- Ya-Xi Luo
- Department of Rehabilitation, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ling-Ling Yang
- Department of Rehabilitation, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiu-Qing Yao
- Department of Rehabilitation, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
- Chongqing Municipality Clinical Research Center for Geriatric Medicine, Chongqing, China.
- Department of Rehabilitation Therapy, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
22
|
Sedlák F, Kvasnička A, Marešová B, Brumarová R, Dobešová D, Dostálová K, Šrámková K, Pehr M, Šácha P, Friedecký D, Konvalinka J. Parallel Metabolomics and Lipidomics of a PSMA/GCPII Deficient Mouse Model Reveal Alteration of NAAG Levels and Brain Lipid Composition. ACS Chem Neurosci 2024; 15:1342-1355. [PMID: 38377674 PMCID: PMC10995945 DOI: 10.1021/acschemneuro.3c00494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 01/10/2024] [Accepted: 02/05/2024] [Indexed: 02/22/2024] Open
Abstract
Glutamate carboxypeptidase II (GCPII, also known as PSMA or FOLH1) is responsible for the cleavage of N-acetyl-aspartyl-glutamate (NAAG) to N-acetyl-aspartate and glutamate in the central nervous system and facilitates the intestinal absorption of folate by processing dietary folyl-poly-γ-glutamate in the small intestine. The physiological function of GCPII in other organs like kidneys is still not known. GCPII inhibitors are neuroprotective in various conditions (e.g., ischemic brain injury) in vivo; however, their utilization as potential drug candidates has not been investigated in regard to not yet known GCPII activities. To explore the GCPII role and possible side effects of GCPII inhibitors, we performed parallel metabolomic and lipidomic analysis of the cerebrospinal fluid (CSF), urine, plasma, and brain tissue of mice with varying degrees of GCPII deficiency (fully deficient in Folh1, -/-; one allele deficient in Folh1, +/-; and wild type, +/+). Multivariate analysis of metabolites showed no significant differences between wild-type and GCPII-deficient mice (except for NAAG), although changes were observed between the sex and age. NAAG levels were statistically significantly increased in the CSF, urine, and plasma of GCPII-deficient mice. However, no difference in NAAG concentrations was found in the whole brain lysate likely because GCPII, as an extracellular enzyme, can affect only extracellular and not intracellular NAAG concentrations. Regarding the lipidome, the most pronounced genotype-linked changes were found in the brain tissue. In brains of GCPII-deficient mice, we observed statistically significant enrichment in phosphatidylcholine-based lipids and reduction of sphingolipids and phosphatidylethanolamine plasmalogens. We hypothesize that the alteration of the NAA-NAAG axis by absent GCPII activity affected myelin composition. In summary, the absence of GCPII and thus similarly its inhibition do not have detrimental effects on metabolism, with just minor changes in the brain lipidome.
Collapse
Affiliation(s)
- František Sedlák
- Institute
of Organic Chemistry and Biochemistry, Czech
Academy of Sciences, Prague 6 166 10, Czechia
- Institute
of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University, Prague 2 110 01, Czechia
- First
Department of Internal Medicine - Hematology, Charles University General Hospital in Prague, Prague 110 01, Czechia
| | - Aleš Kvasnička
- Laboratory
for Inherited Metabolic Disorders, Department of Clinical Biochemistry, University Hospital Olomouc, and Faculty of Medicine
and Dentistry, Palacký University Olomouc, Zdravotníku° 248/7, Olomouc 779 00, Czechia
| | - Barbora Marešová
- Institute
of Organic Chemistry and Biochemistry, Czech
Academy of Sciences, Prague 6 166 10, Czechia
- Institute
of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University, Prague 2 110 01, Czechia
| | - Radana Brumarová
- Laboratory
for Inherited Metabolic Disorders, Department of Clinical Biochemistry, University Hospital Olomouc, and Faculty of Medicine
and Dentistry, Palacký University Olomouc, Zdravotníku° 248/7, Olomouc 779 00, Czechia
| | - Dana Dobešová
- Laboratory
for Inherited Metabolic Disorders, Department of Clinical Biochemistry, University Hospital Olomouc, and Faculty of Medicine
and Dentistry, Palacký University Olomouc, Zdravotníku° 248/7, Olomouc 779 00, Czechia
| | - Kateřina Dostálová
- Laboratory
for Inherited Metabolic Disorders, Department of Clinical Biochemistry, University Hospital Olomouc, and Faculty of Medicine
and Dentistry, Palacký University Olomouc, Zdravotníku° 248/7, Olomouc 779 00, Czechia
| | - Karolína Šrámková
- Institute
of Organic Chemistry and Biochemistry, Czech
Academy of Sciences, Prague 6 166 10, Czechia
| | - Martin Pehr
- Institute
of Organic Chemistry and Biochemistry, Czech
Academy of Sciences, Prague 6 166 10, Czechia
- Third
Department of Medicine − Department of Endocrinology and Metabolism
of the first Faculty of Medicine and General University Hospital in
Prague, Charles University, Prague 110 01, Czechia
| | - Pavel Šácha
- Institute
of Organic Chemistry and Biochemistry, Czech
Academy of Sciences, Prague 6 166 10, Czechia
| | - David Friedecký
- Laboratory
for Inherited Metabolic Disorders, Department of Clinical Biochemistry, University Hospital Olomouc, and Faculty of Medicine
and Dentistry, Palacký University Olomouc, Zdravotníku° 248/7, Olomouc 779 00, Czechia
| | - Jan Konvalinka
- Institute
of Organic Chemistry and Biochemistry, Czech
Academy of Sciences, Prague 6 166 10, Czechia
- Department
of Biochemistry, Faculty of Science, Charles
University, Hlavova 8, Prague 128 00, Czechia
| |
Collapse
|
23
|
Ortlund E, Chen CY, Maner-Smith K, Khadka M, Ahn J, Gulbin X, Ivanova A, Dammer E, Seyfried N, Bennett D, Hajjar I. Integrative brain omics approach reveals key role for sn-1 lysophosphatidylethanolamine in Alzheimer's dementia. RESEARCH SQUARE 2024:rs.3.rs-3973736. [PMID: 38464293 PMCID: PMC10925467 DOI: 10.21203/rs.3.rs-3973736/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
The biology of individual lipid species and their relevance in Alzheimer's disease (AD) remains incompletely understood. We utilized non-targeted mass spectrometry to examine brain lipids variations across 316 post-mortem brains from participants in the Religious Orders Study (ROS) or Rush Memory and Aging Project (MAP) cohorts classified as either control, asymptomatic AD (AAD), or symptomatic AD (SAD) and integrated the lipidomics data with untargeted proteomic characterization on the same individuals. Lipid enrichment analysis and analysis of variance identified significantly lower abundance of lysophosphatidylethanolamine (LPE) and lysophosphatidylcholine (LPC) species in SAD than controls or AAD. Lipid-protein co-expression network analyses revealed that lipid modules consisting of LPE and LPC exhibited a significant association to protein modules associated with MAPK/metabolism, post-synaptic density, and Cell-ECM interaction pathways and were associated with better antemortem cognition and with neuropathological changes seen in AD. Particularly, LPE 22:6 [sn-1] levels are significantly decreased across AD cases (SAD) and show the most influence on protein changes compared to other lysophospholipid species. LPE 22:6 may be a lipid signature for AD and could be leveraged as potential therapeutic or dietary targets for AD.
Collapse
|
24
|
Darwish A, Pammer M, Gallyas F, Vígh L, Balogi Z, Juhász K. Emerging Lipid Targets in Glioblastoma. Cancers (Basel) 2024; 16:397. [PMID: 38254886 PMCID: PMC10814456 DOI: 10.3390/cancers16020397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/09/2024] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
GBM accounts for most of the fatal brain cancer cases, making it one of the deadliest tumor types. GBM is characterized by severe progression and poor prognosis with a short survival upon conventional chemo- and radiotherapy. In order to improve therapeutic efficiency, considerable efforts have been made to target various features of GBM. One of the targetable features of GBM is the rewired lipid metabolism that contributes to the tumor's aggressive growth and penetration into the surrounding brain tissue. Lipid reprogramming allows GBM to acquire survival, proliferation, and invasion benefits as well as supportive modulation of the tumor microenvironment. Several attempts have been made to find novel therapeutic approaches by exploiting the lipid metabolic reprogramming in GBM. In recent studies, various components of de novo lipogenesis, fatty acid oxidation, lipid uptake, and prostaglandin synthesis have been considered promising targets in GBM. Emerging data also suggest a significant role hence therapeutic potential of the endocannabinoid metabolic pathway in GBM. Here we review the lipid-related GBM characteristics in detail and highlight specific targets with their potential therapeutic use in novel antitumor approaches.
Collapse
Affiliation(s)
- Ammar Darwish
- Institute of Biochemistry and Medical Chemistry, Medical School, University of Pécs, 7624 Pécs, Hungary
| | - Milán Pammer
- Institute of Biochemistry and Medical Chemistry, Medical School, University of Pécs, 7624 Pécs, Hungary
| | - Ferenc Gallyas
- Institute of Biochemistry and Medical Chemistry, Medical School, University of Pécs, 7624 Pécs, Hungary
| | - László Vígh
- Institute of Biochemistry, HUN-REN Biological Research Center, 6726 Szeged, Hungary
| | - Zsolt Balogi
- Institute of Biochemistry and Medical Chemistry, Medical School, University of Pécs, 7624 Pécs, Hungary
| | - Kata Juhász
- Institute of Biochemistry and Medical Chemistry, Medical School, University of Pécs, 7624 Pécs, Hungary
| |
Collapse
|
25
|
Zhang J, Guo S, Tao R, Wang F, Xie Y, Wang H, Ding L, Shen Y, Zhou X, Feng J, Shen Q. Neuroprotective effect of plasmalogens on AlCl 3-induced Alzheimer's disease zebrafish via acting on the regulatory network of ferroptosis, apoptosis and synaptic neurotransmission release with oxidative stress as the center. Neurosci Lett 2024; 818:137560. [PMID: 37979715 DOI: 10.1016/j.neulet.2023.137560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 11/07/2023] [Accepted: 11/15/2023] [Indexed: 11/20/2023]
Abstract
Plasmalogens (Pls) are considered to play a potential role in the treatment of neurodegenerative diseases. In the present study, an Alzheimer's disease (AD) model of zebrafish induced by AlCl3 was established to investigate whether the marine-derived Pls could alleviate cognitive impairments of AD zebrafish. Behavioral tests were carried out to assess the athletic ability. The transcriptional profiles of zebrafish in the control, AD model and AD_PLS group were compared and analyzed to determine the potential mechanisms of dietary Pls on AD. The study found that Pls could reverse athletic impairment in the AD zebrafish model, and the expression levels of genes related to ferroptosis, synaptic dysfunction and apoptosis were significantly altered between experimental groups. Further analysis showed that all of these genes were associated with oxidative stress (OS). These data suggest that healthy protective role of marine-derived Pls on AD zebrafish may result from inhibition of ferroptosis and neuronal apoptosis, restoring synaptic neurotransmission release, and reducing neuroinflammation. Among them, Oxidative stress is acted as the center to connect different regulation pathways. This study provides evidence to support the essential roles of OS in pathogenesis of AD, and the application of Pls in relieving AD.
Collapse
Affiliation(s)
- Jian Zhang
- Collaborative Innovation Center of Seafood Deep Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou, China
| | - Shunyuan Guo
- Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou 310014, China
| | - Rong Tao
- Collaborative Innovation Center of Seafood Deep Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou, China
| | - Fan Wang
- Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou 310014, China
| | - Yihong Xie
- Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou 310014, China
| | - Huizi Wang
- Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou 310014, China
| | - Lan Ding
- Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou 310014, China
| | - Yuejian Shen
- Hangzhou Linping District Maternal & Child Health Care Hospital, Hangzhou, Zhejiang 311113, China
| | - Xiaoli Zhou
- Hangzhou Linping District Maternal & Child Health Care Hospital, Hangzhou, Zhejiang 311113, China
| | - Junli Feng
- Collaborative Innovation Center of Seafood Deep Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou, China; Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou, China.
| | - Qing Shen
- Department of Clinical Laboratory, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou 324000, China; Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou, China.
| |
Collapse
|
26
|
Cipryan L, Kosek V, García CJ, Dostal T, Bechynska K, Hajslova J, Hofmann P. A lipidomic and metabolomic signature of a very low-carbohydrate high-fat diet and high-intensity interval training: an additional analysis of a randomized controlled clinical trial. Metabolomics 2023; 20:10. [PMID: 38141101 DOI: 10.1007/s11306-023-02071-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023]
Abstract
INTRODUCTION Regular physical activity and dietary variety are modifiable and influential factors of health outcomes. However, the cumulative effects of these behaviors are not well understood. Metabolomics may have a promising research potential to extend our knowledge and use it in the attempts to find a long-term and sustainable personalized approach in exercise and diet recommendations. OBJECTIVE The main aim was to investigate the effect of the 12 week very low carbohydrate high fat (VLCHF) diet and high-intensity interval training (HIIT) on lipidomic and metabolomic profiles in individuals with overweight and obesity. METHODS The participants (N = 91) were randomly allocated to HIIT (N = 22), VLCHF (N = 25), VLCHF + HIIT (N = 25) or control (N = 19) groups for 12 weeks. Fasting plasma samples were collected before the intervention and after 4, 8 and 12 weeks. The samples were then subjected to untargeted lipidomic and metabolomic analyses using reversed phase ultra-high-performance liquid chromatography coupled to high-resolution mass spectrometry. RESULTS The VLCHF diet affected plasma lipids considerably while the effect of HIIT was unremarkable. Already after 4 weeks of intervention substantial changes of plasma lipids were found in both VLCHF diet groups. The changes persisted throughout the entire 12 weeks of the VLCHF diet. Specifically, acyl carnitines, plasmalogens, fatty acyl esters of hydroxy fatty acid, sphingomyelin, ceramides, cholesterol esters, fatty acids and 4-hydroxybutyric were identified as lipid families that increased in the VLCHF diet groups whereas lipid families of triglycerides and glycerophospholipids decreased. Additionally, metabolomic analysis showed a decrease of theobromine. CONCLUSIONS This study deciphers the specific responses to a VLCHF diet, HIIT and their combination by analysing untargeted lipidomic and metabolomic profile. VLCHF diet caused divergent changes of plasma lipids and other metabolites when compared to the exercise and control group which may contribute to a better understanding of metabolic changes and the appraisal of VLCHF diet benefits and harms. CLINICAL TRIAL REGISTRY NUMBER NCT03934476, registered 1st May 2019 https://clinicaltrials.gov/ct2/show/NCT03934476?term=NCT03934476&draw=2&rank=1 .
Collapse
Affiliation(s)
- Lukas Cipryan
- Department of Human Movement Studies and Human Motion Diagnostic Centre, The University of Ostrava, Ostrava, Czech Republic
| | - Vit Kosek
- Department of Food Analysis and Nutrition, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, 16628, Prague, Czech Republic.
| | - Carlos J García
- Department of Food Analysis and Nutrition, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, 16628, Prague, Czech Republic
| | - Tomas Dostal
- Department of Human Movement Studies and Human Motion Diagnostic Centre, The University of Ostrava, Ostrava, Czech Republic
| | - Kamila Bechynska
- Department of Food Analysis and Nutrition, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, 16628, Prague, Czech Republic
| | - Jana Hajslova
- Department of Food Analysis and Nutrition, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, 16628, Prague, Czech Republic
| | - Peter Hofmann
- Institute of Human Movement Science, Sport and Health, Exercise Physiology, Training and Training Therapy Research Group, University of Graz, Graz, Austria
| |
Collapse
|
27
|
Ding Y, Zhang C, Zhou M, Xiang Y, Tong A. Hetero-Diels-Alder Cycloaddition Reaction of Vinyl Ethers Enables Selective Fluorescent Labeling of Plasmalogens in Human Plasma Lipids. J Org Chem 2023; 88:13741-13748. [PMID: 37710996 DOI: 10.1021/acs.joc.3c01380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
Plasmalogens (Pls) are vinyl ether-containing glycerophospholipids of broad biological interest. Their abnormal levels are associated with neurological disorders and cardiovascular diseases. The intricacy of analyzing Pls in lipid samples arises from the wide variety of other coexisting lipid species, which underscores the urgent need for a Pls-specific labeling reaction. To address this challenge, we report an efficient hetero-Diels-Alder cycloaddition reaction between nonterminal vinyl ethers of Pls and o-quinolinone quinone methide probes under mild conditions. On the basis of this mechanism, a selective fluorescent labeling method for Pls is developed. The application of this method permits the exclusive derivatization of Pls over other human plasma lipids. The process also imparts labeled Pls with distinct fluorescence emission and chromatographic retention properties. By integrating this method with high-performance liquid chromatography, we are able to identify individual chromatographic signatures of Pls from 10 different human plasma samples. This Pls signature analytical technique, empowered by the Pls-specific labeling reaction, is cost-effective and simple in terms of instrumentation, suggesting its promising potential for the early screening and diagnosis of diseases linked to Pls abnormalities.
Collapse
Affiliation(s)
- Yiwen Ding
- Department of Chemistry, Beijing Key Laboratory for Analytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing 100084, P. R. China
| | - Chu Zhang
- Department of Chemistry, Beijing Key Laboratory for Analytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing 100084, P. R. China
| | - Min Zhou
- Department of Chemistry, Beijing Key Laboratory for Analytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing 100084, P. R. China
| | - Yu Xiang
- Department of Chemistry, Beijing Key Laboratory for Analytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing 100084, P. R. China
| | - Aijun Tong
- Department of Chemistry, Beijing Key Laboratory for Analytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
28
|
Moon JY, Chai JC, Yu B, Song RJ, Chen GC, Graff M, Daviglus ML, Chan Q, Thyagarajan B, Castaneda SF, Grove ML, Cai J, Xue X, Mossavar-Rahmani Y, Vasan RS, Boerwinkle E, Kaplan R, Qi Q. Metabolomic Signatures of Sedentary Behavior and Cardiometabolic Traits in US Hispanics/Latinos: Results from HCHS/SOL. Med Sci Sports Exerc 2023; 55:1781-1791. [PMID: 37170952 PMCID: PMC10523950 DOI: 10.1249/mss.0000000000003205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
PURPOSE The aim of this study was to understand the serum metabolomic signatures of moderate-to-vigorous physical activity (MVPA) and sedentary behavior, and further associate their metabolomic signatures with incident cardiometabolic diseases. METHODS This analysis included 2711 US Hispanics/Latinos from the Hispanic Community Health Study/Study of Latinos (HCHS/SOL) aged 18-74 yr (2008-2011). An untargeted, liquid chromatography-mass spectrometry was used to profile the serum metabolome. The associations of metabolites with accelerometer-measured MVPA and sedentary time were examined using survey linear regressions adjusting for covariates. The weighted correlation network analysis identified modules of correlated metabolites in relation to sedentary time, and the modules were associated with incident diabetes, dyslipidemia, and hypertension over the 6-yr follow-up. RESULTS Of 624 metabolites, 5 and 102 were associated with MVPA and sedentary behavior at false discovery rate (FDR) <0.05, respectively, after adjusting for socioeconomic and lifestyle factors. The weighted correlation network analysis identified 8 modules from 102 metabolites associated with sedentary time. Four modules (branched-chain amino acids, erythritol, polyunsaturated fatty acid, creatine) were positively, and the other four (acyl choline, plasmalogen glycerol phosphatidyl choline, plasmalogen glycerol phosphatidyl ethanolamine, urea cycle) were negatively correlated with sedentary time. Among these modules, a higher branched-chain amino acid score and a lower plasmalogen glycerol phosphatidyl choline score were associated with increased risks of diabetes and dyslipidemia. A higher erythritol score was associated with an increased risk of diabetes, and a lower acyl choline score was linked to an increased risk of hypertension. CONCLUSIONS In this study of US Hispanics/Latinos, we identified multiple serum metabolomic signatures of sedentary behavior and their associations with risk of incident diabetes, hypertension, and dyslipidemia. These findings suggest a potential role of circulating metabolites in the links between sedentary behavior and cardiometabolic diseases.
Collapse
Affiliation(s)
- Jee-Young Moon
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY
| | - Jin Choul Chai
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY
| | - Bing Yu
- Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX
| | - Rebecca J. Song
- Department of Medicine, Boston University School of Medicine, Boston, MA
| | - Guo-chong Chen
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY
- Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, Suzhou, CHINA
| | - Mariaelisa Graff
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, NC
| | - Martha L. Daviglus
- Institute for Minority Health Research, University of Illinois Chicago, Chicago, IL
| | - Queenie Chan
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, IL
| | - Bharat Thyagarajan
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN
| | | | - Megan L. Grove
- Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, Suzhou, CHINA
| | - Jianwen Cai
- Department of Biostatistics, University of North Carolina at Chapel Hill, NC
| | - Xiaonan Xue
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY
| | - Yasmin Mossavar-Rahmani
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY
| | | | - Eric Boerwinkle
- Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX
| | - Robert Kaplan
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Qibin Qi
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY
| |
Collapse
|
29
|
Szrok-Jurga S, Turyn J, Hebanowska A, Swierczynski J, Czumaj A, Sledzinski T, Stelmanska E. The Role of Acyl-CoA β-Oxidation in Brain Metabolism and Neurodegenerative Diseases. Int J Mol Sci 2023; 24:13977. [PMID: 37762279 PMCID: PMC10531288 DOI: 10.3390/ijms241813977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/08/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
This review highlights the complex role of fatty acid β-oxidation in brain metabolism. It demonstrates the fundamental importance of fatty acid degradation as a fuel in energy balance and as an essential component in lipid homeostasis, brain aging, and neurodegenerative disorders.
Collapse
Affiliation(s)
- Sylwia Szrok-Jurga
- Department of Biochemistry, Faculty of Medicine, Medical University of Gdansk, 80-211 Gdansk, Poland; (J.T.); (A.H.)
| | - Jacek Turyn
- Department of Biochemistry, Faculty of Medicine, Medical University of Gdansk, 80-211 Gdansk, Poland; (J.T.); (A.H.)
| | - Areta Hebanowska
- Department of Biochemistry, Faculty of Medicine, Medical University of Gdansk, 80-211 Gdansk, Poland; (J.T.); (A.H.)
| | - Julian Swierczynski
- Institute of Nursing and Medical Rescue, State University of Applied Sciences in Koszalin, 75-582 Koszalin, Poland;
| | - Aleksandra Czumaj
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Medical University of Gdansk, 80-211 Gdansk, Poland; (A.C.); (T.S.)
| | - Tomasz Sledzinski
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Medical University of Gdansk, 80-211 Gdansk, Poland; (A.C.); (T.S.)
| | - Ewa Stelmanska
- Department of Biochemistry, Faculty of Medicine, Medical University of Gdansk, 80-211 Gdansk, Poland; (J.T.); (A.H.)
| |
Collapse
|
30
|
Chaves-Filho AM, Braniff O, Angelova A, Deng Y, Tremblay MÈ. Chronic inflammation, neuroglial dysfunction, and plasmalogen deficiency as a new pathobiological hypothesis addressing the overlap between post-COVID-19 symptoms and myalgic encephalomyelitis/chronic fatigue syndrome. Brain Res Bull 2023; 201:110702. [PMID: 37423295 DOI: 10.1016/j.brainresbull.2023.110702] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/13/2023] [Accepted: 07/06/2023] [Indexed: 07/11/2023]
Abstract
After five waves of coronavirus disease 2019 (COVID-19) outbreaks, it has been recognized that a significant portion of the affected individuals developed long-term debilitating symptoms marked by chronic fatigue, cognitive difficulties ("brain fog"), post-exertional malaise, and autonomic dysfunction. The onset, progression, and clinical presentation of this condition, generically named post-COVID-19 syndrome, overlap significantly with another enigmatic condition, referred to as myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). Several pathobiological mechanisms have been proposed for ME/CFS, including redox imbalance, systemic and central nervous system inflammation, and mitochondrial dysfunction. Chronic inflammation and glial pathological reactivity are common hallmarks of several neurodegenerative and neuropsychiatric disorders and have been consistently associated with reduced central and peripheral levels of plasmalogens, one of the major phospholipid components of cell membranes with several homeostatic functions. Of great interest, recent evidence revealed a significant reduction of plasmalogen contents, biosynthesis, and metabolism in ME/CFS and acute COVID-19, with a strong association to symptom severity and other relevant clinical outcomes. These bioactive lipids have increasingly attracted attention due to their reduced levels representing a common pathophysiological manifestation between several disorders associated with aging and chronic inflammation. However, alterations in plasmalogen levels or their lipidic metabolism have not yet been examined in individuals suffering from post-COVID-19 symptoms. Here, we proposed a pathobiological model for post-COVID-19 and ME/CFS based on their common inflammation and dysfunctional glial reactivity, and highlighted the emerging implications of plasmalogen deficiency in the underlying mechanisms. Along with the promising outcomes of plasmalogen replacement therapy (PRT) for various neurodegenerative/neuropsychiatric disorders, we sought to propose PRT as a simple, effective, and safe strategy for the potential relief of the debilitating symptoms associated with ME/CFS and post-COVID-19 syndrome.
Collapse
Affiliation(s)
| | - Olivia Braniff
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - Angelina Angelova
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, F-91400 Orsay, France
| | - Yuru Deng
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China.
| | - Marie-Ève Tremblay
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada; Department of Molecular Medicine, Université Laval, Québec City, Québec, Canada; Neurology and Neurosurgery Department, McGill University, Montréal, Québec, Canada; Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada; Centre for Advanced Materials and Related Technology (CAMTEC) and Institute on Aging and Lifelong Health (IALH), University of Victoria, Victoria, British Columbia, Canada.
| |
Collapse
|
31
|
Toft-Bertelsen TL, Andreassen SN, Rostgaard N, Olsen MH, Norager NH, Capion T, Juhler M, MacAulay N. Distinct Cerebrospinal Fluid Lipid Signature in Patients with Subarachnoid Hemorrhage-Induced Hydrocephalus. Biomedicines 2023; 11:2360. [PMID: 37760800 PMCID: PMC10525923 DOI: 10.3390/biomedicines11092360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 08/21/2023] [Accepted: 08/21/2023] [Indexed: 09/29/2023] Open
Abstract
Patients with subarachnoid hemorrhage (SAH) may develop posthemorrhagic hydrocephalus (PHH), which is treated with surgical cerebrospinal fluid (CSF) diversion. This diversion is associated with risk of infection and shunt failure. Biomarkers for PHH etiology, CSF dynamics disturbances, and potentially subsequent shunt dependency are therefore in demand. With the recent demonstration of lipid-mediated CSF hypersecretion contributing to PHH, exploration of the CSF lipid signature in relation to brain pathology is of interest. Despite being a relatively new addition to the omic's landscape, lipidomics are increasingly recognized as a tool for biomarker identification, as they provide a comprehensive overview of lipid profiles in biological systems. We here employ an untargeted mass spectroscopy-based platform and reveal the complete lipid profile of cisternal CSF from healthy control subjects and demonstrate its bimodal fluctuation with age. Various classes of lipids, in addition to select individual lipids, were elevated in the ventricular CSF obtained from patients with SAH during placement of an external ventricular drain. The lipidomic signature of the CSF in the patients with SAH suggests dysregulation of the lipids in the CSF in this patient group. Our data thereby reveal possible biomarkers present in a brain pathology with a hemorrhagic event, some of which could be potential future biomarkers for hypersecretion contributing to ventriculomegaly and thus pharmacological targets for pathologies involving disturbed CSF dynamics.
Collapse
Affiliation(s)
| | - Søren Norge Andreassen
- Department of Neuroscience, University of Copenhagen, 2200 Copenhagen, Denmark; (T.L.T.-B.)
| | - Nina Rostgaard
- Department of Neurosurgery, Neuroscience Centre, Copenhagen University Hospital—Rigshospitalet, 2100 Copenhagen, Denmark
| | - Markus Harboe Olsen
- Department of Neuroanaesthesiology, Neuroscience Centre, Copenhagen University Hospital—Rigshospitalet, 2100 Copenhagen, Denmark
| | - Nicolas H. Norager
- Department of Neurosurgery, Neuroscience Centre, Copenhagen University Hospital—Rigshospitalet, 2100 Copenhagen, Denmark
| | - Tenna Capion
- Department of Neurosurgery, Neuroscience Centre, Copenhagen University Hospital—Rigshospitalet, 2100 Copenhagen, Denmark
| | - Marianne Juhler
- Department of Neurosurgery, Neuroscience Centre, Copenhagen University Hospital—Rigshospitalet, 2100 Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Nanna MacAulay
- Department of Neuroscience, University of Copenhagen, 2200 Copenhagen, Denmark; (T.L.T.-B.)
| |
Collapse
|
32
|
Li R, Xiong W, Li B, Li Y, Fang B, Wang X, Ren F. Plasmalogen Improves Memory Function by Regulating Neurogenesis in a Mouse Model of Alzheimer's Diseases. Int J Mol Sci 2023; 24:12234. [PMID: 37569610 PMCID: PMC10418626 DOI: 10.3390/ijms241512234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 07/27/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
Adult hippocampal neurogenesis (AHN) is associated with hippocampus-dependent cognitive function, and its initiation is attributed to neural stem cells (NSCs). Dysregulated AHN has been identified in Alzheimer's disease (AD) and may underlie impaired cognitive function in AD. Modulating the function of NSCs and stimulating AHN are potential ways to manipulate AD. Plasmalogen (PLA) are a class of cell membrane glycerophospholipids which exhibit neuroprotective properties. However, the effect of PLA on altered AHN in AD has not been investigated. In our study, PLA(10μg/mL) -attenuated Aβ (1-42) (5μM) induced a decrease in NSC viability and neuronal differentiation of NSCs, partially through regulating the Wnt/β-catenin pathway. Additionally, AD mice were supplemented with PLA (67mg/kg/day) for 6 weeks. PLA treatment improved the impaired AHN in AD mice, including increasing the number of neural stem cells (NSCs) and newly generated neurons. The memory function of AD mice was also enhanced after PLA administration. Therefore, it was summarized that PLA could regulate NSC differentiation by activating the Wnt/β-catenin pathway and ameliorate AD-related memory impairment through up-regulating AHN.
Collapse
Affiliation(s)
- Rongzi Li
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China; (R.L.); (W.X.); (B.L.); (Y.L.); (B.F.)
| | - Wei Xiong
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China; (R.L.); (W.X.); (B.L.); (Y.L.); (B.F.)
- Food Laboratory of Zhongyuan, Luohe 462000, China
| | - Boying Li
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China; (R.L.); (W.X.); (B.L.); (Y.L.); (B.F.)
| | - Yixuan Li
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China; (R.L.); (W.X.); (B.L.); (Y.L.); (B.F.)
| | - Bing Fang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China; (R.L.); (W.X.); (B.L.); (Y.L.); (B.F.)
| | - Xifan Wang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China; (R.L.); (W.X.); (B.L.); (Y.L.); (B.F.)
| | - Fazheng Ren
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China; (R.L.); (W.X.); (B.L.); (Y.L.); (B.F.)
- Food Laboratory of Zhongyuan, Luohe 462000, China
| |
Collapse
|
33
|
Liu D, Zhang H, Yang Y, Liu T, Guo Z, Fan W, Wang Z, Yang X, Zhang B, Liu H, Tang H, Yu D, Yu S, Gai K, Mou Q, Cao J, Hu J, Tang J, Hou S, Zhou Z. Metabolome-Based Genome-Wide Association Study of Duck Meat Leads to Novel Genetic and Biochemical Insights. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300148. [PMID: 37013465 PMCID: PMC10288243 DOI: 10.1002/advs.202300148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 02/20/2023] [Indexed: 06/19/2023]
Abstract
Meat is among the most consumed foods worldwide and has a unique flavor and high nutrient density in the human diet. However, the genetic and biochemical bases of meat nutrition and flavor are poorly understood. Here, 3431 metabolites and 702 volatiles in 423 skeletal muscle samples are profiled from a gradient consanguinity segregating population generated by Pekin duck × Liancheng duck crosses using metabolomic approaches. The authors identified 2862 metabolome-based genome-wide association studies (mGWAS) signals and 48 candidate genes potentially modulating metabolite and volatile levels, 79.2% of which are regulated by cis-regulatory elements. The level of plasmalogen is significantly associated with TMEM189 encoding plasmanylethanolamine desaturase 1. The levels of 2-pyrrolidone and glycerophospholipids are regulated by the gene expression of AOX1 and ACBD5, which further affects the levels of volatiles, 2-pyrrolidone and decanal, respectively. Genetic variations in GADL1 and CARNMT2 determine the levels of 49 metabolites including L-carnosine and anserine. This study provides novel insights into the genetic and biochemical basis of skeletal muscle metabolism and constitutes a valuable resource for the precise improvement of meat nutrition and flavor.
Collapse
Affiliation(s)
- Dapeng Liu
- Institute of Animal ScienceChinese Academy of Agricultural SciencesBeijing100193P. R. China
| | - He Zhang
- Institute of Animal ScienceChinese Academy of Agricultural SciencesBeijing100193P. R. China
| | - Youyou Yang
- Institute of Animal ScienceChinese Academy of Agricultural SciencesBeijing100193P. R. China
| | - Tong Liu
- Institute of Animal ScienceChinese Academy of Agricultural SciencesBeijing100193P. R. China
| | - Zhanbao Guo
- Institute of Animal ScienceChinese Academy of Agricultural SciencesBeijing100193P. R. China
| | - Wenlei Fan
- Institute of Animal ScienceChinese Academy of Agricultural SciencesBeijing100193P. R. China
| | - Zhen Wang
- Institute of Animal ScienceChinese Academy of Agricultural SciencesBeijing100193P. R. China
| | - Xinting Yang
- Institute of Animal ScienceChinese Academy of Agricultural SciencesBeijing100193P. R. China
| | - Bo Zhang
- Institute of Animal ScienceChinese Academy of Agricultural SciencesBeijing100193P. R. China
| | - Hongfei Liu
- Institute of Animal ScienceChinese Academy of Agricultural SciencesBeijing100193P. R. China
| | - Hehe Tang
- Institute of Animal ScienceChinese Academy of Agricultural SciencesBeijing100193P. R. China
| | - Daxin Yu
- Institute of Animal ScienceChinese Academy of Agricultural SciencesBeijing100193P. R. China
| | - Simeng Yu
- Institute of Animal ScienceChinese Academy of Agricultural SciencesBeijing100193P. R. China
| | - Kai Gai
- Institute of Animal ScienceChinese Academy of Agricultural SciencesBeijing100193P. R. China
| | - Qiming Mou
- Institute of Animal ScienceChinese Academy of Agricultural SciencesBeijing100193P. R. China
| | - Junting Cao
- Institute of Animal ScienceChinese Academy of Agricultural SciencesBeijing100193P. R. China
| | - Jian Hu
- Institute of Animal ScienceChinese Academy of Agricultural SciencesBeijing100193P. R. China
| | - Jing Tang
- Institute of Animal ScienceChinese Academy of Agricultural SciencesBeijing100193P. R. China
| | - Shuisheng Hou
- Institute of Animal ScienceChinese Academy of Agricultural SciencesBeijing100193P. R. China
| | - Zhengkui Zhou
- Institute of Animal ScienceChinese Academy of Agricultural SciencesBeijing100193P. R. China
| |
Collapse
|
34
|
Pan B, Yuan S, Mayernik L, Yap YT, Moin K, Chung CS, Maddipati K, Krawetz SA, Zhang Z, Hess RA, Chen X. Disrupted intercellular bridges and spermatogenesis in fatty acyl-CoA reductase 1 knockout mice: A new model of ether lipid deficiency. FASEB J 2023; 37:e22908. [PMID: 37039784 PMCID: PMC10150578 DOI: 10.1096/fj.202201848r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 03/10/2023] [Accepted: 03/24/2023] [Indexed: 04/12/2023]
Abstract
Peroxisomal fatty acyl-CoA reductase 1 (FAR1) is a rate-limiting enzyme for ether lipid (EL) synthesis. Gene mutations in FAR1 cause a rare human disease. Furthermore, altered EL homeostasis has also been associated with various prevalent human diseases. Despite their importance in human health, the exact cellular functions of FAR1 and EL are not well-understood. Here, we report the generation and initial characterization of the first Far1 knockout (KO) mouse model. Far1 KO mice were subviable and displayed growth retardation. The adult KO male mice had smaller testes and were infertile. H&E and immunofluorescent staining showed fewer germ cells in seminiferous tubules. Round spermatids were present but no elongated spermatids or spermatozoa were observed, suggesting a spermatogenesis arrest at this stage. Large multi-nucleated giant cells (MGC) were found lining the lumen of seminiferous tubules with many of them undergoing apoptosis. The immunofluorescent signal of TEX14, an essential component of intercellular bridges (ICB) between developing germ cells, was greatly reduced and mislocalized in KO testis, suggesting the disrupted ICBs as an underlying cause of MGC formation. Integrative analysis of our total testis RNA-sequencing results and published single-cell RNA-sequencing data unveiled cell type-specific molecular alterations underlying the spermatogenesis arrest. Many genes essential for late germ cell development showed dramatic downregulation, whereas genes essential for extracellular matrix dynamics and cell-cell interactions were among the most upregulated genes. Together, this work identified the cell type-specific requirement of ELs in spermatogenesis and suggested a critical role of Far1/ELs in the formation/maintenance of ICB during meiosis.
Collapse
Affiliation(s)
- Bo Pan
- Department of Physiology, Wayne State University, School of Medicine, Detroit, Michigan, USA
| | - Shuo Yuan
- Department of Physiology, Wayne State University, School of Medicine, Detroit, Michigan, USA
- Department of Occupational and Environmental Medicine, School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Linda Mayernik
- Department of Pharmacology, Wayne State University, School of Medicine, Detroit, Michigan, USA
| | - Yi Tian Yap
- Department of Physiology, Wayne State University, School of Medicine, Detroit, Michigan, USA
| | - Kamiar Moin
- Department of Pharmacology, Wayne State University, School of Medicine, Detroit, Michigan, USA
| | - Charles S. Chung
- Department of Physiology, Wayne State University, School of Medicine, Detroit, Michigan, USA
| | - Krishnarao Maddipati
- Department of Pathology, Wayne State University, School of Medicine, Detroit, Michigan, USA
| | - Stephen A. Krawetz
- Department of Obstetrics & Gynecology, Wayne State University, Detroit, Michigan, USA
- Center for Molecular Medicine and Genetics, School of Medicine, Wayne State University, Detroit, Michigan, USA
| | - Zhibing Zhang
- Department of Physiology, Wayne State University, School of Medicine, Detroit, Michigan, USA
- Department of Obstetrics & Gynecology, Wayne State University, Detroit, Michigan, USA
| | - Rex A. Hess
- Comparative Biosciences, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Xuequn Chen
- Department of Physiology, Wayne State University, School of Medicine, Detroit, Michigan, USA
| |
Collapse
|
35
|
Song G, Guo X, Li Q, Wang D, Yuan T, Li L, Shen Q, Zheng F, Gong J. Lipidomic fingerprinting of plasmalogen-loaded zein nanoparticles during in vitro multiple-stage digestion using rapid evaporative ionization mass spectrometry. Int J Biol Macromol 2023; 237:124193. [PMID: 36990418 DOI: 10.1016/j.ijbiomac.2023.124193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 03/09/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023]
Abstract
Plasmalogens (Pls) as the hydrophobic bioactive compound have shown potential in enhancing neurological disorders. However, the bioavailability of Pls is limited because of their poor water solubility during digestion. Herein, the hollow dextran sulfate/chitosan - coated zein nanoparticles (NPs) loaded with Pls was prepared. Subsequently, a novel in situ monitoring method utilizing rapid evaporative ionization mass spectrometry (REIMS) coupled with electric soldering iron ionization (ESII) was proposed to assess the lipidomic fingerprint alteration of Pls-loaded zein NPs during in vitro multiple-stage digestion in real time. A total of 22 Pls in NPs were structurally characterized and quantitatively analyzed, and the lipidomic phenotypes at each digestion stage were evaluated by multivariate data analysis. During multiple-stage digestion, Pls were hydrolyzed to lyso-Pls and free fatty acids by phospholipases A2, while the vinyl ether bond was retained at the sn-1 position. The result revealed that the contents of Pls groups were significantly reduced (p < 0.05). The multivariate data analysis results indicated that the ions at m/z 748.28, m/z 750.69, m/z 774.38, m/z 836.58, and etc. were the significant candidate contributors for monitoring the variation of Pls fingerprints during digestion. Results demonstrated that the proposed method exhibited potential for real-time tracking the lipidomic characteristics of nutritional lipid NPs digestion in the human gastrointestinal tract.
Collapse
|
36
|
Lin X, Jiang S, Wu Y, Wei X, Han GW, Wu L, Liu J, Chen B, Zhang Z, Zhao S, Cherezov V, Xu F. The activation mechanism and antibody binding mode for orphan GPR20. Cell Discov 2023; 9:23. [PMID: 36849514 PMCID: PMC9971246 DOI: 10.1038/s41421-023-00520-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 01/02/2023] [Indexed: 03/01/2023] Open
Abstract
GPR20 is a class-A orphan G protein-coupled receptor (GPCR) and a potential therapeutic target for gastrointestinal stromal tumors (GIST) owing to its differentially high expression. An antibody-drug conjugate (ADC) containing a GPR20-binding antibody (Ab046) was recently developed in clinical trials for GIST treatment. GPR20 constitutively activates Gi proteins in the absence of any known ligand, but it remains obscure how this high basal activity is achieved. Here we report three cryo-EM structures of human GPR20 complexes including Gi-coupled GPR20 in the absence or presence of the Fab fragment of Ab046 and Gi-free GPR20. Remarkably, the structures demonstrate a uniquely folded N-terminal helix capping onto the transmembrane domain and our mutagenesis study suggests a key role of this cap region in stimulating the basal activity of GPR20. We also uncover the molecular interactions between GPR20 and Ab046, which may enable the design of tool antibodies with enhanced affinity or new functionality for GPR20. Furthermore, we report the orthosteric pocket occupied by an unassigned density which might be essential for exploring opportunities for deorphanization.
Collapse
Affiliation(s)
- Xi Lin
- grid.440637.20000 0004 4657 8879iHuman Institute, ShanghaiTech University, Pudong, Shanghai, China
| | - Shan Jiang
- grid.440637.20000 0004 4657 8879iHuman Institute, ShanghaiTech University, Pudong, Shanghai, China ,grid.440637.20000 0004 4657 8879School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Yiran Wu
- grid.440637.20000 0004 4657 8879iHuman Institute, ShanghaiTech University, Pudong, Shanghai, China
| | - Xiaohu Wei
- grid.440637.20000 0004 4657 8879School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Gye-Won Han
- grid.42505.360000 0001 2156 6853Departments of Chemistry and Biological Sciences, Bridge Institute, University of Southern California, Los Angeles, CA USA
| | - Lijie Wu
- grid.440637.20000 0004 4657 8879iHuman Institute, ShanghaiTech University, Pudong, Shanghai, China
| | - Junlin Liu
- grid.440637.20000 0004 4657 8879iHuman Institute, ShanghaiTech University, Pudong, Shanghai, China
| | - Bo Chen
- grid.440637.20000 0004 4657 8879iHuman Institute, ShanghaiTech University, Pudong, Shanghai, China
| | - Zhibin Zhang
- grid.440637.20000 0004 4657 8879iHuman Institute, ShanghaiTech University, Pudong, Shanghai, China ,grid.440637.20000 0004 4657 8879School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Suwen Zhao
- grid.440637.20000 0004 4657 8879iHuman Institute, ShanghaiTech University, Pudong, Shanghai, China ,grid.440637.20000 0004 4657 8879School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Vadim Cherezov
- grid.42505.360000 0001 2156 6853Departments of Chemistry and Biological Sciences, Bridge Institute, University of Southern California, Los Angeles, CA USA
| | - Fei Xu
- iHuman Institute, ShanghaiTech University, Pudong, Shanghai, China. .,School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
| |
Collapse
|
37
|
Abstract
Metabolites produced by commensal gut microbes impact host health through their recognition by the immune system and their influence on numerous metabolic pathways. Notably, the gut microbiota can both transform and synthesize lipids as well as break down dietary lipids to generate secondary metabolites with host modulatory properties. Although lipids have largely been consigned to structural roles, particularly in cell membranes, recent research has led to an increased appreciation of their signaling activities, with potential impacts on host health and physiology. This review focuses on studies that highlight the functions of bioactive lipids in mammalian physiology, with a special emphasis on immunity and metabolism.
Collapse
Affiliation(s)
- Eric M Brown
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Center for Computational and Integrative Biology, Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| | - Jon Clardy
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Blavatnik Institute, Boston, MA 02115, USA
| | - Ramnik J Xavier
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Center for Computational and Integrative Biology, Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
38
|
Huguenard CJC, Cseresznye A, Evans JE, Darcey T, Nkiliza A, Keegan AP, Luis C, Bennett DA, Arvanitakis Z, Yassine HN, Mullan M, Crawford F, Abdullah L. APOE ε4 and Alzheimer's disease diagnosis associated differences in L-carnitine, GBB, TMAO, and acylcarnitines in blood and brain. Curr Res Transl Med 2023; 71:103362. [PMID: 36436355 PMCID: PMC10066735 DOI: 10.1016/j.retram.2022.103362] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/20/2022] [Accepted: 08/09/2022] [Indexed: 02/06/2023]
Abstract
BACKGROUND The apolipoprotein E (APOE) ε4 allele, involved in fatty acid (FA) metabolism, is a major genetic risk factor for Alzheimer's disease (AD). This study examined the influence of APOE genotypes on blood and brain markers of the L-carnitine system, necessary for fatty acid oxidation (FAO), and their collective influence on the clinical and pathological outcomes of AD. METHODS L-carnitine, its metabolites γ-butyrobetaine (GBB) and trimethylamine-n-oxide (TMAO), and its esters (acylcarnitines) were analyzed in blood from predominantly White community/clinic-based individuals (n = 372) and in plasma and brain from the Religious Order Study (ROS) (n = 79) using liquid chromatography tandem mass spectrometry (LC-MS/MS). FINDINGS Relative to total blood acylcarnitines, levels of short chain acylcarnitines (SCAs) were higher whereas long chain acylcarnitines (LCAs) were lower in AD, which was observed pre-clinically in APOE ε4s. Plasma medium chain acylcarnitines (MCAs) were higher amongst cognitively healthy APOE ε2 carriers relative to other genotypes. Compared to their respective controls, elevated TMAO and lower L-carnitine and GBB were associated with AD clinical diagnosis and these differences were detected preclinically among APOE ε4 carriers. Plasma and brain GBB, TMAO, and acylcarnitines were also associated with post-mortem brain amyloid, tau, and cerebrovascular pathologies. INTERPRETATION Alterations in blood L-carnitine, GBB, TMAO, and acylcarnitines occur early in clinical AD progression and are influenced by APOE genotype. These changes correlate with post-mortem brain AD and cerebrovascular pathologies. Additional studies are required to better understand the role of the FAO disturbances in AD.
Collapse
Affiliation(s)
- Claire J C Huguenard
- Roskamp Institute, 2040 Whitfield Ave, Sarasota, FL, USA; Open University, Milton Keynes, UK
| | | | - James E Evans
- Roskamp Institute, 2040 Whitfield Ave, Sarasota, FL, USA
| | - Teresa Darcey
- Roskamp Institute, 2040 Whitfield Ave, Sarasota, FL, USA
| | - Aurore Nkiliza
- Roskamp Institute, 2040 Whitfield Ave, Sarasota, FL, USA; James A. Haley VA Hospital, Tampa, FL, USA
| | | | - Cheryl Luis
- Roskamp Institute, 2040 Whitfield Ave, Sarasota, FL, USA
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Zoe Arvanitakis
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Hussein N Yassine
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Michael Mullan
- Roskamp Institute, 2040 Whitfield Ave, Sarasota, FL, USA; Open University, Milton Keynes, UK
| | - Fiona Crawford
- Roskamp Institute, 2040 Whitfield Ave, Sarasota, FL, USA; Open University, Milton Keynes, UK; James A. Haley VA Hospital, Tampa, FL, USA
| | - Laila Abdullah
- Roskamp Institute, 2040 Whitfield Ave, Sarasota, FL, USA; Open University, Milton Keynes, UK; James A. Haley VA Hospital, Tampa, FL, USA.
| |
Collapse
|
39
|
Hossain MS, Mawatari S, Fujino T. Plasmalogens inhibit neuroinflammation and promote cognitive function. Brain Res Bull 2023; 192:56-61. [PMID: 36347405 DOI: 10.1016/j.brainresbull.2022.11.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 11/04/2022] [Accepted: 11/04/2022] [Indexed: 11/06/2022]
Abstract
Neuroinflammation (NF) is defined as the activation of brain glial cells that are found in neurodegenerative diseases including Alzheimer's disease (AD). It has been known that an increase in NF could reduce the memory process in the brain but the key factors, associated with NF, behind the dysregulation of memory remained elusive. We previously reported that the NF and aging processes reduced the special phospholipids, plasmalogens (Pls), in the murine brain by a mechanism dependent on the activation of transcription factors, NF-kB and c-MYC. A similar mechanism has also been found in postmortem human brain tissues with AD pathologies and in the AD model mice. Recent evidence showed that these phospholipids enhanced memory and reduced neuro-inflammation in the murine brain. Pls can stimulate the cellular signaling molecules, ERK and Akt, by activating the membrane-bound G protein-coupled receptors (GPCRs). Therefore, recent findings suggest that plasmalogens could be one of the key phospholipids in the brain to enhance memory and inhibit NF.
Collapse
Affiliation(s)
- Md Shamim Hossain
- Institute of Rheological Functions of Food, 2241-1 Kubara, Hisayama-machi, Kasuya-gun, Fukuoka 811-2501, Japan.
| | - Shiro Mawatari
- Institute of Rheological Functions of Food, 2241-1 Kubara, Hisayama-machi, Kasuya-gun, Fukuoka 811-2501, Japan
| | - Takehiko Fujino
- Institute of Rheological Functions of Food, 2241-1 Kubara, Hisayama-machi, Kasuya-gun, Fukuoka 811-2501, Japan
| |
Collapse
|
40
|
Zivko C, Sagar R, Xydia A, Mahairaki V. Lipid Profiling in Alzheimer's Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1423:281-287. [PMID: 37525056 DOI: 10.1007/978-3-031-31978-5_29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
The human brain is the organ with the most lipids after adipose tissues. The rich heterogeneity of the neural lipidome is being actively investigated with the aim of shedding new light into the physiological and pathological roles these compounds play in the brain. This is particularly important for the study of increasingly common neurodegenerative pathologies, such as Alzheimer's disease (AD), whose underlying mechanisms are still insufficiently understood and for which there is no cure. The present text dives into the current knowledge of the lipid composition of the brain, with a particular focus on the application of lipid profiling to AD research.
Collapse
Affiliation(s)
- Cristina Zivko
- Department of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
- The Richman Family Precision Medicine Center of Excellence in Alzheimer's Disease, Johns Hopkins Medicine, Baltimore, MD, USA
| | - Ram Sagar
- Department of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
- The Richman Family Precision Medicine Center of Excellence in Alzheimer's Disease, Johns Hopkins Medicine, Baltimore, MD, USA
| | - Ariadni Xydia
- Department of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
- The Richman Family Precision Medicine Center of Excellence in Alzheimer's Disease, Johns Hopkins Medicine, Baltimore, MD, USA
| | - Vasiliki Mahairaki
- Department of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA.
- The Richman Family Precision Medicine Center of Excellence in Alzheimer's Disease, Johns Hopkins Medicine, Baltimore, MD, USA.
| |
Collapse
|
41
|
Tremblay MÈ, Almsherqi ZA, Deng Y. Plasmalogens and platelet-activating factor roles in chronic inflammatory diseases. Biofactors 2022; 48:1203-1216. [PMID: 36370412 DOI: 10.1002/biof.1916] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 10/10/2022] [Indexed: 11/13/2022]
Abstract
Fatty acids and phospholipid molecules are essential for determining the structure and function of cell membranes, and they hence participate in many biological processes. Platelet activating factor (PAF) and its precursor plasmalogen, which represent two subclasses of ether phospholipids, have attracted increasing research attention recently due to their association with multiple chronic inflammatory, neurodegenerative, and metabolic disorders. These pathophysiological conditions commonly involve inflammatory processes linked to an excess presence of PAF and/or decreased levels of plasmalogens. However, the molecular mechanisms underlying the roles of plasmalogens in inflammation have remained largely elusive. While anti-inflammatory responses most likely involve the plasmalogen signal pathway; pro-inflammatory responses recruit arachidonic acid, a precursor of pro-inflammatory lipid mediators which is released from membrane phospholipids, notably derived from the hydrolysis of plasmalogens. Plasmalogens per se are vital membrane phospholipids in humans. Changes in their homeostatic levels may alter cell membrane properties, thus affecting key signaling pathways that mediate inflammatory cascades and immune responses. The plasmalogen analogs of PAF are also potentially important, considering that anti-PAF activity has strong anti-inflammatory effects. Plasmalogen replacement therapy was further identified as a promising anti-inflammatory strategy allowing for the relief of pathological hallmarks in patients affected by chronic diseases with an inflammatory component. The aim of this Short Review is to highlight the emerging roles and implications of plasmalogens in chronic inflammatory disorders, along with the promising outcomes of plasmalogen replacement therapy for the treatment of various PAF-related chronic inflammatory pathologies.
Collapse
Affiliation(s)
- Marie-Ève Tremblay
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
- Axe Neurosciences, Centre de recherche du CHU de Québec-Université Laval, Québec City, Canada
- Department of Molecular Medicine, Université de Laval, Québec City, Canada
- Neurology and Neurosurgery Department, McGill University, Montréal, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
- Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, Victoria, British Columbia, Canada
| | - Zakaria A Almsherqi
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Yuru Deng
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China
| |
Collapse
|
42
|
Vallés AS, Barrantes FJ. The synaptic lipidome in health and disease. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:184033. [PMID: 35964712 DOI: 10.1016/j.bbamem.2022.184033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 08/02/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
Adequate homeostasis of lipid, protein and carbohydrate metabolism is essential for cells to perform highly specific tasks in our organism, and the brain, with its uniquely high energetic requirements, posesses singular characteristics. Some of these are related to its extraordinary dotation of synapses, the specialized subcelluar structures where signal transmission between neurons occurs in the central nervous system. The post-synaptic compartment of excitatory synapses, the dendritic spine, harbors key molecules involved in neurotransmission tightly packed within a minute volume of a few femtoliters. The spine is further compartmentalized into nanodomains that facilitate the execution of temporo-spatially separate functions in the synapse. Lipids play important roles in this structural and functional compartmentalization and in mechanisms that impact on synaptic transmission. This review analyzes the structural and dynamic processes involving lipids at the synapse, highlighting the importance of their homeostatic balance for the physiology of this complex and highly specialized structure, and underscoring the pathologies associated with disbalances of lipid metabolism, particularly in the perinatal and late adulthood periods of life. Although small variations of the lipid profile in the brain take place throughout the adult lifespan, the pathophysiological consequences are clinically manifested mostly during late adulthood. Disturbances in lipid homeostasis in the perinatal period leads to alterations during nervous system development, while in late adulthood they favor the occurrence of neurodegenerative diseases.
Collapse
Affiliation(s)
- Ana Sofia Vallés
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (UNS-CONICET), 8000 Bahía Blanca, Argentina.
| | - Francisco J Barrantes
- Laboratory of Molecular Neurobiology, Institute of Biomedical Research (BIOMED), UCA-CONICET, Av. Alicia Moreau de Justo 1600, Buenos Aires C1107AAZ, Argentina.
| |
Collapse
|
43
|
Wang T, Huynh K, Giles C, Mellett NA, Duong T, Nguyen A, Lim WLF, Smith AAT, Olshansky G, Cadby G, Hung J, Hui J, Beilby J, Watts GF, Chatterjee P, Martins I, Laws SM, Bush AI, Rowe CC, Villemagne VL, Ames D, Masters CL, Taddei K, Doré V, Fripp J, Arnold M, Kastenmüller G, Nho K, Saykin AJ, Baillie R, Han X, Martins RN, Moses EK, Kaddurah‐Daouk R, Meikle PJ. APOE ε2 resilience for Alzheimer's disease is mediated by plasma lipid species: Analysis of three independent cohort studies. Alzheimers Dement 2022; 18:2151-2166. [PMID: 35077012 PMCID: PMC9787288 DOI: 10.1002/alz.12538] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 10/19/2021] [Accepted: 10/25/2021] [Indexed: 01/31/2023]
Abstract
INTRODUCTION The apolipoprotein E (APOE) genotype is the strongest genetic risk factor for late-onset Alzheimer's disease. However, its effect on lipid metabolic pathways, and their mediating effect on disease risk, is poorly understood. METHODS We performed lipidomic analysis on three independent cohorts (the Australian Imaging, Biomarkers and Lifestyle [AIBL] flagship study, n = 1087; the Alzheimer's Disease Neuroimaging Initiative [ADNI] 1 study, n = 819; and the Busselton Health Study [BHS], n = 4384), and we defined associations between APOE ε2 and ε4 and 569 plasma/serum lipid species. Mediation analysis defined the proportion of the treatment effect of the APOE genotype mediated by plasma/serum lipid species. RESULTS A total of 237 and 104 lipid species were associated with APOE ε2 and ε4, respectively. Of these 68 (ε2) and 24 (ε4) were associated with prevalent Alzheimer's disease. Individual lipid species or lipidomic models of APOE genotypes mediated up to 30% and 10% of APOE ε2 and ε4 treatment effect, respectively. DISCUSSION Plasma lipid species mediate the treatment effect of APOE genotypes on Alzheimer's disease and as such represent a potential therapeutic target.
Collapse
|
44
|
Hammel G, Zivkovic S, Ayazi M, Ren Y. Consequences and mechanisms of myelin debris uptake and processing by cells in the central nervous system. Cell Immunol 2022; 380:104591. [PMID: 36030093 DOI: 10.1016/j.cellimm.2022.104591] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/29/2022] [Accepted: 08/15/2022] [Indexed: 11/28/2022]
Abstract
Central nervous system (CNS) disorders and trauma involving changes to the neuronal myelin sheath have long been a topic of great interest. One common pathological change in these diseases is the generation of myelin debris resulting from the breakdown of the myelin sheath. Myelin debris contains many inflammatory and neurotoxic factors that inhibit remyelination and make its clearance a prerequisite for healing in CNS disorders. Many professional and semiprofessional phagocytes participate in the clearance of myelin debris in the CNS. These cells use various mechanisms for the uptake of myelin debris, and each cell type produces its own unique set of pathologic consequences resulting from the debris uptake. Examining these cells' phagocytosis of myelin debris will contribute to a more complete understanding of CNS disease pathogenesis and help us conceptualize how the necessary clearance of myelin debris must be balanced with the detrimental consequences brought about by its clearance.
Collapse
Affiliation(s)
- Grace Hammel
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, United States.
| | - Sandra Zivkovic
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, United States.
| | - Maryam Ayazi
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, United States.
| | - Yi Ren
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, United States.
| |
Collapse
|
45
|
Theiss EL, Griebsch LV, Lauer AA, Janitschke D, Erhardt VKJ, Haas EC, Kuppler KN, Radermacher J, Walzer O, Portius D, Grimm HS, Hartmann T, Grimm MOW. Vitamin B12 Attenuates Changes in Phospholipid Levels Related to Oxidative Stress in SH-SY5Y Cells. Cells 2022; 11:cells11162574. [PMID: 36010649 PMCID: PMC9406929 DOI: 10.3390/cells11162574] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/18/2022] [Accepted: 08/15/2022] [Indexed: 01/04/2023] Open
Abstract
Oxidative stress is closely linked to Alzheimer’s disease (AD), and is detected peripherally as well as in AD-vulnerable brain regions. Oxidative stress results from an imbalance between the generation and degradation of reactive oxidative species (ROS), leading to the oxidation of proteins, nucleic acids, and lipids. Extensive lipid changes have been found in post mortem AD brain tissue; these changes include the levels of total phospholipids, sphingomyelin, and ceramide, as well as plasmalogens, which are highly susceptible to oxidation because of their vinyl ether bond at the sn-1 position of the glycerol-backbone. Several lines of evidence indicate that a deficiency in the neurotropic vitamin B12 is linked with AD. In the present study, treatment of the neuroblastoma cell line SH-SY5Y with vitamin B12 resulted in elevated levels of phosphatidylcholine, phosphatidylethanolamine, sphingomyelin, and plasmalogens. Vitamin B12 also protected plasmalogens from hydrogen peroxide (H2O2)-induced oxidative stress due to an elevated expression of the ROS-degrading enzymes superoxide-dismutase (SOD) and catalase (CAT). Furthermore, vitamin B12 elevates plasmalogen synthesis by increasing the expression of alkylglycerone phosphate synthase (AGPS) and choline phosphotransferase 1 (CHPT1) in SH-SY5Y cells exposed to H2O2-induced oxidative stress.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Oliver Walzer
- Experimental Neurology, Saarland University, 66424 Homburg, Germany
| | - Dorothea Portius
- Nutrition Therapy and Counseling, Campus Gera, SRH University of Applied Health Science, 07548 Gera, Germany
| | | | - Tobias Hartmann
- Experimental Neurology, Saarland University, 66424 Homburg, Germany
- Deutsches Institut für DemenzPrävention, Saarland University, 66424 Homburg, Germany
| | - Marcus Otto Walter Grimm
- Experimental Neurology, Saarland University, 66424 Homburg, Germany
- Deutsches Institut für DemenzPrävention, Saarland University, 66424 Homburg, Germany
- Nutrition Therapy and Counseling, Campus Rheinland, SRH University of Applied Health Sciences, 51377 Leverkusen, Germany
- Correspondence: or
| |
Collapse
|
46
|
Vishnubhotla RV, Wood PL, Verma A, Cebak JE, Hariri S, Mudigonda M, Alankar S, Maturi R, Orui H, Subramaniam B, Palwale D, Renschler J, Sadhasivam S. Advanced Meditation and Vegan Diet Increased Acylglycines and Reduced Lipids Associated with Improved Health: A Prospective Longitudinal Study. JOURNAL OF INTEGRATIVE AND COMPLEMENTARY MEDICINE 2022; 28:674-682. [PMID: 35532984 DOI: 10.1089/jicm.2022.0480] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Introduction: Samyama is an Isha Yoga 8-day residential meditation/yoga retreat combined with 60 days of preparation with vegan diet. We showed earlier Samyama retreat was associated with lower systemic inflammation and favorable lipid profiles along with other physical and mental health benefits. There is no mechanistic study on the impact of an advanced meditative process on multiple blood lipids and their implications on meditation-related improved physical and mental wellbeing. Methods: Sixty-four Samyama participants on vegan diet had blood sampled immediately before and immediately after the 8-day retreat for lipidomic analysis. The complex plasma lipidome was characterized using high-resolution mass spectrometric analysis and tandem mass spectrometry. Results: Pre- and post-Samyama blood samples of 64 Samyama participants were analyzed. Acylglycines (acetyl, propionyl, butyryl, and valeryl) were increased in the plasma post-Samyama compared with pre-Samyama (p < 0.001). Levels of glycerophosphocholines, glycerophosphoethanolamines, di-unsaturated ethanolamine plasmalogens, cholesterol esters, acylcarnitines, and acylgylcerines (triacylglycerols and diacylglycerols) decreased after the Samyama meditation. Plasma levels of glycerophosphoserines or glycerophosphoinositols were unchanged. Conclusion: An 8-day advanced meditation retreat resulted in increased acylglycines, an endocannabinoid-like fatty acid amide associated with increased cellular anandamide levels, anti-inflammation, analgesia, and vascular relaxation. Other serum lipid levels, including some that are associated with increased risk of atherosclerosis, were reduced following the Samyama program. ClinicalTrials.gov Registration: Identifier: NCT04366544.
Collapse
Affiliation(s)
- Ramana V Vishnubhotla
- Department of Radiology, Indiana University School of Medicine, Indianpolis, IN, USA
| | - Paul L Wood
- Metabolomics Unit, College of Veterinary Medicine, Lincoln Memorial University, Harrogate, TN, USA
| | - Ashutosh Verma
- Metabolomics Unit, College of Veterinary Medicine, Lincoln Memorial University, Harrogate, TN, USA
| | - John E Cebak
- DeBusk College of Osteopathic Medicine, Lincoln Memorial University, Harrogate, TN, USA
| | - Sepideh Hariri
- Sadhguru Center for a Conscious Planet, Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Boson, MA, USA
| | - Mayur Mudigonda
- Redwood Center for Theoretical Neuroscience, University of California, Berkeley, CA, USA
| | - Suresh Alankar
- Vascular Surgery, University of Louisville, Louisville, KY, USA
| | - Raj Maturi
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Hibiki Orui
- Sadhguru Center for a Conscious Planet, Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Boson, MA, USA
| | - Balachundhar Subramaniam
- Sadhguru Center for a Conscious Planet, Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Boson, MA, USA
| | - Dhanashri Palwale
- Department of Anesthesia, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Janelle Renschler
- Department of Anesthesia, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Senthilkumar Sadhasivam
- Department of Anesthesia, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
47
|
LC/MS analysis of storage-induced plasmalogen loss in ready-to-eat fish. Food Chem 2022; 383:132320. [PMID: 35168046 DOI: 10.1016/j.foodchem.2022.132320] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/27/2021] [Accepted: 01/30/2022] [Indexed: 11/21/2022]
Abstract
Plasmalogens are functional and oxidation-sensitive phospholipids abundant in fish. Chilling and freezing are common storage methods for maintaining the quality of fish, but their effect on plasmalogen preservation has not been studied. Therefore, plasmalogen loss in ready-to-eat tuna meat during storage under different conditions was investigated. LC/MS was used to analyze the time- and temperature-dependent changes of plasmalogens, which was the most evident for the species with an ethanolamine headgroup and polyunsaturated fatty acyl chains. Moreover, a series of oxidized plasmalogen molecules were identified, and their storage-induced accumulation was observed. Plasmalogen loss was strongly correlated with total lipid oxidation and phospholipid degradation. Repeated freeze-thaw cycles were found to accelerate the loss of plasmalogens, whereas the different thawing methods did not. The present study provides a deeper understanding of changes in lipid nutrients from fish meat during storage and demonstrates the importance of using advanced strategies to maintain food quality.
Collapse
|
48
|
Dietary Inulin Supplementation Affects Specific Plasmalogen Species in the Brain. Nutrients 2022; 14:nu14153097. [PMID: 35956273 PMCID: PMC9370380 DOI: 10.3390/nu14153097] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/23/2022] [Accepted: 07/24/2022] [Indexed: 11/29/2022] Open
Abstract
Plasmalogens (Pls) are glycerophospholipids that play critical roles in the brain. Evidence supports the role of diet and that of the gut microbiota in regulating brain lipids. We investigated the impact of dietary intake of inulin—a soluble fiber used as prebiotic—on the Pl content of the cortex in mice. No global modification in the Pl amounts was observed when evaluated by gas chromatographic analysis of dimethyl acetals (DMAs). However, the analysis of individual molecular species of Pls by liquid chromatography revealed a reduced abundance of major species of ethanolamine Pls (PlsEtn)―PE(P-18:0/22:6) and PE(P-34:1)―in the cortex of mice fed a diet supplemented with inulin. DMA and expression levels of genes (Far-1, Gnpat, Agps, Pla2g6 and Tmem86b) encoding key enzymes of Pl biosynthesis or degradation were not altered in the liver and in the cortex of mice exposed to inulin. In addition, the fatty acid profile and the amount of lyso forms derived from PlsEtn were not modified in the cortex by inulin consumption. To conclude, inulin affects the brain levels of major PlsEtn and further investigation is needed to determine the exact molecular mechanisms involved.
Collapse
|
49
|
Designer phospholipids – structural retrieval, chemo-/bio- synthesis and isotopic labeling. Biotechnol Adv 2022; 60:108025. [DOI: 10.1016/j.biotechadv.2022.108025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 07/12/2022] [Accepted: 07/26/2022] [Indexed: 11/23/2022]
|
50
|
Beger AW, Hauther KA, Dudzik B, Woltjer RL, Wood PL. Human Brain Lipidomics: Investigation of Formalin Fixed Brains. Front Mol Neurosci 2022; 15:835628. [PMID: 35782380 PMCID: PMC9245516 DOI: 10.3389/fnmol.2022.835628] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
Human brain lipidomics have elucidated structural lipids and lipid signal transduction pathways in neurologic diseases. Such studies have traditionally sourced tissue exclusively from brain bank biorepositories, however, limited inventories signal that these facilities may not be able to keep pace with this growing research domain. Formalin fixed, whole body donors willed to academic institutions offer a potential supplemental tissue source, the lipid profiles of which have yet to be described. To determine the potential of these subjects in lipid analysis, the lipid levels of fresh and fixed frontal cortical gray matter of human donors were compared using high resolution electrospray ionization mass spectrometry. Results revealed commensurate levels of specific triacylglycerols, diacylglycerols, hexosyl ceramides, and hydroxy hexosyl ceramides. Baseline levels of these lipid families in human fixed tissue were identified via a broader survey study covering six brain regions: cerebellar gray matter, superior cerebellar peduncle, gray and subcortical white matter of the precentral gyrus, periventricular white matter, and internal capsule. Whole body donors may therefore serve as supplemental tissue sources for lipid analysis in a variety of clinical contexts, including Parkinson's disease, Alzheimer's disease, Lewy body dementia, multiple sclerosis, and Gaucher's disease.
Collapse
Affiliation(s)
- Aaron W. Beger
- Department of Anatomy, DeBusk College of Osteopathic Medicine, Lincoln Memorial University, Harrogate, TN, United States
| | - Kathleen A. Hauther
- Metabolomics Unit, College of Veterinary Medicine, Lincoln Memorial University, Harrogate, TN, United States
| | - Beatrix Dudzik
- Department of Anatomy, DeBusk College of Osteopathic Medicine, Lincoln Memorial University, Harrogate, TN, United States
| | - Randall L. Woltjer
- Department of Neurology, Oregon Health Science University, Portland, OR, United States
- Portland VA Medical Center, Portland, OR, United States
| | - Paul L. Wood
- Metabolomics Unit, College of Veterinary Medicine, Lincoln Memorial University, Harrogate, TN, United States
| |
Collapse
|