1
|
Kundu S, Kues WA, Rehbock C, Barcikowski S. Inorganic Metal Nanoparticles in Reproductive Biology: Applications, Toxicities and Future Prospects. Chempluschem 2025; 90:e202400554. [PMID: 39913862 DOI: 10.1002/cplu.202400554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 01/31/2025] [Indexed: 04/26/2025]
Abstract
The development of inorganic metal and metal oxide nanoparticles (MNPs) has attracted significant attention in diverse biomedical and biotechnological fields including bio-detection, drug delivery, imaging, and theranostics. An emerging field in this context is the use of MNPs for applications in reproductive biology. In this article, we offer a rational review of the development of MNPs employed in the field of reproductive biology by focusing on their interactions with highly delicate and specialized germ cells like spermatozoa, oocytes, and developing embryos. By their unique physicochemical properties, MNPs are versatile and strong candidates for targeted imaging and delivery of various therapeutic molecules to the specific sites of the gametes and reproductive cells. Functionalized MNPs can serve as transfection vectors for the generation of transgenic animals by spermatozoon-supported gene transfer. In addition, MNPs have shown great promise in application fields such as semen collection, nano-purification, cryopreservation, and sex sorting of sperm in the livestock industry. Recently, the potential toxicity of MNPs on maturing oocytes has been investigated, as well as the use of MNPs to preserve fertility by improving cryopreservation and reducing oxidative stress in oocytes. The article further elaborates on the uptake, translocation mechanism, and biocompatibility issues of the MNPs to reproduction-relevant sites on cellular and molecular levels. Based on these promising achievements, the current challenges and prospects for the development of these functionalized MNPs for clinical research in conjunction with the reproductive system will be discussed.
Collapse
Affiliation(s)
- Sangita Kundu
- Technical Chemistry I, University of Duisburg-Essen and Center for NanoIntegration Duisburg-Essen (CENIDE), 45141, Essen, Germany
| | - Wilfried A Kues
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Biotechnology/Stem Cell Unit, 31535, Neustadt Rbge, Germany
| | - Christoph Rehbock
- Technical Chemistry I, University of Duisburg-Essen and Center for NanoIntegration Duisburg-Essen (CENIDE), 45141, Essen, Germany
| | - Stephan Barcikowski
- Technical Chemistry I, University of Duisburg-Essen and Center for NanoIntegration Duisburg-Essen (CENIDE), 45141, Essen, Germany
| |
Collapse
|
2
|
Titova SA, Kruglova MP, Stupin VA, Manturova NE, Achar RR, Deshpande G, Parfenov VA, Silina EV. Excipients for Cerium Dioxide Nanoparticle Stabilization in the Perspective of Biomedical Applications. Molecules 2025; 30:1210. [PMID: 40141988 PMCID: PMC11944302 DOI: 10.3390/molecules30061210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/25/2025] [Accepted: 03/06/2025] [Indexed: 03/28/2025] Open
Abstract
Rare earth metal nanoparticles, some of which are already widely used in medicine, are of growing interest in the modern scientific community. One of the promising rare earth metals for biomedical applications is cerium, specifically its oxide form, which is characterized by a higher level of stability and safety. According to a number of studies, cerium dioxide has a wide range of biological effects (regenerative, antimicrobial, antioxidant, antitumor), which justifies the interest of its potential application in medicine. However, these effects and their intensity vary significantly across a number of studies. Since cerium dioxide was used in these studies, it can be assumed that not only is the chemical formula important, but also the physicochemical parameters of the nanoparticles obtained, and consequently the methods of their synthesis and modification with the use of excipients. In this review, we considered the possibilities of using a number of excipients (polyacrylate, polyvinylpyrrolidone, dextran, hyaluronic acid, chitosan, polycarboxylic acids, lecithin, phosphatidylcholine) in the context of preserving the biological effects of cerium dioxide and its physicochemical properties, as well as the degree of study of these combinations from the point of view of the prospect of creating drugs based on it for biomedical applications.
Collapse
Affiliation(s)
- Svetlana A. Titova
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119991, Russia; (S.A.T.); (M.P.K.); (V.A.P.)
| | - Maria P. Kruglova
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119991, Russia; (S.A.T.); (M.P.K.); (V.A.P.)
| | - Victor A. Stupin
- Pirogov Russian National Research Medical University, Moscow 117997, Russia; (V.A.S.); (N.E.M.)
| | - Natalia E. Manturova
- Pirogov Russian National Research Medical University, Moscow 117997, Russia; (V.A.S.); (N.E.M.)
| | - Raghu Ram Achar
- JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India;
| | - Gouri Deshpande
- Regional Institute of Education (RIE NCERT), Mysuru 570006, Karnataka, India;
| | - Vladimir A. Parfenov
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119991, Russia; (S.A.T.); (M.P.K.); (V.A.P.)
| | - Ekaterina V. Silina
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119991, Russia; (S.A.T.); (M.P.K.); (V.A.P.)
| |
Collapse
|
3
|
Bobrova O, Falko O, Polyakova A, Klochkov V, Faltus M, Chizhevskiy V. Nanocrystalline cerium dioxide reduces recrystallization in cryopreservation solutions. Cryobiology 2025; 118:105167. [PMID: 39557111 DOI: 10.1016/j.cryobiol.2024.105167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/09/2024] [Accepted: 11/15/2024] [Indexed: 11/20/2024]
Abstract
Nanocrystalline cerium dioxide is able to protect living cells from oxidative stress under the influence of various stress factors, in particular under the one of low temperatures. This study investigates the phase-structural transformations in aqueous solutions containing CeO2 nanoparticles (NPs) and their impact on the cryopreservation process. Differential scanning calorimetry and thermomechanical analysis were used to analyse the phase transitions in aqueous suspensions of CeO2 NPs and aqueous solutions of the cryoprotectant dimethyl sulfoxide (Me2SO) with CeO2 NPs. Various concentrations of CeO2 NPs were tested to observe their effects on the crystallization and melting behaviours. The addition of CeO2 NPs significantly altered the temperatures and enthalpies of melting and crystallization in water. Low concentrations of CeO2 NPs promoted crystallization, while higher concentrations inhibited it, reducing supercooling and recrystallization during thawing. In Me2SO solutions, CeO2 NPs raised the glass transition temperature and affected the recrystallization process, with higher concentrations leading to more pronounced vitrification and reduced recrystallization. We also investigated the regularities of the effect of CeO2 NPs on phase transitions in combined cryoprotective media with Ham's F12, fetal bovine serum and Me2SO, which can be used in future to design the cryopreservation protocols. In the complex media, CeO2 NPs decreased the metastability and altered eutectic crystallization patterns, indicating potential cryoprotective effects. In conclusion, CeO2 NPs modulate the thermophysical properties of cryoprotective solutions, enhancing vitrification and reducing recrystallization, which could improve cryopreservation efficiency. Optimizing NP concentrations is crucial for practical applications in cryopreservation.
Collapse
Affiliation(s)
- Olena Bobrova
- Institute for Problems of Cryobiology and Cryomedicine of the National Academy of Sciences of Ukraine, 23 Pereyaslavska str., 61016, Kharkiv, Ukraine; Crop Research Institute, Drnovska 507, 16106, Prague 6, Czech Republic.
| | - Oksana Falko
- Institute for Problems of Cryobiology and Cryomedicine of the National Academy of Sciences of Ukraine, 23 Pereyaslavska str., 61016, Kharkiv, Ukraine
| | - Anna Polyakova
- Institute for Problems of Cryobiology and Cryomedicine of the National Academy of Sciences of Ukraine, 23 Pereyaslavska str., 61016, Kharkiv, Ukraine
| | - Volodymyr Klochkov
- Institute for Scintillation Materials of the National Academy of Sciences of Ukraine, 60 Nauky ave., 61072, Kharkiv, Ukraine
| | - Miloš Faltus
- Crop Research Institute, Drnovska 507, 16106, Prague 6, Czech Republic
| | - Viktor Chizhevskiy
- Institute for Problems of Cryobiology and Cryomedicine of the National Academy of Sciences of Ukraine, 23 Pereyaslavska str., 61016, Kharkiv, Ukraine
| |
Collapse
|
4
|
Akhtarshenas B, Kowsar R, Hajian M, Vash NT, Soltani L, Mahdavi AH, Esfahani MHN. ρ-Coumaric acid-zinc oxide nanoparticles improve post-thaw quality of goat spermatozoa and developmental competence of fertilized oocytes in vitro. Sci Rep 2024; 14:31971. [PMID: 39738447 PMCID: PMC11686304 DOI: 10.1038/s41598-024-83585-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 12/16/2024] [Indexed: 01/02/2025] Open
Abstract
Excessive production of reactive oxygen species (ROS) during cryopreservation and post-thawing affects sperm quality and subsequent fertilizing capacity. Nanoparticles (NPs) with antioxidative properties can improve sperm function and male fertility. The aim of this study was to assess the effect of 100 µM ρ-coumaric acid (ρ-CA), 0.1 µM ρ-CA-NPs (PCNPs), 150 µg/mL zinc chloride (ZnCl2), 1 µg/mL zinc oxide-NPs (ZnO-NPs), ρ-CA + ZnCl2, PCNPs + ZnO-NPs, 0.001 µM of ρ-CA loaded on ZnO-NPs (ρ-CA-ZnONPs) on goat sperm parameters and fertilizing ability after cryopreservation. Semen samples from five Saanen goats were used. Various concentrations of treatments were incubated to determine the optimal concentrations for assessing sperm motility and viability. Subsequently, samples were filled with 0.5-mL straws, frozen, and stored in liquid nitrogen (- 196 °C). Evaluations of post-thaw spermatozoa parameters and fertilizing ability were performed. Addition of ρ-CA-ZnONPs and PCNPs + ZnO-NPs significantly increased sperm viability, motility, plasma membrane integrity, blastocyst rate, and blastocyst quality compared with the other treatments. Moreover, using ρ-CA-ZnONPs significantly decreased lipid peroxidation and DNA damage compared with the other treatments. In conclusion, spermatozoa are cryotolerant, resistant to post-thaw conditions, and have fertilizing ability that can be increased by adding ρ-CA-ZnONPs as an antioxidant to goat semen extenders.
Collapse
Affiliation(s)
- Bahareh Akhtarshenas
- Department of Animal Sciences, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| | - Rasoul Kowsar
- Department of Animal Sciences, College of Agriculture, Isfahan University of Technology, Isfahan, Iran.
| | - Mehdi Hajian
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran.
| | - Nima Tanhaei Vash
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Leila Soltani
- Department of Animal Sciences, Faculty of Agriculture and Natural Resources, Razi University, Kermanshah, Iran
| | - Amir Hossein Mahdavi
- Department of Animal Sciences, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| | - Mohammad Hossein Nasr Esfahani
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| |
Collapse
|
5
|
Moghadam AM, Javid-Naderi MJ, Fathi-karkan S, Sabz FTK, Abbasi Z, Rahdar A, Pourmadadi M, Pandey S. Nanoparticle-mediated L-carnitine delivery for improved male fertility. J Drug Deliv Sci Technol 2024; 102:106420. [DOI: 10.1016/j.jddst.2024.106420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
6
|
Piri M, Mahdavi AH, Hajian M, Nasr-Esfahani MH, Soltani L, Vash NT. Effects of nano-berberine and berberine loaded on green synthesized selenium nanoparticles on cryopreservation and in vitro fertilization of goat sperm. Sci Rep 2024; 14:24171. [PMID: 39406889 PMCID: PMC11480442 DOI: 10.1038/s41598-024-75792-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 10/08/2024] [Indexed: 10/19/2024] Open
Abstract
After cryopreservation, reactive oxygen species (ROS) can damage sperm. Antioxidants are the primary defense against oxidative damage. Berberine is a bioactive alkaloid found in Berberis vulgaris, Curcuma longa, and Ergon grape, and is a potent antioxidant. Due to the negative effects of free radicals in oxidative stress processes, antioxidant chemicals are required to protect sperm. However, berberine has low bioavailability, making it less effective. Loading techniques on nanoparticles and nanotechnology can help overcome this limitation. Selenium nanoparticles were synthesized with barberry extract, and berberine was loaded on them. Berberine nanoparticles were then synthesized using anti-solvent precipitation with a syringe pump technique. The synthesis of nanoparticles was confirmed by EDX, UV-visible, FE-SEM, Zeta-Potential, and FTIR tests. In this experiment, we aim to investigate the impact of nano-berberine and berberine loaded on Se-NPs on goat sperm parameters after freeze-thawing. We assessed the generation of reactive oxygen species (ROS), in vitro fertility, and the subsequent embryo development of zygote with treated sperm after determining the optimal concentration of various chemicals on sperm parameters. The study found that all treatments had significant differences from the control group in terms of motility, viability, DNA and membrane integrity, ROS level, lipid peroxidation, in vitro fertility ability, and the capacity to develop inseminated oocytes (p < 0.05). The most significant outcomes were observed with berberine loaded on Se-NPs and the combination of selenium nanoparticles with berberine nanoparticles.
Collapse
Affiliation(s)
- Mehrangiz Piri
- Department of Animal Science, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| | - Amir Hossein Mahdavi
- Department of Animal Science, College of Agriculture, Isfahan University of Technology, Isfahan, Iran.
| | - Mehdi Hajian
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran.
| | - Mohammad Hossein Nasr-Esfahani
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Leila Soltani
- Department of Animal Sciences, Faculty of Agriculture and Natural Resources, Razi University, Kermanshah, Iran
| | - Nima Tanhaei Vash
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| |
Collapse
|
7
|
Kameni SL, Dlamini NH, Feugang JM. Exploring the full potential of sperm function with nanotechnology tools. Anim Reprod 2024; 21:e20240033. [PMID: 39176004 PMCID: PMC11340799 DOI: 10.1590/1984-3143-ar2024-0033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 06/20/2024] [Indexed: 08/24/2024] Open
Abstract
Sperm quality is essential to guarantee the success of assisted reproduction. However, selecting high-quality sperm and maintaining it during (cryo)preservation for high efficiency remains challenging in livestock reproduction. A comprehensive understanding of sperm biology allows for better assessment of sperm quality, which could replace conventional sperm analyses used today to predict fertility with low accuracy. Omics approaches have revealed numerous biomarkers associated with various sperm phenotypic traits such as quality, survival during storage, freezability, and fertility. At the same time, nanotechnology is emerging as a new biotechnology with high potential for use in preparing sperm intended to improve reproduction in livestock. The unique physicochemical properties of nanoparticles make them exciting tools for targeting (e.g., sperm damage and sexing) and non-targeting bioapplications. Recent advances in sperm biology have led to the discovery of numerous biomarkers, making it possible to target specific subpopulations of spermatozoa within the ejaculate. In this review, we explore potential biomarkers associated with sperm phenotypes and highlight the benefits of combining these biomarkers with nanoparticles to further improve sperm preparation and technology.
Collapse
Affiliation(s)
- Serge Leugoué Kameni
- Mississippi State University, Department of Animal and Dairy Sciences, Mississippi State, MS, USA
| | - Notsile Hleliwe Dlamini
- Mississippi State University, Department of Animal and Dairy Sciences, Mississippi State, MS, USA
| | - Jean Magloire Feugang
- Mississippi State University, Department of Animal and Dairy Sciences, Mississippi State, MS, USA
| |
Collapse
|
8
|
Zandiyeh S, Kalantari H, Fakhri A, Nikkhah M, Janani BJ, Sabbaghian M. A review of recent developments in the application of nanostructures for sperm cryopreservation. Cryobiology 2024; 115:104890. [PMID: 38555012 DOI: 10.1016/j.cryobiol.2024.104890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 03/15/2024] [Accepted: 03/19/2024] [Indexed: 04/02/2024]
Abstract
In the 1970s, sperm cryopreservation was presented as a unique route to fertility preservation. The ability to cryopreserve sperm from all species is challenging. The sperm cryopreservation process encompasses various cellular stresses such as increased osmotic pressure, ice crystal formation, and thermal shock, therefore decreasing the quality of sperm. The nanostructures due to their inherent features such as reactivity, high uptake, active surface area, and antioxidant activity, have contributed to modifying freezing protocols. In this review, the current state of the art with regards to emerging applications of nanotechnology in sperm cryopreservation are reviewed, some of the most promising advances are summarized, and the limitations and advantages are comprehensively discussed.
Collapse
Affiliation(s)
- Saeed Zandiyeh
- Department of Andrology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran.
| | - Hamid Kalantari
- Department of Andrology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Ali Fakhri
- Nanotechnology Laboratory, Nano Smart Science Institute, Tehran, Iran
| | - Maryam Nikkhah
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, P.O. Box: 14115-175, Tehran, Iran
| | | | - Marjan Sabbaghian
- Department of Andrology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| |
Collapse
|
9
|
Davis EHS, Jones C, Coward K. Rethinking the application of nanoparticles in women's reproductive health and assisted reproduction. Nanomedicine (Lond) 2024; 19:1231-1251. [PMID: 38686941 PMCID: PMC11285225 DOI: 10.2217/nnm-2023-0346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 03/25/2024] [Indexed: 05/02/2024] Open
Abstract
Nanoparticles and nanotechnology may present opportunities to revolutionize the prevention, treatment and diagnosis of a range of reproductive health conditions in women. These technologies are also used to improve outcomes of assisted reproductive technology. We highlight a range of these potential clinical uses of nanoparticles for polycystic ovary syndrome, endometriosis, uterine fibroids and sexually transmitted infections, considering in vitro and in vivo studies along with clinical trials. In addition, we discuss applications of nanoparticles in assisted reproductive technology, including sperm loading, gamete and embryo preservation and preventing preterm birth. Finally, we present some of the concerns associated with the medical use of nanoparticles, identifying routes for further exploration before nanoparticles can be applied to women's reproductive health in the clinic.
Collapse
Affiliation(s)
- Emily HS Davis
- Nuffield Department of Women’s & Reproductive Health, University of Oxford, Women’s Centre, John Radcliffe Hospital, Oxford, OX3 9DU, United Kingdom
| | - Celine Jones
- Nuffield Department of Women’s & Reproductive Health, University of Oxford, Women’s Centre, John Radcliffe Hospital, Oxford, OX3 9DU, United Kingdom
| | - Kevin Coward
- Nuffield Department of Women’s & Reproductive Health, University of Oxford, Women’s Centre, John Radcliffe Hospital, Oxford, OX3 9DU, United Kingdom
| |
Collapse
|
10
|
García‐Vázquez FA, Garrappa G, Luongo C, Hamze JG, Caballero M, Marco‐Jiménez F, Vicente Antón JS, Molina‐Cuberos GJ, Jiménez‐Movilla M. Magnetic-Assisted Control of Eggs and Embryos via Zona Pellucida-Linked Nanoparticles. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306901. [PMID: 38447155 PMCID: PMC11095233 DOI: 10.1002/advs.202306901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 02/03/2024] [Indexed: 03/08/2024]
Abstract
Eggs and embryo manipulation is an important biotechnological challenge to enable positioning, entrapment, and selection of reproductive cells to advance into a new era of nature-like assisted reproductive technologies. Oviductin (OVGP1) is an abundant protein in the oviduct that binds reversibly to the zona pellucida, an extracellular matrix that surrounds eggs and embryos. Here, the study reports a new method coupling OVGP1 to magnetic nanoparticles (NP) forming a complex (NPOv). NPOv specifically surrounds eggs and embryos in a reversible manner. Eggs/embryos bound to NPOv can be moved or retained when subjected to a magnetic force, and interestingly only mature-competent eggs are attracted. This procedure is compatible with normal development following gametes function, in vitro fertilization, embryo development and resulting in the birth of healthy offspring. The results provide in vitro proof-of-concept that eggs and embryos can be precisely guided in the absence of physical contact by the use of magnets.
Collapse
Affiliation(s)
- Francisco Alberto García‐Vázquez
- Departamento de Fisiología, Facultad de Veterinaria, Campus de Excelencia Mare NostrumUniversidad de MurciaMurcia30100Spain
- Instituto Murciano de Investigación Biosanitaria (IMIB‐Arrixaca)Murcia30120Spain
| | - Gabriela Garrappa
- Departamento de Fisiología, Facultad de Veterinaria, Campus de Excelencia Mare NostrumUniversidad de MurciaMurcia30100Spain
- Departamento de Biología Celular e Histología, Facultad de Medicina y Enfermería, Campus de Excelencia Mare NostrumUniversidad de MurciaMurcia30120Spain
- Insitituto Nacional de Tecnología Agropecuaria (INTA)RafaelaSanta Fe2300Argentina
| | - Chiara Luongo
- Departamento de Fisiología, Facultad de Veterinaria, Campus de Excelencia Mare NostrumUniversidad de MurciaMurcia30100Spain
| | - Julieta Gabriela Hamze
- Instituto Murciano de Investigación Biosanitaria (IMIB‐Arrixaca)Murcia30120Spain
- Departamento de Biología Celular e Histología, Facultad de Medicina y Enfermería, Campus de Excelencia Mare NostrumUniversidad de MurciaMurcia30120Spain
| | - María Caballero
- Departamento de Fisiología, Facultad de Veterinaria, Campus de Excelencia Mare NostrumUniversidad de MurciaMurcia30100Spain
- Departamento de Biología Celular e Histología, Facultad de Medicina y Enfermería, Campus de Excelencia Mare NostrumUniversidad de MurciaMurcia30120Spain
| | - Francisco Marco‐Jiménez
- Instituto de Ciencia y Tecnología AnimalUniversitat Politècnica de ValènciaValencia46022Spain
| | | | - Gregorio J. Molina‐Cuberos
- Departamento de Electromagnetismo y Electrónica, Facultad de QuímicaUniversidad de MurciaMurcia30100Spain
| | - María Jiménez‐Movilla
- Instituto Murciano de Investigación Biosanitaria (IMIB‐Arrixaca)Murcia30120Spain
- Departamento de Biología Celular e Histología, Facultad de Medicina y Enfermería, Campus de Excelencia Mare NostrumUniversidad de MurciaMurcia30120Spain
| |
Collapse
|
11
|
Khalique MA, Andrabi SMH, Majeed KA, Yousaf MS, Ahmad N, Tahir SK, Fayyaz MH, Haider MS, Naz SS, Qureshi IZ, Sulaiman S, Zaneb H, Rehman H. Cerium oxide nanoparticles improve the post-thaw quality and in-vivo fertility of Beetal buck spermatozoa. Theriogenology 2024; 214:166-172. [PMID: 37879286 DOI: 10.1016/j.theriogenology.2023.10.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/20/2023] [Accepted: 10/15/2023] [Indexed: 10/27/2023]
Abstract
The motility, health quality, and membrane disorders of spermatozoa are adversely affected during the process of semen cryopreservation due to the over-production of reactive oxygen species (ROS). Cerium oxide nanoparticles (CeO2NPs) possess properties to scavenge ROS either by mimicking specific antioxidants or by enhancing the activities of antioxidant enzymes. Therefore, we aimed at evaluating the effects of adding the CeO2NPs in the TRIS-citrate-yolk extender on in-vitro antioxidant enzyme activities, spermatozoa quality attributes, and in-vivo fertility of post-thaw Beetal buck spermatozoa. The CeO2NPs were prepared and characterized (UV-spectrophotometry, FTIR, and XRD). Semen samples, collected from bucks (n = 5), were distributed into five aliquots and diluted in an extender containing increasing concentrations of nanoparticles (0 μg/ml, called the control group, 25 μg/mL, 50 μg/mL, 75 μg/mL, and 100 μg/mL). At post-thaw, spermatozoa were evaluated for the above-mentioned attributes and the pregnancy rate by inseminating Beetal does (n = 252). Results demonstrated that CeO2NPs mitigated the detrimental effects of cryopreservation as ROS production and lipid peroxidation were lower (P < 0.001) in the 25, 50, and 75 μg/mL CeO2NPs-added groups compared to the control and 100 μg/ml CeO2NPs-added group. The addition of 25 μg/mL CeO2NPs improved (P < 0.001) the activities of superoxide dismutase, catalase, and peroxidase and the concentration of reduced glutathione (P < 0.001) compared to the other groups. In terms of sperm kinematics and velocity parameters, the groups added with the 25 and 50 μg/mL CeO2NPs exhibited higher total motility (P < 0.001), sperm progressive motility (P = 0.003), and rapid velocity (P < 0.001). The group added with the 50 μg/mL CeO2NPs had the highest (P = 0.04) average path velocity. The groups added with the 25 and 50 μg/mL CeO2NPs also exhibited higher plasma membrane integrity (P = 0.003), acrosomal integrity, and viability (P < 0.001) compared to the control group. The DNA integrity was also higher (P < 0.001) in all the CeO2NPs-added groups. The pregnancy rate was higher (P = 0.003) in the 25 (51.92 %) and 50 μg/mL CeO2NPs (58.33 %) groups compared to the other groups. Conclusively, our findings suggest that the inclusion of cerium oxide nanoparticles in the TRIS-citrate-yolk freezing extender can reduce the occurrence of cryopreservation-induced damages to Beetal's buck spermatozoa and ultimately enhance the pregnancy rate in does.
Collapse
Affiliation(s)
- Mubashir Ali Khalique
- Department of Physiology, University of Veterinary and Animal Sciences, Outfall Road, Lahore, 54000, Pakistan; Faculty of Veterinary and Animal Sciences, University of Poonch Rawalakot, Azad Jammu and Kashmir, Pakistan
| | | | - Khalid Abdul Majeed
- Department of Physiology, University of Veterinary and Animal Sciences, Outfall Road, Lahore, 54000, Pakistan
| | - Muhammad Shahbaz Yousaf
- Department of Physiology, University of Veterinary and Animal Sciences, Outfall Road, Lahore, 54000, Pakistan
| | - Nisar Ahmad
- Department of Parasitology, University of Veterinary and Animal Sciences, Outfall Road, Lahore, 54000, Pakistan
| | - Sajid Khan Tahir
- Department of Physiology, University of Veterinary and Animal Sciences, Outfall Road, Lahore, 54000, Pakistan
| | - Muhammad Hammad Fayyaz
- Animal Sciences Institute, National Agricultural Research Centre, Islamabad, 44000, Pakistan
| | - Muhammad Shafiq Haider
- Animal Sciences Institute, National Agricultural Research Centre, Islamabad, 44000, Pakistan
| | - Syeda Sohaila Naz
- Department of Nano-sciences and Technology, National Centre for Physics, Islamabad, 44000, Pakistan
| | - Irfan Zia Qureshi
- Department of Zoology, Quaid-i-Azam University, Islamabad, 44000, Pakistan
| | - Sulaiman Sulaiman
- Department of Nano-sciences and Technology, National Centre for Physics, Islamabad, 44000, Pakistan
| | - Hafsa Zaneb
- Department of Anatomy and Histology, University of Veterinary and Animal Sciences, Outfall Road, Lahore, 54000, Pakistan
| | - Habib Rehman
- Department of Physiology, University of Veterinary and Animal Sciences, Outfall Road, Lahore, 54000, Pakistan.
| |
Collapse
|
12
|
Abedin SN, Baruah A, Baruah KK, Bora A, Dutta DJ, Kadirvel G, Katiyar R, Doley S, Das S, Khargharia G, Sarkar B, Sinha S, Phookan A, Dewry RK, Kalita MK, Chakravarty H, Deori S. Zinc oxide and selenium nanoparticles can improve semen quality and heat shock protein expression in cryopreserved goat (Capra hircus) spermatozoa. J Trace Elem Med Biol 2023; 80:127296. [PMID: 37659125 DOI: 10.1016/j.jtemb.2023.127296] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 07/23/2023] [Accepted: 08/28/2023] [Indexed: 09/04/2023]
Abstract
BACKGROUND Reactive oxygen species (ROS) are strongly linked with oxidative stress (OS) generated during the process of sperm cryopreservation. Indeed, cellular damage from ROS has been implicated during sperm cryopreservation which causes deterioration in sperm quality and antioxidant nanoparticles (NPs) have been successful in preventing such damage. The interaction of NPs with sperm cells has been less frequently explored in farm animals. OBJECTIVE The present study explored the effect of NP supplementation on sperm ultrastructure, potential interaction with sperm membrane (plasma and acrosome membrane), heat shock protein (HSP) gene expression levels and sperm quality in cryopreserved buck semen. MATERIALS AND METHODS Thirty-two (32) ejaculates were collected from four (4) adult male bucks and then diluted in Tris- citric acid- fructose- egg yolk (TCFY) extender containing the Zinc-oxide (ZnO) and Selenium (Se) NP treatments (T0: Control; TZn: 0.1 mg/mL ZnO NPs and TSe: 1 µg/mL Se NPs) after initial evaluation. Diluted semen was packed in 0.25 mL French mini straws and then stored in liquid nitrogen (LN2). Sperm parameters, lipid peroxidation (LPO) profile, sperm head morphology ultrastructural classification under transmission electron microscope (TEM), potential interaction of NPs with sperm membrane and expression of HSP genes were evaluated in the different treatment groups. RESULTS We found a significant (p < 0.05) increase in the percentage of spermatozoa with intact plasma membrane, and intact acrosome in the ZnO (0.1 mg/mL) and Se (1 µg/mL) NP supplemented groups in comparison to the frozen control group. TEM assessment revealed no internalization of both ZnO and Se NPs into the sperm structure. Few occasional contacts of ZnO NPs with the sperm membrane and a few agglomerates of Se NPs around the area of damaged membranes were visualized. HSP70 and HSP90 mRNA levels were significantly (p < 0.001) higher in the NP supplemented groups in comparison to the control. HSP70 and HSP90 mRNA levels had a strong positive association with sperm motility and a weak to moderate association with other sperm parameters. CONCLUSIONS Current findings indicated that ZnO NPs are more potent than Se NPs in ameliorating peroxidative damages during sperm cryopreservation, increases semen quality parameters possibly by increasing the expression levels of HSP genes in buck semen. Furthermore, NP supplementation may have a potential role in preserving sperm head ultrastructure by acting as an antioxidant and reducing OS during various degrees of cellular insults, which needs to be further explored.
Collapse
Affiliation(s)
- Sayed Nabil Abedin
- College of Veterinary Science, Assam Agricultural University, Guwahati, India
| | - Anubha Baruah
- College of Veterinary Science, Assam Agricultural University, Guwahati, India
| | - Kishore Kumar Baruah
- Division of Animal and Fisheries Science, Indian Council of Agricultural Research (ICAR) Research Complex for North Eastern Hill Region, Meghalaya, India
| | - Arundhati Bora
- College of Veterinary Science, Assam Agricultural University, Guwahati, India
| | - Devo Jyoti Dutta
- College of Veterinary Science, Assam Agricultural University, Guwahati, India
| | - Govindasamy Kadirvel
- Division of Animal and Fisheries Science, Indian Council of Agricultural Research (ICAR) Research Complex for North Eastern Hill Region, Meghalaya, India
| | - Rahul Katiyar
- Division of Animal and Fisheries Science, Indian Council of Agricultural Research (ICAR) Research Complex for North Eastern Hill Region, Meghalaya, India
| | - Sunil Doley
- Division of Animal and Fisheries Science, Indian Council of Agricultural Research (ICAR) Research Complex for North Eastern Hill Region, Meghalaya, India
| | - Samir Das
- Division of Animal and Fisheries Science, Indian Council of Agricultural Research (ICAR) Research Complex for North Eastern Hill Region, Meghalaya, India
| | - Gautam Khargharia
- Division of Animal and Fisheries Science, Indian Council of Agricultural Research (ICAR) Research Complex for North Eastern Hill Region, Meghalaya, India
| | - Biplab Sarkar
- Indian Institute of Agricultural Biotechnology, Ranchi, India
| | - Sudip Sinha
- College of Veterinary Science, Assam Agricultural University, Guwahati, India
| | - Arundhati Phookan
- College of Veterinary Science, Assam Agricultural University, Guwahati, India
| | - Raju Kumar Dewry
- Division of Animal and Fisheries Science, Indian Council of Agricultural Research (ICAR) Research Complex for North Eastern Hill Region, Meghalaya, India
| | - Manoj Kumar Kalita
- College of Veterinary Science, Assam Agricultural University, Guwahati, India
| | - Himsikha Chakravarty
- Division of Animal and Fisheries Science, Indian Council of Agricultural Research (ICAR) Research Complex for North Eastern Hill Region, Meghalaya, India
| | - Sourabh Deori
- Division of Animal and Fisheries Science, Indian Council of Agricultural Research (ICAR) Research Complex for North Eastern Hill Region, Meghalaya, India.
| |
Collapse
|
13
|
Kanwar A, Virmani M, Lal S, Chaudhary K, Kumar S, Magotra A, Pandey AK. Silver nanoparticle as an alternate to antibiotics in cattle semen during cryopreservation. Anim Reprod 2023; 20:e20220030. [PMID: 38026002 PMCID: PMC10681137 DOI: 10.1590/1984-3143-ar2022-0030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 12/14/2022] [Indexed: 12/01/2023] Open
Abstract
The proposed study was to determine if the silver nanoparticles can be used as potential antimicrobial agents and can replace the use of conventional antibiotics in semen without affecting the motility and fertility of semen. The silver nanoparticles prepared by chemical reduction method were confirmed by determination of the wavelength of surface plasmon resonance peak and further characterized using Zetasizer by determining their size, polydispersity index, and zeta potential. The nanoparticles were assessed for antibacterial activity and their concentration was optimized for use in semen extender for cryopreservation. Cryopreserved semen was further evaluated for seminal parameters, antioxidant parameter, and microbial load. Prepared silver NPs showed a plasmon resonance peak at 417 nm wavelength. NPs were found to possess antibacterial activity and were supplemented in semen extender @ 125 and 250 µg/ml for semen cryopreservation. There was a significant increase in pre and post-freezing motility and other seminal parameters. The microbial load of frozen-thawed semen of control and supplemented groups were well within the permissible limits. Lipid peroxidation levels were reduced in NPs supplemented groups, and reactive oxygen species (ROS) levels were significantly reduced in semen supplemented with 125 µg/ml NPs. Thus it can be conclude that silver NPs can be successfully used as a substitute for antibiotics in cattle bull semen cryopreservation with good antimicrobial activity and no adverse effects on sperm characteristics.
Collapse
Affiliation(s)
- Arushi Kanwar
- Department of Veterinary Physiology and Biochemistry, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana, India
| | - Meenakshi Virmani
- Department of Veterinary Physiology and Biochemistry, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana, India
| | - Sant Lal
- Division of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar, Haryana, India
| | - Kartik Chaudhary
- Forest Department-Wildlife Wing, Paonta Sahib, Himachal Pradesh, India
| | - Sandeep Kumar
- Department of Veterinary Gynaecology and Obstetrics, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana, India
| | - Ankit Magotra
- Department of Animal Genetics and Breeding, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana, India
| | - Anand Kumar Pandey
- Department of Veterinary Gynaecology and Obstetrics, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana, India
| |
Collapse
|
14
|
Dos Santos RP, Silva AR. Sperm Cooling as an Assisted Reproduction Tool for Wildlife: An Underrated Technology. Biopreserv Biobank 2023; 21:388-396. [PMID: 35856795 DOI: 10.1089/bio.2022.0025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The search for assisted reproduction techniques applied to the conservation and even the genetic improvement of wild species is becoming increasingly common. Regarding conservation of male gametes from wild animals, although current advances are focused on cryopreservation, the development of protocols for sperm refrigeration seems to be underrated, despite its various advantages and applications. Therefore, this review aims to highlight the importance of short-term conservation of sperm from wild mammals, report the development of state-of-the-art refrigeration protocols for both ejaculated and epididymal sperm, and evaluate the challenges and prospects of their application.
Collapse
Affiliation(s)
- Romário Parente Dos Santos
- Laboratory for Animal Germplasm Conservation, Department of Animal Sciences, Federal University of the Semiarid Region, Mossoró, Brazil
| | - Alexandre Rodrigues Silva
- Laboratory for Animal Germplasm Conservation, Department of Animal Sciences, Federal University of the Semiarid Region, Mossoró, Brazil
| |
Collapse
|
15
|
Pasciu V, Nieddu M, Sotgiu FD, Baralla E, Berlinguer F. An Overview on Assay Methods to Quantify ROS and Enzymatic Antioxidants in Erythrocytes and Spermatozoa of Small Domestic Ruminants. Animals (Basel) 2023; 13:2300. [PMID: 37508077 PMCID: PMC10376267 DOI: 10.3390/ani13142300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/03/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
The present review aims to provide an overview of the assay methods for the quantification of ROS and principal enzymatic antioxidants as biomarkers of oxidative stress in erythrocytes and spermatozoa of small domestic ruminants. A complete literature search was carried out in PubMed, Scopus and the World Wide Web using relevant keywords and focusing on the last five years (2018-2023). Among spectrophotometry, fluorometry and chemiluminescence, the most widely used method for ROS assay is fluorometry, probably because it allows to simultaneously assay several ROS, using different probes, with greater economic advantages. Regarding intracellular antioxidant enzymes, recent literature reports only spectrophotometric methods, many of which use commercial kits. The use of a less sensitive but cheapest method is suitable because both erythrocytes and spermatozoa samples are highly concentrated in domestic ruminant species. All methods considered in this review have been found to be appropriate; in general, the differences are related to their costs and sensitivity. Quantification of ROS and enzymatic antioxidant activity in erythrocytes and spermatozoa may find application in the study of the welfare and health status of small domestic ruminants for monitoring livestock production.
Collapse
Affiliation(s)
- Valeria Pasciu
- Department of Veterinary Medicine, University of Sassari, 07100 Sassari, Italy
| | - Maria Nieddu
- Department of Medicine, Surgery and Pharmacy, University of Sassari, 07100 Sassari, Italy
| | | | - Elena Baralla
- Department of Veterinary Medicine, University of Sassari, 07100 Sassari, Italy
| | | |
Collapse
|
16
|
Bhattacharya S, Majumdar Nee Paul S. Application of conventional metallic nanoparticles on male reproductive system - challenges and countermeasures. Syst Biol Reprod Med 2023; 69:32-49. [PMID: 36427189 DOI: 10.1080/19396368.2022.2140087] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The application of nanotechnology in the present era has substantial impact on different industrial and medical fields. However, the advancement in nanotechnology for potential therapeutic and consumer benefits has been an anxious cause regarding the probable hazardous consequences of these molecules in biological systems and the environment. The toxic effects can perturb the physiologic system broadly and reproductive function and fertility specifically. Despite engineered nanomaterials (ENMs) having a wide range of applications, toxicological investigations of the probable ramifications of ENMs on the reproductive systems of mammals and fertility remains in its nascence. Complication in the male reproductive system is quite a pertinent issue in today's world which comprises of benign prostatic enlargement, prostate cancer, and unhealthy sperm production. The therapeutic drugs should not only be active in minimum dose but also site-specific in action, criteria being met by nanomedicines. Nanomedicine therapy is promising but encompasses the chances of adverse effects of being cytotoxic and generating oxidative stress. These hurdles can be overcome by creating coated nanoparticles with organic substances, modification of shape and size, and synthesizing biocompatible green nanoparticles. This review attempts to look into the applications of most widely used metals like zinc, titanium, silver, and gold nanoparticles in the therapy of the male reproductive system, their prospective harmful effects, and the way out to create a safe therapeutic system by specific modifications of these metal and metal oxide nanoparticles.
Collapse
Affiliation(s)
- Sonali Bhattacharya
- Department of Zoology (Post Graduate Studies), Rishi Bankim Chandra College, West Bengal State University, Naihati, West Bengal, India
| | - Sudipta Majumdar Nee Paul
- Department of Zoology (Post Graduate Studies), Rishi Bankim Chandra College, West Bengal State University, Naihati, West Bengal, India
| |
Collapse
|
17
|
Bhagat S, Singh S. Nanominerals in nutrition: Recent developments, present burning issues and future perspectives. Food Res Int 2022; 160:111703. [DOI: 10.1016/j.foodres.2022.111703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 07/01/2022] [Accepted: 07/15/2022] [Indexed: 11/04/2022]
|
18
|
Bisla A, Honparkhe M, Srivastava N. A review on applications and toxicities of metallic nanoparticles in mammalian semen biology. Andrologia 2022; 54:e14589. [DOI: 10.1111/and.14589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 08/14/2022] [Accepted: 08/29/2022] [Indexed: 11/29/2022] Open
Affiliation(s)
- Amarjeet Bisla
- Department of Veterinary Gynaecology and Obstetrics, College of Veterinary Science Guru Angad Dev Veterinary and Animal Sciences University Ludhiana India
| | - Mrigank Honparkhe
- Department of Veterinary Gynaecology and Obstetrics, College of Veterinary Science Guru Angad Dev Veterinary and Animal Sciences University Ludhiana India
| | - Neeraj Srivastava
- Germ Plasm Centre, Division of Animal Reproduction ICAR‐Indian Veterinary Research Institute Bareilly India
| |
Collapse
|
19
|
Maciejewski R, Radzikowska-Büchner E, Flieger W, Kulczycka K, Baj J, Forma A, Flieger J. An Overview of Essential Microelements and Common Metallic Nanoparticles and Their Effects on Male Fertility. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph191711066. [PMID: 36078782 PMCID: PMC9518444 DOI: 10.3390/ijerph191711066] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 05/17/2023]
Abstract
Numerous factors affect reproduction, including stress, diet, obesity, the use of stimulants, or exposure to toxins, along with heavy elements (lead, silver, cadmium, uranium, vanadium, mercury, arsenic). Metals, like other xenotoxins, can cause infertility through, e.g., impairment of endocrine function and gametogenesis or excess production of reactive oxygen species (ROS). The advancement of nanotechnology has created another hazard to human safety through exposure to metals in the form of nanomaterials (NMs). Nanoparticles (NPs) exhibit a specific ability to penetrate cell membranes and biological barriers in the human body. These ultra-fine particles (<100 nm) can enter the human body through the respiratory tract, food, skin, injection, or implantation. Once absorbed, NPs are transported to various organs through the blood or lymph. Absorbed NPs, thanks to ultrahigh reactivity compared to bulk materials in microscale size, disrupt the homeostasis of the body as a result of interaction with biological molecules such as DNA, lipids, and proteins; interfering with the functioning of cells, organs, and physiological systems; and leading to severe pathological dysfunctions. Over the past decades, much research has been performed on the reproductive effects of essential trace elements. The research hypothesis that disturbances in the metabolism of trace elements are one of the many causes of infertility has been unquestionably confirmed. This review examines the complex reproductive risks for men regarding the exposure to potentially harmless xenobiotics based on a series of 298 articles over the past 30 years. The research was conducted using PubMed, Web of Science, and Scopus databases searching for papers devoted to in vivo and in vitro studies related to the influence of essential elements (iron, selenium, manganese, cobalt, zinc, copper, and molybdenum) and widely used metallic NPs on male reproduction potential.
Collapse
Affiliation(s)
| | | | - Wojciech Flieger
- Department of Anatomy, Medical University of Lublin, 20-090 Lublin, Poland
| | - Kinga Kulczycka
- Institute of Health Sciences, John Paul II Catholic University of Lublin, 20-708 Lublin, Poland
| | - Jacek Baj
- Department of Anatomy, Medical University of Lublin, 20-090 Lublin, Poland
| | - Alicja Forma
- Department of Forensic Medicine, Medical University of Lublin, ul. Jaczewskiego 8B, 20-090 Lublin, Poland
| | - Jolanta Flieger
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4A, 20-093 Lublin, Poland
- Correspondence: ; Tel.: +48-81448-7182
| |
Collapse
|
20
|
Lee WY, Park HJ. Toxicity of cerium oxide nanoparticles on neonatal testicular development in mouse organ culture. Reprod Toxicol 2022; 111:120-128. [DOI: 10.1016/j.reprotox.2022.05.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/18/2022] [Accepted: 05/25/2022] [Indexed: 10/18/2022]
|
21
|
Jurado-Campos A, Soria-Meneses PJ, Sánchez-Rubio F, Niza E, Bravo I, Alonso-Moreno C, Arenas-Moreira M, García-Álvarez O, Soler AJ, Garde JJ, Fernández-Santos MDR. Vitamin E Delivery Systems Increase Resistance to Oxidative Stress in Red Deer Sperm Cells: Hydrogel and Nanoemulsion Carriers. Antioxidants (Basel) 2021; 10:1780. [PMID: 34829650 PMCID: PMC8615287 DOI: 10.3390/antiox10111780] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/25/2021] [Accepted: 11/03/2021] [Indexed: 11/24/2022] Open
Abstract
Oxidative stress has become a major concern in the field of spermatology, and one of the possible solutions to this acute problem would be the use of antioxidant protection; however, more studies are required in this field, as highly contradictory results regarding the addition of antioxidants have been obtained. Vitamin E is a powerful biological antioxidant, but its low stability and high hydrophobicity limit its application in spermatology, making the use of organic solvents necessary, which renders spermatozoa practically motionless. Keeping this in mind, we propose the use of hydrogels (HVEs) and nanoemulsions (NVEs), alone or in combination, as carriers for the controlled release of vitamin E, thus, improving its solubility and stability and preventing oxidative stress in sperm cells. Cryopreserved sperm from six stags was thawed and extended to 30 × 106 sperm/mL in Bovine Gamete Medium (BGM). Once aliquoted, the samples were incubated as follows: control, free vitamin E (1 mM), NVEs (9 mM), HVEs (1 mM), and the combination of HVEs and NVEs (H + N), with or without induced oxidative stress (100 µM Fe2+/ascorbate). The different treatments were analyzed after 0, 2, 5, and 24 h of incubation at 37 °C. Motility (CASA®), viability (YO-PRO-1/IP), mitochondrial membrane potential (Mitotracker Deep Red 633), lipid peroxidation (C11 BODIPY 581/591), intracellular reactive oxygen species production (CM-H2DCFDA), and DNA status (SCSA®) were assessed. Our results show that the deleterious effects of exogenous oxidative stress were prevented by the vitamin E-loaded carriers proposed, while the kinematic sperm parameters (p ˂ 0.05) and sperm viability were always preserved. Moreover, the vitamin E formulations maintained and preserved mitochondrial activity, prevented sperm lipid peroxidation, and decreased reactive oxygen species (ROS) production (p ˂ 0.05) under oxidative stress conditions. Vitamin E formulations were significantly different as regards the free vitamin E samples (p < 0.001), whose sperm kinematic parameters drastically decreased. This is the first time that vitamin E has been formulated as hydrogels. This new formulation could be highly relevant for sperm physiology preservation, signifying an excellent approach against sperm oxidative damage.
Collapse
Affiliation(s)
- Alejandro Jurado-Campos
- SaBio IREC (CSIC—UCLM—JCCM), Campus Universitario, s/n, 02071 Albacete, Spain; (A.J.-C.); (P.J.S.-M.); (F.S.-R.); (M.A.-M.); (O.G.-Á); (A.J.S.); (J.J.G.)
| | - Pedro Javier Soria-Meneses
- SaBio IREC (CSIC—UCLM—JCCM), Campus Universitario, s/n, 02071 Albacete, Spain; (A.J.-C.); (P.J.S.-M.); (F.S.-R.); (M.A.-M.); (O.G.-Á); (A.J.S.); (J.J.G.)
| | - Francisca Sánchez-Rubio
- SaBio IREC (CSIC—UCLM—JCCM), Campus Universitario, s/n, 02071 Albacete, Spain; (A.J.-C.); (P.J.S.-M.); (F.S.-R.); (M.A.-M.); (O.G.-Á); (A.J.S.); (J.J.G.)
- Servicio de Farmacia Hospitalaria, Complejo Hospitalario Universitario de Albacete, GAI, 02071 Albacete, Spain
| | - Enrique Niza
- Centro Regional de Investigaciones Biomédicas, Unidad Nano-CRIB, 02071 Albacete, Spain; (E.N.); (I.B.); (C.A.-M.)
- Facultad de Farmacia, Universidad de Castilla la Mancha, 02071 Albacete, Spain
| | - Iván Bravo
- Centro Regional de Investigaciones Biomédicas, Unidad Nano-CRIB, 02071 Albacete, Spain; (E.N.); (I.B.); (C.A.-M.)
- Facultad de Farmacia, Universidad de Castilla la Mancha, 02071 Albacete, Spain
| | - Carlos Alonso-Moreno
- Centro Regional de Investigaciones Biomédicas, Unidad Nano-CRIB, 02071 Albacete, Spain; (E.N.); (I.B.); (C.A.-M.)
- Facultad de Farmacia, Universidad de Castilla la Mancha, 02071 Albacete, Spain
| | - María Arenas-Moreira
- SaBio IREC (CSIC—UCLM—JCCM), Campus Universitario, s/n, 02071 Albacete, Spain; (A.J.-C.); (P.J.S.-M.); (F.S.-R.); (M.A.-M.); (O.G.-Á); (A.J.S.); (J.J.G.)
- Facultad de Farmacia, Universidad de Castilla la Mancha, 02071 Albacete, Spain
| | - Olga García-Álvarez
- SaBio IREC (CSIC—UCLM—JCCM), Campus Universitario, s/n, 02071 Albacete, Spain; (A.J.-C.); (P.J.S.-M.); (F.S.-R.); (M.A.-M.); (O.G.-Á); (A.J.S.); (J.J.G.)
| | - Ana Josefa Soler
- SaBio IREC (CSIC—UCLM—JCCM), Campus Universitario, s/n, 02071 Albacete, Spain; (A.J.-C.); (P.J.S.-M.); (F.S.-R.); (M.A.-M.); (O.G.-Á); (A.J.S.); (J.J.G.)
| | - José Julián Garde
- SaBio IREC (CSIC—UCLM—JCCM), Campus Universitario, s/n, 02071 Albacete, Spain; (A.J.-C.); (P.J.S.-M.); (F.S.-R.); (M.A.-M.); (O.G.-Á); (A.J.S.); (J.J.G.)
| | - María del Rocío Fernández-Santos
- SaBio IREC (CSIC—UCLM—JCCM), Campus Universitario, s/n, 02071 Albacete, Spain; (A.J.-C.); (P.J.S.-M.); (F.S.-R.); (M.A.-M.); (O.G.-Á); (A.J.S.); (J.J.G.)
- Facultad de Farmacia, Universidad de Castilla la Mancha, 02071 Albacete, Spain
| |
Collapse
|
22
|
Hosseinalipour E, Karimipour M, Ahmadi A. Detrimental effects of cerium oxide nanoparticles on testis, sperm parameters quality, and in vitro fertilization in mice: An experimental study. Int J Reprod Biomed 2021; 19:801-810. [PMID: 34723059 PMCID: PMC8548755 DOI: 10.18502/ijrm.v19i9.9712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 11/08/2020] [Accepted: 12/19/2020] [Indexed: 12/03/2022] Open
Abstract
Background Cerium oxide nanoparticles (CeO2 NPs) as an important nanomaterial have a wide range of applications in many fields and human beings' exposure to this nanomaterial is unavoidable. The effects of CeO2 NPs on the male reproductive system are controversial. Objective To determine the effects of the administration of CeO2 NPs on the testis tissue, sperm parameters, and in vitro fertilization (IVF) in mice. Materials and Methods Twenty-four male mice were divided into three groups (n = 8/each): one control and two experimental groups receiving CeO2 NPs at doses of 50 and 100 mg/kg body weight, respectively, for 35 days. At the end of the experiment, the diameter of seminiferous tubules (SNTs), epithelial height of SNTs, spermiogenesis index in testes, sperm parameters (count, motility, viability, and morphology), sperm chromatin condensation, DNA integrity, and IVF assays were analyzed. Results Histological results showed that the tubular diameter, the epithelial height of the SNTs, and the spermiogenesis index were significantly decreased in the experimental groups receiving CeO2 NPs. All sperm parameters in the experimental groups were significantly reduced and, additionally, the percentages of immature sperms and sperms with DNA damage were significantly increased in groups treated with CeO2 NPs compared to the control. Furthermore, the rates of IVF and in vitro embryo development were decreased. Conclusion Collectively, the current study showed that oral administration of CeO2 NPs in mice had detrimental effects on the male reproductive system through inducing testicular tissue alterations, decreasing sperm parameters quality, and also diminishing the IVF rate and in vitro embryonic development.
Collapse
Affiliation(s)
- Elnaz Hosseinalipour
- Department of Anatomy and Histology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Mojtaba Karimipour
- Department of Anatomy and Histology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran.,Reproductive Health Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Abbas Ahmadi
- Department of Basic Sciences, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| |
Collapse
|
23
|
Evans EPP, Scholten JTM, Mzyk A, Reyes-San-Martin C, Llumbet AE, Hamoh T, Arts EGJM, Schirhagl R, Cantineau AEP. Male subfertility and oxidative stress. Redox Biol 2021; 46:102071. [PMID: 34340027 PMCID: PMC8342954 DOI: 10.1016/j.redox.2021.102071] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/14/2021] [Accepted: 07/14/2021] [Indexed: 02/08/2023] Open
Abstract
To date 15% of couples are suffering from infertility with 45-50% of males being responsible. With an increase in paternal age as well as various environmental and lifestyle factors worsening these figures are expected to increase. As the so-called free radical theory of infertility suggests, free radicals or reactive oxygen species (ROS) play an essential role in this process. However, ROS also fulfill important functions for instance in sperm maturation. The aim of this review article is to discuss the role reactive oxygen species play in male fertility and how these are influenced by lifestyle, age or disease. We will further discuss how these ROS are measured and how they can be avoided during in-vitro fertilization.
Collapse
Affiliation(s)
- Emily P P Evans
- Department of Biomedical Engineering, Groningen University University Medical Center Groningen, Antonius Deusinglaan 1, 9713AW, Groningen, the Netherlands
| | - Jorien T M Scholten
- Department of Biomedical Engineering, Groningen University University Medical Center Groningen, Antonius Deusinglaan 1, 9713AW, Groningen, the Netherlands
| | - Aldona Mzyk
- Department of Biomedical Engineering, Groningen University University Medical Center Groningen, Antonius Deusinglaan 1, 9713AW, Groningen, the Netherlands; Institute of Metallurgy and Materials Science, Polish Academy of Sciences, Reymonta 25, 30-059, Krakow, Poland
| | - Claudia Reyes-San-Martin
- Department of Biomedical Engineering, Groningen University University Medical Center Groningen, Antonius Deusinglaan 1, 9713AW, Groningen, the Netherlands
| | - Arturo E Llumbet
- Department of Biomedical Engineering, Groningen University University Medical Center Groningen, Antonius Deusinglaan 1, 9713AW, Groningen, the Netherlands; Laboratory of Genomic of Germ Cells, Biomedical Sciences Institute, Faculty of Medicine, University of Chile. Independencia, 1027, Independencia Santiago, Chile
| | - Thamir Hamoh
- Department of Biomedical Engineering, Groningen University University Medical Center Groningen, Antonius Deusinglaan 1, 9713AW, Groningen, the Netherlands
| | - Eus G J M Arts
- Department of Obstetrics and Gynaecology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Romana Schirhagl
- Department of Biomedical Engineering, Groningen University University Medical Center Groningen, Antonius Deusinglaan 1, 9713AW, Groningen, the Netherlands.
| | - Astrid E P Cantineau
- Department of Obstetrics and Gynaecology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.
| |
Collapse
|
24
|
Silva JRV, Barroso PAA, Nascimento DR, Figueira CS, Azevedo VAN, Silva BR, Santos RPD. Benefits and challenges of nanomaterials in assisted reproductive technologies. Mol Reprod Dev 2021; 88:707-717. [PMID: 34553442 DOI: 10.1002/mrd.23536] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 09/06/2021] [Indexed: 12/23/2022]
Abstract
Assisted reproductive technology (ART) have contributed to preserve fertility in humans and to increase multiplication of genetically superior animals. Despite being highly practiced worldwide, ART presents some challenges, especially because gametes and embryos are kept in vitro for a variable period of time, and the oxidative stress in vitro can have negative impact on oocyte competence and embryo development. Nanotechnology needs to be considered to help overcome some of those impairments, since it can provide strategies to deliver antioxidants and hormones to gametes and embryos in vitro. The application of nanotechnology to ART can allow the development of new protocols using nanomaterials to improve in vitro oocyte competence and embryo production. This review discusses the applicability of nanomaterials to improve sperm selection, to deliver antioxidants and hormones to preantral follicles, oocytes, and embryos in vitro, as well as the concerns about using nanotechnology in ART.
Collapse
Affiliation(s)
- José Roberto Viana Silva
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceara-UFC, Sobral, Brazil
| | - Pedro Alves Aguiar Barroso
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceara-UFC, Sobral, Brazil
| | - Danisvânia Ripardo Nascimento
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceara-UFC, Sobral, Brazil
| | - Ciro Siqueira Figueira
- Laboratory of Materials Engineering and Simulation of Sobral (LEMSS), Federal University of Ceara-UFC, Sobral, Brazil
| | | | - Bianca R Silva
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceara-UFC, Sobral, Brazil
| | - Ricardo Pires Dos Santos
- Laboratory of Materials Engineering and Simulation of Sobral (LEMSS), Federal University of Ceara-UFC, Sobral, Brazil
| |
Collapse
|
25
|
Metal Oxide Nanoparticles: Evidence of Adverse Effects on the Male Reproductive System. Int J Mol Sci 2021; 22:ijms22158061. [PMID: 34360825 PMCID: PMC8348343 DOI: 10.3390/ijms22158061] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/22/2021] [Accepted: 07/23/2021] [Indexed: 12/12/2022] Open
Abstract
Metal oxide nanoparticles (MONPs) are inorganic materials that have become a valuable tool for many industrial sectors, especially in healthcare, due to their versatility, unique intrinsic properties, and relatively inexpensive production cost. As a consequence of their wide applications, human exposure to MONPs has increased dramatically. More recently, their use has become somehow controversial. On one hand, MONPs can interact with cellular macromolecules, which makes them useful platforms for diagnostic and therapeutic interventions. On the other hand, research suggests that these MONPs can cross the blood–testis barrier and accumulate in the testis. Although it has been demonstrated that some MONPs have protective effects on male germ cells, contradictory reports suggest that these nanoparticles compromise male fertility by interfering with spermatogenesis. In fact, in vitro and in vivo studies indicate that exposure to MONPs could induce the overproduction of reactive oxygen species, resulting in oxidative stress, which is the main suggested molecular mechanism that leads to germ cells’ toxicity. The latter results in subsequent damage to proteins, cell membranes, and DNA, which ultimately may lead to the impairment of the male reproductive system. The present manuscript overviews the therapeutic potential of MONPs and their biomedical applications, followed by a critical view of their potential risks in mammalian male fertility, as suggested by recent scientific literature.
Collapse
|
26
|
Hosseinmardi M, Siadat F, Sharafi M, Roodbari NH, Hezavehei M. Protective Effect of Cerium Oxide Nanoparticles on Human Sperm Function During Cryopreservation. Biopreserv Biobank 2021; 20:24-30. [PMID: 34271833 DOI: 10.1089/bio.2021.0020] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The generation of reactive oxygen species during cryopreservation of human sperm has negative effects on the consistency of the thawed sperm. The antioxidant properties of cerium oxide nanoparticles (CeO2NPs) may be useful for reducing cryodamage in thawed sperm. This research was conducted to determine the effects of CeO2NPs on the quality and function of human sperm after thawing. Samples of semen obtained from 20 normozoospermic individuals were allocated to the following four groups: fresh, frozen control (sperm not treated with CeO2NPs), and those exposed to 0.1 μg/mL CeO2NPs (CeO2-0.1), 1 μg/mL CeO2NPs (CeO2-1), and 5 μg/mL CeO2NPs (CeO2-5). Sperm parameters of motility, viability, membrane integrity, DNA fragmentation, protamination, malondialdehyde (MDA) levels, mitochondria membrane potential, and morphology were evaluated after the freezing-thawing process. The results showed that 0.1 μg/mL CeO2NPs significantly (p < 0.05) improved the following human sperm parameters after thawing: progressive (44.6% ± 1.14% vs. 36.2% ± 1.24%) and total motility (60.9% ± 2.5% vs. 51.3% ± 2.5%), viability (67.9% ± 1.5% vs. 58.1% ± 1.5%), membrane functionality (66.1% ± 1.85% vs. 55.4% ± 1.85%), DNA integrity (30.8% vs. 24.04%), and protamination (69.85% ± 2.09% vs. 57.2% ± 2.09%) compared with the frozen control group. We observed the lowest MDA levels in the CeO2-0.1 (3.06 ± 0.25 nmol/mL), CeO2-1 (3.1 ± 0.25 nmol/mL), and CeO2-5 (3.08 ± 0.25 nmol/mL) groups compared with the frozen control group (3.72 ± 0.25). Different concentrations of CeO2NPs did not significantly change sperm normal morphology and mitochondria activity (p < 0.05).
Collapse
Affiliation(s)
- Maryam Hosseinmardi
- Department of Developmental Biology, Faculty of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Fatemeh Siadat
- Department of Developmental Biology, Faculty of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
- Department of Biology, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Mohsen Sharafi
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
- Department of Poultry Science, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Nasim Hayati Roodbari
- Department of Developmental Biology, Faculty of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Maryam Hezavehei
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| |
Collapse
|
27
|
Role of Antioxidants in Cooled Liquid Storage of Mammal Spermatozoa. Antioxidants (Basel) 2021; 10:antiox10071096. [PMID: 34356329 PMCID: PMC8301105 DOI: 10.3390/antiox10071096] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 06/30/2021] [Accepted: 07/02/2021] [Indexed: 12/20/2022] Open
Abstract
Cooled preservation of semen is usually associated with artificial insemination and genetic improvement programs in livestock species. Several studies have reported an increase in reactive oxidative species and a decrease in antioxidant substances and sperm quality parameters during long-term semen storage at refrigerated temperatures. The supplementation of antioxidants in extenders before refrigeration could reduce this detrimental effect. Various antioxidants have been tested, both enzymatic, such as superoxide dismutase and catalase, and non-enzymatic, such as reduced glutathione, vitamins E and C and melatonin. However, the problem of oxidative stress in semen storage has not been fully resolved. The effects of antioxidants for semen-cooled storage have not been reviewed in depth. Therefore, the objective of the present study was to review the efficiency of the supplementation of antioxidants in the extender during cooled storage of semen in livestock species.
Collapse
|
28
|
Souza MR, Mazaro-Costa R, Rocha TL. Can nanomaterials induce reproductive toxicity in male mammals? A historical and critical review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 769:144354. [PMID: 33736249 DOI: 10.1016/j.scitotenv.2020.144354] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 11/06/2020] [Accepted: 12/05/2020] [Indexed: 05/28/2023]
Abstract
The nanotechnology enabled the development of nanomaterials (NMs) with a variety of industrial, biomedical, and consumer applications. However, the mechanism of action (MoA) and toxicity of NMs remain unclear, especially in the male reproductive system. Thus, this study aimed to perform a bibliometric and systematic review of the literature on the toxic effects of different types of NMs on the male reproductive system and function in mammalian models. A series of 236 articles related to the in vitro and in vivo reproductive toxicity of NMs in mammalian models were analyzed. The data concerning the bioaccumulation, experimental conditions (types of NMs, species, cell lines, exposure period, and routes of exposure), and the MoA and toxicity of NMs were summarized and discussed. Results showed that this field of research began in 2005 and has experienced an exponential increase since 2012. Revised data confirmed that the NMs have the ability to cross the blood-testis barrier and bioaccumulate in several organs of the male reproductive system, such as testis, prostate, epididymis, and seminal vesicle. A similar MoA and toxicity were observed after in vitro and in vivo exposure to NMs. The NM reproductive toxicity was mainly related to ROS production, oxidative stress, DNA damage and apoptosis. In conclusion, the NM exposure induces bioaccumulation and toxic effects on male reproductive system of mammal models, confirming its potential risk to human and environmental health. The knowledge concerning the NM reproductive toxicity contributes to safety and sustainable use of nanotechnology.
Collapse
Affiliation(s)
- Maingredy Rodrigues Souza
- Laboratory of Physiology and Pharmacology of Reproduction, Institute of Biological Sciences, Federal University of Goiás, Goiás, Brazil; Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiás, Brazil
| | - Renata Mazaro-Costa
- Laboratory of Physiology and Pharmacology of Reproduction, Institute of Biological Sciences, Federal University of Goiás, Goiás, Brazil
| | - Thiago Lopes Rocha
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiás, Brazil.
| |
Collapse
|
29
|
Pritchard N, Kaitu’u-Lino T, Harris L, Tong S, Hannan N. Nanoparticles in pregnancy: the next frontier in reproductive therapeutics. Hum Reprod Update 2021; 27:280-304. [PMID: 33279994 PMCID: PMC9034208 DOI: 10.1093/humupd/dmaa049] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 09/26/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Nanotechnology involves the engineering of structures on a molecular level. Nanomedicine and nano-delivery systems have been designed to deliver therapeutic agents to a target site or organ in a controlled manner, maximizing efficacy while minimizing off-target effects of the therapeutic agent administered. In both reproductive medicine and obstetrics, developing innovative therapeutics is often tempered by fears of damage to the gamete, embryo or developing foetus or of negatively impacting a woman's reproductive potential. Thus, nanomedicine delivery systems may provide alternative targeted intervention strategies, treating the source of the disease and minimizing long-term consequences for the mother and/or her foetus. OBJECTIVE AND RATIONALE This review summarizes the current state of nanomedicine technology in reproductive medicine and obstetrics, including safety, potential applications, future directions and the hurdles for translation. SEARCH METHODS A comprehensive electronic literature search of PubMed and Web of Science databases was performed to identify studies published in English up until February 2020. Relevant keywords were used to obtain information regarding use of nanoparticle technology in fertility and gene therapy, early pregnancy complications (ectopic pregnancy and gestational trophoblastic disease) and obstetric complications (preeclampsia, foetal growth restriction, preterm birth and gestational diabetes) and for selective treatment of the mother or foetus. Safety of specific nanoparticles to the gamete, embryo and foetus was also investigated. OUTCOMES Pre-clinical research in the development of nanoparticle therapeutic delivery is being undertaken in many fields of reproductive medicine. Non-hormonal-targeted nanoparticle therapy for fibroids and endometriosis may provide fertility-sparing medical management. Delivery of interventions via nanotechnology provides opportunities for gene manipulation and delivery in mammalian gametes. Targeting cytotoxic treatments to early pregnancy tissue provides an alternative approach to manage ectopic pregnancies and gestational trophoblastic disease. In pregnancy, nanotherapeutic delivery offers options to stably deliver silencing RNA and microRNA inhibitors to the placenta to regulate gene expression, opening doors to novel genetic treatments for preeclampsia and foetal growth restriction. Restricting delivery of teratogenic drugs to the maternal compartment (such as warfarin) may reduce risks to the foetus. Alternatively, targeted delivery of drugs to the foetus (such as those to treat foetal arrythmias) may minimize side effects for the mother. WIDER IMPLICATIONS We expect that further development of targeted therapies using nanoparticles in a reproductive setting has promise to eventually allow safe and directed treatments for conditions impacting the health and reproductive capacity of women and for the management of pregnancy and serious pregnancy complications.
Collapse
Affiliation(s)
- Natasha Pritchard
- Translational Obstetrics Group, Department of Obstetrics and Gynaecology, Mercy Hospital for Women, University of Melbourne, Heidelberg, Victoria, Australia
- Mercy Perinatal, Mercy Hospital for Women, Heidelberg, Victoria, Australia
| | - Tu’uhevaha Kaitu’u-Lino
- Translational Obstetrics Group, Department of Obstetrics and Gynaecology, Mercy Hospital for Women, University of Melbourne, Heidelberg, Victoria, Australia
- Mercy Perinatal, Mercy Hospital for Women, Heidelberg, Victoria, Australia
- Department of Obstetrics and Gynaecology, Diagnostics Discovery and Reverse Translation, University of Melbourne, Heidelberg, Victoria, Australia
| | - Lynda Harris
- Division of Pharmacy and Optometry, University of Manchester, Manchester, UK
- Maternal and Fetal Health Research Centre, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Maternal and Fetal Health Research Centre, Manchester University NHS Foundation Trust, Manchester Academic Health Sciences Centre, St Mary’s Hospital, Manchester, UK
| | - Stephen Tong
- Translational Obstetrics Group, Department of Obstetrics and Gynaecology, Mercy Hospital for Women, University of Melbourne, Heidelberg, Victoria, Australia
- Mercy Perinatal, Mercy Hospital for Women, Heidelberg, Victoria, Australia
| | - Natalie Hannan
- Translational Obstetrics Group, Department of Obstetrics and Gynaecology, Mercy Hospital for Women, University of Melbourne, Heidelberg, Victoria, Australia
- Mercy Perinatal, Mercy Hospital for Women, Heidelberg, Victoria, Australia
- Therapeutics Discovery and Vascular Function Group, Department of Obstetrics and Gynaecology, University of Melbourne, Heidelberg, Victoria, Australia
| |
Collapse
|
30
|
Sánchez-Rubio F, Soria-Meneses PJ, Jurado-Campos A, Bartolomé-García J, Gómez-Rubio V, Soler AJ, Arroyo-Jimenez MM, Santander-Ortega MJ, Plaza-Oliver M, Lozano MV, Garde JJ, Fernández-Santos MR. Nanotechnology in reproduction: Vitamin E nanoemulsions for reducing oxidative stress in sperm cells. Free Radic Biol Med 2020; 160:47-56. [PMID: 32768571 DOI: 10.1016/j.freeradbiomed.2020.07.024] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/12/2020] [Accepted: 07/17/2020] [Indexed: 01/12/2023]
Abstract
Vitamin E is considered a powerful biological antioxidant; however, its characteristics such as high hydrophobicity and low stability limit its application. We propose to use nanotechnology as an innovative tool in spermatology, formulating nanoemulsions (NE) that accommodate vitamin E, protecting it from oxidation and promoting its release into the medium. The protective effect of the NE against oxidative stress was assessed in red deer epididymal sperm incubated at 37 °C. Cryopreserved sperm from eleven stags were thawed and extended to 400 × 106 sperm/ml in Bovine Gamete Medium (BGM). Once aliquoted, the samples were supplemented with the NE at different concentrations (0, 6 and 12 mM), with or without induced oxidative stress (100 μM Fe2+/ascorbate). The samples were evaluated after 0, 2 and 4 h of incubation at 37 °C. Motility (CASA), viability, mitochondrial membrane potential, acrosomal status, lipoperoxidation (C11 BODIPY 581/591), intracellular reactive oxygen species (ROS) production and DNA status (SCSA®) were assessed. After 2 and 4 h of incubation, the NE were able to prevent the deleterious effects of oxidative stress, thus improving total and progression motility (P ˂0.05). Moreover, the highest concentration tested (12 mM) improved almost every sperm kinematic variable (P ˂0.05) and preserved sperm viability in samples subjected to oxidative stress. In addition, 12 mM of NE protected the acrosomes integrity, maintained and protected mitochondrial activity, prevented sperm lipoperoxidation and reduced ROS production (P ˂0.05) in samples subjected to oxidative stress. This work indicates for the first time that vitamin E formulated in NE could be a new approach against sperm oxidative damage. This could be highly relevant for sperm physiology preservation in the context of assisted reproduction techniques.
Collapse
Affiliation(s)
- F Sánchez-Rubio
- SaBio IREC (CSIC - UCLM - JCCM), Albacete, Spain; Servicio de Farmacia Hospitalaria, Complejo Hospitalario Universitario de Albacete, GAI, Albacete, Spain
| | | | | | | | | | - A J Soler
- SaBio IREC (CSIC - UCLM - JCCM), Albacete, Spain
| | - M M Arroyo-Jimenez
- Cellular Neurobiology and Molecular Chemistry of the Central Nervous System Group, Faculty of Pharmacy, UCLM, Albacete, Spain; Regional Centre of Biomedical Research (CRIB), UCLM, Albacete, Spain
| | - M J Santander-Ortega
- Cellular Neurobiology and Molecular Chemistry of the Central Nervous System Group, Faculty of Pharmacy, UCLM, Albacete, Spain; Regional Centre of Biomedical Research (CRIB), UCLM, Albacete, Spain
| | - M Plaza-Oliver
- Cellular Neurobiology and Molecular Chemistry of the Central Nervous System Group, Faculty of Pharmacy, UCLM, Albacete, Spain; Regional Centre of Biomedical Research (CRIB), UCLM, Albacete, Spain
| | - M V Lozano
- Cellular Neurobiology and Molecular Chemistry of the Central Nervous System Group, Faculty of Pharmacy, UCLM, Albacete, Spain; Regional Centre of Biomedical Research (CRIB), UCLM, Albacete, Spain.
| | - J J Garde
- SaBio IREC (CSIC - UCLM - JCCM), Albacete, Spain
| | - M R Fernández-Santos
- SaBio IREC (CSIC - UCLM - JCCM), Albacete, Spain; Faculty of Pharmacy, UCLM, Albacete, Spain.
| |
Collapse
|
31
|
Abdelnour SA, Hassan MAE, Mohammed AK, Alhimaidi AR, Al-Gabri N, Al-Khaldi KO, Swelum AA. The Effect of Adding Different Levels of Curcumin and Its Nanoparticles to Extender on Post-Thaw Quality of Cryopreserved Rabbit Sperm. Animals (Basel) 2020; 10:ani10091508. [PMID: 32858961 PMCID: PMC7552309 DOI: 10.3390/ani10091508] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 08/22/2020] [Accepted: 08/24/2020] [Indexed: 12/12/2022] Open
Abstract
Simple Summary In rabbit farms, artificial insemination is usually accepted using semen preserved around 18 °C. However, the use of cryopreserved rabbit semen is limited, due to excess oxidative stress and produce sperm dysfunction. The advancements in nanotechnology tools have allowed molecular-based targeting of cells through effective, safe, and biocompatible magnetic nanoparticles with promising potentials in reproductive sciences. In these regards, the current work aimed to explore the potential role if the effect of curcumin nanoparticles supplementation in semen extender on post/thawed rabbit sperm quality. Results revealed that the CUNPs (1.5 µg/mL) showed superior enhancements impacts for the post-thawing sperm motion and redox status, as well as a significant reduction in apoptotic and necrotic sperm cells. This confirmed the constructive application of nanoparticle to enhance the cryopreserved rabbit’s sperm function. Abstract The cryopreservation process adversely affects sperm function and quality traits, causing some changes at biochemical and structural levels, due to mechanical, thermal, osmotic, and oxidative damage. Supplementation with curcumin nanoparticles could prevent and even revert this effect and could enhance the post/thawed sperm quality in the rabbit. The study amid to explore the effect of curcumin (CU) and curcumin nanoparticles (CUNPs) supplementation in semen extender on post/thawed rabbit sperm quality. Twelve fertile, healthy rabbit bucks were included, and the ejaculates were collected using artificial vaginas. Rabbit pooled semen was cryopreserved in tris-yolk fructose (TYF) extender without any supplement (control group) or extender supplemented with CU at levels of 0.5, 1 or 1.5 µg/mL (CU0.5, CU1.0, and CU1.5, respectively) or CUNPs at levels of 0.5, 1, 1.5 (CUNPs0.5, CUNPs1.0, and CUNPs1.5, respectively) and was packed in straws (0.25 mL) and stored in liquid nitrogen (−196 °C). Results revealed that CUNPs1.5 had a positive influence (p < 0.05) on post-thawing sperm progressive motility, viability, and membrane integrity as compared with the other groups. Percentages of dead sperm, abnormalities, early apoptotic, apoptotic, and necrotic sperm cells reduced (p < 0.05) in CUNPs1.5 as compared to other treatments. Using 1.5 µg/mL of CUNPs significantly improved total antioxidant capacity (TAC), GPx, while MDA and POC reduced (p < 0.05) in CU1.5 in comparison with other groups. SOD values were enhanced (p < 0.05) in CUNPs1.0 and CUNPs1.5 in relation with other treatments. Conclusively, the addition of curcumin and its nanoparticles to the extender can improve the post-thawed quality of rabbit sperm via redox signaling and reduce the apoptosis process.
Collapse
Affiliation(s)
- Sameh A. Abdelnour
- Department of Animal Production, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
- Correspondence: (S.A.A.); (A.A.S.)
| | | | - Amer K. Mohammed
- Department of Animal Production, Faculty of Agriculture, Mansoura University, Mansoura 35516, Egypt;
| | - Ahmad R. Alhimaidi
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Naif Al-Gabri
- Department of Pathology, Faculty of Veterinary Medicine, Thamar University, Dhamar 2153, Yemen;
- Laboratory of Regional Djibouti Livestock Quarantine, Abu Yasar international Est. 1999, Djibouti
| | | | - Ayman A. Swelum
- Department of Animal production, College of Food and Agriculture Sciences, King Saud University, P. O. Box 2460, Riyadh 11451, Saudi Arabia
- Department of Theriogenology, Faculty of Veterinary Medicine, Zagazig University, Sharkia 44519, Egypt
- Correspondence: (S.A.A.); (A.A.S.)
| |
Collapse
|
32
|
State-of-the-Art and Prospective of Nanotechnologies for Smart Reproductive Management of Farm Animals. Animals (Basel) 2020; 10:ani10050840. [PMID: 32414174 PMCID: PMC7278443 DOI: 10.3390/ani10050840] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/04/2020] [Accepted: 05/12/2020] [Indexed: 12/18/2022] Open
Abstract
Many biotechnological assisted reproductive techniques (ART) are currently used to control the reproductive processes of farm animals. Nowadays, smart ART that considers technique efficiency, animal welfare, cost efficiency and environmental health are developed. Recently, the nanotechnology revolution has pervaded all scientific fields including the reproduction of farm animals, facilitating certain improvements in this field. Nanotechnology could be used to improve and overcome many technical obstacles that face different ART. For example, semen purification and semen preservation processes have been developed using different nanomaterials and techniques, to obtain semen doses with high sperm quality. Additionally, nanodrugs delivery could be applied to fabricate several sex hormones (steroids or gonadotrophins) used in the manipulation of the reproductive cycle. Nanofabricated hormones have new specific biological properties, increasing their bioavailability. Applying nanodrugs delivery techniques allow a reduction in hormone dose and improves hormone kinetics in animal body, because of protection from natural biological barriers (e.g., enzymatic degradation). Additionally, biodegradable nanomaterials could be used to fabricate hormone-loaded devices that are made from non-degradable materials, such as silicon and polyvinyl chloride-based matrixes, which negatively impact environmental health. This review discusses the role of nanotechnology in developing some ART outcomes applied in the livestock sector, meeting the concept of smart production.
Collapse
|
33
|
Gallo A, Boni R, Tosti E. Gamete quality in a multistressor environment. ENVIRONMENT INTERNATIONAL 2020; 138:105627. [PMID: 32151884 DOI: 10.1016/j.envint.2020.105627] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 02/28/2020] [Accepted: 02/29/2020] [Indexed: 05/25/2023]
Abstract
Over the past few decades, accumulated evidence confirms that the global environment conditions are changing rapidly. Urban industrialization, agriculture and globalization have generated water, air and soil pollution, giving rise to an environment with a growing number of stress factors, which has a serious impact on the fitness, reproduction and survival of living organisms. The issue raises considerable concern on biodiversity conservation, which is now at risk: it is estimated that a number of species will be extinct in the near future. Sexual reproduction is the process that allows the formation of a new individual and is underpinned by gamete quality defined as the ability of spermatozoa and oocytes to interact during fertilization leading to the creation and development of a normal embryo. This review aimed to provide the current state of knowledge regarding the impact of a broad spectrum of environmental stressors on diverse parameters used to estimate and evaluate gamete quality in humans and in canonical animal models used for experimental research. Effects of metals, biocides, herbicides, nanoparticles, plastics, temperature rise, ocean acidification, air pollution and lifestyle on the physiological parameters that underlie gamete fertilization competence are described supporting the concept that environmental stressors represent a serious hazard to gamete quality with reproductive disorders and living organism failure. Although clear evidence is still limited, gamete capacity to maintain and/or recover physiological conditions is recently demonstrated providing further clues about the plasticity of organisms and their tolerance to the pressures of pollution that may facilitate the reproduction and the persistence of species within the scenario of global change. Changes in the global environment must be urgently placed at the forefront of public attention, with a massive effort invested in further studies aimed towards implementing current knowledge and identifying new methodologies and markers to predict impairment of gamete quality.
Collapse
Affiliation(s)
- Alessandra Gallo
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale 1, 80121 Napoli, Italy
| | - Raffaele Boni
- Department of Sciences, University of Basilicata, 85100 Potenza, Italy
| | - Elisabetta Tosti
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale 1, 80121 Napoli, Italy.
| |
Collapse
|
34
|
Mohammed AA, Pinna A, Li S, Sang T, Jones JR. Auto-catalytic redox polymerisation using nanoceria and glucose oxidase for double network hydrogels. J Mater Chem B 2020; 8:2834-2844. [DOI: 10.1039/c9tb02729g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
A novel auto-catalytic reaction that utilizes both the redox properties of nanoceria and oxidoreductase properties of glucose oxidase to graft polymers on the surface of nanoceria in an open vessel to form double network hydrogel nanocomposites.
Collapse
Affiliation(s)
| | | | - Siwei Li
- Department of Materials
- Imperial College London
- London
- UK
| | - Tian Sang
- Department of Materials
- Imperial College London
- London
- UK
| | | |
Collapse
|
35
|
Feugang JM, Rhoads CE, Mustapha PA, Tardif S, Parrish JJ, Willard ST, Ryan PL. Treatment of boar sperm with nanoparticles for improved fertility. Theriogenology 2019; 137:75-81. [PMID: 31204016 DOI: 10.1016/j.theriogenology.2019.05.040] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Continuous progress in nanoscience has allowed the synthesis of various nanoscale particles, known as nanoparticles or nanomaterials which, by harnessing unique physico-chemical properties, are crucial for multiple bio-applications. Despite the revealed toxicity (nanotoxicity) of nanoparticles in various in vitro and in vivo studies, their careful design for biocompatibility and effective interactions with single-celled and multi-cellular organisms has permitted their use in several fields of research and biomedicine. The various nanoparticles synthesized and applied in the veterinary sciences, including reproductive biology, have shown potential to influence routine practices in animal production systems. These include post-collection manipulation of semen and the protection of high-quality spermatozoa to extend their preservation, and to improve sperm-related biotechnologies such as sperm-mediated gene transfer, sperm sorting, sex-sorting, and cryopreservation. Therefore, the application of nanotechnology-based tools to semen may enhance assisted reproductive technologies for biomedical applications and improve economic productivity for farmers. Here, we review the efficacy of available techniques and emerging tools of nanotechnology that might be useful for further selection of high quality boar spermatozoa and productivity improvement.
Collapse
Affiliation(s)
- Jean M Feugang
- Department of Animal and Dairy Sciences, Mississippi State University, MS, USA.
| | - Carley E Rhoads
- Department of Animal and Dairy Sciences, Mississippi State University, MS, USA
| | | | | | - John J Parrish
- Department of Animal Sciences, University of Wisconsin, WI, USA
| | - Scott T Willard
- Department of Animal and Dairy Sciences, Mississippi State University, MS, USA; Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, MS, USA
| | - Peter L Ryan
- Department of Animal and Dairy Sciences, Mississippi State University, MS, USA; Department of Population and Pathology Medicine, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, USA
| |
Collapse
|
36
|
Dai GC, Meng Y, Zhang LK, Du YQ, Wen F, Feng TY, Hu JH. Effect of addition of melatonin on liquid storage of ram semen at 4°C. Andrologia 2019; 51:e13236. [PMID: 30693976 DOI: 10.1111/and.13236] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 12/18/2018] [Accepted: 12/20/2018] [Indexed: 12/12/2022] Open
Abstract
Adding a certain amount of antioxidants to semen extender has been shown to improve semen quality. The aim of present study was to elucidate whether the supplementation of melatonin to the Tris-based extender (CTR) could enhance the quality of ram spermatozoa during storage at 4°C. Ram semen samples were collected and diluted with CTR extender containing different concentrations (0, 0.05 (M 0.05), 0.1 (M 0.1), 0.2 (M 0.2) or 0.4 (M 0.4) mM) of melatonin. Sperm routine indicators, mitochondrial activity, total antioxidant capacity (T-AOC) and malondialdehyde (MDA) content were analysed in control and melatonin treatment groups. The higher per cent of motility, plasma membrane integrity, mitochondrial activity and T-AOC activity was observed in M 0.05, M 0.1 and M 0.2 groups compared to control group at 5 days of storage (p < 0.05), while lower percentage of MDA content was observed among these groups (p < 0.05). In addition, there were no significant differences in acrosome integrity among the control and M 0.05, M 0.1 and M 0.2 groups during the experiment. The above results show that the addition of 0.05, 0.1, 0.2 mM of melatonin is beneficial to the preservation of ram semen during liquid storage at 4°C mainly through antioxidative stress.
Collapse
Affiliation(s)
- Gui-Chao Dai
- Collage of Animal Science and Technology, Northwest A&F University, Yangling Shaanxi, China
| | - Yu Meng
- Collage of Animal Science and Technology, Northwest A&F University, Yangling Shaanxi, China
| | - Li-Kun Zhang
- Collage of Animal Science and Technology, Northwest A&F University, Yangling Shaanxi, China
| | - Ye-Qing Du
- Collage of Animal Science and Technology, Northwest A&F University, Yangling Shaanxi, China
| | - Fei Wen
- Collage of Animal Science and Technology, Northwest A&F University, Yangling Shaanxi, China
| | - Tian-Yu Feng
- Collage of Animal Science and Technology, Northwest A&F University, Yangling Shaanxi, China
| | - Jian-Hong Hu
- Collage of Animal Science and Technology, Northwest A&F University, Yangling Shaanxi, China
| |
Collapse
|
37
|
Falchi L, Khalil WA, Hassan M, Marei WF. Perspectives of nanotechnology in male fertility and sperm function. Int J Vet Sci Med 2018; 6:265-269. [PMID: 30564607 PMCID: PMC6286411 DOI: 10.1016/j.ijvsm.2018.09.001] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 09/04/2018] [Accepted: 09/04/2018] [Indexed: 01/10/2023] Open
Abstract
Recent advances in nanotechnology have tremendously expanded its possible applications in biomedicine. Although, the effects of nanoparticles (NPs) at cellular and tissue levels have not been fully understood, some of these biological effects might be employed in assisted reproduction to improve male fertility particularly by enhancing sperm cell quality either in vivo or in vitro. This review summarises the available literature regarding the potential applications of nanomaterials in farm animal reproduction, with a specific focus on the male gamete and on different strategies to improve breeding performances, transgenesis and targeted delivery of substances to a sperm cell. Antioxidant, antimicrobial properties and special surface binding ligand functionalization and their applications for sperm processing and cryopreservation have been reviewed. In addition, nanotoxicity and detrimental effects of NPs on sperm cells are also discussed due to the increasing concerns regarding the environmental impact of the expanding use of nanotechnologies on reproduction.
Collapse
Affiliation(s)
- Laura Falchi
- Dipartimento di Medicina Veterinaria, Sezione di Clinica Ostetrica e Ginecologia, Università di Sassari, Sassari, Italy
| | - Wael A. Khalil
- Department of Animal Production, Faculty of Agriculture, Mansoura University, Mansoura 35516, Egypt
| | - Mahmoud Hassan
- Animal Production Research Institute, Dokki, Giza, Egypt
| | - Waleed F.A. Marei
- Department of Theriogenology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
- Gamete Research Centre, Department of Veterinary Sciences, University of Antwerp, 2610 Wilrijk, Belgium
| |
Collapse
|