1
|
Chen YC, Wang ZL, Lin YF, Lin CY, Hsu SY, Nacis JS, Hsieh RH. Aspartame consumption linked to delayed puberty and mitochondrial Dysfunction: Evidence from human and animal studies. J Nutr Biochem 2025; 140:109889. [PMID: 40049244 DOI: 10.1016/j.jnutbio.2025.109889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 02/19/2025] [Accepted: 02/27/2025] [Indexed: 03/24/2025]
Abstract
This study investigates the impact of aspartame consumption on pubertal timing in females. The research employs both human and rat models to explore underlying mechanisms. In the Taiwan Pubertal Longitudinal Study (2018-2022), 858 girls aged 6-12 were assessed for aspartame intake and puberty outcomes. Concurrently, female Sprague Dawley rats were exposed to low (30 mg/kg) or high (60 mg/kg) doses of aspartame from prenatal to postnatal stages. Results demonstrate that aspartame disrupts the hypothalamic-pituitary-gonadal (HPG) axis in rats, causing mitochondrial dysfunction and reduced ovarian mitochondrial biogenesis, leading to delayed puberty. Human data indicates higher aspartame consumption correlates with a decreased risk of precocious puberty (odds ratio = 0.63, 95% confidence interval = 0.42-0.96; p for trend = 0.03). These findings suggest long-term aspartame consumption may delay puberty, necessitating further research to inform dietary guidelines, especially for vulnerable populations such as prepubertal girls.
Collapse
Affiliation(s)
- Yang-Ching Chen
- Department of Family Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan; Department of Family Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei, Taiwan; Graduate Institute of Metabolism and Obesity Sciences, Taipei Medical University, Taipei, Taiwan; Nutrition Research Center, Taipei Medical University Hospital, Taipei, Taiwan
| | - Zih Ling Wang
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei, Taiwan
| | - Yu-Fang Lin
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei, Taiwan
| | - Chia-Yuan Lin
- Department of Family Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Department of Food Science, National Taiwan Ocean University, Keelung, Taiwan
| | - Shih-Yuan Hsu
- Department of Family Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Jacus S Nacis
- Department of Science and Technology-Food and Nutrition Research Institute, DOST Compound, Taguig City, Philippines
| | - Rong-Hong Hsieh
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
2
|
Vale-Fernandes E, Carrageta DF, Moreira MV, Guerra-Carvalho B, Rodrigues B, Sousa D, Brandão R, Leal C, Barreiro M, Tomé A, Alves MG, Oliveira PF, Monteiro MP. Follicular fluid profiling unveils anti-Müllerian hormone alongside glycolytic and mitochondrial dysfunction as markers of polycystic ovary syndrome. Mol Cell Endocrinol 2025; 602:112536. [PMID: 40185328 DOI: 10.1016/j.mce.2025.112536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 03/17/2025] [Accepted: 04/01/2025] [Indexed: 04/07/2025]
Abstract
Polycystic ovary syndrome (PCOS) is a prevalent endocrine disorder affecting women of reproductive age, yet the molecular mechanisms influencing its pathophysiology remain poorly defined. A comprehensive prospective case-control study was conducted to elucidate the follicular fluid (FF) hormone and metabolite profile in women with PCOS and its implications for oocyte maturation and fertilization. The study involved 40 age- and body mass index (BMI)-matched women undergoing in vitro fertilization (IVF), including 20 diagnosed with PCOS and 20 controls with infertility due to tubal or male factors. A distinctive hormone profile in the FF of women with PCOS was identified, characterized by significantly higher anti-Müllerian hormone (AMH) levels (24.90 ± 17.61 vs. 16.68 ± 17.67 pmol/L, p = 0.0039) and lower progesterone (8253 ± 4748 vs. 25362 ± 10862 ng/mL, p < 0.0001) and estradiol levels (388.23 ± 210.58 vs. 651.48 ± 390.79 ng/mL, p = 0.0208) compared to normoovulatory controls. Moreover, a metabolite fingerprint associated with glycolytic and mitochondrial dysfunction was observed, as evidenced by lower lactate (4575.44 ± 1507.76 vs. 5595.34 ± 1073.32 μmol/L, p = 0.0182) and formate (64.51 ± 16.06 vs. 75.81 ± 16.63 μmol/L, p = 0.0351) levels and higher citrate levels (136.93 ± 52.53 vs. 109.15 ± 24.17 μmol/L, p = 0.0409) in the FF of women with PCOS. These findings suggest that the molecular profile of the FF in women with PCOS might be related to granulosa cell glycolytic and mitochondrial dysfunction, which can have a negative impact on oocyte fertilization potential. The study provides an integrative analysis of the FF hormone and metabolite profile in women with PCOS, offering insights into the molecular mechanisms underlying the reproductive dysfunctions associated with this condition.
Collapse
Affiliation(s)
- Emídio Vale-Fernandes
- Centre for Medically Assisted Procreation/Public Gamete Bank, Gynecology Department, Centro Materno-Infantil do Norte Dr. Albino Aroso (CMIN), Centro Hospitalar Universitário de Santo António (CHUdSA), Unidade Local de Saúde de Santo António (ULSSA), 4099-001, Porto, Portugal; Clinical and Experimental Endocrinology, UMIB - Unit for Multidisciplinary Research in Biomedicine, ICBAS - School of Medicine and Biomedical Sciences, University of Porto, 4050-313, Porto, Portugal; ITR - Laboratory for Integrative and Translational Research in Population Health, 4050-600, Porto, Portugal; Gynecology Department, Centro Materno-Infantil do Norte Dr. Albino Aroso (CMIN), Centro Hospitalar Universitário de Santo António (CHUdSA), Unidade Local de Saúde de Santo António (ULSSA), 4099-001, Porto, Portugal.
| | - David F Carrageta
- Clinical and Experimental Endocrinology, UMIB - Unit for Multidisciplinary Research in Biomedicine, ICBAS - School of Medicine and Biomedical Sciences, University of Porto, 4050-313, Porto, Portugal; ITR - Laboratory for Integrative and Translational Research in Population Health, 4050-600, Porto, Portugal; Portalegre Polytechnic Institute, 7300-110, Portalegre, Portugal
| | - Mafalda V Moreira
- Clinical and Experimental Endocrinology, UMIB - Unit for Multidisciplinary Research in Biomedicine, ICBAS - School of Medicine and Biomedical Sciences, University of Porto, 4050-313, Porto, Portugal; ITR - Laboratory for Integrative and Translational Research in Population Health, 4050-600, Porto, Portugal
| | - Bárbara Guerra-Carvalho
- Clinical and Experimental Endocrinology, UMIB - Unit for Multidisciplinary Research in Biomedicine, ICBAS - School of Medicine and Biomedical Sciences, University of Porto, 4050-313, Porto, Portugal; ITR - Laboratory for Integrative and Translational Research in Population Health, 4050-600, Porto, Portugal
| | - Bárbara Rodrigues
- Clinical and Experimental Endocrinology, UMIB - Unit for Multidisciplinary Research in Biomedicine, ICBAS - School of Medicine and Biomedical Sciences, University of Porto, 4050-313, Porto, Portugal; Molecular Genetics Laboratory, Laboratory Genetics Service, Genetics and Pathology Clinic, Centro Hospitalar Universitário de Santo António (CHUdSA), Unidade Local de Saúde de Santo António (ULSSA), 4099-001, Porto, Portugal
| | - Daniela Sousa
- Centre for Medically Assisted Procreation/Public Gamete Bank, Gynecology Department, Centro Materno-Infantil do Norte Dr. Albino Aroso (CMIN), Centro Hospitalar Universitário de Santo António (CHUdSA), Unidade Local de Saúde de Santo António (ULSSA), 4099-001, Porto, Portugal
| | - Raquel Brandão
- Centre for Medically Assisted Procreation/Public Gamete Bank, Gynecology Department, Centro Materno-Infantil do Norte Dr. Albino Aroso (CMIN), Centro Hospitalar Universitário de Santo António (CHUdSA), Unidade Local de Saúde de Santo António (ULSSA), 4099-001, Porto, Portugal
| | - Carla Leal
- Centre for Medically Assisted Procreation/Public Gamete Bank, Gynecology Department, Centro Materno-Infantil do Norte Dr. Albino Aroso (CMIN), Centro Hospitalar Universitário de Santo António (CHUdSA), Unidade Local de Saúde de Santo António (ULSSA), 4099-001, Porto, Portugal; Clinical and Experimental Endocrinology, UMIB - Unit for Multidisciplinary Research in Biomedicine, ICBAS - School of Medicine and Biomedical Sciences, University of Porto, 4050-313, Porto, Portugal; ITR - Laboratory for Integrative and Translational Research in Population Health, 4050-600, Porto, Portugal
| | - Márcia Barreiro
- Centre for Medically Assisted Procreation/Public Gamete Bank, Gynecology Department, Centro Materno-Infantil do Norte Dr. Albino Aroso (CMIN), Centro Hospitalar Universitário de Santo António (CHUdSA), Unidade Local de Saúde de Santo António (ULSSA), 4099-001, Porto, Portugal; Clinical and Experimental Endocrinology, UMIB - Unit for Multidisciplinary Research in Biomedicine, ICBAS - School of Medicine and Biomedical Sciences, University of Porto, 4050-313, Porto, Portugal; ITR - Laboratory for Integrative and Translational Research in Population Health, 4050-600, Porto, Portugal; Gynecology Department, Centro Materno-Infantil do Norte Dr. Albino Aroso (CMIN), Centro Hospitalar Universitário de Santo António (CHUdSA), Unidade Local de Saúde de Santo António (ULSSA), 4099-001, Porto, Portugal
| | - António Tomé
- Gynecology Department, Centro Materno-Infantil do Norte Dr. Albino Aroso (CMIN), Centro Hospitalar Universitário de Santo António (CHUdSA), Unidade Local de Saúde de Santo António (ULSSA), 4099-001, Porto, Portugal
| | - Marco G Alves
- iBiMED - Institute of Biomedicine and Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Pedro F Oliveira
- LAQV-REQUIMTE and Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Mariana P Monteiro
- Clinical and Experimental Endocrinology, UMIB - Unit for Multidisciplinary Research in Biomedicine, ICBAS - School of Medicine and Biomedical Sciences, University of Porto, 4050-313, Porto, Portugal; ITR - Laboratory for Integrative and Translational Research in Population Health, 4050-600, Porto, Portugal
| |
Collapse
|
3
|
Zhang S, Zhu M, Chen S. Exploring the Interconnections Between Mitochondrial Dysfunction and Polycystic Ovary Syndrome: A Comprehensive Integrated Analysis. Biochem Genet 2025:10.1007/s10528-025-11104-4. [PMID: 40259200 DOI: 10.1007/s10528-025-11104-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 04/09/2025] [Indexed: 04/23/2025]
Abstract
Polycystic ovary syndrome (PCOS) is a leading cause of anovulatory infertility and is strongly linked to mitochondrial dysfunction (MD) in reproductive-age women. MD contributes to excessive reactive oxygen species (ROS) accumulation, exacerbating disease progression. This study aimed to identify key MD-related genes (MDRGs) involved in PCOS through bioinformatics analyses and experimental validation. Two PCOS transcriptome datasets (GSE34526 and GSE5850) were analyzed to identify differentially expressed genes (DEGs), which were then intersected with MDRGs to obtain MD-related DEGs (MDDEGs). Functional enrichment (GO, KEGG, GSEA) and protein-protein interaction (PPI) network analyses identified eight hub MDDEGs (MMP9, PPP1 CA, PSMD12, LIFR, PRKAA1, ITGAM, SUCLA2, GPBAR1). A rat PCOS model was established to validate hub gene expression via RT-qPCR, western blotting, and immunohistochemistry. The experimental data confirmed that seven hub genes exhibited consistent expression patterns with GSE34526 (P < 0.05), while only PRKAA1 and LIFR matched GSE5850 findings. Additionally, ROC analysis for the five most significant genes (LIFR, PBK, PRKAA1, RCAN1, MMP9) demonstrated promising diagnostic value (AUC > 0.85). This study highlights the role of MD in shaping the immune microenvironment of PCOS and identifies novel molecular targets for potential therapeutic interventions.
Collapse
Affiliation(s)
- Suqin Zhang
- Center for Reproductive Medicine, Department of Gynecology and Obstetrics Nanfang Hospital, Southern Medical University, No.1838 Guangzhou Northern Road, Guangzhou, 510515, Guangdong, China
| | - Mingyue Zhu
- Department of Gynecology and Obstetrics Zhujiang Hospital, Southern Medical University, No.253 Guangzhou Industrial Avenue Road, Guangzhou, 510515, Guangdong, China
| | - Shiling Chen
- Center for Reproductive Medicine, Department of Gynecology and Obstetrics Nanfang Hospital, Southern Medical University, No.1838 Guangzhou Northern Road, Guangzhou, 510515, Guangdong, China.
| |
Collapse
|
4
|
Peng K, Han X, Wu C, Lu Q, Gao S. The mitochondrial DNA copy number and ovary-related reproductive disorders: A bidirectional two-sample Mendelian randomization study. Int J Gynaecol Obstet 2025; 169:112-120. [PMID: 39614691 PMCID: PMC11911949 DOI: 10.1002/ijgo.16057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 11/11/2024] [Accepted: 11/14/2024] [Indexed: 12/01/2024]
Abstract
OBJECTIVE In the present study, a bidirectional two-sample Mendelian randomization approach was utilized to explore potential causal relationships between mitochondrial DNA copy number (mtDNA-CN) and ovary-related reproductive disorders (ORRDs), including ovarian dysfunction, ovarian cyst, polycystic ovary syndrome (PCOS), premature ovarian failure (POF) and ovarian endometriosis. METHODS Genetic associations with mtDNA-CN were obtained from three genome-wide association study (GWAS) summary statistics from the UK Biobank, and ORRD data were investigated using summary statistics from the FinnGen cohort. Single nucleotide polymorphisms (SNPs) correlated with mtDNA-CN were selected as genetic instrumental variables (IVs) to estimate the causal effect of mtDNA-CN on ORRDs using the inverse-variance weighted (IVW) method with heterogeneity and pleiotropy analysis, and we repeated this in the opposite direction using instruments for ORRDs. RESULTS We found that the genetically predicted mtDNA was indicative of increased levels of PCOS (OR = 1.16; P < 0.001) and ovarian endometriosis (OR = 1.25; P = 0.007) in the IVW analysis and was not associated with the risk of other ORRDs. In the reverse direction, genetically predicted ORRDs were not associated with mtDNA-CN levels in the IVW analysis. Sensitivity and replication analyses showed the results to be stable. CONCLUSION We found that mtDNA-CN may increase the risk of PCOS and ovarian endometriosis. This may have implications for mtDNA-CN as a biomarker for these conditions in clinical practice.
Collapse
Affiliation(s)
- Ke Peng
- Department of Gynecology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University & Shanghai Key Laboratory of Embryo Original DiseasesShanghaiChina
- Shanghai Key Laboratory of Female Reproductive Endocrine‐Related DiseaseFudan UniversityShanghaiChina
- Department of GynecologyObstetrics and Gynecology Hospital of Fudan UniversityShanghaiChina
| | - Xiao Han
- Shanghai Key Laboratory of Female Reproductive Endocrine‐Related DiseaseFudan UniversityShanghaiChina
- Department of GynecologyObstetrics and Gynecology Hospital of Fudan UniversityShanghaiChina
| | - Congquan Wu
- Shanghai Key Laboratory of Female Reproductive Endocrine‐Related DiseaseFudan UniversityShanghaiChina
- Department of GynecologyObstetrics and Gynecology Hospital of Fudan UniversityShanghaiChina
| | - Qiaowen Lu
- Shanghai Key Laboratory of Female Reproductive Endocrine‐Related DiseaseFudan UniversityShanghaiChina
- Department of GynecologyObstetrics and Gynecology Hospital of Fudan UniversityShanghaiChina
| | | |
Collapse
|
5
|
Camp OG, Moussa DN, Hsu R, Awonuga AO, Abu-Soud HM. The interplay between oxidative stress, zinc, and metabolic dysfunction in polycystic ovarian syndrome. Mol Cell Biochem 2025; 480:2015-2023. [PMID: 39266804 DOI: 10.1007/s11010-024-05113-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 08/27/2024] [Indexed: 09/14/2024]
Abstract
Polycystic ovarian syndrome (PCOS) is a functional endocrine disorder characterized by hyperandrogenism, ovulatory dysfunction, and polycystic ovarian morphology that has been associated with chronic disease and comorbidities including adverse metabolic and cardiac disorders. This review aims to evaluate the role of oxidative stress and zinc in the metabolic dysfunction observed in PCOS, with a focus on insulin resistance. Recent studies indicate that oxidative stress markers are elevated in PCOS and correlate with hyperandrogenemia, obesity, and insulin resistance. Zinc, an essential trace element, is crucial for metabolic processes, particularly in the pancreas for beta-cell function and glucagon secretion. Insufficient zinc levels have been linked to diabetes, obesity, and lipid metabolism disorders. This review aims to highlight the interplay between oxidative stress, zinc, and metabolic dysfunction in PCOS, suggesting that zinc supplementation could mitigate some metabolic and endocrine manifestations of PCOS.
Collapse
Affiliation(s)
- Olivia G Camp
- Departments of Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Daniel N Moussa
- Departments of Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Richard Hsu
- Departments of Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Awoniyi O Awonuga
- Departments of Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Husam M Abu-Soud
- Departments of Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI, 48201, USA.
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, 48201, USA.
- Department of Microbiology, Immunology and Biochemistry, Wayne State University School of Medicine, Detroit, MI, 48201, USA.
| |
Collapse
|
6
|
Yang Y, Liu L, Hu N, Huo H, Yang X, Wang F. Analysis of risk factors for depression and anxiety in women with polycystic ovary syndrome. Front Glob Womens Health 2025; 6:1520641. [PMID: 40098730 PMCID: PMC11911363 DOI: 10.3389/fgwh.2025.1520641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 02/13/2025] [Indexed: 03/19/2025] Open
Abstract
Background Polycystic ovary syndrome (PCOS) is one of the most common reproductive endocrine disorders among women of reproductive age, often accompanied by a series of symptoms such as hirsutism, hair loss, menstrual disorders and obesity, resulting in an increasing risk of depression and anxiety in such patients. Methods A total of 413 patients in the Reproductive Medicine Center of the Second Hospital of Lanzhou University from June 2021 to June 2023 were enrolled. We collected sociodemographic information and lifestyle-related factors using a structured questionnaire. Patient Health Questionnaire (PHQ-9) and Generalized Anxiety Disorder Scale (GAD-7) were used to evaluate the psychological status of the subjects. Sleep-related variables were assessed using the Pittsburgh Sleep Quality Index (PSQI), and metabolic measures were collected from patients' medical records. Results Compared with the control group, PCOS patients were younger, the average age was (27.39 ± 3.48) years old, and the BMI value was higher, the difference was statistically significant (p < 0.05). The proportions of depression and anxiety in PCOS patients were 47.7% and 39.9%, respectively. In PCOS patients with depressive anxiety symptoms, the proportions of mild, moderate, moderately severe and severe depression were 31.6%, 12.4%, 1.6% and 2.1%, respectively. The proportions of mild, moderate, moderately severe and severe anxiety were 30.6%, 6.2%, 1.0% and 2.1%, respectively. Depression was significantly associated with serum free triiodothyronine (FT3) OR (95% CI) = 3.33 (1.30-8.55), sleep duration 4.99 (1.45-17.23) and daytime dysfunction 8.24 (3.53-19.22). Anxiety was significantly associated with daytime dysfunction OR (95% CI) = 3.45 (1.78-6.70). No association was found between mental health and other metabolic characteristics in PCOS patients (p > 0.05). Conclusion According to the results of the current study, a high proportion of women with PCOS have mental health disorders, and there is a significant correlation between mental health disorders and sleep conditions.
Collapse
Affiliation(s)
- Yanting Yang
- Department of Obstetrics and Gynecology, Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Lin Liu
- Department of Obstetrics and Gynecology, Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Ning Hu
- Department of Obstetrics and Gynecology, Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Huyan Huo
- Department of Obstetrics and Gynecology, Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Xin Yang
- Department of Reproductive Medicine, Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Fang Wang
- Department of Reproductive Medicine, Second Hospital, Lanzhou University, Lanzhou, China
| |
Collapse
|
7
|
Jiang L, Chen Y, Huang M. The impact of high-intensity interval training on insulin sensitivity and quality of life in women with overweight polycystic ovary syndrome. Technol Health Care 2025; 33:1038-1045. [PMID: 40105163 DOI: 10.1177/09287329241296228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
BackgroundPolycystic ovary syndrome (PCOS) is a prevalent endocrine disorder in women of reproductive age, characterized by menstrual irregularities, hyperandrogenism, and polycystic ovaries. Insulin resistance is central to its pathophysiology, contributing to metabolic disturbances and increased cardiometabolic risks. High-Intensity Interval Training (HIIT) has emerged as a promising intervention to improve metabolic health.ObjectiveThis study aimed to investigate the specific effects of HIIT on insulin sensitivity, body composition, metabolic profile, and quality of life in women with overweight PCOS.MethodsA retrospective analysis was conducted on 107 female patients with overweight PCOS who were divided into two groups: the Regular Interval Training Group (n = 54) and the HIIT Group (n = 53). Baseline data, including insulin sensitivity, glucose metabolism, body composition, metabolic profile, and quality of life, were measured and compared between the two groups.ResultsThe HIIT Group demonstrated significantly improved insulin sensitivity, reduced fasting glucose levels, lower HOMA-IR index, lower body fat percentage, decreased waist and hip circumferences, improved favorable changes in metabolic profile, and significant improvements in quality of life compared to the Regular Interval Training Group. These findings suggest that HIIT led to beneficial outcomes across various metabolic and clinical parameters in women with overweight PCOS.ConclusionThe findings of this study highlight the potential of personalized exercise prescriptions, such as HIIT, in optimizing health outcomes in women with overweight PCOS. The observed improvements in insulin sensitivity, body composition, metabolic profile, and quality of life underscore the promising role of HIIT in addressing the multifaceted implications of PCOS and its associated metabolic and reproductive implications.
Collapse
Affiliation(s)
- Ling Jiang
- Department of Gynaecology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yaxin Chen
- Department of Gynaecology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Meiying Huang
- Department of Gynaecology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
8
|
Mohammed NA, Sulaiman GM, Alabassi HM, Khalil KAA, Ahmed EM. The significant role of IL-15, IL-22, IL-37, and caspase 9 in polycystic ovary syndrome: A case-control study in a sample of Iraqi women. J Genet Eng Biotechnol 2025; 23:100462. [PMID: 40074436 PMCID: PMC11836498 DOI: 10.1016/j.jgeb.2025.100462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 12/30/2024] [Accepted: 01/19/2025] [Indexed: 03/14/2025]
Abstract
The study aims to evaluate the significant role of interleukin 15 (IL-15), IL-22, IL-37, and Caspase 9 gene expression in polycystic ovary syndrome (PCOS), focusing on the underlying mechanisms and potential diagnostic or therapeutic implications. Peripheral blood has been collected, and serum was separated for the evaluation of the serum IL-15, IL-22, and IL-37. The ELISA technique has been carried out to determine the serum levels of understudied factors mentioned above in Iraqi women patients diagnosed with PCOS (No. = 90) via a specialized gynecologist and healthy fertile women (No. = 48) as a control group. In addition, a genetic study on the expression of the caspase 9 gene in these patients had been performed. The data reveals statistically significant differences in interleukin levels in PCOS patients versus the control group. Specifically, the PCOS group exhibits significantly higher levels of IL-15 and IL-22 as compared to the control group. Conversely, the PCOS group shows significantly lower levels of IL-37 compared to the control group. The results showed no statistically significant difference in the mean expression of the Caspase 9 gene when comparing these fold graduations. However, it's worth noting that a higher fold frequency was observed in both the PCOS and control groups, with 57.1 % and 60 %, respectively, having folds less than 1. The distribution of folds varied across other categories was also addressed. Additionally, there was a notable difference in the frequency of 11.4 % in the PCOS group compared to 2 % in the control group for folds greater than 9. The findings suggest that interleukins, particularly IL-22 and IL-37, hold promise as diagnostic markers for distinguishing PCOS from healthy conditions. However, the potential diagnostic utility of the Caspase 9 gene expression was not confirmed in this study.
Collapse
Affiliation(s)
- Noor A Mohammed
- Division of Biotechnology, Department of Applied Sciences, University of Technology, Baghdad, Iraq
| | - Ghassan M Sulaiman
- Division of Biotechnology, Department of Applied Sciences, University of Technology, Baghdad, Iraq.
| | - Hazima M Alabassi
- Department of Biology, College of Education for Pure Science, Ibn. Al-Haitham, University of Baghdad, Baghdad, Iraq
| | - Khalil A A Khalil
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, Bisha, 61922 P.O. Box 551, Saudi Arabia; Department of Medical Laboratory Sciences, Faculty of Medicine and Health Sciences, Hodeidah University, Hodeidah, Yemen
| | - Elsadig M Ahmed
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, Bisha, 61922 P.O. Box 551, Saudi Arabia; Department of Clinical Chemistry, Faculty of Medical Laboratory Sciences, University of Elmam El Mahdi, Kosti, 209 P.O. Box 27711, Sudan
| |
Collapse
|
9
|
Yu T, Wei J, Tian L, Li W, Guo R, Wang G, Fan G, Suriguga, Zhao H, Suo F, Yang H, Yan Q, Wang Z, Liang J. Caffeine Sodium Benzoate Promotes Endothelial Dysfunction of Human Umbilical Vein Endothelial Cells by Promoting M1 Macrophage Polarization. Mol Biotechnol 2025:10.1007/s12033-025-01391-y. [PMID: 39987548 DOI: 10.1007/s12033-025-01391-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 01/27/2025] [Indexed: 02/25/2025]
Abstract
Our previous study uncovered that long-term abuse of caffeine sodium benzoate (CSB) could lead to dysfunction in human umbilical vein endothelial cells (HUVECs). However, the mechanism by which CSB induced endothelial dysfunction remains largely unstudied. CSB containing serum (CSB-CS) was collected from patients under long-term CSB inhalation. RAW264.7 cells were treated with different concentrations of CSB-CS, after which the conditioned medium (CM) was collected and cultured with HUVECs. The migration, tube formation, and senescence of HUVECs were evaluated. CSB-CS could induce polarization of RAW264.7 cells toward the M1 phenotype, as evidenced by the elevated CD86 and iNOS levels. Additionally, the CM from CSB-treated RAW264.7 cells notably suppressed the migration, tube formation, and induced cell senescence and endothelial dysfunction in HUVECs. Moreover, the CM from CSB-treated RAW264.7 cells greatly reduced mitochondrial membrane potential level, increased the ROS production, reduced OPA1 levels, but elevated DRP1 levels in HUVECs, leading to mitochondrial fission and dysfunction. Meanwhile, the CM from CSB-treated RAW264.7 cells remarkably reduced p-AKT and p-GSK3β levels in HUVECs. Notably, promotion of mitochondrial fusion by MASM7 could mitigate mitochondrial dysfunction and endothelial dysfunction in HUVECs induced by the CM from CSB-treated RAW264.7 cells. Collectively, we found that CSB could induce mitochondrial dysfunction in HUVECs by the polarization of pro-inflammatory M1 macrophages, resulting in endothelial dysfunction. These findings may provide a foundational basis for developing treatments for diseases associated with CSB.
Collapse
Affiliation(s)
- Tianwei Yu
- Department of Transfusion Medicine, Peking University Cancer Hospital (Inner Mongolia Campus) & Affiliated Cancer Hospital of Inner Mongolia Medical University, No. 42, Zhaowuda Road, Saihan District, Hohhot, 010020, China
| | - Jiale Wei
- Postgraduate Student in Clinical Laboratory Diagnostics, Inner Mongolia Medical University, Hohhot, 010110, China
| | - Lili Tian
- Department of Clinical Laboratory, Peking University Cancer Hospital (Inner Mongolia Campus) & Affiliated Cancer Hospital of Inner Mongolia Medical University, Hohhot, 010020, China
| | - Weixin Li
- Department of Transfusion Medicine, Peking University Cancer Hospital (Inner Mongolia Campus) & Affiliated Cancer Hospital of Inner Mongolia Medical University, No. 42, Zhaowuda Road, Saihan District, Hohhot, 010020, China
| | - Rong Guo
- Postgraduate Student in Clinical Laboratory Diagnostics, Inner Mongolia Medical University, Hohhot, 010110, China
| | - Guohong Wang
- Department of Clinical Laboratory, Peking University Cancer Hospital (Inner Mongolia Campus) & Affiliated Cancer Hospital of Inner Mongolia Medical University, Hohhot, 010020, China
| | - Guoying Fan
- Department of Transfusion Medicine, Peking University Cancer Hospital (Inner Mongolia Campus) & Affiliated Cancer Hospital of Inner Mongolia Medical University, No. 42, Zhaowuda Road, Saihan District, Hohhot, 010020, China
| | - Suriguga
- Department of Transfusion Medicine, Peking University Cancer Hospital (Inner Mongolia Campus) & Affiliated Cancer Hospital of Inner Mongolia Medical University, No. 42, Zhaowuda Road, Saihan District, Hohhot, 010020, China
| | - Huiying Zhao
- Department of Clinical Laboratory, Peking University Cancer Hospital (Inner Mongolia Campus) & Affiliated Cancer Hospital of Inner Mongolia Medical University, Hohhot, 010020, China
| | - Feiya Suo
- Department of Clinical Laboratory, Peking University Cancer Hospital (Inner Mongolia Campus) & Affiliated Cancer Hospital of Inner Mongolia Medical University, Hohhot, 010020, China
| | - Hao Yang
- Department of Radiation Oncology, Peking University Cancer Hospital (Inner Mongolia Campus) & Affiliated Cancer Hospital of Inner Mongolia Medical University, No. 42, Zhaowuda Road, Saihan District, Hohhot, 010000, China.
| | - Quanzhi Yan
- Department of Transfusion Medicine, Peking University Cancer Hospital (Inner Mongolia Campus) & Affiliated Cancer Hospital of Inner Mongolia Medical University, No. 42, Zhaowuda Road, Saihan District, Hohhot, 010020, China.
| | - Zhenfei Wang
- Molecular Diagnostic Laboratory, Peking University Cancer Hospital (Inner Mongolia Campus) & Affiliated Cancer Hospital of Inner Mongolia Medical University, No. 42, Zhaowuda Road, Saihan District, Hohhot, 010020, China.
| | - Junqing Liang
- Department of Breast Surgery, Peking University Cancer Hospital (Inner Mongolia Campus) & Affiliated Cancer Hospital of Inner Mongolia Medical University, No. 42, Zhaowuda Road, Saihan District, Hohhot, 010020, China.
| |
Collapse
|
10
|
Kobayashi H, Matsubara S, Yoshimoto C, Shigetomi H, Imanaka S. A Comprehensive Review of the Contribution of Mitochondrial DNA Mutations and Dysfunction in Polycystic Ovary Syndrome, Supported by Secondary Database Analysis. Int J Mol Sci 2025; 26:1172. [PMID: 39940939 PMCID: PMC11818232 DOI: 10.3390/ijms26031172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/16/2025] [Accepted: 01/27/2025] [Indexed: 02/16/2025] Open
Abstract
Polycystic ovary syndrome (PCOS) is a common endocrine disorder affecting women of reproductive age characterized by a spectrum of clinical, metabolic, reproductive, and psychological abnormalities. This syndrome is associated with significant long-term health risks, necessitating elucidation of its pathophysiology, early diagnosis, and comprehensive management strategies. Several contributory factors in PCOS, including androgen excess and insulin resistance, collectively enhance oxidative stress, which subsequently leads to mitochondrial dysfunction. However, the precise mechanisms through which oxidative stress induces mitochondrial dysfunction remain incompletely understood. Comprehensive searches of electronic databases were conducted to identify relevant studies published up to 30 September 2024. Mitochondria, the primary sites of reactive oxygen species (ROS) generation, play critical roles in energy metabolism and cellular homeostasis. Oxidative stress can inflict damage on components, including lipids, proteins, and DNA. Damage to mitochondrial DNA (mtDNA), which lacks efficient repair mechanisms, may result in mutations that impair mitochondrial function. Dysfunctional mitochondrial activity further amplifies ROS production, thereby perpetuating oxidative stress. These disruptions are implicated in the complications associated with the syndrome. Advances in genetic analysis technologies, including next-generation sequencing, have identified point mutations and deletions in mtDNA, drawing significant attention to their association with oxidative stress. Emerging data from mtDNA mutation analyses challenge conventional paradigms and provide new insights into the role of oxidative stress in mitochondrial dysfunction. We are rethinking the pathogenesis of PCOS based on these database analyses. In conclusion, this review explores the intricate relationship between oxidative stress, mtDNA mutations, and mitochondrial dysfunction, offers an updated perspective on the pathophysiology of PCOS, and outlines directions for future research.
Collapse
Affiliation(s)
- Hiroshi Kobayashi
- Department of Gynecology and Reproductive Medicine, Ms.Clinic MayOne, 871-1 Shijo-cho, Kashihara 634-0813, Japan;
- Department of Obstetrics and Gynecology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8522, Japan; (S.M.); (C.Y.); (H.S.)
| | - Sho Matsubara
- Department of Obstetrics and Gynecology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8522, Japan; (S.M.); (C.Y.); (H.S.)
- Department of Medicine, Kei Oushin Clinic, 5-2-6 Naruo-cho, Nishinomiya 663-8184, Japan
| | - Chiharu Yoshimoto
- Department of Obstetrics and Gynecology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8522, Japan; (S.M.); (C.Y.); (H.S.)
- Department of Obstetrics and Gynecology, Nara Prefecture General Medical Center, 2-897-5 Shichijyonishi-machi, Nara 630-8581, Japan
| | - Hiroshi Shigetomi
- Department of Obstetrics and Gynecology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8522, Japan; (S.M.); (C.Y.); (H.S.)
- Department of Gynecology and Reproductive Medicine, Aska Ladies Clinic, 3-3-17 Kitatomigaoka-cho, Nara 634-0001, Japan
| | - Shogo Imanaka
- Department of Gynecology and Reproductive Medicine, Ms.Clinic MayOne, 871-1 Shijo-cho, Kashihara 634-0813, Japan;
- Department of Obstetrics and Gynecology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8522, Japan; (S.M.); (C.Y.); (H.S.)
| |
Collapse
|
11
|
Ge H, Huang D, Tan L, Luo D, Zhou L, Liu H, Zhang Y, Liu D, Wu X, Wang L, Xiong L, Yang Y, Han TL, He C, Qi H. Metabolic Profiles of Pregnancy with Polycystic Ovary Syndrome: Insights into Maternal-Fetal Metabolic Communication. J Clin Endocrinol Metab 2025:dgaf057. [PMID: 39880380 DOI: 10.1210/clinem/dgaf057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 01/04/2025] [Accepted: 01/29/2025] [Indexed: 01/31/2025]
Abstract
CONTEXT PCOS pregnancies are linked to metabolic disorders affecting maternal and fetal outcomes, with maternal metabolites differing from those in normal pregnancies. OBJECTIVE To investigate the metabolic communication at the maternal-fetal interface in PCOS pregnancies. DESIGN Placenta and umbilical cord serum were analyzed using gas chromatography-mass spectrometry. In-depth analysis was performed with clinical characteristics. SETTING Placenta and umbilical cord serum were analyzed using gas chromatography-mass spectrometry, alongside clinical characteristics. PARTICIPANTS 45 uncomplicated PCOS pregnancies and 50 normal pregnancies. INTERVENTION(S) None. MAIN OUTCOME MEASURE(S) The metabolic characteristics at the maternal-fetal interface in PCOS pregnancies and the underlying mechanisms. RESULTS A total of 79 metabolites in the placenta and 25 in umbilical cord serum showed significant differences between polycystic ovary syndrome (PCOS) and normal pregnancies. The 10 most significant placental metabolites were identified through receiver operating characteristic (ROC) analysis, 9 of which correlated significantly with maternal serum testosterone levels. Lasso regression analysis identified 4 key placental metabolite combinations: gamma-aminobutyric acid, proline, glycine, and isoleucine, achieving an area under the curve (AUC) of 93.24%. In umbilical cord serum, 6 metabolites differed significantly between PCOS and normal pregnancies, with the highest AUC reaching 76.07%, and 5 of these metabolites showed significant correlations with maternal serum testosterone levels. Nine differential metabolites were shared between the placenta and umbilical cord serum, which also shared metabolic pathways, including ABC transporters and aminoacyl-tRNA biosynthesis, potentially influencing maternal-fetal interactions. CONCLUSION This study identifies the metabolomic profile and key pathways in maternal-fetal communication during PCOS pregnancies.
Collapse
Affiliation(s)
- Huisheng Ge
- Department of Obstetrics and Gynecology, Women and Children's Hospital of Chongqing Medical University (Chongqing Health Center for Women and Children), Chongqing, China
- Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China
- Department of Obstetrics and Gynecology, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Dongni Huang
- Department of Obstetrics and Gynecology, Women and Children's Hospital of Chongqing Medical University (Chongqing Health Center for Women and Children), Chongqing, China
- Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China
| | - Lunbo Tan
- Department of Obstetrics and Gynecology, Women and Children's Hospital of Chongqing Medical University (Chongqing Health Center for Women and Children), Chongqing, China
- Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China
| | - Dan Luo
- Department of Obstetrics and Gynecology, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Liu Zhou
- Department of Obstetrics and Gynecology, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Hong Liu
- Department of Obstetrics and Gynecology, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yilan Zhang
- Department of Obstetrics and Gynecology, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Dandan Liu
- Department of Obstetrics and Gynecology, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xixi Wu
- Department of Obstetrics and Gynecology, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Lulu Wang
- Department of Obstetrics and Gynecology, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Liling Xiong
- Department of Obstetrics and Gynecology, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yang Yang
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Ting-Li Han
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Joint International Research Laboratory of Reproduction and Development of Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Chengjin He
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Hongbo Qi
- Department of Obstetrics and Gynecology, Women and Children's Hospital of Chongqing Medical University (Chongqing Health Center for Women and Children), Chongqing, China
- Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China
| |
Collapse
|
12
|
Wang A, Corley J, Jaswa EG, Lin J, Smith DL, McCulloch CE, Huddleston H, Cedars MI. Association of polycystic ovary syndrome with endothelial health, cardiovascular risk, and cellular aging. Fertil Steril 2025:S0015-0282(25)00030-5. [PMID: 39818356 DOI: 10.1016/j.fertnstert.2025.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 01/08/2025] [Accepted: 01/09/2025] [Indexed: 01/18/2025]
Abstract
OBJECTIVE To study measures of endothelial health, cardiovascular risk, and cellular aging between patients with polycystic ovary syndrome (PCOS) and a reproductive age normative cohort. DESIGN Cross-sectional study. SUBJECTS Community-based patients with PCOS and a normative ovarian aging cohort as controls, aged ≤45 years at the time of evaluation. EXPOSURE Noninvasive measure of endothelial health measured by the EndoPAT reactive hyperemia index. MAIN OUTCOME MEASURES Reactive hyperemia index as measure of endothelial health. The secondary outcomes included Framingham score, telomere length, and mitochondrial deoxyribonucleic acid copy number from leukocyte cells. RESULTS Our cohort included 63 participants with PCOS and 130 non-PCOS participants. The mean age was significantly lower in the PCOS cohort (33.1; standard deviation, 4.7 years) than in the non-PCOS cohort (40.8; standard deviation, 2.9 years). In multivariable-adjusted models, we found that PCOS was significantly associated with endothelial dysfunction as both categorical (odds ratio for PCOS, 0.31; 95% confidence interval [CI], 0.10-0.97) and continuous (PCOS coefficient, -0.37; 95% CI, -0.69 to -0.05) outcomes. For secondary outcomes, PCOS status was not significantly associated with mitochondrial deoxyribonucleic acid (PCOS coefficient, -48.1; 95% CI, -175.0 to 78.9), telomere length (PCOS coefficient, 0.05; 95% CI, -0.05 to 0.15), Framingham score (PCOS coefficient, 0.002; 95% CI, -0.01 to 0.02), or metabolic syndrome (odds ratio for PCOS, 1.29; 95% CI, 0.31-5.44). CONCLUSION Our findings suggest that patients with PCOS have impaired endothelial function compared with non-PCOS patients, although measures of cellular aging and cardiovascular risk as measured by the Framingham score did not differ between the cohorts.
Collapse
Affiliation(s)
- Ange Wang
- Division of Reproductive Endocrinology and Infertility, University of California, San Francisco, San Francisco, California.
| | - Jamie Corley
- Division of Reproductive Endocrinology and Infertility, University of California, San Francisco, San Francisco, California
| | - Eleni G Jaswa
- Division of Reproductive Endocrinology and Infertility, University of California, San Francisco, San Francisco, California
| | - Jue Lin
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, California
| | - Dana L Smith
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, California
| | - Charles E McCulloch
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, California
| | - Heather Huddleston
- Division of Reproductive Endocrinology and Infertility, University of California, San Francisco, San Francisco, California
| | - Marcelle I Cedars
- Division of Reproductive Endocrinology and Infertility, University of California, San Francisco, San Francisco, California
| |
Collapse
|
13
|
Chen XY, Zhi LJ, Chen J, Li R, Long KL. Research hotspots and future trends in sepsis-associated acute kidney injury: a bibliometric and visualization analysis. Front Med (Lausanne) 2025; 11:1456535. [PMID: 39839617 PMCID: PMC11747655 DOI: 10.3389/fmed.2024.1456535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 11/29/2024] [Indexed: 01/23/2025] Open
Abstract
Objectives Sepsis-associated acute kidney injury (SA-AKI) commonly occurs in critically ill patients and is closely associated with adverse outcomes. A comprehensive analysis of the current research landscape in SA-AKI can help uncover trends and key issues in this field. This study aims to provide a scientific basis for research directions and critical issues through bibliometric analysis. Methods We searched all articles on SA-AKI indexed in the SCI-Expanded of WoSCC up to May 7, 2024, and conducted bibliometric and visual analyses using bibliometric software CiteSpace and VOSviewer. Results Over the past 20 years, there has been a steady increase in literature related to renal repair following AKI. China and the United States contribute over 60% of the publications, driving research in this field. The University of Pittsburgh is the most active academic institution, producing the highest number of publications. J. A. Kellum is both the most prolific and the most cited author in this area. "Shock" and "American Journal of Physiology-Renal Physiology" are the most popular journals, publishing the highest number of articles. Recent high-frequency keywords in this field include "septic AKI," "mitochondrial dysfunction," "inflammasome," "ferroptosis," and "macrophage." The terms "mitochondrial dysfunction," "inflammasome," "ferroptosis," and "macrophage" represent current research hotspots and potential targets in this area. Conclusion This is the first comprehensive bibliometric study to summarize the trends and advancements in SA-AKI research in recent years. These findings identify current research frontiers and hot topics, providing valuable insights for scholars studying SA-AKI.
Collapse
Affiliation(s)
- Xing-Yue Chen
- Department of Critical Care Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Li-Jia Zhi
- Department of Critical Care Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jun Chen
- Department of Critical Care Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Rong Li
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Kun-Lan Long
- Department of Critical Care Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
14
|
Yan H, Wang L, Zhang G, Li N, Zhao Y, Liu J, Jiang M, Du X, Zeng Q, Xiong D, He L, Zhou Z, Luo M, Liu W. Oxidative stress and energy metabolism abnormalities in polycystic ovary syndrome: from mechanisms to therapeutic strategies. Reprod Biol Endocrinol 2024; 22:159. [PMID: 39722030 DOI: 10.1186/s12958-024-01337-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 12/14/2024] [Indexed: 12/28/2024] Open
Abstract
Polycystic ovary syndrome (PCOS), as a common endocrine and metabolic disorder, is often regarded as a primary cause of anovulatory infertility in women. The pathogenesis of PCOS is complex and influenced by multiple factors. Emerging evidence highlights that energy metabolism dysfunction and oxidative stress in granulosa cells (GCs) are pivotal contributors to aberrant follicular development and impaired fertility in PCOS patients. Mitochondrial dysfunction, increased oxidative stress, and disrupted glucose metabolism are frequently observed in individuals with PCOS, collectively leading to compromised oocyte quality. This review delves into the mechanisms linking oxidative stress and energy metabolism abnormalities in PCOS, analyzing their adverse effects on reproductive function. Furthermore, potential therapeutic strategies to mitigate oxidative stress and metabolic disturbances are proposed, providing a theoretical basis for advancing clinical management of PCOS.
Collapse
Affiliation(s)
- Heqiu Yan
- Key Laboratory of Reproductive Medicine, Sichuan Provincial Woman's and Children's Hospital, The Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu, Sichuan, 610045, China
- School of Laboratory Medicine, Chengdu Medical College, Chengdu, 610000, China
| | - Li Wang
- Key Laboratory of Reproductive Medicine, Sichuan Provincial Woman's and Children's Hospital, The Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu, Sichuan, 610045, China
| | - Guohui Zhang
- Key Laboratory of Reproductive Medicine, Sichuan Provincial Woman's and Children's Hospital, The Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu, Sichuan, 610045, China
| | - Ningjing Li
- School of Medicine and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, 611137, China
| | - Yuhong Zhao
- School of Laboratory Medicine, Chengdu Medical College, Chengdu, 610000, China
| | - Jun Liu
- School of Medicine and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, 611137, China
| | - Min Jiang
- School of Medicine and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, 611137, China
| | - Xinrong Du
- School of Medicine and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, 611137, China
| | - Qin Zeng
- Key Laboratory of Reproductive Medicine, Sichuan Provincial Woman's and Children's Hospital, The Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu, Sichuan, 610045, China
| | - Dongsheng Xiong
- Key Laboratory of Reproductive Medicine, Sichuan Provincial Woman's and Children's Hospital, The Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu, Sichuan, 610045, China
| | - Libing He
- Key Laboratory of Reproductive Medicine, Sichuan Provincial Woman's and Children's Hospital, The Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu, Sichuan, 610045, China
| | - Zhuoting Zhou
- School of Medicine and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, 611137, China
| | - Mengjun Luo
- Department of Clinical Laboratory, School of Medicine, Chengdu Women's and Children's Central Hospital, University of Electronic Science and Technology of China, No. 1617 Ri Yue Street, Chengdu, Sichuan, 611731, China.
| | - Weixin Liu
- Key Laboratory of Reproductive Medicine, Sichuan Provincial Woman's and Children's Hospital, The Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu, Sichuan, 610045, China.
- School of Laboratory Medicine, Chengdu Medical College, Chengdu, 610000, China.
| |
Collapse
|
15
|
Lakshmanan M, Saini M, Nune M. Exploring the innovative application of cerium oxide nanoparticles for addressing oxidative stress in ovarian tissue regeneration. J Ovarian Res 2024; 17:241. [PMID: 39633503 PMCID: PMC11619646 DOI: 10.1186/s13048-024-01566-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 11/24/2024] [Indexed: 12/07/2024] Open
Abstract
The female reproductive system dysfunction considerably affects the overall health of women and children on a global scale. Over the decade, the incidence of reproductive disorders has become a significant source of suffering for women. Infertility in women may be caused by a range of acquired and congenital abnormalities. Ovaries play a central role in the female reproductive function. Any defect in the normal functioning of these endocrine organs causes health issues and reproductive challenges extending beyond infertility, as the hormones interact with other tissues and biological processes in the body. The complex pathophysiology of ovarian disorders makes it a multifactorial disease. The key etiological factors associated with the diseases include genetic factors, hormonal imbalance, environmental and lifestyle factors, inflammatory conditions, oxidative stress, autoimmune diseases, metabolic factors, and age. Oxidative stress is a major contributor to disease development and progression affecting the oocyte quality, fertilization, embryo development, and implantation. The choice of treatment for ovarian disorders varies among individuals and has associated complications. Reproductive tissue engineering holds great promise for overcoming the challenges associated with the current therapeutic approach to tissue regeneration. Furthermore, incorporating nanotechnology into tissue engineering could offer an efficient treatment strategy. This review provides an overview of incorporating antioxidant nanomaterials for engineering ovarian tissue to address the disease recurrence and associated pathophysiology. Cerium oxide nanoparticles (CeO2 NPs) are prioritized for evaluation primarily due to their antioxidant properties. In conclusion, the review explores the potential applications of CeO2 NPs for effective and clinically significant ovarian tissue regeneration.
Collapse
Affiliation(s)
- Maya Lakshmanan
- Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Monika Saini
- Department of Obstetrics and Gynaecology, All India Institute of Medical Sciences (AIIMS), Ansari Nagar, New Delhi, 110029, India
| | - Manasa Nune
- Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| |
Collapse
|
16
|
Kodanch SM, Mukherjee S, Prabhu NB, Kabekkodu SP, Bhat SK, Rai PS. Altered mitochondrial homeostasis on bisphenol-A exposure and its association in developing polycystic ovary syndrome: A comprehensive review. Reprod Toxicol 2024; 130:108700. [PMID: 39181417 DOI: 10.1016/j.reprotox.2024.108700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024]
Abstract
Polycystic ovary syndrome (PCOS) is a heterogeneous endocrinopathy that is known to be one of the most common reproductive pathologies observed in premenopausal women around the globe and is particularly complex as it affects various endocrine and reproductive metabolic pathways. Endocrine-disrupting chemicals (EDCs) are considered to be environmental toxicants as they have hazardous health effects on the functioning of the human endocrine system. Among various classes of EDCs, bisphenol A (BPA) has been under meticulous investigation due to its ability to alter the endocrine processes. As there is emerging evidence suggesting that BPA-induced mitochondrial homeostasis dysfunction in various pathophysiological conditions, this review aims to provide a detailed review of how various pathways associated with ovarian mitochondrial homeostasis are impaired on BPA exposure and its mirroring effects on the PCOS phenotype. BPA exposure might cause significant damage to the mitochondrial morphology and functions through the generation of reactive oxygen species (ROS) and simultaneously downregulates the total antioxidant capacity, thereby leading to oxidative stress. BPA disrupts the mitochondrial dynamics in human cells by altering the expressions of mitochondrial fission and fusion genes, increases the senescence marker proteins, along with significant alterations in the mTOR/AMPK pathway, upregulates the expression of autophagy mediating factors, and downregulates the autophagic suppressor. Furthermore, an increase in apoptosis of the ovarian granulosa cells indicates impaired folliculogenesis. As all these key features are associated with the pathogenesis of PCOS, this review can provide a better insight into the possible associations between BPA-induced dysregulation of mitochondrial homeostasis and PCOS.
Collapse
Affiliation(s)
- Supraja M Kodanch
- Department of Biotechnology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Sayantani Mukherjee
- Department of Biotechnology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Navya B Prabhu
- Department of Biotechnology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Shama Prasada Kabekkodu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Shashikala K Bhat
- Department of Obstetrics and Gynaecology, Dr T M A Pai Hospital, Udupi, Karnataka 576101, India
| | - Padmalatha S Rai
- Department of Biotechnology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India.
| |
Collapse
|
17
|
Li Y, Song H, Xu J, Wang Y, Bai L, Wang H, Zhang J. TIGAR relieves PCOS by inhibiting granulosa cell apoptosis and oxidative stress through activating Nrf2. Mol Cell Endocrinol 2024; 594:112381. [PMID: 39341450 DOI: 10.1016/j.mce.2024.112381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/13/2024] [Accepted: 09/25/2024] [Indexed: 10/01/2024]
Abstract
This study aimed to elucidate the role of TP53-induced glycolysis and apoptosis regulator (TIGAR) in polycystic ovary syndrome (PCOS). A rat model PCOS was constructed by subcutaneous injection with dehydroepiandrosterone (DHEA). Follicular atresia and reduced granular cells (GCs) in ovaries suggested successful modeling. The low expression of TIGAR was observed in ovarian tissue of PCOS rat. To explore the role of TIGAR in PCOS, lentivirus carrying the TIGAR were used to up-regulate TIGAR expression. TIGAR overexpression reduced the DHEA-induced increase of ovarian weight, the levels of estradiol (E2), and the ratio of luteinizing hormone/follicle-stimulating hormone (LH/FSH) in the serum, as well as improved the morphology of the follicle, especially increased the thickness of the GC layer, which attributed to the inhibition of apoptosis by TIGAR. In addition, high expression of TIGAR inhibited oxidative stress in ovaries of PCOS rat, as evidenced by decreased level of malondialdehyde (MDA), and reactive oxygen species (ROS), and enhanced activity of glutathione peroxidase (GPX) and superoxide dismutase (SOD). Mechanically, Nrf2/OH-1 signal pathway was activated by TIGAR. The effect of TIGAR on PCOS were verified in the primary rat GCs treated with dihydrotestosterone, but also the rescue experiment was performed. Downregulation of Nrf2 reversed the effects of TIGAR, indicating that TIGAR suppressed oxidative stress and GC apoptosis by activating Nrf2/OH-1 pathway in PCOS. Finally, non-targeted metabolomics revealed that TIGAR might affect the energy metabolic pathway, thereby altering the metabolic profile of primary rat GCs. This study provided new insights into the prevention and treatment of PCOS.
Collapse
Affiliation(s)
- Yan Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of the Fourth Military Medical University, Xi'an, China
| | - Hui Song
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of the Fourth Military Medical University, Xi'an, China
| | - Jia Xu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of the Fourth Military Medical University, Xi'an, China
| | - Yunping Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of the Fourth Military Medical University, Xi'an, China
| | - Lu Bai
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of the Fourth Military Medical University, Xi'an, China
| | - Haixu Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of the Fourth Military Medical University, Xi'an, China.
| | - Jianfang Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of the Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
18
|
Xia YM, Guan YQ, Liang JF, Wu WD. TAK-242 improves sepsis-associated acute kidney injury in rats by inhibiting the TLR4/NF-κB signaling pathway. Ren Fail 2024; 46:2313176. [PMID: 38482886 PMCID: PMC10877656 DOI: 10.1080/0886022x.2024.2313176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 01/27/2024] [Indexed: 03/18/2024] Open
Abstract
OBJECTIVE This study was designed to observe the effect of toll-like receptor 4 (TLR4)/nuclear factor kappa-B (NF-κB) pathway activity on sepsis-associated acute kidney injury (SA-AKI), thereby providing new considerations for the prevention and treatment of SA-AKI. METHODS The rats were divided into Sham, cecal ligation and puncture (CLP), CLP + vehicle, and CLP + TAK-242 groups. Except the Sham group, a model of CLP-induced sepsis was established in other groups. After 24 h, the indicators related to kidney injury in blood samples were detected. The pathological changes in the kidneys were observed by hematoxylin-eosin staining, and tubular damage was scored. Oxidative stress-related factors, mitochondrial dysfunction-related indicators in each group were measured; the levels of inflammatory factors in serum and kidney tissue of rats were examined. Finally, the expression of proteins related to the TLR4/NF-κB signaling pathway was observed by western blot. RESULTS Compared with the CLP + vehicle and CLP + TAK-242 groups, the CLP + TAK-242 group reduced blood urea nitrogen (BUN), creatinine (Cr), cystatin-C (Cys-C), reactive oxygen species (ROS), malondialdehyde (MDA), and inflammatory factors levels (p < 0.01), as well as increased superoxide dismutase (SOD) activity of CLP rats (p < 0.01). Additionally, TAK-242 treatment improved the condition of CLP rats that had glomerular and tubular injuries and mitochondrial disorders (p < 0.01). Further mechanism research revealed that TAK-242 can inhibit the TLR4/NF-κB signaling pathway activated by CLP (p < 0.01). Above indicators after TAK-242 treatment were close to those of the Sham group. CONCLUSION TAK-242 can improve oxidative stress, mitochondrial dysfunction, and inflammatory response by inhibiting the activity of TLR4/NF-κB signaling pathway, thereby preventing rats from SA-AKI.
Collapse
Affiliation(s)
- Yan-mei Xia
- Department of Critical, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, PRChina
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PRChina
| | - Yu-qian Guan
- Department of Critical, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, PRChina
| | - Ji-fang Liang
- Department of Critical, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, PRChina
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PRChina
| | - Wei-dong Wu
- Department of Critical, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, PRChina
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PRChina
| |
Collapse
|
19
|
Liu FJ, Zhang YL, Wang XS, Zhao YQ, Wang HW. Role of molybdenum in ameliorating busulfan-induced infertility in female mice. J Trace Elem Med Biol 2024; 86:127546. [PMID: 39418757 DOI: 10.1016/j.jtemb.2024.127546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/27/2024] [Accepted: 10/07/2024] [Indexed: 10/19/2024]
Abstract
BACKGROUND Molybdenum (Mo) plays a crucial role in regulating normal physiological function. However, its potential effect on female infertility has received little attention. METHODS In this study, we explored the potential molecular mechanisms of Mo's action on mouse ovaries and oocytes by establishing a busulfan-induced infertility model. Adult female Kunming mice were randomly divided into three groups: control, +busulfan, and +busulfan+Mo. After 30 days of busulfan treatment [Myleran, 20 mg/kg body weight ip], mice in the busulfan+Mo group were provided with 7.5 mg/L Mo per day in drinking water for an additional 42 days. On day 72, we examined the morphology of the oocytes and ovarian tissue after H&E staining, measured the concentrations of serum hormones by ELISA, and detected Bax, Bcl-2, caspase-3 and caspase-9 by immunohistochemical staining and western immunoblotting. We also assessed the oxidative stress in cells by measuring the activity of the antioxidant enzyme, SOD, the concentrations of MDA and LDH, and the percentage of apoptotic cells using kits. The number of litters born was counted after mating with male mice, and the organ coefficients were calculated after weighing on an analytic balance. RESULTS Results showed that Mo treatment restored female reproductive hormone levels to near normal. Mo also significantly inhibited the mitochondrial stress-induced expression of apoptotic proteins. CONCLUSION Our findings demonstrate that Mo treatment at a dose of 7.5 mg/L can ameliorate busulfan-induced infertility in female mice. These data may provide a reference for the development of treatments for female infertility.
Collapse
Affiliation(s)
- Feng-Jun Liu
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, Qinghai 810016, China.
| | - Yu-Ling Zhang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan 471003, China.
| | - Xiao-Shan Wang
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, Qinghai 810016, China.
| | - Ya-Qin Zhao
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, Qinghai 810016, China.
| | - Hong-Wei Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan 471003, China.
| |
Collapse
|
20
|
Li X, He Y, Yan Q, Kuai D, Zhang H, Wang Y, Wang K, Tian W. Dihydrotestosterone induces reactive oxygen species accumulation and mitochondrial fission leading to apoptosis of granulosa cells. Toxicology 2024; 509:153958. [PMID: 39332622 DOI: 10.1016/j.tox.2024.153958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/15/2024] [Accepted: 09/22/2024] [Indexed: 09/29/2024]
Abstract
Dihydrotestosterone (DHT), which has significant androgenic activity,is a major player in follicle development and ovary function in females. However, an excess of androgens may result in increased follicular apoptosis with adverse effects on female fertility. This study aimed to explore the mechanism by which DHT induces apoptosis in human ovarian granulosa cells (GCs). The association between DHT and GC apoptosis was explored by the construction of rat models of polycystic ovary syndrome (PCOS). It was found that serum DHT levels were negatively correlated with thickness of the GC layer in PCOS model rats (R2=0.8342, p<0.0001), compared with control rats, together with significant increases in cofactors (Fis1: p=0.008; MFF: p=0.044). The GC SVOG cell line was used to clarify the mechanism by which DHT influenced GC apoptosis in in vitro experiments. The results confirmed that apoptosis in SVOG cells was positively associated with the DHT dose. The expression of the autophagy-related proteins LC3A/B (p=0.027) and the proapoptotic protein Bax (p=0.0095) were increased, while that of the anti-apoptotic protein Bcl-2 (p=0.0005) was decreased in the high-dose DHT group. ROS levels were significantly increased (p=0.0237) and the mitochondrial membrane potential ΔΨm was decreased (p=0.0194). Moreover, ultrastructural analysis of the mitochondria indicated significant damage. The results of RT-qPCR and western blotting showed that two fission cofactor-Fis1(p=0.034) and MFF (p=0.039) were significantly increased after treatment with high doses of DHT. Even though the overall expression of Drp1 did not change significantly (p=0.5961), that of activated Phosphor-Drp1(Ser616) was significantly increased (p=0.046), while the expression of Phosphor-Drp1 (Ser637) was markedly reduced (p=0.007) following exposure to high concentrations of DHT. All these effects could be reversed by the Drp1 inhibitor Mdivi-1. These findings indicated the impact of DHT on ROS aggregation and mitochondrial fission, resulting in GC apoptosis. An imbalance in Drp1 phosphorylation may be the key link in DHT-induced excessive mitochondrial fission.
Collapse
Affiliation(s)
- Xiaoyan Li
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China; Department of Gynecology and Obstetrics, Tianjin Key Laboratory of Female Reproductive Health and Eugenic, Tianjin Medical University General Hospital, Tianjin, China
| | - Ying He
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China; Department of Gynecology and Obstetrics, Tianjin Key Laboratory of Female Reproductive Health and Eugenic, Tianjin Medical University General Hospital, Tianjin, China
| | - Qi Yan
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China; Department of Gynecology and Obstetrics, Tianjin Key Laboratory of Female Reproductive Health and Eugenic, Tianjin Medical University General Hospital, Tianjin, China
| | - Dan Kuai
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China; Department of Gynecology and Obstetrics, Tianjin Key Laboratory of Female Reproductive Health and Eugenic, Tianjin Medical University General Hospital, Tianjin, China
| | - Huiying Zhang
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China; Department of Gynecology and Obstetrics, Tianjin Key Laboratory of Female Reproductive Health and Eugenic, Tianjin Medical University General Hospital, Tianjin, China
| | - Yingmei Wang
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China; Department of Gynecology and Obstetrics, Tianjin Key Laboratory of Female Reproductive Health and Eugenic, Tianjin Medical University General Hospital, Tianjin, China
| | - Kan Wang
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China; Department of Gynecology and Obstetrics, Tianjin Key Laboratory of Female Reproductive Health and Eugenic, Tianjin Medical University General Hospital, Tianjin, China.
| | - Wenyan Tian
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China; Department of Gynecology and Obstetrics, Tianjin Key Laboratory of Female Reproductive Health and Eugenic, Tianjin Medical University General Hospital, Tianjin, China.
| |
Collapse
|
21
|
De Rubeis M, Mascitti IA, Cocciolone D, Placidi M, Vergara T, Di Emidio G, Macchiarelli G, Tatone C, Nottola SA, Palmerini MG. Morphological and Redox/Glycative Alterations in the PCOS Oviducts: Modulating Effects of Carnitines in PCOS Mice. BIOLOGY 2024; 13:964. [PMID: 39765631 PMCID: PMC11673334 DOI: 10.3390/biology13120964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/21/2024] [Accepted: 11/22/2024] [Indexed: 01/11/2025]
Abstract
Polycystic ovarian syndrome (PCOS) is a heterogeneous condition characterized by hyperandrogenism (HA), polycystic ovaries, and dysfunctional ovulation, and it is associated with metabolic problems such as insulin resistance (IR) and obesity. After having investigated the morphological and antioxidant/antiglycative alterations on mouse ovaries and uteri, we here focus on PCOS oviducts, a tract of the reproductive system essential for the nourishment and transport of gametes and embryos. The modulating effects of L-carnitine (LC) and acetyl-L-carnitine (ALC) were also assessed. CD1 mice were administered or not with dehydroepiandrosterone (DHEA, 6 mg/100 g body weight) for 20 days, alone or with 0.40 mg of L-carnitine (LC) and 0.20 mg of acetyl-L-carnitine (ALC). Oviducts were then subjected to histology and immunohistochemistry to evaluate their morphology and collagen deposition, and steroidogenesis. Oxidative, mitochondrial, and methylglyoxal (MG)-dependent damage was also investigated. Transmission electron microscopy was used to detect ultrastructural alterations. The PCOS oviducts were affected by hyperfibrosis, hyperplasia, hypertrophy, and altered steroidogenesis, with oxidative alterations associated with MethylGlyoxal-Advanced Glycation End product (MG-AGE) accumulation. A reduced ciliary coverage and numerous dilated intercellular spaces were found in the epithelium. LC-ALC administration mitigated PCOS oviductal alterations. These results provide evidence for the detrimental action of oxidative and glycative stress in PCOS oviducts, confirming a protective role of carnitines on the PCOS phenotype.
Collapse
Affiliation(s)
- Mariacarla De Rubeis
- Department of Anatomy, Histology, Forensic Medicine and Orthopaedics, Sapienza University, 00161 Rome, Italy; (M.D.R.); (S.A.N.)
| | - Ilaria Antenisca Mascitti
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (I.A.M.); (D.C.); (M.P.); (T.V.); (G.D.E.); (G.M.); (C.T.)
| | - Domenica Cocciolone
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (I.A.M.); (D.C.); (M.P.); (T.V.); (G.D.E.); (G.M.); (C.T.)
| | - Martina Placidi
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (I.A.M.); (D.C.); (M.P.); (T.V.); (G.D.E.); (G.M.); (C.T.)
| | - Teresa Vergara
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (I.A.M.); (D.C.); (M.P.); (T.V.); (G.D.E.); (G.M.); (C.T.)
| | - Giovanna Di Emidio
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (I.A.M.); (D.C.); (M.P.); (T.V.); (G.D.E.); (G.M.); (C.T.)
| | - Guido Macchiarelli
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (I.A.M.); (D.C.); (M.P.); (T.V.); (G.D.E.); (G.M.); (C.T.)
| | - Carla Tatone
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (I.A.M.); (D.C.); (M.P.); (T.V.); (G.D.E.); (G.M.); (C.T.)
| | - Stefania Annarita Nottola
- Department of Anatomy, Histology, Forensic Medicine and Orthopaedics, Sapienza University, 00161 Rome, Italy; (M.D.R.); (S.A.N.)
| | - Maria Grazia Palmerini
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (I.A.M.); (D.C.); (M.P.); (T.V.); (G.D.E.); (G.M.); (C.T.)
| |
Collapse
|
22
|
Gungor K, Gungor ND, Celik O, Ersahin A, Celik N, Yardim M, Yurci A, Kobaner M, Ilkov Maslarski I. Polycystic Ovary Syndrome Accompanied by Hyperandrogenemia or Metabolic Syndrome Triggers Glomerular Podocyte Injury. Diagnostics (Basel) 2024; 14:2197. [PMID: 39410601 PMCID: PMC11475034 DOI: 10.3390/diagnostics14192197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/11/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024] Open
Abstract
Objective: To determine whether the urinary excretion of podocyte degradation products varies according to PCOS phenotype and metabolic syndrome (MetS). Methods: The concentrations of podocalyxin (PDX) and nephrin, chronic markers of podocyte damage, and neutrophil gelatinase-associated lipocalin (NGAL), a marker of acute glomerular damage, were analyzed in the morning urine samples of 50 PCOS patients and 50 healthy controls matched by age and BMI. Albuminuria was assessed by calculating the urine albumin-creatinine ratio (uACR). Results: The PDX, nephrin and NGAL concentrations of PCOS participants were significantly higher than those of the control group. While PDX, nephrin and NGAL levels of classic phenotypes were similar, they were higher than ovulatory and non-hyperandrogenic phenotypes. Significant increases in urinary levels of each podocyte protein were detected in PCOS patients with MetS compared to patients without MetS. A positive significant correlation between podocyte proteins and BMI, systolic blood pressure, testosterone, glucose, HOMA-IR and uACR. After adjusting for age and BMI, podocyte proteins were an independent risk factor for microalbuminuria. The incidence of microalbuminuria in PCOS increased 6-fold compared to controls. The frequency of microalbuminuria was higher in classical phenotypes than in ovulatory phenotype. The frequency of microalbuminuria in PCOS patients with MetS was 6.5 times higher than in PCOS patients without MetS. Conclusions: In PCOS accompanied by hyperandrogenemia or metabolic syndrome, leakage of acute and chronic podocyte breakdown products into the urine becomes more pronounced.
Collapse
Affiliation(s)
- Kagan Gungor
- Department of Endocrinology, Istanbul Medeniyet University, Göztepe Prof. Dr. Süleyman Yalçın City Hospital, 34722 Istanbul, Turkey
| | - Nur D. Gungor
- Department of Obstetrics and Gynecology, Bahcesehir University Goztepe Medicalpark Hospital, 34732 Istanbul, Turkey; (N.D.G.); (A.E.)
| | - Onder Celik
- Department of Obstetrics and Gynecology, Private Clinic, 64000 Usak, Turkey
| | - Aynur Ersahin
- Department of Obstetrics and Gynecology, Bahcesehir University Goztepe Medicalpark Hospital, 34732 Istanbul, Turkey; (N.D.G.); (A.E.)
| | - Nilufer Celik
- Department of Biochemistry, Behcet Uz Children’s Hospital, 35210 Izmir, Turkey;
| | - Meltem Yardim
- Department of Medical Biochemistry, Yerkoy State Hospital, 66900 Yozgat, Turkey;
| | - Arzu Yurci
- In Vitro Fertilization (IVF), Andrology and Genetics Center, Memorial Bahcelievler Hospital, 34180 Istanbul, Turkey;
| | - Murat Kobaner
- Department of Urology, Yuregir State Hospital, 01415 Adana, Turkey;
| | - Ivan Ilkov Maslarski
- Department of Anatomy, Histology, Pathology, and Forensic Medicine, Faculty of Medicine, University of Sofia “St. Kliment Ohridski”, 1407 Sofia, Bulgaria;
| |
Collapse
|
23
|
Mansoori M, Solhjoo S, Palmerini MG, Nematollahi-Mahani SN, Ezzatabadipour M. Granulosa cell insight: unraveling the potential of menstrual blood-derived stem cells and their exosomes on mitochondrial mechanisms in polycystic ovary syndrome (PCOS). J Ovarian Res 2024; 17:167. [PMID: 39153978 PMCID: PMC11330151 DOI: 10.1186/s13048-024-01484-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 07/23/2024] [Indexed: 08/19/2024] Open
Abstract
BACKGROUND Polycystic ovary syndrome (PCOS) presents a significant challenge in women's reproductive health, characterized by disrupted folliculogenesis and ovulatory dysfunction. Central to PCOS pathogenesis are granulosa cells, whose dysfunction contributes to aberrant steroid hormone production and oxidative stress. Mitochondrial dysfunction emerges as a key player, influencing cellular energetics, oxidative stress, and steroidogenesis. This study investigates the therapeutic potential of menstrual blood-derived stem cells (MenSCs) and their exosomes in mitigating mitochondrial dysfunction and oxidative stress in PCOS granulosa cells. METHODS Using a rat model of PCOS induced by letrozole, granulosa cells were harvested and cultured. MenSCs and their exosomes were employed to assess their effects on mitochondrial biogenesis, oxidative stress, and estrogen production in PCOS granulosa cells. RESULTS Results showed diminished mitochondrial biogenesis and increased oxidative stress in PCOS granulosa cells, alongside reduced estrogen production. Treatment with MenSCs and their exosomes demonstrated significant improvements in mitochondrial biogenesis, oxidative stress levels, and estrogen production in PCOS granulosa cells. Further analysis showed MenSCs' superior efficacy over exosomes, attributed to their sustained secretion of bioactive factors. Mechanistically, MenSCs and exosomes activated pathways related to mitochondrial biogenesis and antioxidative defense, highlighting their therapeutic potential for PCOS. CONCLUSIONS This study offers insights into granulosa cells mitochondria's role in PCOS pathogenesis and proposes MenSCs and exosomes as a potential strategy for mitigating mitochondrial dysfunction and oxidative stress in PCOS. Further research is needed to understand underlying mechanisms and validate clinical efficacy, presenting promising avenues for addressing PCOS complexity.
Collapse
Affiliation(s)
- Mahna Mansoori
- Anatomical Sciences Department, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Somayeh Solhjoo
- Anatomical Sciences Department, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Maria Grazia Palmerini
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | | | - Massood Ezzatabadipour
- Anatomical Sciences Department, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
24
|
Wang M, Zhang BQ, Ma S, Xu Y, Zhao DH, Zhang JS, Li CJ, Zhou X, Zheng LW. Broadening horizons: the role of ferroptosis in polycystic ovary syndrome. Front Endocrinol (Lausanne) 2024; 15:1390013. [PMID: 39157678 PMCID: PMC11327064 DOI: 10.3389/fendo.2024.1390013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 07/22/2024] [Indexed: 08/20/2024] Open
Abstract
Polycystic ovarian syndrome (PCOS) is a common heterogeneous reproductive endocrine metabolic disorder in women of reproductive age characterized by clinical and biochemical hyperandrogenemia, ovulation disorders, and polycystic ovarian morphology. Ferroptosis is a novel type of cell death driven by iron accumulation and lipid peroxidation. Ferroptosis plays a role in maintaining redox balance, iron metabolism, lipid metabolism, amino acid metabolism, mitochondrial activity, and many other signaling pathways linked to diseases. Iron overload is closely related to insulin resistance, decreased glucose tolerance, and the occurrence of diabetes mellitus. There is limited research on the role of ferroptosis in PCOS. Patients with PCOS have elevated levels of ferritin and increased reactive oxygen species in ovarian GCs. Studying ferroptosis in PCOS patients is highly important for achieving personalized treatment. This article reviews the progress of research on ferroptosis in PCOS, introduces the potential connections between iron metabolism abnormalities and oxidative stress-mediated PCOS, and provides a theoretical basis for diagnosing and treating PCOS.
Collapse
Affiliation(s)
- Min Wang
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, China
| | - Bo-Qi Zhang
- College of Animal Sciences, Jilin University, Changchun, China
| | - Shuai Ma
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, China
| | - Ying Xu
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, China
| | - Dong-Hai Zhao
- Department of Pathology, Jilin Medical College, Jilin, China
| | - Jing-Shun Zhang
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, China
| | - Chun-Jin Li
- College of Animal Sciences, Jilin University, Changchun, China
| | - Xu Zhou
- College of Animal Sciences, Jilin University, Changchun, China
| | - Lian-Wen Zheng
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
25
|
Fereidouni F, Kashani L, Amidi F, Khodarahmian M, Zhaeentan S, Ardehjani NA, Rastegar T. Astaxanthin treatment decreases pro-inflammatory cytokines and improves reproductive outcomes in patients with polycystic ovary syndrome undergoing assisted reproductive technology: A randomized clinical trial. Inflammopharmacology 2024; 32:2337-2347. [PMID: 38916710 DOI: 10.1007/s10787-024-01504-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 06/02/2024] [Indexed: 06/26/2024]
Abstract
RESEARCH QUESTION In a randomized, triple-blind, placebo-controlled clinical trial (RCT), we investigated the effect of astaxanthin (AST) on pro-inflammatory cytokines, oxidative stress (OS) markers, and assisted reproductive technology (ART) outcomes in 44 infertile Polycystic Ovary Syndrome (PCOS) patients. DESIGN Patients with PCOS were randomly divided into two groups. The intervention group received 6 mg AST, and the control group received placebo daily for 8 weeks. Blood samples were obtained from all patients before and after intervention and follicular fluid (FF) was collected during the ART procedure. Interleukin (IL) -6, IL-1β were evaluated from serum samples and FF and OS markers (malondialdehyde [MDA], catalase [CAT], superoxide dismutase [SOD], and reactive oxygen species [ROS]) were measured from FF. The groups were compared for ART outcomes as well. RESULTS A significant decrease in IL-6 and IL-1β concentrations (both, P = < 0.01) serum levels was found following AST treatment. FF cytokine levels and OS markers did not differ significantly between the groups. Reproductive outcomes, including the number of oocytes retrieved (P = 0.01), the MII oocyte count (P = 0.007), oocyte maturity rate (MII %) (P = 0.02) and number of frozen embryos (P = 0.03) significantly improved after intervention. No significant differences were found in chemical, clinical and multiple pregnancies between the groups. CONCLUSIONS AST pretreatment may modify inflammation and improve ART outcomes in PCOS infertile patients. Further investigations are recommended to verify these findings.
Collapse
Affiliation(s)
- Farzane Fereidouni
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ladan Kashani
- Department of infertility, Arash Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Fardin Amidi
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahshad Khodarahmian
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Department of infertility, Arash Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Shahrzad Zhaeentan
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Negar Ajabi Ardehjani
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Tayebeh Rastegar
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
26
|
Sobczuk J, Paczkowska K, Andrusiów S, Bolanowski M, Daroszewski J. Are Women with Polycystic Ovary Syndrome at Increased Risk of Alzheimer Disease? Lessons from Insulin Resistance, Tryptophan and Gonadotropin Disturbances and Their Link with Amyloid-Beta Aggregation. Biomolecules 2024; 14:918. [PMID: 39199306 PMCID: PMC11352735 DOI: 10.3390/biom14080918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 07/20/2024] [Accepted: 07/24/2024] [Indexed: 09/01/2024] Open
Abstract
Alzheimer disease, the leading cause of dementia, and polycystic ovary syndrome, one of the most prevalent female endocrine disorders, appear to be unrelated conditions. However, studies show that both disease entities have common risk factors, and the amount of certain protein marker of neurodegeneration is increased in PCOS. Reports on the pathomechanism of both diseases point to the possibility of common denominators linking them. Dysregulation of the kynurenine pathway, insulin resistance, and impairment of the hypothalamic-pituitary-gonadal axis, which are correlated with amyloid-beta aggregation are these common areas. This article discusses the relationship between Alzheimer disease and polycystic ovary syndrome, with a particular focus on the role of disorders of tryptophan metabolism in both conditions. Based on a review of the available literature, we concluded that systemic changes occurring in PCOS influence the increased risk of neurodegeneration.
Collapse
Affiliation(s)
- Joachim Sobczuk
- Department of Endocrinology, Diabetes and Isotope Therapy, University Clinical Hospital, 50-367 Wroclaw, Poland
| | | | - Szymon Andrusiów
- Department of Neurology, Wroclaw Medical University, 50-556 Wroclaw, Poland
| | - Marek Bolanowski
- Department of Endocrinology, Diabetes and Isotope Therapy, University Clinical Hospital, 50-367 Wroclaw, Poland
- Department of Endocrinology, Diabetes and Isotope Therapy, Wroclaw Medical University, 50-556 Wroclaw, Poland
| | - Jacek Daroszewski
- Department of Endocrinology, Diabetes and Isotope Therapy, University Clinical Hospital, 50-367 Wroclaw, Poland
- Department of Endocrinology, Diabetes and Isotope Therapy, Wroclaw Medical University, 50-556 Wroclaw, Poland
| |
Collapse
|
27
|
Yang Y, Chen X, Liao X, Jiang W, Zhou Y, Sun Y, Zheng B. Identification of MAP1LC3A as a promising mitophagy-related gene in polycystic ovary syndrome. Sci Rep 2024; 14:16982. [PMID: 39043888 PMCID: PMC11266624 DOI: 10.1038/s41598-024-67969-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 07/18/2024] [Indexed: 07/25/2024] Open
Abstract
Increasing evidence suggests that mitophagy is crucially involved in the progression of polycystic ovary syndrome (PCOS). Exploration of PCOS-specific biomarkers related to mitophagy is expected to provide critical insights into disease pathogenesis. In this study, we employed bioinformatic analyses and machine learning algorithms to determine novel biomarkers for PCOS that may be tied with mitophagy. A grand total of 12 differential expressed mitophagy-related genes (DE-MRGs) associated with PCOS were identified. TOMM5 and MAP1LC3A among the 12 DE-MRGs were recognized as potential marker genes by LASSO, RF and SVM-RFE algorithms. The area under the ROC curve (AUROC) of MAP1LC3A were all greater than 0.8 both in the training set and validation sets. The CIBERSORT analysis indicated a potential association between alterations in the immune microenvironment of PCOS individuals and MAP1LC3A expression. In addition, we found that MAP1LC3A was positively related to the testosterone levels of PCOS patients. Overall, MAP1LC3A was identified as optimal PCOS-specific biomarkers related to mitophagy. Our findings created a diagnostic strength and offered a perspective for investigating the mitophagy process in PCOS.
Collapse
Affiliation(s)
- Yizhen Yang
- Reproductive Medicine Center of Fujian Maternity and Child Health Hospital, Fuzhou, 350001, Fujian, China
- Fujian Maternal-Fetal Clinical Medicine Research Center, Fuzhou, 350001, Fujian, China
| | - Xiaojing Chen
- Reproductive Medicine Center of Fujian Maternity and Child Health Hospital, Fuzhou, 350001, Fujian, China
- Fujian Maternal-Fetal Clinical Medicine Research Center, Fuzhou, 350001, Fujian, China
| | - Xiuhua Liao
- Reproductive Medicine Center of Fujian Maternity and Child Health Hospital, Fuzhou, 350001, Fujian, China
| | - Wenwen Jiang
- Reproductive Medicine Center of Fujian Maternity and Child Health Hospital, Fuzhou, 350001, Fujian, China
| | - Yuan Zhou
- Reproductive Medicine Center of Fujian Maternity and Child Health Hospital, Fuzhou, 350001, Fujian, China
| | - Yan Sun
- Reproductive Medicine Center of Fujian Maternity and Child Health Hospital, Fuzhou, 350001, Fujian, China.
- Fujian Maternal-Fetal Clinical Medicine Research Center, Fuzhou, 350001, Fujian, China.
| | - Beihong Zheng
- Reproductive Medicine Center of Fujian Maternity and Child Health Hospital, Fuzhou, 350001, Fujian, China.
- Fujian Maternal-Fetal Clinical Medicine Research Center, Fuzhou, 350001, Fujian, China.
| |
Collapse
|
28
|
Ardehjani NA, Agha-Hosseini M, Nashtaei MS, Khodarahmian M, Shabani M, Jabarpour M, Fereidouni F, Rastegar T, Amidi F. Resveratrol ameliorates mitochondrial biogenesis and reproductive outcomes in women with polycystic ovary syndrome undergoing assisted reproduction: a randomized, triple-blind, placebo-controlled clinical trial. J Ovarian Res 2024; 17:143. [PMID: 38987824 PMCID: PMC11234766 DOI: 10.1186/s13048-024-01470-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 07/01/2024] [Indexed: 07/12/2024] Open
Abstract
BACKGROUND This study was designed to examine the effect of resveratrol on mitochondrial biogenesis, oxidative stress (OS), and assisted reproductive technology (ART) outcomes in individuals with polycystic ovary syndrome (PCOS). METHODS Fifty-six patients with PCOS were randomly assigned to receive 800 mg/day of resveratrol or placebo for 60 days. The primary outcome was OS in follicular fluid (FF). The secondary outcome involved assessing gene and protein expression related to mitochondrial biogenesis, mitochondrial DNA (mtDNA) copy number, and adenosine triphosphate (ATP) content in granulosa cells (GCs). ART outcomes were evaluated at the end of the trial. RESULTS Resveratrol significantly reduced the total oxidant status (TOS) and oxidative stress index (OSI) in FF (P = 0.0142 and P = 0.0039, respectively) while increasing the total antioxidant capacity (TAC) (P < 0.0009). Resveratrol consumption also led to significant increases in the expression of critical genes involved in mitochondrial biogenesis, including peroxisome proliferator-activated receptor gamma coactivator (PGC-1α) and mitochondrial transcription factor A (TFAM) (P = 0.0032 and P = 0.0003, respectively). However, the effect on nuclear respiratory factor 1 (Nrf-1) expression was not statistically significant (P = 0.0611). Resveratrol significantly affected sirtuin1 (SIRT1) and PGC-1α protein levels (P < 0.0001 and P = 0.0036, respectively). Resveratrol treatment improved the mtDNA copy number (P < 0.0001) and ATP content in GCs (P = 0.0014). Clinically, the resveratrol group exhibited higher rates of oocyte maturity (P = 0.0012) and high-quality embryos (P = 0.0013) than did the placebo group. There were no significant differences between the groups in terms of chemical or clinical pregnancy rates (P > 0.05). CONCLUSIONS These findings indicate that resveratrol may be a promising therapeutic agent for patients with PCOS undergoing assisted reproduction. TRIAL REGISTRATION NUMBER http://www.irct.ir ; IRCT20221106056417N1; 2023 February 09.
Collapse
Affiliation(s)
- Negar Ajabi Ardehjani
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Marzieh Agha-Hosseini
- Department of Infertility, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Shabani Nashtaei
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Department of Infertility, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahshad Khodarahmian
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Department of Infertility, Arash Women's Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Shabani
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Masoome Jabarpour
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Department of Infertility, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Farzane Fereidouni
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Tayebeh Rastegar
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Fardin Amidi
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
- Department of Infertility, Yas Hospital, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
29
|
Yoon HJ, Cho SY, Kim HG, Lee JY. Protective Effects of Changbudodam- tang on Cell Death Signals on the Bone Marrow-Derived Human Mesenchymal Stem Cells via Regulation of MKK7/JNK/c-Jun Signaling Pathway. J Pharmacopuncture 2024; 27:131-141. [PMID: 38948312 PMCID: PMC11194519 DOI: 10.3831/kpi.2024.27.2.131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/09/2024] [Accepted: 05/14/2024] [Indexed: 07/02/2024] Open
Abstract
Objectives Polycystic ovary syndrome (PCOS) is one of the most common disorders and it shows up to 20% prevalence in reproductive-aged women populations, but no cures are available to date. We aimed to investigate the protective effects of Changbudodam-tang (CBD) on cell death signaling pathways, inflammation, and oxidative stress observed in Bone-Marrow derived human mesenchymal stem cell (BM-hMSC) by means of PCOS therapeutics in the future. Methods BM-hMSCs were applied with cell deaths and injuries. Apoptosis and pyroptosis signals were quenched with their related signaling pathways using quantitative PCR, Western blot, and fluorescence image analysis. Results Our data clearly displayed hydrogen peroxide- and nigericin-treated cell death signaling pathways via regulations of mitochondrial integrity and interleukin (IL)-1β at the cellular levels (p < 0.01 or 0.001). We further observed that pre-treatment with CBD showed protective effects against oxidative stress by enhancement of antioxidant components at the cellular level, with respect to both protein and mRNA expression levels (p < 0.05, 0.01 or 0.001). The mechanisms of CBD were examined by Western blot analysis, and it showed anti-cell death, anti-inflammatory, and antioxidant effects via normalizations of the Jun N-terminal kinase/mitogen-activated protein kinase kinase 7/c-Jun signaling pathways. Conclusion This study confirmed the pharmacological properties of CBD by regulation of cellular oxidation and the inflammation-provoked cell death condition of BM-hMSCs, which is mediated by the MKK7/JNK/c-Jun signaling pathway.
Collapse
Affiliation(s)
- Hee-Jae Yoon
- Department of Obstetrics and Gynecology, College of Korean Medicine, Daejeon University, Daejeon, Republic of Korea
| | - Si-Yoon Cho
- Department of Obstetrics and Gynecology, College of Korean Medicine, Daejeon University, Daejeon, Republic of Korea
| | - Hyeong-Geug Kim
- Department of Leukopak Research and Developement, QPS Bio-Kinetic, Springfield, MO, USA
| | - Ji-Yeon Lee
- Department of Obstetrics and Gynecology, College of Korean Medicine, Daejeon University, Daejeon, Republic of Korea
| |
Collapse
|
30
|
Avelino CMSF, de Araújo RFF. Effects of vitamin D supplementation on oxidative stress biomarkers of Iranian women with polycystic ovary syndrome: a meta-analysis study. REVISTA BRASILEIRA DE GINECOLOGIA E OBSTETRÍCIA 2024; 46:e-rbgo37. [PMID: 38994457 PMCID: PMC11239209 DOI: 10.61622/rbgo/2024rbgo37] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 01/03/2024] [Indexed: 07/13/2024] Open
Abstract
Objective To identify the impact of redox imbalance on the clinical evolution of patients with polycystic ovary syndrome and carry out a qualitative and quantitative projection of the benefits of vitamin D supplementation. Data sources Combinations of the keywords polycystic ovary syndrome, vitamin D, oxidative stress, reactive oxygen species, antioxidant, and free radicals were used in PubMed, Cochrane Library, LILACS, EMBASE, and Web of Science databases. The last search was conducted on August 22, 2023.Selection of studies: Based on the inclusion and exclusion criteria, studies were selected considering a low risk of bias, published in the last 5 years in English, which investigated the effects of vitamin D supplementation in women with PCOS, focusing on oxidative stress markers. Of the 136 articles retrieved, 6 intervention studies (445 women) were included. Data collection The risk of bias in included studies was assessed using the Jadad scale, and analysis and visualization of continuous data were performed using Review Manager 5.4.1, summarized as standardized mean differences (SMD) with confidence intervals (CI) of 95%. Data synthesis Vitamin D effectively reduced malondialdehyde (P=0.002) and total testosterone (P=0.0004) levels and increased total antioxidant capacity levels (P=0.01). Although possible improvements in the modified Ferriman-Gallwey hirsutism score, levels of sex hormone-binding globulin, and free androgen index were identified and the results were not statistically significant. Conclusion Vitamin D is a promising alternative for the treatment of PCOS with a positive influence on the oxidative, metabolic, and endocrine disorders of this syndrome.
Collapse
Affiliation(s)
- Camila Maria Sampaio Ferreira Avelino
- Laboratory of Immunopathology Keizo AsamiUniversidade Federal de PernambucoRecifeBrazilLaboratory of Immunopathology Keizo Asami, Universidade Federal de Pernambuco, Recife, PE, Brazil.
| | - Rosângela Ferreira Frade de Araújo
- Laboratory of Immunopathology Keizo AsamiUniversidade Federal de PernambucoRecifeBrazilLaboratory of Immunopathology Keizo Asami, Universidade Federal de Pernambuco, Recife, PE, Brazil.
- Department of BiochemistryUniversidade Federal de PernambucoRecifeBrazilDepartment of Biochemistry, Universidade Federal de Pernambuco, Recife, PE, Brazil.
| |
Collapse
|
31
|
Kobayashi H, Shigetomi H, Matsubara S, Yoshimoto C, Imanaka S. Role of the mitophagy-apoptosis axis in the pathogenesis of polycystic ovarian syndrome. J Obstet Gynaecol Res 2024; 50:775-792. [PMID: 38417972 DOI: 10.1111/jog.15916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 02/15/2024] [Indexed: 03/01/2024]
Abstract
AIM Polycystic ovary syndrome (PCOS) is a common endocrine disorder characterized by menstrual irregularities, androgen excess, and polycystic ovarian morphology, but its pathogenesis remains largely unknown. This review focuses on how androgen excess influences the molecular basis of energy metabolism, mitochondrial function, and mitophagy in granulosa cells and oocytes, summarizes our current understanding of the pathogenesis of PCOS, and discuss perspectives on future research directions. METHODS A search of PubMed and Google Scholar databases were used to identify relevant studies for this narrative literature review. RESULTS Female offspring born of pregnant animals exposed to androgens recapitulates the PCOS phenotype. Abnormal mitochondrial morphology, altered expression of genes related to glycolysis, mitochondrial biogenesis, fission/fusion dynamics, and mitophagy have been identified in PCOS patients and androgenic animal models. Androgen excess causes uncoupling of the electron transport chain and depletion of the cellular adenosine 5'-triphosphate pool, indicating further impairment of mitochondrial function. A shift toward mitochondrial fission restores mitochondrial quality control mechanisms. However, prolonged mitochondrial fission disrupts autophagy/mitophagy induction due to loss of compensatory reserve for mitochondrial biogenesis. Disruption of compensatory mechanisms that mediate the quality control switch from mitophagy to apoptosis may cause a disease phenotype. Furthermore, genetic predisposition, altered expression of genes related to glycolysis and oxidative phosphorylation, or a combination of these factors may also contribute to the development of PCOS. CONCLUSION In conclusion, fetuses exposed to a hyperandrogenemic intrauterine environment may cause the PCOS phenotype possibly through disruption of the compensatory regulation of the mitophagy-apoptosis axis.
Collapse
Affiliation(s)
- Hiroshi Kobayashi
- Department of Gynecology and Reproductive Medicine, Ms.Clinic MayOne, Kashihara, Japan
- Department of Obstetrics and Gynecology, Nara Medical University, Kashihara, Japan
| | - Hiroshi Shigetomi
- Department of Obstetrics and Gynecology, Nara Medical University, Kashihara, Japan
- Department of Gynecology and Reproductive Medicine, Aska Ladies Clinic, Nara, Japan
| | - Sho Matsubara
- Department of Obstetrics and Gynecology, Nara Medical University, Kashihara, Japan
- Department of Medicine, Kei Oushin Clinic, Nishinomiya, Japan
| | - Chiharu Yoshimoto
- Department of Obstetrics and Gynecology, Nara Medical University, Kashihara, Japan
- Department of Obstetrics and Gynecology, Nara Prefecture General Medical Center, Nara, Japan
| | - Shogo Imanaka
- Department of Gynecology and Reproductive Medicine, Ms.Clinic MayOne, Kashihara, Japan
- Department of Obstetrics and Gynecology, Nara Medical University, Kashihara, Japan
| |
Collapse
|
32
|
Butler AE, Lubbad W, Akbar S, Kilpatrick ES, Sathyapalan T, Atkin SL. A Cross-Sectional Study of Glomerular Hyperfiltration in Polycystic Ovary Syndrome. Int J Mol Sci 2024; 25:4899. [PMID: 38732117 PMCID: PMC11084759 DOI: 10.3390/ijms25094899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/27/2024] [Accepted: 04/28/2024] [Indexed: 05/13/2024] Open
Abstract
Glomerular hyperfiltration (GH) has been reported to be higher in women with polycystic ovary syndrome (PCOS) and is an independent risk factor for renal function deterioration, metabolic, and cardiovascular disease. The aim of this study was to determine GH in type A PCOS subjects and to identify whether inflammatory markers, markers of CKD, renal tubule injury markers, and complement system proteins were associated. In addition, a secondary cohort study was performed to determine if the eGFR had altered over time. In this comparative cross-sectional analysis, demographic, metabolic, and proteomic data from Caucasian women aged 18-40 years from a PCOS Biobank (137 with PCOS, 97 controls) was analyzed. Slow Off-rate Modified Aptamer (SOMA)-scan plasma protein measurement was undertaken for inflammatory proteins, serum markers of chronic kidney disease (CKD), tubular renal injury markers, and complement system proteins. A total of 44.5% of the PCOS cohort had GH (eGFR ≥ 126 mL/min/1.73 m2 (n = 55)), and 12% (n = 17) eGFR ≥ 142 mL/min/1.73 m2 (super-GH(SGH)). PCOS-GH women were younger and had lower creatinine and urea versus PCOS-nonGH. C-reactive protein (CRP), white cell count (WCC), and systolic blood pressure (SBP) were higher in PCOS versus controls, but CRP correlated only with PCOS-SGH alone. Complement protein changes were seen between controls and PCOS-nonGH, and decay-accelerator factor (DAF) was decreased between PCOS-nonGH and PCOS-GSGH (p < 0.05). CRP correlated with eGFR in the PCOS-SGH group, but not with other inflammatory or complement parameters. Cystatin-c (a marker of CKD) was reduced between PCOS-nonGH and PCOS-GSGH (p < 0.05). No differences in tubular renal injury markers were found. A secondary cohort notes review of the biobank subjects 8.2-9.6 years later showed a reduction in eGFR: controls -6.4 ± 12.6 mL/min/1.73 m2 (-5.3 ± 11.5%; decrease 0.65%/year); PCOS-nonGH -11.3 ± 13.7 mL/min/1.73 m2 (-9.7 ± 12.2%; p < 0.05, decrease 1%/year); PCOS-GH (eGFR 126-140 mL/min/17.3 m2) -27.1 ± 12.8 mL/min/1.73 m2 (-19.1 ± 8.7%; p < 0.0001, decrease 2%/year); PCOS-SGH (eGFR ≥ 142 mL/min/17.3 m2) -33.7 ± 8.9 mL/min/17.3 m2 (-22.8 ± 6.0%; p < 0.0001, decrease 3.5%/year); PCOS-nonGH eGFR versus PCOS-GH and PCOS-SGH, p < 0.001; no difference PCOS-GH versus PCOS-SGH. GH was associated with PCOS and did not appear mediated through tubular renal injury; however, cystatin-c and DAF were decreased, and CRP correlated positively with PCOS-SGH, suggesting inflammation may be involved at higher GH. There were progressive eGFR decrements for PCOS-nonGH, PCOS-GH, and PCOS-SGH in the follow-up period which, in the presence of additional factors affecting renal function, may be clinically important in the development of CKD in PCOS.
Collapse
Affiliation(s)
- Alexandra E. Butler
- Research Department, Royal College of Surgeons in Ireland Bahrain, Busaiteen, Adliya P.O. Box 15503, Bahrain; (W.L.); (S.L.A.)
| | - Walaa Lubbad
- Research Department, Royal College of Surgeons in Ireland Bahrain, Busaiteen, Adliya P.O. Box 15503, Bahrain; (W.L.); (S.L.A.)
| | - Shahzad Akbar
- Allam Diabetes Centre, Hull University Teaching Hospitals NHS Trust, Hull HU3 2JZ, UK;
| | | | - Thozhukat Sathyapalan
- Academic Endocrinology, Diabetes and Metabolism, Hull York Medical School, Hull HU6 7RU, UK;
| | - Stephen L. Atkin
- Research Department, Royal College of Surgeons in Ireland Bahrain, Busaiteen, Adliya P.O. Box 15503, Bahrain; (W.L.); (S.L.A.)
| |
Collapse
|
33
|
Abdi A, Ranjbaran M, Amidi F, Akhondzadeh F, Seifi B. The effect of adipose-derived mesenchymal stem cell transplantation on ovarian mitochondrial dysfunction in letrozole-induced polycystic ovary syndrome in rats: the role of PI3K-AKT signaling pathway. J Ovarian Res 2024; 17:91. [PMID: 38678269 PMCID: PMC11056058 DOI: 10.1186/s13048-024-01422-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 04/21/2024] [Indexed: 04/29/2024] Open
Abstract
OBJECTIVE The present study aimed to elucidate how mesenchymal stem cells (MSCs) application could efficiently attenuate pathological changes of letrozole-induced poly cystic ovary syndrome (PCOS) by modulating mitochondrial dynamic via PI3K-AKT pathway. METHODS Thirty-two female rats were randomly divided into four experimental groups: Sham, PCOS, PCOS + MSCs, and PCOS + MSCs + LY294002. The Sham group received 0.5% w/v carboxymethyl cellulose (CMC); the PCOS group received letrozole (1 mg/kg, daily) in 0.5% CMC for 21 days. Animals in the PCOS + MSCs group received 1 × 106 MSCs/rat (i.p,) on the 22th day of the study. In the PCOS + MSCs + LY294002 group, rats received LY294002 (PI3K-AKT inhibitor) 40 min before MSC transplantation. Mitochondrial dynamic gene expression, mitochondrial membrane potential (MMP), citrate synthase (CS) activity, oxidative stress, inflammation, ovarian histological parameters, serum hormone levels, homeostatic model assessment for insulin resistance (HOMA-IR), insulin and glucose concentrations, p-PI3K and p-AKT protein levels were evaluated at the end of the experiment. RESULTS PCOS rats showed a significant disruption of mitochondrial dynamics and histological changes, lower MMP, CS, ovary super oxide dismutase (SOD) and estrogen level. They also had a notable rise in insulin and glucose concentrations, HOMA-IR, testosterone level, tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) levels, ovarian malondialdehyde (MDA) content as well as a notable decrease in p-PI3K and p-AKT protein levels compared to the Sham group. In the PCOS + MSCs group, the transplantation of MSCs could improve the above parameters. Administration of LY294002 (PI3K-AKT pathway inhibitor) deteriorated mitochondrial dynamic markers, oxidative stress status, inflammation markers, hormonal levels, glucose, and insulin levels and follicular development compared to the PCOS + MSCs group. CONCLUSIONS This study demonstrated that the protective effects of MSC transplantation in regulating mitochondrial dynamics, promoting mitochondrial biogenesis, competing with redox status and inflammation response were mainly mediated through the PI3K-AKT pathway in the PCOS model.
Collapse
Affiliation(s)
- Arash Abdi
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mina Ranjbaran
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Fardin Amidi
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Fariba Akhondzadeh
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Behjat Seifi
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
34
|
Olaniyi KS, Areloegbe SE. Acetate ameliorates ovarian mitochondrial dysfunction in letrozole-induced polycystic ovarian syndrome rat model by improving mitofusin-2. J Physiol Sci 2024; 74:22. [PMID: 38561673 PMCID: PMC10983676 DOI: 10.1186/s12576-024-00908-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 02/23/2024] [Indexed: 04/04/2024]
Abstract
Androgen excess and metabolic abnormality largely contribute to the pathogenesis of polycystic ovarian syndrome (PCOS), which primarily precipitates ovarian dysfunction and infertility in reproductive-age women. Impaired mitochondrial function and epigenetic alteration have been linked to the development of PCOS. However, it is unknown whether acetate would exert a therapeutic effect on ovarian mitochondrial dysfunction in PCOS. Herein, the study hypothesized that acetate reverses ovarian mitochondrial dysfunction in experimental PCOS rat model, possibly through modulation of mitofusin-2 (MFn2). Eight-week-old female Wistar rats were randomized into four groups (n = 5). Induction of PCOS was performed by 1 mg/kg letrozole (p.o.), administered for 21 days. Thereafter, the rats were treated with acetate (200 mg/kg; p.o.) for 6 weeks. The PCOS rats demonstrated androgen excess, multiple ovarian cysts, elevated anti-mullerian hormone and leptin and decreased SHBG, adiponectin and 17-β estradiol with corresponding increase in ovarian transforming growth factor-β1. Additionally, inflammation (tumor growth factor and nuclear factor-kB), elevated caspase-6, decreased hypoxia-inducible factor-1α and elevated histone deacetylase-2 (HDAC2) were observed in the ovaries of PCOS rats, while mitochondrial abnormality with evidence of decreased adenosine triphosphate synthase and MFn2 was observed in rats with PCOS. Treatment with acetate reversed the alterations. The present results collectively suggest that acetate ameliorates ovarian mitochondrial abnormality, a beneficial effect that is accompanied by MFn2 with consequent normalization of reproductive-endocrine profile and ovarian function. Perhaps, the present data provide hope for PCOS individuals that suffer infertility.
Collapse
Affiliation(s)
- Kehinde S Olaniyi
- Cardio/Endo-metabolic and Microbiome Research Unit, Department of Physiology, College of Medicine and Health Sciences, Afe Babalola University, P.M.B. 5454, Ado-Ekiti, 360101, Nigeria.
| | - Stephanie E Areloegbe
- Cardio/Endo-metabolic and Microbiome Research Unit, Department of Physiology, College of Medicine and Health Sciences, Afe Babalola University, P.M.B. 5454, Ado-Ekiti, 360101, Nigeria
| |
Collapse
|
35
|
Shen HH, Zhang YY, Wang XY, Li MY, Liu ZX, Wang Y, Ye JF, Wu HH, Li MQ. Validation of mitochondrial biomarkers and immune dynamics in polycystic ovary syndrome. Am J Reprod Immunol 2024; 91:e13847. [PMID: 38661639 DOI: 10.1111/aji.13847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 03/26/2024] [Accepted: 04/09/2024] [Indexed: 04/26/2024] Open
Abstract
PROBLEM Polycystic ovary syndrome (PCOS), a prevalent endocrine-metabolic disorder, presents considerable therapeutic challenges due to its complex and elusive pathophysiology. METHOD OF STUDY We employed three machine learning algorithms to identify potential biomarkers within a training dataset, comprising GSE138518, GSE155489, and GSE193123. The diagnostic accuracy of these biomarkers was rigorously evaluated using a validation dataset using area under the curve (AUC) metrics. Further validation in clinical samples was conducted using PCR and immunofluorescence techniques. Additionally, we investigate the complex interplay among immune cells in PCOS using CIBERSORT to uncover the relationships between the identified biomarkers and various immune cell types. RESULTS Our analysis identified ACSS2, LPIN1, and NR4A1 as key mitochondria-related biomarkers associated with PCOS. A notable difference was observed in the immune microenvironment between PCOS patients and healthy controls. In particular, LPIN1 exhibited a positive correlation with resting mast cells, whereas NR4A1 demonstrated a negative correlation with monocytes in PCOS patients. CONCLUSION ACSS2, LPIN1, and NR4A1 emerge as PCOS-related diagnostic biomarkers and potential intervention targets, opening new avenues for the diagnosis and management of PCOS.
Collapse
Affiliation(s)
- Hui-Hui Shen
- Institute of Obstetrics and Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, People's Republic of China
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, People's Republic of China
| | - Yang-Yang Zhang
- Institute of Obstetrics and Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, People's Republic of China
- Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Xuan-Yu Wang
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Meng-Ying Li
- Institute of Obstetrics and Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, People's Republic of China
| | - Zhen-Xing Liu
- Center of Reproduction and Genetics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, People's Republic of China
| | - Ying Wang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Ji'nan, Shandong, People's Republic of China
| | - Jiang-Feng Ye
- Institute for Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore
| | - Hui-Hua Wu
- Center of Reproduction and Genetics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, People's Republic of China
| | - Ming-Qing Li
- Institute of Obstetrics and Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, People's Republic of China
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
36
|
Zhao Y, Xiong S, Liu T, Shu J, Zhu T, Li S, Zhong M, Zhao S, Huang X, Liu S. Total weight loss rather than preoperative body mass index correlates with remission of irregular menstruation after sleeve gastrectomy in patients with polycystic ovary syndrome. Front Endocrinol (Lausanne) 2024; 15:1355703. [PMID: 38529391 PMCID: PMC10961366 DOI: 10.3389/fendo.2024.1355703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 02/22/2024] [Indexed: 03/27/2024] Open
Abstract
Introduction Polycystic ovary syndrome (PCOS) is the most common endocrinopathy affecting reproductive-aged women. Some retrospective studies with small sample sizes have reported that bariatric metabolic surgery is effective in remission of irregular menstruation in patients with PCOS and obesity. However, the correlation between preoperative body mass index (BMI), postoperative weight loss, and remission of irregular menstruation in patients with obesity and PCOS after sleeve gastrectomy (SG) is lack of consensus. Methods We enrolled 229 participants with obesity and PCOS who underwent SG. All patients were followed up for one year after surgery. Remission of irregular menstruation was defined as a spontaneous consecutive six-month menstrual cycle in one year. Subgroup analysis was conducted using tertiles of preoperative BMI and postoperative total weight loss (TWL)% to determine their correlation with the remission of irregular menstruation after SG. Results 79.03% (181/229) patients achieved remission of irregular menstruation one year after SG with a TWL% of 33.25 ± 0.46%. No significant difference was detected in the remission rate among the subgroups with different BMI (P=0.908). TWL% was correlated with the remission of irregular menstruation (OR 1.78, 95% CI 1.18-2.69, P<0.05). Conclusions SG had a significant effect on the remission of irregular menstruation in patients with obesity and PCOS. Preoperative BMI did not emerge as a decisive factor correlated with remission; instead, TWL% showed potential as a key factor.
Collapse
Affiliation(s)
- Yian Zhao
- Division of Bariatric and Metabolic Surgery, Department of General Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Sisi Xiong
- Division of Bariatric and Metabolic Surgery, Department of General Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Teng Liu
- Division of Bariatric and Metabolic Surgery, Department of General Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Jiaxin Shu
- Division of Bariatric and Metabolic Surgery, Department of General Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Tao Zhu
- Division of Bariatric and Metabolic Surgery, Department of General Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Shumin Li
- Center for Reproductive Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Mingwei Zhong
- Division of Bariatric and Metabolic Surgery, Department of General Surgery, the First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Shigang Zhao
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xin Huang
- Division of Bariatric and Metabolic Surgery, Department of General Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Shaozhuang Liu
- Division of Bariatric and Metabolic Surgery, Department of General Surgery, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
37
|
Amirkhizi F, Taghizadeh M, Khalese-Ranjbar B, Hamedi-Shahraki S, Asghari S. Association of Serum Selenium and Selenoprotein P with Oxidative Stress Biomarkers in Patients with Polycystic Ovary Syndrome. Biol Trace Elem Res 2024; 202:947-954. [PMID: 37391553 DOI: 10.1007/s12011-023-03747-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 06/24/2023] [Indexed: 07/02/2023]
Abstract
Polycystic ovary syndrome (PCOS) is the most common endocrine disorder in women of reproductive age which is characterized by various reproductive and metabolic disorders. Oxidative stress (OS) is now recognized to be involved in the pathogenesis of PCOS which could be targeted in the management of PCOS-related complications. Selenium (Se), as an antioxidant trace element, has been shown to decrease in PCOS patients. This study aimed to investigate the relationship between the Se and selenoprotein P (SELENOP) levels with OS markers in women with PCOS. In this cross-sectional study, 125 females aged 18-45 years diagnosed with PCOS were included. Demographic, clinical, and lifestyle information of participants were obtained using the relevant questionnaires. Fasting blood samples were collected to measure biochemical parameters. Serum levels of thiobarbituric acid reactive substances (TBARS), total antioxidant capacity (TAC), erythrocyte superoxide dismutase (SOD), glutathione peroxidase (GPx), and catalase activities as well as anthropometric measurements were assessed across tertiles of serum concentrations of Se and SELENOP. Higher serum levels of Se were associated with higher serum TAC levels (β=0.42, P<0.001) and erythrocytes GPx activity (β=0.28, P=0.002) as well as with lower serum TBARS levels (β= -0.26, P=0.003). Similarly, higher serum levels of SELENOP were associated with higher TAC (β=0.32, P<0.001) and erythrocyte GPx activity (β=0.30, P=0.001). SELENOP also showed an inverse association with serum levels of TBARS (β= -0.40, P<0.001). Nevertheless, erythrocytes SOD and CAT activities showed no significant relationships with serum Se and SELENOP concentrations (all P>0.05). The present study found that serum Se and SELENOP levels were inversely associated with TBARS levels and positively associated with TAC levels and erythrocytes GPx activity.
Collapse
Affiliation(s)
- Farshad Amirkhizi
- Department of Nutrition, Faculty of Public Health, Zabol University of Medical Sciences, Zabol, Iran
| | - Mahdiyeh Taghizadeh
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Banafshe Khalese-Ranjbar
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Soudabeh Hamedi-Shahraki
- Department of Epidemiology and Biostatistics, Faculty of Public Health, Zabol University of Medical Sciences, Zabol, Iran
| | - Somayyeh Asghari
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
38
|
Matsuyama S, Whiteside S, Li SY. Implantation and Decidualization in PCOS: Unraveling the Complexities of Pregnancy. Int J Mol Sci 2024; 25:1203. [PMID: 38256276 PMCID: PMC10816633 DOI: 10.3390/ijms25021203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024] Open
Abstract
Polycystic Ovary Syndrome (PCOS) is a prevalent endocrine disorder in women of reproductive age, affecting 5-15% globally with a large proportion undiagnosed. This review explores the multifaceted nature of PCOS and its impact on pregnancy, including challenges in fertility due to hormonal imbalances and insulin resistance. Despite restoring ovulation pharmacologically, women with PCOS face lower pregnancy rates and higher risks of implantation failure and miscarriage. Our review focuses on the complexities of hormonal and metabolic imbalances that impair endometrial receptivity and decidualization in PCOS. Disrupted estrogen signaling, reduced integrity of endometrial epithelial tight junctions, and insulin resistance impair the window of endometrial receptivity. Furthermore, progesterone resistance adversely affects decidualization. Our review also examines the roles of various immune cells and inflammatory processes in the endometrium, contributing to the condition's reproductive challenges. Lastly, we discuss the use of rodent models in understanding PCOS, particularly those induced by hormonal interventions, offering insights into the syndrome's impact on pregnancy and potential treatments. This comprehensive review underscores the need for advanced understanding and treatment strategies to address the reproductive complications associated with PCOS, emphasizing its intricate interplay of hormonal, metabolic, and immune factors.
Collapse
Affiliation(s)
| | | | - Shu-Yun Li
- Reproductive Sciences Center, Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA; (S.M.); (S.W.)
| |
Collapse
|
39
|
Huang R, Chen J, Guo B, Jiang C, Sun W. Diabetes-induced male infertility: potential mechanisms and treatment options. Mol Med 2024; 30:11. [PMID: 38225568 PMCID: PMC10790413 DOI: 10.1186/s10020-023-00771-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 12/14/2023] [Indexed: 01/17/2024] Open
Abstract
Male infertility is a physiological phenomenon in which a man is unable to impregnate a fertile woman during a 12-month period of continuous, unprotected sexual intercourse. A growing body of clinical and epidemiological evidence indicates that the increasing incidence of male reproductive problems, especially infertility, shows a very similar trend to the incidence of diabetes within the same age range. In addition, a large number of previous in vivo and in vitro experiments have also suggested that the complex pathophysiological changes caused by diabetes may induce male infertility in multiple aspects, including hypothalamic-pituitary-gonadal axis dysfunction, spermatogenesis and maturation disorders, testicular interstitial cell damage erectile dysfunction. Based on the above related mechanisms, a large number of studies have focused on the potential therapeutic association between diabetes progression and infertility in patients with diabetes and infertility, providing important clues for the treatment of this population. In this paper, we summarized the research results of the effects of diabetes on male reproductive function in recent 5 years, elaborated the potential pathophysiological mechanisms of male infertility induced by diabetes, and reviewed and prospected the therapeutic measures.
Collapse
Affiliation(s)
- Runchun Huang
- The First Clinical Medical College, Lanzhou University, Lanzhou, People's Republic of China, 730000
| | - Jiawang Chen
- The First Clinical Medical College, Lanzhou University, Lanzhou, People's Republic of China, 730000
| | - Buyu Guo
- The First Clinical Medical College, Lanzhou University, Lanzhou, People's Republic of China, 730000
| | - Chenjun Jiang
- The First Clinical Medical College, Lanzhou University, Lanzhou, People's Republic of China, 730000
| | - Weiming Sun
- The First Clinical Medical College, Lanzhou University, Lanzhou, People's Republic of China, 730000.
- Department of Endocrinology, The First Hospital of Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China.
| |
Collapse
|
40
|
Khatun M, Lundin K, Naillat F, Loog L, Saarela U, Tuuri T, Salumets A, Piltonen TT, Tapanainen JS. Induced Pluripotent Stem Cells as a Possible Approach for Exploring the Pathophysiology of Polycystic Ovary Syndrome (PCOS). Stem Cell Rev Rep 2024; 20:67-87. [PMID: 37768523 PMCID: PMC10799779 DOI: 10.1007/s12015-023-10627-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/05/2023] [Indexed: 09/29/2023]
Abstract
Polycystic ovary syndrome (PCOS) is the most prevalent endocrine condition among women with pleiotropic sequelae possessing reproductive, metabolic, and psychological characteristics. Although the exact origin of PCOS is elusive, it is known to be a complex multigenic disorder with a genetic, epigenetic, and environmental background. However, the pathogenesis of PCOS, and the role of genetic variants in increasing the risk of the condition, are still unknown due to the lack of an appropriate study model. Since the debut of induced pluripotent stem cell (iPSC) technology, the ability of reprogrammed somatic cells to self-renew and their potential for multidirectional differentiation have made them excellent tools to study different disease mechanisms. Recently, researchers have succeeded in establishing human in vitro PCOS disease models utilizing iPSC lines from heterogeneous PCOS patient groups (iPSCPCOS). The current review sets out to summarize, for the first time, our current knowledge of the implications and challenges of iPSC technology in comprehending PCOS pathogenesis and tissue-specific disease mechanisms. Additionally, we suggest that the analysis of polygenic risk prediction based on genome-wide association studies (GWAS) could, theoretically, be utilized when creating iPSC lines as an additional research tool to identify women who are genetically susceptible to PCOS. Taken together, iPSCPCOS may provide a new paradigm for the exploration of PCOS tissue-specific disease mechanisms.
Collapse
Affiliation(s)
- Masuma Khatun
- Department of Obstetrics and Gynecology, University of Helsinki, Helsinki University Central Hospital, Haartmaninkatu 8, Helsinki, 00029 HUS, Finland.
| | - Karolina Lundin
- Department of Obstetrics and Gynecology, University of Helsinki, Helsinki University Central Hospital, Haartmaninkatu 8, Helsinki, 00029 HUS, Finland
| | - Florence Naillat
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Liisa Loog
- Institute of Genomics, University of Tartu, Tartu, 51010, Estonia
- Department of Genetics, University of Cambridge, Cambridge, CB2 3EH, UK
| | - Ulla Saarela
- Department of Obstetrics and Gynecology, Research Unit of Clinical Medicine, Medical Research Center, Oulu University Hospital, University of Oulu, Oulu, Finland
| | - Timo Tuuri
- Department of Obstetrics and Gynecology, University of Helsinki, Helsinki University Central Hospital, Haartmaninkatu 8, Helsinki, 00029 HUS, Finland
| | - Andres Salumets
- Department of Obstetrics and Gynecology, Institute of Clinical Medicine, University of Tartu, Tartu, 50406, Estonia
- Competence Centre of Health Technologies, Tartu, 50411, Estonia
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet and Karolinska University Hospital, Huddinge, Stockholm, 14186, Sweden
| | - Terhi T Piltonen
- Department of Obstetrics and Gynecology, Research Unit of Clinical Medicine, Medical Research Center, Oulu University Hospital, University of Oulu, Oulu, Finland
| | - Juha S Tapanainen
- Department of Obstetrics and Gynecology, University of Helsinki, Helsinki University Central Hospital, Haartmaninkatu 8, Helsinki, 00029 HUS, Finland
- Department of Obstetrics and Gynecology, HFR - Cantonal Hospital of Fribourg and University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
41
|
Bhattacharya K, Dey R, Sen D, Paul N, Basak AK, Purkait MP, Shukla N, Chaudhuri GR, Bhattacharya A, Maiti R, Adhikary K, Chatterjee P, Karak P, Syamal AK. Polycystic ovary syndrome and its management: In view of oxidative stress. Biomol Concepts 2024; 15:bmc-2022-0038. [PMID: 38242137 DOI: 10.1515/bmc-2022-0038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 12/11/2023] [Indexed: 01/21/2024] Open
Abstract
In the past two decades, oxidative stress (OS) has drawn a lot of interest due to the revelation that individuals with many persistent disorders including diabetes, polycystic ovarian syndrome (PCOS), cardiovascular, and other disorders often have aberrant oxidation statuses. OS has a close interplay with PCOS features such as insulin resistance, hyperandrogenism, and chronic inflammation; there is a belief that OS might contribute to the development of PCOS. PCOS is currently recognized as not only one of the most prevalent endocrine disorders but also a significant contributor to female infertility, affecting a considerable proportion of women globally. Therefore, the understanding of the relationship between OS and PCOS is crucial to the development of therapeutic and preventive strategies for PCOS. Moreover, the mechanistic study of intracellular reactive oxygen species/ reactive nitrogen species formation and its possible interaction with women's reproductive health is required, which includes complex enzymatic and non-enzymatic antioxidant systems. Apart from that, our current review includes possible regulation of the pathogenesis of OS. A change in lifestyle, including physical activity, various supplements that boost antioxidant levels, particularly vitamins, and the usage of medicinal herbs, is thought to be the best way to combat this occurrence of OS and improve the pathophysiologic conditions associated with PCOS.
Collapse
Affiliation(s)
- Koushik Bhattacharya
- School of Paramedics and Allied Health Sciences, Centurion University of Technology and Management, Khurda Road, Bhubaneswar, Odisha, India
| | - Rajen Dey
- Department of Medical Laboratory Technology, Swami Vivekananda University, Barrackpore, West Bengal, India
| | - Debanjana Sen
- Post-Graduate Department of Physiology, Hooghly Mohsin College, Chinsurah, West-Bengal, India
| | - Nimisha Paul
- Department of General Human Physiology and Biochemistry, Hitkarini Dental College and Hospital, Jabalpur, Madhya Pradesh, India
| | - Asim Kumar Basak
- School of Allied Health Sciences, Brainware University, Barasat, West-Bengal, India
| | | | - Nandini Shukla
- Department of Anatomy, Pt. J.N.M. Medical College, Raipur, Chhattisgarh, India
| | - Gargi Ray Chaudhuri
- Department of Physiotherapy, Nopany Institute of Health Care Studies, Kolkata, West-Bengal, India
| | - Aniruddha Bhattacharya
- Department of Physiology, International Medical School, Management and Science University, Selangor, Malaysia
| | - Rajkumar Maiti
- Department of Physiology, Bankura Christian College, Bankura, West Bengal, India
| | - Krishnendu Adhikary
- Department of Interdisciplinary Science, Centurion University of Technology and Management, Khurda Road, Bhubaneswar, Odisha, India
| | - Prity Chatterjee
- Department of Biotechnology, Paramedical College, Durgapur, West Bengal, India
| | - Prithviraj Karak
- Department of Physiology, Bankura Christian College, Bankura, West Bengal, India
| | - Alak Kumar Syamal
- Post-Graduate Department of Physiology, Hooghly Mohsin College, Chinsurah, West-Bengal, India
| |
Collapse
|
42
|
Lee DH, Park H, You JH, Seok J, Kwon DW, Kim YR, Kim GJ. Increased IGFBP2 Levels by Placenta-Derived Mesenchymal Stem Cells Enhance Glucose Metabolism in a TAA-Injured Rat Model via AMPK Signaling Pathway. Int J Mol Sci 2023; 24:16531. [PMID: 38003735 PMCID: PMC10671765 DOI: 10.3390/ijms242216531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/16/2023] [Accepted: 11/17/2023] [Indexed: 11/26/2023] Open
Abstract
The insulin resistance caused by impaired glucose metabolism induces ovarian dysfunction due to the central importance of glucose as a source of energy. However, the research on glucose metabolism in the ovaries is still lacking. The objectives of this study were to analyze the effect of PD-MSCs on glucose metabolism through IGFBP2-AMPK signaling and to investigate the correlation between glucose metabolism and ovarian function. Thioacetamide (TAA) was used to construct a rat injury model. PD-MSCs were transplanted into the tail vein (2 × 106) 8 weeks after the experiment started. The expression of the IGFBP2 gene and glucose metabolism factors (e.g., AMPK, GLUT4) was significantly increased in the PD-MSC group compared to the nontransplantation (NTx) group (* p < 0.05). The levels of follicular development markers and the sex hormones AMH, FSH, and E2 were also higher than those in the TAA group. Using ex vivo cocultivation, the mRNA and protein expression of IGFBP2, AMPK, and GLUT4 were significantly increased in the cocultivation with the PD-MSCs group and the recombinant protein-treated group (* p < 0.05). These findings suggest that the increased IGFBP2 levels by PD-MSCs play an important role in glucose metabolism and ovarian function through the IGFBP2-AMPK signaling pathway.
Collapse
Affiliation(s)
- Dae-Hyun Lee
- Department of Bioinspired Science, CHA University, Seongnam-si 13488, Republic of Korea; (D.-H.L.); (H.P.); (J.-H.Y.); (D.-W.K.)
- PLABiologics Co., Ltd., Seongnam-si 13522, Republic of Korea
| | - Hyeri Park
- Department of Bioinspired Science, CHA University, Seongnam-si 13488, Republic of Korea; (D.-H.L.); (H.P.); (J.-H.Y.); (D.-W.K.)
| | - Jun-Hyeong You
- Department of Bioinspired Science, CHA University, Seongnam-si 13488, Republic of Korea; (D.-H.L.); (H.P.); (J.-H.Y.); (D.-W.K.)
| | - Jin Seok
- Department of Obstetrics and Gynecology, University of Chicago, 5841A. Maryland Ave., Chicago, IL 60637, USA
| | - Dong-Wook Kwon
- Department of Bioinspired Science, CHA University, Seongnam-si 13488, Republic of Korea; (D.-H.L.); (H.P.); (J.-H.Y.); (D.-W.K.)
| | - Young-Ran Kim
- Department of Obstetics and Gynecology, CHA Bundang Medical Center, Seongnam-si 13496, Republic of Korea;
| | - Gi-Jin Kim
- Department of Bioinspired Science, CHA University, Seongnam-si 13488, Republic of Korea; (D.-H.L.); (H.P.); (J.-H.Y.); (D.-W.K.)
- PLABiologics Co., Ltd., Seongnam-si 13522, Republic of Korea
| |
Collapse
|
43
|
Zeber-Lubecka N, Kulecka M, Suchta K, Dąbrowska M, Ciebiera M, Hennig EE. Association of Mitochondrial Variants with the Joint Occurrence of Polycystic Ovary Syndrome and Hashimoto's Thyroiditis. Antioxidants (Basel) 2023; 12:1983. [PMID: 38001836 PMCID: PMC10669137 DOI: 10.3390/antiox12111983] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/01/2023] [Accepted: 11/03/2023] [Indexed: 11/26/2023] Open
Abstract
BACKGROUND The prevalence of Hashimoto's thyroiditis (HT) among women with polycystic ovary syndrome (PCOS) is higher than in the general female population, but the factors predisposing to the coexistence of these disorders remain unclear. This study employed whole genome sequencing of mitochondrial DNA to identify genetic variants potentially associated with the development of PCOS and HT and predisposing to their joint occurrence. RESULTS A total of 84 women participated, including patients with PCOS, HT, coexisting PCOS and HT (PCOS + HT) and healthy women. Both Fisher's exact and Mann-Whitney U statistical analyses were performed to compare the frequency of variants between groups. Ten differentiating variants were common to both analyses in PCOS + HT vs. PCOS, one in PCOS + HT vs. HT, and six in PCOS + HT vs. control. Several variants differentiating the PCOS + HT group from PCOS and controls were identified, located both in the mitochondrial genes (including the MT-CYB, MT-ND1, MT-ND2, MT-ND4, MT-ND6, MT-CO1, MT-CO3) and the D-loop region. Only two variants differentiated PCOS + HT and HT groups. One variant (13237a in MT-ND5) was common for all three comparisons and underrepresented in the PCOS + HT group. Functional enrichment analysis showed 10 pathways that were unique for the comparison of PCOS + HT and PCOS groups, especially related to ATP production and oxidative phosphorylation, and one pathway, the NADH-quinone oxidoreductase, chain M/4, that was unique for the comparison of PCOS + HT and control groups. Notably, nine pathways shared commonality between PCOS + HT vs. PCOS and PCOS + HT vs. control, related to the biogenesis and assembly of Complex I. CONCLUSION This study provides novel insights into the genetic variants associated with oxidative stress in women with coexisting PCOS and HT. Mitochondrial dysfunction and oxidative stress appear to play a role in the pathogenesis of both conditions. However, more mitochondrial variants were found to differentiate women with both PCOS and HT from those with PCOS alone than from those with HT alone.
Collapse
Affiliation(s)
- Natalia Zeber-Lubecka
- Department of Gastroenterology, Hepatology and Clinical Oncology, Centre of Postgraduate Medical Education, 02-781 Warsaw, Poland; (N.Z.-L.); (M.K.)
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland;
| | - Maria Kulecka
- Department of Gastroenterology, Hepatology and Clinical Oncology, Centre of Postgraduate Medical Education, 02-781 Warsaw, Poland; (N.Z.-L.); (M.K.)
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland;
| | - Katarzyna Suchta
- Department of Gynaecological Endocrinology, Medical University of Warsaw, 00-315 Warsaw, Poland;
| | - Michalina Dąbrowska
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland;
| | - Michał Ciebiera
- Second Department of Obstetrics and Gynecology, Centre of Postgraduate Medical Education, 00-189 Warsaw, Poland;
- Warsaw Institute of Women’s Health, 00-189 Warsaw, Poland
| | - Ewa E. Hennig
- Department of Gastroenterology, Hepatology and Clinical Oncology, Centre of Postgraduate Medical Education, 02-781 Warsaw, Poland; (N.Z.-L.); (M.K.)
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland;
| |
Collapse
|
44
|
Liu J, Teng Z, Xie H, Yuan H, Liu M, Chen J, Tang H, Xiang H, Wu H, Huang J. Prevalence and characteristics of polycystic ovarian syndrome in patients with bipolar disorder. J Affect Disord 2023; 340:387-395. [PMID: 37544485 DOI: 10.1016/j.jad.2023.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 08/01/2023] [Indexed: 08/08/2023]
Abstract
BACKGROUND Bipolar disorder (BD) is frequently accompanied by endocrine disturbances. We compared the prevalence of polycystic ovary syndrome (PCOS) and related reproductive disorders between drug-naïve BD patients and matched healthy controls (HCs) and between drug-naïve BD patients and BD patients with long-term medication, as well as the clinical metabolic correlates among BD patients. METHODS 72 drug-naïve BD patients, 98 HCs, and 72 BD patients with long-term medication were recruited in the study. Menstruation was recorded, reproductive hormone levels and metabolic indicators were measured, and a pelvic ultrasound examination was performed via transvaginal sensor for each participant. PCOS was defined using the Rotterdam criteria. RESULTS After controlling for demographic variables, drug-naïve BD patients presented higher rates of PCOS than the HCs (OR: 3.02, 95 % CI: 1.09-8.36). Regression analysis showed that long-term treatment with valproate (OR: 3.89, 95 % CI: 1.13-13.37), age (OR: 0.37, 95 % CI: 0.14-0.95), and insulin resistance index (OR: 1.73, 95 % CI: 1.10-12.71) were correlated with PCOS in BD patients. CONCLUSIONS Drug-naïve BD patients are susceptible to developing PCOS, and valproate is correlated with increased occurrence and development of PCOS. Therefore, PCOS in BD patients, especially those who use valproate, needs to be investigated and monitored closely by medical personnel.
Collapse
Affiliation(s)
- Jieyu Liu
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China; Department of Ultrasound Diagnosis, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Ziwei Teng
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Haiqing Xie
- Department of Ultrasound Diagnosis, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Hui Yuan
- Department of Stomatology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Minghui Liu
- Department of Ultrasound Diagnosis, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Jindong Chen
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Hui Tang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Hui Xiang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Haishan Wu
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Jing Huang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China.
| |
Collapse
|
45
|
Yang N, Ma K, Liu W, Zhang N, Shi Z, Ren J, Xu W, Li Y, Su R, Liang Y, Wang S, Li X. Serum metabolomics probes the molecular mechanism of action of acupuncture on metabolic pathways related to glucose metabolism in patients with polycystic ovary syndrome-related obesity. Biomed Chromatogr 2023; 37:e5710. [PMID: 37593801 DOI: 10.1002/bmc.5710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/03/2023] [Accepted: 07/17/2023] [Indexed: 08/19/2023]
Abstract
Polycystic ovary syndrome (PCOS) is a common endocrine syndrome, and obesity is the most common clinical manifestation. Acupuncture is effective in treating PCOS, but the differences in the biological mechanisms of acupuncture therapy and Western medicine treatment have not been determined. Thus, the purpose of this study was to find glucose metabolism-related pathways in acupuncture treatment and differentiate them from Western medical treatment. Sixty patients with PCOS-related obesity were randomly distributed into three groups: patients receiving (1) acupuncture treatment alone, (2) conventional Western medicine treatment, and (3) acupuncture combined with Western medicine treatment. A targeted metabolomics approach was used to identify small molecules and metabolites related to glucose metabolism in the serum of each group, and ultra-high-performance liquid chromatography-tandem mass spectrometry was used to analyze different metabolic fractions. The results showed acupuncture treatment modulates the activity of citric and succinic acids in the tricarboxylic acid cycle, regulates glycolytic and gluconeogenesis pathways, and improves the levels of sex hormones and energy metabolism. The intervention effects on the metabolic pathways were different between patients receiving combination therapy and patients receiving acupuncture therapy alone, suggesting that the dominant modulatory effect of Western drugs may largely conceal the efficacy of acupuncture intervention.
Collapse
Affiliation(s)
- Nan Yang
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Ke Ma
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Weidong Liu
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Ning Zhang
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Zhouhua Shi
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Jian Ren
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Wanli Xu
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Yuqiu Li
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Riliang Su
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Yanbo Liang
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Shijun Wang
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Xiuyang Li
- Postdoctoral Station, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| |
Collapse
|
46
|
Muhammad T, Wan Y, Lv Y, Li H, Naushad W, Chan WY, Lu G, Chen ZJ, Liu H. Maternal obesity: A potential disruptor of female fertility and current interventions to reduce associated risks. Obes Rev 2023; 24:e13603. [PMID: 37452501 DOI: 10.1111/obr.13603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 05/17/2023] [Accepted: 06/12/2023] [Indexed: 07/18/2023]
Abstract
Currently, obesity has achieved epidemic levels in reproductive-aged women with a myriad of consequences. Obesity is susceptible to several reproductive complications that eventually affect fertility rates. These complications originate from the deteriorated quality of oocytes from mothers with obesity, which increases the probability of chromosomal aneuploidy, elevated reactive oxygen species production, compromised embryonic developmental competency, and eventually reduced fertility. Maternal obesity is linked to pregnancy complications such as implantation error, abortion, miscarriage, and early pregnancy loss. This review highlights the adverse effects of maternal obesity on female fertility, with a focus on the mechanistic link between maternal obesity and oocyte quality and discusses possible measures to reduce its associated risks.
Collapse
Affiliation(s)
- Tahir Muhammad
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong, 250012, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong, 250012, China
- Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Jinan, Shandong, 250012, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Jinan, Shandong, 250012, China
- Department of Cell Biology and Anatomy, New York Medical College, 15 Dana Road, Valhalla, NY, 10595, USA
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, 54000, Pakistan
| | - Yanling Wan
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong, 250012, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong, 250012, China
- Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Jinan, Shandong, 250012, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Jinan, Shandong, 250012, China
| | - Yue Lv
- Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250012, China
- CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, Chinese University of Hong Kong, Hong Kong, 999077, China
| | - Hanzhen Li
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong, 250012, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong, 250012, China
- Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Jinan, Shandong, 250012, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Jinan, Shandong, 250012, China
| | - Wasifa Naushad
- Department of Pathology, Microbiology and Immunology, New York Medical College, 15 Dana Road, Valhalla, NY, 10595, USA
| | - Wai-Yee Chan
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong, 250012, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong, 250012, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Jinan, Shandong, 250012, China
- CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, Chinese University of Hong Kong, Hong Kong, 999077, China
| | - Gang Lu
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong, 250012, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong, 250012, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Jinan, Shandong, 250012, China
- CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, Chinese University of Hong Kong, Hong Kong, 999077, China
| | - Zi-Jiang Chen
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong, 250012, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong, 250012, China
- Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Jinan, Shandong, 250012, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Jinan, Shandong, 250012, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250012, China
- CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, Chinese University of Hong Kong, Hong Kong, 999077, China
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, 200000, China
| | - Hongbin Liu
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong, 250012, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong, 250012, China
- Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Jinan, Shandong, 250012, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Jinan, Shandong, 250012, China
- CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, Chinese University of Hong Kong, Hong Kong, 999077, China
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences, China
| |
Collapse
|
47
|
Zeber-Lubecka N, Ciebiera M, Hennig EE. Polycystic Ovary Syndrome and Oxidative Stress-From Bench to Bedside. Int J Mol Sci 2023; 24:14126. [PMID: 37762427 PMCID: PMC10531631 DOI: 10.3390/ijms241814126] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/06/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Oxidative stress (OS) is a condition that occurs as a result of an imbalance between the production of reactive oxygen species (ROS) and the body's ability to detoxify and neutralize them. It can play a role in a variety of reproductive system conditions, including polycystic ovary syndrome (PCOS), endometriosis, preeclampsia, and infertility. In this review, we briefly discuss the links between oxidative stress and PCOS. Mitochondrial mutations may lead to impaired oxidative phosphorylation (OXPHOS), decreased adenosine triphosphate (ATP) production, and an increased production of ROS. These functional consequences may contribute to the metabolic and hormonal dysregulation observed in PCOS. Studies have shown that OS negatively affects ovarian follicles and disrupts normal follicular development and maturation. Excessive ROS may damage oocytes and granulosa cells within the follicles, impairing their quality and compromising fertility. Impaired OXPHOS and mitochondrial dysfunction may contribute to insulin resistance (IR) by disrupting insulin signaling pathways and impairing glucose metabolism. Due to dysfunctional OXPHOS, reduced ATP production, may hinder insulin-stimulated glucose uptake, leading to IR. Hyperandrogenism promotes inflammation and IR, both of which can increase the production of ROS and lead to OS. A detrimental feedback loop ensues as IR escalates, causing elevated insulin levels that exacerbate OS. Exploring the relations between OS and PCOS is crucial to fully understand the role of OS in the pathophysiology of PCOS and to develop effective treatment strategies to improve the quality of life of women affected by this condition. The role of antioxidants as potential therapies is also discussed.
Collapse
Affiliation(s)
- Natalia Zeber-Lubecka
- Department of Gastroenterology, Hepatology and Clinical Oncology, Centre of Postgraduate Medical Education, 01-813 Warsaw, Poland;
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland
| | - Michał Ciebiera
- Second Department of Obstetrics and Gynecology, Centre of Postgraduate Medical Education, 01-813 Warsaw, Poland;
- Warsaw Institute of Women’s Health, 00-189 Warsaw, Poland
| | - Ewa E. Hennig
- Department of Gastroenterology, Hepatology and Clinical Oncology, Centre of Postgraduate Medical Education, 01-813 Warsaw, Poland;
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland
| |
Collapse
|
48
|
Szczesnowicz A, Szeliga A, Niwczyk O, Bala G, Meczekalski B. Do GLP-1 Analogs Have a Place in the Treatment of PCOS? New Insights and Promising Therapies. J Clin Med 2023; 12:5915. [PMID: 37762856 PMCID: PMC10532286 DOI: 10.3390/jcm12185915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/04/2023] [Accepted: 09/09/2023] [Indexed: 09/29/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) is the most prevalent endocrinopathy in women of reproductive age. This condition is characterized by hyperandrogenism and either oligo- or anovulation. PCOS patients often present comorbidities such as obesity, insulin resistance, impaired glucose metabolism, dyslipidemia, hypertension, metabolic syndrome, and an increased risk of diabetes. Given the profound implications of metabolic impairment in PCOS, the accurate diagnosis and management of these facets are imperative. The first-line approach to treatment involves lifestyle modifications, including dietary adjustments and exercise aimed at achieving weight loss, a strategy consistently emphasized across the literature. Supplementation with probiotics, vitamin D, and L-carnitine have also provided additional benefits to patients. In select cases, pharmacological interventions are needed for optimal therapeutic results. The most common medications used in PCOS include metformin, thiazolidinediones, inositols, and two classes of antidiabetic agents: dipeptidyl peptidase-IV (DPP-IV) inhibitors, and sodium-glucose cotransporter-2 (SGLT-2) inhibitors. Glucagon-like peptide-1 receptor agonists (GLP-1RAs) are a new addition to the therapeutic arsenal for the metabolic management of PCOS. GLP-1 receptor agonists cause insulin release in a glucose-dependent manner, yielding clinical benefits such as heightened satiety, reduced appetite, and appetite regulation. GLP-1RAs have demonstrated efficacy in reducing glycated hemoglobin levels and promoting weight loss while ameliorating hyperlipidemia. Prior to initiating GLP-1RA therapy, patients should undergo screening for contraindications, including history of pancreatitis, diabetic retinopathy, or thyroid cancer. The effects of treatment should be monitored using laboratory testing and body weight measurements. Effective communication between clinician and patient should be maintained with regular check-in for a period of 6 to 12 months.
Collapse
Affiliation(s)
- Aleksandra Szczesnowicz
- Department of Gynecological Endocrinology, Poznan University of Medical Sciences, 61-701 Poznan, Poland; (A.S.); (A.S.); (O.N.)
| | - Anna Szeliga
- Department of Gynecological Endocrinology, Poznan University of Medical Sciences, 61-701 Poznan, Poland; (A.S.); (A.S.); (O.N.)
| | - Olga Niwczyk
- Department of Gynecological Endocrinology, Poznan University of Medical Sciences, 61-701 Poznan, Poland; (A.S.); (A.S.); (O.N.)
| | - Gregory Bala
- UCD School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland;
| | - Blazej Meczekalski
- Department of Gynecological Endocrinology, Poznan University of Medical Sciences, 61-701 Poznan, Poland; (A.S.); (A.S.); (O.N.)
| |
Collapse
|
49
|
Placidi M, Vergara T, Casoli G, Flati I, Capece D, Artini PG, Virmani A, Zanatta S, D’Alessandro AM, Tatone C, Di Emidio G. Acyl-Carnitines Exert Positive Effects on Mitochondrial Activity under Oxidative Stress in Mouse Oocytes: A Potential Mechanism Underlying Carnitine Efficacy on PCOS. Biomedicines 2023; 11:2474. [PMID: 37760915 PMCID: PMC10525604 DOI: 10.3390/biomedicines11092474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/21/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Carnitines play a key physiological role in oocyte metabolism and redox homeostasis. In clinical and animal studies, carnitine administration alleviated metabolic and reproductive dysfunction associated with polycystic ovarian syndrome (PCOS). Oxidative stress (OS) at systemic, intraovarian, and intrafollicular levels is one of the main factors involved in the pathogenesis of PCOS. We investigated the ability of different acyl-carnitines to act at the oocyte level by counteracting the effects of OS on carnitine shuttle system and mitochondrial activity in mouse oocytes. Germinal vesicle (GV) oocytes were exposed to hydrogen peroxide and propionyl-l-carnitine (PLC) alone or in association with l-carnitine (LC) and acetyl-l-carnitine (ALC) under different conditions. Expression of carnitine palmitoyltransferase-1 (Cpt1) was monitored by RT-PCR. In in vitro matured oocytes, metaphase II (MII) apparatus was assessed by immunofluorescence. Oocyte mitochondrial respiration was evaluated by Seahorse Cell Mito Stress Test. We found that Cpt1a and Cpt1c isoforms increased under prooxidant conditions. PLC alone significantly improved meiosis completion and oocyte quality with a synergistic effect when combined with LC + ALC. Acyl-carnitines prevented Cpt1c increased expression, modifications of oocyte respiration, and ATP production observed upon OS. Specific effects of PLC on spare respiratory capacity were observed. Therefore, carnitine supplementation modulated the intramitochondrial transfer of fatty acids with positive effects on mitochondrial activity under OS. This knowledge contributes to defining molecular mechanism underlying carnitine efficacy on PCOS.
Collapse
Affiliation(s)
- Martina Placidi
- Department of Life, Health and Experimental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (M.P.); (T.V.); (G.C.); (A.M.D.); (C.T.)
| | - Teresa Vergara
- Department of Life, Health and Experimental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (M.P.); (T.V.); (G.C.); (A.M.D.); (C.T.)
| | - Giovanni Casoli
- Department of Life, Health and Experimental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (M.P.); (T.V.); (G.C.); (A.M.D.); (C.T.)
| | - Irene Flati
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (I.F.); (D.C.)
| | - Daria Capece
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (I.F.); (D.C.)
| | - Paolo Giovanni Artini
- Department of Obstetrics and Gynecology “P. Fioretti”, University of Pisa, 56126 Pisa, Italy;
| | - Ashraf Virmani
- Research, Innovation and Development, Alfasigma B.V., 3528 BG Utrecht, The Netherlands;
| | - Samuele Zanatta
- Research and Development, Labomar Spa, 31036 Istrana, Italy;
| | - Anna Maria D’Alessandro
- Department of Life, Health and Experimental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (M.P.); (T.V.); (G.C.); (A.M.D.); (C.T.)
| | - Carla Tatone
- Department of Life, Health and Experimental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (M.P.); (T.V.); (G.C.); (A.M.D.); (C.T.)
| | - Giovanna Di Emidio
- Department of Life, Health and Experimental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (M.P.); (T.V.); (G.C.); (A.M.D.); (C.T.)
| |
Collapse
|
50
|
Wu Y, Yang X, Hu Y, Hu X, Zhang Y, An T, Lv B, Tao S, Liu Q, Jiang G. Moringa oleifera leaf supplementation relieves oxidative stress and regulates intestinal flora to ameliorate polycystic ovary syndrome in letrozole-induced rats. Food Sci Nutr 2023; 11:5137-5156. [PMID: 37701184 PMCID: PMC10494614 DOI: 10.1002/fsn3.3473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 05/19/2023] [Accepted: 05/22/2023] [Indexed: 09/14/2023] Open
Abstract
This study investigated the effects of supplementation Moringa oleifera leaf (MOL) on relieving oxidative stress, anti-inflammation, changed the relative abundance of multiple intestinal flora and blood biochemical indices during letrozole-induced polycystic ovary syndrome (PCOS). Previous studies have shown that MOL has anti-inflammatory, anti-oxidation, insulin-sensitizing effects. However, whether MOL has beneficial effects on PCOS remains to be elucidated. In the current study, 10-week-old female Sprague-Dawley rats received letrozole to induce PCOS-like rats, and subsequently were treated with a MOL diet. Then, the body weight and estrus cycles were measured regularly in this period. Finally, the ovarian morphology, blood biochemical indices, anti-oxidative, intestinal flora, and anti-inflammation were observed at the end of the experiment. We found that MOL supplementation markedly decreased the body weight, significantly upregulated the expression of Sirt1, FoxO1, PGC-1α, IGF1, and substantially modulated the sex hormone level and improved insulin resistance, which may be associated with the relieves oxidative stress. Moreover, the supplementation of MOL changed the relative abundance of multiple intestinal flora, the relative abundance of Fusobacterium, Prevotella were decreased, and Blautia and Parabacteroides were increased. These results indicate that MOL is potentially a supplementary medication for the management of PCOS.
Collapse
Affiliation(s)
- YanXiang Wu
- Traditional Chinese Medicine SchoolBeijing University of Chinese MedicineBeijingChina
| | - XiuYan Yang
- Traditional Chinese Medicine SchoolBeijing University of Chinese MedicineBeijingChina
| | - YuanYuan Hu
- Traditional Chinese Medicine SchoolBeijing University of Chinese MedicineBeijingChina
| | - XueHong Hu
- Traditional Chinese Medicine SchoolBeijing University of Chinese MedicineBeijingChina
| | - YueLin Zhang
- Traditional Chinese Medicine SchoolBeijing University of Chinese MedicineBeijingChina
| | - Tian An
- Traditional Chinese Medicine SchoolBeijing University of Chinese MedicineBeijingChina
- School of traditional Chinese medicineCapital Medical UniversityBeijingChina
| | - BoHan Lv
- Traditional Chinese Medicine SchoolBeijing University of Chinese MedicineBeijingChina
| | - SiYu Tao
- Traditional Chinese Medicine SchoolBeijing University of Chinese MedicineBeijingChina
| | - Qing Liu
- Beijing Changping Qingyitang Hospital of Traditional Chinese MedicineBeijingChina
- Beijing Yaoshi Tongyuan Trading Co., Ltd.BeijingChina
| | - GuangJian Jiang
- Traditional Chinese Medicine SchoolBeijing University of Chinese MedicineBeijingChina
| |
Collapse
|