1
|
Kim HD, Jung S, Bang YH, Kim J, Kim HJ, Lee HE, Hyung J, Yoo C, Kim WT, Yoon MJ, Lee H, Ryou JH, Jeon H, Yanai H, Lee JS, Lee G, Ryu MH. Blood TCTP as a potential biomarker associated with immunosuppressive features and poor clinical outcomes in metastatic gastric cancer. J Immunother Cancer 2025; 13:e010455. [PMID: 40032602 PMCID: PMC11877152 DOI: 10.1136/jitc-2024-010455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 02/16/2025] [Indexed: 03/05/2025] Open
Abstract
BACKGROUND No established biomarker exists for specific myeloid cell populations or in gastric cancer. This study aimed to explore the prognostic and immunological relevance of plasma translationally controlled tumor protein (TCTP) in patients with advanced gastric cancer treated with an immune checkpoint inhibitor and/or cytotoxic chemotherapy. METHODS Plasma samples were prospectively collected from the cohorts of patients with gastric cancer treated with first-line fluoropyrimidine plus platinum chemotherapy (n=143, cohort 1) and third-line nivolumab (n=165, cohort 2). Plasma TCTP levels were quantified using ELISA, and multiplex proteomic analysis (Olink) was conducted to assess expression levels of immune-related proteins. External single-cell RNA sequencing (scRNA-seq) and spatial transcriptomics datasets were employed to validate the findings. RESULTS Patients with high plasma TCTP levels (TCTP-high group) exhibited poor progression-free survival (PFS) and overall survival (OS) with first-line chemotherapy compared with those with low levels (TCTP-low group) in cohort 1 (HR: 1.73 for PFS; 1.77 for OS). In the TCTP-high group, proteins associated with immunosuppressive myeloid cells, angiogenesis, and immune exclusion of T/natural killer (NK) cell function were upregulated, whereas proteins involved in T-cell activation/exhaustion were significantly upregulated in the TCTP-low group. scRNA-seq analyses identified a myeloid subset with high TPT1 (encoding TCTP) expression and TCTP-related molecules, enriched with inhibitory myeloid inflammation gene signatures and providing inhibitory signals to T/NK cells (Macrophage-chemokine). Spatial transcriptomics analyses revealed a tumor-cell-enriched cluster co-localized with the Macrophage-chemokine subset, which exhibited the highest TPT1 expression and a positive correlation between its abundance and average TPT1 levels. In nivolumab-treated patients (cohort 2), the high TCTP group was associated with poor survival outcomes (HR: 1.39 for PFS; 1.47 for OS). CONCLUSIONS Plasma TCTP is a prognostic biomarker, reflecting clinically relevant immunosuppressive myeloid signals in patients with gastric cancer.
Collapse
Affiliation(s)
- Hyung-Don Kim
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea (the Republic of)
| | - Seyoung Jung
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Korea (the Republic of)
| | - Yeong Hak Bang
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea (the Republic of)
| | - Jiae Kim
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea (the Republic of)
| | - Hee Jeong Kim
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea (the Republic of)
| | - Hyung Eun Lee
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea (the Republic of)
| | - Jaewon Hyung
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea (the Republic of)
| | - Changhoon Yoo
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea (the Republic of)
| | | | | | | | | | | | - Hideyuki Yanai
- Department of Inflammology, The University of Tokyo, Bunkyo-ku, Japan
| | - Jeong Seok Lee
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Korea (the Republic of)
| | | | - Min-Hee Ryu
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea (the Republic of)
| |
Collapse
|
2
|
Aoyama M, Kishimoto Y, Saita E, Ohmori R, Nakamura M, Kondo K, Momiyama Y. High plasma levels of fortilin are associated with cardiovascular events in patients undergoing coronary angiography. Heart Vessels 2025; 40:219-226. [PMID: 39342070 DOI: 10.1007/s00380-024-02465-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 09/18/2024] [Indexed: 10/01/2024]
Abstract
Excessive apoptosis and its insufficient clearance is characteristic of atherosclerotic plaques. Fortilin has potent antiapoptotic property and is abundantly expressed in atherosclerotic plaques. Fortilin-deficient mice had less atherosclerosis with more macrophage apoptosis. Recently, we reported that plasma fortilin levels were high in patients with coronary artery disease (CAD). However, its prognostic value has not been elucidated. We investigated plasma fortilin levels and major adverse cardiovascular events (MACE) in 404 patients (mean age 68 ± 12 years; 276 males) undergoing coronary angiography for suspected CAD. MACE was defined as cardiovascular death, myocardial infarction, unstable angina, heart failure, stroke, or coronary revascularization. Of the 404 patients, 218 (54%) had CAD. Plasma fortilin levels were higher in patients with CAD than without CAD (median 74.9 vs. 70.9 pg/mL, p < 0.05). During a mean follow-up of 5.7 ± 4.2 years, MACE was observed in 59 (15%) patients. Notably, patients with MACE had higher fortilin levels (median 83.0 vs. 71.4 pg/mL) and more often had fortilin level > 80.0 pg/mL (54% vs. 36%) than those without MACE (p < 0.025). A Kaplan-Meier analysis showed lower event-free survival in patients with fortilin > 80.0 pg/mL than in those with ≤ 80.0 pg/mL (p < 0.001). In multivariate Cox proportional hazards analysis, fortilin level (> 80.0 pg/mL) was an independent predictor of MACE (hazard ratio: 2.29, 95%CI: 1.36-3.85, p < 0.002). Among the 218 patients with CAD, fortilin level was also a significant predictor of MACE (hazard ratio: 2.48; 95%CI: 1.34-4.61, p < 0.005). Thus, high plasma fortilin levels were found to be associated with cardiovascular events in patients with CAD as well as those undergoing coronary angiography.
Collapse
Affiliation(s)
- Masayuki Aoyama
- Department of Cardiology, NHO Tokyo Medical Center, 2-5-1 Higashigaoka, Meguro-ku, Tokyo, 152-8902, Japan
- Department of Cardiovascular Medicine, Toho University Graduate School of Medicine, Tokyo, Japan
| | - Yoshimi Kishimoto
- Department of Food Science and Human Nutrition, Setsunan University, Osaka, Japan
| | - Emi Saita
- Department of Food Culture, BAIKA Women's University, Osaka, Japan
| | - Reiko Ohmori
- Faculty of Regional Design, Utsunomiya University, Tochigi, Japan
| | - Masato Nakamura
- Department of Cardiovascular Medicine, Toho University Graduate School of Medicine, Tokyo, Japan
| | | | - Yukihiko Momiyama
- Department of Cardiology, NHO Tokyo Medical Center, 2-5-1 Higashigaoka, Meguro-ku, Tokyo, 152-8902, Japan.
| |
Collapse
|
3
|
Miao G, Yang Y, Yang X, Chen D, Liu L, Lei X. The multifaceted potential of TPT1 as biomarker and therapeutic target. Heliyon 2024; 10:e38819. [PMID: 39397949 PMCID: PMC11471257 DOI: 10.1016/j.heliyon.2024.e38819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/17/2024] [Accepted: 09/30/2024] [Indexed: 10/15/2024] Open
Abstract
Tumor Protein Translationally-Controlled 1 (TPT1) is a highly conserved gene found across eukaryotic species. The protein encoded by TPT1 is ubiquitously expressed both intracellularly and extracellularly across various tissues, and its levels are influenced by various external factors. TPT1 interacts with several key proteins, including p53, MCL1, and immunoglobulins, highlighting its crucial role in cellular processes. The dysregulation of TPT1 expression has been documented in a wide range of diseases, indicating its potential as a valuable biomarker. Additionally, targeting TPT1 presents a promising approach for treating and preventing various conditions. This review will assess the potential of TPT1 as a biomarker and evaluate the effectiveness of current strategies designed to inhibit TPT1 in disease contexts.
Collapse
Affiliation(s)
- Gelan Miao
- Department of Critical Care Medicine, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province, 646000, China
| | - Yulian Yang
- Department of Critical Care Medicine, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province, 646000, China
| | - Xuelian Yang
- Department of Critical Care Medicine, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province, 646000, China
| | - Dexiu Chen
- Department of Critical Care Medicine, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province, 646000, China
| | - Li Liu
- Department of Anesthesiology, The First Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, 646000, China
| | - Xianying Lei
- Department of Critical Care Medicine, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province, 646000, China
| |
Collapse
|
4
|
Liu AB, Liu J, Wang S, Ma L, Zhang JF. Biological role and expression of translationally controlled tumor protein (TCTP) in tumorigenesis and development and its potential for targeted tumor therapy. Cancer Cell Int 2024; 24:198. [PMID: 38835077 DOI: 10.1186/s12935-024-03355-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 05/03/2024] [Indexed: 06/06/2024] Open
Abstract
Translationally controlled tumor protein (TCTP), also known as histamine-releasing factor (HRF) or fortilin, is a highly conserved protein found in various species. To date, multiple studies have demonstrated the crucial role of TCTP in a wide range of cellular pathophysiological processes, including cell proliferation and survival, cell cycle regulation, cell death, as well as cell migration and movement, all of which are major pathogenic mechanisms of tumorigenesis and development. This review aims to provide an in-depth analysis of the functional role of TCTP in tumor initiation and progression, with a particular focus on cell proliferation, cell death, and cell migration. It will highlight the expression and pathological implications of TCTP in various tumor types, summarizing the current prevailing therapeutic strategies that target TCTP.
Collapse
Affiliation(s)
- An-Bu Liu
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan, 750000, Ningxia, China
| | - Jia Liu
- Medical Experimental Center, General Hospital of Ningxia Medical University, Yinchuan, 750000, Ningxia, China
| | - Sheng Wang
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan, 750000, Ningxia, China
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, 750000, Ningxia, China
| | - Lei Ma
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan, 750000, Ningxia, China.
| | - Jun-Fei Zhang
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan, 750000, Ningxia, China.
| |
Collapse
|
5
|
Xia D, Xu GP, Zhang YT, Yan WW, Pan XR, Tong JH. Targeting inhibition of TCTP could inhibit proliferation and induce apoptosis in AML cells. Cell Signal 2024; 117:111074. [PMID: 38309549 DOI: 10.1016/j.cellsig.2024.111074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/05/2024]
Abstract
Translationally controlled tumor protein (TCTP) is a highly conserved multifunctional protein, which participates in many important physiological processes. Recently, the roles of TCTP in cell proliferation and apoptosis, especially its close relationship with various tumors, have attracted widespread attention. In this study, we found that the protein level of TCTP was significantly reduced in acute promyelocytic leukemia cell line NB4 transfected with retinoic acid-induced gene G (RIG-G). The RIG-G was found in our previous work as a key mediator of anti-proliferative activity in retinoid/interferon-related pathways. Here, we tried to further explore the function of TCTP in the development of acute myeloid leukemia (AML) from different levels. Our results showed that inhibiting TCTP expression could attenuate AML cells proliferation and induce apoptosis both in AML cell lines and in xenograft of NOD-SCID mice. In addition, either compared with patients in complete remission or non-leukemia patients, we detected that the expression of TCTP was generally high in the fresh bone marrow of AML patients, suggesting that there was a certain correlation between TCTP and AML disease progression. Taken together, our study revealed the role of TCTP in AML development, and provided a potential target for AML treatment.
Collapse
Affiliation(s)
- Di Xia
- Central Laboratory, Rui-jin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Rui-jin Er Road, Shanghai 200025, China
| | - Gui-Ping Xu
- Transfusion Department, The Second Affiliated Hospital of Chongqing Medical University, No.74 Linjiang Road, Yuzhong District, Chongqing 400010, China
| | - Ying-Ting Zhang
- Central Laboratory, Rui-jin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Rui-jin Er Road, Shanghai 200025, China
| | - Wei-Wei Yan
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Xiao-Rong Pan
- Faculty of Medical Laboratory Science, College of Health Science and Technology, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Rui-jin Er Road, Shanghai 200025, China.
| | - Jian-Hua Tong
- Central Laboratory, Rui-jin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Rui-jin Er Road, Shanghai 200025, China.
| |
Collapse
|
6
|
Stoyanov DS, Conev NV, Penkova-Ivanova MI, Donev IS. Prognostic value of translationally controlled tumor protein in colon cancer. Mol Clin Oncol 2023; 19:72. [PMID: 37614375 PMCID: PMC10442730 DOI: 10.3892/mco.2023.2668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 07/12/2023] [Indexed: 08/25/2023] Open
Abstract
The translationally controlled tumor protein (TCTP) is a highly conserved protein involved in a variety of normal cell functions and disease processes. Preclinical studies revealed that TCTP has anti-apoptotic properties, promotes cell growth and division and is involved in cancer progression by promoting invasion and metastasis. The present study explored the potential value of TCTP as a prognostic marker in colon cancer. A retrospective analysis of 74 patients with colon cancer was performed. Using immunohistochemistry, TCTP levels in the primary tumor were assessed semi-quantitatively by the calculation of cytoplasmic and nuclear H-score. Cytoplasmic TCTP levels in the primary tumor had no statistically significant association with disease-free survival (DFS), progression-free survival (PFS) and overall survival (OS) in the present patient population. Patients whose primary tumors had a negative nuclear TCTP expression had significantly improved clinical outcomes. The PFS for the negative nuclear TCTP expression group was 7.7 months [95% confidence interval (CI), 5.8-9.5] compared with 5.5 months (95% CI, 3.2-7.8) in the group with positive nuclear expression (P=0.023, Mantel-Cox log-rank). Patients with a negative nuclear expression of TCTP had a significantly higher median OS (22.2 months; 95% CI, 16.1-28.3) compared with those with positive TCTP nuclear expression (median 13.2 months; 95% CI, 10.1-16.3; P=0.008, Mantel-Cox log-rank). In a multivariate Cox regression model, a positive nuclear TCTP H-score was an independent risk factor for worse PFS and OS. The 1-year OS rate in the group with negative nuclear TCTP expression was 86.3% compared with 56.5% in patients with positive nuclear TCTP expression (P=0.008). The present study suggested that semiquantitative H-score measurement of TCTP levels in the nuclei of tumor cells from the primary tumor is a potential prognostic marker for clinical outcomes in patients with colon cancer.
Collapse
Affiliation(s)
- Dragomir Svetozarov Stoyanov
- Department of Oncology, Medical University Varna, Varna 9002, Bulgaria
- Clinic of Medical Oncology, UMHAT Sveta Marina, Varna 9010, Bulgaria
| | - Nikolay Vladimirov Conev
- Department of Oncology, Medical University Varna, Varna 9002, Bulgaria
- Clinic of Medical Oncology, UMHAT Sveta Marina, Varna 9010, Bulgaria
| | - Mariya Ivanova Penkova-Ivanova
- Department of Oncology, Medical University Varna, Varna 9002, Bulgaria
- Clinic of Medical Oncology, UMHAT Sveta Marina, Varna 9010, Bulgaria
| | | |
Collapse
|
7
|
Baldissera AB, Boia-Ferreira M, Basílio ABC, Resende JSDS, Castro MAA, Chaim OM, Gremski LH, Veiga SS, Senff-Ribeiro A. Sertraline as a potential cancer therapeutic approach: Biological relevance of TCTP in breast cancer cell lines and tumors. Adv Med Sci 2023; 68:227-237. [PMID: 37379765 DOI: 10.1016/j.advms.2023.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 02/27/2023] [Accepted: 06/01/2023] [Indexed: 06/30/2023]
Abstract
PURPOSE This study aimed to evaluate the role of Translationally Controlled Tumor Protein (TCTP) in breast cancer (BC) and investigate the effects of sertraline, a serotonin selective reuptake inhibitor (SSRI), on BC cells. The objective was to assess the potential of sertraline as a therapeutic agent in BC treatment by examining its ability to inhibit TCTP expression and exert antitumor effects. MATERIAL AND METHODS We utilized five different BC cell lines representing the molecular heterogeneity and distinct subtypes of BC, including luminal, normal-like, HER2-positive, and triple-negative BC. These subtypes play a crucial role in determining clinical treatment strategies and prognosis. RESULTS The highest levels of TCTP were observed in triple-negative BC cell lines, known for their aggressive behavior. Sertraline treatment reduced TCTP expression in BC cell lines, significantly impacting cell viability, clonogenicity, and migration. Additionally, sertraline sensitized triple-negative BC cell lines to cytotoxic chemotherapeutic drugs (doxorubicin and cisplatin) suggesting its potential as an adjunctive therapy to enhance the chemotherapeutic response. Bioinformatic analysis of TCTP mRNA levels in TCGA BC data revealed a negative correlation between TCTP levels and patient survival, as well as between TCTP/tpt1 and Ki67. These findings contradict our data and previous studies indicating a correlation between TCTP protein levels and aggressiveness and poor prognosis in BC. CONCLUSIONS Sertraline shows a promise as a potential therapeutic option for BC, particularly in triple-negative BC. Its ability to inhibit TCTP expression, enhance chemotherapeutic response, highlights its potential clinical utility in BC treatment, specifically in triple-negative BC subtype.
Collapse
Affiliation(s)
| | | | - Alana B C Basílio
- Department of Cell Biology, Federal University of Paraná, Curitiba, PR, Brazil
| | - Jean Silva de Souza Resende
- Bioinformatics and Systems Biology Laboratory, Federal University of Paraná, Curitiba, PR, Brazil; Pelé Pequeno Príncipe Research Institute, Oncology Division, Curitiba, PR, Brazil
| | | | - Olga M Chaim
- Department of Cell Biology, Federal University of Paraná, Curitiba, PR, Brazil
| | | | - Silvio S Veiga
- Department of Cell Biology, Federal University of Paraná, Curitiba, PR, Brazil
| | | |
Collapse
|
8
|
Santamaria G, Cioce M, Rizzuto A, Fazio VM, Viglietto G, Lucibello M. Harnessing the value of TCTP in breast cancer treatment resistance: an opportunity for personalized therapy. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2023; 6:447-467. [PMID: 37842235 PMCID: PMC10571059 DOI: 10.20517/cdr.2023.21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/25/2023] [Accepted: 06/15/2023] [Indexed: 10/17/2023]
Abstract
Early identification of breast cancer (BC) patients at a high risk of progression may aid in therapeutic and prognostic aims. This is especially true for metastatic disease, which is responsible for most cancer-related deaths. Growing evidence indicates that the translationally controlled tumor protein (TCTP) may be a clinically relevant marker for identifying poorly differentiated aggressive BC tumors. TCTP is an intriguing protein with pleiotropic functions, which is involved in multiple signaling pathways. TCTP may also be involved in stress response, cell growth and proliferation-related processes, underlying its potential role in the initiation of metastatic growth. Thus, TCTP marks specific cancer cell sub-populations with pronounced stress adaptation, stem-like and immune-evasive properties. Therefore, we have shown that in vivo phospho-TCTP levels correlate with the response of BC cells to anti-HER2 agents. In this review, we discuss the clinical relevance of TCTP for personalized therapy, specific TCTP-targeting strategies, and currently available therapeutic agents. We propose TCTP as an actionable clinically relevant target that could potentially improve patient outcomes.
Collapse
Affiliation(s)
- Gianluca Santamaria
- Department of Experimental and Clinical Medicine, “Magna Graecia” University of Catanzaro, Catanzaro 88100, Italy
- These authors contributed equally
| | - Mario Cioce
- Department of Medicine, Laboratory of Molecular Medicine and Biotechnology, University Campus Bio-Medico of Rome, Rome 00128, Italy
- Institute of Translational Pharmacology, National Research Council of Italy (CNR), Rome 00133, Italy
- These authors contributed equally
| | - Antonia Rizzuto
- Department of Medical and Surgical Sciences, “Magna Graecia” University of Catanzaro, Catanzaro 88100, Italy
| | - Vito Michele Fazio
- Department of Medicine, Laboratory of Molecular Medicine and Biotechnology, University Campus Bio-Medico of Rome, Rome 00128, Italy
- Institute of Translational Pharmacology, National Research Council of Italy (CNR), Rome 00133, Italy
| | - Giuseppe Viglietto
- Department of Experimental and Clinical Medicine, “Magna Graecia” University of Catanzaro, Catanzaro 88100, Italy
| | - Maria Lucibello
- Department of Experimental and Clinical Medicine, “Magna Graecia” University of Catanzaro, Catanzaro 88100, Italy
- Department of Biomedical Sciences, Institute for Biomedical Research and Innovation, National Research Council of Italy (CNR), Catanzaro 88100, Italy
| |
Collapse
|
9
|
Malard F, Sizun C, Thureau A, Carlier L, Lescop E. Structural transitions in TCTP tumor protein upon binding to the anti-apoptotic protein family member Mcl-1. J Biol Chem 2023:104830. [PMID: 37201583 PMCID: PMC10333598 DOI: 10.1016/j.jbc.2023.104830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 05/09/2023] [Accepted: 05/11/2023] [Indexed: 05/20/2023] Open
Abstract
Translationally Controlled Tumor Protein (TCTP) serves as a pro-survival factor in tumor cells, inhibiting the mitochondrial apoptosis pathway by enhancing the function of anti-apoptotic Bcl-2 family members Mcl-1 and Bcl-xL. TCTP specifically binds to Bcl-xL, preventing Bax-dependent Bcl-xL-induced cytochrome c release, and it reduces Mcl-1 turnover by inhibiting its ubiquitination, thereby decreasing Mcl-1-mediated apoptosis. TCTP harbors a BH3-like motif that forms a β-strand buried in the globular domain of the protein. In contrast, the crystal structure of the TCTP BH3-like peptide in complex with the Bcl-2 family member Bcl-xL reveals an α-helical conformation for the BH3-like motif, suggesting significant structural changes upon complex formation. Employing biochemical and biophysical methods, including limited proteolysis, circular dichroism NMR, and SAXS, we describe the TCTP complex with the Bcl-2 homolog Mcl-1. Our findings demonstrate that full-length TCTP binds to the BH3 binding groove of Mcl-1 via its BH3-like motif, experiencing conformational exchange at the interface on a micro- to milli-second timescale. Concurrently, the TCTP globular domain becomes destabilized, transitioning into a molten-globule state. Furthermore, we establish that the non-canonical residue D16 within TCTP BH3-like motif reduces stability while enhancing the dynamics of the intermolecular interface. In conclusion, we detail the structural plasticity of TCTP and discuss its implications for partner interactions and future anticancer drug design strategies aimed at targeting TCTP complexes.
Collapse
Affiliation(s)
- Florian Malard
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Université Paris-Saclay, LabEx LERMIT, 1 avenue de la Terrasse, 91190 Gif-sur-Yvette, France
| | - Christina Sizun
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Université Paris-Saclay, LabEx LERMIT, 1 avenue de la Terrasse, 91190 Gif-sur-Yvette, France
| | | | - Ludovic Carlier
- Laboratoire Des Biomolécules, LBM, Sorbonne Université, Ecole Normale Supérieure, PSL University, CNRS, Paris, France
| | - Ewen Lescop
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Université Paris-Saclay, LabEx LERMIT, 1 avenue de la Terrasse, 91190 Gif-sur-Yvette, France.
| |
Collapse
|
10
|
Ugorji OL, Umeh ONC, Agubata CO, Adah D, Obitte NC, Chukwu A. The effect of noisome preparation methods in encapsulating 5-fluorouracil and real time cell assay against HCT-116 colon cancer cell line. Heliyon 2022; 8:e12369. [PMID: 36582708 PMCID: PMC9793284 DOI: 10.1016/j.heliyon.2022.e12369] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/17/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022] Open
Abstract
The formulation of niosomes is influenced by a number of variables, and these variables may eventually affect the formulation's outcome. One of the elements that can influence the physico-chemical properties of niosomes is the method used in preparation of the formulation. In this study, we established if various methods of preparation have any impact on the prepared vesicles when loaded with 5-fluorouracil. Thereafter, a real-time cell assay (an in vitro cytotoxicity test) against HCT-116 colon cancer cell lines was done on an optimised batch. 5-fluorouracil loaded niosomes were prepared with either Tween 60 or Span 60 by four different methods - namely thin film hydration (TFH), reverse phase evaporation (RPE), evaporation/sonication (EVP/SON), and the ethanol injection method (EIM). In vitro evaluations were done on the formulations, and these included particle size analysis, entrapment efficiency, scanning electron microscopy (SEM), photomicrography, drug release, polydispersity index, and Fourier transform infrared spectroscopy (FTIR). The effects of the preparation method and type of non-ionic surfactants on encapsulation efficiency, particle size, and in vitro drug release of the niosomes at pH 7.4 were evaluated. An in vitro cytotoxicity test (real time cell assay (RTCA)) against HCT-116 cells was carried out using the optimised formulation. Results showed physically stable formulations. The TFH method produced the smallest particle sizes (187 nm and 482 nm), while the EVP/SON method produced the largest particle sizes (4476 nm and 9111 nm). The Tween-based niosomes prepared by TFH or RPE had higher drug entrapment. The FTIR studies of niosomal formulations showed broad peaks at wavenumbers above 3000 cm-1, indicating strong hydrogen bonds. The RTCA showed 5-fluorouracil-loaded niosomes caused more sustained cell death compared to the pure drug and blank niosomes. The methods of preparation affected the particle size, polydispersity index, entrapment efficiency, and the physical stability of the vesicles. The thin film hydration method was more robust in the entrapped 5-fluorouracil and showed lower particle sizes when compared to all the other methods. RTCA showed sustained cell death in real time.
Collapse
Affiliation(s)
- Onyinyechi Lydia Ugorji
- Department of Pharmaceutical Technology and Industrial Pharmacy, University of Nigeria, Nsukka, Nigeria,Corresponding author.
| | | | - Chukwuma Obumneme Agubata
- Department of Pharmaceutical Technology and Industrial Pharmacy, University of Nigeria, Nsukka, Nigeria
| | - Dickson Adah
- Department of Cancer Immunology, Clinical research center Lund University, Malmo, Sweden
| | - Nicholas Chinedu Obitte
- Department of Pharmaceutical Technology and Industrial Pharmacy, University of Nigeria, Nsukka, Nigeria
| | - Amarauche Chukwu
- Department of Pharmaceutical Technology and Industrial Pharmacy, University of Nigeria, Nsukka, Nigeria
| |
Collapse
|
11
|
High Plasma Levels of Fortilin in Patients with Coronary Artery Disease. Int J Mol Sci 2022; 23:ijms23168923. [PMID: 36012185 PMCID: PMC9408986 DOI: 10.3390/ijms23168923] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 08/08/2022] [Accepted: 08/09/2022] [Indexed: 12/19/2022] Open
Abstract
Excessive apoptosis is known to be a common feature of atherosclerotic lesions. Fortilin is recognized to have potent antiapoptotic properties. An increased fortilin expression was demonstrated in atherosclerotic lesions, and fortilin knockout mice developed less atherosclerosis. However, no study has reported blood fortilin levels in patients with coronary artery disease (CAD). We investigated plasma fortilin levels in 384 patients undergoing coronary angiography. CAD severity was evaluated as the numbers of stenotic vessels and segments. CAD was found in 208 patients (one-vessel (1VD), n = 86; two-vessel (2VD), n = 68; and three-vessel disease (3VD), n = 54). Plasma C-reactive protein (CRP) levels were higher in patients with CAD than without CAD (median 0.60 vs. 0.45 mg/L, p < 0.01). Notably, fortilin levels were higher in patients with CAD than without CAD (75.1 vs. 69.7 pg/mL, p < 0.02). A stepwise increase in fortilin was found according to the number of stenotic vessels: 69.7 in CAD(−), 71.1 in 1VD, 75.7 in 2VD, and 84.7 pg/mL in 3VD (p < 0.01). Fortilin levels also correlated with the number of stenotic segments (r = 0.16) and CRP levels (r = 0.24) (p < 0.01). In a multivariate analysis, fortilin levels were independently associated with 3VD. The odds ratio for 3VD was 1.93 (95%CI = 1.01−3.71) for a high fortilin level (>70.0 pg/mL). Thus, plasma fortilin levels in patients with CAD, especially those with 3VD, were found to be high and to be associated with the severity of CAD.
Collapse
|
12
|
Targeting TCTP sensitizes tumor to T cell-mediated therapy by reversing immune-refractory phenotypes. Nat Commun 2022; 13:2127. [PMID: 35440620 PMCID: PMC9019109 DOI: 10.1038/s41467-022-29611-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 03/25/2022] [Indexed: 01/07/2023] Open
Abstract
Immunotherapy has emerged as a powerful approach to cancer treatment. However, immunotherapeutic resistance limits its clinical application. Therefore, identifying immune-resistant factors, which can be targeted by clinically available drugs and it also can be a companion diagnostic marker, is needed to develop combination strategies. Here, using the transcriptome data of patients, and immune-refractory tumor models, we identify TCTP as an immune-resistance factor that correlates with clinical outcome of anti-PD-L1 therapy and confers immune-refractory phenotypes, decreased T cell trafficking to the tumor and resistance to cytotoxic T lymphocyte-mediated tumor cell killing. Mechanistically, TCTP activates the EGFR-AKT-MCL-1/CXCL10 pathway by phosphorylation-dependent interaction with Na, K ATPase. Furthermore, treatment with dihydroartenimsinin, the most effective agent impending the TCTP-mediated-refractoriness, synergizes with T cell-mediated therapy to control immune-refractory tumors. Thus, our findings suggest a role of TCTP in promoting immune-refractoriness, thereby encouraging a rationale for combination therapies to enhance the efficacy of T cell-mediated therapy. Translationally controlled tumor protein (TCTP) regulates several cellular processes, including apoptosis, and is overexpressed in several cancer types. Here, the authors report that high levels of TCTP are associated with poor response to anti-PD-L1 and that TCTP targeting increases the efficacy of T cell-mediated anti-tumor therapy.
Collapse
|
13
|
Aguinaga Martínez MV, Jozičová N, Dušek J, Horstkotte B, Pávek P, Miró M, Sklenářová H. Real-time monitoring of Metridia luciferase release from cells upon interaction with model toxic substances by a fully automatic flow setup - A proof of concept. Talanta 2022; 245:123465. [PMID: 35427949 DOI: 10.1016/j.talanta.2022.123465] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/04/2022] [Accepted: 04/05/2022] [Indexed: 11/25/2022]
Abstract
This manuscript reports on a fully automatic sequential injection system incorporating a 3D printed module for real-time monitoring of the release of Metridia luciferase from a modified liver epithelial cell line. To this end, a simple and effective approach for the automation of flash-type chemiluminescence assays was developed. The 3D printed module comprised an apical and a basal compartment that enabled monitoring membrane processes on both sides of the cell monolayer aimed at elucidating the direction of luciferase release. A natural release was observed after transfection with the luciferase plasmid by online measurement of the elicited light from the reaction of the synthesized luciferase with the coelenterazine substrate. Model substances for acute toxicity from the group of cholic acids - chenodeoxycholic and deoxycholic acids - were applied at the 1.0 and 0.5 mmol L-1 levels. The tested cholic acids caused changes in cell membrane permeability that was accompanied by an increased luciferase release. The obtained kinetic profiles were evaluated based on the delay between the addition of the toxic substance and the increase of the chemiluminescence signal. All experiments were carried out in a fully automatic system in ca. 5 min per sample in 30 min intervals and no manual interventions were needed for a sampling period of at least 6 h.
Collapse
Affiliation(s)
- Maite V Aguinaga Martínez
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05, Hradec Králové, Czech Republic; INQUISUR, Departamento de Química, Universidad Nacional del Sur (UNS)-CONICET, Av. Alem 1253, 8000, Bahía Blanca, Argentina
| | - Natali Jozičová
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05, Hradec Králové, Czech Republic
| | - Jan Dušek
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05, Hradec Králové, Czech Republic
| | - Burkhard Horstkotte
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05, Hradec Králové, Czech Republic
| | - Petr Pávek
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05, Hradec Králové, Czech Republic
| | - Manuel Miró
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05, Hradec Králové, Czech Republic; FI-TRACE Group, Department of Chemistry, University of the Balearic Islands, Carretera de Valldemossa km 7.5, E-07122, Palma de Mallorca, Spain
| | - Hana Sklenářová
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05, Hradec Králové, Czech Republic.
| |
Collapse
|
14
|
Cho H, Kim HK, Oh A, Jeong MG, Song J, Lee K, Hwang ES. dTBP2 attenuates severe airway inflammation by blocking inflammatory cellular network mediated by dTCTP. Biomed Pharmacother 2021; 144:112316. [PMID: 34628164 DOI: 10.1016/j.biopha.2021.112316] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/18/2021] [Accepted: 10/05/2021] [Indexed: 11/28/2022] Open
Abstract
Dimeric translationally controlled tumor protein (dTCTP), also known as histamine-releasing factor, amplifies allergic responses and its production has been shown to increase in inflammatory diseases such as allergic asthma. Despite the critical role of dTCTP in allergic inflammation, little is known about its production pathways, associated cellular networks, and underlying molecular mechanisms. In this study, we explored the dTCTP-mediated inflammatory networks and molecular mechanisms of dTCTP associated with lipopolysaccharides (LPS)-induced severe asthma. LPS stimulation increased dTCTP production by mast cells and dTCTP secretion during degranulation, and extracellular dTCTP subsequently increased the production of pro-inflammatory molecules, including IL-8, by airway epithelial cells without affecting mast cell activation. Furthermore, dimeric TCTP-binding peptide 2 (dTBP2), a dTCTP inhibitor peptide, selectively blocked the dTCTP-mediated signaling network from mast cells to epithelial cells and decreased IL-8 production through IkB induction and nuclear p65 export in airway epithelial cells. More importantly, dTBP2 efficiently attenuated LPS-induced severe airway inflammation in vivo, resulting in decreased immune cell infiltration and IL-17 production and attenuated dTCTP secretion. These results suggest that dTCTP produced by mast cells exacerbates airway inflammation through activation of airway epithelial cells in a paracrine signaling manner, and that dTBP2 is beneficial in the treatment of severe airway inflammation by blocking the dTCTP-mediated inflammatory cellular network.
Collapse
Affiliation(s)
- Hyunsoo Cho
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, South Korea
| | - Hyo Kyeong Kim
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, South Korea
| | - Areum Oh
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, South Korea
| | - Mi Gyeong Jeong
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, South Korea
| | - Jiseo Song
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, South Korea
| | - Kyunglim Lee
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, South Korea.
| | - Eun Sook Hwang
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, South Korea.
| |
Collapse
|
15
|
Jeong M, Jeong MH, Kim JE, Cho S, Lee KJ, Park S, Sohn J, Park YG. TCTP protein degradation by targeting mTORC1 and signaling through S6K, Akt, and Plk1 sensitizes lung cancer cells to DNA-damaging drugs. Sci Rep 2021; 11:20812. [PMID: 34675258 PMCID: PMC8531033 DOI: 10.1038/s41598-021-00247-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 10/08/2021] [Indexed: 11/14/2022] Open
Abstract
Translationally controlled tumor protein (TCTP) is expressed in many tissues, particularly in human tumors. It plays a role in malignant transformation, apoptosis prevention, and DNA damage repair. The signaling mechanisms underlying TCTP regulation in cancer are only partially understood. Here, we investigated the role of mTORC1 in regulating TCTP protein levels, thereby modulating chemosensitivity, in human lung cancer cells and an A549 lung cancer xenograft model. The inhibition of mTORC1, but not mTORC2, induced ubiquitin/proteasome-dependent TCTP degradation without a decrease in the mRNA level. PLK1 activity was required for TCTP ubiquitination and degradation and for its phosphorylation at Ser46 upon mTORC1 inhibition. Akt phosphorylation and activation was indispensable for rapamycin-induced TCTP degradation and PLK1 activation, and depended on S6K inhibition, but not mTORC2 activation. Furthermore, the minimal dose of rapamycin required to induce TCTP proteolysis enhanced the efficacy of DNA-damaging drugs, such as cisplatin and doxorubicin, through the induction of apoptotic cell death in vitro and in vivo. This synergistic cytotoxicity of these drugs was induced irrespective of the functional status of p53. These results demonstrate a new mechanism of TCTP regulation in which the mTORC1/S6K pathway inhibits a novel Akt/PLK1 signaling axis and thereby induces TCTP protein stabilization and confers resistance to DNA-damaging agents. The results of this study suggest a new therapeutic strategy for enhancing chemosensitivity in lung cancers regardless of the functional status of p53.
Collapse
Affiliation(s)
- Mini Jeong
- Department of Biochemistry and Molecular Biology, Korea University College of Medicine, 73 Koryodae-ro, Sungbuk-gu, Seoul, 02841, Republic of Korea
- Korean Institute of Molecular Medicine and Nutrition, Korea University College of Medicine, Seoul, Republic of Korea
- Division of Allergy and Clinical Immunology, Department of Internal Medicine, ASAN Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Mi Hyeon Jeong
- Department of Biochemistry and Molecular Biology, Korea University College of Medicine, 73 Koryodae-ro, Sungbuk-gu, Seoul, 02841, Republic of Korea
- Korean Institute of Molecular Medicine and Nutrition, Korea University College of Medicine, Seoul, Republic of Korea
| | - Jung Eun Kim
- Department of Biochemistry and Molecular Biology, Korea University College of Medicine, 73 Koryodae-ro, Sungbuk-gu, Seoul, 02841, Republic of Korea
- Korean Institute of Molecular Medicine and Nutrition, Korea University College of Medicine, Seoul, Republic of Korea
| | - Serin Cho
- Department of Biochemistry and Molecular Biology, Korea University College of Medicine, 73 Koryodae-ro, Sungbuk-gu, Seoul, 02841, Republic of Korea
- Korean Institute of Molecular Medicine and Nutrition, Korea University College of Medicine, Seoul, Republic of Korea
| | - Kyoung Jin Lee
- Department of Biochemistry and Molecular Biology, Korea University College of Medicine, 73 Koryodae-ro, Sungbuk-gu, Seoul, 02841, Republic of Korea
- Korean Institute of Molecular Medicine and Nutrition, Korea University College of Medicine, Seoul, Republic of Korea
| | - Serkin Park
- Department of Biochemistry and Molecular Biology, Korea University College of Medicine, 73 Koryodae-ro, Sungbuk-gu, Seoul, 02841, Republic of Korea
- Korean Institute of Molecular Medicine and Nutrition, Korea University College of Medicine, Seoul, Republic of Korea
| | - Jeongwon Sohn
- Department of Biochemistry and Molecular Biology, Korea University College of Medicine, 73 Koryodae-ro, Sungbuk-gu, Seoul, 02841, Republic of Korea
- Korean Institute of Molecular Medicine and Nutrition, Korea University College of Medicine, Seoul, Republic of Korea
| | - Yun Gyu Park
- Department of Biochemistry and Molecular Biology, Korea University College of Medicine, 73 Koryodae-ro, Sungbuk-gu, Seoul, 02841, Republic of Korea.
- Korean Institute of Molecular Medicine and Nutrition, Korea University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
16
|
Grbčić P, Eichmann TO, Kraljević Pavelić S, Sedić M. The Sphingosine Kinase 2 Inhibitor ABC294640 Restores the Sensitivity of BRAFV600E Mutant Colon Cancer Cells to Vemurafenib by Reducing AKT-Mediated Expression of Nucleophosmin and Translationally-Controlled Tumour Protein. Int J Mol Sci 2021; 22:ijms221910767. [PMID: 34639107 PMCID: PMC8509245 DOI: 10.3390/ijms221910767] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 09/26/2021] [Accepted: 10/02/2021] [Indexed: 01/21/2023] Open
Abstract
Vemurafenib (PLX4032), small-molecule inhibitor of mutated BRAFV600E protein, has emerged as a potent anti-cancer agent against metastatic melanoma harboring BRAFV600E mutation. Unfortunately, the effect of PLX4032 in the treatment of metastatic BRAF mutated colorectal cancer (CRC) is less potent due to high incidence of fast-developing chemoresistance. It has been demonstrated that sphingolipids are important mediators of chemoresistance to various therapies in colon cancer. In this study, we will explore the role of major regulators of sphingolipid metabolism and signaling in the development of resistance to vemurafenib in BRAF mutant colon cancer cells. The obtained data revealed significantly increased expression levels of activated sphingosine kinases (SphK1 and SphK2) in resistant cells concomitant with increased abundance of sphingosine-1-phosphate (S1P) and its precursor sphingosine, which was accompanied by increased expression levels of the enzymes regulating the ceramide salvage pathway, namely ceramide synthases 2 and 6 and acid ceramidase, especially after the exposure to vemurafenib. Pharmacological inhibition of SphK1/SphK2 activities or modulation of ceramide metabolism by exogenous C6-ceramide enhanced the anti-proliferative effect of PLX4032 in resistant RKO cells in a synergistic manner. It is important to note that the inhibition of SphK2 by ABC294640 proved effective at restoring the sensitivity of resistant cells to vemurafenib at the largest number of combinations of sub-toxic drug concentrations with minimal cytotoxicity. Furthermore, the obtained findings revealed that enhanced anti-proliferative, anti-migratory, anti-clonogenic and pro-apoptotic effects of a combination treatment with ABC294640 and PLX4032 relative to either drug alone were accompanied by the inhibition of S1P-regulated AKT activity and concomitant abrogation of AKT-mediated cellular levels of nucleophosmin and translationally-controlled tumour protein. Collectively, our study suggests the possibility of using the combination of ABC294640 and PLX4032 as a novel therapeutic approach to combat vemurafenib resistance in BRAF mutant colon cancer, which warrants additional preclinical validation studies.
Collapse
Affiliation(s)
- Petra Grbčić
- Department of Biotechnology, University of Rijeka, Radmile Matejčić 2, 51000 Rijeka, Croatia;
| | - Thomas O. Eichmann
- Institute of Molecular Biosciences, University of Graz, Heinrichstraße 31/III, 8010 Graz, Austria;
| | | | - Mirela Sedić
- Centre for Applied Bioanthropology, Institute for Anthropological Research, Ljudevita Gaja 32, 10000 Zagreb, Croatia
- Correspondence: ; Tel.: +385-1-5535-135
| |
Collapse
|
17
|
Zhu X, Ren J, Xu D, Cheng D, Wang W, Ren J, Xiao Z, Jiang H, Ding Y, Tan Y. Upregulation of Translationally Controlled Tumor Protein Is Associated With Cervical Cancer Progression. Front Mol Biosci 2021; 8:686718. [PMID: 34589516 PMCID: PMC8473787 DOI: 10.3389/fmolb.2021.686718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 08/11/2021] [Indexed: 12/24/2022] Open
Abstract
Outside a few affluent countries with adequate vaccination and screening coverage, cervical cancer remains the leading cause of cancer-related deaths in women in many countries. Currently, a major problem is that a substantial proportion of patients are already at an advanced cancer stage when diagnosed. There is increasing evidence that indicates the involvement of translationally controlled tumor protein 1 (TPT1) overexpression in cancer development, but little is known about its implication in cervical cancer. We assessed the levels of TPT1 in surgical tissue and sera of patients with cervicitis, cervical intraepithelial neoplasia III, and cervical cancer, as well as in normal and cancerous cervical cell lines. Gene sets, pathways, and functional protein interactions associated with TPT1 were identified using the TCGA data cohort of cervical cancer. We found that the TPT1 expression was significantly increased in cervical cancer tissue compared to all nonmalignant cervical tissues, including samples of cervicitis, cervical intraepithelial neoplasia III, and normal controls. Serum level of TPT1 was also increased in cervical cancer patients compared to healthy subjects. Furthermore, elevated TPT1 expression was significantly correlated with lymph node metastasis and a low differentiation degree of the cancer. In the cancerous tissues and cell lines, selective markers of PI3K/AKT/mTOR pathway over-activation, apoptosis repression, and EMT were detected, and their interaction with TPT1 was supported by biometrics analyses. Our results, for the first time, demonstrate a strong correlation of upregulated TPT1 expression with cervical cancer progression, suggesting that TPT1 might provide a potential biomarker for cervical cancer progression.
Collapse
Affiliation(s)
- Xiaoyu Zhu
- School of Laboratory Medicine, Guizhou Medical University, Guiyang, China
| | - Ji Ren
- School of Laboratory Medicine, Guizhou Medical University, Guiyang, China
| | - Dianqin Xu
- Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Di Cheng
- Affiliated Oncology Hospital of Guizhou Medical University, Guiyang, China
| | - Wei Wang
- Affiliated Oncology Hospital of Guizhou Medical University, Guiyang, China
| | - Jie Ren
- Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Ziwen Xiao
- Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Hongmei Jiang
- School of Laboratory Medicine, Guizhou Medical University, Guiyang, China
| | - Yan Ding
- Taihe Hospital, Affiliated to Hubei Medical University, Shiyan, China
| | - Yujie Tan
- School of Laboratory Medicine, Guizhou Medical University, Guiyang, China.,Affiliated Hospital of Guizhou Medical University, Guiyang, China
| |
Collapse
|
18
|
|
19
|
Malard F, Jacquet E, Nhiri N, Sizun C, Chabrier A, Messaoudi S, Dejeu J, Betzi S, Zhang X, Thureau A, Lescop E. Revisiting the Molecular Interactions between the Tumor Protein TCTP and the Drugs Sertraline/Thioridazine. ChemMedChem 2021; 17:e202100528. [PMID: 34472703 DOI: 10.1002/cmdc.202100528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Indexed: 11/07/2022]
Abstract
TCTP protein is a pharmacological target in cancer and TCTP inhibitors such as sertraline have been evaluated in clinical trials. The direct interaction of TCTP with the drugs sertraline and thioridazine has been reported in vitro by SPR experiments to be in the ∼30-50 μM Kd range (Amson et al. Nature Med 2012), supporting a TCTP-dependent mode of action of the drugs on tumor cells. However, the molecular details of the interaction remain elusive although they are crucial to improve the efforts of on-going medicinal chemistry. In addition, TCTP can be phosphorylated by the Plk-1 kinase, which is indicative of poor prognosis in several cancers. The impact of phosphorylation on TCTP structure/dynamics and binding with therapeutical ligands remains unexplored. Here, we combined NMR, TSA, SPR, BLI and ITC techniques to probe the molecular interactions between TCTP with the drugs sertraline and thioridazine. We reveal that drug binding is much weaker than reported with an apparent ∼mM Kd and leads to protein destabilization that obscured the analysis of the published SPR data. We further demonstrate by NMR and SAXS that TCTP S46 phosphorylation does not promote tighter interaction between TCTP and sertraline. Accordingly, we question the supported model in which sertraline and thioridazine directly interact with isolated TCTP in tumor cells and discuss alternative modes of action for the drugs in light of current literature.
Collapse
Affiliation(s)
- Florian Malard
- Institut de Chimie des Substances Naturelles, CNRS, Université Paris-Saclay, 1 av. de la terrasse, 91198, Gif-sur-Yvette, France
| | - Eric Jacquet
- Institut de Chimie des Substances Naturelles, CNRS, Université Paris-Saclay, 1 av. de la terrasse, 91198, Gif-sur-Yvette, France
| | - Naima Nhiri
- Institut de Chimie des Substances Naturelles, CNRS, Université Paris-Saclay, 1 av. de la terrasse, 91198, Gif-sur-Yvette, France
| | - Christina Sizun
- Institut de Chimie des Substances Naturelles, CNRS, Université Paris-Saclay, 1 av. de la terrasse, 91198, Gif-sur-Yvette, France
| | - Amélie Chabrier
- Université Paris-Saclay, BioCIS, Faculté de Pharmacie, CNRS, 92290, Châtenay-Malabry, France
| | - Samir Messaoudi
- Université Paris-Saclay, BioCIS, Faculté de Pharmacie, CNRS, 92290, Châtenay-Malabry, France
| | - Jérôme Dejeu
- Univ. Grenoble Alpes, CNRS, DCM, 38000, Grenoble, France
| | - Stéphane Betzi
- Centre de Recherche en Cancérologie de Marseille (CRCM), CNRS, Aix-Marseille Université, Inserm, Institut Paoli-Calmettes, 27 bd Lei Roure, 13273, Marseille CEDEX 9, France
| | - Xu Zhang
- Centre de Recherche en Cancérologie de Marseille (CRCM), CNRS, Aix-Marseille Université, Inserm, Institut Paoli-Calmettes, 27 bd Lei Roure, 13273, Marseille CEDEX 9, France
| | | | - Ewen Lescop
- Institut de Chimie des Substances Naturelles, CNRS, Université Paris-Saclay, 1 av. de la terrasse, 91198, Gif-sur-Yvette, France
| |
Collapse
|
20
|
Topoisomerase II is regulated by translationally controlled tumor protein for cell survival during organ growth in Drosophila. Cell Death Dis 2021; 12:811. [PMID: 34453033 PMCID: PMC8397738 DOI: 10.1038/s41419-021-04091-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 07/28/2021] [Accepted: 08/12/2021] [Indexed: 11/08/2022]
Abstract
Regulation of cell survival is critical for organ development. Translationally controlled tumor protein (TCTP) is a conserved protein family implicated in the control of cell survival during normal development and tumorigenesis. Previously, we have identified a human Topoisomerase II (TOP2) as a TCTP partner, but its role in vivo has been unknown. To determine the significance of this interaction, we examined their roles in developing Drosophila organs. Top2 RNAi in the wing disc leads to tissue reduction and caspase activation, indicating the essential role of Top2 for cell survival. Top2 RNAi in the eye disc also causes loss of eye and head tissues. Tctp RNAi enhances the phenotypes of Top2 RNAi. The depletion of Tctp reduces Top2 levels in the wing disc and vice versa. Wing size is reduced by Top2 overexpression, implying that proper regulation of Top2 level is important for normal organ development. The wing phenotype of Tctp RNAi is partially suppressed by Top2 overexpression. This study suggests that mutual regulation of Tctp and Top2 protein levels is critical for cell survival during organ development.
Collapse
|
21
|
Overexpression of translationally controlled tumor protein ameliorates metabolic imbalance and increases energy expenditure in mice. Int J Obes (Lond) 2021; 45:1576-1587. [PMID: 33931746 PMCID: PMC8236403 DOI: 10.1038/s41366-021-00821-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 02/07/2021] [Accepted: 04/08/2021] [Indexed: 12/16/2022]
Abstract
Background/Objectives Translationally controlled tumor protein (TCTP) exhibits numerous biological functions. It has been shown to be involved in the regulation of glucose. However, its specific role in metabolism has not yet been clearly elucidated. Here, we aimed to assess the effect of TCTP overexpression on metabolic tissues and systemic energy metabolism. Subjects/Methods We investigated whether TCTP can ameliorate the metabolic imbalance that causes obesity using TCTP-overexpressing transgenic (TCTP TG) mice. The mice were subjected to biochemical, morphological, physiological and protein expression studies to define the role of TCTP in metabolic regulation in response to normal chow diet (NCD) compared to high-fat diet (HFD) conditions, and cold environment. Results We found that TCTP TG mice show improved metabolic homeostasis under both of NCD and HFD conditions with simultaneous enhancements in glucose tolerance and insulin sensitivity. In particular, we found coincident increases in energy expenditure with significant upregulation of uncoupling protein 1 (UCP1) in the brown adipose tissue (BAT). Moreover, TCTP overexpressing mice exhibit significantly enhanced adaptive thermogenesis of BAT in response to cold exposure. Conclusions Overexpression of TCTP ameliorated systemic metabolic homeostasis by stimulating UCP1-mediated thermogenesis in the BAT. This suggests that TCTP may function as a modulator of energy expenditure. This study suggests TCTP may serve as a therapeutic target for obesity and obesity-associated metabolic disorders including type 2 diabetes.
Collapse
|
22
|
Yalikong A, Li XQ, Zhou PH, Qi ZP, Li B, Cai SL, Zhong YS. A Triptolide Loaded HER2-Targeted Nano-Drug Delivery System Significantly Suppressed the Proliferation of HER2-Positive and BRAF Mutant Colon Cancer. Int J Nanomedicine 2021; 16:2323-2335. [PMID: 33776436 PMCID: PMC7989962 DOI: 10.2147/ijn.s287732] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 03/02/2021] [Indexed: 12/15/2022] Open
Abstract
Background Colon cancer (CRC) was a malignant tumor and there were about 25% of patients with tumor metastasis at diagnosis stage. Chemotherapeutic agents for metastatic CRC patients were with great side effects and the clinical treatment results of advanced CRC were still not satisfactory. Human epidermal growth factor receptor 2 (HER2) is overexpressed in some CRC patients and is an effective target for CRC patient treatment. Anti-HER2 therapy had a beneficial role in the treatment of HER2-positive metastatic CRC with fewer side effects. CRC patients with BRAF mutations were resistant to HER2 antibodies treatment. Therefore, there was an urgent need to develop new therapeutic agents. Methods HER2 targeted nanoparticles (TPLNP) drug delivery system loading triptolide (TPL) were prepared and identified. The effects of TPLNP and free TPL on cell viability, targeting and cell cycle progression on HT29 (BRAF mutation) with HER2 overexpression, were evaluated by Cell Counting Kit-8 (CCK8), Fluorescence Activating Cell Sorter (FACS) and immunofluorescence methods, respectively. The anti-tumor efficacies of TPLNP were evaluated in subcutaneous xenograft model of colon cancer and the survival rate, tumor volume, liver and kidney indexes of tumor-bearing mice were measured. Results TPLNP was small in nanosize (73.4±5.2nm) with narrow size distribution (PDI=0.15±0.02) and favorable zeta potential (pH=9.6, zeta potential: −57.3±6.69mV; pH=7.0, zeta potential: −28.7±5.1mV; pH=5.6, zeta potential: −21.1±4.73mV). Comparing with free TPL treatment group, TPLNP developed stranger colon cancer-killing efficiency in a dose- and time-dependent manner detected with CCK8 method; achieved good in vitro colon cancer targeting detected with flow cytometry and immunofluorescence experiments; enhanced more HT29-HER2 apoptosis and induced more cell cycle arrested in G1-S phase detected with FACS in vitro. As for in vivo antitumor response, TPLNP remarkably inhibited the growth of colon cancer in the colon cancer xenograft model, significantly improved the survival rate and did not exhibit significant liver and kidney toxicity in contrast with free TPL in vivo. Conclusion TPLNP was effectively against colon cancer with HER2 overexpression and BRAF mutation in pre-clinical models. In summary, the TPLNP appeared to be a promising treatment option for CRC in clinical application based on improved efficacy and the favorable safety profile.
Collapse
Affiliation(s)
- Ayimukedisi Yalikong
- Endoscopy Center, Zhongshan Hospital of Fudan University, Shanghai, 200032, People's Republic of China.,Endoscopy Research Institute of Fudan University, Shanghai, 200032, People's Republic of China
| | - Xu-Quan Li
- Endoscopy Center, Zhongshan Hospital of Fudan University, Shanghai, 200032, People's Republic of China.,Shanghai Henlius Biopharmaceuticals Co., Ltd., Shanghai, 200033, People's Republic of China
| | - Ping-Hong Zhou
- Endoscopy Center, Zhongshan Hospital of Fudan University, Shanghai, 200032, People's Republic of China.,Endoscopy Research Institute of Fudan University, Shanghai, 200032, People's Republic of China
| | - Zhi-Peng Qi
- Endoscopy Center, Zhongshan Hospital of Fudan University, Shanghai, 200032, People's Republic of China.,Endoscopy Research Institute of Fudan University, Shanghai, 200032, People's Republic of China
| | - Bing Li
- Endoscopy Center, Zhongshan Hospital of Fudan University, Shanghai, 200032, People's Republic of China.,Endoscopy Research Institute of Fudan University, Shanghai, 200032, People's Republic of China
| | - Shi-Lun Cai
- Endoscopy Center, Zhongshan Hospital of Fudan University, Shanghai, 200032, People's Republic of China.,Endoscopy Research Institute of Fudan University, Shanghai, 200032, People's Republic of China
| | - Yun-Shi Zhong
- Endoscopy Center, Zhongshan Hospital of Fudan University, Shanghai, 200032, People's Republic of China.,Endoscopy Research Institute of Fudan University, Shanghai, 200032, People's Republic of China
| |
Collapse
|
23
|
AMG900 as novel inhibitor of the translationally controlled tumor protein. Chem Biol Interact 2020; 334:109349. [PMID: 33259807 DOI: 10.1016/j.cbi.2020.109349] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 11/26/2020] [Indexed: 01/18/2023]
Abstract
INTRODUCTION Cancer is one of the leading causes of death worldwide. Classical cytotoxic chemotherapy exerts high side effects and low tumor selectivity. Translationally controlled tumor protein (TCTP) is a target for differentiation therapy, a promising, new therapeutic approach, which is expected to be more selective and less toxic than cytotoxic chemotherapy. The aim of the present investigation was to identify novel TCTP inhibitors. METHODS We performed in silico screening and molecular docking using a chemical library of more than 31,000 compounds to identify a novel inhibitor of TCTP. We tested AMG900 in vitro for binding to TCTP by microscale thermophoresis and co-immunoprecipitation. Additionally, we examined the effect of TCTP blockade on cell cycle progression by flow cytometry and Western blotting and cancer cell survival by resazurin assays in MCF-7, SK-OV3 and MOLT-4 cell lines. RESULTS We identified AMG900 as new inhibitor of TCTP. AMG900 bound to the p53 binding site of TCTP with a free binding energy of -9.63 ± 0.01 kcal/mol. This compound decreased TCTP expression to 23.4 ± 1.59% and increased p53 expression to 194.29 ± 24.27%. Furthermore, AMG900 induced G0/G1 arrest as shown by flow cytometry and Western blot of relevant cell cycle proteins. AMG900 decreased CDK2, CDK4, CDK6, cyclin D1 and cyclin D3 expression, whereas p18, p21 and p27 expression increased. Moreover, AMG900 disturbed TCTP-p53 complexation as shown by co-immunoprecipitation and increased expression of free p53. DISCUSSION AMG900 may serve as novel lead compound for the development of differentiation therapy approaches against cancer.
Collapse
|
24
|
Liu W, Liu Q, Zhang B, Lin Z, Li X, Yang X, Pu M, Zou R, He Z, Wang F, Dou K. The mRNA of TCTP functions as a sponge to maintain homeostasis of TCTP protein levels in hepatocellular carcinoma. Cell Death Dis 2020; 11:974. [PMID: 33184257 PMCID: PMC7665032 DOI: 10.1038/s41419-020-03149-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 10/10/2020] [Accepted: 10/13/2020] [Indexed: 01/01/2023]
Abstract
Translationally controlled tumor protein (TCTP) is a highly conserved protein that accumulated in the tumorigenesis of various malignancies. Despite the important role of TCTP protein in tumor progression, the precise function and underlying mechanistic regulation of TCTP mRNA in hepatocellular carcinoma (HCC) remain unclear. In this study, we found that TCTP protein was overexpressed in HCC patients but TCTP mRNA expression levels were reversed. TCTP knockout HCC cells exhibited attenuated abilities of proliferation, migration, and invasion. The knockdown of TCTP by siRNA effectively reduced TCTP mRNA levels but not protein levels in HCC cells. Moreover, although the constitutive knockdown of TCTP inhibited almost 80% of TCTP protein expression levels in tumors of wildtype transgenic mice (TCTP KD/WT), partial restoration of TCTP protein expression was observed in the tumors of heterozygous TCTP mice (TCTP KD/TCTP±). The blockage of mRNA synthesis with ActD stimulated TCTP protein expression in HCC cells. In contrast, combined treatment with ActD and CHX or MG132 treatment alone did not lead to the TCTP protein accumulation in cells. Furthermore, following the introduction of exogenous TCTP in cells and orthotopic HCC tumor models, the endogenous TCTP protein did not change with the recombinational TCTP expression and kept a rather stable level. Dual-luciferase assays revealed that the coding sequence of TCTP mRNA functions as a sponge to regulate the TCTP protein expression. Collectively, our results indicated that the TCTP mRNA and protein formed a closed regulatory circuit and works as a buffering system to keep the homeostasis of TCTP protein levels in HCC.
Collapse
Affiliation(s)
- Wei Liu
- Institute for Regenerative Medicine, Shanghai East Hospital, Tongji University, Shanghai, 200123, China.,Department of Hepatobiliary Surgery, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi Province, 710032, China.,Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, 200120, China
| | - Qi Liu
- Department of Hepatobiliary Surgery, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi Province, 710032, China
| | - Beilei Zhang
- Department of Gynecology and Obstetrics, Tangdu Hospital, Air Force Medical University, Xi'an, Shaanxi, 710038, China
| | - Zhibin Lin
- Department of Hepatobiliary Surgery, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi Province, 710032, China
| | - Xia Li
- Institute of Biophysics, Chinese Academy of Science, Beijing, 100101, China
| | - Xisheng Yang
- Department of Hepatobiliary Surgery, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi Province, 710032, China
| | - Meng Pu
- Department of Hepatobiliary Surgery, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi Province, 710032, China
| | - Rongzhi Zou
- Department of Hepatobiliary Surgery, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi Province, 710032, China
| | - Zhiying He
- Institute for Regenerative Medicine, Shanghai East Hospital, Tongji University, Shanghai, 200123, China. .,Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, 200120, China.
| | - Fu Wang
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710071, China.
| | - Kefeng Dou
- Department of Hepatobiliary Surgery, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi Province, 710032, China.
| |
Collapse
|
25
|
Dysregulation of TCTP in Biological Processes and Diseases. Cells 2020; 9:cells9071632. [PMID: 32645936 PMCID: PMC7407922 DOI: 10.3390/cells9071632] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/02/2020] [Accepted: 07/03/2020] [Indexed: 12/12/2022] Open
Abstract
Translationally controlled tumor protein (TCTP), also called histamine releasing factor (HRF) or fortilin, is a multifunctional protein present in almost all eukaryotic organisms. TCTP is involved in a range of basic cell biological processes, such as promotion of growth and development, or cellular defense in response to biological stresses. Cellular TCTP levels are highly regulated in response to a variety of physiological signals, and regulatory mechanism at various levels have been elucidated. Given the importance of TCTP in maintaining cellular homeostasis, it is not surprising that dysregulation of this protein is associated with a range of disease processes. Here, we review recent progress that has been made in the characterisation of the basic biological functions of TCTP, in the description of mechanisms involved in regulating its cellular levels and in the understanding of dysregulation of TCTP, as it occurs in disease processes such as cancer.
Collapse
|
26
|
6-Dithio-2'-deoxyguanosine analogs induce reactive oxygen species-mediated tumor cell apoptosis via bi-targeting thioredoxin 1 and telomerase. Toxicol Appl Pharmacol 2020; 401:115079. [PMID: 32497534 DOI: 10.1016/j.taap.2020.115079] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/16/2020] [Accepted: 05/29/2020] [Indexed: 02/07/2023]
Abstract
Thioredoxin 1 (Trx1) and telomerase play key roles in the development and progression process of most tumors, and they both are promising drug therapy targets. We have, for the first time, discovered that Trx1 and telomerase had a dual-target synergistic effect. Based on that results, we designed a series of 6-dithio-2'-deoxyguanosine analogs (named as YLS00X) and verified whether they can inhibit Trx1 and telomerase simultaneously. TrxR1/Trx1 system activity and telomerase expression were significantly inhibited by 6-dithio-2'-deoxyguanosine analogs, especially YLS004. YLS004 can also cause ROS accumulation, and induce tumor cell apoptosis. The vitro antitumor activity of 6-dithio-2'-deoxyguanosine analogs using MTT assay on 11 different human cancer cells and found that human colon cancer cells(HCT116) and melanoma cells (A375) were the most sensitive cells to 6-dithio-2'-deoxyguanosine analogs treatment and vivo xenografts models also confirmed that. The serum biochemical parameters and multiple organs HE staining results of subacute experiments indicated that YLS004 might be mildly toxic to immune organs, including the thymus, spleen, and hematopoietic system. Besides, YLS004 was rapidly metabolized in the rats' blood. Our study revealed that YLS004, a Trx1 and telomerase inhibitor, has strong anti-tumor effects to colon cancer and melanoma cells and is a promising new candidate drug.
Collapse
|
27
|
Stefanowicz-Hajduk J, Ochocka JR. Real-time cell analysis system in cytotoxicity applications: Usefulness and comparison with tetrazolium salt assays. Toxicol Rep 2020; 7:335-344. [PMID: 32090021 PMCID: PMC7025972 DOI: 10.1016/j.toxrep.2020.02.002] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 01/31/2020] [Accepted: 02/06/2020] [Indexed: 01/08/2023] Open
Abstract
RTCA system allows to easily monitor cell adhesion and proliferation. The real-time impedance technique is widely used in many toxicological studies. RTCA results are generally comparable with results from tetrazolium salts assays. RTCA analysis should be limited when drugs with electroactive additives are tested. Tetrazolium salts assays should be avoided when colored compounds are studied.
Real-time cell analysis (RTCA) is a technique based on impedance and microsensor electrodes. RTCA system allows label-free, real-time, and continuous monitoring of cell adhesion, morphology, and rate of cell proliferation. The system offers a wide range of applications, mainly in toxicological studies, new drug screening, and microbiology. Here, we describe the usefulness of the system in different applications and compare this technology with conventional endpoint assays based on tetrazolium salts. We present advantages and disadvantages of the system and endpoint methods and their limitations in cytotoxicity investigations.
Collapse
Affiliation(s)
- Justyna Stefanowicz-Hajduk
- Department of Biology and Pharmaceutical Botany, Medical University of Gdańsk, Al. Hallera 107, 80-416, Gdańsk, Poland
| | - J Renata Ochocka
- Department of Biology and Pharmaceutical Botany, Medical University of Gdańsk, Al. Hallera 107, 80-416, Gdańsk, Poland
| |
Collapse
|
28
|
Lee JS, Jang EH, Woo HA, Lee K. Regulation of Autophagy Is a Novel Tumorigenesis-Related Activity of Multifunctional Translationally Controlled Tumor Protein. Cells 2020; 9:cells9010257. [PMID: 31968668 PMCID: PMC7017196 DOI: 10.3390/cells9010257] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 01/16/2020] [Accepted: 01/17/2020] [Indexed: 12/13/2022] Open
Abstract
Translationally controlled tumor protein (TCTP) is highly conserved in eukaryotic organisms and plays multiple roles regulating cellular growth and homeostasis. Because of its anti-apoptotic activity and its role in the regulation of cancer metastasis, TCTP has become a promising target for cancer therapy. Moreover, growing evidence points to its clinical role in cancer prognosis. How TCTP regulates cellular growth in cancer has been widely studied, but how it regulates cellular homeostasis has received relatively little attention. This review discusses how TCTP is related to cancer and its potential as a target in cancer therapeutics, including its novel role in the regulation of autophagy. Regulation of autophagy is essential for cell recycling and scavenging cellular materials to sustain cell survival under the metabolic stress that cancer cells undergo during their aggressive proliferation.
Collapse
|
29
|
Long noncoding RNA X-inactive specific transcript promotes malignant melanoma progression and oxaliplatin resistance. Melanoma Res 2019; 29:254-262. [PMID: 30640294 DOI: 10.1097/cmr.0000000000000560] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Long noncoding RNA X-inactive specific transcript (XIST) was confirmed to participate in the development of many cancers. However, the function of XIST in malignant melanoma (MM) remained largely unknown. In the current study, we found that the XIST expression level was upregulated in MM tissues and cell lines. In addition, the growth rate of MM cells transfected with silencing XIST was significantly decreased compared with that with silencing normal control. XIST knockdown inhibited proliferation and migration in MM cells and increased the oxaliplatin sensitivity of oxaliplatin-resistant MM cells. Bioinformatics analysis showed that XIST acts as a molecular sponge for miR-21 and miR-21 directly targets with 3'-UTR of PI3KR1. Furthermore, XIST knockdown inhibited PI3KRI and AKT expression, and promoted Bcl-2 and Bax expression. In short, the current study showed that XIST was a crucial regulator in progression and oxaliplatin resistance of MM, providing a novel insight into the pathogenesis and underlying therapeutic target for MM.
Collapse
|
30
|
Jian M, Du Q, Zhu D, Mao Z, Wang X, Feng Y, Xiao Z, Wang H, Zhu Y. Tumor suppressor miR-145-5p sensitizes prolactinoma to bromocriptine by downregulating TPT1. J Endocrinol Invest 2019; 42:639-652. [PMID: 30370446 DOI: 10.1007/s40618-018-0963-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 10/01/2018] [Indexed: 01/27/2023]
Abstract
PURPOSE Prolactinoma is the most commonly seen secretory tumor of pituitary glands, which accounts for approximately up to 40% of total pituitary adenomas. Due to its high drug resistance, dopamine agonist, such as bromocriptine, has limited effect on the treatment of patients with prolactinoma. Recent discoveries have revealed that multiple miRNAs were involved in regulating drug resistance. In this research, we explored the relationship between miR-145-5p expression as well as bromocriptine sensitivity both in vitro and in vivo. METHODS To study the role of miR-145-5p in drug resistance of prolactinoma, the expression levels of miR-145-5p in bromocriptine-resistant prolactinoma cell line MMQ/BRC and its parental cell line MMQ cells, 24 bromocriptine-resistant as well as eight sensitive clinical samples were measured by qRT-PCR. Moreover, CCK8, flow cytometry and immunofluorescence were performed to identify the biological characteristics of MMQ/BRC and MMQ. TPT1 was predicted as a direct target gene of miR-145-5p by bioinformatic methods. In addition, qRT-PCR, western blot and immunohistochemistry were used to detect the expression level of TPT1 in clinical specimens and cell lines. Xenograft mouse model was constructed to analyze whether miR-145-5p could reverse bromocriptine resistance in prolactinoma in vivo. RESULTS In our study, bromocriptine-resistant prolactinoma clinical samples and cell line had decreased miR-145-5p levels and expressed high levels of TPT1 compared with their sensitive counterparts. Bioinformatic methods and our preliminary dual luciferase reporter assay were utilized to elucidate that TPT1 was a direct target gene of miR-145-5p. Furthermore, introducing miR-145-5p mimic into MMQ cells led to a decrease of IC50 along with upregulation of TPT1; nevertheless, transfecting the corresponding inhibitor into MMQ cells resulted in an upregulation of IC50 as well as reduction of TPT1. CONCLUSIONS Collectively, our findings elucidated the role of miR-145-5p as an important regulator of drug resistance in prolactinoma by controlling TPT1, and implicated the potential application of miR-145-5p in cancer therapy as well.
Collapse
Affiliation(s)
- M Jian
- Department of Histology and Embryology, Medical School of Sun Yat-sen University, No. 74, Zhongshan Road 2, Guangzhou, 510080, Guangdong, China
| | - Q Du
- Department of Histology and Embryology, Medical School of Sun Yat-sen University, No. 74, Zhongshan Road 2, Guangzhou, 510080, Guangdong, China
| | - D Zhu
- Department of Neurosurgery and Pituitary Tumor Center, The First Affiliated Hospital of Sun Yat-sen University, No. 58, Zhongshan Road 2, Guangzhou, 510080, Guangdong, China
| | - Z Mao
- Department of Neurosurgery and Pituitary Tumor Center, The First Affiliated Hospital of Sun Yat-sen University, No. 58, Zhongshan Road 2, Guangzhou, 510080, Guangdong, China
| | - X Wang
- Department of Histology and Embryology, Medical School of Sun Yat-sen University, No. 74, Zhongshan Road 2, Guangzhou, 510080, Guangdong, China
| | - Y Feng
- Department of Histology and Embryology, Medical School of Sun Yat-sen University, No. 74, Zhongshan Road 2, Guangzhou, 510080, Guangdong, China
| | - Z Xiao
- Department of Neurosurgery and Pituitary Tumor Center, The First Affiliated Hospital of Sun Yat-sen University, No. 58, Zhongshan Road 2, Guangzhou, 510080, Guangdong, China
| | - H Wang
- Department of Neurosurgery and Pituitary Tumor Center, The First Affiliated Hospital of Sun Yat-sen University, No. 58, Zhongshan Road 2, Guangzhou, 510080, Guangdong, China.
| | - Y Zhu
- Department of Histology and Embryology, Medical School of Sun Yat-sen University, No. 74, Zhongshan Road 2, Guangzhou, 510080, Guangdong, China.
| |
Collapse
|
31
|
Ferrer E, Dunmore BJ, Hassan D, Ormiston ML, Moore S, Deighton J, Long L, Yang XD, Stewart DJ, Morrell NW. A Potential Role for Exosomal Translationally Controlled Tumor Protein Export in Vascular Remodeling in Pulmonary Arterial Hypertension. Am J Respir Cell Mol Biol 2019; 59:467-478. [PMID: 29676587 DOI: 10.1165/rcmb.2017-0129oc] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is characterized by increased proliferation and resistance to apoptosis of pulmonary vascular cells. Increased expression of translationally controlled tumor protein (TCTP), a prosurvival and antiapoptotic mediator, has recently been demonstrated in patients with heritable PAH; however, its role in the pathobiology of PAH remains unclear. Silencing of TCTP in blood outgrowth endothelial cells (BOECs) isolated from control subjects led to significant changes in morphology, cytoskeletal organization, increased apoptosis, and decreased directionality during migration. Because TCTP is also localized in extracellular vesicles, we isolated BOEC-derived extracellular vesicles (exosomes and microparticles) by sequential ultracentrifugation. BOECs isolated from patients harboring BMPR2 mutations released more exosomes than those derived from control subjects in proapoptotic conditions. Furthermore, TCTP expression was significantly higher in exosomes than in microparticles, indicating that TCTP is mainly exported via exosomes. Coculture assays demonstrated that exosomes transferred TCTP from ECs to pulmonary artery smooth muscle cells, suggesting a role for endothelial-derived TCTP in conferring proliferation and apoptotic resistance. In an experimental model of PAH, rats treated with monocrotaline demonstrated increased concentrations of TCTP in the lung and plasma. Consistent with this finding, we observed increased circulating TCTP levels in patients with idiopathic PAH compared with control subjects. Therefore, our data suggest an important role for TCTP in regulating the critical vascular cell phenotypes that have been implicated in the pathobiology of PAH. In addition, this research implicates TCTP as a potential biomarker for the onset and development of PAH.
Collapse
Affiliation(s)
- Elisabet Ferrer
- 1 Addenbrooke's Hospital, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Benjamin J Dunmore
- 1 Addenbrooke's Hospital, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Dhiya Hassan
- 2 Department of Cellular and Molecular Medicine, Faculty of Medicine, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, Ontario, Canada; and
| | - Mark L Ormiston
- 3 Department of Biomedical and Molecular Sciences.,4 Department of Medicine, and.,5 Department of Surgery, Queen's University, Kingston, Ontario, Canada
| | - Stephen Moore
- 1 Addenbrooke's Hospital, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - John Deighton
- 1 Addenbrooke's Hospital, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Lu Long
- 1 Addenbrooke's Hospital, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Xu Dong Yang
- 1 Addenbrooke's Hospital, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Duncan J Stewart
- 2 Department of Cellular and Molecular Medicine, Faculty of Medicine, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, Ontario, Canada; and
| | - Nicholas W Morrell
- 1 Addenbrooke's Hospital, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
32
|
Radiosensitivity of Cancer Cells Is Regulated by Translationally Controlled Tumor Protein. Cancers (Basel) 2019; 11:cancers11030386. [PMID: 30893896 PMCID: PMC6468585 DOI: 10.3390/cancers11030386] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 03/07/2019] [Accepted: 03/17/2019] [Indexed: 01/08/2023] Open
Abstract
Translationally controlled tumor protein (TCTP) is a ubiquitous multifunctional protein that is essential for cell survival. This study reveals that the regulation of radiosensitivity of cancer cells is yet another function of TCTP. The relationship between endogenous TCTP levels and sensitivity to radiation was examined in breast cancer cell lines (T47D, MDA-MB-231, and MCF7) and lung cancer cells lines (A549, H1299, and H460). Cancer cells with high expression levels of TCTP were more resistant to radiation. TCTP overexpression inhibited radiation-induced cell death, while silencing TCTP led to an increase in radiosensitivity. DNA damage in the irradiated TCTP-silenced A549 cells was greater than in irradiated control shRNA-transfected A549 cells. p53, a well-known reciprocal regulator of TCTP, was increased in irradiated TCTP down-regulated A549 cells. Moreover, introduction of p53 siRNA in TCTP knocked-down A549 cells abrogated the increased radiosensitivity induced by TCTP knockdown. An in vivo xenograft study also confirmed enhanced radiosensitivity in TCTP down-regulated A549 cells. These findings suggest that TCTP has the potential to serve as a therapeutic target to overcome radiation resistance in cancer, a major problem for the effective treatment of cancers.
Collapse
|
33
|
Yu S, Guo H, Gao X, Li M, Bian H. Daphnoretin: An invasion inhibitor and apoptosis accelerator for colon cancer cells by regulating the Akt signal pathway. Biomed Pharmacother 2019; 111:1013-1021. [DOI: 10.1016/j.biopha.2019.01.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 12/18/2018] [Accepted: 01/02/2019] [Indexed: 12/22/2022] Open
|
34
|
Kim AR, Sung JY, Rho SB, Kim YN, Yoon K. Suppressor of Variegation 3-9 Homolog 2, a Novel Binding Protein of Translationally Controlled Tumor Protein, Regulates Cancer Cell Proliferation. Biomol Ther (Seoul) 2019; 27:231-239. [PMID: 30763986 PMCID: PMC6430221 DOI: 10.4062/biomolther.2019.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 02/07/2019] [Accepted: 02/07/2019] [Indexed: 12/23/2022] Open
Abstract
Suppressor of Variegation 3-9 Homolog 2 (SUV39H2) methylates the lysine 9 residue of histone H3 and induces heterochromatin formation, resulting in transcriptional repression or silencing of target genes. SUV39H1 and SUV39H2 have a role in embryonic development, and SUV39H1 was shown to suppress cell cycle progression associated with Rb. However, the function of human SUV39H2 has not been extensively studied. We observed that forced expression of SUV39H2 decreased cell proliferation by inducing G1 cell cycle arrest. In addition, SUV39H2 was degraded through the ubiquitin-proteasomal pathway. Using yeast two-hybrid screening to address the degradation mechanism and function of SUV39H2, we identified translationally controlled tumor protein (TCTP) as an SUV39H2-interacting molecule. Mapping of the interacting regions indicated that the N-terminal 60 amino acids (aa) of full-length SUV39H2 and the C-terminus of TCTP (120-172 aa) were critical for binding. The interaction of SUV39H2 and TCTP was further confirmed by co-immunoprecipitation and immunofluorescence staining for colocalization. Moreover, depletion of TCTP by RNAi led to up-regulation of SUV39H2 protein, while TCTP overexpression reduced SUV39H2 protein level. The half-life of SUV39H2 protein was significantly extended upon TCTP depletion. These results clearly indicate that TCTP negatively regulates the expression of SUV39H2 post-translationally. Furthermore, SUV39H2 induced apoptotic cell death in TCTP-knockdown cells. Taken together, we identified SUV39H2, as a novel target protein of TCTP and demonstrated that SUV39H2 regulates cell proliferation of lung cancer cells.
Collapse
Affiliation(s)
- A-Reum Kim
- Division of Translational Science, Research Institute, National Cancer Center, Goyang 10408, Republic of Korea
| | - Jee Young Sung
- Division of Clinical Research, Research Institute, National Cancer Center, Goyang 10408, Republic of Korea
| | - Seung Bae Rho
- Division of Translational Science, Research Institute, National Cancer Center, Goyang 10408, Republic of Korea
| | - Yong-Nyun Kim
- Division of Translational Science, Research Institute, National Cancer Center, Goyang 10408, Republic of Korea
| | - Kyungsil Yoon
- Division of Translational Science, Research Institute, National Cancer Center, Goyang 10408, Republic of Korea
| |
Collapse
|
35
|
Huang M, Geng Y, Deng Q, Li R, Shao X, Zhang Z, Xu W, Wu Y, Ma Q. Translationally controlled tumor protein affects colorectal cancer metastasis through the high mobility group box 1-dependent pathway. Int J Oncol 2018; 53:1481-1492. [PMID: 30066846 PMCID: PMC6086624 DOI: 10.3892/ijo.2018.4502] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 06/06/2018] [Indexed: 12/14/2022] Open
Abstract
Recently, accumulating evidence from clinical and experimental researches have suggested that translationally controlled tumor protein (TCTP) and high mobility group box 1 (HMGB1) are implicated in colorectal cancer (CRC) metastasis. However, whether there is an interconnection between these two tumor-promoting proteins and how they affect CRC metastasis remain to be fully elucidated. In the present study, the expression level of TCTP in CRC tissues was assessed by immunohistochemical staining and immunoblotting, and the serum concentration of HMGB1 in patients with CRC was detected by enzyme-linked immunosorbent assay. In vitro, following the modulation of TCTP expression in colon cancer LoVo cells, the translocation behavior of HMGB1 was observed by immunofluorescence assay. Furthermore, the activity of nuclear factor-κB (NF-κB) in LoVo cells was evaluated by immunoblotting and luciferase assay, and the invasion ability of LoVo cells after different treatments was determined using cell invasion assay. In vivo, xenograft tumor model was established and the correlation of TCTP and HMGB1 expression in xenografted tumors was studied by immunohistochemical examination. The results revealed that the expression level of TCTP in CRC tissue and the serum concentration of HMGB1 in patients with CRC were significantly increased, and there was a strong positive correlation between them. In vitro experiments showed that the overexpression of TCTP on LoVo cells resulted in the release of HMGB1 from the nucleus to the cytoplasm and into the extracellular space. In addition, the overexpression of TCTP led to the activation of NF-κB in LoVo cells, and this effect was reversed by treatment with antibodies targeting HMGB1 or to its receptors Toll-like receptor 4 (TLR4) and receptor for advanced glycation end products advanced glycation end products (RAGE). Furthermore, inhibition of the HMGB1-TLR4/RAGE-NF-κB pathway significantly inhibited the TCTP-stimulated invasion of LoVo cells. In vivo experiments demonstrated that the over-expression of TCTP in nude mice promoted the development and spread of xenografted tumors, and concurrently enhanced the expression of HMGB1 in tumor tissues. Collectively, these findings suggested that TCTP promotes CRC metastasis through regulating the behaviors of HMGB1 and the downstream activation of the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Maoliang Huang
- Fuzhou Dingxiang Clinic, Fuzhou, Fujian 350028, P.R. China
| | - Yan Geng
- Department of Intensive Care Unit, 303 Hospital of Chinese People's Liberation Army, Nanning, Guanxi 530021, P.R. China
| | - Qiaoting Deng
- Institute of Antibody Engineering, School of Biotechnology, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Ru Li
- Institute of Antibody Engineering, School of Biotechnology, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Xiangyang Shao
- Institute of Antibody Engineering, School of Biotechnology, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Zhigao Zhang
- Institute of Antibody Engineering, School of Biotechnology, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Weiwen Xu
- Institute of Antibody Engineering, School of Biotechnology, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Yingsong Wu
- Institute of Antibody Engineering, School of Biotechnology, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Qiang Ma
- Institute of Antibody Engineering, School of Biotechnology, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| |
Collapse
|
36
|
Barr T, Sureshchandra S, Ruegger P, Zhang J, Ma W, Borneman J, Grant K, Messaoudi I. Concurrent gut transcriptome and microbiota profiling following chronic ethanol consumption in nonhuman primates. Gut Microbes 2018; 9:338-356. [PMID: 29517944 PMCID: PMC6219653 DOI: 10.1080/19490976.2018.1441663] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 11/28/2017] [Accepted: 02/13/2018] [Indexed: 02/07/2023] Open
Abstract
Alcohol use disorder (AUD) results in increased intestinal permeability, nutrient malabsorption, and increased risk of colorectal cancer (CRC). Our understanding of the mechanisms underlying these morbidities remains limited because studies to date have relied almost exclusively on short-term heavy/binge drinking rodent models and colonic biopsies/fecal samples collected from AUD subjects with alcoholic liver disease (ALD). Consequently, the dose- and site-dependent impact of chronic alcohol consumption in the absence of overt liver disease remains poorly understood. In this study, we addressed this knowledge gap using a nonhuman primate model of voluntary ethanol self-administration where rhesus macaques consume varying amounts of 4% ethanol in water for 12 months. Specifically, we performed RNA-Seq and 16S rRNA gene sequencing on duodenum, jejunum, ileum, and colon biopsies collected from 4 controls and 8 ethanol-consuming male macaques. Our analysis revealed that chronic ethanol consumption leads to changes in the expression of genes involved in protein trafficking, metabolism, inflammation, and CRC development. Additionally, we observed differences in the relative abundance of putatively beneficial bacteria as well as those associated with inflammation and CRC. Given that the animals studied in this manuscript did not exhibit signs of ALD or CRC, our data suggest that alterations in gene expression and bacterial communities precede clinical disease and could serve as biomarkers as well as facilitate future studies aimed at developing interventions to restore gut homeostasis.
Collapse
Affiliation(s)
- Tasha Barr
- Division of Biomedical Sciences, University of California-Riverside, Riverside, CA, USA
| | - Suhas Sureshchandra
- Department of Molecular Biology and Biochemistry, University of California-Irvine, Irvine, CA, USA
| | - Paul Ruegger
- Department of Plant Pathology and Microbiology, University of California-Riverside, Riverside, CA, USA
| | - Jingfei Zhang
- Department of Statistics, University of California-Riverside, Riverside, CA, USA
| | - Wenxiu Ma
- Department of Statistics, University of California-Riverside, Riverside, CA, USA
| | - James Borneman
- Department of Plant Pathology and Microbiology, University of California-Riverside, Riverside, CA, USA
| | - Kathleen Grant
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, USA
| | - Ilhem Messaoudi
- Department of Molecular Biology and Biochemistry, University of California-Irvine, Irvine, CA, USA
| |
Collapse
|
37
|
Some Biological Consequences of the Inhibition of Na,K-ATPase by Translationally Controlled Tumor Protein (TCTP). Int J Mol Sci 2018; 19:ijms19061657. [PMID: 29867020 PMCID: PMC6032315 DOI: 10.3390/ijms19061657] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 05/29/2018] [Accepted: 05/30/2018] [Indexed: 12/17/2022] Open
Abstract
Na,K-ATPase is an ionic pump that regulates the osmotic equilibrium and membrane potential of cells and also functions as a signal transducer. The interaction of Na,K-ATPase with translationally controlled tumor protein (TCTP) results, among others, in the inhibition of the former's pump activity and in the initiation of manifold biological and pathological phenomena. These phenomena include hypertension and cataract development in TCTP-overexpressing transgenic mice, as well as the induction of tumorigenesis signaling pathways and the activation of Src that ultimately leads to cell proliferation and migration. This review attempts to collate the biological effects of Na,K-ATPase and TCTP interaction and suggests that this interaction has the potential to serve as a possible therapeutic target for selected diseases.
Collapse
|
38
|
Yang D, Zhang X, Zhang W, Rengarajan T. Vicenin-2 inhibits Wnt/β-catenin signaling and induces apoptosis in HT-29 human colon cancer cell line. DRUG DESIGN DEVELOPMENT AND THERAPY 2018; 12:1303-1310. [PMID: 29849451 PMCID: PMC5965372 DOI: 10.2147/dddt.s149307] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Background Colorectal cancer (CRC) is among highest prevailing cancers in the whole world, especially in western countries. For a diverse of reasons, patients prefer naturally occurring dietary substances over synthetic agents to prevent cancer. Vicenin-2 is largely available in a medicinal plant Ocimum sanctum and is an apigenin form, 6,8-di-C-glucoside, which has been reported to have a range of pharmacological values which includes antioxidant, hepatoprotective, anti-inflammatory and anti-cancer. This study was aimed to analyze the anti-proliferative effect of Vicenin-2 on human colon cancer cells via the Wnt/β-catenin signaling inhibition. Methods MTT assay was used to assess the cell viability at different concentrations and time point. Vicenin-2 at a concentration of 50 µM (IC50) decreased the phosphorylated (inactive) glycogen synthase kinase-3β, cyclin D1, and non-p-β-catenin expressions in HT-29 cells, which were evidenced through western blot analysis. Results Further, Vincenin-2 reduced the T-cell factor (TCF) / Leukocyte erythroid factor (LEF) reporter activity in HT-29 cells. Vicenin-2 also promoted substantial cell cycle arrest at the G2M phase of HT-29 cells, as well induced apoptosis in HT-29 cells, as revealed through flow cytometric analysis. Furthermore, immunoblot analysis showed that Vicenin-2 treatment enhanced the expression of Cytochrome C, Bax and caspase-3 whereas suppressed the Bcl-2 expression. Conclusion Together, these results revealed that Vicenin-2 can act as a potent inhibitor of HT-29 cell proliferation and can be used as an agent against CRC.
Collapse
Affiliation(s)
- Dong Yang
- Department of Anorectal Surgery, The First People's Hospital of Lianyungang, Lianyungang, China
| | - Xiling Zhang
- Department of Anorectal Surgery, Shaanxi Provincial People's Hospital, Shaanxi, Xi'an, China
| | - Wencun Zhang
- Department of Anorectal Surgery, The Fourth Hospital of Yu Lin City, Shaanxi Province, China
| | | |
Collapse
|
39
|
Pinkaew D, Fujise K. Fortilin: A Potential Target for the Prevention and Treatment of Human Diseases. Adv Clin Chem 2017; 82:265-300. [PMID: 28939212 DOI: 10.1016/bs.acc.2017.06.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Fortilin is a highly conserved 172-amino-acid polypeptide found in the cytosol, nucleus, mitochondria, extracellular space, and circulating blood. It is a multifunctional protein that protects cells against apoptosis, promotes cell growth and cell cycle progression, binds calcium (Ca2+) and has antipathogen activities. Its role in the pathogenesis of human and animal diseases is also diverse. Fortilin facilitates the development of atherosclerosis, contributes to both systemic and pulmonary arterial hypertension, participates in the development of cancers, and worsens diabetic nephropathy. It is important for the adaptive expansion of pancreatic β-cells in response to obesity and increased insulin requirement, for the regeneration of liver after hepatectomy, and for protection of the liver against alcohol- and ER stress-induced injury. Fortilin is a viable surrogate marker for in vivo apoptosis, and it plays a key role in embryo and organ development in vertebrates. In fish and shrimp, fortilin participates in host defense against bacterial and viral pathogens. Further translational research could prove fortilin to be a viable molecular target for treatment of various human diseases including and not limited to atherosclerosis, hypertension, certain tumors, diabetes mellitus, diabetic nephropathy, hepatic injury, and aberrant immunity and host defense.
Collapse
Affiliation(s)
- Decha Pinkaew
- University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Ken Fujise
- University of Texas Medical Branch at Galveston, Galveston, TX, United States; The Institute of Translational Sciences, University of Texas Medical Branch at Galveston, Galveston, TX, United States.
| |
Collapse
|
40
|
Bommer UA. The Translational Controlled Tumour Protein TCTP: Biological Functions and Regulation. Results Probl Cell Differ 2017; 64:69-126. [PMID: 29149404 DOI: 10.1007/978-3-319-67591-6_4] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The Translational Controlled Tumour Protein TCTP (gene symbol TPT1, also called P21, P23, Q23, fortilin or histamine-releasing factor, HRF) is a highly conserved protein present in essentially all eukaryotic organisms and involved in many fundamental cell biological and disease processes. It was first discovered about 35 years ago, and it took an extended period of time for its multiple functions to be revealed, and even today we do not yet fully understand all the details. Having witnessed most of this history, in this chapter, I give a brief overview and review the current knowledge on the structure, biological functions, disease involvements and cellular regulation of this protein.TCTP is able to interact with a large number of other proteins and is therefore involved in many core cell biological processes, predominantly in the response to cellular stresses, such as oxidative stress, heat shock, genotoxic stress, imbalance of ion metabolism as well as other conditions. Mechanistically, TCTP acts as an anti-apoptotic protein, and it is involved in DNA-damage repair and in cellular autophagy. Thus, broadly speaking, TCTP can be considered a cytoprotective protein. In addition, TCTP facilitates cell division through stabilising the mitotic spindle and cell growth through modulating growth signalling pathways and through its interaction with the proteosynthetic machinery of the cell. Due to its activities, both as an anti-apoptotic protein and in promoting cell growth and division, TCTP is also essential in the early development of both animals and plants.Apart from its involvement in various biological processes at the cellular level, TCTP can also act as an extracellular protein and as such has been involved in modulating whole-body defence processes, namely in the mammalian immune system. Extracellular TCTP, typically in its dimerised form, is able to induce the release of cytokines and other signalling molecules from various types of immune cells. There are also several examples, where TCTP was shown to be involved in antiviral/antibacterial defence in lower animals. In plants, the protein appears to have a protective effect against phytotoxic stresses, such as flooding, draught, too high or low temperature, salt stress or exposure to heavy metals. The finding for the latter stress condition is corroborated by earlier reports that TCTP levels are considerably up-regulated upon exposure of earthworms to high levels of heavy metals.Given the involvement of TCTP in many biological processes aimed at maintaining cellular or whole-body homeostasis, it is not surprising that dysregulation of TCTP levels may promote a range of disease processes, foremost cancer. Indeed a large body of evidence now supports a role of TCTP in at least the most predominant types of human cancers. Typically, this can be ascribed to both the anti-apoptotic activity of the protein and to its function in promoting cell growth and division. However, TCTP also appears to be involved in the later stages of cancer progression, such as invasion and metastasis. Hence, high TCTP levels in tumour tissues are often associated with a poor patient outcome. Due to its multiple roles in cancer progression, TCTP has been proposed as a potential target for the development of new anti-cancer strategies in recent pilot studies. Apart from its role in cancer, TCTP dysregulation has been reported to contribute to certain processes in the development of diabetes, as well as in diseases associated with the cardiovascular system.Since cellular TCTP levels are highly regulated, e.g. in response to cell stress or to growth signalling, and because deregulation of this protein contributes to many disease processes, a detailed understanding of regulatory processes that impinge on TCTP levels is required. The last section of this chapter summarises our current knowledge on the mechanisms that may be involved in the regulation of TCTP levels. Essentially, expression of the TPT1 gene is regulated at both the transcriptional and the translational level, the latter being particularly advantageous when a rapid adjustment of cellular TCTP levels is required, for example in cell stress responses. Other regulatory mechanisms, such as protein stability regulation, may also contribute to the regulation of overall TCTP levels.
Collapse
Affiliation(s)
- Ulrich-Axel Bommer
- School of Medicine, Graduate Medicine, University of Wollongong, Wollongong, NSW, 2522, Australia.
| |
Collapse
|