1
|
Miranda-Laferte E, Barkovits K, Rozanova S, Jordan N, Marcus K, Hidalgo P. The membrane-associated β2e-subunit of voltage-gated calcium channels translocates to the nucleus and regulates gene expression. Front Physiol 2025; 16:1555934. [PMID: 40297778 PMCID: PMC12034931 DOI: 10.3389/fphys.2025.1555934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Accepted: 03/21/2025] [Indexed: 04/30/2025] Open
Abstract
The β-subunit (Cavβ) is a central component of the voltage-gated calcium channel complex. It lacks transmembrane domains and exhibits both channel-related and non-related functions. Previous studies have shown that, in the absence of the Cavα1 pore-forming subunit, electrostatic interactions between the N-terminus of Cavβ2e and the plasma membrane mediate its anchoring to the cell surface. Here, we demonstrate that, upon phospholipase C activation, Cavβ2e dissociates from the plasma membrane and homogeneously distributes between the cytosol and the nucleus. Mutagenesis analysis identified critical residues in the N-terminus of the protein, including a stretch of positively charged amino acids and a dileucine motif, which serve as nuclear import and export signals, respectively. Fusion of the Cavβ2e N-terminus to a trimeric YFP chimeric construct shows that this segment suffices for nuclear shuttling. Thus, the N-terminus of Cavβ2e emerges as a regulatory hotspot region controlling the subcellular localization of the protein. Quantitative mass spectrometry analysis revealed that the heterologous expression of a nuclear-enriched Cavβ2e mutant regulates gene expression. Our findings demonstrate the presence of active nuclear localization signals in Cavβ2e that enables its nuclear targeting and regulation of protein expression. Furthermore, they establish the membrane-associated Cavβ2e as a novel signaling mediator within the phospholipase C cascade.
Collapse
Affiliation(s)
- Erick Miranda-Laferte
- Institute of Biological Information Processing (IBI-1)- Molecular and Cellular Physiology, Forschungszentrum Jülich, Jülich, Germany
| | - Katalin Barkovits
- Medizinisches Proteom-Center, Medical Faculty, Ruhr-University Bochum, Bochum, Germany
- Medical Proteome Analysis, Center for Protein Diagnostics (PRODI), Ruhr-University Bochum, Bochum, Germany
| | - Svitlana Rozanova
- Medizinisches Proteom-Center, Medical Faculty, Ruhr-University Bochum, Bochum, Germany
- Medical Proteome Analysis, Center for Protein Diagnostics (PRODI), Ruhr-University Bochum, Bochum, Germany
| | - Nadine Jordan
- Institute of Biological Information Processing (IBI-1)- Molecular and Cellular Physiology, Forschungszentrum Jülich, Jülich, Germany
| | - Katrin Marcus
- Medizinisches Proteom-Center, Medical Faculty, Ruhr-University Bochum, Bochum, Germany
- Medical Proteome Analysis, Center for Protein Diagnostics (PRODI), Ruhr-University Bochum, Bochum, Germany
| | - Patricia Hidalgo
- Institute of Biological Information Processing (IBI-1)- Molecular and Cellular Physiology, Forschungszentrum Jülich, Jülich, Germany
- Institute of Biochemistry, Heinrich-Heine University, Düsseldorf, Germany
| |
Collapse
|
2
|
Mellgren AEC, Cristea I, Stevenson T, Spriet E, Knappskog PM, Bøe SO, Kranz H, Grellscheid SN, Rødahl E. On subcellular distribution of the zinc finger 469 protein (ZNF469) and observed discrepancy in the localization of endogenous and overexpressed ZNF469. FEBS Open Bio 2025. [PMID: 40156465 DOI: 10.1002/2211-5463.70034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 03/04/2025] [Accepted: 03/21/2025] [Indexed: 04/01/2025] Open
Abstract
The zinc finger 469 gene (ZNF469) is a single-exon gene predicted to encode a protein of 3953 amino acids. Despite pathogenic ZNF469 variants being associated with Brittle Cornea Syndrome (BCS), relatively little is known about ZNF469 beyond its participation in regulating the expression of genes encoding extracellular matrix proteins. In this study, we examined the expression and intracellular localization of ZNF469 in different cell lines. The level of ZNF469 mRNA varied from low levels in HEK293 cells to high levels in HeLa cells and primary fibroblasts. Antibodies against ZNF469 reacted among others with a protein of approximately 400 kDa in immunoblot analysis, which was mainly present in the insoluble fraction of the cytoplasm. Immunofluorescence analysis of interphase cells showed small cytoplasmic puncta and weak nuclear staining. In dividing HeLa cells, the antibodies recognized foci that also stained for proteasomes. In transfected cells, ZNF469 was observed mainly in foci resembling nuclear speckles in interphase and at the midbody during mitosis. The nuclear foci showed overlapping staining with proteasomes. In live cell imaging, liquid-like properties of the nuclear foci were recorded as they changed shape and position and occasionally fused with each other. During stress granule formation, cytoplasmic foci showed overlapping staining with G3BP1. Finally, in silico analysis revealed large intrinsically disordered regions with multiple low complexity domains in ZNF469. Our data indicate that ZNF469 forms aggregates possibly as biomolecular condensates when overexpressed. However, care must be taken when analyzing the intracellular distribution of ZNF469 due to the discrepancy in the localization of endogenous ZNF469 and overexpressed ZNF469 in transfected cells.
Collapse
Affiliation(s)
| | - Ileana Cristea
- Department of Clinical Medicine, University of Bergen, Norway
- Department of Ophthalmology, Haukeland University Hospital, Norway
| | - Thomas Stevenson
- Computational Biology Unit and Department of Biomedicine, University of Bergen, Norway
| | - Endy Spriet
- Molecular Imaging Center, Department of Biomedicine, University of Bergen, Norway
| | - Per Morten Knappskog
- Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Science, University of Bergen, Norway
| | - Stig Ove Bøe
- Department of Microbiology, Oslo University Hospital, Norway
| | - Harald Kranz
- Gen-H Genetic Engineering Heidelberg GmbH, Heidelberg, Germany
| | - Sushma N Grellscheid
- Computational Biology Unit and Department of Biomedicine, University of Bergen, Norway
| | - Eyvind Rødahl
- Department of Clinical Medicine, University of Bergen, Norway
- Department of Ophthalmology, Haukeland University Hospital, Norway
| |
Collapse
|
3
|
Fan B, Ren M, Chen G, Zhou X, Cheng G, Yang J, Sun H. Exploring the Roles of the Plant AT-Rich Sequence and Zinc-Binding ( PLATZ) Gene Family in Tomato ( Solanum lycopersicum L.) Under Abiotic Stresses. Int J Mol Sci 2025; 26:1682. [PMID: 40004146 PMCID: PMC11855065 DOI: 10.3390/ijms26041682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/12/2025] [Accepted: 02/13/2025] [Indexed: 02/27/2025] Open
Abstract
PLATZ transcription factors represent a novel class of zinc finger proteins unique to plants and play critical roles in plant growth and stress responses. This study performs a bioinformatic analysis on the PLATZ transcription factor family in tomato. In the tomato genome, 20 PLATZ transcription factors were identified, distributed across nine chromosomes, including two tandem duplication clusters and two segmental duplication events. Phylogenetic analysis classified tomato PLATZ family members into five subgroups, with consistent gene structures and motif distributions within the same subfamily. The stress-responsive and hormone signaling elements were widely distributed in the promoters of SlPLATZs. The qRT-PCR results showed that most tested SlPLATZs were highly expressed in flowers and significantly expressed under different abiotic stresses (PEG, low temperature, and salt treatments) and hormone treatments (ABA and SA). In addition, we determined that SlPLATZ13/17/18/19 showed transcriptional inhibitory activities via yeast and dual-luciferase reporter assays. The interactions between SlPLATZ17, SlDREB2, and SlDREB31 were preliminarily confirmed via yeast two-hybrid assays. Overall, this study provides a valuable theoretical foundation for functional function research on PLATZ transcription factors, particularly in response to abiotic stresses.
Collapse
Affiliation(s)
- Bei Fan
- College of Life Sciences, Yan’an University, Yan’an 716000, China; (B.F.); (M.R.); (G.C.); (G.C.)
| | - Min Ren
- College of Life Sciences, Yan’an University, Yan’an 716000, China; (B.F.); (M.R.); (G.C.); (G.C.)
| | - Guoliang Chen
- College of Life Sciences, Yan’an University, Yan’an 716000, China; (B.F.); (M.R.); (G.C.); (G.C.)
- Shaanxi Key Laboratory of Research and Utilization of Resource Plants on the Loess Plateau, College of Life Sciences, Yan’an University, Yan’an 716000, China
| | - Xue Zhou
- Yan’an Academy of Agricultural Sciences, Agriculture and Rural Bureau of Yan’an City, Yan’an 716000, China;
| | - Guoting Cheng
- College of Life Sciences, Yan’an University, Yan’an 716000, China; (B.F.); (M.R.); (G.C.); (G.C.)
- Shaanxi Key Laboratory of Research and Utilization of Resource Plants on the Loess Plateau, College of Life Sciences, Yan’an University, Yan’an 716000, China
| | - Jinyu Yang
- College of Life Sciences, Yan’an University, Yan’an 716000, China; (B.F.); (M.R.); (G.C.); (G.C.)
| | - Huiru Sun
- College of Life Sciences, Yan’an University, Yan’an 716000, China; (B.F.); (M.R.); (G.C.); (G.C.)
- Shaanxi Key Laboratory of Research and Utilization of Resource Plants on the Loess Plateau, College of Life Sciences, Yan’an University, Yan’an 716000, China
| |
Collapse
|
4
|
Duarte CEM, Machado JPB, Gouveia-Mageste B, Silva FDA, Fontes EPB. Subcellular Localization of Geminivirus Proteins by Laser Scanning Confocal Microscopy. Methods Mol Biol 2025; 2912:205-226. [PMID: 40064784 DOI: 10.1007/978-1-0716-4454-6_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2025]
Abstract
In eukaryotic cells, the subcellular localization of proteins is inherently linked to their function. Since viruses rely on the host cellular machinery to complete their life cycle, viral proteins are expected to employ the host transport machinery to reach various compartments. Several factors, including the multifunctional nature of viral proteins, the stage of virus infection, and interactions with both viral and host proteins, influence the final destination of viral proteins. For instance, NSP (nuclear shuttle protein) from bipartite begomoviruses and CP (coat protein) from monopartite begomoviruses typically exhibit nuclear localization, yet their subcellular distribution can vary depending on coexpression partners and stage of infection. Virtually all viral proteins display dynamic subcellular distribution patterns that change under their specific functions at different stages of the virus life cycle. Thus, identifying the subcellular distribution of viral proteins is essential for comprehending their multiple roles during infection. This chapter outlines a protocol for efficiently determining the subcellular localization of viral proteins during infection or when expressed with protein partners. The protocol essentially consists of three steps: (i) cloning the viral protein and protein partners fused to fluorescent tags, (ii) transiently expressing the tagged proteins in N. benthamiana leaves, and (iii) determining the subcellular localization of the tagged proteins using confocal microscopy.
Collapse
Affiliation(s)
- Christiane Eliza Motta Duarte
- National Institute of Science and Technology in Plant-Pest Interactions/BIOAGRO, Universidade Federal de Viçosa, Viçosa, MG, Brazil
- Glycobiology and Cell Signaling Laboratory, Universidade do Estado de Minas Gerais, Passos, MG, Brazil
| | - João Paulo Batista Machado
- National Institute of Science and Technology in Plant-Pest Interactions/BIOAGRO, Universidade Federal de Viçosa, Viçosa, MG, Brazil
- Instituto de Ciências Agrárias, Universidade Federal de Viçosa, Florestal, MG, Brazil
| | - Bianca Gouveia-Mageste
- National Institute of Science and Technology in Plant-Pest Interactions/BIOAGRO, Universidade Federal de Viçosa, Viçosa, MG, Brazil
- Dep. de Tecnologia de Alimentos, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Fredy Davi Albuquerque Silva
- National Institute of Science and Technology in Plant-Pest Interactions/BIOAGRO, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Elizabeth Pacheco Batista Fontes
- National Institute of Science and Technology in Plant-Pest Interactions/BIOAGRO, Universidade Federal de Viçosa, Viçosa, MG, Brazil.
- Dep. de Bioquímica e Biologia Molecular/BIOAGRO, Universidade Federal de Viçosa, Viçosa, MG, Brazil.
| |
Collapse
|
5
|
Weng Y, Feng Y, Li Z, Xu S, Wu D, Huang J, Wang H, Wang Z. Zfp260 choreographs the early stage osteo-lineage commitment of skeletal stem cells. Nat Commun 2024; 15:10186. [PMID: 39582024 PMCID: PMC11586402 DOI: 10.1038/s41467-024-54640-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 11/15/2024] [Indexed: 11/26/2024] Open
Abstract
The initial fine-tuning processes are crucial for successful bone regeneration, as they guide skeletal stem cells through progenitor differentiation toward osteo- or chondrogenic fate. While fate determination processes are well-documented, the mechanisms preceding progenitor commitment remain poorly understood. Here, we identified a transcription factor, Zfp260, as pivotal for stem cell maturation into progenitors and directing osteogenic differentiation. Zfp260 is markedly up-regulated as cells transition from stem to progenitor stages; its dysfunction causes lineage arrest at the progenitor stage, impairing bone repair. Zfp260 is required for maintaining chromatin accessibility and regulates Runx2 expression by forming super-enhancer complexes. Furthermore, the PKCα kinase phosphorylates Zfp260 at residues Y173, S182, and S197, which are essential for its functional activity. Mutations at these residues significantly impair its functionality. These findings position Zfp260 as a vital factor bridging stem cell activation with progenitor cell fate determination, unveiling a element fundamental to successful bone regeneration.
Collapse
Affiliation(s)
- Yuteng Weng
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration & Tongji Research Institute of Stomatology, Shanghai, 200072, China
- Department of Oral and Maxillofacial Surgery, Department of Oral Implantology, Shanghai Tongji Stomatological Hospital and Dental School, Tongji University, Shanghai, 200072, China
| | - Yanhuizhi Feng
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration & Tongji Research Institute of Stomatology, Shanghai, 200072, China
- Department of Oral and Maxillofacial Surgery, Department of Oral Implantology, Shanghai Tongji Stomatological Hospital and Dental School, Tongji University, Shanghai, 200072, China
| | - Zeyuan Li
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration & Tongji Research Institute of Stomatology, Shanghai, 200072, China
- Department of Oral and Maxillofacial Surgery, Department of Oral Implantology, Shanghai Tongji Stomatological Hospital and Dental School, Tongji University, Shanghai, 200072, China
| | - Shuyu Xu
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration & Tongji Research Institute of Stomatology, Shanghai, 200072, China
- Department of Oral and Maxillofacial Surgery, Department of Oral Implantology, Shanghai Tongji Stomatological Hospital and Dental School, Tongji University, Shanghai, 200072, China
| | - Di Wu
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration & Tongji Research Institute of Stomatology, Shanghai, 200072, China
- Department of Oral and Maxillofacial Surgery, Department of Oral Implantology, Shanghai Tongji Stomatological Hospital and Dental School, Tongji University, Shanghai, 200072, China
| | - Jie Huang
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration & Tongji Research Institute of Stomatology, Shanghai, 200072, China
- Department of Oral and Maxillofacial Surgery, Department of Oral Implantology, Shanghai Tongji Stomatological Hospital and Dental School, Tongji University, Shanghai, 200072, China
| | - Haicheng Wang
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration & Tongji Research Institute of Stomatology, Shanghai, 200072, China
- Department of Oral and Maxillofacial Surgery, Department of Oral Implantology, Shanghai Tongji Stomatological Hospital and Dental School, Tongji University, Shanghai, 200072, China
| | - Zuolin Wang
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration & Tongji Research Institute of Stomatology, Shanghai, 200072, China.
- Department of Oral and Maxillofacial Surgery, Department of Oral Implantology, Shanghai Tongji Stomatological Hospital and Dental School, Tongji University, Shanghai, 200072, China.
| |
Collapse
|
6
|
Rezaei S, Timani KA, Liu Y, He JJ. Ectopic USP15 expression inhibits HIV-1 transcription involving changes in YY1 deubiquitination and stability. Front Cell Infect Microbiol 2024; 14:1371655. [PMID: 39624264 PMCID: PMC11609158 DOI: 10.3389/fcimb.2024.1371655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 10/21/2024] [Indexed: 01/13/2025] Open
Abstract
Introduction Protein homeostasis is maintained by the opposing action of ubiquitin ligase and deubiquitinase, two important components of the ubiquitin-proteasome pathway, and contributes to both normal physiological and pathophysiological processes. The current study aims to delineate the roles of ubiquitin-specific protease 15 (USP15), a member of the largest deubiquitinase family, in HIV-1 gene expression and replication. Methods We took advantage of highly selective and specific ubiquitin variants (UbV), which were recently designed and developed for USP15, and ascertained the inhibitory effects of USP15 on HIV-1 gene expression and production by transfection and Western blotting. We also used real-time RT-PCR, transcription factor profiling, subcellular fractionation, immunoprecipitation followed by Western blotting to determine the transcription factors involved and the underlying molecular mechanisms. Results We first confirmed the specificity of USP15-mediated HIV-1 gene expression and virus production. We then showed that the inhibition of HIV-1 production by USP15 occurred at the transcription level, associated with an increased protein level of YY1, a known HIV-1 transcription repressor. Moreover, we demonstrated that USP15 regulated YY1 deubiquitination and stability. Lastly, we demonstrated that YY1 siRNA knockdown significantly diminished the inhibition of USP15 on HIV-1 gene expression and virus production. Conclusion These findings together demonstrate that stabilization of YY1 protein by USP15 deubiquitinating activity contributes to USP15-mediated inhibition of HIV-1 transcription and may help the development of USP15-specific UbV inhibitors as an anti-HIV strategy.
Collapse
Affiliation(s)
- Sahar Rezaei
- Department of Microbiology and Immunology, Rosalind Franklin University, Chicago Medical School, North Chicago, IL, United States
- Center for Cancer Cell Biology, Immunology and Infection, Rosalind Franklin University, North Chicago, IL, United States
- School of Graduate and Postdoctoral Studies, Rosalind Franklin University, North Chicago, IL, United States
| | - Khalid A. Timani
- Department of Microbiology and Immunology, Rosalind Franklin University, Chicago Medical School, North Chicago, IL, United States
- Center for Cancer Cell Biology, Immunology and Infection, Rosalind Franklin University, North Chicago, IL, United States
- School of Graduate and Postdoctoral Studies, Rosalind Franklin University, North Chicago, IL, United States
| | - Ying Liu
- Department of Microbiology and Immunology, Rosalind Franklin University, Chicago Medical School, North Chicago, IL, United States
- Center for Cancer Cell Biology, Immunology and Infection, Rosalind Franklin University, North Chicago, IL, United States
- School of Graduate and Postdoctoral Studies, Rosalind Franklin University, North Chicago, IL, United States
| | - Johnny J. He
- Department of Microbiology and Immunology, Rosalind Franklin University, Chicago Medical School, North Chicago, IL, United States
- Center for Cancer Cell Biology, Immunology and Infection, Rosalind Franklin University, North Chicago, IL, United States
- School of Graduate and Postdoctoral Studies, Rosalind Franklin University, North Chicago, IL, United States
| |
Collapse
|
7
|
Ahmad B, Lerma-Reyes R, Mukherjee T, Nguyen HV, Weber AL, Cummings EE, Schulze WX, Comer JR, Schrick K. Nuclear localization of Arabidopsis HD-Zip IV transcription factor GLABRA2 is driven by importin α. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:6441-6461. [PMID: 39058342 DOI: 10.1093/jxb/erae326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 07/24/2024] [Indexed: 07/28/2024]
Abstract
GLABRA2 (GL2), a class IV homeodomain leucine-zipper (HD-Zip IV) transcription factor from Arabidopsis, is a developmental regulator of specialized cell types in the epidermis. GL2 contains a monopartite nuclear localization sequence (NLS) that is conserved in most HD-Zip IV members across the plants. We demonstrate that NLS mutations affect nuclear transport and result in a loss-of-function phenotypes. NLS fusions to enhanced yellow fluorescent protein (EYFP) show that it is sufficient for nuclear localization in roots and trichomes. Despite partial overlap of the NLS with the homeodomain, genetic dissection indicates that nuclear localization and DNA binding are separable functions. Affinity purification of GL2 from plants followed by MS-based proteomics identified importin α (IMPα) isoforms as potential GL2 interactors. NLS structural prediction and molecular docking studies with IMPα-3 revealed major interacting residues. Cytosolic yeast two-hybrid assays and co-immunoprecipitation experiments with recombinant proteins verified NLS-dependent interactions between GL2 and several IMPα isoforms. IMPα triple mutants (impα-1,2,3) exhibit abnormal trichome formation and defects in GL2 nuclear localization in trichomes, consistent with tissue-specific and redundant functions of IMPα isoforms. Taken together, our findings provide mechanistic evidence for IMPα-dependent nuclear localization of GL2 in Arabidopsis, a process that is critical for cell type differentiation of the epidermis.
Collapse
Affiliation(s)
- Bilal Ahmad
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Ruben Lerma-Reyes
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Thiya Mukherjee
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA
- Donald Danforth Plant Science Center, Olivette, MO 63132, USA
| | - Hieu V Nguyen
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Audra L Weber
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Emily E Cummings
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Waltraud X Schulze
- Department of Plant Systems Biology, University of Hohenheim, Stuttgart, Germany
| | - Jeffrey R Comer
- Department of Anatomy and Physiology, Kansas State University, Manhattan, KS 66506, USA
| | - Kathrin Schrick
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| |
Collapse
|
8
|
Fabian SJ, Steen CR, Damron FH, DeRiggi CA, Panaccione DG. A gene regulating ergot alkaloid biosynthesis in Metarhizium brunneum. Appl Environ Microbiol 2024; 90:e0105124. [PMID: 39329487 PMCID: PMC11497822 DOI: 10.1128/aem.01051-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 08/29/2024] [Indexed: 09/28/2024] Open
Abstract
Ergot alkaloid synthesis (eas) gene clusters found in several fungi encode biosynthesis of agriculturally and pharmaceutically important ergot alkaloids. Although the biosynthetic genes of the ergot alkaloid pathway have been well characterized, regulation of those genes is unknown. We characterized a gene with sequence similarity to a putative transcription factor and that was found adjacent to the eas cluster of Metarhizium brunneum, a plant symbiont and insect pathogen. Function of the novel gene, easR, was explored by CRISPR-Cas9-derived gene knockouts. To maximize potential for ergot alkaloid accumulation, strains of M. brunneum were injected into larvae of the insect Galleria mellonella. Larvae infected with the wild type contained abundant ergot alkaloids, but those infected with easR knockouts lacked detectable ergot alkaloids. The easR knockout strains had significantly reduced or no detectable mRNA from eas cluster genes in RNAseq and qualitative RT-PCR analyses, whereas the wild-type strain contained abundant mRNA from all eas genes. These data demonstrate that the product of easR is required for ergot alkaloid accumulation and provide evidence that it has a role in the expression of ergot alkaloid biosynthesis genes. Larvae infected with an easR knockout survived significantly longer than those infected with the wild type (P < 0.0001), indicating a role for EasR, and indirectly confirming a role for ergot alkaloids, in the virulence of M. brunneum to insects. Homologs of easR were found associated with eas clusters of at least 15 other ergot alkaloid-producing fungi, indicating that EasR homologs may contribute to regulation of ergot alkaloid synthesis in additional fungi. IMPORTANCE Ergot alkaloids produced by several species of fungi are important as contaminants of food and feed in agriculture and also as the foundation of numerous pharmaceuticals prescribed for dementia, migraines, hyperprolactinemia, and several other disorders. Information on control of the ergot alkaloid pathway may contribute to strategies to limit their production in agricultural settings or increase their yield for pharmaceutical production. Our results demonstrate that a previously uncharacterized gene clustered with the ergot alkaloid synthesis genes is required for the sufficient transcription of the ergot alkaloid biosynthesis genes. This observation suggests the gene encodes a factor regulating transcription of those biosynthetic genes.
Collapse
Affiliation(s)
- Samantha J. Fabian
- Division of Plant and Soil Sciences, West Virginia University, Morgantown, West Virginia, USA
| | - Chey R. Steen
- Division of Plant and Soil Sciences, West Virginia University, Morgantown, West Virginia, USA
| | - F. Heath Damron
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, West Virginia, USA
| | - Celeste A. DeRiggi
- Division of Plant and Soil Sciences, West Virginia University, Morgantown, West Virginia, USA
| | - Daniel G. Panaccione
- Division of Plant and Soil Sciences, West Virginia University, Morgantown, West Virginia, USA
| |
Collapse
|
9
|
Deng J, Zhou J, Jiang B. Advances in the role of membrane-bound transcription factors in carcinogenesis and therapy. Discov Oncol 2024; 15:559. [PMID: 39404930 PMCID: PMC11480308 DOI: 10.1007/s12672-024-01414-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 10/01/2024] [Indexed: 10/19/2024] Open
Abstract
Protein shuttling between the cytoplasm and nucleus is a unique phenomenon in eukaryotic organisms, integral to various cellular functions. Membrane-bound transcription factors (MTFs), a specialized class of nucleocytoplasmic shuttling proteins, are anchored to the cell membrane and enter the nucleus upon ligand binding to exert their transcriptional regulatory functions. MTFs are crucial in cellular signal transduction, and aberrant nucleocytoplasmic shuttling of MTFs is closely associated with tumor initiation, progression, and resistance to anticancer therapies. Studies have demonstrated that MTFs, such as human epidermal growth factor receptor (HER), fibroblast growth factor receptor (FGFR), β-catenin, Notch, insulin-like growth factor 1 receptor (IGF-1R), and insulin receptor (IR), play critical roles in tumorigenesis and cancer progression. Targeted therapies developed against HERs and FGFRs, among these MTFs, have yielded significant success in cancer treatment. However, the development of drug resistance remains a major challenge. As research on MTFs progress, it is anticipated that additional MTF-targeted therapies will be developed to enhance cancer treatment. In this review, we summarized recent advancements in the study of MTFs and their roles in carcinogenesis and therapy, aiming to provide valuable insights into the potential of targeting MTF pathways for the reseach of therapeutic strategies.
Collapse
Affiliation(s)
- JiaLi Deng
- Medical Research Center, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, 410004, China
- Department of Clinical Laboratory, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, 410004, China
| | - Jie Zhou
- Medical Research Center, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, 410004, China
- Department of Clinical Laboratory, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, 410004, China
| | - BinYuan Jiang
- Medical Research Center, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, 410004, China.
- Department of Clinical Laboratory, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, 410004, China.
| |
Collapse
|
10
|
Marathe S, Grotewold E, Otegui MS. Should I stay or should I go? Trafficking of plant extra-nuclear transcription factors. THE PLANT CELL 2024; 36:1524-1539. [PMID: 38163635 PMCID: PMC11062434 DOI: 10.1093/plcell/koad277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/21/2023] [Indexed: 01/03/2024]
Abstract
At the heart of all biological processes lies the control of nuclear gene expression, which is primarily achieved through the action of transcription factors (TFs) that generally contain a nuclear localization signal (NLS) to facilitate their transport into the nucleus. However, some TFs reside in the cytoplasm in a transcriptionally inactive state and only enter the nucleus in response to specific signals, which in plants include biotic or abiotic stresses. These extra-nuclear TFs can be found in the cytosol or associated with various membrane systems, including the endoplasmic reticulum and plasma membrane. They may be integral proteins with transmembrane domains or associate peripherally with the lipid bilayer via acylation or membrane-binding domains. Although over 30 plant TFs, most of them involved in stress responses, have been experimentally shown to reside outside the nucleus, computational predictions suggest that this number is much larger. Understanding how extra-nuclear TFs are trafficked into the nucleus is essential for reconstructing transcriptional regulatory networks that govern major cellular pathways in response to biotic and abiotic signals. Here, we provide a perspective on what is known on plant extranuclear-nuclear TF retention, nuclear trafficking, and the post-translational modifications that ultimately enable them to regulate gene expression upon entering the nucleus.
Collapse
Affiliation(s)
- Sarika Marathe
- Department of Botany, University of Wisconsin-Madison, Madison, WI 53706, USA
- Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Erich Grotewold
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824-6473, USA
| | - Marisa S Otegui
- Department of Botany, University of Wisconsin-Madison, Madison, WI 53706, USA
- Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
11
|
Li Q, Duncan S, Li Y, Huang S, Luo M. Decoding plant specialized metabolism: new mechanistic insights. TRENDS IN PLANT SCIENCE 2024; 29:535-545. [PMID: 38072690 DOI: 10.1016/j.tplants.2023.11.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 11/02/2023] [Accepted: 11/17/2023] [Indexed: 05/04/2024]
Abstract
Secondary metabolite (SM) production provides biotic and abiotic stress resistance and enables plants to adapt to the environment. Biosynthesis of these metabolites involves a complex interplay between transcription factors (TFs) and regulatory elements, with emerging evidence suggesting an integral role for chromatin dynamics. Here we review key TFs and epigenetic regulators that govern SM biosynthesis in different contexts. We summarize relevant emerging technologies and results from the model species arabidopsis (Arabidopsis thaliana) and outline aspects of regulation that may also function in food, feed, fiber, oil, or industrial crop plants. Finally, we highlight how effective translation of fundamental knowledge from model to non-model species can benefit understanding of SM production in a variety of ecological, agricultural, and pharmaceutical contexts.
Collapse
Affiliation(s)
- Qianqian Li
- Guangdong Provincial Key Laboratory of Applied Botany and Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Susan Duncan
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Yuping Li
- Guangdong Provincial Key Laboratory of Applied Botany and Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Shuxian Huang
- Guangdong Provincial Key Laboratory of Applied Botany and Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Ming Luo
- Guangdong Provincial Key Laboratory of Applied Botany and Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China.
| |
Collapse
|
12
|
Meng Y, Lv Q, Li L, Wang B, Chen L, Yang W, Lei Y, Xie Y, Li X. E3 ubiquitin ligase TaSDIR1-4A activates membrane-bound transcription factor TaWRKY29 to positively regulate drought resistance. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:987-1000. [PMID: 38018512 PMCID: PMC10955488 DOI: 10.1111/pbi.14240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/30/2023] [Accepted: 11/04/2023] [Indexed: 11/30/2023]
Abstract
Drought is a deleterious abiotic stress factor that constrains crop growth and development. Post-translational modification of proteins mediated by the ubiquitin-proteasome system is an effective strategy for directing plant responses to stress, but the regulatory mechanisms in wheat remain unclear. In this study, we showed that TaSDIR1-4A is a positive modulator of the drought response. Overexpression of TaSDIR1-4A increased the hypersensitivity of stomata, root length and endogenous abscisic acid (ABA) content under drought conditions. TaSDIR1-4A encodes a C3H2C3-type RING finger protein with E3 ligase activity. Amino acid mutation in its conserved domain led to loss of activity and altered the subcellular localization. The membrane-bound transcription factor TaWRKY29 was identified by yeast two-hybrid screening, and it was confirmed as interacting with TaSDIR1-4A both in vivo and in vitro. TaSDIR1-4A mediated the polyubiquitination and proteolysis of the C-terminal amino acid of TaWRKY29, and its translocation from the plasma membrane to the nucleus. Activated TaWRKY29 bound to the TaABI5 promoter to stimulate its expression, thereby positively regulating the ABA signalling pathway and drought response. Our findings demonstrate the positive role of TaSDIR1-4A in drought tolerance and provide new insights into the involvement of UPS in the wheat stress response.
Collapse
Affiliation(s)
- Ying Meng
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of AgronomyNorthwest A&F UniversityYanglingChina
| | - Qian Lv
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of AgronomyNorthwest A&F UniversityYanglingChina
| | - Liqun Li
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of AgronomyNorthwest A&F UniversityYanglingChina
| | - Bingxin Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of AgronomyNorthwest A&F UniversityYanglingChina
| | - Liuping Chen
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of AgronomyNorthwest A&F UniversityYanglingChina
| | - Weibing Yang
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of AgronomyNorthwest A&F UniversityYanglingChina
| | - Yanhong Lei
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of AgronomyNorthwest A&F UniversityYanglingChina
| | - Yanzhou Xie
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of AgronomyNorthwest A&F UniversityYanglingChina
| | - Xuejun Li
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of AgronomyNorthwest A&F UniversityYanglingChina
| |
Collapse
|
13
|
Qi YB, Xu Z, Shen S, Wang Z, Wang Z. MYRF: A unique transmembrane transcription factor- from proteolytic self-processing to its multifaceted roles in animal development. Bioessays 2024; 46:e2300209. [PMID: 38488284 DOI: 10.1002/bies.202300209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/09/2024] [Accepted: 01/11/2024] [Indexed: 03/28/2024]
Abstract
The Myelin Regulator Factor (MYRF) is a master regulator governing myelin formation and maintenance in the central nervous system. The conservation of MYRF across metazoans and its broad tissue expression suggest it has functions extending beyond the well-established role in myelination. Loss of MYRF results in developmental lethality in both invertebrates and vertebrates, and MYRF haploinsufficiency in humans causes MYRF-related Cardiac Urogenital Syndrome, underscoring its importance in animal development; however, these mechanisms are largely unexplored. MYRF, an unconventional transcription factor, begins embedded in the membrane and undergoes intramolecular chaperone mediated trimerization, which triggers self-cleavage, allowing its N-terminal segment with an Ig-fold DNA-binding domain to enter the nucleus for transcriptional regulation. Recent research suggests developmental regulation of cleavage, yet the mechanisms remain enigmatic. While some parts of MYRF's structure have been elucidated, others remain obscure, leaving questions about how these motifs are linked to its intricate processing and function.
Collapse
Affiliation(s)
- Yingchuan B Qi
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Zhimin Xu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Shiqian Shen
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Zhao Wang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Zhizhi Wang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| |
Collapse
|
14
|
Jasim SA, Almajidi YQ, Al-Rashidi RR, Hjazi A, Ahmad I, Alawadi AHR, Alwaily ER, Alsaab HO, Haslany A, Hameed M. The interaction between lncRNAs and transcription factors regulating autophagy in human cancers: A comprehensive and therapeutical survey. Cell Biochem Funct 2024; 42:e3971. [PMID: 38509767 DOI: 10.1002/cbf.3971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 03/22/2024]
Abstract
Autophagy, as a highly conserved cellular process, participates in cellular homeostasis by degradation and recycling of damaged organelles and proteins. Besides, autophagy has been evidenced to play a dual role through cancer initiation and progression. In the early stage, it may have a tumor-suppressive function through inducing apoptosis and removing damaged cells and organelles. However, late stages promote tumor progression by maintaining stemness features and induction of chemoresistance. Therefore, identifying and targeting molecular mechanisms involved in autophagy is a potential therapeutic strategy for human cancers. Multiple transcription factors (TFs) are involved in the regulation of autophagy by modulating the expression of autophagy-related genes (ATGs). In addition, a wide array of long noncoding RNAs (lncRNAs), a group of regulatory ncRNAs, have been evidenced to regulate the function of these autophagy-related TFs through tumorigenesis. Subsequently, the lncRNAs/TFs/ATGs axis shows great potential as a therapeutic target for human cancers. Therefore, this review aimed to summarize new findings about the role of lncRNAs in regulating autophagy-related TFs with therapeutic perspectives.
Collapse
Affiliation(s)
| | - Yasir Qasim Almajidi
- Department of Pharmacy (Pharmaceutics), Baghdad College of Medical Sciences, Baghdad, Iraq
| | | | - Ahmed Hjazi
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Ahmed Hussien Radie Alawadi
- College of Technical Engineering, The Islamic University, Najaf, Iraq
- College of Technical Engineering, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- College of Technical Engineering, The Islamic University of Babylon, Babylon, Iraq
| | - Enas R Alwaily
- Microbiology Research Group, College of Pharmacy, Al-Ayen University, Thi-Qar, Iraq
| | - Hashem O Alsaab
- Pharmaceutics and Pharmaceutical Technology, Taif University, Taif, Saudi Arabia
| | - Ali Haslany
- Medical Technical College, Al-Farahidi University, Baghdad, Iraq
| | - Mohamood Hameed
- Medical Technical College, Al-Farahidi University, Baghdad, Iraq
| |
Collapse
|
15
|
Janissen R, Barth R, Polinder M, van der Torre J, Dekker C. Single-molecule visualization of twin-supercoiled domains generated during transcription. Nucleic Acids Res 2024; 52:1677-1687. [PMID: 38084930 PMCID: PMC10899792 DOI: 10.1093/nar/gkad1181] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/13/2023] [Accepted: 11/30/2023] [Indexed: 02/29/2024] Open
Abstract
Transcription-coupled supercoiling of DNA is a key factor in chromosome compaction and the regulation of genetic processes in all domains of life. It has become common knowledge that, during transcription, the DNA-dependent RNA polymerase (RNAP) induces positive supercoiling ahead of it (downstream) and negative supercoils in its wake (upstream), as rotation of RNAP around the DNA axis upon tracking its helical groove gets constrained due to drag on its RNA transcript. Here, we experimentally validate this so-called twin-supercoiled-domain model with in vitro real-time visualization at the single-molecule scale. Upon binding to the promoter site on a supercoiled DNA molecule, RNAP merges all DNA supercoils into one large pinned plectoneme with RNAP residing at its apex. Transcription by RNAP in real time demonstrates that up- and downstream supercoils are generated simultaneously and in equal portions, in agreement with the twin-supercoiled-domain model. Experiments carried out in the presence of RNases A and H, revealed that an additional viscous drag of the RNA transcript is not necessary for the RNAP to induce supercoils. The latter results contrast the current consensus and simulations on the origin of the twin-supercoiled domains, pointing at an additional mechanistic cause underlying supercoil generation by RNAP in transcription.
Collapse
Affiliation(s)
- Richard Janissen
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, South-Holland 2629HZ, The Netherlands
| | - Roman Barth
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, South-Holland 2629HZ, The Netherlands
| | - Minco Polinder
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, South-Holland 2629HZ, The Netherlands
| | - Jaco van der Torre
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, South-Holland 2629HZ, The Netherlands
| | - Cees Dekker
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, South-Holland 2629HZ, The Netherlands
| |
Collapse
|
16
|
Sengupta S, Levy DL. Organelle Communication with the Nucleus. Results Probl Cell Differ 2024; 73:3-23. [PMID: 39242372 PMCID: PMC11409190 DOI: 10.1007/978-3-031-62036-2_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2024]
Abstract
Compartmentalization of cellular components is critical to the spatiotemporal and environmental regulation of biochemical activities inside a cell, ensures the proper division of cellular labor and resources, and increases the efficiency of metabolic processes. However, compartmentalization also poses a challenge as organelles often need to communicate across these compartments to complete reaction pathways. These communication signals are often critical aspects of the cellular response to changing environmental conditions. A central signaling hub in the cell, the nucleus communicates with mitochondria, lysosomes, the endoplasmic reticulum, and the Golgi body to ensure optimal organellar and cellular performance. Here we review different mechanisms by which these organelles communicate with the nucleus, focusing on anterograde and retrograde signaling of mitochondria, localization-based signaling of lysosomes, the unfolded protein response of the endoplasmic reticulum, and evidence for nucleus-Golgi signaling. We also include a brief overview of some less well-characterized mechanisms of communication between non-nuclear organelles.
Collapse
Affiliation(s)
- Sourabh Sengupta
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071, USA
| | - Daniel L. Levy
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071, USA
| |
Collapse
|
17
|
Neves C, Ribeiro B, Amaro R, Expósito J, Grimplet J, Fortes AM. Network of GRAS transcription factors in plant development, fruit ripening and stress responses. HORTICULTURE RESEARCH 2023; 10:uhad220. [PMID: 38077496 PMCID: PMC10699852 DOI: 10.1093/hr/uhad220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 10/20/2023] [Indexed: 06/23/2024]
Abstract
The plant-specific family of GRAS transcription factors has been wide implicated in the regulation of transcriptional reprogramming associated with a diversity of biological functions ranging from plant development processes to stress responses. Functional analyses of GRAS transcription factors supported by in silico structural and comparative analyses are emerging and clarifying the regulatory networks associated with their biological roles. In this review, a detailed analysis of GRAS proteins' structure and biochemical features as revealed by recent discoveries indicated how these characteristics may impact subcellular location, molecular mechanisms, and function. Nomenclature issues associated with GRAS classification into different subfamilies in diverse plant species even in the presence of robust genomic resources are discussed, in particular how it affects assumptions of biological function. Insights into the mechanisms driving evolution of this gene family and how genetic and epigenetic regulation of GRAS contributes to subfunctionalization are provided. Finally, this review debates challenges and future perspectives on the application of this complex but promising gene family for crop improvement to cope with challenges of environmental transition.
Collapse
Affiliation(s)
- Catarina Neves
- BioISI–Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, Campo Grande, 1749-016 Lisboa, Portugal
| | - Beatriz Ribeiro
- BioISI–Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, Campo Grande, 1749-016 Lisboa, Portugal
| | - Rute Amaro
- BioISI–Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, Campo Grande, 1749-016 Lisboa, Portugal
| | - Jesús Expósito
- BioISI–Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, Campo Grande, 1749-016 Lisboa, Portugal
| | - Jérôme Grimplet
- Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Departamento de Ciencia Vegetal, Gobierno de Aragón, Avda. Montañana 930, 50059 Zaragoza, Spain
- Instituto Agroalimentario de Aragón—IA2 (CITA-Universidad de Zaragoza), Calle Miguel Servet 177, 50013 Zaragoza, Spain
| | - Ana Margarida Fortes
- BioISI–Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, Campo Grande, 1749-016 Lisboa, Portugal
| |
Collapse
|
18
|
Liu R, Gong Y, Xia C, Cao Y, Zhao C, Zhou M. Itaconate: A promising precursor for treatment of neuroinflammation associated depression. Biomed Pharmacother 2023; 167:115521. [PMID: 37717531 DOI: 10.1016/j.biopha.2023.115521] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/11/2023] [Accepted: 09/14/2023] [Indexed: 09/19/2023] Open
Abstract
Neuroinflammation triggers the production of inflammatory factors, influences neuron generation and synaptic plasticity, thus playing an important role in the pathogenesis of depression and becoming an important direction of depression prevention and treatment. Itaconate is a metabolite secreted by macrophages in immunomodulatory responses, that has potent immunomodulatory effects and has been proven to exert anti-inflammatory effects in a variety of diseases. Microglia are mononuclear macrophages that reside in the central nervous system (CNS), and may be the source of endogenous itaconate in the brain. Itaconate can directly inhibit succinate dehydrogenase (SDH), reduce the production of NOD-like receptor thermal protein domain associated protein 3 (NLRP3), activate nuclear factor erythroid-2 related factor 2 (Nrf2), and block glycolysis, and thereby improving the depressive symptoms associated with the above mechanisms. Notably, itaconate also indirectly ameliorates the depressive symptoms associated with some inflammatory diseases. With the optimization of the structure and the development of new delivery systems, the application value and therapeutic potential of itaconate have been significantly improved. Dimethyl itaconate (DI) and 4-octyl itaconate (4-OI), cell-permeable derivatives of itaconate, are more suitable for crossing the blood-brain barrier (BBB), exhibiting therapeutic effects in the research of multiple diseases. This article provides an overview of the immunomodulatory effects of itaconate and its potential therapeutic efficacy in inflammatory depression, focusing on the promising application of itaconate as a precursor of antidepressants.
Collapse
Affiliation(s)
- Ruisi Liu
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China; Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yueling Gong
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China; Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Chenyi Xia
- Department of Physiology, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yemin Cao
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
| | - Cheng Zhao
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China.
| | - Mingmei Zhou
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China; Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
19
|
Lee GE, Byun J, Lee CJ, Cho YY. Molecular Mechanisms for the Regulation of Nuclear Membrane Integrity. Int J Mol Sci 2023; 24:15497. [PMID: 37895175 PMCID: PMC10607757 DOI: 10.3390/ijms242015497] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/19/2023] [Accepted: 10/22/2023] [Indexed: 10/29/2023] Open
Abstract
The nuclear membrane serves a critical role in protecting the contents of the nucleus and facilitating material and signal exchange between the nucleus and cytoplasm. While extensive research has been dedicated to topics such as nuclear membrane assembly and disassembly during cell division, as well as interactions between nuclear transmembrane proteins and both nucleoskeletal and cytoskeletal components, there has been comparatively less emphasis on exploring the regulation of nuclear morphology through nuclear membrane integrity. In particular, the role of type II integral proteins, which also function as transcription factors, within the nuclear membrane remains an area of research that is yet to be fully explored. The integrity of the nuclear membrane is pivotal not only during cell division but also in the regulation of gene expression and the communication between the nucleus and cytoplasm. Importantly, it plays a significant role in the development of various diseases. This review paper seeks to illuminate the biomolecules responsible for maintaining the integrity of the nuclear membrane. It will delve into the mechanisms that influence nuclear membrane integrity and provide insights into the role of type II membrane protein transcription factors in this context. Understanding these aspects is of utmost importance, as it can offer valuable insights into the intricate processes governing nuclear membrane integrity. Such insights have broad-reaching implications for cellular function and our understanding of disease pathogenesis.
Collapse
Affiliation(s)
- Ga-Eun Lee
- BK21-4th, and BRL, College of Pharmacy, The Catholic University of Korea, 43, Jibong-ro, Wonmi-gu, Bucheon-si 14662, Gyeonggi-do, Republic of Korea; (G.-E.L.); (J.B.)
| | - Jiin Byun
- BK21-4th, and BRL, College of Pharmacy, The Catholic University of Korea, 43, Jibong-ro, Wonmi-gu, Bucheon-si 14662, Gyeonggi-do, Republic of Korea; (G.-E.L.); (J.B.)
| | - Cheol-Jung Lee
- Research Center for Materials Analysis, Korea Basic Science Institute, 169-148, Gwahak-ro, Yuseong-gu, Daejeon 34133, Chungcheongnam-do, Republic of Korea
| | - Yong-Yeon Cho
- BK21-4th, and BRL, College of Pharmacy, The Catholic University of Korea, 43, Jibong-ro, Wonmi-gu, Bucheon-si 14662, Gyeonggi-do, Republic of Korea; (G.-E.L.); (J.B.)
- RCD Control and Material Research Institute, The Catholic University of Korea, 43, Jibong-ro, Wonmi-gu, Bucheon-si 14662, Gyeonggi-do, Republic of Korea
| |
Collapse
|
20
|
Zhang X, Lan Y, Wang L, Liu H, Jiang N, He W, Yan H, Wu M, Xiang Y. Whole-genome identification and multiple abiotic stresses expression pattern profiling analysis of PLATZ transcription factor family members in Pecan (Carya illinoensis). Int J Biol Macromol 2023; 248:125959. [PMID: 37495003 DOI: 10.1016/j.ijbiomac.2023.125959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 07/03/2023] [Accepted: 07/13/2023] [Indexed: 07/28/2023]
Abstract
Plant AT-rich sequence and zinc-binding (PLATZ), as a plant-specific transcription factor, have been identified and studied in a variety of plants. However, there are no reports about PLATZ proteins in Carya illinoensis (pecan). Here, 24 C. illinoensis CiPLATZs have been identified and divided into 4 groups. Gene structure, motif composition, conserved domain and cis-acting elements analysis indicated that the PLATZ gene family was highly conserved. Transcriptome data combined with qRT-PCR analysis revealed that CiPLATZ6, CiPLATZ12, CiPLATZ13, CiPLATZ14 and CiPLATZ23 were highly expressed in multiple tissues of C. illinoensis and strongly responded to drought, salt and heat stress. Among them, CiPLATZ6, CiPLATZ12 and CiPLATZ23 were all located in the nucleus and had no transcriptional autoactivation ability in yeast cells, and acted as transcriptional suppressors in plants. In addition, the CiPLATZ23-overexpressing transgenic Arabidopsis thaliana showed enhanced tolerance to drought. Measurements of physiological indicators and analysis of stress-related genes expression levels in transgenic A. thaliana were used to support this conclusion. The results of this study are helpful to understand the structural feature and function of CiPLATZs, and provide candidate genes for molecular breeding of drought tolerance of C. illinoensis.
Collapse
Affiliation(s)
- Xiaoyue Zhang
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei 230036, China
| | - Yangang Lan
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei 230036, China
| | - Linna Wang
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei 230036, China
| | - Hongxia Liu
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei 230036, China
| | - Nianqin Jiang
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei 230036, China
| | - Wei He
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei 230036, China
| | - Hanwei Yan
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei 230036, China
| | - Min Wu
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei 230036, China
| | - Yan Xiang
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
21
|
Francisco JT, Holt AW, Bullock MT, Williams MD, Poovey CE, Holland NA, Brault JJ, Tulis DA. FoxO3 normalizes Smad3-induced arterial smooth muscle cell growth. Front Physiol 2023; 14:1136998. [PMID: 37693008 PMCID: PMC10483145 DOI: 10.3389/fphys.2023.1136998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 08/10/2023] [Indexed: 09/12/2023] Open
Abstract
Transition of arterial smooth muscle (ASM) from a quiescent, contractile state to a growth-promoting state is a hallmark of cardiovascular disease (CVD), a leading cause of death and disability in the United States and worldwide. While many individual signals have been identified as important mechanisms in this phenotypic conversion, the combined impact of the transcription factors Smad3 and FoxO3 in ASM growth is not known. The purpose of this study was to determine that a coordinated, phosphorylation-specific relationship exists between Smad3 and FoxO3 in the control of ASM cell growth. Using a rat in vivo arterial injury model and rat primary ASM cell lysates and fractions, validated low and high serum in vitro models of respective quiescent and growth states, and adenoviral (Ad-) gene delivery for overexpression (OE) of individual and combined Smad3 and/or FoxO3, we hypothesized that FoxO3 can moderate Smad3-induced ASM cell growth. Key findings revealed unique cellular distribution of Smad3 and FoxO3 under growth conditions, with induction of both nuclear and cytosolic Smad3 yet primarily cytosolic FoxO3; Ad-Smad3 OE leading to cytosolic and nuclear expression of phosphorylated and total Smad3, with almost complete reversal of each with Ad-FoxO3 co-infection in quiescent and growth conditions; Ad-FoxO3 OE leading to enhanced cytosolic expression of phosphorylated and total FoxO3, both reduced with Ad-Smad3 co-infection in quiescent and growth conditions; Ad-FoxO3 inducing expression and activity of the ubiquitin ligase MuRF-1, which was reversed with concomitant Ad-Smad3 OE; and combined Smad3/FoxO3 OE reversing both the pro-growth impact of singular Smad3 and the cytostatic impact of singular FoxO3. A primary takeaway from these observations is the capacity of FoxO3 to reverse growth-promoting effects of Smad3 in ASM cells. Additional findings lend support for reciprocal antagonism of Smad3 on FoxO3-induced cytostasis, and these effects are dependent upon discrete phosphorylation states and cellular localization and involve MuRF-1 in the control of ASM cell growth. Lastly, results showing capacity of FoxO3 to normalize Smad3-induced ASM cell growth largely support our hypothesis, and overall findings provide evidence for utility of Smad3 and/or FoxO3 as potential therapeutic targets against abnormal ASM growth in the context of CVD.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - David A. Tulis
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, United States
| |
Collapse
|
22
|
Singh AK, Kumar R, Yin J, Brooks Ii JF, Kathania M, Mukherjee S, Kumar J, Conlon KP, Basrur V, Chen Z, Han X, Hooper LV, Burstein E, Venuprasad K. RORγt-Raftlin1 complex regulates the pathogenicity of Th17 cells and colonic inflammation. Nat Commun 2023; 14:4972. [PMID: 37591835 PMCID: PMC10435467 DOI: 10.1038/s41467-023-40622-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/03/2023] [Indexed: 08/19/2023] Open
Abstract
Th17 cells that produce Interleukin IL-17 are pathogenic in many human diseases, including inflammatory bowel disease, but are, paradoxically, essential for maintaining the integrity of the intestinal barrier in a non-inflammatory state. However, the intracellular mechanisms that regulate distinct transcriptional profiles and functional diversity of Th17 cells remain unclear. Here we show Raftlin1, a lipid raft protein, specifically upregulates and forms a complex with RORγt in pathogenic Th17 cells. Disruption of the RORγt-Raftlin1 complex results in the reduction of pathogenic Th17 cells in response to Citrobacter rodentium; however, there is no effect on nonpathogenic Th17 cells in response to commensal segmented filamentous bacteria. Mechanistically, we show that Raftlin1 recruits distinct phospholipids to RORγt and promotes the pathogenicity of Th17 cells. Thus, we have identified a mechanism that drives the pathogenic function of Th17 cells, which could provide a platform for advanced therapeutic strategies to dampen Th17-mediated inflammatory diseases.
Collapse
Affiliation(s)
- Amir Kumar Singh
- Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, 75390, USA
- Department of Immunology, UT Southwestern Medical Center, Dallas, TX, 75390, USA
- Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Ritesh Kumar
- Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, 75390, USA
- Department of Immunology, UT Southwestern Medical Center, Dallas, TX, 75390, USA
- Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Jianyi Yin
- Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - John F Brooks Ii
- Department of Immunology, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Mahesh Kathania
- Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, 75390, USA
- Department of Immunology, UT Southwestern Medical Center, Dallas, TX, 75390, USA
- Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Sandip Mukherjee
- Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, 75390, USA
- Department of Immunology, UT Southwestern Medical Center, Dallas, TX, 75390, USA
- Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Jitendra Kumar
- Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, 75390, USA
- Department of Immunology, UT Southwestern Medical Center, Dallas, TX, 75390, USA
- Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Kevin P Conlon
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Venkatesha Basrur
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Zhe Chen
- Department of Biophysics, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Xianlin Han
- University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Lora V Hooper
- Department of Immunology, UT Southwestern Medical Center, Dallas, TX, 75390, USA
- The Howard Hughes Medical Institute, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Ezra Burstein
- Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - K Venuprasad
- Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, 75390, USA.
- Department of Immunology, UT Southwestern Medical Center, Dallas, TX, 75390, USA.
- Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
23
|
Liu Y, Xu G, Fu H, Li P, Li D, Deng K, Gao W, Shang Y, Wu M. Membrane-bound transcription factor LRRC4 inhibits glioblastoma cell motility. Int J Biol Macromol 2023; 246:125590. [PMID: 37385320 DOI: 10.1016/j.ijbiomac.2023.125590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 06/13/2023] [Accepted: 06/25/2023] [Indexed: 07/01/2023]
Abstract
Membrane-bound transcription factors (MTFs) have been observed in many types of organisms, such as plants, animals and microorganisms. However, the routes of MTF nuclear translocation are not well understood. Here, we reported that LRRC4 is a novel MTF that translocates to the nucleus as a full-length protein via endoplasmic reticulum-Golgi transport, which is different from the previously described nuclear entry mechanism. A ChIP-seq assay showed that LRRC4 target genes were mainly involved in cell motility. We confirmed that LRRC4 bound to the enhancer element of the RAP1GAP gene to activate its transcription and inhibited glioblastoma cell movement by affecting cell contraction and polarization. Furthermore, atomic force microscopy (AFM) confirmed that LRRC4 or RAP1GAP altered cellular biophysical properties, such as the surface morphology, adhesion force and cell stiffness. Thus, we propose that LRRC4 is an MTF with a novel route of nuclear translocation. Our observations demonstrate that LRRC4-null glioblastoma led to disordered RAP1GAP gene expression, which increased cellular movement. Re-expression of LRRC4 enabled it to suppress tumors, and this is a potential for targeted treatment in glioblastoma.
Collapse
Affiliation(s)
- Yang Liu
- Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China; NHC Key Laboratory of Carcinogenesis, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan 410008, China
| | - Gang Xu
- Diagnostics Department, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, China
| | - Haijuan Fu
- Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China; NHC Key Laboratory of Carcinogenesis, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan 410008, China
| | - Peiyao Li
- NHC Key Laboratory of Carcinogenesis, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan 410008, China
| | - Danyang Li
- Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China; NHC Key Laboratory of Carcinogenesis, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan 410008, China
| | - Kun Deng
- Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China; NHC Key Laboratory of Carcinogenesis, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan 410008, China
| | - Wei Gao
- Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China; NHC Key Laboratory of Carcinogenesis, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan 410008, China
| | - Yujie Shang
- Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China; NHC Key Laboratory of Carcinogenesis, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan 410008, China
| | - Minghua Wu
- Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China; NHC Key Laboratory of Carcinogenesis, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan 410008, China.
| |
Collapse
|
24
|
Chin FW, Hussin H, Chau DM, Ong TA, Yunus R, Abdul Razack AH, Yusoff K, Chan SC, Veerakumarasivam A. Differential Protein Expression Patterns of HOXA13 and HOXB13 Are Associated with Bladder Cancer Progression. Diagnostics (Basel) 2023; 13:2636. [PMID: 37627895 PMCID: PMC10453033 DOI: 10.3390/diagnostics13162636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/02/2023] [Accepted: 07/08/2023] [Indexed: 08/27/2023] Open
Abstract
Bladder cancer is a common urological cancer and has the highest recurrence rate of any cancer. The aim of our study was to profile and characterize the protein expression of homeobox A13 (HOXA13) and homeobox B13 (HOXB13) genes in Malaysian bladder cancer patients. The protein expression of HOXA13 and HOXB13 in formalin-fixed paraffin-embedded (FFPE) bladder cancer tissues was determined by immunohistochemistry (IHC) analysis. The association between HOXA13/HOXB13 protein expression and demographic/clinicopathological characteristics of the bladder cancer patients was determined by chi-square analysis. Approximately 63.6% of the bladder cancer tissues harbored high HOXA13 expression. High HOXA13 expression was significantly associated with non-muscle invasive bladder cancer, lower tumor grade, higher number of lymph node metastases, and recurrence risk. In contrast, low HOXB13 expression (including those with negative expression) was observed in 71.6% of the bladder cancer tissues analyzed. Low HOXB13 expression was significantly associated with muscle-invasive bladder cancer, higher tumor stage, tumor grade, and metastatic risk. Both HOXA13 and HOXB13 protein expression were found to be associated with bladder tumorigenesis. The putative oncogenic and tumor suppressive roles of HOXA13 and HOXB13, respectively, suggest their potential utility as biomarkers in bladder cancer.
Collapse
Affiliation(s)
- Fee-Wai Chin
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia
| | - Huzlinda Hussin
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia
| | - De-Ming Chau
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia
| | - Teng-Aik Ong
- Department of Surgery, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Rosna Yunus
- Department of Pathology, Hospital Kuala Lumpur, Kuala Lumpur 50586, Malaysia
| | | | - Khatijah Yusoff
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia
- Malaysia Genome and Vaccine Institute, National Institutes of Biotechnology Malaysia, Kajang 43000, Selangor, Malaysia
| | - Soon-Choy Chan
- Malaysia Genome and Vaccine Institute, National Institutes of Biotechnology Malaysia, Kajang 43000, Selangor, Malaysia
- School of Liberal Arts, Science and Technology, Perdana University, Kuala Lumpur 50490, Malaysia
| | - Abhi Veerakumarasivam
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia
- Malaysia Genome and Vaccine Institute, National Institutes of Biotechnology Malaysia, Kajang 43000, Selangor, Malaysia
- School of Medical and Life Sciences, Sunway University, Bandar Sunway 47500, Selangor, Malaysia
| |
Collapse
|
25
|
Zhang L, Yang T, Wang Z, Zhang F, Li N, Jiang W. Genome-Wide Identification and Expression Analysis of the PLATZ Transcription Factor in Tomato. PLANTS (BASEL, SWITZERLAND) 2023; 12:2632. [PMID: 37514247 PMCID: PMC10384190 DOI: 10.3390/plants12142632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/07/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023]
Abstract
The PLATZ (plant AT protein and zinc-binding protein) transcription factor family is involved in the regulation of plant growth and development and plant stress response. In this study, 24 SlPLATZs were identified from the cultivated tomato genome and classified into four groups based on the similarity of conserved patterns among members of the same subfamily. Fragment duplication was an important way to expand the SlPLATZ gene family in tomatoes, and the sequential order of tomato PLATZ genes in the evolution of monocotyledonous and dicotyledonous plants and the roles they played were hypothesized. Expression profiles based on quantitative real-time reverse transcription PCR showed that SlPLATZ was involved in the growth of different tissues in tomatoes. SlPLATZ21 acts mainly in the leaves. SlPLATZ9, SlPLATZ21, and SlPLATZ23 were primarily involved in the red ripening, expanding, and mature green periods of fruit, respectively. In addition, SlPLATZ1 was found to play an important role in salt stress. This study will lay the foundation for the analysis of the biological functions of SlPLATZ genes and will also provide a theoretical basis for the selection and breeding of new tomato varieties and germplasm innovation.
Collapse
Affiliation(s)
- Lifang Zhang
- College of Horticulture, Xinjiang Agricultural University, Urumqi 830052, China
| | - Tao Yang
- Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China
| | - Zepeng Wang
- College of Horticulture, Xinjiang Agricultural University, Urumqi 830052, China
- Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China
| | - Fulin Zhang
- College of Horticulture, Xinjiang Agricultural University, Urumqi 830052, China
- Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China
| | - Ning Li
- Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China
| | - Weijie Jiang
- College of Horticulture, Xinjiang Agricultural University, Urumqi 830052, China
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
26
|
Li J, Zhao Y, Zhang Y, Ye F, Hou Z, Zhang Y, Hao L, Li G, Shao J, Tan M. Genome-wide analysis of MdPLATZ genes and their expression during axillary bud outgrowth in apple (Malus domestica Borkh.). BMC Genomics 2023; 24:329. [PMID: 37322464 DOI: 10.1186/s12864-023-09399-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 05/23/2023] [Indexed: 06/17/2023] Open
Abstract
BACKGROUND Branching is a plastic character that affects plant architecture and spatial structure. The trait is controlled by a variety of plant hormones through coordination with environmental signals. Plant AT-rich sequence and zinc-binding protein (PLATZ) is a transcription factor that plays an important role in plant growth and development. However, systematic research on the role of the PLATZ family in apple branching has not been conducted previously. RESULTS In this study, a total of 17 PLATZ genes were identified and characterized from the apple genome. The 83 PLATZ proteins from apple, tomato, Arabidopsis, rice, and maize were classified into three groups based on the topological structure of the phylogenetic tree. The phylogenetic relationships, conserved motifs, gene structure, regulatory cis-acting elements, and microRNAs of the MdPLATZ family members were predicted. Expression analysis revealed that MdPLATZ genes exhibited distinct expression patterns in different tissues. The expression patterns of the MdPLATZ genes were systematically investigated in response to treatments that impact apple branching [thidazuron (TDZ) and decapitation]. The expression of MdPLATZ1, 6, 7, 8, 9, 15, and 16 was regulated during axillary bud outgrowth based on RNA-sequencing data obtained from apple axillary buds treated by decapitation or exogenous TDZ application. Quantitative real-time PCR analysis showed that MdPLATZ6 was strongly downregulated in response to the TDZ and decapitation treatments, however, MdPLATZ15 was significantly upregulated in response to TDZ, but exhibited little response to decapitation. Furthermore, the co-expression network showed that PLATZ might be involved in shoot branching by regulating branching-related genes or mediating cytokinin or auxin pathway. CONCLUSION The results provide valuable information for further functional investigation of MdPLATZ genes in the control of axillary bud outgrowth in apple.
Collapse
Affiliation(s)
- Jiuyang Li
- College of Horticulture, Hebei Agricultural University, Hebei, 071000, China
| | - Yongliang Zhao
- College of Horticulture, Hebei Agricultural University, Hebei, 071000, China
| | - Yaohui Zhang
- College of Horticulture, Hebei Agricultural University, Hebei, 071000, China
| | - Feng Ye
- College of Horticulture, Hebei Agricultural University, Hebei, 071000, China
| | - Zhengcun Hou
- College of Horticulture, Hebei Agricultural University, Hebei, 071000, China
| | - Yuhang Zhang
- College of Horticulture, Hebei Agricultural University, Hebei, 071000, China
| | - Longjie Hao
- College of Horticulture, Hebei Agricultural University, Hebei, 071000, China
| | - Guofang Li
- College of Horticulture, Hebei Agricultural University, Hebei, 071000, China
| | - Jianzhu Shao
- College of Horticulture, Hebei Agricultural University, Hebei, 071000, China.
| | - Ming Tan
- College of Horticulture, Hebei Agricultural University, Hebei, 071000, China.
| |
Collapse
|
27
|
Lawley SD, Johnson J. Slowest first passage times, redundancy, and menopause timing. J Math Biol 2023; 86:90. [PMID: 37148411 DOI: 10.1007/s00285-023-01921-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 04/01/2023] [Accepted: 04/17/2023] [Indexed: 05/08/2023]
Abstract
Biological events are often initiated when a random "searcher" finds a "target," which is called a first passage time (FPT). In some biological systems involving multiple searchers, an important timescale is the time it takes the slowest searcher(s) to find a target. For example, of the hundreds of thousands of primordial follicles in a woman's ovarian reserve, it is the slowest to leave that trigger the onset of menopause. Such slowest FPTs may also contribute to the reliability of cell signaling pathways and influence the ability of a cell to locate an external stimulus. In this paper, we use extreme value theory and asymptotic analysis to obtain rigorous approximations to the full probability distribution and moments of slowest FPTs. Though the results are proven in the limit of many searchers, numerical simulations reveal that the approximations are accurate for any number of searchers in typical scenarios of interest. We apply these general mathematical results to models of ovarian aging and menopause timing, which reveals the role of slowest FPTs for understanding redundancy in biological systems. We also apply the theory to several popular models of stochastic search, including search by diffusive, subdiffusive, and mortal searchers.
Collapse
Affiliation(s)
- Sean D Lawley
- Department of Mathematics, University of Utah, Salt Lake City, UT, 84112, USA.
| | - Joshua Johnson
- Division of Reproductive Sciences, Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, University of Colorado-Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
28
|
Jeon YG, Kim YY, Lee G, Kim JB. Physiological and pathological roles of lipogenesis. Nat Metab 2023; 5:735-759. [PMID: 37142787 DOI: 10.1038/s42255-023-00786-y] [Citation(s) in RCA: 93] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 03/15/2023] [Indexed: 05/06/2023]
Abstract
Lipids are essential metabolites, which function as energy sources, structural components and signalling mediators. Most cells are able to convert carbohydrates into fatty acids, which are often converted into neutral lipids for storage in the form of lipid droplets. Accumulating evidence suggests that lipogenesis plays a crucial role not only in metabolic tissues for systemic energy homoeostasis but also in immune and nervous systems for their proliferation, differentiation and even pathophysiological roles. Thus, excessive or insufficient lipogenesis is closely associated with aberrations in lipid homoeostasis, potentially leading to pathological consequences, such as dyslipidaemia, diabetes, fatty liver, autoimmune diseases, neurodegenerative diseases and cancers. For systemic energy homoeostasis, multiple enzymes involved in lipogenesis are tightly controlled by transcriptional and post-translational modifications. In this Review, we discuss recent findings regarding the regulatory mechanisms, physiological roles and pathological importance of lipogenesis in multiple tissues such as adipose tissue and the liver, as well as the immune and nervous systems. Furthermore, we briefly introduce the therapeutic implications of lipogenesis modulation.
Collapse
Affiliation(s)
- Yong Geun Jeon
- Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Ye Young Kim
- Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Gung Lee
- Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Jae Bum Kim
- Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul, South Korea.
| |
Collapse
|
29
|
Sun C, Yu L, Zhang S, Gu Q, Wang M. Genome-wide characterization of the SHORT INTER-NODES/STYLISH and Shi-Related Sequence family in Gossypium hirsutum and functional identification of GhSRS21 under salt stress. FRONTIERS IN PLANT SCIENCE 2023; 13:1078083. [PMID: 36684735 PMCID: PMC9846857 DOI: 10.3389/fpls.2022.1078083] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
Saline stress is a significant factor that caused crop growth inhibition and yield decline. SHORT INTERNODES/STYLISH (SHI/STY) and SHI-RELATED SEQUENCE (SRS) transcription factors are specific to plants and share a conserved RING-like zinc-finger domain (CX2CX7CX4CX2C2X6C). However, the functions of SHI/STY and SRS genes in cotton responses to salt stress remain unclear. In this study, 26 GhSRSs were identified in Gossypium hirsutum, which further divided into three subgroups. Phylogenetic analysis of 88 SRSs from8 plant species revealed independent evolutionary pattern in some of SRSs derived from monocots. Conserved domain and subcellular location predication of GhSRSs suggested all of them only contained the conserved RING-like zinc-finger domain (DUF702) domain and belonged to nucleus-localized transcription factors except for the GhSRS22. Furthermore, synteny analysis showed structural variation on chromosomes during the process of cotton polyploidization. Subsequently, expression patterns of GhSRS family members in response to salt and drought stress were analyzed in G. hirsutum and identified a salt stress-inducible gene GhSRS21. The GhSRS21 was proved to localize in the nuclear and silencing it in G. hirsutum increased the cotton resistance to salt using the virus-induced gene silencing (VIGS) system. Finally, our transcriptomic data revealed that GhSRS21 negatively controlled cotton salt tolerance by regulating the balance between ROS production and scavenging. These results will increase our understanding of the SRS gene family in cotton and provide the candidate resistant gene for cotton breeding.
Collapse
Affiliation(s)
- Chendong Sun
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Li Yu
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Shuojun Zhang
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Qijuan Gu
- Key Laboratory of Microbiol Technology and Bioinformatics of Zhejiang Province, Zhejiang Institute of Microbiology, Hangzhou, China
| | - Mei Wang
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
30
|
Saidi MN, Mergby D, Souibgui A, Yacoubi I. Overexpression of durum wheat NAC transcription factor TtNTL3A promotes early flowering and increases multiple stress tolerance in transgenic Arabidopsis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 192:1-9. [PMID: 36201982 DOI: 10.1016/j.plaphy.2022.09.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 09/07/2022] [Accepted: 09/25/2022] [Indexed: 06/16/2023]
Abstract
Plant-specific NAC transcription factors play important roles in plant development processes, hormone signaling and response to biotic and abiotic stresses. Here, a newly identified membrane-bound NAC gene, designated as TtNTL3A, was isolated from durum wheat. TtNTL3A was homologous to bread wheat TaNAC8 and rice OsNAC8. Moreover, yeast trans-activation assays revealed that TtNTL3A is a transcriptional activator. TtNTL3A was highly expressed in developing seeds and was induced by abiotic stresses, abscisic acid treatment and the infection with Fusarium graminearum. Besides, Transgenic Arabidopsis overexpressing TtNTL3A showed early flowering phenotype and higher tolerance to salt and drought stresses. RT-qPCR analysis revealed that drought and salt-responsive genes were highly expressed in transgenic lines compared to WT plants. Besides, these lines showed resistance to Fusarium graminearum, which was accompanied by a higher expression of pathogenesis-related genes (AtPR-1, Atpdf1.2, and AtNPR1) in TtNTL3A-OE lines. These findings suggest that TtNTL3A is an interesting target of genetic engineering to improve wheat tolerance to biotic and abiotic stresses.
Collapse
Affiliation(s)
- Mohamed Najib Saidi
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax, P.O. Box 1177, Road Sidi Mansour 6 Km, Sfax, 3018, Tunisia.
| | - Dhawya Mergby
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax, P.O. Box 1177, Road Sidi Mansour 6 Km, Sfax, 3018, Tunisia
| | - Amel Souibgui
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax, P.O. Box 1177, Road Sidi Mansour 6 Km, Sfax, 3018, Tunisia
| | - Ines Yacoubi
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax, P.O. Box 1177, Road Sidi Mansour 6 Km, Sfax, 3018, Tunisia
| |
Collapse
|
31
|
Odularu AT, Afolayan AJ, Sadimenko AP, Ajibade PA, Mbese JZ. Multidrug-Resistant Biofilm, Quorum Sensing, Quorum Quenching, and Antibacterial Activities of Indole Derivatives as Potential Eradication Approaches. BIOMED RESEARCH INTERNATIONAL 2022; 2022:9048245. [PMID: 36060142 PMCID: PMC9433265 DOI: 10.1155/2022/9048245] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 06/21/2022] [Accepted: 07/22/2022] [Indexed: 11/17/2022]
Abstract
Challenges encountered in relapse of illness caused by resistance of microorganisms to antimicrobial agents (drugs) are due to factors of severe stress initiated by random use of antibiotics and insufficient beneficial approaches. These challenges have resulted to multiple drug resistance (MDR) and, subsequently, biofilm formation. A type of intercellular communication signal called quorum sensing (QS) has been studied to cause the spread of resistance, thereby enabling a formation of stable community for microorganisms. The QS could be inhibited using QS inhibitors (QSIs) called quorum-quenching (QQ). The QQ is an antibiofilm agent. Indole derivatives from plant sources can serve as quorum-quenching eradication approach for biofilm, as well as a promising nontoxic antibiofilm agent. In other words, phytochemicals in plants help to control and prevent biofilm formation. It could be recommended that combination strategies of these indoles' derivatives with antibiotics would yield enhanced results.
Collapse
Affiliation(s)
- Ayodele T. Odularu
- Department of Chemistry, Faculty of Science and Agriculture, University of Fort Hare, Private Bag X1314, Alice 5700, South Africa
- School of Further and Continuing Education, Faculty of Science and Agriculture, University of Fort Hare, Private Bag X1314, Alice 5700, South Africa
| | - Anthony J. Afolayan
- Centre of Phytomedicine, Department of Botany, Faculty of Science and Agriculture, University of Fort Hare, Alice 5700, Private Bag X1314, South Africa
| | - Alexander P. Sadimenko
- Department of Chemistry, Faculty of Science and Agriculture, University of Fort Hare, Private Bag X1314, Alice 5700, South Africa
| | - Peter A. Ajibade
- School of Chemistry and Physics, University of KwaZulu-Natal, Pietermaritzburg Campus, Scottsville 3209, South Africa
| | - Johannes Z. Mbese
- Department of Chemistry, Faculty of Science and Agriculture, University of Fort Hare, Private Bag X1314, Alice 5700, South Africa
| |
Collapse
|
32
|
Cytoskeletal regulation of a transcription factor by DNA mimicry via coiled-coil interactions. Nat Cell Biol 2022; 24:1088-1098. [PMID: 35725768 PMCID: PMC10016618 DOI: 10.1038/s41556-022-00935-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 05/06/2022] [Indexed: 02/07/2023]
Abstract
A long-established strategy for transcription regulation is the tethering of transcription factors to cellular membranes. By contrast, the principal effectors of Hedgehog signalling, the GLI transcription factors, are regulated by microtubules in the primary cilium and the cytoplasm. How GLI is tethered to microtubules remains unclear. Here, we uncover DNA mimicry by the ciliary kinesin KIF7 as a mechanism for the recruitment of GLI to microtubules, wherein the coiled-coil dimerization domain of KIF7, characterized by its striking shape, size and charge similarity to DNA, forms a complex with the DNA-binding zinc fingers in GLI, thus revealing a mode of tethering a DNA-binding protein to the cytoskeleton. GLI increases KIF7 microtubule affinity and consequently modulates the localization of both proteins to microtubules and the cilium tip. Thus, the kinesin-microtubule system is not a passive GLI tether but a regulatable platform tuned by the kinesin-transcription factor interaction. We retooled this coiled-coil-based GLI-KIF7 interaction to inhibit the nuclear and cilium localization of GLI. This strategy can potentially be exploited to downregulate erroneously activated GLI in human cancers.
Collapse
|
33
|
Sun H, Xie Y, Yang W, Lv Q, Chen L, Li J, Meng Y, Li L, Li X. Membrane-bound transcription factor TaNTL1 positively regulates drought stress tolerance in transgenic Arabidopsis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 182:182-193. [PMID: 35512580 DOI: 10.1016/j.plaphy.2022.04.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 04/24/2022] [Accepted: 04/25/2022] [Indexed: 06/14/2023]
Abstract
Drought negatively affects plant growth and development to cause major yield losses in crops. Transcription factors (TFs) play important roles in abiotic stress response signaling in plant. However, the biological functions of membrane-bound transcription factors (MTFs) in abiotic stress have rarely been studied in wheat. In this study, we identified a homologue of the maize ZmNTL1 gene in wheat, which was designated as TaNTL1. TaNTL1 is a NAC family MTF (NTM1-like, NTL proteins) encoding 481 amino acid residues with a transmembrane motif at the C-terminal. Quantitative results and expression profile analysis showed that TaNTL1 could respond to drought. We demonstrated the transcriptional activity of TaNTL1 and that it could specifically bind to NAC recognition cis-acting elements (NACBS). The full-length TaNTL1 protein localized in the plasma membrane and TaNTL1 lacking the transmembrane motif (TaNTL1-ΔTM) localized in the nucleus. TaNTL1 was proteolytically activated by PEG6000 and abscisic acid (ABA). Phenotypic and physiological analyses showed that overexpression transgenic Arabidopsis exhibited enhanced drought resistance, which was greater with TaNTL1-ΔTM than TaNTL1. Transient silencing of TaNTL1 significantly reduced the resistance to drought stress in wheat. Germination by the TaNTL1 and TaNTL1-ΔTM transgenic Arabidopsis seeds was also hypersensitive to ABA. Most of the stress-related genes in transgenic plants were upregulated under drought conditions. These results suggest that MTF TaNTL1 is a positive regulator of drought and it may function by entering the nucleus through cleavage.
Collapse
Affiliation(s)
- Huimin Sun
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Yanzhou Xie
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Weibing Yang
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Qian Lv
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Liuping Chen
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Jiatao Li
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Ying Meng
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Liqun Li
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Xuejun Li
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China.
| |
Collapse
|
34
|
Han X, Rong H, Tian Y, Qu Y, Xu M, Xu LA. Genome-Wide Identification of PLATZ Transcription Factors in Ginkgo biloba L. and Their Expression Characteristics During Seed Development. FRONTIERS IN PLANT SCIENCE 2022; 13:946194. [PMID: 35812908 PMCID: PMC9262033 DOI: 10.3389/fpls.2022.946194] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 06/07/2022] [Indexed: 05/20/2023]
Abstract
Plant AT-rich protein and zinc-binding protein (PLATZ) is a class of plant-specific zinc-dependent DNA-binding protein that binds to A/T-rich DNA sequences. PLATZ plays an important role in seed development, water tolerance, and cell proliferation in early plant growth. In this study, 11 GbPLATZs were identified from the ginkgo genome with complete PLATZ-conserved domains, which represents a smaller number compared with angiosperms. Multi-species phylogenetic analysis showed that PLATZ genes were conserved in seed plants, and the 11 members were represented by four groups, among which groups I and II were closely related. Analysis of gene structures, sequence module characteristics, and expression patterns showed that GbPLATZs were similar within and differed between groups. RNA-seq and qRT-PCR results showed that GbPLATZs had distinct expression patterns. Most genes were associated with seed development, among which six genes were highly related. Subcellular localization experiments showed that six GbPLATZ proteins related to seed development were localized in the nucleus, suggesting that they might function as traditional transcription factors. This study provides a basis for understanding the structural differentiation, evolutionary characteristics, expression profile, and potential functions of PLATZ transcription factors in Ginkgo biloba.
Collapse
Affiliation(s)
| | | | | | | | | | - Li-an Xu
- Key Laboratory of Forestry Genetics and Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
35
|
Almutairi ZM. In Silico Identification and Characterization of B12D Family Proteins in Viridiplantae. Evol Bioinform Online 2022; 18:11769343221106795. [PMID: 35721582 PMCID: PMC9201304 DOI: 10.1177/11769343221106795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 05/12/2022] [Indexed: 11/16/2022] Open
Abstract
B12D family proteins are transmembrane proteins that contain the B12D
domain involved in membrane trafficking. Plants comprise several
members of the B12D family, but these members’ numbers and specific
functions are not determined. This study aims to identify and
characterize the members of B12D protein family in plants. Phytozome
database was retrieved for B12D proteins from 14 species. The total 66
B12D proteins were analyzed in silico for gene structure, motifs, gene
expression, duplication events, and phylogenetics. In general, B12D
proteins are between 86 and 98 aa in length, have 2 or 3 exons, and
comprise a single transmembrane helix. Motif prediction and multiple
sequence alignment show strong conservation among B12D proteins of 11
flowering plants species. Despite that, the phylogenetic tree revealed
a distinct cluster of 16 B12D proteins that have high conservation
across flowering plants. Motif prediction revealed 41 aa motif
conserved in 58 of the analyzed B12D proteins similar to the bZIP
motif, confirming that in the predicted biological process and
molecular function, B12D proteins are DNA-binding proteins.
Cis-regulatory elements screening in putative
B12D promoters found various responsive
elements for light, abscisic acid, methyl jasmonate, cytokinin,
drought, and heat. Despite that, there is specific elements for cold
stress, cell cycle, circadian, auxin, salicylic acid, and gibberellic
acid in the promoter of a few B12D genes indicating
for functional diversification for B12D family members. The digital
expression shows that B12D genes of Glycine
max have similar expression patterns consistent with
their clustering in the phylogenetic tree. However, the expression of
B12D genes of Hordeum vulgure
appears inconsistent with their clustering in the tree. Despite the
strong conservation of the B12D proteins of Viridiplantae, gene
association analysis, promoter analysis, and digital expression
indicate different roles for the members of the B12D family during
plant developmental stages.
Collapse
Affiliation(s)
- Zainab M Almutairi
- Department of Biology, College of Science and Humanities in Al-Kharj, Prince Sattam bin Abdulaziz University, Al-kharj, Saudi Arabia
| |
Collapse
|
36
|
De Backer J, Van Breusegem F, De Clercq I. Proteolytic Activation of Plant Membrane-Bound Transcription Factors. FRONTIERS IN PLANT SCIENCE 2022; 13:927746. [PMID: 35774815 PMCID: PMC9237531 DOI: 10.3389/fpls.2022.927746] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 05/23/2022] [Indexed: 06/03/2023]
Abstract
Due to the presence of a transmembrane domain, the subcellular mobility plan of membrane-bound or membrane-tethered transcription factors (MB-TFs) differs from that of their cytosolic counterparts. The MB-TFs are mostly locked in (sub)cellular membranes, until they are released by a proteolytic cleavage event or when the transmembrane domain (TMD) is omitted from the transcript due to alternative splicing. Here, we review the current knowledge on the proteolytic activation mechanisms of MB-TFs in plants, with a particular focus on regulated intramembrane proteolysis (RIP), and discuss the analogy with the proteolytic cleavage of MB-TFs in animal systems. We present a comprehensive inventory of all known and predicted MB-TFs in the model plant Arabidopsis thaliana and examine their experimentally determined or anticipated subcellular localizations and membrane topologies. We predict proteolytically activated MB-TFs by the mapping of protease recognition sequences and structural features that facilitate RIP in and around the TMD, based on data from metazoan intramembrane proteases. Finally, the MB-TF functions in plant responses to environmental stresses and in plant development are considered and novel functions for still uncharacterized MB-TFs are forecasted by means of a regulatory network-based approach.
Collapse
Affiliation(s)
- Jonas De Backer
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Vlaams Instituut voor Biotechnologie (VIB)-Center for Plant Systems Biology, Ghent, Belgium
| | - Frank Van Breusegem
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Vlaams Instituut voor Biotechnologie (VIB)-Center for Plant Systems Biology, Ghent, Belgium
| | - Inge De Clercq
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Vlaams Instituut voor Biotechnologie (VIB)-Center for Plant Systems Biology, Ghent, Belgium
| |
Collapse
|
37
|
Zhang Y, Lu Y, El Sayyed H, Bian J, Lin J, Li X. Transcription factor dynamics in plants: Insights and technologies for in vivo imaging. PLANT PHYSIOLOGY 2022; 189:23-36. [PMID: 35134239 PMCID: PMC9070795 DOI: 10.1093/plphys/kiac042] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 01/08/2022] [Indexed: 06/14/2023]
Abstract
Biochemical and genetic approaches have been extensively used to study transcription factor (TF) functions, but their dynamic behaviors and the complex ways in which they regulate transcription in plant cells remain unexplored, particularly behaviors such as translocation and binding to DNA. Recent developments in labeling and imaging techniques provide the necessary sensitivity and resolution to study these behaviors in living cells. In this review, we present an up-to-date portrait of the dynamics and regulation of TFs under physiologically relevant conditions and then summarize recent advances in fluorescent labeling strategies and imaging techniques. We then discuss future prospects and challenges associated with the application of these techniques to examine TFs' intricate dance in living plants.
Collapse
Affiliation(s)
- Yuan Zhang
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants Ministry of Education, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China
| | - Yuqing Lu
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants Ministry of Education, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China
| | - Hafez El Sayyed
- Department of Physics, University of Oxford, Oxford OX1 3PU, UK
| | - Jiahui Bian
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants Ministry of Education, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China
| | - Jinxing Lin
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants Ministry of Education, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China
| | | |
Collapse
|
38
|
Gioftsidi S, Relaix F, Mourikis P. The Notch signaling network in muscle stem cells during development, homeostasis, and disease. Skelet Muscle 2022; 12:9. [PMID: 35459219 PMCID: PMC9027478 DOI: 10.1186/s13395-022-00293-w] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 03/16/2022] [Indexed: 01/22/2023] Open
Abstract
Skeletal muscle stem cells have a central role in muscle growth and regeneration. They reside as quiescent cells in resting muscle and in response to damage they transiently amplify and fuse to produce new myofibers or self-renew to replenish the stem cell pool. A signaling pathway that is critical in the regulation of all these processes is Notch. Despite the major differences in the anatomical and cellular niches between the embryonic myotome, the adult sarcolemma/basement-membrane interphase, and the regenerating muscle, Notch signaling has evolved to support the context-specific requirements of the muscle cells. In this review, we discuss the diverse ways by which Notch signaling factors and other modifying partners are operating during the lifetime of muscle stem cells to establish an adaptive dynamic network.
Collapse
Affiliation(s)
- Stamatia Gioftsidi
- Université Paris Est Créteil, Institut National de la Santé et de la Recherche Médicale (INSERM), Mondor Institute for Biomedical Research (IMRB), F-94010, Créteil, France
| | - Frederic Relaix
- Université Paris Est Créteil, Institut National de la Santé et de la Recherche Médicale (INSERM), Mondor Institute for Biomedical Research (IMRB), F-94010, Créteil, France
- EnvA, IMRB, F-94700, Maisons-Alfort, France
- Etablissement Français du Sang (EFS), IMRB, F-94010, Creteil, France
- Assistance Publique-Hôpitaux de Paris, Hopital Mondor, Service d'Histologie, F-94010, Creteil, France
| | - Philippos Mourikis
- Université Paris Est Créteil, Institut National de la Santé et de la Recherche Médicale (INSERM), Mondor Institute for Biomedical Research (IMRB), F-94010, Créteil, France.
| |
Collapse
|
39
|
Wang GL, Zhang CL, Huo HQ, Sun XS, Zhang YL, Hao YJ, You CX. The SUMO E3 Ligase MdSIZ1 Sumoylates a Cell Number Regulator MdCNR8 to Control Organ Size. FRONTIERS IN PLANT SCIENCE 2022; 13:836935. [PMID: 35498700 PMCID: PMC9051543 DOI: 10.3389/fpls.2022.836935] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 03/14/2022] [Indexed: 06/01/2023]
Abstract
Plant growth and organ size putatively associated with crop yield are regulated by a complex network of genes including ones for controlling cell proliferation. The gene fw2.2 was first identified in tomatoes and reported to govern fruit size variation through controlling cell division. In this study, we isolated a putative ortholog of the tomato fw2.2 gene from apple, Cell Number Regulator 8 (MdCNR8). Our functional analysis showed that MdCNR8 may control fruit size and root growth. MdCNR8 was mediated by the SUMO E3 ligase MdSIZ1, and SUMOylation of MdCNR8 at residue-Lys39 promoted the translocation of MdCNR8 from plasma membrane to the nucleus. The effect of MdCNR8 in inhibiting root elongation could be completely counteracted by the coexpression of MdSIZ1. Moreover, the lower cell proliferation of apple calli due to silencing MdSIZ1 could be rescued by silencing MdCNR8. Collectively, our results showed that the MdSIZ1-mediated SUMOylation is required for the fulfillment of MdCNR8 in regulating cell proliferation to control plant organ size. This regulatory interaction between MdSIZ1 and MdCNR8 will facilitate understanding the mechanism underlying the regulation of organ size.
Collapse
Affiliation(s)
- Gui-Luan Wang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, Shandong, China
| | - Chun-Ling Zhang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, Shandong, China
| | - He-Qiang Huo
- Mid-Florida Research and Education Center, University of Florida, Institute of Food and Agricultural Sciences, Apopka, FL, United States
| | | | - Ya-Li Zhang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, Shandong, China
| | - Yu-Jin Hao
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, Shandong, China
| | - Chun-Xiang You
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, Shandong, China
| |
Collapse
|
40
|
Taylor DF, Bishop DJ. Transcription Factor Movement and Exercise-Induced Mitochondrial Biogenesis in Human Skeletal Muscle: Current Knowledge and Future Perspectives. Int J Mol Sci 2022; 23:1517. [PMID: 35163441 PMCID: PMC8836245 DOI: 10.3390/ijms23031517] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/19/2022] [Accepted: 01/21/2022] [Indexed: 02/01/2023] Open
Abstract
In response to exercise, the oxidative capacity of mitochondria within skeletal muscle increases through the coordinated expression of mitochondrial proteins in a process termed mitochondrial biogenesis. Controlling the expression of mitochondrial proteins are transcription factors-a group of proteins that regulate messenger RNA transcription from DNA in the nucleus and mitochondria. To fulfil other functions or to limit gene expression, transcription factors are often localised away from DNA to different subcellular compartments and undergo rapid movement or accumulation only when required. Although many transcription factors involved in exercise-induced mitochondrial biogenesis have been identified, numerous conflicting findings and gaps exist within our knowledge of their subcellular movement. This review aims to summarise and provide a critical analysis of the published literature regarding the exercise-induced movement of transcription factors involved in mitochondria biogenesis in skeletal muscle.
Collapse
Affiliation(s)
| | - David J. Bishop
- Institute for Health and Sport (iHeS), Footscray Park, Victoria University, Melbourne 8001, Australia;
| |
Collapse
|
41
|
Kumar R, Santa Chalarca CF, Bockman MR, Bruggen CV, Grimme CJ, Dalal RJ, Hanson MG, Hexum JK, Reineke TM. Polymeric Delivery of Therapeutic Nucleic Acids. Chem Rev 2021; 121:11527-11652. [PMID: 33939409 DOI: 10.1021/acs.chemrev.0c00997] [Citation(s) in RCA: 201] [Impact Index Per Article: 50.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The advent of genome editing has transformed the therapeutic landscape for several debilitating diseases, and the clinical outlook for gene therapeutics has never been more promising. The therapeutic potential of nucleic acids has been limited by a reliance on engineered viral vectors for delivery. Chemically defined polymers can remediate technological, regulatory, and clinical challenges associated with viral modes of gene delivery. Because of their scalability, versatility, and exquisite tunability, polymers are ideal biomaterial platforms for delivering nucleic acid payloads efficiently while minimizing immune response and cellular toxicity. While polymeric gene delivery has progressed significantly in the past four decades, clinical translation of polymeric vehicles faces several formidable challenges. The aim of our Account is to illustrate diverse concepts in designing polymeric vectors towards meeting therapeutic goals of in vivo and ex vivo gene therapy. Here, we highlight several classes of polymers employed in gene delivery and summarize the recent work on understanding the contributions of chemical and architectural design parameters. We touch upon characterization methods used to visualize and understand events transpiring at the interfaces between polymer, nucleic acids, and the physiological environment. We conclude that interdisciplinary approaches and methodologies motivated by fundamental questions are key to designing high-performing polymeric vehicles for gene therapy.
Collapse
Affiliation(s)
- Ramya Kumar
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | | | - Matthew R Bockman
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Craig Van Bruggen
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Christian J Grimme
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Rishad J Dalal
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Mckenna G Hanson
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Joseph K Hexum
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Theresa M Reineke
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
42
|
Folylpoly-ɣ-glutamate synthetase association to the cytoskeleton: Implications to folate metabolon compartmentalization. J Proteomics 2021; 239:104169. [PMID: 33676037 DOI: 10.1016/j.jprot.2021.104169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 02/03/2021] [Accepted: 02/19/2021] [Indexed: 11/23/2022]
Abstract
Folates are essential for nucleotide biosynthesis, amino acid metabolism and cellular proliferation. Following carrier-mediated uptake, folates are polyglutamylated by folylpoly-ɣ-glutamate synthetase (FPGS), resulting in their intracellular retention. FPGS appears as a long isoform, directed to mitochondria via a leader sequence, and a short isoform reported as a soluble cytosolic protein (cFPGS). However, since folates are labile and folate metabolism is compartmentalized, we herein hypothesized that cFPGS is associated with the cytoskeleton, to couple folate uptake and polyglutamylation and channel folate polyglutamates to metabolon compartments. We show that cFPGS is a cytoskeleton-microtubule associated protein: Western blot analysis revealed that endogenous cFPGS is associated with the insoluble cellular fraction, i.e., cytoskeleton and membranes, but not with the cytosol. Mass spectrometry analysis identified the putative cFPGS interactome primarily consisting of microtubule subunits and cytoskeletal motor proteins. Consistently, immunofluorescence microscopy with cytosol-depleted cells demonstrated the association of cFPGS with the cytoskeleton and unconventional myosin-1c. Furthermore, since anti-microtubule, anti-actin cytoskeleton, and coatomer dissociation-inducing agents yielded perinuclear pausing of cFPGS, we propose an actin- and microtubule-dependent transport of cFPGS between the ER-Golgi and the plasma membrane. These novel findings support the coupling of folate transport with polyglutamylation and folate channeling to intracellular metabolon compartments. SIGNIFICANCE: FPGS, an essential enzyme catalyzing intracellular folate polyglutamylation and efficient retention, was described as a soluble cytosolic enzyme in the past 40 years. However, based on the lability of folates and the compartmentalization of folate metabolism and nucleotide biosynthesis, we herein hypothesized that cytoplasmic FPGS is associated with the cytoskeleton, to couple folate transport and polyglutamylation as well as channel folate polyglutamates to biosynthetic metabolon compartments. Indeed, using complementary techniques including Mass-spectrometry proteomics and fluorescence microscopy, we show that cytoplasmic FPGS is associated with the cytoskeleton and unconventional myosin-1c. This novel cytoskeletal localization of cytoplasmic FPGS supports the dynamic channeling of polyglutamylated folates to metabolon compartments to avoid oxidation and intracellular dilution of folates, while enhancing folate-dependent de novo biosynthesis of nucleotides and DNA/protein methylation.
Collapse
|
43
|
Transcriptomic Changes Associated with Loss of Cell Viability Induced by Oxysterol Treatment of a Retinal Photoreceptor-Derived Cell Line: An In Vitro Model of Smith-Lemli-Opitz Syndrome. Int J Mol Sci 2021; 22:ijms22052339. [PMID: 33652836 PMCID: PMC7956713 DOI: 10.3390/ijms22052339] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/19/2021] [Accepted: 02/21/2021] [Indexed: 11/17/2022] Open
Abstract
Smith–Lemli–Opitz Syndrome (SLOS) results from mutations in the gene encoding the enzyme DHCR7, which catalyzes conversion of 7-dehydrocholesterol (7DHC) to cholesterol (CHOL). Rats treated with a DHCR7 inhibitor serve as a SLOS animal model, and exhibit progressive photoreceptor-specific cell death, with accumulation of 7DHC and oxidized sterols. To understand the basis of this cell type specificity, we performed transcriptomic analyses on a photoreceptor-derived cell line (661W), treating cells with two 7DHC-derived oxysterols, which accumulate in tissues and bodily fluids of SLOS patients and in the rat SLOS model, as well as with CHOL (negative control), and evaluated differentially expressed genes (DEGs) for each treatment. Gene enrichment analysis and compilation of DEG sets indicated that endoplasmic reticulum stress, oxidative stress, DNA damage and repair, and autophagy were all highly up-regulated pathways in oxysterol-treated cells. Detailed analysis indicated that the two oxysterols exert their effects via different molecular mechanisms. Changes in expression of key genes in highlighted pathways (Hmox1, Ddit3, Trib3, and Herpud1) were validated by immunofluorescence confocal microscopy. The results extend our understanding of the pathobiology of retinal degeneration and SLOS, identifying potential new druggable targets for therapeutic intervention into these and other related orphan diseases.
Collapse
|
44
|
Ma J, Do M, Le Gros MA, Peskin CS, Larabell CA, Mori Y, Isaacson SA. Strong intracellular signal inactivation produces sharper and more robust signaling from cell membrane to nucleus. PLoS Comput Biol 2020; 16:e1008356. [PMID: 33196636 PMCID: PMC7704053 DOI: 10.1371/journal.pcbi.1008356] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 11/30/2020] [Accepted: 09/21/2020] [Indexed: 12/29/2022] Open
Abstract
For a chemical signal to propagate across a cell, it must navigate a tortuous environment involving a variety of organelle barriers. In this work we study mathematical models for a basic chemical signal, the arrival times at the nuclear membrane of proteins that are activated at the cell membrane and diffuse throughout the cytosol. Organelle surfaces within human B cells are reconstructed from soft X-ray tomographic images, and modeled as reflecting barriers to the molecules’ diffusion. We show that signal inactivation sharpens signals, reducing variability in the arrival time at the nuclear membrane. Inactivation can also compensate for an observed slowdown in signal propagation induced by the presence of organelle barriers, leading to arrival times at the nuclear membrane that are comparable to models in which the cytosol is treated as an open, empty region. In the limit of strong signal inactivation this is achieved by filtering out molecules that traverse non-geodesic paths. The inside of cells is a complex spatial environment, filled with organelles, filaments and proteins. It is an open question how cell signaling pathways function robustly in the presence of such spatial heterogeneity. In this work we study how organelle barriers influence the most basic of chemical signals; the diffusive propagation of an activated protein from the cell membrane to nucleus. Three-dimensional B cell organelle and membrane geometries reconstructed from soft X-ray tomographic images are used in building mathematical models of the signal propagation process. Our models demonstrate that organelle barriers significantly increase the time required for a diffusing protein to traverse from the cell membrane to nucleus when compared to a cell with an empty cytosolic space. We also show that signal inactivation, a fundamental component of all signaling pathways, can provide robustness in the signal arrival time in two ways. Increasing rates of signal inactivation reduce variability in the arrival time, while also dramatically reducing the degree to which organelle barriers increase the arrival time (in comparison to a cell with an empty cytosol).
Collapse
Affiliation(s)
- Jingwei Ma
- Department of Mathematics and Statistics, Boston University, Boston, Massachusetts, United States of America
| | - Myan Do
- Department of Cellular and Molecular Medicine, University of California, San Diego Medical School, San Diego, California, United States of America
| | - Mark A. Le Gros
- Department of Anatomy, University of California, San Francisco, San Francisco, California, United States of America
- National Center for X-ray Tomography, Lawrence Berkeley National Lab, Berkeley, California, United States of America
| | - Charles S. Peskin
- Courant Institute of Mathematical Sciences, New York University, New York, New York, United States of America
| | - Carolyn A. Larabell
- Department of Anatomy, University of California, San Francisco, San Francisco, California, United States of America
- National Center for X-ray Tomography, Lawrence Berkeley National Lab, Berkeley, California, United States of America
| | - Yoichiro Mori
- Department of Mathematics, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Samuel A. Isaacson
- Department of Mathematics and Statistics, Boston University, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
45
|
Sajed R, Saeednejad Zanjani L, Rahimi M, Mansoori M, Zarnani AH, Madjd Z, Ghods R. Overexpression and translocation of dynamin 2 promotes tumor aggressiveness in breast carcinomas. EXCLI JOURNAL 2020; 19:1423-1435. [PMID: 33250680 PMCID: PMC7689243 DOI: 10.17179/excli2020-2762] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 10/10/2020] [Indexed: 12/14/2022]
Abstract
Dynamin 2 is a GTPase protein that has been implicated in cancer progression through its various roles such as endocytosis, morphogenesis, epithelial-mesenchymal transition (EMT), cellular contractions, and focal adhesion maturation. The increased expression levels of this molecule have been demonstrated with the development of several cancers such as prostate, pancreas, and bladder. However, its clinical significance in breast cancer is unclear yet. In the present study, the membranous, cytoplasmic, and nuclear expression levels of dynamin 2 molecule were evaluated for the first time, using immunohistochemistry (IHC) on tissue microarray (TMA) slides in 113 invasive breast cancer tissues. Moreover, afterward, the association between the dynamin 2 expression and clinicopathological features was determined. Our finding showed that, a higher nuclear expression of dynamin 2 is significantly associated with an increase in tumor stage (P = 0.05), histological grade (P = 0.001), and age of the patients (P = 0.03). In addition, analysis of the cytoplasmic expression levels of this molecule revealed that, there was a statistically significant difference between the expression levels of dynamin 2 among the different breast cancer subtypes (P = 0.003). Moreover, a significant association was found between the increased expression of dynamin 2 membranous and vascular invasion (VI) (P = 0.02). We showed that dynamin 2 protein expression has an association with more aggressive tumor behavior and more advanced disease in the patients with breast cancer; therefore, dynamin 2 molecule could be considered as an indicator of disease progression and aggressiveness.
Collapse
Affiliation(s)
- Roya Sajed
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medicine Sciences (IUMS), Tehran, Iran.,Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | | | - Mandana Rahimi
- Hasheminejad Kidney Center, Pathology Department, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Maryam Mansoori
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medicine Sciences (IUMS), Tehran, Iran.,Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Amir-Hassan Zarnani
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences (TUMS), Tehran, Iran.,Reproductive Immunology Research Center, Avicenna Research Institute (ACECR), Tehran, Iran
| | - Zahra Madjd
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medicine Sciences (IUMS), Tehran, Iran.,Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Roya Ghods
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medicine Sciences (IUMS), Tehran, Iran.,Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran
| |
Collapse
|
46
|
Mohammad Nezhady MA, Rivera JC, Chemtob S. Location Bias as Emerging Paradigm in GPCR Biology and Drug Discovery. iScience 2020; 23:101643. [PMID: 33103080 PMCID: PMC7569339 DOI: 10.1016/j.isci.2020.101643] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
GPCRs are the largest receptor family that are involved in virtually all biological processes. Pharmacologically, they are highly druggable targets, as they cover more than 40% of all drugs in the market. Our knowledge of biased signaling provided insight into pharmacology vastly improving drug design to avoid unwanted effects and achieve higher efficacy and selectivity. However, yet another feature of GPCR biology is left largely unexplored, location bias. Recent developments in this field show promising avenues for evolution of new class of pharmaceuticals with greater potential for higher level of precision medicine. Further consideration and understanding of this phenomenon with deep biochemical and molecular insights would pave the road to success. In this review, we critically analyze this perspective and discuss new avenues of investigation.
Collapse
Affiliation(s)
- Mohammad Ali Mohammad Nezhady
- Programmes en Biologie Moléculaire, Faculté de Médecine, Université de Montréal, Montreal, QC, Canada
- Centre de Recherche du CHU Sainte-Justine, Montreal, QC H3T 1C5, Canada
| | | | - Sylvain Chemtob
- Programmes en Biologie Moléculaire, Faculté de Médecine, Université de Montréal, Montreal, QC, Canada
- Centre de Recherche du CHU Sainte-Justine, Montreal, QC H3T 1C5, Canada
- Maisonneuve-Rosemont Hospital Research Centre, Montreal, QC, Canada
| |
Collapse
|
47
|
Tsyrulnyk AO, Andreieva YA, Ruchala J, Fayura LR, Dmytruk KV, Fedorovych DV, Sibirny AA. Expression of yeast homolog of the mammalBCRPgene coding for riboflavin efflux protein activates vitamin B2production in the flavinogenic yeastCandida famata. Yeast 2020; 37:467-473. [DOI: 10.1002/yea.3470] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/13/2020] [Accepted: 05/05/2020] [Indexed: 01/07/2023] Open
Affiliation(s)
- Andriy O. Tsyrulnyk
- Department of Molecular Biology and Biotechnology, Institute of Cell Biology NAS of Ukraine Lviv Ukraine
| | - Yuliia A. Andreieva
- Department of Molecular Biology and Biotechnology, Institute of Cell Biology NAS of Ukraine Lviv Ukraine
| | - Justyna Ruchala
- Department of Microbiology and Biotechnology University of Rzeszow Rzeszow Poland
| | - Lyubov R. Fayura
- Department of Molecular Biology and Biotechnology, Institute of Cell Biology NAS of Ukraine Lviv Ukraine
| | - Kostyantyn V. Dmytruk
- Department of Molecular Biology and Biotechnology, Institute of Cell Biology NAS of Ukraine Lviv Ukraine
| | - Daria V. Fedorovych
- Department of Molecular Biology and Biotechnology, Institute of Cell Biology NAS of Ukraine Lviv Ukraine
| | - Andriy A. Sibirny
- Department of Molecular Biology and Biotechnology, Institute of Cell Biology NAS of Ukraine Lviv Ukraine
- Department of Microbiology and Biotechnology University of Rzeszow Rzeszow Poland
| |
Collapse
|
48
|
Yeo WS, Anokwute C, Marcadis P, Levitan M, Ahmed M, Bae Y, Kim K, Kostrominova T, Liu Q, Bae T. A Membrane-Bound Transcription Factor is Proteolytically Regulated by the AAA+ Protease FtsH in Staphylococcus aureus. J Bacteriol 2020; 202:e00019-20. [PMID: 32094161 PMCID: PMC7148131 DOI: 10.1128/jb.00019-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 02/13/2020] [Indexed: 12/12/2022] Open
Abstract
In bacteria, chromosomal DNA resides in the cytoplasm, and most transcription factors are also found in the cytoplasm. However, some transcription factors, called membrane-bound transcription factors (MTFs), reside in the cytoplasmic membrane. Here, we report the identification of a new MTF in the Gram-positive pathogen Staphylococcus aureus and its regulation by the protease FtsH. The MTF, named MbtS (membrane-bound transcription factor of Staphylococcus aureus), is encoded by SAUSA300_2640 and predicted to have an N-terminal DNA binding domain and three transmembrane helices. The MbtS protein was degraded by membrane vesicles containing FtsH or by the purified FtsH. MbtS bound to an inverted repeat sequence in its promoter region, and the DNA binding was essential for its transcription. Transcriptional comparison between the ftsH deletion mutant and the ftsH mbtS double mutant showed that MbtS could alter the transcription of over 200 genes. Although the MbtS protein was not detected in wild-type (WT) cells grown in a liquid medium, the protein was detected in some isolated colonies on an agar plate. In a murine model of a skin infection, the disruption of mbtS increased the lesion size. Based on these results, we concluded that MbtS is a new S. aureus MTF whose activity is proteolytically regulated by FtsH.IMPORTANCEStaphylococcus aureus is an important pathogenic bacterium causing various diseases in humans. In the bacterium, transcription is typically regulated by the transcription factors located in the cytoplasm. In this study, we report an atypical transcription factor identified in S. aureus Unlike most other transcription factors, the newly identified transcription factor is located in the cytoplasmic membrane, and its activity is proteolytically controlled by the membrane-bound AAA+ protease FtsH. The newly identified MTF, named MbtS, has the potential to regulate the transcription of over 200 genes. This study provides a molecular mechanism by which a protease affects bacterial transcription and illustrates the diversity of the bacterial transcriptional regulation.
Collapse
Affiliation(s)
- Won-Sik Yeo
- Department of Microbiology and Immunology, Indiana University School of Medicine-Northwest, Gary, Indiana, USA
| | - Chiamara Anokwute
- Department of Biology, Indiana University Northwest, Gary, Indiana, USA
| | - Philip Marcadis
- Department of Microbiology and Immunology, Indiana University School of Medicine-Northwest, Gary, Indiana, USA
| | - Marcus Levitan
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| | - Mahmoud Ahmed
- Department of Biology, Indiana University Northwest, Gary, Indiana, USA
| | - Yeun Bae
- Department of Psychology, Indiana University, Bloomington, Indiana, USA
| | - Kyeongkyu Kim
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Suwon, South Korea
| | - Tatiana Kostrominova
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine-Northwest, Gary, Indiana, USA
| | - Qian Liu
- Department of Laboratory Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Taeok Bae
- Department of Microbiology and Immunology, Indiana University School of Medicine-Northwest, Gary, Indiana, USA
| |
Collapse
|
49
|
Azim JB, Khan MFH, Hassan L, Robin AHK. Genome-Wide Characterization and Expression Profiling of Plant-SpecificPLATZTranscription Factor Family Genes inBrassica rapaL. ACTA ACUST UNITED AC 2020. [DOI: 10.9787/pbb.2020.8.1.28] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Jaber Bin Azim
- Department of Genetics and Plant Breeding, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Md. Fahim Hassan Khan
- Department of Genetics and Plant Breeding, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Lutful Hassan
- Department of Genetics and Plant Breeding, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Arif Hasan Khan Robin
- Department of Genetics and Plant Breeding, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| |
Collapse
|
50
|
Sereno M, Haskó J, Molnár K, Medina SJ, Reisz Z, Malhó R, Videira M, Tiszlavicz L, Booth SA, Wilhelm I, Krizbai IA, Brito MA. Downregulation of circulating miR 802-5p and miR 194-5p and upregulation of brain MEF2C along breast cancer brain metastasization. Mol Oncol 2020; 14:520-538. [PMID: 31930767 PMCID: PMC7053247 DOI: 10.1002/1878-0261.12632] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 10/31/2019] [Accepted: 01/08/2020] [Indexed: 12/18/2022] Open
Abstract
Breast cancer brain metastases (BCBMs) have been underinvestigated despite their high incidence and poor outcome. MicroRNAs (miRNAs), and particularly circulating miRNAs, regulate multiple cellular functions, and their deregulation has been reported in different types of cancer and metastasis. However, their signature in plasma along brain metastasis development and their relevant targets remain undetermined. Here, we used a mouse model of BCBM and next‐generation sequencing (NGS) to establish the alterations in circulating miRNAs during brain metastasis formation and development. We further performed bioinformatics analysis to identify their targets with relevance in the metastatic process. We additionally analyzed human resected brain metastasis samples of breast cancer patients for target expression validation. Breast cancer cells were injected in the carotid artery of mice to preferentially induce metastasis in the brain, and samples were collected at different timepoints (5 h, 3, 7, and 10 days) to follow metastasis development in the brain and in peripheral organs. Metastases were detected from 7 days onwards, mainly in the brain. NGS revealed a deregulation of circulating miRNA profile during BCBM progression, rising from 18% at 3 days to 30% at 10 days following malignant cells’ injection. Work was focused on those altered prior to metastasis detection, among which were miR‐802‐5p and miR‐194‐5p, whose downregulation was validated by qPCR. Using targetscan and diana tools, the transcription factor myocyte enhancer factor 2C (MEF2C) was identified as a target for both miRNAs, and its expression was increasingly observed in malignant cells along brain metastasis development. Its upregulation was also observed in peritumoral astrocytes pointing to a role of MEF2C in the crosstalk between tumor cells and astrocytes. MEF2C expression was also observed in human BCBM, validating the observation in mouse. Collectively, downregulation of circulating miR‐802‐5p and miR‐194‐5p appears as a precocious event in BCBM and MEF2C emerges as a new player in brain metastasis development.
Collapse
Affiliation(s)
- Marta Sereno
- Faculdade de Farmácia, Research Institute for Medicines (iMed.ULisboa), Universidade de Lisboa, Portugal
| | - János Haskó
- Institute of Biophysics, Biological Research Centre, Szeged, Hungary
| | - Kinga Molnár
- Institute of Biophysics, Biological Research Centre, Szeged, Hungary
| | - Sarah J Medina
- Prion Diseases Section, Public Health Agency of Canada, National Microbiology Laboratory, Winnipeg, MB, Canada
| | - Zita Reisz
- Department of Pathology, University of Szeged, Hungary
| | - Rui Malhó
- Faculdade de Ciências, BioISI, Instituto de Biossistemas e Ciências Integrativas, Universidade de Lisboa, Portugal
| | - Mafalda Videira
- Faculdade de Farmácia, Research Institute for Medicines (iMed.ULisboa), Universidade de Lisboa, Portugal.,Department of Galenic Pharmacy and Pharmaceutical Technology, Faculdade de Farmácia, Universidade de Lisboa, Portugal
| | | | - Stephanie A Booth
- Prion Diseases Section, Public Health Agency of Canada, National Microbiology Laboratory, Winnipeg, MB, Canada.,Department of Medical Microbiology and Infectious Diseases, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Imola Wilhelm
- Institute of Biophysics, Biological Research Centre, Szeged, Hungary.,Institute of Life Sciences, Vasile Goldiş Western University of Arad, Romania
| | - István A Krizbai
- Institute of Biophysics, Biological Research Centre, Szeged, Hungary.,Institute of Life Sciences, Vasile Goldiş Western University of Arad, Romania
| | - Maria Alexandra Brito
- Faculdade de Farmácia, Research Institute for Medicines (iMed.ULisboa), Universidade de Lisboa, Portugal.,Department of Biochemistry and Human Biology, Faculdade de Farmmácia, Universidade de Lisboa, Portugal
| |
Collapse
|