1
|
Hasbullah SF, Hidayat AT, Tarwadi, Fajri AN, Nurlelasari, Harneti D, Farabi K, Supratman U, Maharani R. In-vitro evaluation of cationic Lipopeptides as adjuvant candidate for DNA plasmid vaccine. Bioorg Med Chem Lett 2025; 122:130183. [PMID: 40090497 DOI: 10.1016/j.bmcl.2025.130183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 02/14/2025] [Accepted: 03/09/2025] [Indexed: 03/18/2025]
Abstract
Lipopeptides with different fatty acids (palmitic, palmitoleic, stearic, oleic, and linoleic acids) conjugated to CHSPKKKRKV were synthesised by a solid-phase peptide method using the Fmoc strategy (Fmoc-SPPS) on 2-CTC (2-chlorotritylchloride) resin. The lipopeptides were purified by RP-HPLC and characterised by ToF-ESI-MS and 1D-NMR. The capability of the lipopeptide to interact with the plasmid was evaluated by DNA agarose gel electrophoresis. The particle size of the lipopeptide/DNA complexes was determined by dynamic light scattering assay and TEM analysis. The biological activities including cytotoxicity, nitrite oxide (NO) release, and IL-6 and TNF-α production were evaluated in RAW 264.7 cells. ToF-ESI-MS revealed [M + 2H]2+ and [M + 3H]3+ ion peaks which were validated by 1H NMR and 13C NMR, confirming the lipopeptide molecular structure. All lipopeptides condensed and protected the DNA plasmid from enzymatic degradation at the lipopeptide/DNA mass ratio of 2:1. In addition, the size of the cationic lipopeptide/DNA complexes ranged from ∼250 to 700 nm. The lipopeptides showed moderate cytotoxicity with IC50 values ranging from 120 to 190 ppm, induced NO release (275-1060 ppm) and IL-6 (40-497 pg) and TNF-α (150-270 pg) production with the highest level achieved by C(18,0)-CHSPKKKRKV. In conclusion, CHSPKKKRKV-based lipopeptides with different fatty acids are potential adjuvant candidates but further evaluation in animal models is required.
Collapse
Affiliation(s)
- Syahrul Febrian Hasbullah
- Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km.21, Jatinangor, Sumedang 45363, Indonesia
| | - Ace Tatang Hidayat
- Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km.21, Jatinangor, Sumedang 45363, Indonesia; Central Laboratory of Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km.21, Jatinangor, Sumedang 45363, Indonesia; Study Center of Natural Product and Synthesis, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km.21, Jatinangor, Sumedang 45363, Indonesia
| | - Tarwadi
- Research Centre for Vaccine and Drug Development, National Research and Innovation Agency (BRIN), Gedung 611 KST Serpong, Tangerang Selatan, 15314, Indonesia.
| | - Adinda Nurhidayatul Fajri
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Pondok Cina, Depok, West Java 16424, Indonesia
| | - Nurlelasari
- Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km.21, Jatinangor, Sumedang 45363, Indonesia; Study Center of Natural Product and Synthesis, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km.21, Jatinangor, Sumedang 45363, Indonesia
| | - Desi Harneti
- Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km.21, Jatinangor, Sumedang 45363, Indonesia; Central Laboratory of Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km.21, Jatinangor, Sumedang 45363, Indonesia; Study Center of Natural Product and Synthesis, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km.21, Jatinangor, Sumedang 45363, Indonesia
| | - Kindi Farabi
- Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km.21, Jatinangor, Sumedang 45363, Indonesia; Central Laboratory of Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km.21, Jatinangor, Sumedang 45363, Indonesia; Study Center of Natural Product and Synthesis, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km.21, Jatinangor, Sumedang 45363, Indonesia
| | - Unang Supratman
- Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km.21, Jatinangor, Sumedang 45363, Indonesia; Central Laboratory of Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km.21, Jatinangor, Sumedang 45363, Indonesia; Study Center of Natural Product and Synthesis, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km.21, Jatinangor, Sumedang 45363, Indonesia
| | - Rani Maharani
- Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km.21, Jatinangor, Sumedang 45363, Indonesia; Central Laboratory of Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km.21, Jatinangor, Sumedang 45363, Indonesia; Study Center of Natural Product and Synthesis, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km.21, Jatinangor, Sumedang 45363, Indonesia.
| |
Collapse
|
2
|
Ayten H, Toker P, Turan Duman G, Olgun ÇE, Demiralay ÖD, Bınarcı B, Güpür G, Yaşar P, Akman HB, Haberkant P, Muyan M. CXXC5 is a ubiquitinated protein and is degraded by the ubiquitin-proteasome pathway. Protein Sci 2025; 34:e70140. [PMID: 40371716 PMCID: PMC12079423 DOI: 10.1002/pro.70140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 04/08/2025] [Accepted: 04/10/2025] [Indexed: 05/16/2025]
Abstract
CXXC5, as a member of the zinc-finger CXXC family proteins, interacts with unmodified CpG dinucleotides to modulate the expression of genes involved in cellular proliferation, differentiation, and death in physiology and pathophysiology. Various signaling pathways, including mitogenic 17β-estradiol (E2), contribute to the expression and synthesis of CXXC5. However, how signaling pathways modulate protein levels of CXXC5 in cells is largely unknown. We previously reported that some key regulators, including retinoblastoma 1 and E74-like ETS transcription factor 1, of the G1 to S phase transitions are involved in the expression of CXXC5 in estrogen-responsive MCF-7 cells, derived from a breast adenocarcinoma. We, therefore, predict that the synthesis of CXXC5 is regulated in a cell cycle-dependent manner. We report here that although E2 in synchronized MCF-7 cells augments both transcription and synthesis of CXXC5 in the G1 phase, CXXC5 protein levels are primarily mediated by ubiquitination independently of cell cycle phases. Utilizing the bioUbiquitination approach, which is based on cellular biotinylation of ubiquitin, in HEK293FT cells derived from immortalized human embryonic kidney cells, followed by sequential immunoprecipitation coupled mass spectrometry analyses, we identified ubiquitinated lysine residues of CXXC5. We show in both MCF-7 and HEK293FT cells that the ubiquitinated lysine residues contribute to the degradation of CXXC5 through the ubiquitin-proteasome pathway.
Collapse
Affiliation(s)
- Hazal Ayten
- Department of Biological SciencesMiddle East Technical UniversityÇankaya‐AnkaraTürkiye
| | - Pelin Toker
- Department of Biological SciencesMiddle East Technical UniversityÇankaya‐AnkaraTürkiye
| | - Gizem Turan Duman
- Department of Biological SciencesMiddle East Technical UniversityÇankaya‐AnkaraTürkiye
| | - Çağla Ece Olgun
- Department of Biological SciencesMiddle East Technical UniversityÇankaya‐AnkaraTürkiye
| | - Öykü Deniz Demiralay
- Department of Biological SciencesMiddle East Technical UniversityÇankaya‐AnkaraTürkiye
- Present address:
Paul Langerhans Institute Dresden (PLID) of Helmholtz Center Munich at the University Clinic Carl Gustav Carus of TU Dresden, Helmholtz Zentrum MünchenGerman Research Center for Environmental HealthNeuherbergGermany
| | - Büşra Bınarcı
- Department of Biological SciencesMiddle East Technical UniversityÇankaya‐AnkaraTürkiye
| | - Gizem Güpür
- Department of Biological SciencesMiddle East Technical UniversityÇankaya‐AnkaraTürkiye
| | - Pelin Yaşar
- Department of Biological SciencesMiddle East Technical UniversityÇankaya‐AnkaraTürkiye
- Present address:
Epigenetics and Stem Cell Biology Laboratory, Single Cell Dynamics GroupNational Institute of Environmental Health SciencesResearch Triangle ParkNorth CarolinaUSA
| | - Hesna Begüm Akman
- Department of Biological SciencesMiddle East Technical UniversityÇankaya‐AnkaraTürkiye
| | - Per Haberkant
- Proteomics Core FacilityEMBL HeidelbergHeidelbergGermany
| | - Mesut Muyan
- Department of Biological SciencesMiddle East Technical UniversityÇankaya‐AnkaraTürkiye
| |
Collapse
|
3
|
Brito S, Heo H, Kim J, Cha B, Jeong Y, Choi W, Shrestha C, Lee GH, Park SJ, Yoon KB, Oh-Hashi K, Kim ST, Chae S, Cho SK, Weon BM, Kim J, Bin BH. Age-associated interplay between zinc deficiency and Golgi stress hinders microtubule-dependent cellular signaling and epigenetic control. Dev Cell 2025; 60:1304-1320.e7. [PMID: 39765234 DOI: 10.1016/j.devcel.2024.12.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 08/07/2024] [Accepted: 12/11/2024] [Indexed: 05/08/2025]
Abstract
Golgi abnormalities have been linked to aging and age-related diseases, yet the underlying causes and functional consequences remain poorly understood. This study identifies the interaction between age-associated zinc deficiency and Golgi stress as a critical factor in cellular aging. Senescent Golgi bodies from human fibroblasts show a fragmented Golgi structure, associated with a decreased interaction of the zinc-dependent Golgi-stacking protein complex Golgin45-GRASP55. Golgi stress is increased, and functions such as glycosylation and vesicle transport are impaired. These disturbances promote Golgi and perinuclear microtubule disassembly and subsequent mislocalization of intracellular proteins associated with cellular signaling and epigenetic control. Pharmacological induction of Golgi stress or zinc deficiency, or ablation of the Golgi-associated zinc transporter gene Zip13 in mouse fibroblasts, replicate the characteristics of cellular senescence, emphasizing the critical role of Golgi-zinc homeostasis. These findings highlight the importance of adequate zinc intake and suggest targeting Golgi dysfunction as a therapeutic strategy for alleviating age-related cellular decline.
Collapse
Affiliation(s)
- Sofia Brito
- School of Advanced Materials Science & Engineering, Sungkyunkwan University, Suwon 16419, South Korea; Research Center for Advanced Materials Technology, Sungkyunkwan University, Suwon 16419, South Korea
| | - Hyojin Heo
- Department of Biological Sciences, Ajou University, Suwon 16499, South Korea
| | - Jinyoung Kim
- Department of Pharmacology, College of Medicine, The Catholic University of Korea, Seoul 06591, South Korea; Department of Medical Sciences, Graduate School, The Catholic University of Korea, Seoul 06591, South Korea
| | - Byungsun Cha
- Department of Biological Sciences, Ajou University, Suwon 16499, South Korea
| | - Youngdo Jeong
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, South Korea; Department of HY-KIST Bio-convergence, Hanyang University, Seoul 04763, South Korea
| | - Wooseon Choi
- Department of Pharmacology, College of Medicine, The Catholic University of Korea, Seoul 06591, South Korea; Department of Medical Sciences, Graduate School, The Catholic University of Korea, Seoul 06591, South Korea
| | - Chandani Shrestha
- Department of Pharmacology, College of Medicine, The Catholic University of Korea, Seoul 06591, South Korea; Department of Medical Sciences, Graduate School, The Catholic University of Korea, Seoul 06591, South Korea
| | - Gang Hyoung Lee
- Department of Biological Sciences, Ajou University, Suwon 16499, South Korea
| | - Sun Ju Park
- Department of Biological Sciences, Ajou University, Suwon 16499, South Korea
| | - Ki Bok Yoon
- Department of Biological Sciences, Ajou University, Suwon 16499, South Korea
| | - Kentaro Oh-Hashi
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan; United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan; Center for One Medicine Innovative Translational Research (COMIT), Institute for Advanced study, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Sung Tae Kim
- Department of Pharmaceutical Engineering, Inje University, Gimhae 50834, South Korea; Department of Nanoscience and Engineering, Inje University, Gimhae 50834, South Korea
| | - Sehyun Chae
- Division of Chemical Engineering and Bioengineering, College of Art, Culture and Engineering, Kangwon National University, Chuncheon 24341, South Korea; Multidimensional Genomics Research Center, Kangwon National University, Chuncheon 24341, South Korea
| | - Sung Kweon Cho
- Department of Pharmacology, Ajou University School of Medicine, Suwon 16499, South Korea
| | - Byung Mook Weon
- School of Advanced Materials Science & Engineering, Sungkyunkwan University, Suwon 16419, South Korea; Research Center for Advanced Materials Technology, Sungkyunkwan University, Suwon 16419, South Korea.
| | - Jiyoon Kim
- Department of Pharmacology, College of Medicine, The Catholic University of Korea, Seoul 06591, South Korea; Department of Medical Sciences, Graduate School, The Catholic University of Korea, Seoul 06591, South Korea; Institute for Aging and Metabolic Diseases, College of Medicine, The Catholic University of Korea, Seoul 06591, South Korea.
| | - Bum-Ho Bin
- Department of Biological Sciences, Ajou University, Suwon 16499, South Korea.
| |
Collapse
|
4
|
Qin J, Shan Y, Liu H, Xue Z, Xie Y, Yuan G, Zou Y, Hao X, Zhu Y, Shen X, Li M, Wang X, Liu P, Xu J, Wang Y, Zhao P, Chen Y, Zhu Y, Xu M, Yue M, Fu A, Zhang W, Li B. The dual-targeted transcription factor BAI1 orchestrates nuclear and plastid gene transcription in land plants. MOLECULAR PLANT 2025; 18:833-852. [PMID: 40170352 DOI: 10.1016/j.molp.2025.03.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 02/20/2025] [Accepted: 03/26/2025] [Indexed: 04/03/2025]
Abstract
Coordinated gene transcription in plastids and nuclei is necessary for the photosynthetic apparatus assembly during chloroplast biogenesis. Despite the identification of several transcription factors regulating nuclear-encoded photosynthetic gene transcription, transcription factors regulating plastid gene transcription are barely reported. Here, we report that BAI1 ("albino" in Chinese), a nucleus-plastid dual-targeted C2H2-type zinc-finger transcription factor in Arabidopsis, positively regulates and tunes the transcription of both nuclear and plastid genes. Knockout of BAI1 blocks chloroplast formation, producing albino seedlings and lethality. In plastids, BAI1 is a newly identified functional component of the pTAC (transcriptionally active chromosome complex), which interacts with another pTAC component, pTAC12/PAP5/HMR, to allow the effective assembly of plastid-encoded RNA polymerase (PEP) complexes. The transcript levels of PEP-dependent genes were reduced in the bai1 mutant. In contrast, the accumulation of nuclear-encoded RNA polymerase (NEP)-dependent transcripts was increased, suggesting that BAI1 is critical in maintaining PEP activity. BAI1 directly binds to the promoter regions of nuclear genes RbcSs and a plastid gene RbcL to activate their expression for RubisCO assembly. AtBAI1 homologs TaBAI1, GmBAI1a, and GmBAI1b from monocots and dicots can fully complement the defects of the Arabidopsis bai1 mutant. In contrast, Physcomitrium patens BAI1 (PpBAI1) only partially complements the bai1 mutant. Phylogenetic analysis of BAI1 and HMR uncovered that both components arose from late-diverging streptophyte algae, following a conserved evolutionary path during terrestrialization. In summary, this work unveils a BAI1-mediated transcription regulatory mechanism synchronizing the transcription of nuclear and plastid genes, necessary for hybrid photosynthetic complex assembly. This could be an intrinsic feature facilitating plant terrestrialization.
Collapse
Affiliation(s)
- Jing Qin
- Chinese Education Ministry's Key Laboratory of Western Resources and Modern Biotechnology, Key Laboratory of Biotechnology Shaanxi Province, College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Yelin Shan
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang, Shandong 261325, China
| | - Hao Liu
- Chinese Education Ministry's Key Laboratory of Western Resources and Modern Biotechnology, Key Laboratory of Biotechnology Shaanxi Province, College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Zhangzhi Xue
- iMarker Lab, Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang Province, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang Province, China
| | - Yike Xie
- Chinese Education Ministry's Key Laboratory of Western Resources and Modern Biotechnology, Key Laboratory of Biotechnology Shaanxi Province, College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Guoxin Yuan
- Chinese Education Ministry's Key Laboratory of Western Resources and Modern Biotechnology, Key Laboratory of Biotechnology Shaanxi Province, College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Yiming Zou
- Chinese Education Ministry's Key Laboratory of Western Resources and Modern Biotechnology, Key Laboratory of Biotechnology Shaanxi Province, College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Xiaonuan Hao
- Chinese Education Ministry's Key Laboratory of Western Resources and Modern Biotechnology, Key Laboratory of Biotechnology Shaanxi Province, College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Yunpeng Zhu
- Chinese Education Ministry's Key Laboratory of Western Resources and Modern Biotechnology, Key Laboratory of Biotechnology Shaanxi Province, College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Xuan Shen
- Chinese Education Ministry's Key Laboratory of Western Resources and Modern Biotechnology, Key Laboratory of Biotechnology Shaanxi Province, College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Meng Li
- Chinese Education Ministry's Key Laboratory of Western Resources and Modern Biotechnology, Key Laboratory of Biotechnology Shaanxi Province, College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Xu Wang
- Chinese Education Ministry's Key Laboratory of Western Resources and Modern Biotechnology, Key Laboratory of Biotechnology Shaanxi Province, College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Puyuan Liu
- Chinese Education Ministry's Key Laboratory of Western Resources and Modern Biotechnology, Key Laboratory of Biotechnology Shaanxi Province, College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Jinxiu Xu
- Chinese Education Ministry's Key Laboratory of Western Resources and Modern Biotechnology, Key Laboratory of Biotechnology Shaanxi Province, College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Yuhua Wang
- Chinese Education Ministry's Key Laboratory of Western Resources and Modern Biotechnology, Key Laboratory of Biotechnology Shaanxi Province, College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Peng Zhao
- Chinese Education Ministry's Key Laboratory of Western Resources and Modern Biotechnology, Key Laboratory of Biotechnology Shaanxi Province, College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Yuan Chen
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang, Shandong 261325, China
| | - Yi Zhu
- iMarker Lab, Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang Province, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang Province, China
| | - Min Xu
- Chinese Education Ministry's Key Laboratory of Western Resources and Modern Biotechnology, Key Laboratory of Biotechnology Shaanxi Province, College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Ming Yue
- Chinese Education Ministry's Key Laboratory of Western Resources and Modern Biotechnology, Key Laboratory of Biotechnology Shaanxi Province, College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Aigen Fu
- Chinese Education Ministry's Key Laboratory of Western Resources and Modern Biotechnology, Key Laboratory of Biotechnology Shaanxi Province, College of Life Sciences, Northwest University, Xi'an 710069, China.
| | - Weiguo Zhang
- Chinese Education Ministry's Key Laboratory of Western Resources and Modern Biotechnology, Key Laboratory of Biotechnology Shaanxi Province, College of Life Sciences, Northwest University, Xi'an 710069, China.
| | - Beibei Li
- Chinese Education Ministry's Key Laboratory of Western Resources and Modern Biotechnology, Key Laboratory of Biotechnology Shaanxi Province, College of Life Sciences, Northwest University, Xi'an 710069, China.
| |
Collapse
|
5
|
Umphred-Wilson K, Ratnayake S, Tang Q, Wang R, Chaudhary SG, Ballachanda DN, Trichka J, Wisniewski J, Zhou L, Chen Q, Meerzaman D, Singer DS, Adoro S. The ESCRT protein CHMP5 promotes T cell leukemia by enabling BRD4-p300-dependent transcription. Nat Commun 2025; 16:4133. [PMID: 40319015 PMCID: PMC12049546 DOI: 10.1038/s41467-025-59504-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 04/24/2025] [Indexed: 05/07/2025] Open
Abstract
Addiction to oncogene-rewired transcriptional networks is a therapeutic vulnerability in cancer cells, underscoring a need to better understand mechanisms that relay oncogene signals to the transcriptional machinery. Here, using human and mouse T cell acute lymphoblastic leukemia (T-ALL) models, we identify an essential requirement for the endosomal sorting complex required for transport protein CHMP5 in T-ALL epigenetic and transcriptional programming. CHMP5 is highly expressed in T-ALL cells where it mediates recruitment of the coactivator BRD4 and the histone acetyl transferase p300 to enhancers and super-enhancers that enable transcription of T-ALL genes. Consequently, CHMP5 depletion causes severe downregulation of critical T-ALL genes, mitigates chemoresistance and impairs T-ALL initiation by oncogenic NOTCH1 in vivo. Altogether, our findings uncover a non-oncogene dependency on CHMP5 that enables T-ALL initiation and maintenance.
Collapse
Affiliation(s)
- Katharine Umphred-Wilson
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
- Immunology Training Program, Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Shashikala Ratnayake
- Computational Genomics and Bioinformatics Branch, Center for Biomedical Informatics & Information Technology, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20850, USA
| | - Qianzi Tang
- College of Animal Science and Technology, Sichuan Agricultural University, 611130, Chengdu, China
| | - Rui Wang
- College of Animal Science and Technology, Sichuan Agricultural University, 611130, Chengdu, China
| | - Sneha Ghosh Chaudhary
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Devaiah N Ballachanda
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Josephine Trichka
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
- Immunology Training Program, Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Jan Wisniewski
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Lan Zhou
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX, 77030, USA
| | - Qingrong Chen
- Computational Genomics and Bioinformatics Branch, Center for Biomedical Informatics & Information Technology, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20850, USA
| | - Daoud Meerzaman
- Computational Genomics and Bioinformatics Branch, Center for Biomedical Informatics & Information Technology, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20850, USA
| | - Dinah S Singer
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Stanley Adoro
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
6
|
Li S, Zhong J, Ma Y, Yue C, Lv W, Ye G, Tian X, Li X, Huang Y, Du L. Influences of chain length and conformation of guanidinylated linear synthetic polypeptides on nuclear delivery of siRNA with potential application in transcriptional gene silencing. Int J Biol Macromol 2025; 308:142743. [PMID: 40180092 DOI: 10.1016/j.ijbiomac.2025.142743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 03/16/2025] [Accepted: 03/31/2025] [Indexed: 04/05/2025]
Abstract
Transcriptional gene silencing (TGS) mediated by siRNA holds promise for long-term silencing efficacy, determined by effective nuclear delivery of siRNA. However, non-viral vectors for this purpose are limited. In this work, we synthesized guanidinylated linear synthetic polypeptides (GLSPs) to explore how chain length and conformation impact siRNA delivery, especially nuclear entry. Results show that helical conformations, particularly right-handed ones, enhance siRNA loading and silencing efficiency compared to unordered structures. Increasing chain length also improves these aspects. The endocytic pathways of carrier/siRNA nanocomplexes (NCs) are mainly determined by conformation, regardless of length. Notably, some NCs derived from right-handed helices can enter cells via direct membrane penetration, like bioactivity of cell penetrating peptides (CPPs). When the peptide chain of GLSPs is long enough, all vectors can rapidly deliver siRNA to the nucleus, similar to bioactivity of nuclear localization signal peptides (NLSPs). Interestingly, helicity of the vectors aids endosomal escape of NCs. Moreover, delivering siRNA to the nucleus via GLSPs induces TGS associated with DNA promoter methylation or histone deacetylation. This study clarifies the structure-activity relationship of GLSPs in siRNA delivery, providing new insights for designing non-viral carriers for TGS.
Collapse
Affiliation(s)
- Suifei Li
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Junyang Zhong
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Yunxiao Ma
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou 511436, China
| | - Chengfeng Yue
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Wenxia Lv
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Guodong Ye
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Xiumei Tian
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou 511436, China
| | - Xin Li
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China.
| | - Yugang Huang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China.
| | - Lingran Du
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China.
| |
Collapse
|
7
|
Thakor AS. The Third Pillar of Precision Medicine - Precision Delivery. MedComm (Beijing) 2025; 6:e70200. [PMID: 40297244 PMCID: PMC12035764 DOI: 10.1002/mco2.70200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 04/03/2025] [Accepted: 04/09/2025] [Indexed: 04/30/2025] Open
Abstract
Precision Medicine is thought of as having two main pillars: Precision Diagnosis and Precision Therapy. However, for Precision Medicine to reach its full potential, a third pillar is needed that we propose to call Precision Delivery. In the laboratory, many therapies show great efficacy when tested directly with target cells. However, upon clinical translation, they are often given via intravenous or oral administration, resulting in their systemic distribution. To ensure therapies reach target sites at the correct therapeutic levels, they are often given at higher concentrations. However, this can be associated with off-target effects, side-effects, and unwanted interactions. Delivery strategies can help mitigate this by "spatially re-coupling" therapies in vivo with target cells. This review explains the concept of Precision Delivery, which can be thought of as three interconnected, but independent, modules: targeted delivery, microenvironment modulation, and cellular interactions. While locoregional approaches directly deliver therapies into target tissues through endovascular, endoluminal, percutaneous, and implantation techniques, microenvironment modulation technologies facilitate the movement of therapies across biological barriers and through tissue matrices, so optimized therapies can reach and interact with target cells. We highlight new innovations driving advances in Precision Delivery, while also discussing the considerations and challenges that Precision Delivery faces as it becomes increasingly integrated into treatment workflows.
Collapse
Affiliation(s)
- Avnesh S. Thakor
- Department of RadiologyCenter for Interventional Radiology Innovation at Stanford (IRIS)School of MedicineStanford UniversityPalo AltoCaliforniaUSA
| |
Collapse
|
8
|
Lei J, Xu C, Li R, Chen X, Fu Z, Yao J, Li Z, Cheng Y. Genome-wide characterization of citrus remorin genes identifies an atypical remorin CsREM1.1 responsible for fruit disease resistance. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 222:109731. [PMID: 40048943 DOI: 10.1016/j.plaphy.2025.109731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 02/22/2025] [Accepted: 03/02/2025] [Indexed: 05/07/2025]
Abstract
Remorins (REMs) are plant-specific proteins associated with plasma membrane (PM) and exhibit diverse biological functions. However, the roles of remorins in fruit crops and fruit disease resistance remain unexplored. Here, we performed a genome-wide characterization of remorin genes from citrus (Citrus sinensis) and identified an atypical remorin CsREM1.1 responsible for fruit resistance to Penicillium digitatum (Pd), a notorious postharvest fungal pathogen of citrus. Ten remorin genes were identified in the C. sinensis genome and they were categorized into five groups. A lot of cis-elements involved in hormone and stress responsiveness were exhibited in the promoter regions of citrus remorin genes. Reverse transcription-quantitative PCR (RT-qPCR) analysis showed that the majority of citrus remorin genes, especially CsREM1.1, were significantly induced in citrus fruit upon Pd infection. Unlike typical remorins, CsREM1.1 exhibited nuclear localization in addition to its traditional PM localization. Transient expression of CsREM1.1 in the model plant Nicotiana benthamiana suppressed plant cell death triggered by BAX, an important pro-apoptotic factor, and enhanced plant resistance to Botrytis cinerea. Moreover, transient overexpression or silencing of CsREM1.1 in citrus fruit indicated the important contribution of CsREM1.1 in fruit resistance to Pd. Our study increases the understanding of plant remorins and provides valuable insights for future research on fruit disease resistance.
Collapse
Affiliation(s)
- Jiaming Lei
- Key Laboratory of Plant Hormones and Molecular Breeding of Chongqing, School of Life Sciences, Chongqing University, Chongqing, 401331, China; Center of Plant Functional Genomics and Synthetic Biology, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing, 401331, China
| | - Chan Xu
- Key Laboratory of Plant Hormones and Molecular Breeding of Chongqing, School of Life Sciences, Chongqing University, Chongqing, 401331, China; Center of Plant Functional Genomics and Synthetic Biology, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing, 401331, China
| | - Rui Li
- Key Laboratory of Plant Hormones and Molecular Breeding of Chongqing, School of Life Sciences, Chongqing University, Chongqing, 401331, China; Center of Plant Functional Genomics and Synthetic Biology, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing, 401331, China
| | - Xiaoyan Chen
- Key Laboratory of Plant Hormones and Molecular Breeding of Chongqing, School of Life Sciences, Chongqing University, Chongqing, 401331, China; Center of Plant Functional Genomics and Synthetic Biology, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing, 401331, China
| | - Zhengyang Fu
- Key Laboratory of Plant Hormones and Molecular Breeding of Chongqing, School of Life Sciences, Chongqing University, Chongqing, 401331, China; Center of Plant Functional Genomics and Synthetic Biology, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing, 401331, China
| | - Juanni Yao
- Key Laboratory of Plant Hormones and Molecular Breeding of Chongqing, School of Life Sciences, Chongqing University, Chongqing, 401331, China; Center of Plant Functional Genomics and Synthetic Biology, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing, 401331, China
| | - Zhengguo Li
- Key Laboratory of Plant Hormones and Molecular Breeding of Chongqing, School of Life Sciences, Chongqing University, Chongqing, 401331, China; Center of Plant Functional Genomics and Synthetic Biology, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing, 401331, China
| | - Yulin Cheng
- Key Laboratory of Plant Hormones and Molecular Breeding of Chongqing, School of Life Sciences, Chongqing University, Chongqing, 401331, China; Center of Plant Functional Genomics and Synthetic Biology, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing, 401331, China.
| |
Collapse
|
9
|
Miranda-Laferte E, Barkovits K, Rozanova S, Jordan N, Marcus K, Hidalgo P. The membrane-associated β2e-subunit of voltage-gated calcium channels translocates to the nucleus and regulates gene expression. Front Physiol 2025; 16:1555934. [PMID: 40297778 PMCID: PMC12034931 DOI: 10.3389/fphys.2025.1555934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Accepted: 03/21/2025] [Indexed: 04/30/2025] Open
Abstract
The β-subunit (Cavβ) is a central component of the voltage-gated calcium channel complex. It lacks transmembrane domains and exhibits both channel-related and non-related functions. Previous studies have shown that, in the absence of the Cavα1 pore-forming subunit, electrostatic interactions between the N-terminus of Cavβ2e and the plasma membrane mediate its anchoring to the cell surface. Here, we demonstrate that, upon phospholipase C activation, Cavβ2e dissociates from the plasma membrane and homogeneously distributes between the cytosol and the nucleus. Mutagenesis analysis identified critical residues in the N-terminus of the protein, including a stretch of positively charged amino acids and a dileucine motif, which serve as nuclear import and export signals, respectively. Fusion of the Cavβ2e N-terminus to a trimeric YFP chimeric construct shows that this segment suffices for nuclear shuttling. Thus, the N-terminus of Cavβ2e emerges as a regulatory hotspot region controlling the subcellular localization of the protein. Quantitative mass spectrometry analysis revealed that the heterologous expression of a nuclear-enriched Cavβ2e mutant regulates gene expression. Our findings demonstrate the presence of active nuclear localization signals in Cavβ2e that enables its nuclear targeting and regulation of protein expression. Furthermore, they establish the membrane-associated Cavβ2e as a novel signaling mediator within the phospholipase C cascade.
Collapse
Affiliation(s)
- Erick Miranda-Laferte
- Institute of Biological Information Processing (IBI-1)- Molecular and Cellular Physiology, Forschungszentrum Jülich, Jülich, Germany
| | - Katalin Barkovits
- Medizinisches Proteom-Center, Medical Faculty, Ruhr-University Bochum, Bochum, Germany
- Medical Proteome Analysis, Center for Protein Diagnostics (PRODI), Ruhr-University Bochum, Bochum, Germany
| | - Svitlana Rozanova
- Medizinisches Proteom-Center, Medical Faculty, Ruhr-University Bochum, Bochum, Germany
- Medical Proteome Analysis, Center for Protein Diagnostics (PRODI), Ruhr-University Bochum, Bochum, Germany
| | - Nadine Jordan
- Institute of Biological Information Processing (IBI-1)- Molecular and Cellular Physiology, Forschungszentrum Jülich, Jülich, Germany
| | - Katrin Marcus
- Medizinisches Proteom-Center, Medical Faculty, Ruhr-University Bochum, Bochum, Germany
- Medical Proteome Analysis, Center for Protein Diagnostics (PRODI), Ruhr-University Bochum, Bochum, Germany
| | - Patricia Hidalgo
- Institute of Biological Information Processing (IBI-1)- Molecular and Cellular Physiology, Forschungszentrum Jülich, Jülich, Germany
- Institute of Biochemistry, Heinrich-Heine University, Düsseldorf, Germany
| |
Collapse
|
10
|
Noel EA, Sahu SU, Wyman SK, Krishnappa N, Jeans C, Wilson RC. Hairpin Internal Nuclear Localization Signals in CRISPR-Cas9 Enhance Editing in Primary Human Lymphocytes. CRISPR J 2025; 8:105-119. [PMID: 40163415 DOI: 10.1089/crispr.2024.0080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025] Open
Abstract
The incorporation of nuclear localization signal (NLS) sequences at one or both termini of CRISPR enzymes is a widely adopted strategy to facilitate genome editing. Engineered variants of CRISPR enzymes with diverse NLS sequences have demonstrated superior performance, promoting nuclear localization and efficient DNA editing. However, limiting NLS fusion to the CRISPR protein's termini can negatively impact protein yield via recombinant expression. Here we present a distinct strategy involving the installation of hairpin internal NLS sequences (hiNLS) at rationally selected sites within the backbone of CRISPR-Cas9. We evaluated the performance of these hiNLS Cas9 variants by editing genes in human primary T cells following the delivery of ribonucleoprotein enzymes via either electroporation or co-incubation with amphiphilic peptides. We show that hiNLS Cas9 variants can improve editing efficiency in T cells compared with constructs with terminally fused NLS sequences. Furthermore, many hiNLS Cas9 constructs can be produced with high purity and yield, even when these constructs contain as many as nine NLS. These hiNLS Cas9 constructs represent a key advance in optimizing CRISPR effector design and may contribute to improved editing outcomes in research and therapeutic applications.
Collapse
Affiliation(s)
- Eric A Noel
- Innovative Genomics Institute, University of California Berkeley, Berkeley, California, USA
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, California, USA
- California Institute for Quantitative Biosciences at University of California Berkeley, Berkeley, California, USA
| | - Srishti U Sahu
- Innovative Genomics Institute, University of California Berkeley, Berkeley, California, USA
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, California, USA
- California Institute for Quantitative Biosciences at University of California Berkeley, Berkeley, California, USA
| | - Stacia K Wyman
- Innovative Genomics Institute, University of California Berkeley, Berkeley, California, USA
| | - Netravathi Krishnappa
- Innovative Genomics Institute, University of California Berkeley, Berkeley, California, USA
| | - Chris Jeans
- California Institute for Quantitative Biosciences at University of California Berkeley, Berkeley, California, USA
| | - Ross C Wilson
- Innovative Genomics Institute, University of California Berkeley, Berkeley, California, USA
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, California, USA
- California Institute for Quantitative Biosciences at University of California Berkeley, Berkeley, California, USA
| |
Collapse
|
11
|
Li H, Yuan X, Ren M, Liu J, Zheng Y, Lin Z, Chen Z, Yang Z, Su X, Shen H. PAMAM-Based DNA Fluorescence Nanoprobe for Rapid Whole Cellular APE1 Detection and Imaging. Anal Chem 2025; 97:6694-6701. [PMID: 40106447 DOI: 10.1021/acs.analchem.4c06820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
Apurinic/apyrimidinic endonuclease 1/redox effector factor 1 (APE1/ref-1, APE1), a vital protein for DNA repair and cellular redox regulation, is frequently overexpressed in tumor cells, underscoring the importance of developing sensitive detection methods for early cancer diagnosis. However, the rapid detection and visualization of nuclear APE1 in tumor cells are still challenging. In this study, we successfully developed a novel DNA fluorescent nanoprobe based on polyamidoamine (PAMAM) for the rapid detection of cytoplasmic and nuclear APE1. The PAMAM surface was modified with arginine (Arg), named PR, and its hydrophobic core encapsulated the 1,6,7,12-tetrachloroperylene tetracarboxylic acid dianhydride (TA) dye to construct fluorescent nanoparticles (TPR). Furthermore, an APE1-responsive dsDNA (SP) was linked on the TPR surface, containing apurinic/apyrimidinic sites (AP sites) and the black hole quencher 2 (BHQ2) and ensuring that fluorescence remains off in the absence of APE1. TPR-SP exhibited a detection range of 0.125-25 U mL-1 and a detection limit as low as 0.03 U mL-1. Compared with the Arg-free nanoprobes (TP-SP), TPR-SP significantly accelerated endocytosis and nuclear penetration, reducing the APE1 detection time to one-quarter (from 2 to 0.5 h). Notably, the APE1 signal in the whole nucleus can also be significantly detected. Thus, the TPR nanoprobe achieves the rapid enrichment and amplification of fluorescence signals, leading to highly sensitive whole cellular APE1 detection. This innovative and efficient detection method greatly expands the technological means for early cancer detection.
Collapse
Affiliation(s)
- Huimin Li
- State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xinru Yuan
- State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Mei Ren
- State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jiajia Liu
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yixin Zheng
- State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Ziyi Lin
- State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zixin Chen
- State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhao Yang
- College of Life Science and Technology, Innovation Center of Molecular Diagnostics, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xin Su
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Heyun Shen
- State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
12
|
Lu J, Huang S, Wei S, Cheng J, Li W, Fei Y, Yang J, Hu R, Huang S, Zhai W, Wu Z, Liu M, Xu Q, Hu P, Chen L. Heat inducible nuclear translocation of Kdm6bb drives temperature dependent sex reversal in Nile tilapia. PLoS Genet 2025; 21:e1011664. [PMID: 40305565 PMCID: PMC12043187 DOI: 10.1371/journal.pgen.1011664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 03/24/2025] [Indexed: 05/02/2025] Open
Abstract
Understanding the primary molecular events driving temperature-dependent sex reversal (TSR) has proven challenging, particularly in distinguishing these from secondary effects of sexual differentiation. The mechanisms translating temperature into a sex-determining signal in fish are still largely unknown. Through combined transcriptomic and genome-wide histone methylation analyses of gonads in Nile tilapia (Oreochromis niloticus) exposed to normal and elevated temperatures, we observed significant upregulation of male-promoting genes (amh, dmrt1, gsdf) and suppression of female-promoting genes (wt1a and foxl3) at high temperature. These changes were correlated with methylation changes in H3K27 and H3K4 in the promoter regions of these genes. Among the histone methylation enzymes induced by high temperature, we identified the H3K27 demethylase Kdm6bb to be a key factor. Gene deletion and biochemical studies confirmed that Kdm6bb significantly impacts the H3K27 methylation level, that influences sex determination. Crucially, we discovered that the TSR function of Kdm6bb is mediated by the alternative inclusion of a previously unrecognized intron, enabling nuclear translocation of the demethylase to perform its function. Our findings refute the previously proposed "translation deficiency" mechanism of kdm6bb, and highlight the critical role of mRNA alternative splicing and subcellular localization of the demethylase in temperature-induced sex reversal.
Collapse
Affiliation(s)
- Jigang Lu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Siqi Huang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Shicen Wei
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Jiangbo Cheng
- The State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu, China
| | - Wei Li
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Yueyue Fei
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Jihui Yang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Ruiqin Hu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Songqian Huang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Wanying Zhai
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Zhichao Wu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Mingli Liu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Qianghua Xu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Peng Hu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Liangbiao Chen
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
13
|
Hong H, Han H, Wang L, Cao W, Hu M, Li J, Wang J, Yang Y, Xu X, Li G, Zhang Z, Zhang C, Xu M, Wang H, Wang Q, Yuan Y. ABCF1-K430-Lactylation promotes HCC malignant progression via transcriptional activation of HIF1 signaling pathway. Cell Death Differ 2025; 32:613-631. [PMID: 39753865 PMCID: PMC11982231 DOI: 10.1038/s41418-024-01436-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 12/08/2024] [Accepted: 12/16/2024] [Indexed: 01/12/2025] Open
Abstract
Lysine lactylation plays critical roles in various diseases, including cancer. Our previous study showed that lactylation of non-histone ABCF1 may be involved in hepatocellular carcinoma (HCC) progression. In this study, we evaluated the prognostic value of ABCF1-K430la in HCC using immunohistochemical staining and performed amino acid point mutations, multi-omics crossover, and biochemical experiments to investigate its biological role and underlying mechanism. Additionally, we performed molecular docking on lactylation sites. ABCF1-K430la was highly expressed in HCC tissues and correlated with poor patient prognosis. Functionally, ABCF1-K430la promoted HCC growth and lung metastasis. Mechanistically, upon lactylation, E2 ubiquitin ligase activity of ABCF1 remained unaffected, and ABCF1 entered the nucleus, bound to the KDM3A promoter to upregulate its expression, and activated the KDM3A-H3K9me2-HIF1A axis, challenging the notion that ABCF1 functions exclusively in cytoplasmic protein translation. Notably, we discovered the existence of a lactate-ABCF1(430Kla)-HIF1A-lactate in HCC. A small-molecule drug screen targeting ABCF1-K430la revealed that tubuloside A inhibits ABCF1-K430la and suppresses HCC development. These findings demonstrate that elevated ABCF1-K430la expression promotes HCC development, suggesting it as a potential prognostic biomarker and therapeutic target for HCC.
Collapse
Affiliation(s)
- Han Hong
- Department of Hepato-Pancreato-Biliary Surgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
- Department of General Surgery, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Hexu Han
- Department of Gastroenterology of the affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, China
| | - Lei Wang
- Department of Hepatic Surgery VI, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Wen Cao
- Department of Liver Disease of the affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, China
| | - Minjie Hu
- Department of Hepatobiliary Surgery of the affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, China
| | - Jindong Li
- Department of Pharmacy of the affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, China
| | - Jiawei Wang
- Department of Hepatobiliary Surgery of the affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, China
| | - Yijin Yang
- Department of Oncology, Suzhou Kowloon Hospital, Shanghai Jiao Tong University, School of Medicine, Suzhou, China
| | - XiaoYong Xu
- Department of Hepato-Pancreato-Biliary Surgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Gaochao Li
- Department of Hepato-Pancreato-Biliary Surgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Zixiang Zhang
- Department of General Surgery, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Changhe Zhang
- Department of Hepatobiliary Surgery of the affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, China.
| | - Minhui Xu
- Department of Hepato-Pancreato-Biliary Surgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China.
| | - Honggang Wang
- Department of Gastrointestinal Surgery of the affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, China.
| | - Qiang Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Anhui Medical University; Innovative Institute of Tumor Immunity and Medicine (ITIM); Anhui Provincial Innovation Institute for Pharmaceutical Basic Research; Anhui Province Key Laboratory of Tumor Immune Microenvironment and Immunotherapy, Hefei, China.
| | - Yin Yuan
- Department of Hepatobiliary Surgery of the affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, China.
- Department of Clinical research center, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, China.
| |
Collapse
|
14
|
Major RM, Mills CA, Xing L, Krantz JL, Wolter JM, Zylka MJ. Exploring the Cytoplasmic Retention of CRISPR-Cas9 in Eukaryotic Cells: The Role of Nuclear Localization Signals and Ribosomal Interactions. CRISPR J 2025; 8:120-136. [PMID: 40019800 DOI: 10.1089/crispr.2024.0074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2025] Open
Abstract
Cas9 must be localized to the nucleus to access the genome of mammalian cells. For most proteins, adding a single nuclear localization signal (NLS) is sufficient to promote nuclear entry. However, Cas9 nuclear entry appears to be inefficient as multiple NLSs are typically added to Cas9. Here, we found that three different Cas9 variants interact with the ribosome in HEK293T cells, and that this interaction is RNA mediated. Following immunoprecipitation-mass spectrometry of cytoplasmic-localized Cas9-0NLS and nuclear-localized Cas9-4NLS constructs, we identified novel Cas9 interactors in postmitotic neurons, including KEAP1 and additional ribosomal subunits, the latter were enriched in Cas9-0NLS samples. Collectively, our results suggest that Cas9 is sequestered in the cytoplasm of mammalian cells, in part, via interaction with the ribosome. Increasing the number of NLSs on Cas9 and/or increasing the amount of cytoplasmic guide RNA has the potential to outcompete ribosomal RNA binding and promote efficient nuclear localization of CRISPR-Cas9 variants.
Collapse
Affiliation(s)
- Rami M Major
- Curriculum in Genetics and Molecular Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Christine A Mills
- Proteomics Core Facility, Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Lei Xing
- UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - James L Krantz
- UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Justin M Wolter
- UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Mark J Zylka
- UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
15
|
Liyanage W, Kannan G, Kannan S, Kannan RM. Efficient Intracellular Delivery of CRISPR-Cas9 Ribonucleoproteins Using Dendrimer Nanoparticles for Robust Genomic Editing. NANO TODAY 2025; 61:102654. [PMID: 40212051 PMCID: PMC11981599 DOI: 10.1016/j.nantod.2025.102654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/13/2025]
Abstract
CRISPR-Cas9, a flexible and efficient genome editing technology, is currently limited by the challenge of delivering the large ribonucleoprotein complex intracellularly and into the nucleus. Existing delivery techniques/vectors are limited by their toxicity, immunogenicity, scalability, and lack of specific cell-targeting ability. This study presents a neutral, non-toxic dendrimer conjugate construct that shows promise in overcoming these limitations. We covalently-conjugated S. pyogenes Cas9-2NLS (Cas9-nuclear localization sequence) endonuclease to a hydroxyl PAMAM dendrimer through a glutathione-sensitive disulfide linker via highly specific inverse Diels-alder click reaction (IEDDA), and a single guide RNA (sgRNA) was complexed to the Cas9-dendrimer conjugate nano-construct (D-Cas9). D-Cas9- RNP produces robust genomic deletion in vitro of GFP in HEK293 cells (~100%) and VEGF in a human pigmental epithelium cell line (ARPE-19) (20%). The uptake of the D-Cas9-RNP constructs on similar timescales as small molecules highlights the robustness of the biophysical mechanisms enabling the dendrimer to deliver payloads as large as Cas9, while retaining payload functionality. This promising conjugation approach enabled better stability to the neutral construct. Combined with recent advances in hydroxyl dendrimer delivery technologies in the clinic, this approach may lead to advances in 'neutral' dendrimer-enabled non-toxic, cell-specific, highly efficient in vitro and in vivo genome editing.
Collapse
Affiliation(s)
- Wathsala Liyanage
- Center for Nanomedicine, Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Gokul Kannan
- Department of Bioengineering, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Sujatha Kannan
- Center for Nanomedicine, Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Hugo W. Moser Research Institute at Kennedy Krieger, Inc., Baltimore, MD 21205, USA
- Kennedy Krieger Institute-Johns Hopkins University for Cerebral Palsy Research Excellence, Baltimore, MD 21218, USA
| | - Rangaramanujam M. Kannan
- Center for Nanomedicine, Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
- Department of chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Hugo W. Moser Research Institute at Kennedy Krieger, Inc., Baltimore, MD 21205, USA
- Kennedy Krieger Institute-Johns Hopkins University for Cerebral Palsy Research Excellence, Baltimore, MD 21218, USA
| |
Collapse
|
16
|
Fung HYJ, Mittal SR, Niesman AB, Jiou J, Shakya B, Yoshizawa T, Cansizoglu AE, Rout MP, Chook YM. Phosphate-dependent nuclear export via a non-classical NES class recognized by exportin Msn5. Nat Commun 2025; 16:2580. [PMID: 40089503 PMCID: PMC11910620 DOI: 10.1038/s41467-025-57752-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 02/27/2025] [Indexed: 03/17/2025] Open
Abstract
Gene expression in response to environmental stimuli is dependent on nuclear localization of key signaling components, which can be tightly regulated by phosphorylation. This is exemplified by the phosphate-sensing transcription factor Pho4, which requires phosphorylation for nuclear export by the yeast exportin Msn5. Here, we present a high resolution cryogenic-electron microscopy structure showing the phosphorylated 35-residue nuclear export signal of Pho4, which binds the concave surface of Msn5 through two Pho4 phospho-serines that align with two Msn5 basic patches. These findings characterize a mechanism of phosphate-specific recognition mediated by a non-classical signal distinct from that for Exportin-1. Furthermore, the discovery that unliganded Msn5 is autoinhibited explains the positive cooperativity of Pho4/Ran-binding and proposes a mechanism for Pho4's release in the cytoplasm. These findings advance our understanding of the diversity of signals that drive nuclear export and how cargo phosphorylation is crucial in regulating nuclear transport and controlling cellular signaling pathways.
Collapse
Affiliation(s)
- Ho Yee Joyce Fung
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX, 75039, US
- Department of Biophysics, UT Southwestern Medical Center, Dallas, TX, 75039, US
| | - Sanraj R Mittal
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, NY, 10021, US
| | - Ashley B Niesman
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX, 75039, US
- Department of Biophysics, UT Southwestern Medical Center, Dallas, TX, 75039, US
| | - Jenny Jiou
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX, 75039, US
- The Walter and Eliza Hall Institute of Medical Research, 1G, Royal Parade, Parkville, Victoria, 302, Australia
| | - Binita Shakya
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX, 75039, US
- Department of Clinical, Diagnostic & Therapeutic Sciences, College of Allied Health Professions, University of Nebraska Medical Center, Omaha, NE, 68198, US
| | - Takuya Yoshizawa
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX, 75039, US
- Research Division, Chugai Pharmaceutical Co., Ltd, Kanagawa, Japan
| | - Ahmet E Cansizoglu
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX, 75039, US
- EMD Serono Research & Development Institute, 45A Middlesex Turnpike, Billerica, MA, 01821, US
| | - Michael P Rout
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, NY, 10021, US
| | - Yuh Min Chook
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX, 75039, US.
| |
Collapse
|
17
|
Zheng Y, Yu K, Lin JF, Liang Z, Zhang Q, Li J, Wu QN, He CY, Lin M, Zhao Q, Zuo ZX, Ju HQ, Xu RH, Liu ZX. Deep learning prioritizes cancer mutations that alter protein nucleocytoplasmic shuttling to drive tumorigenesis. Nat Commun 2025; 16:2511. [PMID: 40087285 PMCID: PMC11909177 DOI: 10.1038/s41467-025-57858-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 03/05/2025] [Indexed: 03/17/2025] Open
Abstract
Genetic variants can affect protein function by driving aberrant subcellular localization. However, comprehensive analysis of how mutations promote tumor progression by influencing nuclear localization is currently lacking. Here, we systematically characterize potential shuttling-attacking mutations (SAMs) across cancers through developing the deep learning model pSAM for the ab initio decoding of the sequence determinants of nucleocytoplasmic shuttling. Leveraging cancer mutations across 11 cancer types, we find that SAMs enrich functional genetic variations and critical genes in cancer. We experimentally validate a dozen SAMs, among which R14M in PTEN, P255L in CHFR, etc. are identified to disrupt the nuclear localization signals through interfering their interactions with importins. Further studies confirm that the nucleocytoplasmic shuttling altered by SAMs in PTEN and CHFR rewire the downstream signaling and eliminate their function of tumor suppression. Thus, this study will help to understand the molecular traits of nucleocytoplasmic shuttling and their dysfunctions mediated by genetic variants.
Collapse
Grants
- This study was supported by the National Key R&D Program of China [2021YFA1302100], National Natural Science Foundation of China [32370698, 81972239], Program for Guangdong Introducing Innovative and Entrepreneurial Teams [2017ZT07S096], Tip-Top Scientific and Technical Innovative Youth Talents of Guangdong Special Support Program [2019TQ05Y351], Young Talents Program of Sun Yat-sen University Cancer Center [YTP-SYSUCC-0029], Science and Technology Program of Guangzhou [202206080011], Guangdong Basic and Applied Basic Research Foundation [2023B1515040030] and CAMS Innovation Fund for Medical Sciences (CIFMS) [2019-I2M-5-036].
- This study was supported by the Chih Kuang Scholarship for Outstanding Young Physician-Scientists of Sun Yat-sen University Cancer Center [CKS-SYSUCC-2024009] and the Postdoctoral Science Foundation of China [2024M763801, GZB20240907].
- This study was supported by the Noncommunicable Chronic Diseases-National Science and Technology Major Project [2023ZD0501600], National Natural Science Foundation of China [82321003, 82173128] and Cancer Innovative Research Program of Sun Yat-sen University Cancer Center [CIRP-SYSUCC-0004].
Collapse
Affiliation(s)
- Yongqiang Zheng
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Kai Yu
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, 77030, USA
| | - Jin-Fei Lin
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
- Department of Clinical Laboratory, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Zhuoran Liang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Qingfeng Zhang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Junteng Li
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Qi-Nian Wu
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Cai-Yun He
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Mei Lin
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Qi Zhao
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Zhi-Xiang Zuo
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Huai-Qiang Ju
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Rui-Hua Xu
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, 510060, China.
| | - Ze-Xian Liu
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.
| |
Collapse
|
18
|
Le TT, Choi HI, Kim JW, Yun JH, Lee YH, Jeon EJ, Kwon KK, Cho DH, Choi DY, Park SB, Yoon HR, Lee J, Sim EJ, Lee YJ, Kim HS. Cas9-mediated gene-editing frequency in microalgae is doubled by harnessing the interaction between importin α and phytopathogenic NLSs. Proc Natl Acad Sci U S A 2025; 122:e2415072122. [PMID: 40030016 PMCID: PMC11912399 DOI: 10.1073/pnas.2415072122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 01/22/2025] [Indexed: 03/19/2025] Open
Abstract
Pathogen-derived nuclear localization signals (NLSs) enable vigorous nuclear invasion in the host by the virulence proteins harboring them. Herein, inspired by the robust nuclear import mechanism, we show that NLSs originating from the plant infection-associated Agrobacterium proteins VirD2 and VirE2 can be incorporated into the Cas9 system as efficient nuclear delivery enhancers, thereby improving the low gene-editing frequency in a model microalga, Chlamydomonas reinhardtii, caused by poor nuclear localization of the bulky nuclease. Prior to evaluation of the NLSs, IPA1 (Cre04.g215850) was first defined in the alga as the nuclear import-related importin alpha (Impα) that serves as a counterpart adaptor protein of the NLSs, based on extensive in silico analyses considering the protein's sequence, tertiary folding behavior, and structural basis when interacting with a well-studied SV40TAg NLS. Through precursive affinity explorations, we reproducibly found that the NLSs mediated the binding between the Cas9 and Impα with nM affinities and visually confirmed that the fusion of the NLSs strictly localized the peptide-bearing cargoes in the microalgal nucleus without compensating for their cleavage ability. When employed in a real-world application, the VirD2 NLS increases the mutation frequency (~1.12 × 10-5) over 2.4-fold compared to an archetypal SV40TAg NLS (~0.46 × 10-5) when fused with Cas9. We demonstrate the cross-species versatility of the Impα-dependent strategy by successfully applying it to an industrial alga, Chlorella Sp. HS2. This work, focused on affinity augmentation, provides insights into increasing the frequency of gene editing, which can be advantageously used in programmable mutagenesis with broad applicability.
Collapse
Affiliation(s)
- Trang Thi Le
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon34141, South Korea
- Department of Environmental Biotechnology, University of Science and Technology, Daejeon34113, South Korea
| | - Hong Il Choi
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon34141, South Korea
- Department of Environmental Biotechnology, University of Science and Technology, Daejeon34113, South Korea
| | - Ji Won Kim
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon34141, South Korea
- Department of Environmental Biotechnology, University of Science and Technology, Daejeon34113, South Korea
| | - Jin-Ho Yun
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon34141, South Korea
- Department of Environmental Biotechnology, University of Science and Technology, Daejeon34113, South Korea
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon-si, Gyeonggi-do16419, South Korea
| | - Yoon Hyeok Lee
- Design AI Lab, AI Center Samsung Electronics, Suwon-si, Gyeonggi-do16678, South Korea
| | - Eun Jung Jeon
- Synthetic Biology Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon34141, South Korea
| | - Kil Koang Kwon
- Synthetic Biology Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon34141, South Korea
| | - Dae-Hyun Cho
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon34141, South Korea
| | - Dong-Yun Choi
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon34141, South Korea
| | - Su-Bin Park
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon34141, South Korea
| | - Hyang Ran Yoon
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon34141, South Korea
| | - Jeongmi Lee
- Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon34141, South Korea
- Department of Bio-Molecular Science, University of Science and Technology, Daejeon34113, South Korea
| | - Eun Jeong Sim
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon34141, South Korea
- Department of Environmental Biotechnology, University of Science and Technology, Daejeon34113, South Korea
| | - Yong Jae Lee
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon34141, South Korea
- Department of Environmental Biotechnology, University of Science and Technology, Daejeon34113, South Korea
| | - Hee-Sik Kim
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon34141, South Korea
- Department of Environmental Biotechnology, University of Science and Technology, Daejeon34113, South Korea
| |
Collapse
|
19
|
Kilgore HR, Chinn I, Mikhael PG, Mitnikov I, Van Dongen C, Zylberberg G, Afeyan L, Banani S, Wilson-Hawken S, Lee TI, Barzilay R, Young RA. Protein codes promote selective subcellular compartmentalization. Science 2025; 387:1095-1101. [PMID: 39913643 PMCID: PMC12034300 DOI: 10.1126/science.adq2634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 11/07/2024] [Accepted: 01/28/2025] [Indexed: 02/12/2025]
Abstract
Cells have evolved mechanisms to distribute ~10 billion protein molecules to subcellular compartments where diverse proteins involved in shared functions must assemble. In this study, we demonstrate that proteins with shared functions share amino acid sequence codes that guide them to compartment destinations. We developed a protein language model, ProtGPS, that predicts with high performance the compartment localization of human proteins excluded from the training set. ProtGPS successfully guided generation of novel protein sequences that selectively assemble in the nucleolus. ProtGPS identified pathological mutations that change this code and lead to altered subcellular localization of proteins. Our results indicate that protein sequences contain not only a folding code but also a previously unrecognized code governing their distribution to diverse subcellular compartments.
Collapse
Affiliation(s)
- Henry R. Kilgore
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Itamar Chinn
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Peter G. Mikhael
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Ilan Mitnikov
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | - Guy Zylberberg
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Lena Afeyan
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Salman Banani
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Susana Wilson-Hawken
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
- Program of Computational & Systems Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Tong Ihn Lee
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Regina Barzilay
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Richard A. Young
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
20
|
Schirripa A, Schöppe H, Nebenfuehr S, Zojer M, Klampfl T, Kugler V, Maw BS, Ceylan H, Uras IZ, Scheiblecker L, Gamper E, Stelzl U, Stefan E, Kaserer T, Sexl V, Kollmann K. Cdk6's functions are critically regulated by its unique C-terminus. iScience 2025; 28:111697. [PMID: 39898030 PMCID: PMC11787673 DOI: 10.1016/j.isci.2024.111697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/09/2024] [Accepted: 12/24/2024] [Indexed: 02/04/2025] Open
Abstract
The vital cell cycle machinery is tightly regulated and alterations of its central signaling hubs are a hallmark of cancer. The activity of CDK6 is controlled by interaction with several partners including cyclins and INK4 proteins, which have been shown to mainly bind to the amino-terminal lobe. We analyzed the impact of CDK6's C-terminus on its functions in a leukemia model, revealing a central role in promoting proliferation. C-terminally truncated Cdk6 (Cdk6 ΔC) shows reduced nuclear translocation and therefore chromatin interaction and fails to enhance proliferation and disease progression. The combination of proteomic analysis and protein modeling highlights that Cdk6's C-terminus is essential for protein flexibility and for its binding potential to cyclin D, p27Kip1 and INK4 proteins but not cyclin B. We demonstrate that the C-terminus is a unique and essential part of the CDK6 protein, regulating interaction partner binding and therefore CDK6's functionality.
Collapse
Affiliation(s)
- Alessia Schirripa
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| | - Helge Schöppe
- Institute of Pharmacy/Pharmaceutical Chemistry and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria
| | - Sofie Nebenfuehr
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| | - Markus Zojer
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| | - Thorsten Klampfl
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| | - Valentina Kugler
- Tyrolean Cancer Research Institute (TKFI), Innrain 66, 6020 Innsbruck, Austria
- Institute of Molecular Biology and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria
| | - Belinda S. Maw
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| | - Huriye Ceylan
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| | - Iris Z. Uras
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| | - Lisa Scheiblecker
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| | - Elisabeth Gamper
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| | - Ulrich Stelzl
- Institute of Pharmaceutical Sciences, Pharmaceutical Chemistry, University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
- Field of Excellence BioHealth - University of Graz, Graz, Austria
| | - Eduard Stefan
- Tyrolean Cancer Research Institute (TKFI), Innrain 66, 6020 Innsbruck, Austria
- Institute of Molecular Biology and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria
| | - Teresa Kaserer
- Institute of Pharmacy/Pharmaceutical Chemistry and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria
| | - Veronika Sexl
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
- University of Innsbruck, Innsbruck, Austria
| | - Karoline Kollmann
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| |
Collapse
|
21
|
Hosseini-Kharat M, Bremmell KE, Grubor-Bauk B, Prestidge CA. Enhancing non-viral DNA delivery systems: Recent advances in improving efficiency and target specificity. J Control Release 2025; 378:170-194. [PMID: 39647508 DOI: 10.1016/j.jconrel.2024.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 11/23/2024] [Accepted: 12/02/2024] [Indexed: 12/10/2024]
Abstract
DNA-based therapies are often limited by challenges such as stability, long-term integration, low transfection efficiency, and insufficient targeted DNA delivery. This review focuses on recent progress in the design of non-viral delivery systems for enhancing targeted DNA delivery and modulation of therapeutic efficiency. Cellular uptake and intracellular trafficking mechanisms play a crucial role in optimizing gene delivery efficiency. There are two main strategies employed to improve the efficiency of gene delivery vectors: (i) explore different administration routes (e.g., mucosal, intravenous, intramuscular, subcutaneous, intradermal, intratumoural, and intraocular) that best facilitates optimal uptake into the targeted cells and organs and (ii) modify the delivery vectors with cell-specific ligands (e.g., natural ligands, antibodies, peptides, carbohydrates, or aptamers) that enable targeted uptake to specific cells with higher specificity and improved biodistribution. We describe how recent progress in employing these DNA delivery strategies is advancing the field and increasing the clinical translation and ultimate clinical application of DNA therapies.
Collapse
Affiliation(s)
- Mahboubeh Hosseini-Kharat
- Clinical and Health Sciences, Centre for Pharmaceutical Innovation, University of South Australia, Adelaide, SA 5000, Australia
| | - Kristen E Bremmell
- Clinical and Health Sciences, Centre for Pharmaceutical Innovation, University of South Australia, Adelaide, SA 5000, Australia
| | - Branka Grubor-Bauk
- Viral Immunology Group, Adelaide Medical School, University of Adelaide and Basil Hetzel Institute for Translational Health Research, Adelaide, SA, Australia
| | - Clive A Prestidge
- Clinical and Health Sciences, Centre for Pharmaceutical Innovation, University of South Australia, Adelaide, SA 5000, Australia.
| |
Collapse
|
22
|
Adams E, Bai L, Lee M, Yu Y, AlQuraishi M. From Mechanistic Interpretability to Mechanistic Biology: Training, Evaluating, and Interpreting Sparse Autoencoders on Protein Language Models. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.06.636901. [PMID: 39975216 PMCID: PMC11839115 DOI: 10.1101/2025.02.06.636901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Protein language models (pLMs) are powerful predictors of protein structure and function, learning through unsupervised training on millions of protein sequences. pLMs are thought to capture common motifs in protein sequences, but the specifics of pLM features are not well understood. Identifying these features would not only shed light on how pLMs work, but potentially uncover novel protein biology-studying the model to study the biology. Motivated by this, we train sparse autoencoders (SAEs) on the residual stream of a pLM, ESM-2. By characterizing SAE features, we determine that pLMs use a combination of generic features and family-specific features to represent a protein. In addition, we demonstrate how known sequence determinants of properties such as thermostability and subcellular localization can be identified by linear probing of SAE features. For predictive features without known functional associations, we hypothesize their role in unknown mechanisms and provide visualization tools to aid their interpretation. Our study gives a better understanding of the limitations of pLMs, and demonstrates how SAE features can be used to help generate hypotheses for biological mechanisms. We release our code, model weights and feature visualizer.
Collapse
Affiliation(s)
- Etowah Adams
- Department of Systems Biology, Columbia University
| | | | - Minji Lee
- Department of Systems Biology, Columbia University
| | - Yiyang Yu
- Department of Systems Biology, Columbia University
| | | |
Collapse
|
23
|
Dong C, Xia S, Zhang L, Arsala D, Fang C, Tan S, Clark AG, Long M. Subcellular Enrichment Patterns of New Genes in Drosophila Evolution. Mol Biol Evol 2025; 42:msaf038. [PMID: 39920336 PMCID: PMC11843443 DOI: 10.1093/molbev/msaf038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 12/31/2024] [Accepted: 01/14/2025] [Indexed: 02/09/2025] Open
Abstract
The evolutionary patterns of proteins within subcellular compartments underlie the innovation and diversification foundation of the living eukaryotic organism. The location of proteins in subcellular compartments promotes the formation of network interaction modules, which in turn reshape the architecture of higher-level protein-protein interaction networks. Here, we conducted the most up-to-date gene age dating of Drosophila melanogaster by employing recently available long-read sequencing genomes as references. We found that an elevated gene fixation in the most recent common ancestor of Drosophila genus predated the divergence between two Drosophila subgenera, and a significant tendency of these genes in D. melanogaster encode proteins that localize to the extracellular matrix, accompanying the adaptive radiation of Drosophila species. Proteins encoded by genes located in the extracellular space exhibit higher sequence divergence, suggesting a rapid evolutionary process. We also observed that proteins encoded by genes originating from the same evolutionary branches tend to co-localize in the same subcellular compartments, and proteins in the same subcellular compartment tend to interact with each other. The proteins encoded by genes that have persisted through deeper branches exhibit broader localization across multiple subcellular compartments, enhancing the likelihood of their integration into various protein or gene regulatory networks, thereby increasing functional diversity. These evolutionary patterns not only contribute to understanding the evolution of subcellular localization in proteins encoded by genes originating from different branches, but also provide insights into the evolution of protein-protein networks driven by the emergence of new genes.
Collapse
Affiliation(s)
- Chuan Dong
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang, China
- Department of Ecology and Evolution, The University of Chicago, Chicago, IL, USA
| | - Shengqian Xia
- Department of Ecology and Evolution, The University of Chicago, Chicago, IL, USA
| | - Li Zhang
- Department of Ecology and Evolution, The University of Chicago, Chicago, IL, USA
| | - Deanna Arsala
- Department of Ecology and Evolution, The University of Chicago, Chicago, IL, USA
| | - Chengchi Fang
- The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Shengjun Tan
- Department of Ecology and Evolution, The University of Chicago, Chicago, IL, USA
| | - Andrew G Clark
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Manyuan Long
- Department of Ecology and Evolution, The University of Chicago, Chicago, IL, USA
| |
Collapse
|
24
|
Aranda-Barradas ME, Coronado-Contreras HE, Aguilar-Castañeda YL, Olivo-Escalante KD, González-Díaz FR, García-Tovar CG, Álvarez-Almazán S, Miranda-Castro SP, Del Real-López A, Méndez-Albores A. Effect of Different Karyophilic Peptides on Physical Characteristics and In Vitro Transfection Efficiency of Chitosan-Plasmid Nanoparticles as Nonviral Gene Delivery Systems. Mol Biotechnol 2025; 67:723-733. [PMID: 38400988 PMCID: PMC11711767 DOI: 10.1007/s12033-024-01087-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 01/26/2024] [Indexed: 02/26/2024]
Abstract
A strategy to increase the transfection efficiency of chitosan-based nanoparticles for gene therapy is by adding nuclear localization signals through karyophilic peptides. Here, the effect of the length and sequence of these peptides and their interaction with different plasmids on the physical characteristics and biological functionality of nanoparticles is reported. The karyophilic peptides (P1 or P2) were used to assemble nanoparticles by complex coacervation with pEGFP-N1, pQBI25 or pSelect-Zeo-HSV1-tk plasmids, and chitosan. Size, polydispersity index, zeta potential, and morphology, as well as in vitro nucleus internalization and transfection capability of nanoparticles were determined. The P2 nanoparticles resulted smaller compared to the ones without peptides or P1 for the three plasmids. In general, the addition of either P1 or P2 did not have a significant impact on the polydispersity index and the zeta potential. P1 and P2 nanoparticles were localized in the nucleus after 30 min of exposure to HeLa cells. Nevertheless, the presence of P2 in pEGFP-N1 and pQBI25 nanoparticles raised their capability to transfect and express the green fluorescent protein. Thus, karyophilic peptides are an efficient tool for the optimization of nonviral vectors for gene delivery; however, the sequence and length of peptides have an impact on characteristics and functionality of nanoparticles.
Collapse
Affiliation(s)
- María Eugenia Aranda-Barradas
- Unidad de Posgrado L4 (Laboratorio de Biotecnología), Universidad Nacional Autónoma de México, Facultad de Estudios Superiores Cuautitlán Campus 1, Av. 1o. De Mayo S/N Sta. María las Torres, 54740, Cuautitlán Izcalli, México.
| | - Héctor Eduardo Coronado-Contreras
- Unidad de Posgrado L4 (Laboratorio de Biotecnología), Universidad Nacional Autónoma de México, Facultad de Estudios Superiores Cuautitlán Campus 1, Av. 1o. De Mayo S/N Sta. María las Torres, 54740, Cuautitlán Izcalli, México
| | - Yareli Lizbeth Aguilar-Castañeda
- Unidad de Posgrado L4 (Laboratorio de Biotecnología), Universidad Nacional Autónoma de México, Facultad de Estudios Superiores Cuautitlán Campus 1, Av. 1o. De Mayo S/N Sta. María las Torres, 54740, Cuautitlán Izcalli, México
| | - Karen Donají Olivo-Escalante
- Unidad de Posgrado L4 (Laboratorio de Biotecnología), Universidad Nacional Autónoma de México, Facultad de Estudios Superiores Cuautitlán Campus 1, Av. 1o. De Mayo S/N Sta. María las Torres, 54740, Cuautitlán Izcalli, México
| | - Francisco Rodolfo González-Díaz
- Unidad de Investigación Multidisciplinaria L4 (Morfología Veterinaria y Biología Celular), Universidad Nacional Autónoma de México, Facultad de Estudios Superiores Cuautitlán Campus 4, Carretera Cuautitlán-Teoloyucan, Km 2.5 San Sebastián Xhala, 54714, Cuautitlán Izcalli, México
| | - Carlos Gerardo García-Tovar
- Unidad de Investigación Multidisciplinaria L4 (Morfología Veterinaria y Biología Celular), Universidad Nacional Autónoma de México, Facultad de Estudios Superiores Cuautitlán Campus 4, Carretera Cuautitlán-Teoloyucan, Km 2.5 San Sebastián Xhala, 54714, Cuautitlán Izcalli, México
| | - Samuel Álvarez-Almazán
- Unidad de Posgrado L4 (Laboratorio de Biotecnología), Universidad Nacional Autónoma de México, Facultad de Estudios Superiores Cuautitlán Campus 1, Av. 1o. De Mayo S/N Sta. María las Torres, 54740, Cuautitlán Izcalli, México
| | - Susana Patricia Miranda-Castro
- Unidad de Posgrado L4 (Laboratorio de Biotecnología), Universidad Nacional Autónoma de México, Facultad de Estudios Superiores Cuautitlán Campus 1, Av. 1o. De Mayo S/N Sta. María las Torres, 54740, Cuautitlán Izcalli, México
| | - Alicia Del Real-López
- Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Blvd. Juriquilla 3001, Juriquilla La Mesa, 76230, Santiago de Querétaro, México
| | - Abraham Méndez-Albores
- Unidad de Investigación Multidisciplinaria L14-A1 (Ciencia y Tecnología de Materiales), Universidad Nacional Autónoma de México, Facultad de Estudios Superiores Cuautitlán Campus 4, Carretera Cuautitlán-Teoloyucan, Km 2.5 San Sebastián Xhala, 54714, Cuautitlán Izcalli, México
| |
Collapse
|
25
|
Seymour L, Nuru N, Johnson KR, Gutierrez JMV, Njoku VT, Darie CC, Neagu AN. Roles of Post-Translational Modifications of Transcription Factors Involved in Breast Cancer Hypoxia. Molecules 2025; 30:645. [PMID: 39942749 PMCID: PMC11820228 DOI: 10.3390/molecules30030645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/17/2025] [Accepted: 01/28/2025] [Indexed: 02/16/2025] Open
Abstract
BC is the most commonly diagnosed cancer and the second leading cause of cancer death among women worldwide. Cellular stress is a condition that leads to disrupted homeostasis by extrinsic and intrinsic factors. Among other stressors, hypoxia is a driving force for breast cancer (BC) progression and a general hallmark of solid tumors. Thus, intratumoral hypoxia is an important determinant of invasion, metastasis, treatment failure, prognosis, and patient mortality. Acquisition of the epithelial-mesenchymal transition (EMT) phenotype is also a consequence of tumor hypoxia. The cellular response to hypoxia is mainly regulated by the hypoxia signaling pathway, governed by hypoxia-inducible factors (HIFs), mainly HIF1α. HIFs are a family of transcription factors (TFs), which induce the expression of target genes involved in cell survival and proliferation, metabolic reprogramming, angiogenesis, resisting apoptosis, invasion, and metastasis. HIF1α cooperates with a large number of other TFs. In this review, we focused on the crosstalk and cooperation between HIF1α and other TFs involved in the cellular response to hypoxia in BC. We identified a cluster of TFs, proposed as the HIF1α-TF interactome, that orchestrates the transcription of target genes involved in hypoxia, due to their post-translational modifications (PTMs), including phosphorylation/dephosphorylation, ubiquitination/deubiquitination, SUMOylation, hydroxylation, acetylation, S-nitrosylation, and palmitoylation. PTMs of these HIF1α-related TFs drive their stability and activity, degradation and turnover, and the bidirectional translocation between the cytoplasm or plasma membrane and nucleus of BC cells, as well as the transcription/activation of proteins encoded by oncogenes or inactivation of tumor suppressor target genes. Consequently, PTMs of TFs in the HIF1α interactome are crucial regulatory mechanisms that drive the cellular response to oxygen deprivation in BC cells.
Collapse
Affiliation(s)
- Logan Seymour
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA; (L.S.); (N.N.); (K.R.J.); (J.M.V.G.); (V.T.N.)
| | - Niyogushima Nuru
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA; (L.S.); (N.N.); (K.R.J.); (J.M.V.G.); (V.T.N.)
| | - Kaya R. Johnson
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA; (L.S.); (N.N.); (K.R.J.); (J.M.V.G.); (V.T.N.)
| | - Jennifer Michel Villalpando Gutierrez
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA; (L.S.); (N.N.); (K.R.J.); (J.M.V.G.); (V.T.N.)
| | - Victor Tochukwu Njoku
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA; (L.S.); (N.N.); (K.R.J.); (J.M.V.G.); (V.T.N.)
| | - Costel C. Darie
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA; (L.S.); (N.N.); (K.R.J.); (J.M.V.G.); (V.T.N.)
| | - Anca-Narcisa Neagu
- Laboratory of Animal Histology, Faculty of Biology, “Alexandru Ioan Cuza” University of Iași, Carol I bvd. 20A, 700505 Iasi, Romania
| |
Collapse
|
26
|
Hoad M, Nematollahzadeh S, Petersen GF, Roby JA, Alvisi G, Forwood JK. Structural basis for nuclear import of adeno-associated virus serotype 6 capsid protein. J Virol 2025; 99:e0134524. [PMID: 39692478 PMCID: PMC11784021 DOI: 10.1128/jvi.01345-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 11/17/2024] [Indexed: 12/19/2024] Open
Abstract
Adeno-associated viruses (AAVs) are the most extensively researched viral vectors for gene therapy globally. The AAV viral protein 1 (VP1) N-terminus controls the capsid's ability to translocate into the cell nucleus; however, the exact mechanism of this process is largely unknown. In this study, we sought to elucidate the precise interactions between AAV serotype 6 (AAV6), a promising vector for immune disorders, and host transport receptors responsible for vector nuclear localization. Focusing on the positively charged basic areas within the N-terminus of AAV6 VP1, we identified a 53-amino acid region that interacts with nuclear import receptors. We measured the binding affinities between this region and various nuclear import receptors, discovering a notably strong interaction with IMPα5 and IMPα7 in the low nanomolar range. We also elucidated the X-ray crystal structure of this region in complex with an importin alpha (IMPα) isoform, uncovering its binding as a bipartite nuclear localization signal (NLS). Furthermore, we show that using this bipartite NLS, AAV6 VP1 capsid protein can localize to the nucleus of mammalian cells in a manner dependent on the IMPα/IMPβ nuclear import pathway. This study provides detailed insights into the interaction between the AAV6 VP1 capsid protein and nuclear import receptors, deepening our knowledge of AAV nuclear import mechanisms and establishing a basis for the improvement of AAV6-based gene therapy vectors.IMPORTANCEAAVs, recognized as the most extensively researched viral vectors for gene therapy globally, offer significant advantages over alternatives due to their small size, non-pathogenic nature, and innate ability for tissue-specific targeting. AAVs are required to localize to the nucleus to perform their role as a gene therapy vector; however, the precise mechanisms that facilitate this process remain unknown. Despite sharing overt genomic similarities with AAV1 and AAV2, AAV6 is a unique serotype. It is currently recognized for its ability to effectively transduce hematopoietic cell lineages and, consequently, is considered promising for the treatment of immune disorders. Identifying the exact mechanisms that permit AAV6 to access the nucleus can open up new avenues for gene therapy vector engineering, which can ultimately lead to increased therapeutic benefits.
Collapse
Affiliation(s)
- Mikayla Hoad
- School of Dentistry and Medical Sciences, Charles Sturt University, Wagga Wagga, New South Wales, Australia
- Gulbali Institute, Charles Sturt University, Wagga Wagga, New South Wales, Australia
| | | | - Gayle F. Petersen
- School of Dentistry and Medical Sciences, Charles Sturt University, Wagga Wagga, New South Wales, Australia
- Gulbali Institute, Charles Sturt University, Wagga Wagga, New South Wales, Australia
| | - Justin A. Roby
- School of Dentistry and Medical Sciences, Charles Sturt University, Wagga Wagga, New South Wales, Australia
- Gulbali Institute, Charles Sturt University, Wagga Wagga, New South Wales, Australia
| | - Gualtiero Alvisi
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Jade K. Forwood
- School of Dentistry and Medical Sciences, Charles Sturt University, Wagga Wagga, New South Wales, Australia
- Gulbali Institute, Charles Sturt University, Wagga Wagga, New South Wales, Australia
| |
Collapse
|
27
|
Wang Z, Zhen W, Wang Q, Sun Y, Jin S, Yu S, Wu X, Zhang W, Zhang Y, Xu F, Wang R, Xie Y, Sun W, Xu J, Zhang H. NEAT1 regulates BMSCs aging through disruption of FGF2 nuclear transport. Stem Cell Res Ther 2025; 16:30. [PMID: 39876006 PMCID: PMC11776329 DOI: 10.1186/s13287-025-04156-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 01/21/2025] [Indexed: 01/30/2025] Open
Abstract
BACKGROUND The aging of bone marrow mesenchymal stem cells (BMSCs) impairs bone tissue regeneration, contributing to skeletal disorders. LncRNA NEAT1 is considered as a proliferative inhibitory role during cellular senescence, but the relevant mechanisms remain insufficient. This study aims to elucidate how NEAT1 regulates mitotic proteins during BMSCs aging. METHODS BMSCs were isolated from alveolar bone of human volunteers aged 26-33 (young) and 66-78 (aged). NEAT1 expression and distribution changes during aging process were observed using fluorescence in situ hybridization (FISH) in young (3 months) and aged (18 months) mice or human BMSCs. Subsequent RNA pulldown and proteomic analyses, along with single-cell analysis, immunofluorescence, RNA immunoprecipitation (RIP), and co-immunoprecipitation (Co-IP), were conducted to investigate that NEAT1 impairs the nuclear transport of mitotic FGF2 and contributes to BMSCs aging. RESULTS We reveal that NEAT1 undergoes significant upregulated and shifts from nucleus to cytoplasm in bone marrow and BMSCs during aging process. In which, the expression correlates with nuclear DNA content during karyokinesis, suggesting a link to mitogenic factor. Within NEAT1 knockdown, hallmarks of cellular aging, including senescence-associated secretory phenotype (SASP), p16, and p21, were significantly downregulated. RNA pulldown and proteomic analyses further identify NEAT1 involved in osteoblast differentiation, mitotic cell cycle, and ribosome biogenesis, highlighting its role in maintaining BMSCs differentiation and proliferation. Notably, as an essential growth factor of BMSCs, Fibroblast Growth Factor 2 (FGF2) directly abundant binds to NEAT1 and the sites enriched with nuclear localization motifs. Importantly, NEAT1 decreased the interaction between FGF2 and Karyopherin Subunit Beta 1 (KPNB1), influencing the nuclear transport of mitogenic FGF2. CONCLUSIONS Our findings position NEAT1 as a critical regulator of mitogenic protein networks that govern BMSC aging. Targeting NEAT1 might offer novel therapeutic strategies to rejuvenate aged BMSCs.
Collapse
Affiliation(s)
- Zifei Wang
- College & Hospital of Stomatology, Key Laboratory of Oral Diseases Research of Anhui Province, Anhui Medical University, Hefei, 230032, China
| | - Wenyu Zhen
- College & Hospital of Stomatology, Key Laboratory of Oral Diseases Research of Anhui Province, Anhui Medical University, Hefei, 230032, China
| | - Qing Wang
- College & Hospital of Stomatology, Key Laboratory of Oral Diseases Research of Anhui Province, Anhui Medical University, Hefei, 230032, China
| | - Yuqiang Sun
- College & Hospital of Stomatology, Key Laboratory of Oral Diseases Research of Anhui Province, Anhui Medical University, Hefei, 230032, China
| | - Siyu Jin
- College & Hospital of Stomatology, Key Laboratory of Oral Diseases Research of Anhui Province, Anhui Medical University, Hefei, 230032, China
| | - Sensen Yu
- College & Hospital of Stomatology, Key Laboratory of Oral Diseases Research of Anhui Province, Anhui Medical University, Hefei, 230032, China
| | - Xing Wu
- College & Hospital of Stomatology, Key Laboratory of Oral Diseases Research of Anhui Province, Anhui Medical University, Hefei, 230032, China
| | - Wenhao Zhang
- College & Hospital of Stomatology, Key Laboratory of Oral Diseases Research of Anhui Province, Anhui Medical University, Hefei, 230032, China
| | - Yulong Zhang
- College & Hospital of Stomatology, Key Laboratory of Oral Diseases Research of Anhui Province, Anhui Medical University, Hefei, 230032, China
| | - Fei Xu
- College & Hospital of Stomatology, Key Laboratory of Oral Diseases Research of Anhui Province, Anhui Medical University, Hefei, 230032, China
| | - Rui Wang
- College & Hospital of Stomatology, Key Laboratory of Oral Diseases Research of Anhui Province, Anhui Medical University, Hefei, 230032, China
| | - Yuxuan Xie
- College & Hospital of Stomatology, Key Laboratory of Oral Diseases Research of Anhui Province, Anhui Medical University, Hefei, 230032, China
| | - Wansu Sun
- Department of Stomatology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China.
| | - Jianguang Xu
- College & Hospital of Stomatology, Key Laboratory of Oral Diseases Research of Anhui Province, Anhui Medical University, Hefei, 230032, China.
| | - Hengguo Zhang
- College & Hospital of Stomatology, Key Laboratory of Oral Diseases Research of Anhui Province, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
28
|
McCarthy L, Baijal K, Downey M. A framework for understanding and investigating polyphosphate-protein interactions. Biochem Soc Trans 2025:BST20240678. [PMID: 39836110 DOI: 10.1042/bst20240678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/22/2024] [Accepted: 11/25/2024] [Indexed: 01/22/2025]
Abstract
Many prokaryotic and eukaryotic cells store inorganic phosphate in the form of polymers called polyphosphate (polyP). There has been an explosion of interest in polyP over the past decade, in part due to newly suggested roles related to diverse aspects of human health. The physical interaction of polyP chains with specific proteins has been proposed to regulate cellular homeostasis and modulate signaling pathways in response to environmental changes. Recently, several studies have challenged existing models for how polyP interacts with its protein targets, while identifying new motifs that are capable of binding to polyP. In this review, we summarize these findings, delineate the functional implications for polyP-protein interactions at the molecular level, and define open questions that should be addressed to propel the field forward.
Collapse
Affiliation(s)
- Liam McCarthy
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Kanchi Baijal
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Michael Downey
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
29
|
Hou S, Yang S, Bai W. Multi-gene precision editing tool using CRISPR-Cas12a/Cpf1 system in Ogataea polymorpha. Microb Cell Fact 2025; 24:28. [PMID: 39838422 PMCID: PMC11748851 DOI: 10.1186/s12934-025-02654-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Accepted: 01/14/2025] [Indexed: 01/23/2025] Open
Abstract
BACKGROUND Ogataea polymorpha, a non-conventional methylotrophic yeast, has demonstrated significant potential for heterologous protein expression and the production of high-value chemicals and biopharmaceuticals. However, the lack of precise and efficient genome editing tools severely hinders the construction of cell factories. Although the CARISP-Cas9 system has been established in Ogataea polymorpha, the gene editing efficiency, especially for multiple genes edition, needs to be further improved. RESULTS In this study, we developed an efficient CRISPR-Cpf1-mediated genome editing system in O. polymorpha that exhibited high editing efficiency for single gene (98.1 ± 1.7%), duplex genes (93.9 ± 2.4%), and triplex genes (94.0 ± 6.0%). Additionally, by knocking out non-homologous end joining (NHEJ) related genes, homologous recombination (HR) efficiency was increased from less than 30% to 90 ~ 100%, significantly enhancing precise genome editing capabilities. The increased HR rates enabled over 90% integration efficiency of triplex genes, as well as over 90% deletion rates of large DNA fragments up to 20 kb. Furthermore, using this developed CRISPR-Cpf1 system, triple genes were precisely integrated into the genome by one-step, enabling lycopene production in O. polymorpha. CONCLUSIONS This novel multiplexed genome-editing tool mediated by CRISPR-Cpf1 can realize the deletion and integration of multiple genes, which holds great promise for accelerating engineering efforts on this non-conventional methylotrophic yeast for metabolic engineering and genomic evolution towards its application as an industrial cell factory.
Collapse
Affiliation(s)
- Senqin Hou
- National Center of Technology Innovation for Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shibin Yang
- National Center of Technology Innovation for Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Wenqin Bai
- National Center of Technology Innovation for Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.
| |
Collapse
|
30
|
Russell SL, Penunuri G, Condon C. Diverse genetic conflicts mediated by molecular mimicry and computational approaches to detect them. Semin Cell Dev Biol 2025; 165:1-12. [PMID: 39079455 DOI: 10.1016/j.semcdb.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 07/03/2024] [Accepted: 07/14/2024] [Indexed: 09/07/2024]
Abstract
In genetic conflicts between intergenomic and selfish elements, driver and killer elements achieve biased survival, replication, or transmission over sensitive and targeted elements through a wide range of molecular mechanisms, including mimicry. Driving mechanisms manifest at all organismal levels, from the biased propagation of individual genes, as demonstrated by transposable elements, to the biased transmission of genomes, as illustrated by viruses, to the biased transmission of cell lineages, as in cancer. Targeted genomes are vulnerable to molecular mimicry through the conserved motifs they use for their own signaling and regulation. Mimicking these motifs enables an intergenomic or selfish element to control core target processes, and can occur at the sequence, structure, or functional level. Molecular mimicry was first appreciated as an important phenomenon more than twenty years ago. Modern genomics technologies, databases, and machine learning approaches offer tremendous potential to study the distribution of molecular mimicry across genetic conflicts in nature. Here, we explore the theoretical expectations for molecular mimicry between conflicting genomes, the trends in molecular mimicry mechanisms across known genetic conflicts, and outline how new examples can be gleaned from population genomic datasets. We discuss how mimics involving short sequence-based motifs or gene duplications can evolve convergently from new mutations. Whereas, processes that involve divergent domains or fully-folded structures occur among genomes by horizontal gene transfer. These trends are largely based on a small number of organisms and should be reevaluated in a general, phylogenetically independent framework. Currently, publicly available databases can be mined for genotypes driving non-Mendelian inheritance patterns, epistatic interactions, and convergent protein structures. A subset of these conflicting elements may be molecular mimics. We propose approaches for detecting genetic conflict and molecular mimicry from these datasets.
Collapse
Affiliation(s)
- Shelbi L Russell
- Genomics Institute, University of California Santa Cruz, Santa Cruz, CA, United States; Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA, United States.
| | - Gabriel Penunuri
- Genomics Institute, University of California Santa Cruz, Santa Cruz, CA, United States; Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA, United States
| | - Christopher Condon
- Genomics Institute, University of California Santa Cruz, Santa Cruz, CA, United States; Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA, United States
| |
Collapse
|
31
|
Knutson SD, Pan CR, Bisballe N, Bloomer BJ, Raftopolous P, Saridakis I, MacMillan DWC. Parallel Proteomic and Transcriptomic Microenvironment Mapping (μMap) of Nuclear Condensates in Living Cells. J Am Chem Soc 2025; 147:488-497. [PMID: 39707993 PMCID: PMC11792175 DOI: 10.1021/jacs.4c11612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2024]
Abstract
Cellular activity is spatially organized across different organelles. While several structures are well-characterized, many organelles have unknown roles. Profiling biomolecular composition is key to understanding function but is difficult to achieve in the context of small, dynamic structures. Photoproximity labeling has emerged as a powerful tool for mapping these interaction networks, yet maximizing catalyst localization and reducing toxicity remains challenging in live cell applications. Here, we disclose a new intracellular photocatalyst with minimal cytotoxicity and off-target binding, and we utilize this catalyst for HaloTag-based microenvironment-mapping (μMap) to spatially catalog subnuclear condensates in living cells. We also specifically develop a novel RNA-focused workflow (μMap-seq) to enable parallel transcriptomic and proteomic profiling of these structures. After validating the accuracy of our approach, we generate a spatial map across the nucleolus, nuclear lamina, Cajal bodies, paraspeckles, and PML bodies. These results provide potential new insights into RNA metabolism and gene regulation while significantly expanding the μMap platform for improved live-cell proximity labeling in biological systems.
Collapse
Affiliation(s)
- Steve D Knutson
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Chenmengxiao Roderick Pan
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Niels Bisballe
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Brandon J Bloomer
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Philip Raftopolous
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Iakovos Saridakis
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - David W C MacMillan
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
32
|
Sánchez-Serna G, Badia-Ramentol J, Bujosa P, Ferrández-Roldán A, Torres-Águila NP, Fabregà-Torrus M, Wibisana JN, Mansfield MJ, Plessy C, Luscombe NM, Albalat R, Cañestro C. Less, but More: New Insights From Appendicularians on Chordate Fgf Evolution and the Divergence of Tunicate Lifestyles. Mol Biol Evol 2025; 42:msae260. [PMID: 39686543 PMCID: PMC11733497 DOI: 10.1093/molbev/msae260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 11/17/2024] [Accepted: 12/02/2024] [Indexed: 12/18/2024] Open
Abstract
The impact of gene loss on the diversification of taxa and the emergence of evolutionary innovations remains poorly understood. Here, our investigation on the evolution of the Fibroblast Growth Factors (FGFs) in appendicularian tunicates as a case study reveals a scenario of "less, but more" characterized by massive losses of all Fgf gene subfamilies, except for the Fgf9/16/20 and Fgf11/12/13/14, which in turn underwent two bursts of duplications. Through phylogenetic analysis, synteny conservation, and gene and protein structure, we reconstruct the history of appendicularian Fgf genes, highlighting their paracrine and intracellular functions. An exhaustive analysis of developmental Fgf expression in Oikopleura dioica allows us to identify four associated evolutionary patterns characterizing the "less, but more" conceptual framework: conservation of ancestral functions; function shuffling between paralogs linked to gene losses; innovation of new functions after the duplication bursts; and function extinctions linked to gene losses. Our findings allow us to formulate novel hypotheses about the impact of Fgf losses and duplications on the transition from an ancestral ascidian-like biphasic lifestyle to the fully free-living appendicularians. These hypotheses include massive co-options of Fgfs for the development of the oikoblast and the tail fin; recruitment of Fgf11/12/13/14s into the evolution of a new mouth, and their role modulating neuronal excitability; the evolutionary innovation of an anterior tail FGF signaling source upon the loss of retinoic acid signaling; and the potential link between the loss of Fgf7/10/22 and Fgf8/17/18 and the loss of drastic metamorphosis and tail absorption in appendicularians, in contrast to ascidians.
Collapse
Affiliation(s)
- Gaspar Sánchez-Serna
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona 08028, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), Barcelona, Spain
| | - Jordi Badia-Ramentol
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona 08028, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), Barcelona, Spain
| | - Paula Bujosa
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona 08028, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), Barcelona, Spain
| | - Alfonso Ferrández-Roldán
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona 08028, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), Barcelona, Spain
| | - Nuria P Torres-Águila
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona 08028, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), Barcelona, Spain
| | - Marc Fabregà-Torrus
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona 08028, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), Barcelona, Spain
| | - Johannes N Wibisana
- Genomics and Regulatory Systems Unit, Okinawa Institute of Science and Technology Graduate University (OIST), Onna-son, Okinawa 904-0495, Japan
| | - Michael J Mansfield
- Genomics and Regulatory Systems Unit, Okinawa Institute of Science and Technology Graduate University (OIST), Onna-son, Okinawa 904-0495, Japan
| | - Charles Plessy
- Genomics and Regulatory Systems Unit, Okinawa Institute of Science and Technology Graduate University (OIST), Onna-son, Okinawa 904-0495, Japan
| | - Nicholas M Luscombe
- Genomics and Regulatory Systems Unit, Okinawa Institute of Science and Technology Graduate University (OIST), Onna-son, Okinawa 904-0495, Japan
| | - Ricard Albalat
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona 08028, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), Barcelona, Spain
| | - Cristian Cañestro
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona 08028, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), Barcelona, Spain
| |
Collapse
|
33
|
Ruchi R, Raman GM, Kumar V, Bahal R. Evolution of antisense oligonucleotides: navigating nucleic acid chemistry and delivery challenges. Expert Opin Drug Discov 2025; 20:63-80. [PMID: 39653607 PMCID: PMC11823135 DOI: 10.1080/17460441.2024.2440095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 12/05/2024] [Indexed: 12/18/2024]
Abstract
INTRODUCTION Antisense oligonucleotide (ASO) was established as a viable therapeutic option for genetic disorders. ASOs can target RNAs implicated in various diseases, including upregulated mRNA and pre-mRNA undergoing abnormal alternative splicing events. Therapeutic applications of ASOs have been proven with the Food and Drug Administration approval of several drugs in recent years. Earlier enzymatic stability and delivery remains a big challenge for ASOs. Introducing new chemical modifications and new formulations resolving the issues related to the nuclease stability and delivery of the ASOs. Excitingly, ASOs-based bioconjugates that target the hepatocyte have gained much attraction. Efforts are ongoing to increase the therapeutic application of the ASOs to the extrahepatic tissue as well. AREA COVERED We have briefly discussed the mechanism of ASOs, the development of new chemistries, and delivery strategies for ASO-based drug discovery and development. The discussion focuses more on the already approved ASOs and those in the clinical development stage. EXPERT OPINION To expand the clinical application of ASOs, continuous effort is required to develop precise delivery strategies for targeting extrahepatic tissue to minimize the off-target effects.
Collapse
Affiliation(s)
- Ruchi Ruchi
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT, USA
| | - Govind Mukesh Raman
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT, USA
- Farmington High School, Farmington, CT, USA
| | - Vikas Kumar
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT, USA
| | - Raman Bahal
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT, USA
| |
Collapse
|
34
|
Lombardi Z, Gardini L, Kashchuk AV, Menconi A, Lulli M, Tusa I, Tubita A, Maresca L, Stecca B, Capitanio M, Rovida E. Importin subunit beta-1 mediates ERK5 nuclear translocation, and its inhibition synergizes with ERK5 kinase inhibitors in reducing cancer cell proliferation. Mol Oncol 2025; 19:99-113. [PMID: 38965815 PMCID: PMC11705758 DOI: 10.1002/1878-0261.13674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 04/30/2024] [Accepted: 05/27/2024] [Indexed: 07/06/2024] Open
Abstract
The mitogen-activated protein kinase (MAPK) extracellular signal-regulated kinase 5 (ERK5) is emerging as a promising target in cancer. Indeed, alterations of the MEK5/ERK5 pathway are present in many types of cancer, including melanoma. One of the key events in MAPK signalling is MAPK nuclear translocation and its subsequent regulation of gene expression. Likewise, the effects of ERK5 in supporting cancer cell proliferation have been linked to its nuclear localization. Despite many processes regulating ERK5 nuclear translocation having been determined, the nuclear transporters involved have not yet been identified. Here, we investigated the role of importin subunit alpha (α importin) and importin subunit beta-1 (importin β1) in ERK5 nuclear shuttling to identify additional targets for cancer treatment. Either importin β1 knockdown or the α/β1 importin inhibitor ivermectin reduced the nuclear amount of overexpressed and endogenous ERK5 in HEK293T and A375 melanoma cells, respectively. These results were confirmed in single-molecule microscopy in HeLa cells. Moreover, immunofluorescence analysis showed that ivermectin impairs epidermal growth factor (EGF)-induced ERK5 nuclear shuttling in HeLa cells. Both co-immunoprecipitation experiments and proximity ligation assay provided evidence that ERK5 and importin β1 interact and that this interaction is further induced by EGF administration and prevented by ivermectin treatment. The combination of ivermectin and the ERK5 inhibitor AX15836 synergistically reduced cell viability and colony formation ability in A375 and HeLa cells and was more effective than single treatments in preventing the growth of A375 and HeLa spheroids. The increased reduction of cell viability upon the same combination was also observed in patient-derived metastatic melanoma cells. The combination of ivermectin and ERK5 inhibitors other than AX15836 provided similar effects on cell viability. The identification of importin β1 as the nuclear transporter of ERK5 may be exploited for additional ERK5-inhibiting strategies for cancer therapy.
Collapse
Affiliation(s)
- Zoe Lombardi
- Department of Clinical and Experimental Biomedical SciencesUniversity of FlorenceItaly
| | - Lucia Gardini
- National Institute of Optics, National Research CouncilFlorenceItaly
- European Laboratory of Non‐Linear Spectroscopy (LENS)FlorenceItaly
| | - Anatolii V. Kashchuk
- European Laboratory of Non‐Linear Spectroscopy (LENS)FlorenceItaly
- Department of Physics and AstronomyUniversity of FlorenceItaly
| | - Alessio Menconi
- Department of Clinical and Experimental Biomedical SciencesUniversity of FlorenceItaly
| | - Matteo Lulli
- Department of Clinical and Experimental Biomedical SciencesUniversity of FlorenceItaly
| | - Ignazia Tusa
- Department of Clinical and Experimental Biomedical SciencesUniversity of FlorenceItaly
| | - Alessandro Tubita
- Department of Clinical and Experimental Biomedical SciencesUniversity of FlorenceItaly
| | - Luisa Maresca
- Core Research Laboratory – Institute for Cancer Research and Prevention (ISPRO)FlorenceItaly
| | - Barbara Stecca
- Core Research Laboratory – Institute for Cancer Research and Prevention (ISPRO)FlorenceItaly
| | - Marco Capitanio
- European Laboratory of Non‐Linear Spectroscopy (LENS)FlorenceItaly
- Department of Physics and AstronomyUniversity of FlorenceItaly
| | - Elisabetta Rovida
- Department of Clinical and Experimental Biomedical SciencesUniversity of FlorenceItaly
| |
Collapse
|
35
|
Rohlfes N, Radhakrishnan R, Singh PK, Bedwell GJ, Engelman AN, Dharan A, Campbell EM. The nuclear localization signal of CPSF6 governs post-nuclear import steps of HIV-1 infection. PLoS Pathog 2025; 21:e1012354. [PMID: 39823525 PMCID: PMC11844840 DOI: 10.1371/journal.ppat.1012354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 02/21/2025] [Accepted: 01/05/2025] [Indexed: 01/19/2025] Open
Abstract
The early stages of HIV-1 infection include the trafficking of the viral core into the nucleus of infected cells. However, much remains to be understood about how HIV-1 accomplishes nuclear import and the consequences of the import pathways utilized on nuclear events. The host factor cleavage and polyadenylation specificity factor 6 (CPSF6) assists HIV-1 nuclear localization and post-entry integration targeting. Here, we used a CPSF6 truncation mutant lacking a functional nuclear localization signal (NLS), CPSF6-358, and appended heterologous NLSs to rescue nuclear localization. We show that some, but not all, NLSs drive CPSF6-358 into the nucleus. Interestingly, we found that some nuclear localized CPSF6-NLS chimeras supported inefficient HIV-1 infection. We found that HIV-1 still enters the nucleus in these cell lines but fails to traffic to speckle-associated domains (SPADs). Additionally, we show that HIV-1 fails to efficiently integrate in these cell lines. Collectively, our results demonstrate that the NLS of CPSF6 facilitates steps of HIV-1 infection subsequent to nuclear import and additionally identify the ability of canonical NLS sequences to influence cargo localization in the nucleus following nuclear import.
Collapse
Affiliation(s)
- Nicholas Rohlfes
- Integrative Cell Biology Graduate Program, Loyola University Chicago, Maywood, Illinois, United States of America
| | - Rajalingam Radhakrishnan
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
| | - Parmit K. Singh
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Gregory J. Bedwell
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Alan N. Engelman
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Adarsh Dharan
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| | - Edward M. Campbell
- Integrative Cell Biology Graduate Program, Loyola University Chicago, Maywood, Illinois, United States of America
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois, United States of America
| |
Collapse
|
36
|
Saber Cherif L, Devilliers MA, Perotin JM, Ancel J, Vivien A, Bonnomet A, Delepine G, Durlach A, Polette M, Deslée G, Dormoy V. TSLP and TSLPr Expression and Localization in the Airways of COPD and Non-COPD Patients. Eur J Immunol 2025; 55:e202451480. [PMID: 39821119 DOI: 10.1002/eji.202451480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 12/18/2024] [Accepted: 12/20/2024] [Indexed: 01/19/2025]
Abstract
Thymic stromal lymphopoietin (TSLP) is an alarmin cytokine activated by allergens, pathogens, and air pollutants. Recent studies suggest TSLP dysregulation in chronic inflammatory diseases. It was highlighted as a key player in the context of asthma-associated mucosal immunity. This study investigated the production and localization of TSLP and its receptors in airway epithelial cells and the related inflammatory response in chronic obstructive pulmonary disease (COPD) and non-COPD patients. TSLP transcripts and proteins were detected in epithelial cells but were not abundant at a steady state. The secretion of airway inflammatory mediators was altered in COPD in association with TSLP production. The cellular and molecular characterization of TSLP signaling may identify COPD patients that could benefit from anti-alarmin therapeutic approaches.
Collapse
Affiliation(s)
| | | | - Jeanne-Marie Perotin
- Université de Reims Champagne-Ardenne, Reims, France
- Service des maladies respiratoires, CHU de Reims, Reims, France
| | - Julien Ancel
- Université de Reims Champagne-Ardenne, Reims, France
- Service des maladies respiratoires, CHU de Reims, Reims, France
| | | | - Arnaud Bonnomet
- Université de Reims Champagne-Ardenne, Reims, France
- URCATech, Plateforme d'imagerie cellulaire et tissulaire (PICT), Reims, France
| | - Gonzague Delepine
- Université de Reims Champagne-Ardenne, Reims, France
- Département de chirurgie thoracique, CHU de Reims, Hôpital Maison Blanche, Reims, France
| | - Anne Durlach
- Université de Reims Champagne-Ardenne, Reims, France
- Service de Pathologie-Oncogénétique, CHU de Reims, Reims, France
| | - Myriam Polette
- Université de Reims Champagne-Ardenne, Reims, France
- Service de Pathologie-Oncogénétique, CHU de Reims, Reims, France
| | - Gaëtan Deslée
- Université de Reims Champagne-Ardenne, Reims, France
- Service des maladies respiratoires, CHU de Reims, Reims, France
| | | |
Collapse
|
37
|
Wang Z, Zhang YJ, Zhang QY, Bilsborrow K, Leslie M, Suhandynata RT, Zhou H. Sequence specificity of an essential nuclear localization sequence in Mcm3. PLoS Genet 2025; 21:e1011499. [PMID: 39836669 PMCID: PMC11761085 DOI: 10.1371/journal.pgen.1011499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 01/24/2025] [Accepted: 01/02/2025] [Indexed: 01/23/2025] Open
Abstract
Proteins with nuclear localization sequences (NLSs) are directed into the cell nucleus through interactions between the NLS and importin proteins. NLSs are generally short motifs rich in basic amino acids; however, identifying NLSs can be challenging due to the lack of a universally conserved sequence. In this study, we characterized the sequence specificity of an essential and conserved NLS in Mcm3, a subunit of the replicative DNA helicase. Through mutagenesis and AlphaFold 3 (AF3) modeling, we demonstrate that the precise positioning of basic residues within the NLS is critical for nuclear transport of Mcm3 through optimal interactions with importin. Disrupting these interactions impairs the nuclear import of Mcm3, resulting in defective chromatin loading of the MCM complex and poor cell growth. Our results provide a structure-guided framework for predicting and analyzing monopartite NLSs, which, despite lacking a single consensus sequence, retain key characteristics shared between the NLSs of Mcm3 and the SV40 large T antigen.
Collapse
Affiliation(s)
- Ziyi Wang
- Biomedical Science Graduate Program, University of California San Diego, San Diego, California, United States of America
- Department of Cellular and Molecular Medicine, University of California San Diego, San Diego, California, United States of America
| | - Yun Jing Zhang
- Department of Cellular and Molecular Medicine, University of California San Diego, San Diego, California, United States of America
| | - Qian-yi Zhang
- Biomedical Science Graduate Program, University of California San Diego, San Diego, California, United States of America
| | - Kate Bilsborrow
- Department of Cellular and Molecular Medicine, University of California San Diego, San Diego, California, United States of America
| | - Matthew Leslie
- Department of Cellular and Molecular Medicine, University of California San Diego, San Diego, California, United States of America
| | - Raymond T. Suhandynata
- Department of Pathology, University of California San Diego, San Diego, California, United States of America
| | - Huilin Zhou
- Biomedical Science Graduate Program, University of California San Diego, San Diego, California, United States of America
- Department of Cellular and Molecular Medicine, University of California San Diego, San Diego, California, United States of America
- Moores Cancer Center, School of Medicine, University of California at San Diego, San Diego, California, United States of America
| |
Collapse
|
38
|
Allen R, Yokota T. Endosomal Escape and Nuclear Localization: Critical Barriers for Therapeutic Nucleic Acids. Molecules 2024; 29:5997. [PMID: 39770086 PMCID: PMC11677605 DOI: 10.3390/molecules29245997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/04/2024] [Accepted: 12/12/2024] [Indexed: 01/11/2025] Open
Abstract
Therapeutic nucleic acids (TNAs) including antisense oligonucleotides (ASOs) and small interfering RNA (siRNA) have emerged as promising treatment strategies for a wide variety of diseases, offering the potential to modulate gene expression with a high degree of specificity. These small, synthetic nucleic acid-like molecules provide unique advantages over traditional pharmacological agents, including the ability to target previously "undruggable" genes. Despite this promise, several biological barriers severely limit their clinical efficacy. Upon administration, TNAs primarily enter cells through endocytosis, becoming trapped inside membrane-bound vesicles known as endosomes. Studies estimate that only 1-2% of TNAs successfully escape endosomal compartments to reach the cytosol, and in some cases the nucleus, where they bind target mRNA and exert their therapeutic effect. Endosomal entrapment and inefficient nuclear localization are therefore critical bottlenecks in the therapeutic application of TNAs. This review explores the current understanding of TNA endosomal escape and nuclear transport along with strategies aimed at overcoming these challenges, including the use of endosomal escape agents, peptide-TNA conjugates, non-viral delivery vehicles, and nuclear localization signals. By improving both endosomal escape and nuclear localization, significant advances in TNA-based therapeutics can be realized, ultimately expanding their clinical utility.
Collapse
Affiliation(s)
- Randall Allen
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Toshifumi Yokota
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
- The Friends of Garrett Cumming Research & Muscular Dystrophy Canada HM Toupin Neurological Sciences Research, Edmonton, AB T6G 2H7, Canada
| |
Collapse
|
39
|
Neyra K, Desai S, Mathur D. Plugging synthetic DNA nanoparticles into the central dogma of life. Chem Commun (Camb) 2024; 61:220-231. [PMID: 39611736 PMCID: PMC11606385 DOI: 10.1039/d4cc04648j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 11/11/2024] [Indexed: 11/30/2024]
Abstract
Synthetic DNA nanotechnology has emerged as a powerful tool for creating precise nanoscale structures with diverse applications in biotechnology and materials science. Recently, it has evolved to include gene-encoded DNA nanoparticles, which have potentially unique advantages compared to alternative gene delivery platforms. In exciting new developments, we and others have shown how the long single strand within DNA origami nanoparticles, the scaffold strand, can be customized to encode protein-expressing genes and engineer nanoparticles that interface with the transcription-translation machinery for protein production. Remarkably, therefore, DNA nanoparticles - despite their complex three-dimensional shapes - can function as canonical genes. Characteristics such as potentially unlimited gene packing size and low immunogenicity make DNA-based platforms promising for a variety of gene therapy applications. In this review, we first outline various techniques for the isolation of the gene-encoded scaffold strand, a crucial precursor for building protein-expressing DNA nanoparticles. Next, we highlight how features such as sequence design, staple strand optimization, and overall architecture of gene-encoded DNA nanoparticles play a key role in the enhancement of protein expression. Finally, we discuss potential applications of these DNA origami structures to provide a comprehensive overview of the current state of gene-encoded DNA nanoparticles and motivate future directions.
Collapse
Affiliation(s)
- Kayla Neyra
- Department of Chemistry, Case Western Reserve University, Cleveland, OH 44106, USA.
| | - Sara Desai
- Department of Biochemistry, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Divita Mathur
- Department of Chemistry, Case Western Reserve University, Cleveland, OH 44106, USA.
| |
Collapse
|
40
|
Gillett DA, Tigro H, Wang Y, Suo Z. FMR1 Disorders: Basics of Biology and Therapeutics in Development. Cells 2024; 13:2100. [PMID: 39768191 PMCID: PMC11674747 DOI: 10.3390/cells13242100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/04/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025] Open
Abstract
Fragile X Syndrome (FXS) presents with a constellation of phenotypes, including trouble regulating emotion and aggressive behaviors, disordered sleep, intellectual impairments, and atypical physical development. Genetic study of the X chromosome revealed that substantial repeat expansion of the 5' end of the gene fragile X messenger ribonucleoprotein 1 (FMR1) promoted DNA methylation and, consequently, silenced expression of FMR1. Further analysis proved that shorter repeat expansions in FMR1 also manifested in disease at later stages in life. Treatment and therapy options do exist, but they only manage symptoms. Up to now, no cure for FMR1 disorders exists. In this review, we aim to provide an overview of FMR1 biology and the latest research focused on developing therapeutic interventions that can potentially prevent and/or reverse FXS.
Collapse
Affiliation(s)
| | | | | | - Zucai Suo
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL 32306, USA
| |
Collapse
|
41
|
Yi X, Hussain I, Zhang P, Xiao C. Nuclear-Targeting Peptides for Cancer Therapy. Chembiochem 2024; 25:e202400596. [PMID: 39215136 DOI: 10.1002/cbic.202400596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/19/2024] [Accepted: 08/30/2024] [Indexed: 09/04/2024]
Abstract
Nucleus is the central regulator of cells that controls cell proliferation, metabolism, and cell cycle, and is considered the most important organelle in cells. The precision medicine that can achieve nuclear targeting has achieved good therapeutic effects in anti-tumor therapy. However, the presence of biological barriers such as cell membranes and nuclear membranes in cells limit the delivery of therapeutic agents to the nucleus. Therefore, developing effective nuclear-targeting drug delivery strategies is particularly important. Nuclear-targeting peptides are a class of functional peptides that can penetrate cell membranes and target the nucleus. They mainly recognize and bind to the nuclear transport molecules (such as Importin-α/β) and transport the therapeutic agents to the nucleus through nuclear pore complexes (NPC). This review summarizes the most recent developments of strategies for anti-tumor therapy utilizing nuclear-targeting peptides, which will ultimately contribute to the development of more effective nuclear-targeting strategies to achieve better anti-tumor outcomes.
Collapse
Affiliation(s)
- Xuan Yi
- Key Laboratory of Polymer Ecomaterials, Jilin Biomedical Polymers Engineering Laboratory, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P.R. China
| | - Irshad Hussain
- Department of Chemistry and Chemical Engineering, SBA School of Science & Engineering, Lahore University of Management Sciences (LUMS). DHA, Lahore, 54792, Pakistan
| | - Peng Zhang
- Key Laboratory of Polymer Ecomaterials, Jilin Biomedical Polymers Engineering Laboratory, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P.R. China
| | - Chunsheng Xiao
- Key Laboratory of Polymer Ecomaterials, Jilin Biomedical Polymers Engineering Laboratory, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P.R. China
| |
Collapse
|
42
|
Huuskonen S, Liu X, Pöhner I, Redchuk T, Salokas K, Lundberg R, Maljanen S, Belik M, Reinholm A, Kolehmainen P, Tuhkala A, Tripathi G, Laine P, Belanov S, Auvinen P, Vartiainen M, Keskitalo S, Österlund P, Laine L, Poso A, Julkunen I, Kakkola L, Varjosalo M. The comprehensive SARS-CoV-2 'hijackome' knowledge base. Cell Discov 2024; 10:125. [PMID: 39653747 PMCID: PMC11628605 DOI: 10.1038/s41421-024-00748-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 10/29/2024] [Indexed: 12/12/2024] Open
Abstract
The continuous evolution of SARS-CoV-2 has led to the emergence of several variants of concern (VOCs) that significantly affect global health. This study aims to investigate how these VOCs affect host cells at proteome level to better understand the mechanisms of disease. To achieve this, we first analyzed the (phospho)proteome changes of host cells infected with Alpha, Beta, Delta, and Omicron BA.1 and BA.5 variants over time frames extending from 1 to 36 h post infection. Our results revealed distinct temporal patterns of protein expression across the VOCs, with notable differences in the (phospho)proteome dynamics that suggest variant-specific adaptations. Specifically, we observed enhanced expression and activation of key components within crucial cellular pathways such as the RHO GTPase cycle, RNA splicing, and endoplasmic reticulum-associated degradation (ERAD)-related processes. We further utilized proximity biotinylation mass spectrometry (BioID-MS) to investigate how specific mutation of these VOCs influence viral-host protein interactions. Our comprehensive interactomics dataset uncovers distinct interaction profiles for each variant, illustrating how specific mutations can change viral protein functionality. Overall, our extensive analysis provides a detailed proteomic profile of host cells for each variant, offering valuable insights into how specific mutations may influence viral protein functionality and impact therapeutic target identification. These insights are crucial for the potential use and design of new antiviral substances, aiming to enhance the efficacy of treatments against evolving SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Sini Huuskonen
- Institute of Biotechnology, Helsinki Institute of Life Science HiLIFE, University of Helsinki, Helsinki, Finland
| | - Xiaonan Liu
- Institute of Biotechnology, Helsinki Institute of Life Science HiLIFE, University of Helsinki, Helsinki, Finland
| | - Ina Pöhner
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Taras Redchuk
- Institute of Biotechnology, Helsinki Institute of Life Science HiLIFE, University of Helsinki, Helsinki, Finland
| | - Kari Salokas
- Institute of Biotechnology, Helsinki Institute of Life Science HiLIFE, University of Helsinki, Helsinki, Finland
| | | | - Sari Maljanen
- Institute of Biomedicine, University of Turku, Turku, Finland
| | - Milja Belik
- Institute of Biomedicine, University of Turku, Turku, Finland
| | - Arttu Reinholm
- Institute of Biomedicine, University of Turku, Turku, Finland
| | | | - Antti Tuhkala
- Institute of Biotechnology, Helsinki Institute of Life Science HiLIFE, University of Helsinki, Helsinki, Finland
| | - Garima Tripathi
- Institute of Biotechnology, Helsinki Institute of Life Science HiLIFE, University of Helsinki, Helsinki, Finland
| | - Pia Laine
- Institute of Biotechnology, Helsinki Institute of Life Science HiLIFE, University of Helsinki, Helsinki, Finland
| | - Sergei Belanov
- Institute of Biotechnology, Helsinki Institute of Life Science HiLIFE, University of Helsinki, Helsinki, Finland
| | - Petri Auvinen
- Institute of Biotechnology, Helsinki Institute of Life Science HiLIFE, University of Helsinki, Helsinki, Finland
| | - Maria Vartiainen
- Institute of Biotechnology, Helsinki Institute of Life Science HiLIFE, University of Helsinki, Helsinki, Finland
| | - Salla Keskitalo
- Institute of Biotechnology, Helsinki Institute of Life Science HiLIFE, University of Helsinki, Helsinki, Finland
| | - Pamela Österlund
- Finnish Institute for Health and Welfare, THL, Helsinki, Finland
| | - Larissa Laine
- Finnish Institute for Health and Welfare, THL, Helsinki, Finland
| | - Antti Poso
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Ilkka Julkunen
- Institute of Biomedicine, University of Turku, Turku, Finland
- Clinical Microbiology, Turku University Hospital, Turku, Finland
- InFlames Research Flagship Center, University of Turku, Turku, Finland
| | - Laura Kakkola
- Institute of Biomedicine, University of Turku, Turku, Finland
- Clinical Microbiology, Turku University Hospital, Turku, Finland
| | - Markku Varjosalo
- Institute of Biotechnology, Helsinki Institute of Life Science HiLIFE, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
43
|
Elmitwalli O, Darwish R, Al-Jabery L, Algahiny A, Roy S, Butler AE, Hasan AS. The Emerging Role of p21 in Diabetes and Related Metabolic Disorders. Int J Mol Sci 2024; 25:13209. [PMID: 39684919 DOI: 10.3390/ijms252313209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 12/02/2024] [Accepted: 12/05/2024] [Indexed: 12/18/2024] Open
Abstract
In the context of cell cycle inhibition, anti-proliferation, and the dysregulation observed in certain cancer pathologies, the protein p21 assumes a pivotal role. p21 links DNA damage responses to cellular processes such as apoptosis, senescence, and cell cycle arrest, primarily functioning as a regulator of the cell cycle. However, accumulating empirical evidence suggests that p21 is both directly and indirectly linked to a number of different metabolic processes. Intriguingly, recent investigations indicate that p21 significantly contributes to the pathogenesis of diabetes. In this review, we present a comprehensive evaluation of the scientific literature regarding the involvement of p21 in metabolic processes, diabetes etiology, pancreatic function, glucose homeostasis, and insulin resistance. Furthermore, we provide an encapsulated overview of therapies that target p21 to alleviate metabolic disorders. A deeper understanding of the complex interrelationship between p21 and diabetes holds promise for informing current and future therapeutic strategies to address this rapidly escalating health crisis.
Collapse
Affiliation(s)
- Omar Elmitwalli
- Department of Medicine, Royal College of Surgeons in Ireland-Medical University of Bahrain Busaiteen, Adliya P.O. Box 15503, Bahrain
| | - Radwan Darwish
- Department of Medicine, Royal College of Surgeons in Ireland-Medical University of Bahrain Busaiteen, Adliya P.O. Box 15503, Bahrain
| | - Lana Al-Jabery
- Department of Medicine, Royal College of Surgeons in Ireland-Medical University of Bahrain Busaiteen, Adliya P.O. Box 15503, Bahrain
| | - Ahmed Algahiny
- Department of Medicine, Royal College of Surgeons in Ireland-Medical University of Bahrain Busaiteen, Adliya P.O. Box 15503, Bahrain
| | - Sornali Roy
- Department of Medicine, Royal College of Surgeons in Ireland-Medical University of Bahrain Busaiteen, Adliya P.O. Box 15503, Bahrain
| | - Alexandra E Butler
- Department of Postgraduate Studies and Research, Royal College of Surgeons in Ireland-Medical University of Bahrain Busaiteen, Adliya P.O. Box 15503, Bahrain
| | - Ammar S Hasan
- Department of Postgraduate Studies and Research, Royal College of Surgeons in Ireland-Medical University of Bahrain Busaiteen, Adliya P.O. Box 15503, Bahrain
| |
Collapse
|
44
|
Ouyang S, Zhuo S, Yang M, Zhu T, Yu S, Li Y, Ying H, Le Y. Glycerol Kinase Drives Hepatic de novo Lipogenesis and Triglyceride Synthesis in Nonalcoholic Fatty Liver by Activating SREBP-1c Transcription, Upregulating DGAT1/2 Expression, and Promoting Glycerol Metabolism. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401311. [PMID: 39418169 PMCID: PMC11633478 DOI: 10.1002/advs.202401311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 08/07/2024] [Indexed: 10/19/2024]
Abstract
Glycerol kinase (GK) participates in triglyceride (TG) synthesis by catalyzing glycerol metabolism. Whether GK contributes to nonalcoholic fatty liver (NAFL) is unclear. The expression of hepatic Gk is found to be increased in diet-induced and genetic mouse models of NAFL and is positively associated with hepatic SREBP-1c expression and TG levels. Cholesterol and fatty acids stimulate GK expression in hepatocytes. In HFD-induced NAFL mice, knockdown of hepatic Gk decreases expression of SREBP-1c and its target lipogenic genes as well as DGAT1/2, increases serum glycerol levels, decreases serum TG levels, and attenuates hepatic TG accumulation. Overexpression of GK in hepatocytes in mice or in culture produces opposite results. Mechanistic studies reveal that GK stimulates SREBP-1c transcription directly by binding to its gene promoter and indirectly by binding to SREBP-1c protein, thereby increasing lipogenic gene expression and de novo lipogenesis. Studies with truncated GK and mutant GKs indicate that GK induces SREBP-1c transcription independently of its enzyme activity. GK contributes to lipid homeostasis under physiological conditions by catalyzing glycerol metabolism rather than by regulating SREBP-1c transcription. Collectively, these results demonstrate that increased hepatic GK promotes de novo lipogenesis and TG synthesis in NAFL by stimulating SREBP-1c transcription and DGAT1/2 expression and catalyzing glycerol metabolism.
Collapse
Affiliation(s)
- Shuyu Ouyang
- CAS Key Laboratory of NutritionMetabolism and Food SafetyShanghai Institute of Nutrition and HealthUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghai200031China
| | - Shu Zhuo
- CAS Key Laboratory of NutritionMetabolism and Food SafetyShanghai Institute of Nutrition and HealthUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghai200031China
| | - Mengmei Yang
- CAS Key Laboratory of NutritionMetabolism and Food SafetyShanghai Institute of Nutrition and HealthUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghai200031China
| | - Tengfei Zhu
- School of Public HealthShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Shuting Yu
- CAS Key Laboratory of NutritionMetabolism and Food SafetyShanghai Institute of Nutrition and HealthUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghai200031China
| | - Yu Li
- CAS Key Laboratory of NutritionMetabolism and Food SafetyShanghai Institute of Nutrition and HealthUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghai200031China
| | - Hao Ying
- CAS Key Laboratory of NutritionMetabolism and Food SafetyShanghai Institute of Nutrition and HealthUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghai200031China
| | - Yingying Le
- CAS Key Laboratory of NutritionMetabolism and Food SafetyShanghai Institute of Nutrition and HealthUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghai200031China
| |
Collapse
|
45
|
Shakir S, Boissinot S, Michon T, Lafarge S, Zaidi SS. Beyond movement: expanding functional landscape of luteovirus movement proteins. TRENDS IN PLANT SCIENCE 2024; 29:1331-1341. [PMID: 39306539 DOI: 10.1016/j.tplants.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/27/2024] [Accepted: 09/02/2024] [Indexed: 12/07/2024]
Abstract
Viruses explore the potential multifunctional capacity of the proteins encoded in their compact genome to establish infection. P4 of luteoviruses has emerged as one such multifunctional protein. Expressed from an open reading frame (ORF) nested within coat protein ORF, it displays diverse subcellular localizations and interactions, reflecting its complex role in virus infection. In this review we explore how P4, constrained by overlapping ORFs, has evolved multiple functional motifs. We analyze these motifs' conservation across different barley yellow dwarf virus (BYDV) species and related poleroviruses. We also discuss how viral proteins cooperate to facilitate movement and localization of the virus throughout infection. We provide insights into potential future research directions and suggest strategies for developing potential antiviral-resistant approaches.
Collapse
Affiliation(s)
- Sara Shakir
- UMR Biologie du Fruit et Pathologie, INRAE, Université de Bordeaux, 33882, Villenave d'Ornon, France.
| | - Sylvaine Boissinot
- UMR Biologie du Fruit et Pathologie, INRAE, Université de Bordeaux, 33882, Villenave d'Ornon, France
| | - Thierry Michon
- UMR Biologie du Fruit et Pathologie, INRAE, Université de Bordeaux, 33882, Villenave d'Ornon, France
| | - Stéphane Lafarge
- Centre de Recherche de Chappes, Route d'Ennezat CS90216, 63720, Chappes, France
| | - Syed S Zaidi
- UMR Biologie du Fruit et Pathologie, INRAE, Université de Bordeaux, 33882, Villenave d'Ornon, France.
| |
Collapse
|
46
|
Shrikondawar AN, Chennoju K, Ghosh DK, Ranjan A. Identification and functional characterization of the nuclear and nucleolar localization signals in the intrinsically disordered region of nucleomethylin. J Cell Physiol 2024; 239:e31433. [PMID: 39245872 DOI: 10.1002/jcp.31433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 08/21/2024] [Accepted: 08/31/2024] [Indexed: 09/10/2024]
Abstract
The nucleolar localization of proteins is regulated by specific signals directing their trafficking to nucleus and nucleolus. Here, we elucidate the mechanism underlying the nuclear and nucleolar localization of the nucleomethylin (NML) protein, focusing on its nuclear localization signals (NLSs) and nucleolar localization signal (NoLS). Using a combination of bioinformatic analysis and experimental validation, we identified two monopartite and one bipartite NLS motifs within NML. The combined presence of both monopartite NLSs significantly enhances nuclear localization of the protein, while specific basic amino acid clusters within the bipartite NLS are crucial for their functionality. We also reveal the functional role of the NLS-coupled NoLS motif in driving nucleolar localization of NML, which contains an arginine-rich motif essential for its function. The basic residues of the arginine-rich motif of NoLS of NML interacts with nucleophosmin 1 (NPM1), allowing the possible liquid-liquid phase separation and retention of NML in the nucleolus. Remarkably, the strong NoLS of NML can direct the nucleolar localization of a cytosolic protein, aldolase, emphasizing its potency. Overall, our findings provide insights into the combinatorial functioning of NLSs and NoLS in regulating the subcellular localization of NML, highlighting the intricate regulatory mechanisms governing its localization within the nucleus and nucleolus.
Collapse
Affiliation(s)
- Akshaykumar Nanaji Shrikondawar
- Computational and Functional Genomics Group, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India
- Graduate Studies, Regional Centre for Biotechnology, Faridabad, India
| | - Kiranmai Chennoju
- Computational and Functional Genomics Group, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India
- Graduate Studies, Manipal Academy of Higher Education, Manipal, India
| | | | - Akash Ranjan
- Computational and Functional Genomics Group, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India
| |
Collapse
|
47
|
Zheng L, Tang R, Fang J, Hu H, Ahmad F, Tang Q, Liu J, Zhong M, Li J. Circular RNA hsa_circ_0081343 modulates trophoblast autophagy through Rbm8a nuclear translocation. Placenta 2024; 158:89-101. [PMID: 39413593 DOI: 10.1016/j.placenta.2024.09.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/17/2024] [Accepted: 09/29/2024] [Indexed: 10/18/2024]
Abstract
INTRODUCTION Fetal growth restriction (FGR) is a kind of obstetric complication that seriously endangers fetal life. Recent studies reported significant reduction of hsa_circ_0081343 in human placenta developed in FGR and is involved in cell migration, invasion, and apoptosis of trophoblast by acting as microRNA sponges. Autophagy is required for invasion of trophoblast cells and for vascular remodeling during placentation. In this study, we aimed to explore the mechanistic link between hsa_circ_0081343 and autophagy. METHODS We investigated the interactions between hsa_circ_0081343 and RNA-binding proteins were studied by RNA pull-down assay, mass spectrometry and RNA immunoprecipitation assay. The mechanism of nuclear translocation of Rbm8a were assessed by reverse transcription-quantitative PCR, Western blot, immunofluorescence and Co-Immunoprecipitation. Western blot, immunofluorescence and transmission electron microscopy were performed to elucidate the mechanism underlying hsa_circ_0081343 and/or Rbm8a mediated regulation of autophagy. RESULTS hsa_circ_0081343 served as an RNA-binding protein (RBP) sponge. RNA binding motif protein 8A (Rbm8a) was directly bound to hsa_circ_0081343 in the cytoplasm, while knockdown of hsa_circ_0081343 facilitated Rbm8a localization in the nucleus. We also identified Rbm8a as a potential import cargo for Importin13 (Ipo13), which transported Rbm8a across the nuclear membrane into the nucleus. Ipo13 recognized Rbm8a via a functional nuclear localization signal (NLS). Furthermore, the mechanistic study revealed that hsa_circ_0081343-mediated nuclear translocation of Rbm8a activated trophoblast autophagy. DISCUSSION Our results suggest that hsa_circ_0081343 could bind to RBP and the interaction between hsa_circ_0081343 and Rbm8a participate in regulating autophagy. These findings offer novel molecular targets and insights for a potential therapeutic strategy against FGR.
Collapse
Affiliation(s)
- Linmei Zheng
- Department of Obstetrics, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, 570311, China; Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Rong Tang
- Department of Hepatological Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, 570311, China
| | - Junbo Fang
- Department of Pathology, Southern Medical University, Guangzhou, 510515, China
| | - Haoyue Hu
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Fiaz Ahmad
- Key Laboratory for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University (NPU), Xi'an, 710072, Shaanxi, China
| | - Qiong Tang
- Department of Pathology, Southern Medical University, Guangzhou, 510515, China
| | - Jinfu Liu
- Department of Pathology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, 570311, China
| | - Mei Zhong
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Jing Li
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
48
|
Sun X, Setrerrahmane S, Li C, Hu J, Xu H. Nucleic acid drugs: recent progress and future perspectives. Signal Transduct Target Ther 2024; 9:316. [PMID: 39609384 PMCID: PMC11604671 DOI: 10.1038/s41392-024-02035-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 09/20/2024] [Accepted: 10/25/2024] [Indexed: 11/30/2024] Open
Abstract
High efficacy, selectivity and cellular targeting of therapeutic agents has been an active area of investigation for decades. Currently, most clinically approved therapeutics are small molecules or protein/antibody biologics. Targeted action of small molecule drugs remains a challenge in medicine. In addition, many diseases are considered 'undruggable' using standard biomacromolecules. Many of these challenges however, can be addressed using nucleic therapeutics. Nucleic acid drugs (NADs) are a new generation of gene-editing modalities characterized by their high efficiency and rapid development, which have become an active research topic in new drug development field. However, many factors, including their low stability, short half-life, high immunogenicity, tissue targeting, cellular uptake, and endosomal escape, hamper the delivery and clinical application of NADs. Scientists have used chemical modification techniques to improve the physicochemical properties of NADs. In contrast, modified NADs typically require carriers to enter target cells and reach specific intracellular locations. Multiple delivery approaches have been developed to effectively improve intracellular delivery and the in vivo bioavailability of NADs. Several NADs have entered the clinical trial recently, and some have been approved for therapeutic use in different fields. This review summarizes NADs development and evolution and introduces NADs classifications and general delivery strategies, highlighting their success in clinical applications. Additionally, this review discusses the limitations and potential future applications of NADs as gene therapy candidates.
Collapse
Affiliation(s)
- Xiaoyi Sun
- Jiangsu Province Engineering Research Center of Synthetic Peptide Drug Discovery and Evaluation, China Pharmaceutical University, Nanjing, 210009, China
| | | | - Chencheng Li
- Jiangsu Province Engineering Research Center of Synthetic Peptide Drug Discovery and Evaluation, China Pharmaceutical University, Nanjing, 210009, China
| | - Jialiang Hu
- Jiangsu Province Engineering Research Center of Synthetic Peptide Drug Discovery and Evaluation, China Pharmaceutical University, Nanjing, 210009, China
| | - Hanmei Xu
- Jiangsu Province Engineering Research Center of Synthetic Peptide Drug Discovery and Evaluation, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
49
|
Gajos-Michniewicz A, Czyz M. Therapeutic Potential of Natural Compounds to Modulate WNT/β-Catenin Signaling in Cancer: Current State of Art and Challenges. Int J Mol Sci 2024; 25:12804. [PMID: 39684513 DOI: 10.3390/ijms252312804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/22/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
Targeted therapies and immunotherapies have improved the clinical outcome of cancer patients; however, the efficacy of treatment remains frequently limited due to low predictability of response and development of drug resistance. Therefore, novel therapeutic strategies for various cancer types are needed. Current research emphasizes the potential therapeutic value of targeting WNT/β-catenin dependent signaling that is deregulated in various cancer types. Targeting the WNT/β-catenin signaling pathway with diverse synthetic and natural agents is the subject of a number of preclinical studies and clinical trials for cancer patients. The usage of nature-derived agents is attributed to their health benefits, reduced toxicity and side effects compared to synthetic agents. The review summarizes preclinical studies and ongoing clinical trials that aim to target components of the WNT/β-catenin pathway across a diverse spectrum of cancer types, highlighting their potential to improve cancer treatment.
Collapse
Affiliation(s)
- Anna Gajos-Michniewicz
- Department of Molecular Biology of Cancer, Medical University of Lodz, 6/8 Mazowiecka Street, 92-215 Lodz, Poland
| | - Malgorzata Czyz
- Department of Molecular Biology of Cancer, Medical University of Lodz, 6/8 Mazowiecka Street, 92-215 Lodz, Poland
| |
Collapse
|
50
|
Weng Y, Feng Y, Li Z, Xu S, Wu D, Huang J, Wang H, Wang Z. Zfp260 choreographs the early stage osteo-lineage commitment of skeletal stem cells. Nat Commun 2024; 15:10186. [PMID: 39582024 PMCID: PMC11586402 DOI: 10.1038/s41467-024-54640-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 11/15/2024] [Indexed: 11/26/2024] Open
Abstract
The initial fine-tuning processes are crucial for successful bone regeneration, as they guide skeletal stem cells through progenitor differentiation toward osteo- or chondrogenic fate. While fate determination processes are well-documented, the mechanisms preceding progenitor commitment remain poorly understood. Here, we identified a transcription factor, Zfp260, as pivotal for stem cell maturation into progenitors and directing osteogenic differentiation. Zfp260 is markedly up-regulated as cells transition from stem to progenitor stages; its dysfunction causes lineage arrest at the progenitor stage, impairing bone repair. Zfp260 is required for maintaining chromatin accessibility and regulates Runx2 expression by forming super-enhancer complexes. Furthermore, the PKCα kinase phosphorylates Zfp260 at residues Y173, S182, and S197, which are essential for its functional activity. Mutations at these residues significantly impair its functionality. These findings position Zfp260 as a vital factor bridging stem cell activation with progenitor cell fate determination, unveiling a element fundamental to successful bone regeneration.
Collapse
Affiliation(s)
- Yuteng Weng
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration & Tongji Research Institute of Stomatology, Shanghai, 200072, China
- Department of Oral and Maxillofacial Surgery, Department of Oral Implantology, Shanghai Tongji Stomatological Hospital and Dental School, Tongji University, Shanghai, 200072, China
| | - Yanhuizhi Feng
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration & Tongji Research Institute of Stomatology, Shanghai, 200072, China
- Department of Oral and Maxillofacial Surgery, Department of Oral Implantology, Shanghai Tongji Stomatological Hospital and Dental School, Tongji University, Shanghai, 200072, China
| | - Zeyuan Li
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration & Tongji Research Institute of Stomatology, Shanghai, 200072, China
- Department of Oral and Maxillofacial Surgery, Department of Oral Implantology, Shanghai Tongji Stomatological Hospital and Dental School, Tongji University, Shanghai, 200072, China
| | - Shuyu Xu
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration & Tongji Research Institute of Stomatology, Shanghai, 200072, China
- Department of Oral and Maxillofacial Surgery, Department of Oral Implantology, Shanghai Tongji Stomatological Hospital and Dental School, Tongji University, Shanghai, 200072, China
| | - Di Wu
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration & Tongji Research Institute of Stomatology, Shanghai, 200072, China
- Department of Oral and Maxillofacial Surgery, Department of Oral Implantology, Shanghai Tongji Stomatological Hospital and Dental School, Tongji University, Shanghai, 200072, China
| | - Jie Huang
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration & Tongji Research Institute of Stomatology, Shanghai, 200072, China
- Department of Oral and Maxillofacial Surgery, Department of Oral Implantology, Shanghai Tongji Stomatological Hospital and Dental School, Tongji University, Shanghai, 200072, China
| | - Haicheng Wang
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration & Tongji Research Institute of Stomatology, Shanghai, 200072, China
- Department of Oral and Maxillofacial Surgery, Department of Oral Implantology, Shanghai Tongji Stomatological Hospital and Dental School, Tongji University, Shanghai, 200072, China
| | - Zuolin Wang
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration & Tongji Research Institute of Stomatology, Shanghai, 200072, China.
- Department of Oral and Maxillofacial Surgery, Department of Oral Implantology, Shanghai Tongji Stomatological Hospital and Dental School, Tongji University, Shanghai, 200072, China.
| |
Collapse
|