1
|
Noma K, Asano T, Taniguchi M, Ashihara K, Okada S. Anti-cytokine autoantibodies in human susceptibility to infectious diseases: insights from Inborn errors of immunity. Immunol Med 2025:1-17. [PMID: 40197228 DOI: 10.1080/25785826.2025.2488553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 02/12/2025] [Indexed: 04/10/2025] Open
Abstract
The study of Inborn Errors of Immunity (IEIs) is critical for understanding the complex mechanisms of the human immune response to infectious diseases. Specific IEIs, characterized by selective susceptibility to certain pathogens, have enhanced our understanding of the key molecular pathways and cellular subsets involved in host defense against pathogens. These insights revealed that patients with anti-cytokine autoantibodies exhibit phenotypes similar to those with pathogenic mutations in genes encoding signaling molecules. This new disease concept is currently categorized as 'Phenocopies of IEI'. This category includes anti-cytokine autoantibodies targeting IL-17/IL-22, IFN-γ, IL-6, GM-CSF, and type I IFNs. Abundant anti-cytokine autoantibodies deplete corresponding cytokines, impair signaling pathways, and increase susceptibility to specific pathogens. We herein demonstrate the clinical and etiological significance of anti-cytokine autoantibodies in human immunity to pathogens. Insights from studies of rare IEIs underscore the pathological importance of cytokine-targeting autoantibodies. Simultaneously, the diverse clinical phenotype of patients with these autoantibodies suggests that the influences of cytokine dysfunction are broader than previously recognized. Furthermore, comprehensive studies prompted by the COVID-19 pandemic highlighted the substantial clinical impact of autoantibodies and their potential role in shaping the outcomes of infectious disease.
Collapse
Affiliation(s)
- Kosuke Noma
- Department of Pediatrics, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Takaki Asano
- Department of Pediatrics, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
- Department of Radiation Biophysics, Research Institute for Radiation Biology and Medicine, Hiroshima, Japan
| | - Maki Taniguchi
- Department of Pediatrics, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Kosuke Ashihara
- Department of Pediatrics, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Satoshi Okada
- Department of Pediatrics, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
2
|
Aljabali AAA, Obeid M, Gammoh O, El-Tanani M, Tambuwala MM. Guardians at the gate: Unraveling Type I interferon's role and challenges posed by anti-interferon antibodies in COVID-19. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2025; 213:135-169. [PMID: 40246343 DOI: 10.1016/bs.pmbts.2025.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/19/2025]
Abstract
The intricate interplay involving Type I interferon (IFN), anti-interferon antibodies, and COVID-19 elucidates a complex symphony within the immune system. This chapter thoroughly explores the dynamic landscape of Type I IFN, delineating its pivotal role as the guardian of the immune response. As SARS-CoV-2 engages the host, the delicate balance of IFN induction and signaling pathways is disrupted, resulting in a nuanced impact on the severity and pathogenesis of COVID-19. Clinical studies illuminate a critical link between impaired IFN response and severe outcomes, uncovering genetic factors contributing to susceptibility. Furthermore, the emergence of anti-interferon antibodies proves to be a disruptive force, compromising the immune arsenal and correlating with disease severity. Our chapter encompasses diagnostic and prognostic implications, highlighting the importance of assays in identifying levels of IFN and anti-interferon antibodies. This chapter examines the possible incorporation of interferon-related biomarkers in COVID-19 diagnostics, offering predictive insights into disease progression. On the therapeutic front, efforts to manipulate the IFN pathway undergo scrutiny, encountering complexities in light of anti-interferon antibodies. This chapter concludes by outlining prospective avenues for precision medicine, emphasizing the imperative need for a comprehensive comprehension of the IFN landscape and its intricate interaction with COVID-19.
Collapse
Affiliation(s)
- Alaa A A Aljabali
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Yarmouk University, Irbid, Jordan.
| | - Mohammad Obeid
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Yarmouk University, Irbid, Jordan
| | - Omar Gammoh
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Yarmouk University, Irbid, Jordan
| | - Mohamed El-Tanani
- College of Pharmacy, Ras Al Khaimah Medical and Health Sciences University, United Arab Emirates
| | - Murtaza M Tambuwala
- Lincoln Medical School, University of Lincoln, Brayford Pool Campus, Lincoln, United Kingdom.
| |
Collapse
|
3
|
Kholaiq H, Abdelmoumen Y, Moundir A, El Kettani A, Ailal F, Benhsaien I, Adnane F, Drissi Bourhanbour A, Amenzoui N, El Bakkouri J, Bousfiha AA. Human genetic and immunological determinants of SARS-CoV-2 infection and multisystem inflammatory syndrome in children. Clin Exp Immunol 2025; 219:uxae062. [PMID: 39028583 PMCID: PMC11771195 DOI: 10.1093/cei/uxae062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/23/2024] [Accepted: 07/17/2024] [Indexed: 07/21/2024] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) induces pneumonia and acute respiratory failure in coronavirus disease 2019 (COVID-19) patients with inborn errors of immunity to type I interferon (IFN-I). The impact of SARS-CoV-2 infection varies widely, ranging from mild respiratory symptoms to life-threatening illness and organ failure, with a higher incidence in men than in women. Approximately 3-5% of critical COVID-19 patients under 60 and a smaller percentage of elderly patients exhibit genetic defects in IFN-I production, including X-chromosome-linked TLR7 and autosomal TLR3 deficiencies. Around 15-20% of cases over 70 years old, and a smaller percentage of younger patients, present with preexisting autoantibodies neutralizing type I interferons. Additionally, innate errors affecting the control of the response to type I interferon have been associated with pediatric multisystem inflammatory syndrome (MIS-C). Several studies have described rare errors of immunity, such as XIAP deficiency, CYBB, SOCS1, OAS1/2, and RNASEL, as underlying factors in MIS-C susceptibility. However, further investigations in expanded patient cohorts are needed to validate these findings and pave the way for new genetic approaches to MIS-C. This review aims to present recent evidence from the scientific literature on genetic and immunological abnormalities predisposing individuals to critical SARS-CoV-2 infection through IFN-I. We will also discuss multisystem inflammatory syndrome in children (MIS-C). Understanding the immunological mechanisms and pathogenesis of severe COVID-19 may inform personalized patient care and population protection strategies against future serious viral infections.
Collapse
Affiliation(s)
- Halima Kholaiq
- Laboratory of Clinical Immunology, Inflammation and Allergies (LICIA), Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| | - Yousra Abdelmoumen
- Laboratory of Clinical Immunology, Inflammation and Allergies (LICIA), Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| | - Abderrahmane Moundir
- Laboratory of Clinical Immunology, Inflammation and Allergies (LICIA), Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| | - Assiya El Kettani
- Laboratory of Clinical Immunology, Inflammation and Allergies (LICIA), Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
- Laboratory of Bacteriology, Virology and Hospital Hygiene, Ibn Rochd University Hospital, Casablanca, Morocco
- Laboratory of Bacteriology and Virology, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| | - Fatima Ailal
- Laboratory of Clinical Immunology, Inflammation and Allergies (LICIA), Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
- Clinical Immunology and Infectious Pediatrics Department, Abderrahim Harouchi Hospital, Ibn Rochd University Hospital, Casablanca, Morocco
| | - Ibtihal Benhsaien
- Laboratory of Clinical Immunology, Inflammation and Allergies (LICIA), Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
- Clinical Immunology and Infectious Pediatrics Department, Abderrahim Harouchi Hospital, Ibn Rochd University Hospital, Casablanca, Morocco
| | - Fatima Adnane
- Laboratory of Clinical Immunology, Inflammation and Allergies (LICIA), Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
- Clinical Immunology and Infectious Pediatrics Department, Abderrahim Harouchi Hospital, Ibn Rochd University Hospital, Casablanca, Morocco
| | - Asmaa Drissi Bourhanbour
- Laboratory of Clinical Immunology, Inflammation and Allergies (LICIA), Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
- Immunology Laboratory, Ibn Rochd University Hospital, Casablanca, Morocco
| | - Naima Amenzoui
- Laboratory of Clinical Immunology, Inflammation and Allergies (LICIA), Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
- Clinical Immunology and Infectious Pediatrics Department, Abderrahim Harouchi Hospital, Ibn Rochd University Hospital, Casablanca, Morocco
| | - Jalila El Bakkouri
- Laboratory of Clinical Immunology, Inflammation and Allergies (LICIA), Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
- Immunology Laboratory, Ibn Rochd University Hospital, Casablanca, Morocco
- Mohammed VI University of Health Sciences (UM6SS), Casablanca, Morocco
| | - Ahmed Aziz Bousfiha
- Laboratory of Clinical Immunology, Inflammation and Allergies (LICIA), Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
- Clinical Immunology and Infectious Pediatrics Department, Abderrahim Harouchi Hospital, Ibn Rochd University Hospital, Casablanca, Morocco
| |
Collapse
|
4
|
Gervais A, Bastard P, Bizien L, Delifer C, Tiberghien P, Rodrigo C, Trespidi F, Angelini M, Rossini G, Lazzarotto T, Conti F, Cassaniti I, Baldanti F, Rovida F, Ferrari A, Mileto D, Mancon A, Abel L, Puel A, Cobat A, Rice CM, Cadar D, Schmidt-Chanasit J, Scheid JF, Lemieux JE, Rosenberg ES, Agudelo M, Tangye SG, Borghesi A, Durand GA, Duburcq-Gury E, Valencia BM, Lloyd AR, Nagy A, MacDonald MM, Simonin Y, Zhang SY, Casanova JL. Auto-Abs neutralizing type I IFNs in patients with severe Powassan, Usutu, or Ross River virus disease. J Exp Med 2024; 221:e20240942. [PMID: 39485284 PMCID: PMC11533500 DOI: 10.1084/jem.20240942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/11/2024] [Accepted: 09/27/2024] [Indexed: 11/03/2024] Open
Abstract
Arboviral diseases are a growing global health concern. Pre-existing autoantibodies (auto-Abs) neutralizing type I interferons (IFNs) can underlie encephalitis due to West Nile virus (WNV) (∼40% of patients) and tick-borne encephalitis (TBE, due to TBE virus [TBEV]) (∼10%). We report here that these auto-Abs can also underlie severe forms of rarer arboviral infections. Auto-Abs neutralizing high concentrations of IFN-α2, IFN-β, and/or IFN-ω are present in the single case of severe Powassan virus (POWV) encephalitis studied, two of three cases of severe Usutu virus (USUV) infection studied, and the most severe of 24 cases of Ross River virus (RRV) disease studied. These auto-Abs are not found in any of the 137 individuals with silent or mild infections with these three viruses. Thus, auto-Abs neutralizing type I IFNs underlie an increasing list of severe arboviral diseases due to Flaviviridae (WNV, TBEV, POWV, USUV) or Togaviridae (RRV) viruses transmitted to humans by mosquitos (WNV, USUV, RRV) or ticks (TBEV, POWV).
Collapse
Affiliation(s)
- Adrian Gervais
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale (INSERM) U1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, Paris Cité University, Paris, France
| | - Paul Bastard
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale (INSERM) U1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, Paris Cité University, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
- Pediatric Hematology-Immunology and Rheumatology Unit, Necker Hospital for Sick Children, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Lucy Bizien
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale (INSERM) U1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, Paris Cité University, Paris, France
| | - Céline Delifer
- Établissement Français du Sang, La Plaine Saint-Denis, France
| | | | - Chaturaka Rodrigo
- Faculty of Medicine, School of Biomedical Sciences, UNSW Australia, Sydney, Australia
| | - Francesca Trespidi
- Neonatal Intensive Care Unit, San Matteo Research Hospital, Pavia, Italy
| | - Micol Angelini
- Neonatal Intensive Care Unit, San Matteo Research Hospital, Pavia, Italy
| | - Giada Rossini
- Microbiology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Tiziana Lazzarotto
- Microbiology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences, Section of Microbiology, University of Bologna, Bologna, Italy
| | - Francesca Conti
- Pediatric Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Irene Cassaniti
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
- Microbiology and Virology Department, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Fausto Baldanti
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
- Microbiology and Virology Department, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Francesca Rovida
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
- Microbiology and Virology Department, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Alessandro Ferrari
- Microbiology and Virology Department, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Davide Mileto
- Laboratory of Clinical Microbiology, Virology and Bioemergencies, Luigi Sacco Hospital, ASST Fatebenefratelli Sacco, Milan, Italy
| | - Alessandro Mancon
- Laboratory of Clinical Microbiology, Virology and Bioemergencies, Luigi Sacco Hospital, ASST Fatebenefratelli Sacco, Milan, Italy
| | - Laurent Abel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale (INSERM) U1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, Paris Cité University, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Anne Puel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale (INSERM) U1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, Paris Cité University, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Aurélie Cobat
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale (INSERM) U1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, Paris Cité University, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Charles M. Rice
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, USA
| | - Dániel Cadar
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Jonas Schmidt-Chanasit
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- Faculty of Mathematics, Informatics and Natural Sciences, University of Hamburg, Hamburg, Germany
| | - Johannes F. Scheid
- Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Jacob E. Lemieux
- Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Eric S. Rosenberg
- Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Marianna Agudelo
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA
| | - Stuart G. Tangye
- Garvan Institute of Medical Research, Darlinghurst, Australia
- Faculty of Medicine and Health, School of Clinical Medicine, University of New South Wales Sydney, Sydney, Australia
| | - Alessandro Borghesi
- Neonatal Intensive Care Unit, San Matteo Research Hospital, Pavia, Italy
- School of Life Sciences, Swiss Federal Institute of Technology, Lausanne, Switzerland
| | - Guillaume André Durand
- National Reference Center for Arboviruses, Inserm-IRBA, Marseille, France
- Unité des Virus Émergents (UVE: Aix-Marseille Univ-Corsica Univ-IRD 190-Inserm 1207-IRBA), Marseille, France
| | - Emilie Duburcq-Gury
- Intensive Care Unit, Saint Philibert Hospital, Lille Catholic Hospitals, Lille, France
| | | | | | - Anna Nagy
- National Reference Laboratory for Viral Zoonoses, National Public Health Center, Budapest, Hungary
| | - Margaret M. MacDonald
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, USA
| | - Yannick Simonin
- Pathogenesis and Control of Chronic and Emerging Infections, University of Montpellier, INSERM, EFS, Montpellier, France
| | - Shen-Ying Zhang
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale (INSERM) U1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, Paris Cité University, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale (INSERM) U1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, Paris Cité University, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
- Howard Hughes Medical Institute, New York, NY, USA
- Department of Pediatrics, Necker Hospital for Sick Children, AP-HP, Paris, France
| |
Collapse
|
5
|
Rosain J, Le Voyer T, Liu X, Gervais A, Polivka L, Cederholm A, Berteloot L, Parent AV, Pescatore A, Spinosa E, Minic S, Kiszewski AE, Tsumura M, Thibault C, Esnaola Azcoiti M, Martinovic J, Philippot Q, Khan T, Marchal A, Charmeteau-De Muylder B, Bizien L, Deswarte C, Hadjem L, Fauvarque MO, Dorgham K, Eriksson D, Falcone EL, Puel M, Ünal S, Geraldo A, Le Floc'h C, Li H, Rheault S, Muti C, Bobrie-Moyrand C, Welfringer-Morin A, Fuleihan RL, Lévy R, Roelens M, Gao L, Materna M, Pellegrini S, Piemonti L, Catherinot E, Goffard JC, Fekkar A, Sacko-Sow A, Soudée C, Boucherit S, Neehus AL, Has C, Hübner S, Blanchard-Rohner G, Amador-Borrero B, Utsumi T, Taniguchi M, Tani H, Izawa K, Yasumi T, Kanai S, Migaud M, Aubart M, Lambert N, Gorochov G, Picard C, Soudais C, L'Honneur AS, Rozenberg F, Milner JD, Zhang SY, Vabres P, Trpinac D, Marr N, Boddaert N, Desguerre I, Pasparakis M, Miller CN, Poziomczyk CS, Abel L, Okada S, Jouanguy E, Cheynier R, Zhang Q, Cobat A, Béziat V, Boisson B, Steffann J, Fusco F, Ursini MV, Hadj-Rabia S, Bodemer C, Bustamante J, Luche H, Puel A, Courtois G, Bastard P, Landegren N, Anderson MS, Casanova JL. Incontinentia pigmenti underlies thymic dysplasia, autoantibodies to type I IFNs, and viral diseases. J Exp Med 2024; 221:e20231152. [PMID: 39352576 PMCID: PMC11448874 DOI: 10.1084/jem.20231152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/17/2024] [Accepted: 08/27/2024] [Indexed: 10/05/2024] Open
Abstract
Human inborn errors of thymic T cell tolerance underlie the production of autoantibodies (auto-Abs) neutralizing type I IFNs, which predispose to severe viral diseases. We analyze 131 female patients with X-linked dominant incontinentia pigmenti (IP), heterozygous for loss-of-function (LOF) NEMO variants, from 99 kindreds in 10 countries. Forty-seven of these patients (36%) have auto-Abs neutralizing IFN-α and/or IFN-ω, a proportion 23 times higher than that for age-matched female controls. This proportion remains stable from the age of 6 years onward. On imaging, female patients with IP have a small, abnormally structured thymus. Auto-Abs against type I IFNs confer a predisposition to life-threatening viral diseases. By contrast, patients with IP lacking auto-Abs against type I IFNs are at no particular risk of viral disease. These results suggest that IP accelerates thymic involution, thereby underlying the production of auto-Abs neutralizing type I IFNs in at least a third of female patients with IP, predisposing them to life-threatening viral diseases.
Collapse
Affiliation(s)
- Jérémie Rosain
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Inserm U1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris Cité , Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Study Center for Primary Immunodeficiencies, Necker Hospital for Sick Children, Assistance Publique-Hôpitaux de Paris (AP-HP) , Paris, France
| | - Tom Le Voyer
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Inserm U1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris Cité , Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Clinical Immunology Department, AP-HP, Saint-Louis Hospital, Paris, France
| | - Xian Liu
- Diabetes Center, University of California San Francisco , San Francisco, CA, USA
| | - Adrian Gervais
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Inserm U1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris Cité , Paris, France
| | - Laura Polivka
- Department of Dermatology, Reference Center for Genodermatosis and Rare Skin Diseases (MAGEC), University of Paris Cité, Necker Hospital for Sick Children, AP-HP, Paris, France
- Reference Center for Mastocytosis (CEREMAST), Necker Hospital for Sick Children, AP-HP , Paris, France
| | - Axel Cederholm
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Laureline Berteloot
- Pediatric Radiology Department, Necker Hospital for Sick Children, Imagine Inserm Institute, U1163, AP-HP, Paris, France
| | - Audrey V Parent
- Diabetes Center, University of California San Francisco , San Francisco, CA, USA
| | - Alessandra Pescatore
- Institute of Genetics and Biophysics "Adriano Buzzati-Traverso," IGB-CNR , Naples, Italy
| | - Ezia Spinosa
- Institute of Genetics and Biophysics "Adriano Buzzati-Traverso," IGB-CNR , Naples, Italy
| | - Snezana Minic
- Clinics of Dermatovenerology, Clinical Center of Serbia , Belgrade, Serbia
- School of Medicine, University of Belgrade , Belgrade, Serbia
| | - Ana Elisa Kiszewski
- Section of Dermatology, Federal University of Health Sciences of Porto Alegre, Porto Alegre, Brazil
- Section of Pediatric Dermatology, Hospital da Criança Santo Antônio, Irmandade da Santa Casa de Misericórdia de Porto Alegre, Porto Alegre, Brazil
| | - Miyuki Tsumura
- Hiroshima University Graduate School of Biomedical and Health Sciences , Hiroshima, Japan
| | - Chloé Thibault
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Inserm U1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris Cité , Paris, France
| | - Maria Esnaola Azcoiti
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Inserm U1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris Cité , Paris, France
| | - Jelena Martinovic
- Unit of Fetal Pathology, Hospital Antoine Béclère, Paris Saclay University , Paris, France
| | - Quentin Philippot
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Inserm U1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris Cité , Paris, France
| | - Taushif Khan
- Department of Immunology, Sidra Medicine, Doha, Qatar
| | - Astrid Marchal
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Inserm U1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris Cité , Paris, France
| | | | - Lucy Bizien
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Inserm U1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris Cité , Paris, France
| | - Caroline Deswarte
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Inserm U1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris Cité , Paris, France
| | - Lillia Hadjem
- Immunophenomics Center (CIPHE), Aix Marseille University, Inserm, CNRS , Marseille, France
| | | | - Karim Dorgham
- Sorbonne University, Inserm, Centre for Immunology and Microbial Infections, CIMI-Paris , Paris, France
| | - Daniel Eriksson
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Emilia Liana Falcone
- Center for Immunity, Inflammation and Infectious Diseases, Montréal Clinical Research Institute (IRCM) , Montréal, Canada
- Department of Medicine, Montréal University, Montréal, Canada
| | - Mathilde Puel
- Study Center for Primary Immunodeficiencies, Necker Hospital for Sick Children, Assistance Publique-Hôpitaux de Paris (AP-HP) , Paris, France
| | - Sinem Ünal
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Inserm U1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris Cité , Paris, France
| | - Amyrath Geraldo
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Inserm U1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris Cité , Paris, France
| | - Corentin Le Floc'h
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Inserm U1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris Cité , Paris, France
| | - Hailun Li
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Inserm U1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris Cité , Paris, France
| | - Sylvie Rheault
- Department of Medicine, Montréal University, Montréal, Canada
- Center of Research of the Geriatric University Institute of Montréal, University of Montréal , Montréal, Canada
| | - Christine Muti
- Department of Genetics, André Mignot Hospital, Versailles, France
| | | | - Anne Welfringer-Morin
- Department of Dermatology, Reference Center for Genodermatosis and Rare Skin Diseases (MAGEC), University of Paris Cité, Necker Hospital for Sick Children, AP-HP, Paris, France
| | - Ramsay L Fuleihan
- Department of Pediatrics, Columbia University Medical Center, New York, NY, USA
| | - Romain Lévy
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Inserm U1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris Cité , Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Pediatric Hematology-Immunology and Rheumatology Unit, Necker Hospital for Sick Children, AP-HP, Paris, France
| | - Marie Roelens
- Imagine Institute, University of Paris Cité , Paris, France
- Study Center for Primary Immunodeficiencies, Necker Hospital for Sick Children, Assistance Publique-Hôpitaux de Paris (AP-HP) , Paris, France
| | - Liwei Gao
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Inserm U1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris Cité , Paris, France
| | - Marie Materna
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Inserm U1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris Cité , Paris, France
| | - Silvia Pellegrini
- Diabetes Research Institute, IRCCS Ospedale San Raffaele , Milan, Italy
| | - Lorenzo Piemonti
- Diabetes Research Institute, IRCCS Ospedale San Raffaele , Milan, Italy
| | | | - Jean-Christophe Goffard
- Internal Medicine, Brussels University Hospital, Free University of Brussels, Anderlecht, Belgium
| | - Arnaud Fekkar
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Inserm U1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris Cité , Paris, France
- Department of Parasitology Mycology, Pitié-Salpêtrière Hospital, AP-HP, Paris, France
| | - Aissata Sacko-Sow
- Department of Pediatrics, Jean Verdier Hospital, AP-HP, Bondy, France
| | - Camille Soudée
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Inserm U1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris Cité , Paris, France
| | - Soraya Boucherit
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Inserm U1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris Cité , Paris, France
| | - Anna-Lena Neehus
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Inserm U1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris Cité , Paris, France
| | - Cristina Has
- Department of Dermatology, Medical Center-University of Freiburg, Freiburg im Breisgau, Germany
- European Reference Network (ERN) for Rare and Undiagnosed Skin Disorders
| | - Stefanie Hübner
- Department of Dermatology, Medical Center-University of Freiburg, Freiburg im Breisgau, Germany
| | - Géraldine Blanchard-Rohner
- Unit of Immunology, Vaccinology, and Rheumatology, Division of General Pediatrics, Department of Woman, Child, and Adolescent Medicine, Geneva University Hospitals and Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Blanca Amador-Borrero
- Internal Medicine Department, Lariboisière Hospital, AP-HP, University of Paris Cité, Paris, France
| | - Takanori Utsumi
- Hiroshima University Graduate School of Biomedical and Health Sciences , Hiroshima, Japan
| | - Maki Taniguchi
- Hiroshima University Graduate School of Biomedical and Health Sciences , Hiroshima, Japan
| | - Hiroo Tani
- Department of Pediatrics, Hiroshima University Hospital, Hiroshima, Japan
- Department of Pediatrics, Hiroshima Prefectural Hospital, Hiroshima, Japan
| | - Kazushi Izawa
- Department of Pediatrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Takahiro Yasumi
- Department of Pediatrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Sotaro Kanai
- Division of Child Neurology, Department of Brain and Neurosciences, Faculty of Medicine, Tottori University, Yonago, Japan
| | - Mélanie Migaud
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Inserm U1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris Cité , Paris, France
| | - Mélodie Aubart
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Inserm U1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris Cité , Paris, France
- Departments of Pediatric Neurology, Necker Hospital for Sick Children, AP-HP, University of Paris Cité, Paris, France
| | - Nathalie Lambert
- Study Center for Primary Immunodeficiencies, Necker Hospital for Sick Children, Assistance Publique-Hôpitaux de Paris (AP-HP) , Paris, France
| | - Guy Gorochov
- Sorbonne University, Inserm, Centre for Immunology and Microbial Infections, CIMI-Paris , Paris, France
- Department of Immunology, Pitié-Salpêtrière Hospital, AP-HP, Paris, France
| | - Capucine Picard
- Imagine Institute, University of Paris Cité , Paris, France
- Study Center for Primary Immunodeficiencies, Necker Hospital for Sick Children, Assistance Publique-Hôpitaux de Paris (AP-HP) , Paris, France
- Laboratory of Lymphocyte Activation and Susceptibility to EBV Infection, Inserm U1163, Paris, France
| | - Claire Soudais
- Laboratory of Lymphocyte Activation and Susceptibility to EBV Infection, Inserm U1163, Paris, France
| | - Anne-Sophie L'Honneur
- Department of Virology, University of Paris Cité and Cochin Hospital, AP-HP, Paris, France
| | - Flore Rozenberg
- Department of Virology, University of Paris Cité and Cochin Hospital, AP-HP, Paris, France
| | - Joshua D Milner
- Department of Pediatrics, Columbia University Medical Center, New York, NY, USA
| | - Shen-Ying Zhang
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Inserm U1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris Cité , Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Pierre Vabres
- MAGEC Reference Center for Rare Skin Diseases, Dijon Bourgogne University Hospital, Dijon, France
| | - Dusan Trpinac
- Institute of Histology and Embryology, School of Medicine, University of Belgrade , Belgrade, Serbia
| | - Nico Marr
- Department of Immunology, Sidra Medicine, Doha, Qatar
- College of Health and Life Sciences, Hamad Bin Khalifa University , Doha, Qatar
| | - Nathalie Boddaert
- Pediatric Radiology Department, Necker Hospital for Sick Children, Imagine Inserm Institute, U1163, AP-HP, Paris, France
| | - Isabelle Desguerre
- Departments of Pediatric Neurology, Necker Hospital for Sick Children, AP-HP, University of Paris Cité, Paris, France
| | | | - Corey N Miller
- Diabetes Center, University of California San Francisco , San Francisco, CA, USA
| | | | - Laurent Abel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Inserm U1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris Cité , Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Satoshi Okada
- Hiroshima University Graduate School of Biomedical and Health Sciences , Hiroshima, Japan
| | - Emmanuelle Jouanguy
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Inserm U1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris Cité , Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Rémi Cheynier
- University of Paris Cité, CNRS, Inserm, Institut Cochin , Paris, France
| | - Qian Zhang
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Inserm U1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris Cité , Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Aurélie Cobat
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Inserm U1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris Cité , Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Vivien Béziat
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Inserm U1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris Cité , Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Bertrand Boisson
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Inserm U1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris Cité , Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Julie Steffann
- Department of Genomic Medicine, Necker Hospital for Sick Children, AP-HP, University of Paris Cité, Paris, France
| | - Francesca Fusco
- Institute of Genetics and Biophysics "Adriano Buzzati-Traverso," IGB-CNR , Naples, Italy
| | - Matilde Valeria Ursini
- Institute of Genetics and Biophysics "Adriano Buzzati-Traverso," IGB-CNR , Naples, Italy
| | - Smail Hadj-Rabia
- Department of Dermatology, Reference Center for Genodermatosis and Rare Skin Diseases (MAGEC), University of Paris Cité, Necker Hospital for Sick Children, AP-HP, Paris, France
| | - Christine Bodemer
- Department of Dermatology, Reference Center for Genodermatosis and Rare Skin Diseases (MAGEC), University of Paris Cité, Necker Hospital for Sick Children, AP-HP, Paris, France
| | - Jacinta Bustamante
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Inserm U1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris Cité , Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Study Center for Primary Immunodeficiencies, Necker Hospital for Sick Children, Assistance Publique-Hôpitaux de Paris (AP-HP) , Paris, France
| | - Hervé Luche
- Immunophenomics Center (CIPHE), Aix Marseille University, Inserm, CNRS , Marseille, France
| | - Anne Puel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Inserm U1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris Cité , Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Gilles Courtois
- University Grenoble Alpes, CEA, Inserm , BGE UA13, Grenoble, France
| | - Paul Bastard
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Inserm U1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris Cité , Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Pediatric Hematology-Immunology and Rheumatology Unit, Necker Hospital for Sick Children, AP-HP, Paris, France
| | - Nils Landegren
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- Center for Molecular Medicine, Department of Medicine (Solna), Karolinska Institute, Stockholm, Sweden
| | - Mark S Anderson
- Diabetes Center, University of California San Francisco , San Francisco, CA, USA
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Inserm U1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris Cité , Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Department of Pediatrics, Necker Hospital for Sick Children, AP-HP, Paris, France
- Howard Hughes Medical Institute , New York, NY, USA
| |
Collapse
|
6
|
Azadinejad H, Feizollahi P, Rezaeimanesh A, Salari F, Gorgin Karaji A. Relationship Between IL-10 Single Nucleotide Polymorphisms (rs1800871, rs1800872, and rs1800896) and the Severity of COVID-19. Genet Test Mol Biomarkers 2024; 28:438-444. [PMID: 39253838 DOI: 10.1089/gtmb.2024.0276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024] Open
Abstract
Background: Interleukin-10 (IL-10) is an anti-inflammatory cytokine whose levels are elevated in patients with severe COVID-19. IL-10 polymorphisms may play a role in increasing IL-10 levels and the severity of COVID-19. This study aimed to investigate the relationship between IL-10 single nucleotide polymorphisms (SNPs) (rs1800896 [-1082 C < T], rs1800871 [-819 A > G], and rs1800872 [-592 T > G]) and the severity of COVID-19 in patients from Kermanshah Province, Iran. Methods: A total of 150 patients with mild COVID-19 (84 men and 66 women aged 40.1 ± 12.44 years) and 143 patients with severe COVID-19 (76 men and 67 women aged 61.04 ± 15.65 years) participated in this study. Blood samples were collected from the patients, DNA was extracted, and the genotype of each SNPs was determined using the polymerase chain reaction-restriction fragment length polymorphism method. Result: The results of this study did not show a significant relationship between the genotypes of the three studied SNPs and the severity of COVID-19 (p > 0.05). Conclusion: According to our findings, these SNPs were not associated with COVID-19 severity in patients in Kermanshah.
Collapse
Affiliation(s)
- Hossein Azadinejad
- Student Research Committee, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Parisa Feizollahi
- Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Department of Immunology, School of Medicine, Tarbiat Modares University of Medical Science, Tehran, Iran
| | - Alireza Rezaeimanesh
- Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Farhad Salari
- Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ali Gorgin Karaji
- Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
7
|
Hamidah B, Pakpahan C, Wulandari L, Tinduh D, Wibawa T, Prakoeswa CRS, Oceandy D. Expression of interferon-stimulated genes, but not polymorphisms in the interferon α/β receptor 2 gene, is associated with coronavirus disease 2019 mortality. Heliyon 2024; 10:e39002. [PMID: 39435115 PMCID: PMC11492585 DOI: 10.1016/j.heliyon.2024.e39002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 09/16/2024] [Accepted: 10/04/2024] [Indexed: 10/23/2024] Open
Abstract
Excessive inflammatory response is a hallmark of severe COVID-19. This study investigated the associations between interferon-stimulated genes (ISGs) expression, genetic variation in the interferon α/β receptor 2 (IFNAR2) gene, and COVID-19 mortality. We investigated 67 patients with moderate-to-severe COVID-19. Of them, 22 patients (32.8 %) died because of COVID-19. We examined the expression of ISGs in total RNA of peripheral whole blood. We observed a significant increase in the expression of all ISGs examined in non-surviving patients, indicating a heightened interferon type I signaling activation in non-survived patients. Subsequently, we analyzed whether the increase in ISGs expression was correlated with polymorphism within the IFNAR2 gene. Intriguingly, no significant association was observed between IFNAR2 gene polymorphism and COVID-19 mortality. Similarly, no association was noted between the IFNAR2 and ISGs expression levels. Overall, our data showed that higher ISGs expression, which presumably indicates heightened interferon type I activation, is associated with COVID-19 mortality.
Collapse
Affiliation(s)
- Berliana Hamidah
- Department of Biomedical Science, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Cennikon Pakpahan
- Department of Biomedical Science, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Laksmi Wulandari
- Department of Pulmonology and Respiratory Medicine, Faculty of Medicine, Universitas Airlangga/Dr Soetomo General Academic Hospital, Surabaya, Indonesia
| | - Damayanti Tinduh
- Department of Physical Medicine and Rehabilitation, Faculty of Medicine, Universitas Airlangga/Dr Soetomo General Academic Hospital, Surabaya, Indonesia
| | - Tri Wibawa
- Department of Microbiology, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Cita Rosita Sigit Prakoeswa
- Department of Dermatology, Venerology and Aesthetics, Faculty of Medicine, Universitas Airlangga / Dr. Soetomo General Academic Hospital, Surabaya, Indonesia
| | - Delvac Oceandy
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
8
|
Gervais A, Le Floc'h C, Le Voyer T, Bizien L, Bohlen J, Celmeli F, Al Qureshah F, Masson C, Rosain J, Chbihi M, Lévy R, Castagnoli R, Rothenbuhler A, Jouanguy E, Zhang Q, Zhang SY, Béziat V, Bustamante J, Puel A, Bastard P, Casanova JL. A sensitive assay for measuring whole-blood responses to type I IFNs. Proc Natl Acad Sci U S A 2024; 121:e2402983121. [PMID: 39312669 PMCID: PMC11459193 DOI: 10.1073/pnas.2402983121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 08/09/2024] [Indexed: 09/25/2024] Open
Abstract
Human inborn errors of the type I IFN response pathway and auto-Abs neutralizing IFN-α, -β, and/or -ω can underlie severe viral illnesses. We report a simple assay for the detection of both types of condition. We stimulate whole blood from healthy individuals and patients with either inborn errors of type I IFN immunity or auto-Abs against type I IFNs with glycosylated human IFN-α2, -β, or -ω. As controls, we add a monoclonal antibody (mAb) blocking the type I IFN receptors and stimulated blood with IFN-γ (type II IFN). Of the molecules we test, IP-10 (encoded by the interferon-stimulated gene (ISG) CXCL10) is the molecule most strongly induced by type I and type II IFNs in the whole blood of healthy donors in an ELISA-like assay. In patients with inherited IFNAR1, IFNAR2, TYK2, or IRF9 deficiency, IP-10 is induced only by IFN-γ, whereas, in those with auto-Abs neutralizing specific type I IFNs, IP-10 is also induced by the type I IFNs not neutralized by the auto-Abs. The measurement of type I and type II IFN-dependent IP-10 induction therefore constitutes a simple procedure for detecting rare inborn errors of the type I IFN response pathway and more common auto-Abs neutralizing type I IFNs.
Collapse
Affiliation(s)
- Adrian Gervais
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, Necker Hospital for Sick Children, Paris 75015, France
- Paris Cité University, Imagine Institute, Paris 75015, France
| | - Corentin Le Floc'h
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, Necker Hospital for Sick Children, Paris 75015, France
- Paris Cité University, Imagine Institute, Paris 75015, France
| | - Tom Le Voyer
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, Necker Hospital for Sick Children, Paris 75015, France
- Paris Cité University, Imagine Institute, Paris 75015, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY 10065
- Clinical Immunology Department, Assistance Publique Hôpitaux de Paris, Saint-Louis Hospital, Paris 75010, France
| | - Lucy Bizien
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, Necker Hospital for Sick Children, Paris 75015, France
- Paris Cité University, Imagine Institute, Paris 75015, France
| | - Jonathan Bohlen
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, Necker Hospital for Sick Children, Paris 75015, France
- Paris Cité University, Imagine Institute, Paris 75015, France
| | - Fatih Celmeli
- Division of Pediatric Allergy and Immunology, Antalya Education and Research Hospital, University of Medical Science, Antalya 07100, Türkiye
| | - Fahd Al Qureshah
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY 10065
| | - Cécile Masson
- Bioinformatics Core Facility, Université Paris Cité-Structure Fédérative de Recherche Necker, INSERM US24/CNRS UMS3633, Paris 75015, France
| | - Jérémie Rosain
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, Necker Hospital for Sick Children, Paris 75015, France
- Paris Cité University, Imagine Institute, Paris 75015, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY 10065
- Study Center for Primary Immunodeficiencies, Necker Hospital for Sick Children, Assistance Publique-Hôpitaux de Paris, Paris 75015, France
| | - Marwa Chbihi
- Paris Cité University, Imagine Institute, Paris 75015, France
- Pediatric Hematology-Immunology and Rheumatology Unit, Necker Hospital for Sick Children, Assistance Publique-Hôpitaux de Paris, Paris 75015, France
| | - Romain Lévy
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, Necker Hospital for Sick Children, Paris 75015, France
- Paris Cité University, Imagine Institute, Paris 75015, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY 10065
- Pediatric Hematology-Immunology and Rheumatology Unit, Necker Hospital for Sick Children, Assistance Publique-Hôpitaux de Paris, Paris 75015, France
| | - Riccardo Castagnoli
- Pediatric Unit, Department of Clinical, Surgical, Diagnostic, and Pediatric Sciences, University of Pavia, Pavia 27100, Italy
- Pediatric Clinic, Fondazione Istituto di ricovero e cura a carattere scientifico (IRCCS) Policlinico San Matteo, Pavia 27100, Italy
| | - Anya Rothenbuhler
- Endocrinology and Diabetes for children, Reference Center for rare diseases of calcium and phosphate metabolism, OSCAR network, Platform of expertise for rare diseases of Paris Saclay Hospital, Bicêtre Paris Saclay Hospital, Le Kremlin-Bicêtre 94270, France
| | - Emmanuelle Jouanguy
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, Necker Hospital for Sick Children, Paris 75015, France
- Paris Cité University, Imagine Institute, Paris 75015, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY 10065
| | - Qian Zhang
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, Necker Hospital for Sick Children, Paris 75015, France
- Paris Cité University, Imagine Institute, Paris 75015, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY 10065
| | - Shen-Ying Zhang
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, Necker Hospital for Sick Children, Paris 75015, France
- Paris Cité University, Imagine Institute, Paris 75015, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY 10065
| | - Vivien Béziat
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, Necker Hospital for Sick Children, Paris 75015, France
- Paris Cité University, Imagine Institute, Paris 75015, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY 10065
| | - Jacinta Bustamante
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, Necker Hospital for Sick Children, Paris 75015, France
- Paris Cité University, Imagine Institute, Paris 75015, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY 10065
- Study Center for Primary Immunodeficiencies, Necker Hospital for Sick Children, Assistance Publique-Hôpitaux de Paris, Paris 75015, France
| | - Anne Puel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, Necker Hospital for Sick Children, Paris 75015, France
- Paris Cité University, Imagine Institute, Paris 75015, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY 10065
| | - Paul Bastard
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, Necker Hospital for Sick Children, Paris 75015, France
- Paris Cité University, Imagine Institute, Paris 75015, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY 10065
- Pediatric Hematology-Immunology and Rheumatology Unit, Necker Hospital for Sick Children, Assistance Publique-Hôpitaux de Paris, Paris 75015, France
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, Necker Hospital for Sick Children, Paris 75015, France
- Paris Cité University, Imagine Institute, Paris 75015, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY 10065
- HHMI, New York, NY 10065
- Department of Pediatrics, Necker Hospital for Sick Children, Paris 75015, France
| |
Collapse
|
9
|
SINGH MAIREMBAMSTELIN, YELLABOINA SAILU, ANSARI MAIRAJAHMED. A COMPREHENSIVE REVIEW ON THE MULTIFACETED INTERACTIONS BETWEEN HOST IMMUNITY AND VIRAL PATHOGENESIS IN COVID-19. INTERNATIONAL JOURNAL OF APPLIED PHARMACEUTICS 2024:37-45. [DOI: 10.22159/ijap.2024v16i4.50576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
The Corona Virus Disease (COVID-19) pandemic has presented unparalleled challenges, marked by a wide array of clinical presentations spanning from asymptomatic carriage to severe respiratory compromise and multi-organ dysfunction. It is crucial to comprehend the intricate interplay between host immunity and viral pathogenesis to elucidate disease mechanisms and guide therapeutic strategies. This review delves into the multifaceted interactions between host immunity and viral pathogenesis in COVID-19, with a particular focus on the impact of host factors such as age, sex, comorbidities, and genetic predisposition on disease severity. Utilizing state-of-the-art methodologies, including multiomics approaches, has yielded an expansive molecular portrayal of COVID-19, furnishing innovative perspectives on host immune reactions, viral pathogenicity, and disease advancement. Establishing standardized methodologies for data analysis and interpretation while concurrently addressing ethical considerations and promoting interdisciplinary collaboration are crucial steps in advancing our comprehension of COVID-19 pathogenesis. Despite obstacles like complexities in data integration, this review highlights the imperative of persistent endeavors in deciphering the complex interactions between hosts and pathogens to alleviate the global health ramifications of COVID-19.
Collapse
|
10
|
Aminsobahni E, Hosseini M, Gholizadeh N, Soltani-Zangbar MS, Savari G, Motlagh Asghari K, Pourlak T, Zolfaghari M, Chakari-Khiavi F, Motavalli R, Chakari-Khiavi A, Shekarchi AA, Mahmoodpoor A, Ahmadian Heris J, Pouya K, Mehdizadeh A, Babalou Z, Yousefi M. T Lymphocyte Characteristic Changes Under Serum Cytokine Deviations and Prognostic Factors of COVID-19 in Pregnant Women. Appl Biochem Biotechnol 2024; 196:4366-4381. [PMID: 37947946 DOI: 10.1007/s12010-023-04775-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/31/2023] [Indexed: 11/12/2023]
Abstract
Physiological changes during pregnancy make the individuals more susceptible to severe respiratory diseases. Hence, pregnant women with coronavirus disease 2019 (COVID-19) are likely at a higher risk. We investigated the effects of COVID-19 on T cell response and serum cytokine profile in pregnant patients. Peripheral blood mononuclear cells (PBMCs) of women with COVID-19 were collected during the first trimester of pregnancy, and the percentage of total lymphocytes, as well as CD4 + and CD8 + T cells, was assessed using flow cytometry. The expression of the programmed death-1 (PD-1) marker for exhausted T cells was evaluated. Additionally, the serum samples were provided to evaluate the levels of antiviral and proinflammatory cytokines, as well as laboratory serological tests. Pregnant women with COVID-19 presented lymphopenia with diminished CD4 + and CD8 + T cells. Besides, high expression levels of the PD-1 gene and protein were observed on PBMCs and T cells, respectively, when compared with normal pregnant individuals. Moreover, serum levels of TNF-α, IL-6, IL-1β, and IL-2 receptor were notably enhanced, while IFN-I α/β values were significantly decreased in the patients when compared with controls. Furthermore, hyperlipidemia, hyperglycemia, and hypertension were directly correlated with the disease although serum albumin and vitamin D3 levels adversely affected the viral infection. Our study showed extreme lymphopenia and poor T cell response while elevated values of serum inflammatory cytokines in infected pregnant women. Moreover, a hypertension background or metabolic changes, including hyperlipidemia, hyperglycemia, and vitamin D3 or albumin deficiency, might be promising prognostic factors in pregnant women with COVID-19.
Collapse
Affiliation(s)
- Ehsan Aminsobahni
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Hosseini
- Trauma Research Center, Shahid Rajaee (Emtiaz) Trauma Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nasim Gholizadeh
- Department of Dermatology, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mohammad Sadegh Soltani-Zangbar
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Golaleh Savari
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Tannaz Pourlak
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammadali Zolfaghari
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Roza Motavalli
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Aref Chakari-Khiavi
- Student Research Committee, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Ali Akbar Shekarchi
- Department of Pathology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ata Mahmoodpoor
- Department of Anesthesiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Javad Ahmadian Heris
- Department of Allergy and Clinical Immunology, Pediatric Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Khadijeh Pouya
- Department of Obstetrics and Gynecology, Faculty of Medicine, Tabriz Medical Sciences, Islamic Azad University, Tabriz, Iran
| | - Amir Mehdizadeh
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zohreh Babalou
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Yousefi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
11
|
Zhang Q, Kisand K, Feng Y, Rinchai D, Jouanguy E, Cobat A, Casanova JL, Zhang SY. In search of a function for human type III interferons: insights from inherited and acquired deficits. Curr Opin Immunol 2024; 87:102427. [PMID: 38781720 PMCID: PMC11209856 DOI: 10.1016/j.coi.2024.102427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 03/19/2024] [Accepted: 05/06/2024] [Indexed: 05/25/2024]
Abstract
The essential and redundant functions of human type I and II interferons (IFNs) have been delineated over the last three decades by studies of patients with inborn errors of immunity or their autoimmune phenocopies, but much less is known about type III IFNs. Patients with cells that do not respond to type III IFNs due to inherited IL10RB deficiency display no overt viral disease, and their inflammatory disease phenotypes can be explained by defective signaling via other interleukine10RB-dependent pathways. Moreover, patients with inherited deficiencies of interferon-stimulated gene factor 3 (ISGF-3) (STAT1, STAT2, IRF9) present viral diseases also seen in patients with inherited deficiencies of the type I IFN receptor (IFNAR1/2). Finally, patients with autoantibodies neutralizing type III IFNs have no obvious predisposition to viral disease. Current findings thus suggest that type III IFNs are largely redundant in humans. The essential functions of human type III IFNs, particularly in antiviral defenses, remain to be discovered.
Collapse
Affiliation(s)
- Qian Zhang
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, USA; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France; Paris Cité University, Imagine Institute, Paris, France.
| | - Kai Kisand
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Yi Feng
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, USA
| | - Darawan Rinchai
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, USA
| | - Emmanuelle Jouanguy
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, USA; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France; Paris Cité University, Imagine Institute, Paris, France
| | - Aurélie Cobat
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, USA; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France; Paris Cité University, Imagine Institute, Paris, France
| | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, USA; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France; Paris Cité University, Imagine Institute, Paris, France; Department of Pediatrics, Necker Hospital for Sick Children, AP-HP, Paris, France; Howard Hughes Medical Institute, New York, USA
| | - Shen-Ying Zhang
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, USA; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France; Paris Cité University, Imagine Institute, Paris, France
| |
Collapse
|
12
|
Bastard P, Gervais A, Le Voyer T, Philippot Q, Cobat A, Rosain J, Jouanguy E, Abel L, Zhang SY, Zhang Q, Puel A, Casanova JL. Human autoantibodies neutralizing type I IFNs: From 1981 to 2023. Immunol Rev 2024; 322:98-112. [PMID: 38193358 PMCID: PMC10950543 DOI: 10.1111/imr.13304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
Human autoantibodies (auto-Abs) neutralizing type I IFNs were first discovered in a woman with disseminated shingles and were described by Ion Gresser from 1981 to 1984. They have since been found in patients with diverse conditions and are even used as a diagnostic criterion in patients with autoimmune polyendocrinopathy syndrome type 1 (APS-1). However, their apparent lack of association with viral diseases, including shingles, led to wide acceptance of the conclusion that they had no pathological consequences. This perception began to change in 2020, when they were found to underlie about 15% of cases of critical COVID-19 pneumonia. They have since been shown to underlie other severe viral diseases, including 5%, 20%, and 40% of cases of critical influenza pneumonia, critical MERS pneumonia, and West Nile virus encephalitis, respectively. They also seem to be associated with shingles in various settings. These auto-Abs are present in all age groups of the general population, but their frequency increases with age to reach at least 5% in the elderly. We estimate that at least 100 million people worldwide carry auto-Abs neutralizing type I IFNs. Here, we briefly review the history of the study of these auto-Abs, focusing particularly on their known causes and consequences.
Collapse
Affiliation(s)
- Paul Bastard
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France, EU
- Paris Cité University, Imagine Institute, Paris, France, EU
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Pediatric Hematology-Immunology and Rheumatology Unit, Necker Hospital for Sick Children, Assistante Publique-Hôpitaux de Paris (AP-HP), Paris, France, EU
| | - Adrian Gervais
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France, EU
- Paris Cité University, Imagine Institute, Paris, France, EU
| | - Tom Le Voyer
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France, EU
- Paris Cité University, Imagine Institute, Paris, France, EU
| | - Quentin Philippot
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France, EU
- Paris Cité University, Imagine Institute, Paris, France, EU
| | - Aurélie Cobat
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France, EU
- Paris Cité University, Imagine Institute, Paris, France, EU
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Jérémie Rosain
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France, EU
- Paris Cité University, Imagine Institute, Paris, France, EU
| | - Emmanuelle Jouanguy
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France, EU
- Paris Cité University, Imagine Institute, Paris, France, EU
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Laurent Abel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France, EU
- Paris Cité University, Imagine Institute, Paris, France, EU
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Shen-Ying Zhang
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France, EU
- Paris Cité University, Imagine Institute, Paris, France, EU
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Qian Zhang
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France, EU
- Paris Cité University, Imagine Institute, Paris, France, EU
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Anne Puel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France, EU
- Paris Cité University, Imagine Institute, Paris, France, EU
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France, EU
- Paris Cité University, Imagine Institute, Paris, France, EU
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Howard Hughes Medical Institute, New York, NY, USA
- Department of Pediatrics, Necker Hospital for Sick Children, APHP, Paris, France, EU
| |
Collapse
|
13
|
Bastard P, Gervais A, Taniguchi M, Saare L, Särekannu K, Le Voyer T, Philippot Q, Rosain J, Bizien L, Asano T, Garcia-Prat M, Parra-Martínez A, Migaud M, Tsumura M, Conti F, Belot A, Rivière JG, Morio T, Tanaka J, Javouhey E, Haerynck F, Duvlis S, Ozcelik T, Keles S, Tandjaoui-Lambiotte Y, Escoda S, Husain M, Pan-Hammarström Q, Hammarström L, Ahlijah G, Abi Haidar A, Soudee C, Arseguel V, Abolhassani H, Sahanic S, Tancevski I, Nukui Y, Hayakawa S, Chrousos GP, Michos A, Tatsi EB, Filippatos F, Rodriguez-Palmero A, Troya J, Tipu I, Meyts I, Roussel L, Ostrowski SR, Schidlowski L, Prando C, Condino-Neto A, Cheikh N, Bousfiha AA, El Bakkouri J, Peterson P, Pujol A, Lévy R, Quartier P, Vinh DC, Boisson B, Béziat V, Zhang SY, Borghesi A, Pession A, Andreakos E, Marr N, Mentis AFA, Mogensen TH, Rodríguez-Gallego C, Soler-Palacin P, Colobran R, Tillmann V, Neven B, Trouillet-Assant S, Brodin P, Abel L, Jouanguy E, Zhang Q, Martinón-Torres F, Salas A, Gómez-Carballa A, Gonzalez-Granado LI, Kisand K, Okada S, Puel A, Cobat A, Casanova JL. Higher COVID-19 pneumonia risk associated with anti-IFN-α than with anti-IFN-ω auto-Abs in children. J Exp Med 2024; 221:e20231353. [PMID: 38175961 PMCID: PMC10771097 DOI: 10.1084/jem.20231353] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/22/2023] [Accepted: 11/15/2023] [Indexed: 01/06/2024] Open
Abstract
We found that 19 (10.4%) of 183 unvaccinated children hospitalized for COVID-19 pneumonia had autoantibodies (auto-Abs) neutralizing type I IFNs (IFN-α2 in 10 patients: IFN-α2 only in three, IFN-α2 plus IFN-ω in five, and IFN-α2, IFN-ω plus IFN-β in two; IFN-ω only in nine patients). Seven children (3.8%) had Abs neutralizing at least 10 ng/ml of one IFN, whereas the other 12 (6.6%) had Abs neutralizing only 100 pg/ml. The auto-Abs neutralized both unglycosylated and glycosylated IFNs. We also detected auto-Abs neutralizing 100 pg/ml IFN-α2 in 4 of 2,267 uninfected children (0.2%) and auto-Abs neutralizing IFN-ω in 45 children (2%). The odds ratios (ORs) for life-threatening COVID-19 pneumonia were, therefore, higher for auto-Abs neutralizing IFN-α2 only (OR [95% CI] = 67.6 [5.7-9,196.6]) than for auto-Abs neutralizing IFN-ω only (OR [95% CI] = 2.6 [1.2-5.3]). ORs were also higher for auto-Abs neutralizing high concentrations (OR [95% CI] = 12.9 [4.6-35.9]) than for those neutralizing low concentrations (OR [95% CI] = 5.5 [3.1-9.6]) of IFN-ω and/or IFN-α2.
Collapse
Affiliation(s)
- Paul Bastard
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Pediatric Hematology-Immunology and Rheumatology Unit, Necker Hospital for Sick Children, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Adrian Gervais
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
| | - Maki Taniguchi
- Dept. of Pediatrics, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Liisa Saare
- Dept. of Pediatrics, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Karita Särekannu
- Molecular Pathology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Tom Le Voyer
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
| | - Quentin Philippot
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
| | - Jérémie Rosain
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
| | - Lucy Bizien
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
| | - Takaki Asano
- Dept. of Pediatrics, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Marina Garcia-Prat
- Pediatric Infectious Diseases and Immunodeficiencies Unit, Hospital Universitari Vall d’Hebron, Vall d’Hebron Research Institute, Vall d’Hebron Barcelona Hospital Campus, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Alba Parra-Martínez
- Pediatric Infectious Diseases and Immunodeficiencies Unit, Hospital Universitari Vall d’Hebron, Vall d’Hebron Research Institute, Vall d’Hebron Barcelona Hospital Campus, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Mélanie Migaud
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
| | - Miyuki Tsumura
- Dept. of Pediatrics, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Francesca Conti
- Pediatric Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Dept. of Medical and Surgical Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Alexandre Belot
- National Reference Center for Rheumatic, and Autoimmune and Systemic Diseases in Children, Lyon, France
- Immunopathology Federation LIFE, Hospices Civils de Lyon, Lyon, France
- Hospices Civils de Lyon, Lyon, France
- International Center of Research in Infectiology, Lyon University, International Center of Research in Infectiology, Lyon University, INSERM U1111, CNRS UMR 5308, ENS, UCBL, Lyon, France
| | - Jacques G. Rivière
- Pediatric Infectious Diseases and Immunodeficiencies Unit, Hospital Universitari Vall d’Hebron, Vall d’Hebron Research Institute, Vall d’Hebron Barcelona Hospital Campus, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Tomohiro Morio
- Dept. of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Junko Tanaka
- Dept. of Epidemiology, Infectious Disease Control and Prevention, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Etienne Javouhey
- Pediatric Intensive Care Unit, Hospices Civils de Lyon, Hopital Femme Mère Enfant, Lyon, France
| | - Filomeen Haerynck
- Dept. of Paediatric Immunology and Pulmonology, Center for Primary Immunodeficiency Ghent, Jeffrey Modell Diagnosis and Research Center, Ghent University Hospital, Ghent, Belgium
| | - Sotirija Duvlis
- Faculty of Medical Sciences, University “Goce Delchev”, Stip, Republic of Northern Macedonia
- Institute of Public Health of the Republic of North Macedonia, Skopje, North Macedonia
| | - Tayfun Ozcelik
- Dept. of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey
| | - Sevgi Keles
- Meram Medical Faculty, Necmettin Erbakan University, Konya, Turkey
| | - Yacine Tandjaoui-Lambiotte
- Pulmonology and Infectious Disease Department, Saint Denis Hospital, Saint Denis, France
- INSERM UMR 1137 IAME, Paris, France
- INSERM UMR 1272 Hypoxia and Lung, Bobigny, France
| | - Simon Escoda
- Pediatric Dept., Saint-Denis Hospital, Saint-Denis, France
| | - Maya Husain
- Pediatric Dept., Saint-Denis Hospital, Saint-Denis, France
| | - Qiang Pan-Hammarström
- Division of Immunology, Dept. of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Lennart Hammarström
- Division of Immunology, Dept. of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Gloria Ahlijah
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
| | - Anthony Abi Haidar
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
| | - Camille Soudee
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
| | - Vincent Arseguel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
| | - Hassan Abolhassani
- Division of Immunology, Dept. of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children’s Medical Center, Pediatrics Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Sabina Sahanic
- Dept. of Internal Medicine II, Medical University of Innsbruck, Innsbruck, Austria
| | - Ivan Tancevski
- Dept. of Internal Medicine II, Medical University of Innsbruck, Innsbruck, Austria
| | - Yoko Nukui
- Dept. of Infection Control and Prevention, Medical Hospital, TMDU, Tokyo, Japan
| | - Seiichi Hayakawa
- Dept. of Pediatrics, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - George P. Chrousos
- University Research Institute of Maternal and Child Health and Precision Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Athanasios Michos
- University Research Institute of Maternal and Child Health and Precision Medicine, National and Kapodistrian University of Athens, Athens, Greece
- First Dept. of Pediatics, National and Kapodistrian University of Athens, Athens, Greece
| | - Elizabeth-Barbara Tatsi
- University Research Institute of Maternal and Child Health and Precision Medicine, National and Kapodistrian University of Athens, Athens, Greece
- First Dept. of Pediatics, National and Kapodistrian University of Athens, Athens, Greece
| | - Filippos Filippatos
- University Research Institute of Maternal and Child Health and Precision Medicine, National and Kapodistrian University of Athens, Athens, Greece
- First Dept. of Pediatics, National and Kapodistrian University of Athens, Athens, Greece
| | - Agusti Rodriguez-Palmero
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, Barcelona, Spain
- Dept. of Pediatrics, Germans Trias i Pujol University Hospital, UAB, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Jesus Troya
- Dept. of Internal Medicine, Infanta Leonor University Hospital, Madrid, Spain
| | - Imran Tipu
- University of Management and Technology, Lahore, Pakistan
| | - Isabelle Meyts
- Dept. of Immunology, Laboratory of Inborn Errors of Immunity, Microbiology and Transplantation, KU Leuven, Leuven, Belgium
- Dept. of Pediatrics, Jeffrey Modell Diagnostic and Research Network Center, University Hospitals Leuven, Leuven, Belgium
| | - Lucie Roussel
- Dept. of Medicine, Division of Infectious Diseases, McGill University Health Centre, Montréal, Canada
- Infectious Disease Susceptibility Program, Research Institute–McGill University Health Centre, Montréal, Canada
| | - Sisse Rye Ostrowski
- Dept. of Clinical Immunology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Laire Schidlowski
- Faculdades Pequeno Príncipe, Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba, Brazil
| | - Carolina Prando
- Faculdades Pequeno Príncipe, Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba, Brazil
| | - Antonio Condino-Neto
- Dept. of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Nathalie Cheikh
- Pediatric Hematology Unit, University Hospital of Besançon, Besançon, France
| | - Ahmed A. Bousfiha
- Dept. of Pediatric Infectious Disease and Clinical Immunology, CHU Ibn Rushd and LICIA, Laboratoire d’Immunologie Clinique, Inflammation et Allergie, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| | - Jalila El Bakkouri
- Laboratory of Immunology, CHU Ibn Rushd and LICIA, Laboratoire d’Immunologie Clinique, Inflammation et Allergie, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| | - Pärt Peterson
- Molecular Pathology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Aurora Pujol
- Neurometabolic Diseases Laboratory, IDIBELL-Hospital Duran i Reynals, CIBERER U759, and Catalan Institution of Research and Advanced Studies, Barcelona, Spain
| | - Romain Lévy
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
- Pediatric Hematology-Immunology and Rheumatology Unit, Necker Hospital for Sick Children, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Pierre Quartier
- University Paris Cité, Imagine Institute, Paris, France
- Pediatric Hematology-Immunology and Rheumatology Unit, Necker Hospital for Sick Children, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Donald C. Vinh
- Dept. of Medicine, Division of Infectious Diseases, McGill University Health Centre, Montréal, Canada
- Infectious Disease Susceptibility Program, Research Institute–McGill University Health Centre, Montréal, Canada
| | - Bertrand Boisson
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Vivien Béziat
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Shen-Ying Zhang
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Alessandro Borghesi
- Neonatal Intensive Care Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Andrea Pession
- Pediatric Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Evangelos Andreakos
- Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Nico Marr
- Research Branch, Sidra Medicine, Doha, Qatar
| | - Alexios-Fotios A. Mentis
- University Research Institute of Maternal and Child Health and Precision Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Trine H. Mogensen
- Dept. of Infectious Diseases, Aarhus University Hospital, Skejby, Denmark
- Dept. of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Carlos Rodríguez-Gallego
- Hospital Universitario de Gran Canaria Dr Negrín, Canarian Health System, Las Palmas, Spain
- Dept. of Clinical Sciences, University Fernando Pessoa Canarias, Las Palmas de Gran Canaria, Spain
- Dept. of Medical and Surgical Sciences, School of Medicine, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Pere Soler-Palacin
- Pediatric Infectious Diseases and Immunodeficiencies Unit, Hospital Universitari Vall d’Hebron, Vall d’Hebron Research Institute, Vall d’Hebron Barcelona Hospital Campus, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Roger Colobran
- Immunology Division, Genetics Dept., Hospital Universitari Vall d’Hebron, Vall d’Hebron Research Institute, Vall d’Hebron Barcelona Hospital Campus, UAB, Barcelona, Spain
| | - Vallo Tillmann
- Dept. of Pediatrics, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Bénédicte Neven
- University Paris Cité, Imagine Institute, Paris, France
- Pediatric Hematology-Immunology and Rheumatology Unit, Necker Hospital for Sick Children, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Sophie Trouillet-Assant
- Hospices Civils de Lyon, Lyon, France
- International Center of Research in Infectiology, Lyon University, International Center of Research in Infectiology, Lyon University, INSERM U1111, CNRS UMR 5308, ENS, UCBL, Lyon, France
- Joint Research Unit, Hospices Civils de Lyon-bio Mérieux, Hospices Civils de Lyon, Lyon Sud Hospital, Pierre-Bénite, France
- International Center of Research in Infectiology, Lyon University, INSERM U1111, CNRS UMR 5308, ENS, UCBL, Lyon, France
| | - Petter Brodin
- Unit for Clinical Pediatrics, Dept. of Women’s and Children’s Health, Karolinska Institutet, Solna, Sweden
- Department of Immunology and Inflammation, Imperial College London, London, UK
| | - Laurent Abel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Emmanuelle Jouanguy
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Qian Zhang
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Federico Martinón-Torres
- Translational Pediatrics and Infectious Diseases, Pediatrics Dept., Hospital Clínico Universitario de Santiago, Servizo Galego de Saude (SERGAS), Santiago de Compostela, Spain
- GENVIP Research Group, Instituto de Investigación Sanitaria de Santiago (IDIS), Universidad de Santiago de Compostela, Galicia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Antonio Salas
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
- Facultade de Medicina, Unidade de Xenética, Instituto de Ciencias Forenses, Universidade de Santiago de Compostela, and GenPoB Research Group, IDIS, SERGAS, Galicia, Spain
| | - Alberto Gómez-Carballa
- GENVIP Research Group, Instituto de Investigación Sanitaria de Santiago (IDIS), Universidad de Santiago de Compostela, Galicia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
- Facultade de Medicina, Unidade de Xenética, Instituto de Ciencias Forenses, Universidade de Santiago de Compostela, and GenPoB Research Group, IDIS, SERGAS, Galicia, Spain
| | - Luis I. Gonzalez-Granado
- Immunodeficiencies Unit, Hospital 12 de octubre, Research Institute Hospital 12 octubre, Madrid, Spain
| | - Kai Kisand
- Molecular Pathology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Satoshi Okada
- Dept. of Pediatrics, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Anne Puel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Aurélie Cobat
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Howard Hughes Medical Institute, New York, NY, USA
- Dept. of Pediatrics, Necker Hospital for Sick Children, AP-HP, Paris, France
| |
Collapse
|
14
|
Akbari A, Hadizadeh A, Amiri M, Najafi NN, Shahriari Z, Jamialahmadi T, Sahebkar A. Role of autoantibodies targeting interferon type 1 in COVID-19 severity: A systematic review and meta-analysis. J Transl Autoimmun 2023; 7:100219. [PMID: 37868109 PMCID: PMC10587724 DOI: 10.1016/j.jtauto.2023.100219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 10/04/2023] [Accepted: 10/08/2023] [Indexed: 10/24/2023] Open
Abstract
Introduction Impairment of the type I interferon (IFN-I) signaling pathway is associated with increased severity of COVID-19 disease. Here we have undertaken a systematic review and meta = analysis on the association between the severity of COVID-19 and IFN-1 autoantibodies (AAbs; aIFN-1, aIFN-α, aIFN-ω, and aIFN-β). Methods Four databases, including Medline [PubMed], Embase, Web of Science, and Scopus, were systematically searched to find papers on the role of aIFN-1 and its subtype AAbs in the severity of COVID-19 infection. Data on the prevalence of aIFN-1, aIFN-α, aIFN-ω, and aIFN-β were pooled using random- or fixed-effects models. Subgroup analysis was performed based on disease severity. Odds ratios (OR) for COVID-19 disease outcome, including length of hospital stay, ICU admission and death, were calculated in relation to positive or negative plasma IFN-1 AAbs. Results A total of 33 studies with 13023 patients were included. The overall prevalence of circulating aIFN-1, aIFN-α, and aIFN-ω AAbs was 17.8 % [13.8, 22.8], 7.2 % [4.7, 10.9], and 4.4 % [2.1, 8.6], respectively, and the overall prevalence of neutralizing aIFN-1, aIFN-α, aIFN-ω, and aIFN-β AAbs was 7.1 % [4.9, 10.1], 7.5 % [5.9, 9.5], 8.0 % [5.7, 11.1] and 1.2 % [0.4, 3.5], respectively. Circulating aIFN-α (OR = 4.537 [2.247, 9.158]), neutralizing aIFN-α (O = 17.482 [8.899, 34.342]), and neutralizing aIFN-ω (OR = 12.529 [7.397, 21.222]) were significantly more frequent in critical/severe patients than in moderate/mild patients (p < 0.001 for all). Anti-IFN-1 was more common in male subjects (OR = 2.248 [1.366, 3.699], p = 0.001) and two COVID-19 outcomes including ICU admission (OR = 2.485 [1.409, 4.385], p = 0.002) and death (OR = 2.593 [1.199, 5.604], p = 0.015) occurred more frequently in patients with positive anti-IFN-1.Conclusion: aIFN-1 and its subtypes AAbs are associated with severe and critical COVID-19 disease and may be a predictive marker for a poor prognosis, particularly in men.
Collapse
Affiliation(s)
- Abolfazl Akbari
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alireza Hadizadeh
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Research Center for Advanced Technologies in Cardiovascular Medicine, Cardiovascular Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahdi Amiri
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Neshat Najaf Najafi
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Shahriari
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Tannaz Jamialahmadi
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
15
|
Hansen KS, Jørgensen SE, Skouboe MK, Agergaard J, Schiøttz-Christensen B, Vibholm LK, Tolstrup M, Østergaard L, Leth S, Mogensen TH. Examination of autoantibodies to type I interferon in patients suffering from long COVID. J Med Virol 2023; 95:e29089. [PMID: 37698062 DOI: 10.1002/jmv.29089] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/17/2023] [Accepted: 08/31/2023] [Indexed: 09/13/2023]
Abstract
Long COVID (LC) is an emerging global health concern. The underlying mechanism and pathophysiology remain unclear. Presence of neutralizing autoantibodies against type 1 interferons (IFN) has been established as a predictor of critical COVID-19. We hypothesized that persistent autoimmune activity with autoantibodies against type 1 IFN may contribute to symptoms in patients with LC. Plasma samples and clinical information were obtained from a Danish LC cohort consisting of adult patients with confirmed severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Information on symptoms and quality of life was derived from an LC-specific questionnaire and the EQ-5D-5L questionnaire. Detection of type 1 IFN autoantibodies in plasma were performed by ELISA. Samples collected between June, 2020, and September, 2021, from 279 patients were analyzed and compared to a control group of 94 individuals with prior mild SARS-CoV-2 infection who did not develop LC symptoms. In total, five LC patients (1.8%) and 3 (3.2%) of the controls had detectable circulating type 1 IFN autoantibodies. Collectively, prevalence of autoantibodies against type 1 IFN subtypes in our LC cohort were primarily driven by men and did not exceed the prevalence in controls. Thus, in our cohort, anti-type I IFN autoantibodies are unlikely to drive LC symptoms.
Collapse
Affiliation(s)
- Kristoffer Skaalum Hansen
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Sofie Eg Jørgensen
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Morten Kelder Skouboe
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Jane Agergaard
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Berit Schiøttz-Christensen
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
- Research Unit of General Practice, University of Southern Denmark, Odense, Denmark
| | | | - Martin Tolstrup
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Lars Østergaard
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Steffen Leth
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Infectious Diseases & Internal Medicine, Gødstrup Regional Hospital, Herning, Denmark
| | - Trine H Mogensen
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
16
|
Ahmad Merza Mohammad T. Combining nano-curcumin with catechin improves COVID-19-infected patient's inflammatory conditions. Hum Immunol 2023; 84:471-483. [PMID: 37331910 PMCID: PMC10239908 DOI: 10.1016/j.humimm.2023.05.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 04/30/2023] [Accepted: 05/29/2023] [Indexed: 06/20/2023]
Abstract
AIMS A hyperinflammatory condition is brought on by the development of Coronavirus disease 2019 (COVID-19), which is characterized by an elevation of T helper (Th) 17 cells, high levels of pro-inflammatory cytokines, and a depletion of regulatory T (Treg) cells. METHODS In this research, we examined the effect of nano-curcumin and catechin on the TCD4+, TCD8+, Th17, and Treg cells and their associated factors in COVID-19 patients. For this purpose, 160 (50 patients excluded during the study) COVID-19 patients were divided into four groups: placebo, nano-curcumin, catechin, and nano-curcumin + catechin. The frequency of TCD4+, TCD8+, Th17, and Treg cells, the gene expression of transcription factors (STAT3, RORt, and FoxP3) relevant to Th17 and Treg, as well as the serum levels of cytokines (IL-6, IL17, IL1-b, IL-10, and TGF-), were all evaluated intra- and inter-group, before and after treatment, in all groups. RESULTS Our study showed that TCD4 + and TCD8 + cells were significantly higher in the nano-curcumin + catechin group compared to the control group, whereas Th17 was lower than the initial value. Furthermore, compared to the placebo-received group, cytokines and transcription factors associated with Th17 were significantly lower in the nano-curcumin + catechin group. Additionally, combined therapy increased Treg cells and transcription factors compared to the placebo group. CONCLUSION Overall, our results show that combining nano-curcumin with catechin has a more notable impact on the enhancement of TCD4+, TCD8+, and Treg cells, as well as a decrease in Th17 cells and their mediators, suggesting a promising combination therapy in reducing the inflammatory conditions of COVID-19 infected patients.
Collapse
|
17
|
Soltani-Zangbar MS, Hajivalili M, Daneshdoust D, Ghadir S, Savari G, Zolfaghari M, Aghebati-Maleki L, Oloufi S, Nouri N, Amini N, Mehdizadeh A, Ghasemi Moghadam H, Mahmoodpoor A, Ahmadian Heris J, Yousefi M. SARS-CoV2 infection induce miR-155 expression and skewed Th17/Treg balance by changing SOCS1 level: A clinical study. Cytokine 2023; 169:156248. [PMID: 37307689 PMCID: PMC10247889 DOI: 10.1016/j.cyto.2023.156248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 03/18/2023] [Accepted: 05/27/2023] [Indexed: 06/14/2023]
Abstract
BACKGROUND One of the regulators in severe acute respiratory syndrome coronavirus2 (SARS-CoV2) infection is miRNAs. In COVID-19 patients, immunological responses to SARS-CoV2 infection may be impacted by miR-155, a miRNA associated to inflammation. MATERIALS AND METHODS Peripheral blood mononuclear cells (PBMCs) of 50 confirmed COVID-19 patients /Healthy Controls (HCs) was isolated by Ficoll. The frequency of T helper 17 and regulatory T cells was analyzed by flowcytometry. The RNA was extracted from each sample and after synthesis of c-DNA, the relative expression of miR-155, suppressor of cytokine signaling (SOCS-1), Signal transducer and activator of transcription 3(STAT3), and Fork Head Box Protein 3 (FoxP3) was evaluated by real-time PCR. The protein level of STAT3, FoxP3 and RORγT in the isolated PBMCs measured by western blotting. The serum level of IL-10, TGF-β, IL-17 and IL21 was assessed by ELISA method. RESULTS The population of Th17 cells showed a significant rise, whereas Treg cells reduced in COVID-19 cases. The master transcription factor of Treg (FoxP3) and Th17 (RORγT) relative expression showed the same pattern as flowcytometry. STAT3 level of expression at RNA and protein level increased in COVID-19 cases. FOXP3 and SOCS-1 proteins were down-regulated. The relative expression of miR-155, up-regulated in PBMC of COVID-19 patients and revealed a negative correlation with SOCS-1. The serum cytokine profile showed a reduction in TGF-β, on the other hand an increase was seen in IL-17, IL-21 and IL-10 in COVID-19 cases toward control group. CONCLUSION Based on the studies conducted in this field, it can be suggested that Th17/Treg in covid-19 patients can be affected by miR-155 and it can be considered a valuable diagnostic and prognostic factor in this disease.
Collapse
Affiliation(s)
- Mohammad Sadegh Soltani-Zangbar
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | | - Sara Ghadir
- Student Research Committee, Faculty of Medical Sciences, Babol University of Medical Sciences, Babol, Iran
| | - Golaleh Savari
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | | - Solmaz Oloufi
- School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Narjes Nouri
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Naser Amini
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran; Institute of Regenerative Medicine, School of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Amir Mehdizadeh
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Ata Mahmoodpoor
- Department of Anesthesiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Javad Ahmadian Heris
- Department of Allergy and Clinical Immunology, Pediatric Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Yousefi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
18
|
Philippot Q, Fekkar A, Gervais A, Le Voyer T, Boers LS, Conil C, Bizien L, de Brabander J, Duitman JW, Romano A, Rosain J, Blaize M, Migaud M, Jeljeli M, Hammadi B, Desmons A, Marchal A, Mayaux J, Zhang Q, Jouanguy E, Borie R, Crestani B, Luyt CE, Adle-Biassette H, Sene D, Megarbane B, Cobat A, Bastard P, Bos LDJ, Casanova JL, Puel A. Autoantibodies Neutralizing Type I IFNs in the Bronchoalveolar Lavage of at Least 10% of Patients During Life-Threatening COVID-19 Pneumonia. J Clin Immunol 2023; 43:1093-1103. [PMID: 37209324 PMCID: PMC10199445 DOI: 10.1007/s10875-023-01512-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 05/03/2023] [Indexed: 05/22/2023]
Abstract
Autoantibodies (auto-Abs) neutralizing type I interferons (IFNs) are found in the blood of at least 15% of unvaccinated patients with life-threatening COVID-19 pneumonia. We report here the presence of auto-Abs neutralizing type I IFNs in the bronchoalveolar lavage (BAL) of 54 of the 415 unvaccinated patients (13%) with life-threatening COVID-19 pneumonia tested. The 54 individuals with neutralizing auto-Abs in the BAL included 45 (11%) with auto-Abs against IFN-α2, 37 (9%) with auto-Abs against IFN-ω, 54 (13%) with auto-Abs against IFN-α2 and/or ω, and five (1%) with auto-Abs against IFN-β, including three (0.7%) with auto-Abs neutralizing IFN-α2, IFN-ω, and IFN-β, and two (0.5%) with auto-Abs neutralizing IFN-α2 and IFN-β. Auto-Abs against IFN-α2 also neutralize the other 12 subtypes of IFN-α. Paired plasma samples were available for 95 patients. All seven patients with paired samples who had detectable auto-Abs in BAL also had detectable auto-Abs in plasma, and one patient had auto-Abs detectable only in blood. Auto-Abs neutralizing type I IFNs are, therefore, present in the alveolar space of at least 10% of patients with life-threatening COVID-19 pneumonia. These findings suggest that these auto-Abs impair type I IFN immunity in the lower respiratory tract, thereby contributing to hypoxemic COVID-19 pneumonia.
Collapse
Affiliation(s)
- Quentin Philippot
- Laboratory of Human Genetics of Infectious Diseases, Imagine Institute for Genetic Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, 24 Boulevard du Montparnasse 75015, EU, Paris, France.
- Imagine Institute, Université Paris Cité, Paris, EU, France.
| | - Arnaud Fekkar
- Laboratory of Human Genetics of Infectious Diseases, Imagine Institute for Genetic Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, 24 Boulevard du Montparnasse 75015, EU, Paris, France
- Imagine Institute, Université Paris Cité, Paris, EU, France
- AP-HP, Groupe Hospitalier La Pitié-Salpêtrière, Service de Parasitologie Mycologie, Paris, EU, France
| | - Adrian Gervais
- Laboratory of Human Genetics of Infectious Diseases, Imagine Institute for Genetic Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, 24 Boulevard du Montparnasse 75015, EU, Paris, France
- Imagine Institute, Université Paris Cité, Paris, EU, France
| | - Tom Le Voyer
- Laboratory of Human Genetics of Infectious Diseases, Imagine Institute for Genetic Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, 24 Boulevard du Montparnasse 75015, EU, Paris, France
- Imagine Institute, Université Paris Cité, Paris, EU, France
| | - Leonoor S Boers
- Amsterdam UMC, University of Amsterdam, Intensive Care Medicine, Meibergdreef 9, Amsterdam, EU, The Netherlands
| | - Clément Conil
- Laboratory of Human Genetics of Infectious Diseases, Imagine Institute for Genetic Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, 24 Boulevard du Montparnasse 75015, EU, Paris, France
- Imagine Institute, Université Paris Cité, Paris, EU, France
| | - Lucy Bizien
- Laboratory of Human Genetics of Infectious Diseases, Imagine Institute for Genetic Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, 24 Boulevard du Montparnasse 75015, EU, Paris, France
- Imagine Institute, Université Paris Cité, Paris, EU, France
| | - Justin de Brabander
- Center for Experimental Molecular Medicine, Amsterdam UMC, Amsterdam, EU, Netherlands
| | - Jan Willem Duitman
- Amsterdam UMC, Location AMC, Department of Pulmonary Medicine, University of Amsterdam, 1105 AZ, Amsterdam, EU, The Netherlands
- Amsterdam UMC, Department of Experimental Immunology, Location University of Amsterdam, 1105 AZ, Amsterdam, EU, The Netherlands
- Amsterdam Infection & Immunity, Inflammatory Diseases, 1105 AZ, Amsterdam, EU, The Netherlands
| | - Alessia Romano
- Laboratory of Human Genetics of Infectious Diseases, Imagine Institute for Genetic Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, 24 Boulevard du Montparnasse 75015, EU, Paris, France
- Imagine Institute, Université Paris Cité, Paris, EU, France
| | - Jérémie Rosain
- Laboratory of Human Genetics of Infectious Diseases, Imagine Institute for Genetic Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, 24 Boulevard du Montparnasse 75015, EU, Paris, France
- Imagine Institute, Université Paris Cité, Paris, EU, France
| | - Marion Blaize
- AP-HP, Groupe Hospitalier La Pitié-Salpêtrière, Service de Parasitologie Mycologie, Paris, EU, France
| | - Mélanie Migaud
- Laboratory of Human Genetics of Infectious Diseases, Imagine Institute for Genetic Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, 24 Boulevard du Montparnasse 75015, EU, Paris, France
- Imagine Institute, Université Paris Cité, Paris, EU, France
| | - Maxime Jeljeli
- Département 3I « Infection, Immunité Et Inflammation », Institut Cochin, INSERM U1016, Université Paris Cité, Paris, EU, France
- Faculté de Médecine, AP-HP-Centre Université de Paris, Hôpital Cochin, Service d'Immunologie Biologique, Université Paris Cité, Paris, EU, France
| | - Boualem Hammadi
- General Chemistry Laboratory, Department of Clinical Chemistry, APHP, Necker Hospital for Sick Children, Paris, EU, France
| | - Aurore Desmons
- Clinical Metabolomic Department, Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine (CRSA), Saint Antoine Hospital, Assistance Publique des Hôpitaux de Paris (AP-HP Sorbonne Université), Paris, France
| | - Astrid Marchal
- Laboratory of Human Genetics of Infectious Diseases, Imagine Institute for Genetic Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, 24 Boulevard du Montparnasse 75015, EU, Paris, France
- Imagine Institute, Université Paris Cité, Paris, EU, France
| | - Julien Mayaux
- INSERM, UMRS1158 Neurophysiologie Respiratoire Expérimentale et Clinique, Sorbonne Université, Paris, EU, France
- Site Pitié-Salpêtrière, Service de Pneumologie, Médecine Intensive et Réanimation, Département R3S, Hôpital Pitié-Salpêtrière, AP-HP, Sorbonne Université, Paris, EU, France
| | - Qian Zhang
- Laboratory of Human Genetics of Infectious Diseases, Imagine Institute for Genetic Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, 24 Boulevard du Montparnasse 75015, EU, Paris, France
- Imagine Institute, Université Paris Cité, Paris, EU, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Emmanuelle Jouanguy
- Laboratory of Human Genetics of Infectious Diseases, Imagine Institute for Genetic Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, 24 Boulevard du Montparnasse 75015, EU, Paris, France
- Imagine Institute, Université Paris Cité, Paris, EU, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Raphael Borie
- Service de Pneumologie A Hôpital Bichat, APHP, Paris, EU, France
- Inserm, PHERE, Université Paris Cité, 75018, Paris, EU, France
| | - Bruno Crestani
- Service de Pneumologie A Hôpital Bichat, APHP, Paris, EU, France
- Inserm, PHERE, Université Paris Cité, 75018, Paris, EU, France
| | - Charles Edouard Luyt
- Service de Médecine Intensive Réanimation, Institut de Cardiologie, AP-HP, Hôpital Pitié-Salpêtrière, Paris, EU, France
- Inserm, Institute of Cardiometabolism and Nutrition (ICAN), Sorbonne Université, Paris, EU, France
| | - Homa Adle-Biassette
- AP-HP, Hôpital Lariboisière, Service Anatomie Pathologique and Université de Paris, Paris, EU, France
- Inserm, NeuroDiderot, Paris, EU, France
| | - Damien Sene
- Internal Medicine Department, AP-HP, Lariboisière Hospital, Paris, EU, France
- Université Paris Cité, Paris, EU, France
| | - Bruno Megarbane
- Department of Medical and Toxicological Critical Care, APHP, Lariboisière Hospital, Paris, EU, France
- INSERM UMRS-1144, Paris-University, Paris, EU, France
| | - Aurélie Cobat
- Laboratory of Human Genetics of Infectious Diseases, Imagine Institute for Genetic Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, 24 Boulevard du Montparnasse 75015, EU, Paris, France
- Imagine Institute, Université Paris Cité, Paris, EU, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Paul Bastard
- Laboratory of Human Genetics of Infectious Diseases, Imagine Institute for Genetic Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, 24 Boulevard du Montparnasse 75015, EU, Paris, France
- Imagine Institute, Université Paris Cité, Paris, EU, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
- Pediatric Hematology-Immunology and Rheumatology Unit, Necker Hospital for Sick Children, AP-HP, Paris, France
| | - Lieuwe D J Bos
- Amsterdam UMC, University of Amsterdam, Intensive Care Medicine, Meibergdreef 9, Amsterdam, EU, The Netherlands
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Imagine Institute for Genetic Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, 24 Boulevard du Montparnasse 75015, EU, Paris, France
- Imagine Institute, Université Paris Cité, Paris, EU, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
- Department of Pediatrics, Necker Hospital for Sick Children, Paris, EU, France
- Howard Hughes Medical Institute, New York, NY, USA
| | - Anne Puel
- Laboratory of Human Genetics of Infectious Diseases, Imagine Institute for Genetic Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, 24 Boulevard du Montparnasse 75015, EU, Paris, France
- Imagine Institute, Université Paris Cité, Paris, EU, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| |
Collapse
|
19
|
Su HC, Jing H, Zhang Y, Casanova JL. Interfering with Interferons: A Critical Mechanism for Critical COVID-19 Pneumonia. Annu Rev Immunol 2023; 41:561-585. [PMID: 37126418 DOI: 10.1146/annurev-immunol-101921-050835] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Infection with SARS-CoV-2 results in clinical outcomes ranging from silent or benign infection in most individuals to critical pneumonia and death in a few. Genetic studies in patients have established that critical cases can result from inborn errors of TLR3- or TLR7-dependent type I interferon immunity, or from preexisting autoantibodies neutralizing primarily IFN-α and/or IFN-ω. These findings are consistent with virological studies showing that multiple SARS-CoV-2 proteins interfere with pathways of induction of, or response to, type I interferons. They are also congruent with cellular studies and mouse models that found that type I interferons can limit SARS-CoV-2 replication in vitro and in vivo, while their absence or diminution unleashes viral growth. Collectively, these findings point to insufficient type I interferon during the first days of infection as a general mechanism underlying critical COVID-19 pneumonia, with implications for treatment and directions for future research.
Collapse
Affiliation(s)
- Helen C Su
- Human Immunological Diseases Section, Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, NIAID, NIH; Bethesda, Maryland, USA;
| | - Huie Jing
- Human Immunological Diseases Section, Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, NIAID, NIH; Bethesda, Maryland, USA;
| | - Yu Zhang
- Human Immunological Diseases Section, Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, NIAID, NIH; Bethesda, Maryland, USA;
| | - Jean-Laurent Casanova
- Howard Hughes Medical Institute and St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, Paris, France
- University of Paris Cité, Imagine Institute, Paris, France
- Department of Pediatrics, Necker Hospital for Sick Children, Paris, France
| |
Collapse
|
20
|
Etemadi J, Motavalli R, Mirghaffari SA, Soltani-Zangbar MS, Hajivalili M, Ahmadian Heris J, Niknafs B, Zununi S, Sadeghi M, Rasi Hashemi S, Tayebi Khosroshahi H, Yousefi M. Potent SARS-CoV2-specific T-cell response in asymptomatic hemodialysis patients with hidden COVID-19 infection history. J Clin Lab Anal 2023; 37:e24863. [PMID: 36941528 PMCID: PMC10098065 DOI: 10.1002/jcla.24863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 01/24/2023] [Accepted: 03/04/2023] [Indexed: 03/23/2023] Open
Abstract
BACKGROUND COVID-19-related immune responses in patients with end-stage renal disease (ESRD) are characterized in detail by the humoral response, but their cellular immunity has not been clarified. Here, we evaluated virus-specific T cells in parallel with serology-related tests. METHODS In this study, 104 ESRD patients at the hemodialysis ward of Imam Reza hospital at Tabriz (Iran) were enrolled. After blood sampling, SARS-CoV2-specific humoral and cellular immune responses were evaluated by SARS-CoV2-specific IgM/IgG ELISA and peptide/MHCI-Tetramers flow cytometry, respectively. RESULTS Our results showed that 14 (13.5%) and 45 (43.3%) patients had specific SARS-CoV2 IgM and IgG in their sera, respectively. Immunophenotyping for SARS-CoV2-specific CD8+ T lymphocytes revealed that 68 (65.4%) patients had these types of cells. Among SARS-CoV2-specific CD8+ T lymphocytes positive subjects, 13 and 43 individuals had positive results for specific SARS-CoV2 IgM and IgG existence, respectively. Also, there was a relationship between specific SARS-CoV2 IgM (p = 0.031) and IgG (p < 0.0001) existence and having SARS-CoV2-specific TCD8+ lymphocytes in the studied population. CONCLUSION Despite not having clinical symptoms, a high rate of SARS-CoV2-specific T-cell response in asymptomatic ESRD patients may reveal a high burden of asymptomatic COVID-19 infection in these patients.
Collapse
Affiliation(s)
- Jalal Etemadi
- Kidney Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Roza Motavalli
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Mohammad Sadegh Soltani-Zangbar
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Javad Ahmadian Heris
- Department of Allergy and Clinical Immunology, Pediatric Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Bahram Niknafs
- Kidney Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sepideh Zununi
- Kidney Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammadreza Sadeghi
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | | - Mehdi Yousefi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
21
|
Garofalo E, Biamonte F, Palmieri C, Battaglia AM, Sacco A, Biamonte E, Neri G, Antico GC, Mancuso S, Foti G, Torti C, Costanzo FS, Longhini F, Bruni A. Severe and mild-moderate SARS-CoV-2 vaccinated patients show different frequencies of IFNγ-releasing cells: An exploratory study. PLoS One 2023; 18:e0281444. [PMID: 36757971 PMCID: PMC9910754 DOI: 10.1371/journal.pone.0281444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 01/23/2023] [Indexed: 02/10/2023] Open
Abstract
BACKGROUND Despite an apparent effective vaccination, some patients are admitted to the hospital after SARS-CoV-2 infection. The role of adaptive immunity in COVID-19 is growing; nonetheless, differences in the spike-specific immune responses between patients requiring or not hospitalization for SARS-CoV-2 infection remains to be evaluated. In this study, we aim to evaluate the spike-specific immune response in patients with mild-moderate or severeSARS-CoV-2 infection, after breakthrough infection following two doses of BNT162b2 mRNA vaccine. METHODS We included three cohorts of 15 cases which received the two BNT162b2 vaccine doses in previous 4 to 7 months: 1) patients with severe COVID-19; 2) patients with mild-moderate COVID-19 and 3) vaccinated individuals with a negative SARS-CoV-2 molecular pharyngeal swab (healthy subjects). Anti-S1 and anti-S2 specific SARS-CoV-2 IgM and IgG titers were measured through a chemiluminescence immunoassay technology. In addition, the frequencies of IFNγ-releasing cells were measured by ELISpot. RESULTS The spike-specific IFNγ-releasing cells were significantly lower in severe patients (8 [0; 26] s.f.c.×106), as compared to mild-moderate patients (135 [64; 159] s.f.c.×106; p<0.001) and healthy subjects (103 [50; 188] s.f.c.×106; p<0.001). The anti-Spike protein IgG levels were similar among the three cohorts of cases (p = 0.098). All cases had an IgM titer below the analytic sensitivity of the test. The Receiver Operating Curve analysis indicated the rate of spike-specific IFNγ-releasing cells can discriminate correctly severe COVID-19 and mild-moderate patients (AUC: 0.9289; 95%CI: 0.8376-1.000; p< 0.0001), with a diagnostic specificity of 100% for s.f.c. > 81.2 x 106. CONCLUSIONS 2-doses vaccinated patients requiring hospitalization for severe COVID-19 show a cellular-mediated immune response lower than mild-moderate or healthy subjects, despite similar antibody titers.
Collapse
Affiliation(s)
- Eugenio Garofalo
- Department of Medical and Surgical Sciences, Anesthesia and Intensive Care Unit, University Hospital Mater Domini, Magna Graecia University, Catanzaro, Italy
| | - Flavia Biamonte
- Department of Experimental and Clinical Medicine, "Magna Graecia" University of Catanzaro, Catanzaro, Italy
- Interdepartmental Center of Services (CIS), Molecular Genomics and Pathology, "Magna Græcia" University of Catanzaro, Catanzaro, Italy
| | - Camillo Palmieri
- Department of Experimental and Clinical Medicine, "Magna Graecia" University of Catanzaro, Catanzaro, Italy
| | - Anna Martina Battaglia
- Department of Experimental and Clinical Medicine, "Magna Graecia" University of Catanzaro, Catanzaro, Italy
| | - Alessandro Sacco
- Department of Experimental and Clinical Medicine, "Magna Graecia" University of Catanzaro, Catanzaro, Italy
| | - Eugenio Biamonte
- Department of Medical and Surgical Sciences, Anesthesia and Intensive Care Unit, University Hospital Mater Domini, Magna Graecia University, Catanzaro, Italy
| | - Giuseppe Neri
- Department of Medical and Surgical Sciences, Anesthesia and Intensive Care Unit, University Hospital Mater Domini, Magna Graecia University, Catanzaro, Italy
| | | | - Serafina Mancuso
- Unit of Biochimica Clinica, University Hospital Mater Domini, Catanzaro, Italy
| | - Giuseppe Foti
- Unit of Infectious Disease, Grand Metropolitan Hospital, Reggio Calabria, Italy
| | - Carlo Torti
- Department of Medical and Surgical Sciences, Unit of Infectious and Tropical Diseases, "Magna Graecia" University, Catanzaro, Italy
| | - Francesco Saverio Costanzo
- Department of Experimental and Clinical Medicine, "Magna Graecia" University of Catanzaro, Catanzaro, Italy
- Interdepartmental Center of Services (CIS), Molecular Genomics and Pathology, "Magna Græcia" University of Catanzaro, Catanzaro, Italy
| | - Federico Longhini
- Department of Medical and Surgical Sciences, Anesthesia and Intensive Care Unit, University Hospital Mater Domini, Magna Graecia University, Catanzaro, Italy
| | - Andrea Bruni
- Department of Medical and Surgical Sciences, Anesthesia and Intensive Care Unit, University Hospital Mater Domini, Magna Graecia University, Catanzaro, Italy
| |
Collapse
|
22
|
The Landscape of Expressed Chimeric Transcripts in the Blood of Severe COVID-19 Infected Patients. Viruses 2023; 15:v15020433. [PMID: 36851647 PMCID: PMC9958880 DOI: 10.3390/v15020433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/30/2023] [Accepted: 02/01/2023] [Indexed: 02/09/2023] Open
Abstract
The ongoing COVID-19 pandemic caused by SARS-CoV-2 infections has quickly developed into a global public health threat. COVID-19 patients show distinct clinical features, and in some cases, during the severe stage of the condition, the disease severity leads to an acute respiratory disorder. In spite of several pieces of research in this area, the molecular mechanisms behind the development of disease severity are still not clearly understood. Recent studies demonstrated that SARS-CoV-2 alters the host cell splicing and transcriptional response to overcome the host immune response that provides the virus with favorable conditions to replicate efficiently within the host cells. In several disease conditions, aberrant splicing could lead to the development of novel chimeric transcripts that could promote the functional alternations of the cell. As severe SARS-CoV-2 infection was reported to cause abnormal splicing in the infected cells, we could expect the generation and expression of novel chimeric transcripts. However, no study so far has attempted to check whether novel chimeric transcripts are expressed in severe SARS-CoV-2 infections. In this study, we analyzed several publicly available blood transcriptome datasets of severe COVID-19, mild COVID-19, other severe respiratory viral infected patients, and healthy individuals. We identified 424 severe COVID-19 -specific chimeric transcripts, 42 of which were recurrent. Further, we detected 189 chimeric transcripts common to severe COVID-19 and multiple severe respiratory viral infections. Pathway and gene enrichment analysis of the parental genes of these two subsets of chimeric transcripts reveals that these are potentially involved in immune-related processes, interferon signaling, and inflammatory responses, which signify their potential association with immune dysfunction leading to the development of disease severity. Our study provides the first detailed expression landscape of chimeric transcripts in severe COVID-19 and other severe respiratory viral infections.
Collapse
|
23
|
Casanova JL, Anderson MS. Unlocking life-threatening COVID-19 through two types of inborn errors of type I IFNs. J Clin Invest 2023; 133:e166283. [PMID: 36719370 PMCID: PMC9888384 DOI: 10.1172/jci166283] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Since 2003, rare inborn errors of human type I IFN immunity have been discovered, each underlying a few severe viral illnesses. Autoantibodies neutralizing type I IFNs due to rare inborn errors of autoimmune regulator (AIRE)-driven T cell tolerance were discovered in 2006, but not initially linked to any viral disease. These two lines of clinical investigation converged in 2020, with the discovery that inherited and/or autoimmune deficiencies of type I IFN immunity accounted for approximately 15%-20% of cases of critical COVID-19 pneumonia in unvaccinated individuals. Thus, insufficient type I IFN immunity at the onset of SARS-CoV-2 infection may be a general determinant of life-threatening COVID-19. These findings illustrate the unpredictable, but considerable, contribution of the study of rare human genetic diseases to basic biology and public health.
Collapse
Affiliation(s)
- Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, New York, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
- Department of Pediatrics, Necker Hospital for Sick Children, Paris, France
- Howard Hughes Medical Institute, New York, New York, USA
| | - Mark S. Anderson
- Diabetes Center and
- Department of Medicine, UCSF, San Francisco, California, USA
| |
Collapse
|
24
|
Ghasempour M, Hosseini M, Soltani-Zangbar MS, Motavalli R, Aghebati-Maleki L, Dolati S, Mehdizadeh A, Yousefi M, Ahmadian Heris J. The impact of Hyssop (Hyssopus officinalis) extract on activation of endosomal toll like receptors and their downstream signaling pathways. BMC Res Notes 2022; 15:366. [PMID: 36503515 PMCID: PMC9742021 DOI: 10.1186/s13104-022-06253-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 11/23/2022] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVES From the ancient, medicinal benefits of Hyssop (Hyssopus officinalis L.) have been implicated for respiratory and digestive diseases despite the effects of Hyssop on viral infections have not been mechanistically investigated. In this study, we examined whether the Hyssop extract activated anti-viral innate immunity, as a sentinel for immune system, through activation of endosomal TLRs recognizing nucleic acids and their downstream signaling. The Hyssop herb extracts was prepared and co-cultured with healthy individual's peripheral blood mononuclear cells (PBMCs). After viability assay, gene expression levels of TLR3,7,8,9, as well as MyD88 and NF-κB, were evaluated in treated PBMCs using Real-time PCR. Next, the secretion level of immune related cytokines was quantified via ELISA. RESULTS Post 24 h, 40 µg/ml of the extract significantly inhibited the viability of less than 50% of cells compared to the control and had a maximum effect on cellular function. The Hyssop-treated PBMCs demonstrated an elevated expression of endosomal TLRs genes, as well as MyD88 and NF-κB. Moreover, the release of INF-α and β notably enhanced in cell culture supernatant, while the content of inflammatory cytokines remarkably diminished (P < 0.05). The Hyssop extract was capable of inducing antiviral innate immune responses so can be promising in antiviral drug strategies.
Collapse
Affiliation(s)
- Masoumeh Ghasempour
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Allergy and Clinical Immunology, Pediatric Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Hosseini
- Trauma Research Center, Shahid Rajaee (Emtiaz) Trauma Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Sadegh Soltani-Zangbar
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Roza Motavalli
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Sanam Dolati
- Physical Medicine and Rehabilitation Research Center, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Mehdizadeh
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Yousefi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Javad Ahmadian Heris
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Allergy and Clinical Immunology, Pediatric Hospital, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
25
|
Zhang Q, Pizzorno A, Miorin L, Bastard P, Gervais A, Le Voyer T, Bizien L, Manry J, Rosain J, Philippot Q, Goavec K, Padey B, Cupic A, Laurent E, Saker K, Vanker M, Särekannu K, García-Salum T, Ferres M, Le Corre N, Sánchez-Céspedes J, Balsera-Manzanero M, Carratala J, Retamar-Gentil P, Abelenda-Alonso G, Valiente A, Tiberghien P, Zins M, Debette S, Meyts I, Haerynck F, Castagnoli R, Notarangelo LD, Gonzalez-Granado LI, Dominguez-Pinilla N, Andreakos E, Triantafyllia V, Rodríguez-Gallego C, Solé-Violán J, Ruiz-Hernandez JJ, Rodríguez de Castro F, Ferreres J, Briones M, Wauters J, Vanderbeke L, Feys S, Kuo CY, Lei WT, Ku CL, Tal G, Etzioni A, Hanna S, Fournet T, Casalegno JS, Queromes G, Argaud L, Javouhey E, Rosa-Calatrava M, Cordero E, Aydillo T, Medina RA, Kisand K, Puel A, Jouanguy E, Abel L, Cobat A, Trouillet-Assant S, García-Sastre A, Casanova JL. Autoantibodies against type I IFNs in patients with critical influenza pneumonia. J Exp Med 2022; 219:e20220514. [PMID: 36112363 PMCID: PMC9485705 DOI: 10.1084/jem.20220514] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 07/04/2022] [Accepted: 08/08/2022] [Indexed: 12/31/2022] Open
Abstract
Autoantibodies neutralizing type I interferons (IFNs) can underlie critical COVID-19 pneumonia and yellow fever vaccine disease. We report here on 13 patients harboring autoantibodies neutralizing IFN-α2 alone (five patients) or with IFN-ω (eight patients) from a cohort of 279 patients (4.7%) aged 6-73 yr with critical influenza pneumonia. Nine and four patients had antibodies neutralizing high and low concentrations, respectively, of IFN-α2, and six and two patients had antibodies neutralizing high and low concentrations, respectively, of IFN-ω. The patients' autoantibodies increased influenza A virus replication in both A549 cells and reconstituted human airway epithelia. The prevalence of these antibodies was significantly higher than that in the general population for patients <70 yr of age (5.7 vs. 1.1%, P = 2.2 × 10-5), but not >70 yr of age (3.1 vs. 4.4%, P = 0.68). The risk of critical influenza was highest in patients with antibodies neutralizing high concentrations of both IFN-α2 and IFN-ω (OR = 11.7, P = 1.3 × 10-5), especially those <70 yr old (OR = 139.9, P = 3.1 × 10-10). We also identified 10 patients in additional influenza patient cohorts. Autoantibodies neutralizing type I IFNs account for ∼5% of cases of life-threatening influenza pneumonia in patients <70 yr old.
Collapse
Affiliation(s)
- Qian Zhang
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Université Paris Cité, Imagine Institute, Paris, France
| | - Andrés Pizzorno
- CIRI, Centre International de Recherche en Infectiologie - Team VirPath, Univ Lyon, INSERM U1111, Université Claude Bernard Lyon 1, CNRS UMR5308, ENS Lyon, Lyon, France
| | - Lisa Miorin
- Dept. of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Paul Bastard
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Université Paris Cité, Imagine Institute, Paris, France
- Dept. of Pediatrics, Necker Hospital for Sick Children, AP-HP, Paris, France
| | - Adrian Gervais
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Université Paris Cité, Imagine Institute, Paris, France
| | - Tom Le Voyer
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Université Paris Cité, Imagine Institute, Paris, France
| | - Lucy Bizien
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Université Paris Cité, Imagine Institute, Paris, France
| | - Jeremy Manry
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Université Paris Cité, Imagine Institute, Paris, France
| | - Jérémie Rosain
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Université Paris Cité, Imagine Institute, Paris, France
| | - Quentin Philippot
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Université Paris Cité, Imagine Institute, Paris, France
| | - Kelian Goavec
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Université Paris Cité, Imagine Institute, Paris, France
| | - Blandine Padey
- CIRI, Centre International de Recherche en Infectiologie - Team VirPath, Univ Lyon, INSERM U1111, Université Claude Bernard Lyon 1, CNRS UMR5308, ENS Lyon, Lyon, France
- Signia Therapeutics SAS, Lyon, France
| | - Anastasija Cupic
- Dept. of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Emilie Laurent
- CIRI, Centre International de Recherche en Infectiologie - Team VirPath, Univ Lyon, INSERM U1111, Université Claude Bernard Lyon 1, CNRS UMR5308, ENS Lyon, Lyon, France
- VirNext, Faculty of Medicine RTH Laennec, Claude Bernard Lyon 1 University, Lyon University, Lyon, France
| | - Kahina Saker
- Joint Research Unit, Hospices Civils de Lyon-bioMérieux, Hospices Civils de Lyon, Lyon Sud Hospital, Pierre-Bénite, France
| | - Martti Vanker
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Karita Särekannu
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Tamara García-Salum
- Dept. of Pediatric Infectious Diseases and Immunology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- Pathology Advanced Translational Research Unit, Dept. of Pathology and Laboratory Medicine, School of Medicine, Emory University, Atlanta, GA
| | - Marcela Ferres
- Dept. of Pediatric Infectious Diseases and Immunology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Nicole Le Corre
- Dept. of Pediatric Infectious Diseases and Immunology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Javier Sánchez-Céspedes
- Center for Biomedical Research in Infectious Diseases Network (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- Infectious Diseases, Microbiology and Preventive Medicine, Virgen del Rocío University Hospital, Sevilla, Spain
- Institute of Biomedicine of Seville (IBiS), CSIC, University of Seville, Seville, Spain
| | - María Balsera-Manzanero
- Center for Biomedical Research in Infectious Diseases Network (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- Infectious Diseases, Microbiology and Preventive Medicine, Virgen del Rocío University Hospital, Sevilla, Spain
- Institute of Biomedicine of Seville (IBiS), CSIC, University of Seville, Seville, Spain
| | - Jordi Carratala
- Center for Biomedical Research in Infectious Diseases Network (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
- University of Barcelona, Barcelona, Spain
| | - Pilar Retamar-Gentil
- Center for Biomedical Research in Infectious Diseases Network (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- Institute of Biomedicine of Seville (IBiS), CSIC, University of Seville, Seville, Spain
- Infectious Diseases, Microbiology Unit, Virgen Macarena University Hospital, Seville, Spain
| | - Gabriela Abelenda-Alonso
- Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
- Dept. of Infectious Diseases, Bellvitge University Hospital, Barcelona, Spain
| | - Adoración Valiente
- Center for Biomedical Research in Infectious Diseases Network (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- Infectious Diseases, Microbiology and Preventive Medicine, Virgen del Rocío University Hospital, Sevilla, Spain
- Infectious Diseases, Microbiology Unit, Virgen Macarena University Hospital, Seville, Spain
| | - Pierre Tiberghien
- Etablissement Francais Du Sang, La Plaine-Saint Denis, Saint-Denis, France
| | - Marie Zins
- University of Paris Cite, University of Paris-Saclay, UVSQ, INSERM UMS11, Villejuif, France
| | - Stéphanie Debette
- University of Bordeaux, INSERM, Bordeaux Population Health Center, UMR1219, Bordeaux, France
| | - Isabelle Meyts
- Laboratory for Inborn Errors of Immunity, Dept. of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Filomeen Haerynck
- Dept. of Pediatric Immunology and Pulmonology, Centre for Primary Immunodeficiency Ghent, PID Research Laboratory, Jeffrey Modell Diagnosis and Research Centre, Ghent University Hospital, Ghent, Belgium
| | - Riccardo Castagnoli
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Luigi D. Notarangelo
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Luis I. Gonzalez-Granado
- Immunodeficiencies Unit, Hospital October 12, Research Institute Hospital October 12, School of Medicine, Complutense University, Madrid, Spain
| | - Nerea Dominguez-Pinilla
- Pediatrics Service, Hematology and Oncology Unit, University Hospital 12 October, Madrid, Spain
| | - Evangelos Andreakos
- Laboratory of Immunobiology, Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Vasiliki Triantafyllia
- Laboratory of Immunobiology, Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Carlos Rodríguez-Gallego
- Dept. of Immunology, University Hospital of Gran Canaria Dr. Negrín, Canarian Health System, Las Palmas de Gran Canaria, Spain
- Dept. of Clinical Sciences, University Fernando Pessoa Canarias, Las Palmas de Gran Canaria, Spain
| | - Jordi Solé-Violán
- Dept. of Clinical Sciences, University Fernando Pessoa Canarias, Las Palmas de Gran Canaria, Spain
- Critical Care Unit, University Hospital of Gran Canaria Dr. Negrin, Canarian Health System, Las Palmas de Gran Canaria, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - José Juan Ruiz-Hernandez
- Dept. of Internal Medicine, University Hospital of Gran Canaria Dr. Negrin, Canarian Health System, Las Palmas de Gran Canaria, Spain
| | - Felipe Rodríguez de Castro
- Dept. of Respiratory Diseases, University Hospital of Gran Canaria Dr. Negrin, Canarian Health System, Las Palmas de Gran Canaria, Spain
- Dept. of Medical and Surgical Sciences, School of Medicine, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - José Ferreres
- Critical Care Unit, Hospital Clínico de Valencia, Valencia, Spain
- INCLIVA Biomedical Research Institute, Valencia, Spain
| | - Marisa Briones
- Dept. of Respiratory Diseases, Hospital Clínico y Universitario de Valencia, Valencia, Spain
| | - Joost Wauters
- Dept. of General Internal Medicine, Medical Intensive Care Unit, University Hospitals Leuven, Leuven, Belgium
| | - Lore Vanderbeke
- Dept. of General Internal Medicine, Medical Intensive Care Unit, University Hospitals Leuven, Leuven, Belgium
| | - Simon Feys
- Dept. of General Internal Medicine, Medical Intensive Care Unit, University Hospitals Leuven, Leuven, Belgium
| | - Chen-Yen Kuo
- Laboratory of Human Immunology and Infectious Disease, Graduate Institute of Clinical Medical Sciences, Chang Gung University, Taoyuan, Taiwan
- Division of Infectious Diseases, Dept. of Pediatrics, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Wei-Te Lei
- Laboratory of Human Immunology and Infectious Disease, Graduate Institute of Clinical Medical Sciences, Chang Gung University, Taoyuan, Taiwan
- Dept. of Pediatrics, Hsinchu MacKay Memorial Hospital, Hsinchu, Taiwan
| | - Cheng-Lung Ku
- Laboratory of Human Immunology and Infectious Disease, Graduate Institute of Clinical Medical Sciences, Chang Gung University, Taoyuan, Taiwan
- Dept. of Nephrology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Center for Molecular and Clinical Immunology, Chang Gung University, Taoyuan, Taiwan
| | - Galit Tal
- Metabolic Clinic, Ruth Rappaport Children's Hospital, Rambam Health Care Campus, Haifa, Israel
- Rappaport Faculty of Medicine, Technion Institute of Technology, Haifa, Israel
| | - Amos Etzioni
- Metabolic Clinic, Ruth Rappaport Children's Hospital, Rambam Health Care Campus, Haifa, Israel
| | - Suhair Hanna
- Metabolic Clinic, Ruth Rappaport Children's Hospital, Rambam Health Care Campus, Haifa, Israel
| | - Thomas Fournet
- Etablissement Français Du Sang, Université de Franche-Comté, Besançon, France
| | - Jean-Sebastien Casalegno
- Virology Laboratory, CNR des Virus des Infections Respiratoires, Institut des Agents Infectieux, Hôpital de la Croix Rousse, Hospices Civils de Lyon, Lyon, France
| | - Gregory Queromes
- CIRI, Centre International de Recherche en Infectiologie - Team VirPath, Univ Lyon, INSERM U1111, Université Claude Bernard Lyon 1, CNRS UMR5308, ENS Lyon, Lyon, France
| | - Laurent Argaud
- Medical Intensive Care Dept., Hospices Civils de Lyon, Edouard Herriot Hospital, Lyon, France
| | - Etienne Javouhey
- Pediatric Intensive Care Unit, Hospices Civils de Lyon, Hopital Femme Mère Enfant, Lyon, France
| | - Manuel Rosa-Calatrava
- CIRI, Centre International de Recherche en Infectiologie - Team VirPath, Univ Lyon, INSERM U1111, Université Claude Bernard Lyon 1, CNRS UMR5308, ENS Lyon, Lyon, France
- VirNext, Faculty of Medicine RTH Laennec, Claude Bernard Lyon 1 University, Lyon University, Lyon, France
| | - Elisa Cordero
- Center for Biomedical Research in Infectious Diseases Network (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- Infectious Diseases, Microbiology and Preventive Medicine, Virgen del Rocío University Hospital, Sevilla, Spain
- Institute of Biomedicine of Seville (IBiS), CSIC, University of Seville, Seville, Spain
- Dept. of Medicine, School of Medicine, University of Seville, Seville, Spain
| | - Teresa Aydillo
- Dept. of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Rafael A. Medina
- Dept. of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY
- Dept. of Pediatric Infectious Diseases and Immunology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Kai Kisand
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Anne Puel
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Université Paris Cité, Imagine Institute, Paris, France
| | - Emmanuelle Jouanguy
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Université Paris Cité, Imagine Institute, Paris, France
| | - Laurent Abel
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Université Paris Cité, Imagine Institute, Paris, France
| | - Aurélie Cobat
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Université Paris Cité, Imagine Institute, Paris, France
| | - Sophie Trouillet-Assant
- CIRI, Centre International de Recherche en Infectiologie - Team VirPath, Univ Lyon, INSERM U1111, Université Claude Bernard Lyon 1, CNRS UMR5308, ENS Lyon, Lyon, France
- Joint Research Unit, Hospices Civils de Lyon-bioMérieux, Hospices Civils de Lyon, Lyon Sud Hospital, Pierre-Bénite, France
| | - Adolfo García-Sastre
- Dept. of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY
- Dept. of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY
- Dept. of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Université Paris Cité, Imagine Institute, Paris, France
- Dept. of Pediatrics, Necker Hospital for Sick Children, AP-HP, Paris, France
- Howard Hughes Medical Institute, New York, NY
| |
Collapse
|
26
|
Soltani-Zangbar MS, Parhizkar F, Abdollahi M, Shomali N, Aghebati-Maleki L, Shahmohammadi Farid S, Roshangar L, Mahmoodpoor A, Yousefi M. Immune system-related soluble mediators and COVID-19: basic mechanisms and clinical perspectives. Cell Commun Signal 2022; 20:131. [PMID: 36038915 PMCID: PMC9421625 DOI: 10.1186/s12964-022-00948-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 08/02/2022] [Indexed: 12/04/2022] Open
Abstract
During SARS-CoV-2 infection, an effective immune response provides the first line of defense; however, excessive inflammatory innate immunity and impaired adaptive immunity may harm tissues. Soluble immune mediators are involved in the dynamic interaction of ligands with membrane-bound receptors to maintain and restore health after pathological events. In some cases, the dysregulation of their expression can lead to disease pathology. In this literature review, we described current knowledge of the basic features of soluble immune mediators and their dysregulation during SARS-CoV-2 infections and highlighted their contribution to disease severity and mortality. Video Abstract
Collapse
Affiliation(s)
- Mohammad Sadegh Soltani-Zangbar
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Forough Parhizkar
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mojtaba Abdollahi
- School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Navid Shomali
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Sima Shahmohammadi Farid
- Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leila Roshangar
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ata Mahmoodpoor
- Department of Anesthesiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Yousefi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. .,Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
27
|
Casanova JL, Abel L. From rare disorders of immunity to common determinants of infection: Following the mechanistic thread. Cell 2022; 185:3086-3103. [PMID: 35985287 PMCID: PMC9386946 DOI: 10.1016/j.cell.2022.07.004] [Citation(s) in RCA: 90] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/11/2022] [Accepted: 07/07/2022] [Indexed: 12/12/2022]
Abstract
The immense interindividual clinical variability during any infection is a long-standing enigma. Inborn errors of IFN-γ and IFN-α/β immunity underlying rare infections with weakly virulent mycobacteria and seasonal influenza virus have inspired studies of two common infections: tuberculosis and COVID-19. A TYK2 genotype impairing IFN-γ production accounts for about 1% of tuberculosis cases, and autoantibodies neutralizing IFN-α/β account for about 15% of critical COVID-19 cases. The discovery of inborn errors and mechanisms underlying rare infections drove the identification of common monogenic or autoimmune determinants of related common infections. This "rare-to-common" genetic and mechanistic approach to infectious diseases may be of heuristic value.
Collapse
Affiliation(s)
- Jean-Laurent Casanova
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, Paris, France; Paris Cité University, Imagine Institute, Paris, France; Department of Pediatrics, Necker Hospital for Sick Children, Paris, France; Howard Hughes Medical Institute, New York, NY, USA.
| | - Laurent Abel
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, Paris, France; Paris Cité University, Imagine Institute, Paris, France
| |
Collapse
|