1
|
Xu S, Yang Z, Li L, Cui Y, Chen Z. MiR-497-5p Ameliorates Deep Venous Thrombosis by Facilitating Endothelial Progenitor Cell Migration and Angiogenesis by Regulating LITAF. Biochem Genet 2024:10.1007/s10528-024-10927-x. [PMID: 39432130 DOI: 10.1007/s10528-024-10927-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 09/15/2024] [Indexed: 10/22/2024]
Abstract
Deep vein thrombosis (DVT) is a clinical manifestation of venous thromboembolism and a major global burden of cardiovascular disease. In recent years, the crucial role of microRNAs (miRNAs) in cardiovascular disease has been confirmed. Here, we aimed to investigate the specific effect of miR-497-5p on DVT. The endothelial progenitor cells (EPCs) were obtained from the bone marrow of newborn rats and transfected with miR-497-5p mimics or/and pcDNA3.1/lipopolysaccharide-induced TNF factor (LITAF). The proliferation and migration abilities of EPCs were detected using CCK-8 assay and transwell assay, respectively. Angiogenesis was evaluated using tube formation assay. The interaction of miR-497-5p and LITAF was confirmed by luciferase reporter experiment. DVT rat model in vivo was established by inferior vena cava (IVC) ligation in Sprague-Dawley rats. Histological analysis of IVC tissue was conducted by hematoxylin-eosin staining. We found that enhancing miR-497-5p expression facilitated the abilities of proliferation and migration of EPCs. Additionally, overexpression of miR-497-5p increased the capacity of EPCs to form capillary tubes on Matrigel. LITAF was found to be targeted by miR-497-5p and negatively regulated by miR-497-5p. Overexpression of LITAF counteracted the miR-497-5p overexpression's effect on the proliferation, migration, and angiogenesis abilities of EPCs. Moreover, the injection of agomir-miR-497-5p alleviated thrombus formation, reduced thrombus weight, and reduced the serum level of D-dimer in DVT rat model by reducing LITAF expression. This study suggests that miR-497-5p alleviates DVT by facilitating EPCs proliferation, migration, and angiogenesis by targeting LITAF.
Collapse
Affiliation(s)
- Shuguo Xu
- Interventional and Vascular Surgery Department, Ningde Municipal Hospital of Ningde Normal University, No.7 Jiaocheng North Road, Jiaocheng District, Ningde, 352100, Fujian, China
| | - Zhihong Yang
- Interventional and Vascular Surgery Department, Ningde Municipal Hospital of Ningde Normal University, No.7 Jiaocheng North Road, Jiaocheng District, Ningde, 352100, Fujian, China
| | - Longbiao Li
- Interventional and Vascular Surgery Department, Ningde Municipal Hospital of Ningde Normal University, No.7 Jiaocheng North Road, Jiaocheng District, Ningde, 352100, Fujian, China
| | - Yuansheng Cui
- Interventional and Vascular Surgery Department, Ningde Municipal Hospital of Ningde Normal University, No.7 Jiaocheng North Road, Jiaocheng District, Ningde, 352100, Fujian, China.
| | - Zhen Chen
- Department of Emergency, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, No.26 Shengli Street, Jiang'an District, Wuhan, 430014, China.
| |
Collapse
|
2
|
Lyu X, Yi Z, He Y, Zhang C, Zhu P, Liu C. Astragaloside IV induces endothelial progenitor cell angiogenesis in deep venous thrombosis through inactivation of PI3K/AKT signaling. Histol Histopathol 2024; 39:1149-1157. [PMID: 38275076 DOI: 10.14670/hh-18-704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
BACKGROUND Deep vein thrombosis (DVT), referred to as venous thromboembolism, is the third most frequent cardiovascular disease. Endothelial progenitor cells (EPCs) contribute to the recanalization of DVT. Astragaloside IV (AS-IV) has been suggested to have angiogenesis-enhancing effects. Here, we investigate the roles and mechanisms of AS-IV in EPCs and DVT. METHODS The experimental DVT model was established by inferior vena cava stenosis in rats. EPCs were collected from patients with DVT. Transwell assays were performed to detect cell migration. Tube formation was determined using Matrigel basement membrane matrix and ImageJ software. The thrombus weight and length were measured. Pathological changes were examined by hematoxylin-eosin staining. The production of proinflammatory cytokines was estimated by ELISA. The level of PI3K/AKT-related proteins was measured by western blotting. RESULTS AS-IV administration facilitated the migrative and angiogenic functions of human EPCs in vitro. Additionally, AS-IV inhibited thrombosis and repressed the infiltration of leukocytes into the thrombus and the production of proinflammatory cytokines in rats. Mechanistically, AS-IV inactivated PI3K/AKT signaling in rats. CONCLUSION AS-IV prevents thrombus in an experimental DVT model by facilitating EPC angiogenesis and decreasing inflammation through inactivation of PI3K/AKT signaling.
Collapse
Affiliation(s)
- Xiaojiang Lyu
- Department of Pediatrics, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Zhigang Yi
- Department of Pediatrics, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Yun He
- Department of Pediatrics, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Chunfeng Zhang
- Department of Pediatrics, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Ping Zhu
- Department of Pediatrics, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Chonghai Liu
- Department of Pediatrics, Affiliated Hospital of North Sichuan Medical College, Nanchong, China.
| |
Collapse
|
3
|
Abudoureyimu M, Tayier T, Zhang L. The role and mechanism of action of miR-483-3p in mediating the effects of IGF-1 on human renal tubular epithelial cells induced by high glucose. Sci Rep 2024; 14:15635. [PMID: 38972889 PMCID: PMC11228025 DOI: 10.1038/s41598-024-66433-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 07/01/2024] [Indexed: 07/09/2024] Open
Abstract
This study aimed to elucidate the influence of miR-483-3p on human renal tubular epithelial cells (HK-2) under high glucose conditions and to understand its mechanism. Human proximal tubular epithelial cells (HK-2) were exposed to 50 mmol/L glucose for 48 h to establish a renal tubular epithelial cell injury model, denoted as the high glucose group (HG group). Cells were also cultured for 48 h in a medium containing 5.5 mmol/L glucose, serving as the low glucose group. Transfection was performed in various groups: HK-2 + low glucose (control group), high glucose (50 mM) (HG group), high glucose + miR-483-3p mimics (HG + mimics group), high glucose +miR-483-3p inhibitor (HG + inhibitor group), and corresponding negative controls. Real-time quantitative polymerase chain reaction (qPCR) assessed the mRNA expression of miR-483-3p, bax, bcl-2, and caspase-3. Western blot determined the corresponding protein levels. Proliferation was assessed using the CCK-8 assay, and cell apoptosis was analyzed using the fluorescence TUNEL method. Western blot and Masson's staining were conducted to observe alterations in cell fibrosis post miR-483-3p transfection. Furthermore, a dual-luciferase assay investigated the targeting relationship between miR-483-3p and IGF-1. The CCK8 assay demonstrated that the HG + mimics group inhibited HK-2 cell proliferation, while the fluorescent TUNEL method revealed induced cell apoptosis in this group. Conversely, the HG + inhibitor group promoted cell proliferation and suppressed cell apoptosis. The HG + mimics group upregulated mRNA and protein expression of pro-apoptotic markers (bax and caspase-3), while downregulating anti-apoptotic marker (bcl-2) expression. In contrast, the HG + inhibitor group showed opposite effects. Collagen I and FN protein levels were significantly elevated in the HG + mimics group compared to controls (P < 0.05). Conversely, in the HG + inhibitor group, the protein expression of Collagen I and FN was notably reduced compared to the HG group (P < 0.05). The dual luciferase reporter assay confirmed that miR-483-3p could inhibit the luciferase activity of IGF-1's 3'-UTR region (P < 0.05). miR-483-3p exerts targeted regulation on IGF-1, promoting apoptosis and fibrosis in renal tubular epithelial cells induced by high glucose conditions.
Collapse
Affiliation(s)
- Maidina Abudoureyimu
- First Department of Comprehensive Internal Medicine of People's Hospital of Xinjiang Uygur Autonomous Region, No.91 Tianchi Road, Urumqi, 830001, Xinjiang, China
| | - Talaiti Tayier
- Department of Urology, People's Hospital of Xinjiang Uygur Autonomous Region, No.91 Tianchi Road, Urumqi, 830001, Xinjiang, China
| | - Ling Zhang
- First Department of Comprehensive Internal Medicine of People's Hospital of Xinjiang Uygur Autonomous Region, No.91 Tianchi Road, Urumqi, 830001, Xinjiang, China.
| |
Collapse
|
4
|
Srivastava S, Garg I, Ghosh N, Varshney R. Therapeutic implication of MicroRNA-320a antagonist in attenuating blood clots formed during venous thrombosis. J Thromb Thrombolysis 2024; 57:699-709. [PMID: 38393674 DOI: 10.1007/s11239-024-02947-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/31/2023] [Indexed: 02/25/2024]
Abstract
Venous thrombosis (VT) is a complex multi-factorial disease and a major health concern worldwide. Its clinical implications include deep vein thrombosis (DVT) and pulmonary embolism (PE). VT pathogenesis involves intricate interplay of various coagulants and anti-coagulants. Growing evidences from epidemiological studies have shown that many non-coding microRNAs play significant regulatory role in VT pathogenesis by modulating expressions of large number of gene involved in blood coagulation. Present study aimed to investigate the effect of human micro RNA (hsa-miR)-320a antagonist on thrombus formation in VT. Surgery was performed on Sprague-Dawley (SD) rats, wherein the inferior vena cava (IVC) was ligated to introduce DVT. Animals were divided into four groups (n = 5 in each group); Sham controls (Sham), IVC ligated-DVT (DVT), IVC ligated-DVT + transfection reagent (DVT-NC) and IVC ligated-DVT + miR320a antagonist (DVT-miR-320a antagonist). IVC was dissected after 6 h and 24 h of surgery to estimate thrombus weight and coagulatory parameters such as levels of D-dimer, clotting time and bleeding time. Also, ELISA based biochemical assays were formed to assess toxicity of miRNA antagonist in animals. Our experimental analysis demonstrated that there was a marked reduction in size of thrombus in hsa-miR-320a antagonist treated animals, both at 6 h and 24 h. There was a marked reduction in D-dimer levels in hsa-miR-320a antagonist treated animals. Also, blood clotting time was delayed and bleeding time was increased significantly in hsa-miR-320a antagonist treated rats compared to the non-treated and Sham rats. There was no sign of toxicity in treated group compared to control animals. Hsa-miR-320a antagonist could be promising therapeutic target for management of VT.
Collapse
Affiliation(s)
- Swati Srivastava
- Pathophysiology and Disruptive Technology Division (PDT), Defence Research and Development Organization (DRDO), Defence Institute of Physiology and Allied Sciences (DIPAS), Lucknow Road, Timarpur, Delhi, 110054, India.
| | - Iti Garg
- Pathophysiology and Disruptive Technology Division (PDT), Defence Research and Development Organization (DRDO), Defence Institute of Physiology and Allied Sciences (DIPAS), Lucknow Road, Timarpur, Delhi, 110054, India
| | - Nilanjana Ghosh
- Pathophysiology and Disruptive Technology Division (PDT), Defence Research and Development Organization (DRDO), Defence Institute of Physiology and Allied Sciences (DIPAS), Lucknow Road, Timarpur, Delhi, 110054, India
| | - Rajeev Varshney
- Pathophysiology and Disruptive Technology Division (PDT), Defence Research and Development Organization (DRDO), Defence Institute of Physiology and Allied Sciences (DIPAS), Lucknow Road, Timarpur, Delhi, 110054, India
| |
Collapse
|
5
|
Sun LL, Liu Z, Ran F, Huang D, Zhang M, Li XQ, Li WD. Non-coding RNAs regulating endothelial progenitor cells for venous thrombosis: promising therapy and innovation. Stem Cell Res Ther 2024; 15:7. [PMID: 38169418 PMCID: PMC10762949 DOI: 10.1186/s13287-023-03621-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 12/19/2023] [Indexed: 01/05/2024] Open
Abstract
Venous thromboembolism, which includes deep venous thrombosis (DVT) and pulmonary embolism, is the third most common vascular disease in the world and seriously threatens the lives of patients. Currently, the effect of conventional treatments on DVT is limited. Endothelial progenitor cells (EPCs) play an important role in the resolution and recanalization of DVT, but an unfavorable microenvironment reduces EPC function. Non-coding RNAs, especially long non-coding RNAs and microRNAs, play a crucial role in improving the biological function of EPCs. Non-coding RNAs have become clinical biomarkers of diseases and are expected to serve as new targets for disease intervention. A theoretical and experimental basis for the development of new methods for preventing and treating DVT in the clinic will be provided by studies on the role and molecular mechanism of non-coding RNAs regulating EPC function in the occurrence and development of DVT. To summarize, the characteristics of venous thrombosis, the regulatory role of EPCs in venous thrombosis, and the effect of non-coding RNAs regulating EPCs on venous thrombosis are reviewed. This summary serves as a useful reference and theoretical basis for research into the diagnosis, prevention, treatment, and prognosis of venous thrombosis.
Collapse
Affiliation(s)
- Li-Li Sun
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, The Affiliate Hospital of Nanjing University Medical School, #321 Zhongshan Road, Nanjing, 210008, Jiangsu, China
| | - Zhao Liu
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, The Affiliate Hospital of Nanjing University Medical School, #321 Zhongshan Road, Nanjing, 210008, Jiangsu, China
| | - Feng Ran
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, The Affiliate Hospital of Nanjing University Medical School, #321 Zhongshan Road, Nanjing, 210008, Jiangsu, China
| | - Dian Huang
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, The Affiliate Hospital of Nanjing University Medical School, #321 Zhongshan Road, Nanjing, 210008, Jiangsu, China
| | - Ming Zhang
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, The Affiliate Hospital of Nanjing University Medical School, #321 Zhongshan Road, Nanjing, 210008, Jiangsu, China
| | - Xiao-Qiang Li
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, The Affiliate Hospital of Nanjing University Medical School, #321 Zhongshan Road, Nanjing, 210008, Jiangsu, China.
| | - Wen-Dong Li
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, The Affiliate Hospital of Nanjing University Medical School, #321 Zhongshan Road, Nanjing, 210008, Jiangsu, China.
| |
Collapse
|
6
|
Wang C, Tang T, Ye SL, Hu N, Du XL, Li XQ. Comparison between canine and porcine models of chronic deep venous thrombosis. Thromb J 2023; 21:121. [PMID: 38057889 DOI: 10.1186/s12959-023-00565-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 11/20/2023] [Indexed: 12/08/2023] Open
Abstract
OBJECTIVE To first induce chronic deep venous thrombosis in the left iliac veins of canines and porcines and then compare these two models to validate endovascular treatment devices. METHODS Thrombin and fibrinogen were used to produce a solid thrombus in the left iliac veins of a stenosis model. The researchers used venous angiography and histological staining to investigate the progression of thrombosis. RESULTS A left iliac vein thrombus was successfully formed in all experimental animals, including six Labrador dogs and three Bama miniature pigs, and there was minimal surgical bleeding. All dogs survived until 90 days, and three pigs died on Days 29, 33, and 58. CONCLUSION The researchers first established the models and then observed the progression of chronic deep venous thrombosis of the iliac vein in large animals for up to 90 days. Dogs are better suited for chronic deep venous thrombosis models due to their uncomplicated anatomy, excellent obedience, and proneness to physical activity compared with pigs.
Collapse
Affiliation(s)
- Chuang Wang
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, #321 Zhongshan Road, Nanjing, 210008, Jiangsu, China
| | - Tao Tang
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, #321 Zhongshan Road, Nanjing, 210008, Jiangsu, China
| | - Sheng-Lin Ye
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, #321 Zhongshan Road, Nanjing, 210008, Jiangsu, China
| | - Nan Hu
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, #321 Zhongshan Road, Nanjing, 210008, Jiangsu, China.
| | - Xiao-Long Du
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, #321 Zhongshan Road, Nanjing, 210008, Jiangsu, China.
| | - Xiao-Qiang Li
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, #321 Zhongshan Road, Nanjing, 210008, Jiangsu, China.
| |
Collapse
|
7
|
Gareev I, Pavlov V, Du W, Yang B. MiRNAs and Their Role in Venous Thromboembolic Complications. Diagnostics (Basel) 2023; 13:3383. [PMID: 37958279 PMCID: PMC10650162 DOI: 10.3390/diagnostics13213383] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 10/31/2023] [Accepted: 11/01/2023] [Indexed: 11/15/2023] Open
Abstract
Venous thromboembolic complications (VTCs), which include deep vein thrombosis (DVT) and pulmonary embolism (PE), have remained a pressing problem in modern clinical medicine for a long time. Despite the already wide arsenal of modern methods for diagnosing and treating this disease, VTCs rank third in the structure of causes of death among all cardiovascular diseases, behind myocardial infarction (MI) and ischemic stroke (IS). Numerous studies have confirmed the importance of understanding the molecular processes of VTCs for effective therapy and diagnosis. Significant progress has been made in VTC research in recent years, where the relative contribution of microRNAs (miRNAs) in the mechanism of thrombus formation and their consideration as therapeutic targets have been well studied. In this case, accurate, timely, and as early as possible diagnosis of VTCs is of particular importance, which will help improve both short-term and long-term prognoses of patients. This case accounts for the already well-studied circulating miRNAs as non-invasive biomarkers. This study presents currently available literature data on the role of miRNAs in VTCs, revealing their potential as therapeutic targets and diagnostic and prognostic tools for this terrible disease.
Collapse
Affiliation(s)
- Ilgiz Gareev
- Central Research Laboratory, Bashkir State Medical University, 3 Lenin Street, 450008 Ufa, Russia;
| | - Valentin Pavlov
- Department of Urology, Bashkir State Medical University, 3 Lenin Street, 450008 Ufa, Russia;
| | - Weijie Du
- Department of Pharmacology, The Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin 150067, China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin 150081, China
| | - Baofeng Yang
- Department of Pharmacology, The Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin 150067, China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin 150081, China
| |
Collapse
|
8
|
Henke PK, Nicklas JM, Obi A. Immune cell-mediated venous thrombus resolution. Res Pract Thromb Haemost 2023; 7:102268. [PMID: 38193054 PMCID: PMC10772895 DOI: 10.1016/j.rpth.2023.102268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/23/2023] [Accepted: 11/07/2023] [Indexed: 01/10/2024] Open
Abstract
Herein, we review the current processes that govern experimental deep vein thrombus (DVT) resolution. How the human DVT resolves at the molecular and cellular level is not well known due to limited specimen availability. Experimentally, the thrombus resolution resembles wound healing, with early neutrophil-mediated actions followed by monocyte/macrophage-mediated events, including neovascularization, fibrinolysis, and eventually collagen replacement. Potential therapeutic targets are described, and coupling with site-directed approaches to mitigate off-target effects is the long-term goal. Similarly, timing of adjunctive agents to accelerate DVT resolution is an area that is only starting to be considered. There is much critical research that is needed in this area.
Collapse
Affiliation(s)
- Peter K. Henke
- Department of Surgery, University of Michigan Health System, Frankel Cardiovascular Center, Ann Arbor, Michigan, USA
| | - John M. Nicklas
- Department of Medicine, Brown University Medical School, Providence, Rhode Island, USA
| | - Andrea Obi
- Department of Surgery, University of Michigan Health System, Frankel Cardiovascular Center, Ann Arbor, Michigan, USA
| |
Collapse
|
9
|
Han J, Hao W, Ma Y, Hou Y. MiR-128-3p promotes the progression of deep venous thrombosis through binding SIRT1. Phlebology 2023; 38:540-549. [PMID: 37465926 DOI: 10.1177/02683555231190268] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
OBJECTIVES This research aimed to study the effect of microRNA-128-3p (miR-128-3p) on deep venous thrombosis (DVT). METHOD The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, Transwell chamber method, and flow cytometry technique were used in the cell experiments. Potential interconnection between miR-128-3p and silent information regulator sirtuin 1 (SIRT1) was revealed by luciferase activity. The concentration of miR-128-3p and mRNA SIRT1 was assessed by quantitative reverse transcription polymerase chain reaction (qRT-PCR). The receiver operating characteristic (ROC) curve was used to test the predictive effect of miR-128-3p in DVT. RESULTS Decreased miR-128-3p expression was beneficial to cell proliferation and migration and inhibited inflammation, apoptosis, and adhesion of human umbilical vein endothelial cells (HUVECs). The impacts of miR-128-3p on HUVECs were achieved by targeting SIRT1. MiR-128-3p was upregulated in patients with DVT, and it was of great significance in differentiating patients with DVT. CONCLUSION Overexpression of miR-128-3p might become a biomarker for patients with DVT.
Collapse
Affiliation(s)
- Jinan Han
- Department of Vascular Surgery, Hulunbuir People's Hospital, Hulunbuir, China
| | - Wanjiang Hao
- Department of Intensive Medicine, Hulunbuir People's Hospital, Hulunbuir, China
| | - Yanping Ma
- Department of General Surgery, Hulunbuir People's Hospital, Hulunbuir, China
| | - Yanqiu Hou
- Department of Hematology, Hulunbuir People's Hospital, Hulunbuir, China
| |
Collapse
|
10
|
Matson K, Macleod A, Mehta N, Sempek E, Tang X. Impacts of MicroRNA-483 on Human Diseases. Noncoding RNA 2023; 9:37. [PMID: 37489457 PMCID: PMC10366739 DOI: 10.3390/ncrna9040037] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/13/2023] [Accepted: 06/21/2023] [Indexed: 07/26/2023] Open
Abstract
MicroRNAs (miRNAs) are short non-coding RNA molecules that regulate gene expression by targeting specific messenger RNAs (mRNAs) in distinct cell types. This review provides a com-prehensive overview of the current understanding regarding the involvement of miR-483-5p and miR-483-3p in various physiological and pathological processes. Downregulation of miR-483-5p has been linked to numerous diseases, including type 2 diabetes, fatty liver disease, diabetic nephropathy, and neurological injury. Accumulating evidence indicates that miR-483-5p plays a crucial protective role in preserving cell function and viability by targeting specific transcripts. Notably, elevated levels of miR-483-5p in the bloodstream strongly correlate with metabolic risk factors and serve as promising diagnostic markers. Consequently, miR-483-5p represents an appealing biomarker for predicting the risk of developing diabetes and cardiovascular diseases and holds potential as a therapeutic target for intervention strategies. Conversely, miR-483-3p exhibits significant upregulation in diabetes and cardiovascular diseases and has been shown to induce cellular apoptosis and lipotoxicity across various cell types. However, some discrepancies regarding its precise function have been reported, underscoring the need for further investigation in this area.
Collapse
Affiliation(s)
| | | | | | | | - Xiaoqing Tang
- Department of Biological Sciences, Michigan Technological University, Houghton, MI 49931, USA; (K.M.); (A.M.); (N.M.); (E.S.)
| |
Collapse
|
11
|
Combination of Circulating miR-125a-5p, miR-223-3p and D-dimer as a Novel Biomarker for Deep Vein Thrombosis. Am J Med Sci 2022; 364:601-611. [PMID: 35588895 DOI: 10.1016/j.amjms.2022.04.033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 11/19/2021] [Accepted: 04/08/2022] [Indexed: 01/25/2023]
Abstract
BACKGROUND Deep venous thrombosis (DVT) is a thrombus formed in the deep venous cavity and can cause a fatal pulmonary embolism. Since circulating miRNAs are used as molecular markers for the early warning and diagnosis of various diseases, such as tumors and cardiovascular diseases, the purpose of the present study was initially to identify differential expression circulating miRNAs in plasma, and then explore potential biomarkers for DVT. METHODS The plasma of 30 patients with DVT before and after DVT-related endovascular interventions constituted 6 sample pools for miRNA sequencing, and the levels of 22 plasma miRNAs were significantly changed. Then, various bioinformatics tools were utilized to screen out 8 miRNAs with potential DVT diagnostic value. Furthermore, their diagnostic values were evaluated in 120 patients with DVT and 120 healthy individuals. RESULTS The levels of 22 circulating plasma miRNAs (12 up-regulated, 10 down-regulated) were significantly changed in patients with DVT before and after endovascular interventions, especially miR-125a-5p (up-regulation) and miR-223-3p (down-regulation). The values of area under the ROC curve (AUC) of miR-125a-5p and miR-223-3p were both >0.8, indicating that they were valuable in diagnosing DVT. The combination of miR-125a-5p and miR-223-3p with D-dimer significantly improved the efficiency of diagnosing DVT, (AUC >0.97, the sensitivity and specificity >95%), and was better than those of D-dimer alone. CONCLUSIONS The levels of miR-125a-5p and miR-223-3p were the most significantly changed in patients with DVT before and after endovascular interventions; together with the classic biomarker D-dimer, they can be used as a potential biomarker for diagnostic and therapeutic process of DVT.
Collapse
|
12
|
Anijs RJS, Laghmani EH, Ünlü B, Kiełbasa SM, Mei H, Cannegieter SC, Klok FA, Kuppen PJK, Versteeg HH, Buijs J. Tumor-expressed microRNAs associated with venous thromboembolism in colorectal cancer. Res Pract Thromb Haemost 2022; 6:e12749. [PMID: 35794963 PMCID: PMC9248312 DOI: 10.1002/rth2.12749] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 04/26/2022] [Accepted: 04/28/2022] [Indexed: 11/23/2022] Open
Abstract
Background Colorectal cancer patients have an increased risk of developing venous thromboembolism (VTE), resulting in increased morbidity and mortality. Because the exact mechanism is yet unknown, risk prediction is still challenging; therefore, new biomarkers are needed. MicroRNAs (miRNAs) are small, relatively stable RNAs, that regulate a variety of cellular processes, and are easily measured in body fluids. Objective The aim of this study was to identify novel tumor-expressed miRNAs associated with VTE. Methods In a cohort of 418 colorectal cancer patients diagnosed between 2001 and 2015 at the Leiden University Medical Center, 23 patients (5.5%) developed VTE 1 year before or after cancer diagnosis. Based on availability of frozen tumor material, tumor cells of 17 patients with VTE and 18 patients without VTE were isolated using laser capture microdissection and subsequently analyzed on the Illumina sequencing platform NovaSeq600 using 150-bp paired-end sequencing. Cases and controls were matched on age, sex, tumor stage, and grade. Differential miRNA expression was analyzed using edgeR. Results A total of 547 miRNAs were detected. Applying a 1.5-fold difference and false discovery rate of <0.1, 19 tumor-miRNAs were differentially regulated in VTE cases versus controls, with hsa-miR-3652, hsa-miR-92b-5p, and hsa-miR-10,394-5p as most significantly downregulated. Seven of the 19 identified miRNAs were predicted to regulate the gonadotropin-releasing hormone receptor pathway. Conclusion We identified 19 differentially regulated tumor-expressed miRNAs in colorectal cancer-associated VTE, which may provide insights into the biological mechanism and in the future might have potential to serve as novel, predictive biomarkers.
Collapse
Affiliation(s)
- Rayna J. S. Anijs
- Einthoven Laboratory for Vascular and Regenerative Medicine, Division of Thrombosis and Hemostasis, Department of MedicineLeiden University Medical CenterLeidenThe Netherlands
- Department of Clinical EpidemiologyLeiden University Medical CenterLeidenThe Netherlands
| | - El Houari Laghmani
- Einthoven Laboratory for Vascular and Regenerative Medicine, Division of Thrombosis and Hemostasis, Department of MedicineLeiden University Medical CenterLeidenThe Netherlands
| | - Betül Ünlü
- Einthoven Laboratory for Vascular and Regenerative Medicine, Division of Thrombosis and Hemostasis, Department of MedicineLeiden University Medical CenterLeidenThe Netherlands
| | - Szymon M. Kiełbasa
- Department of Biomedical Data SciencesLeiden University Medical CenterLeidenThe Netherlands
| | - Hailiang Mei
- Department of Biomedical Data SciencesLeiden University Medical CenterLeidenThe Netherlands
| | - Suzanne C. Cannegieter
- Department of Clinical EpidemiologyLeiden University Medical CenterLeidenThe Netherlands
| | - Frederikus A. Klok
- Einthoven Laboratory for Vascular and Regenerative Medicine, Division of Thrombosis and Hemostasis, Department of MedicineLeiden University Medical CenterLeidenThe Netherlands
| | - Peter J. K. Kuppen
- Department of SurgeryLeiden University Medical CenterLeidenThe Netherlands
| | - Henri H. Versteeg
- Einthoven Laboratory for Vascular and Regenerative Medicine, Division of Thrombosis and Hemostasis, Department of MedicineLeiden University Medical CenterLeidenThe Netherlands
| | - Jeroen T. Buijs
- Einthoven Laboratory for Vascular and Regenerative Medicine, Division of Thrombosis and Hemostasis, Department of MedicineLeiden University Medical CenterLeidenThe Netherlands
| |
Collapse
|
13
|
Navarrete S, Solar C, Tapia R, Pereira J, Fuentes E, Palomo I. Pathophysiology of deep vein thrombosis. Clin Exp Med 2022:10.1007/s10238-022-00829-w. [PMID: 35471714 DOI: 10.1007/s10238-022-00829-w] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 03/31/2022] [Indexed: 12/29/2022]
Abstract
Deep venous thrombosis is a frequent, multifactorial disease and a leading cause of morbidity and mortality. Most of the time deep venous thrombosis is triggered by the interaction between acquired risk factors, such as hip fracture, pregnancy, and immobility, and hereditary risk factors such as thrombophilias. The mechanisms underlying deep venous thrombosis are not fully elucidated; however, in recent years, important advances have shed light on the role of venous flow, endothelium, platelets, leukocytes, and the interaction between inflammation and hemostasis. It has been described that the alteration of venous blood flow produces endothelial activation, favoring the adhesion of platelets and leukocytes, which, through tissue factor expression and neutrophil extracellular traps formation, contribute to the activation of coagulation, trapping more cells, such as red blood cells. Thus, the concerted interaction of these phenomena allows the formation and growth of the thrombus. In this work, the main mechanisms involved in the pathophysiology of deep vein thrombosis will be described.
Collapse
Affiliation(s)
- Simón Navarrete
- Thrombosis Research Center, Medical Technology School, Department of Clinical Biochemistry and Immunohaematology, Faculty of Health Sciences, Universidad de Talca, Av. Lircay s/n, 3460000, Talca, Chile
| | - Carla Solar
- Thrombosis Research Center, Medical Technology School, Department of Clinical Biochemistry and Immunohaematology, Faculty of Health Sciences, Universidad de Talca, Av. Lircay s/n, 3460000, Talca, Chile
| | | | - Jaime Pereira
- Department of Hematology-Oncology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Eduardo Fuentes
- Thrombosis Research Center, Medical Technology School, Department of Clinical Biochemistry and Immunohaematology, Faculty of Health Sciences, Universidad de Talca, Av. Lircay s/n, 3460000, Talca, Chile
| | - Iván Palomo
- Thrombosis Research Center, Medical Technology School, Department of Clinical Biochemistry and Immunohaematology, Faculty of Health Sciences, Universidad de Talca, Av. Lircay s/n, 3460000, Talca, Chile.
| |
Collapse
|
14
|
Chu C, Wang B, Zhang Z, Liu W, Sun S, Liang G, Zhang X, An H, Wei R, Zhu X, Guo Q, Zhao L, Fu X, Xu K, Li X. miR-513c-5p Suppression Aggravates Pyroptosis of Endothelial Cell in Deep Venous Thrombosis by Promoting Caspase-1. Front Cell Dev Biol 2022; 10:838785. [PMID: 35445025 PMCID: PMC9015708 DOI: 10.3389/fcell.2022.838785] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 03/02/2022] [Indexed: 11/13/2022] Open
Abstract
Deep vein thrombosis (DVT) is a common peripheral vascular disease. Secondary pulmonary embolism (PE) caused by DVT leads to substantial patient death. Inflammation has been suggested as a key factor in the pathophysiology of DVT, however, involvement of pyroptosis-related inflammatory factors in DVT formation remains unclear. Here, we proposed that post-transcriptional modification of caspase-1 might be a crucial trigger for enhanced pyroptosis in vascular endothelial cells (VECs), and consequently contributed to severer symptoms in DVT patients. In order to explore the involvement of pyroptosis in DVT, peripheral blood mononuclear cells were collected from 30 DVT patients, and compared with the healthy controls, we found caspase-1 was increased both in mRNA and protein levels. miRNA microarray analysis demonstrated that down-regulated miR-513c-5p was significantly negatively correlated with the expression of caspase-1. In vitro assays suggested that miR-513c-5p overexpression could ameliorate the expression of caspase-1, and thus decreased the production of cleaved gasdermin D (GSDMD) and interleukin (IL)-1β and IL-18 in VECs. The dual-luciferase reporter assay identified direct binding between miR-513c-5p and the 3′ untranslated region of caspase-1 encoding gene. The administration of miR-513c-5p mimics through tail vein injection or caspase-1 inhibitor (vx-765) by intraperitoneal injection remarkably decreased the volume of blood clots in vivo, whereas miR-513c-5p inhibitor aggravated thrombosis formation and this effect was dramatically weakened when treated in combination with vx-765. Collectively, these results revealed that the pyroptosis of VECs induced by decreased miR-513c-5p was involved in DVT progression and indicated a potential therapeutic strategy of targeting the miR-513c-5p/caspase-1/GSDMD signal axis for DVT management.
Collapse
Affiliation(s)
- Chu Chu
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Bin Wang
- Department of Peripheral Vascular Disease, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zhen Zhang
- School of Basic Medicine, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Wen Liu
- School of Basic Medicine, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Shangwen Sun
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Gang Liang
- Department of Peripheral Vascular Disease, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiaoshan Zhang
- Department of Peripheral Vascular Disease, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Hongqiang An
- Department of Peripheral Vascular Disease, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ran Wei
- School of Basic Medicine, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Xiaoxiao Zhu
- School of Basic Medicine, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Qiang Guo
- School of Basic Medicine, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Lin Zhao
- School of Basic Medicine, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Xiaoxiao Fu
- School of Basic Medicine, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Ke Xu
- School of Basic Medicine, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Xia Li
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
15
|
Lozano-Velasco E, Garcia-Padilla C, del Mar Muñoz-Gallardo M, Martinez-Amaro FJ, Caño-Carrillo S, Castillo-Casas JM, Sanchez-Fernandez C, Aranega AE, Franco D. Post-Transcriptional Regulation of Molecular Determinants during Cardiogenesis. Int J Mol Sci 2022; 23:ijms23052839. [PMID: 35269981 PMCID: PMC8911333 DOI: 10.3390/ijms23052839] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/19/2022] [Accepted: 02/26/2022] [Indexed: 12/15/2022] Open
Abstract
Cardiovascular development is initiated soon after gastrulation as bilateral precardiac mesoderm is progressively symmetrically determined at both sides of the developing embryo. The precardiac mesoderm subsequently fused at the embryonic midline constituting an embryonic linear heart tube. As development progress, the embryonic heart displays the first sign of left-right asymmetric morphology by the invariably rightward looping of the initial heart tube and prospective embryonic ventricular and atrial chambers emerged. As cardiac development progresses, the atrial and ventricular chambers enlarged and distinct left and right compartments emerge as consequence of the formation of the interatrial and interventricular septa, respectively. The last steps of cardiac morphogenesis are represented by the completion of atrial and ventricular septation, resulting in the configuration of a double circuitry with distinct systemic and pulmonary chambers, each of them with distinct inlets and outlets connections. Over the last decade, our understanding of the contribution of multiple growth factor signaling cascades such as Tgf-beta, Bmp and Wnt signaling as well as of transcriptional regulators to cardiac morphogenesis have greatly enlarged. Recently, a novel layer of complexity has emerged with the discovery of non-coding RNAs, particularly microRNAs and lncRNAs. Herein, we provide a state-of-the-art review of the contribution of non-coding RNAs during cardiac development. microRNAs and lncRNAs have been reported to functional modulate all stages of cardiac morphogenesis, spanning from lateral plate mesoderm formation to outflow tract septation, by modulating major growth factor signaling pathways as well as those transcriptional regulators involved in cardiac development.
Collapse
Affiliation(s)
- Estefania Lozano-Velasco
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (C.G.-P.); (M.d.M.M.-G.); (F.J.M.-A.); (S.C.-C.); (J.M.C.-C.); (C.S.-F.); (A.E.A.)
- Fundación Medina, 18007 Granada, Spain
| | - Carlos Garcia-Padilla
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (C.G.-P.); (M.d.M.M.-G.); (F.J.M.-A.); (S.C.-C.); (J.M.C.-C.); (C.S.-F.); (A.E.A.)
- Department of Anatomy, Embryology and Zoology, School of Medicine, University of Extremadura, 06006 Badajoz, Spain
| | - Maria del Mar Muñoz-Gallardo
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (C.G.-P.); (M.d.M.M.-G.); (F.J.M.-A.); (S.C.-C.); (J.M.C.-C.); (C.S.-F.); (A.E.A.)
| | - Francisco Jose Martinez-Amaro
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (C.G.-P.); (M.d.M.M.-G.); (F.J.M.-A.); (S.C.-C.); (J.M.C.-C.); (C.S.-F.); (A.E.A.)
| | - Sheila Caño-Carrillo
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (C.G.-P.); (M.d.M.M.-G.); (F.J.M.-A.); (S.C.-C.); (J.M.C.-C.); (C.S.-F.); (A.E.A.)
| | - Juan Manuel Castillo-Casas
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (C.G.-P.); (M.d.M.M.-G.); (F.J.M.-A.); (S.C.-C.); (J.M.C.-C.); (C.S.-F.); (A.E.A.)
| | - Cristina Sanchez-Fernandez
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (C.G.-P.); (M.d.M.M.-G.); (F.J.M.-A.); (S.C.-C.); (J.M.C.-C.); (C.S.-F.); (A.E.A.)
- Fundación Medina, 18007 Granada, Spain
| | - Amelia E. Aranega
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (C.G.-P.); (M.d.M.M.-G.); (F.J.M.-A.); (S.C.-C.); (J.M.C.-C.); (C.S.-F.); (A.E.A.)
- Fundación Medina, 18007 Granada, Spain
| | - Diego Franco
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (C.G.-P.); (M.d.M.M.-G.); (F.J.M.-A.); (S.C.-C.); (J.M.C.-C.); (C.S.-F.); (A.E.A.)
- Fundación Medina, 18007 Granada, Spain
- Correspondence:
| |
Collapse
|
16
|
Ding M, Chi G, Li F, Wang B, Shao C, Song W. Up-regulated miR-204-5p promoted the migration, invasion, and angiogenesis of endothelial progenitor cells to enhance the thrombolysis of rats with deep venous thrombosis by targeting SPRED1. Exp Cell Res 2021; 411:112985. [PMID: 34942190 DOI: 10.1016/j.yexcr.2021.112985] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 12/14/2021] [Accepted: 12/19/2021] [Indexed: 11/28/2022]
Abstract
Deep venous thrombosis (DVT) endangers human health. Endothelial progenitor cells (EPCs) were proven to promote thrombolysis and miR-204-5p was discovered to be low-expressed in DVT patients. This study concentrated on exploring whether miR-204-5p had a regulatory effect on EPCs and DVT. Concretely, the expression of miR-204-5p in DVT patients' blood was detected by qRT-PCR. The target of miR-204-5p was predicted by bioinformatics and verified by dual-luciferase reporter assay. After rat EPCs were isolated, identified, and transfected with miR-204-5p agomiR, antagomiR, or SPRED1 plasmids, the viability, migration, invasion, and tube formation of EPCs were detected by MTT, wound healing, Transwell, and tube formation assays, respectively. MiR-204-5p, SPRED1, p-PI3K, PI3K, p-AKT, AKT, VEGFA, and Ang1 expressions in EPCs were measured by qRT-PCR or Western blot. EPCs transfected with miR-204-5p overexpression lentivirus plasmid were injected into the DVT rat model. The histopathology of the thrombus and the homing of EPCs to thrombus in the DVT rats were observed by hematoxylin-eosin staining and confocal microscopy, respectively. We found that miR-204-5p was low-expressed in DVT patients and SPRED1 was a target gene of miR-204-5p. MiR-204-5p agomiR promoted the viability, migration, invasion, and tube formation of EPCs, the levels of VEGFA and Ang1 and the activation of PI3K/AKT pathway in EPCs, while miR-204-5p antagomiR and SPRED1 worked oppositely. SPRED1 reversed the effect of miR-204-5p agomiR on EPCs. Up-regulated miR-204-5p inhibited thrombosis and promoted EPCs homing to thrombus in DVT rats. Collectively, up-regulated miR-204-5p enhanced the angiogenesis of EPCs and thrombolysis in DVT rats by targeting SPRED1.
Collapse
Affiliation(s)
- Mingchao Ding
- Peripheral Vascular Intervention, Peking University Aerospace School of Clinical Medicine, Aerospace Center Hospital, Haidian District, Beijing, 100049, China.
| | - Guoqing Chi
- Peripheral Vascular Intervention, Peking University Aerospace School of Clinical Medicine, Aerospace Center Hospital, Haidian District, Beijing, 100049, China
| | - Fang Li
- Interventional Operating Room, Peking University Aerospace School of Clinical Medicine, Aerospace Center Hospital, Haidian District, Beijing, 100049, China
| | - Bin Wang
- Peripheral Vascular Intervention, Peking University Aerospace School of Clinical Medicine, Aerospace Center Hospital, Haidian District, Beijing, 100049, China
| | - Changgang Shao
- Peripheral Vascular Intervention, Peking University Aerospace School of Clinical Medicine, Aerospace Center Hospital, Haidian District, Beijing, 100049, China
| | - Wenjie Song
- Peripheral Vascular Intervention, Peking University Aerospace School of Clinical Medicine, Aerospace Center Hospital, Haidian District, Beijing, 100049, China
| |
Collapse
|
17
|
Lu J, Fang Q, Ge X. Role and Mechanism of mir-5189-3p in Deep Vein Thrombosis of Lower Extremities. Ann Vasc Surg 2021; 77:288-295. [PMID: 34416282 DOI: 10.1016/j.avsg.2021.07.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 07/08/2021] [Accepted: 07/09/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND This study is to investigate the role and mechanism of mir-5189-3p in deep vein thrombosis (DVT) in lower extremity. METHODS The blood samples were collected from Kazakh patients with DVT in lower extremity and were subjected to microRNA sequencing. Bioinformatics were used to identify mir-5189-3p and its target genes. Dual luciferase reporter assay was used to determine the regulatory effect of mir-5189-3p on JAG1. SD rats were randomly divided into normal control, DVT model, hsa-miR-5189-3p mimics and hsa-miR-5189-3p negative control groups. HE staining was used to observe the pathological changes. TUNEL method was used to observe apoptosis. Western blot was used to detect Bax and Bcl-2 protein expression. Real-time quantitative PCR was used to detect JAG1, Notch1 and Hes1 mRNA. RESULTS The target of Has-miR-5189-3p was JAG1. Co-transfection of miR-5189-3p mimics and pmirGLO/JAG1 wild-type plasmid induced significantly decreased luciferase activity. In hsa-miR-5189-3p mimics and hsa-miR-5189-3p negative control groups, there were more nucleated cells in the thrombus tissues, and the organization degree obviously increased. Signs of blood flow recanalization were observed. The apoptosis of hsa-miR-5189-3p mimics and hsa-miR-5189-3p negative control groups was lower than that in DVT model group. Furthermore, mir-5189-3p mimics significantly increased the mRNA levels of JAG1, Notch1 and Hes1. Additionally, mir-5189-3p mimics significantly increased Bcl-2 while decreased Bax protein. CONCLUSIONS mir-5189-3p could inhibit apoptosis and promote thrombus organization in DVT possibly via Notch signaling pathway. Mir-5189-3p can be used as a potential target for DVT treatment.
Collapse
Affiliation(s)
- Jing Lu
- Xinjiang Medical University, Urumqi, China
| | - Qingbo Fang
- Department of Vascular Surgery, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Xiaohu Ge
- Department of Vascular Surgery, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China.
| |
Collapse
|
18
|
Zhang H, Luo H, Tang B, Chen Y, Fu J, Sun J. Endothelial progenitor cells overexpressing platelet derived growth factor-D facilitate deep vein thrombosis resolution. J Thromb Thrombolysis 2021; 53:750-760. [PMID: 34669127 DOI: 10.1007/s11239-021-02567-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/05/2021] [Indexed: 11/27/2022]
Abstract
To assess the therapeutic efficacy of PDGF-D-overexpressing endothelial progenitor cells (EPCs) in deep vein thrombosis. Inferior vena cava thrombosis was induced in female Sprague Dawley (SD) rats. Animals were injected via the distal vena cava with EPCs overexpressing PDGF-D after transfection with a lentiviral vector containing the PDGF-D gene. The effect on thrombosis in animals who received EPCs was evaluated using MSB staining, immunohistochemistry, immunofluorescence, and venography; the steady-state mRNA and protein levels of PDGF-D and its receptor (PDGF-Rβ) were determined by RT-PCR and Western blotting, respectively; and the PDGF-D-induced mobilization of circulating EPCs was estimated by flow cytology. Compared with controls, injection of EPCs overexpressing PDGF-D was associated with increased thrombosis resolution; recanalization; PDGF-D and PDGF-Rβ expression; induction of monocyte homing; and mobilization of EPCs to the venous circulation. In a rat model, transplantation of PDGF-D-overexpressing EPCs facilitated the resolution of deep vein thrombosis.
Collapse
Affiliation(s)
- Haolong Zhang
- Department of Vascular Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Hailong Luo
- Department of Vascular Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Bo Tang
- Department of Vascular Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| | - Yikuan Chen
- Department of Vascular Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Jian Fu
- Department of Vascular Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Jianming Sun
- Department of Vascular Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| |
Collapse
|
19
|
He X, Tao Z, Zhang Z, He W, Xie Y, Zhang L. The potential role of RAAS-related hsa_circ_0122153 and hsa_circ_0025088 in essential hypertension. Clin Exp Hypertens 2021; 43:715-722. [PMID: 34392742 DOI: 10.1080/10641963.2021.1945077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Background: The dysregulation of renin-angiotensin-aldosterone system (RAAS) is closely related to the development of essential hypertension (EH). MicroRNAs (miRNAs) are an important regulator of RAAS. The sponge effect of circular RNAs (circRNAs) on miRNAs makes the circRNA-miRNA-mRNA axis in EH possible, however, there is currently a lack of relevant evidence.Material and Methods: A circRNA-miRNA network was constructed based on the previous circRNAs microarray results. The expression of RAAS-related miRNAs and circRNAs were verified by qRT-PCR. Peripheral blood samples of 106 EH patients and 106 healthy volunteers were included in this study. GO and KEGG enrichment were performed to predict the role of candidate circRNAs in EH.Results: In EH patients, RAAS-related hsa-miR-483-3p and hsa-miR-27a-3p were down-regulated, and hsa_circ_0122153 and hsa_circ_0025088 were up-regulated. The relative expression of RAAS-related circRNAs and target miRNAs showed a negative correlation (hsa_circ_0122153-hsa-miR-483-3p and hsa_circ_0025088-hsa-miR-27a-3p). Hsa_circ_0122153 or hsa_circ_0025088 combined with corresponding miRNAs and environmental factors may support the early diagnosis of EH. Hsa_circ_0122153 and hsa_circ_0025088 may participate in the regulation of aldosterone and the secretion of renin through the circRNA-miRNA-mRNA network, respectively.Conclusion: Highly expressed hsa_circ_0122153 and hsa_circ_0025088 increase the risk of EH. The hsa_circ_0122153/hsa-miR-483-3p and hsa_circ_0025088/hsa-miR-27a-3p axis involving RAAS were potential EH pathways.
Collapse
Affiliation(s)
- Xin He
- Insitute of Geriatrics, the Affiliated Hospital of Medical School, Ningbo University, Ningbo, Zhejiang Province, China.,Department of Preventative Medicine, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, Medical School of Ningbo University, Ningbo, Zhejiang Province, China
| | - Zhenbo Tao
- Insitute of Geriatrics, the Affiliated Hospital of Medical School, Ningbo University, Ningbo, Zhejiang Province, China
| | - Zebo Zhang
- Department of Preventative Medicine, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, Medical School of Ningbo University, Ningbo, Zhejiang Province, China
| | - Wenming He
- Insitute of Geriatrics, the Affiliated Hospital of Medical School, Ningbo University, Ningbo, Zhejiang Province, China
| | - Yanqing Xie
- Insitute of Geriatrics, the Affiliated Hospital of Medical School, Ningbo University, Ningbo, Zhejiang Province, China
| | - Lina Zhang
- Insitute of Geriatrics, the Affiliated Hospital of Medical School, Ningbo University, Ningbo, Zhejiang Province, China
| |
Collapse
|
20
|
Su Y, Li Q, Zheng Z, Wei X, Hou P. Identification of genes, pathways and transcription factor-miRNA-target gene networks and experimental verification in venous thromboembolism. Sci Rep 2021; 11:16352. [PMID: 34381164 PMCID: PMC8357955 DOI: 10.1038/s41598-021-95909-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 08/02/2021] [Indexed: 12/17/2022] Open
Abstract
Venous thromboembolism (VTE) is a complex, multifactorial life-threatening disease that involves vascular endothelial cell (VEC) dysfunction. However, the exact pathogenesis and underlying mechanisms of VTE are not completely clear. The aim of this study was to identify the core genes and pathways in VECs that are involved in the development and progression of unprovoked VTE (uVTE). The microarray dataset GSE118259 was downloaded from the Gene Expression Omnibus database, and 341 up-regulated and 8 down-regulated genes were identified in the VTE patients relative to the healthy controls, including CREB1, HIF1α, CBL, ILK, ESM1 and the ribosomal protein family genes. The protein-protein interaction (PPI) network and the transcription factor (TF)-miRNA-target gene network were constructed with these differentially expressed genes (DEGs), and visualized using Cytoscape software 3.6.1. Eighty-nine miRNAs were predicted as the targeting miRNAs of the DEGs, and 197 TFs were predicted as regulators of these miRNAs. In addition, 237 node genes and 4 modules were identified in the PPI network. The significantly enriched pathways included metabolic, cell adhesion, cell proliferation and cellular response to growth factor stimulus pathways. CREB1 was a differentially expressed TF in the TF-miRNA-target gene network, which regulated six miRNA-target gene pairs. The up-regulation of ESM1, HIF1α and CREB1 was confirmed at the mRNA and protein level in the plasma of uVTE patients. Taken together, ESM1, HIF1α and the CREB1-miRNA-target genes axis play potential mechanistic roles in uVTE development.
Collapse
Affiliation(s)
- Yiming Su
- Department of Vascular Surgery, LiuzhouWorker's Hospital, Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, 545005, Guangxi Province, China
| | - Qiyi Li
- Department of Vascular Surgery, LiuzhouWorker's Hospital, Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, 545005, Guangxi Province, China
| | - Zhiyong Zheng
- Department of Vascular Surgery, LiuzhouWorker's Hospital, Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, 545005, Guangxi Province, China
| | - Xiaomin Wei
- Department of Vascular Surgery, LiuzhouWorker's Hospital, Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, 545005, Guangxi Province, China
| | - Peiyong Hou
- Department of Vascular Surgery, LiuzhouWorker's Hospital, Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, 545005, Guangxi Province, China.
| |
Collapse
|
21
|
Down-regulation of miR-361-5p promotes the viability, migration and tube formation of endothelial progenitor cells via targeting FGF1. Biosci Rep 2021; 40:226529. [PMID: 32985665 PMCID: PMC7569154 DOI: 10.1042/bsr20200557] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 09/21/2020] [Accepted: 09/22/2020] [Indexed: 12/11/2022] Open
Abstract
Transplantion of bone marrow-derived endothelial progenitor cells (EPCs) may be a novel treatment for deep venous thrombosis (DVT). The present study probed into the role of microRNA (miR)-361-5p in EPCs and DVT recanalization. EPCs were isolated from male Sprague-Dawley (SD) rats and identified using confocal microscopy and flow cytometry. The viability, migration and tube formation of EPCs were examined using MTT assay, wound-healing assay and tube formation assay, respectively. Target gene and potential binding sites between miR-361-5p and fibroblast growth factor 1 (FGF1) were predicted by StarBase and confirmed by dual-luciferase reporter assay. Relative expressions of miR-361-5p and FGF1 were detected using quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot as needed. A DVT model in SD rats was established to investigate the role of EPC with miR-361-5p antagomir in DVT by Hematoxylin-Eosin (H&E) staining. EPC was identified as 87.1% positive for cluster of difference (CD)31, 2.17% positive for CD133, 85.6% positive for von Willebrand factor (vWF) and 94.8% positive for vascular endothelial growth factor receptor-2 (VEGFR2). MiR-361-5p antagomir promoted proliferation, migration and tube formation of EPCs and up-regulated FGF1 expression, thereby dissolving thrombus in the vein of DVT rats. FGF1 was the target of miR-361-5p, and overexpressed FGF1 reversed the effects of up-regulating miR-361-5p on suppressing EPCs. Down-regulation of miR-361-5p enhanced thrombus resolution in vivo and promoted EPC viability, migration and angiogenesis in vitro through targeting FGF1. Therefore, miR-361-5p may be a potential therapeutic target for DVT recanalization.
Collapse
|
22
|
Mi B, Xiong Y, Zhang C, Zhou W, Chen L, Cao F, Chen F, Geng Z, Panayi AC, Sun Y, Wang L, Liu G. SARS-CoV-2-induced Overexpression of miR-4485 Suppresses Osteogenic Differentiation and Impairs Fracture Healing. Int J Biol Sci 2021; 17:1277-1288. [PMID: 33867845 PMCID: PMC8040480 DOI: 10.7150/ijbs.56657] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 03/10/2021] [Indexed: 02/06/2023] Open
Abstract
The angiotensin-converting enzyme 2 (ACE2) receptor has been identified as the cell entry point for SARS-CoV-2. Although ACE2 receptors are present in the bone marrow, the effects of SARS-CoV-2 on the biological activity of bone tissue have not yet been elucidated. In the present study we sought to investigate the impact of SARS-CoV-2 on osteoblastic activity in the context of fracture healing. MicroRNA-4485 (miR-4485), which we found to be upregulated in COVID-19 patients, negatively regulates osteogenic differentiation. We demonstrate this effect both in vitro and in vivo. Moreover, we identified the toll-like receptor 4 (TLR-4) as the potential target gene of miR-4485, and showed that reduction of TLR-4 induced by miR-4485 suppresses osteoblastic differentiation in vitro. Taken together, our findings highlight that up-regulation of miR-4485 is responsible for the suppression of osteogenic differentiation in COVID-19 patients, and TLR-4 is the potential target through which miR-4485 acts, providing a promising target for pro-fracture-healing and anti-osteoporosis therapy in COVID-19 patients.
Collapse
Affiliation(s)
- Bobin Mi
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science & Technology Wuhan, Hubei 430022, China
| | - Yuan Xiong
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science & Technology Wuhan, Hubei 430022, China
| | - Chenming Zhang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science & Technology Wuhan, Hubei 430022, China
| | - Wu Zhou
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science & Technology Wuhan, Hubei 430022, China
| | - Lang Chen
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science & Technology Wuhan, Hubei 430022, China
| | - Faqi Cao
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science & Technology Wuhan, Hubei 430022, China
| | - Fenghua Chen
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science & Technology Wuhan, Hubei 430022, China
| | - Zhi Geng
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science & Technology Wuhan, Hubei 430022, China
| | - Adriana C. Panayi
- Division of Plastic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston 02115, USA
| | - Yun Sun
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science & Technology Wuhan, Hubei 430022, China
| | - Lin Wang
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science & Technology Wuhan, Hubei 430022, China
| | - Guohui Liu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science & Technology Wuhan, Hubei 430022, China
| |
Collapse
|
23
|
Transcriptome analysis of arterial and venous circulating miRNAs during hypertension. Sci Rep 2021; 11:3469. [PMID: 33568719 PMCID: PMC7875986 DOI: 10.1038/s41598-021-82979-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 01/04/2021] [Indexed: 11/18/2022] Open
Abstract
Most current circulating miRNA biomarkers are derived from peripheral venous blood, whereas miRNA deregulation in arterial blood in disease conditions has been largely ignored. To explore whether peripheral venous blood miRNAs could represent a bona fide specific miRNA deregulation pattern, we selected hypertension, a disease that is particularly associated with vessels, as the model. Circulating miRNA profiles of arterial and venous blood from spontaneously hypertensive (SHR) rats and their corresponding controls (i.e., WKY rats) were investigated by next-generation miRNA sequencing. Little miRNAs were observed between arterial and venous circulating miRNAs in WKY rats. Interestingly, this number was enhanced in SHR hypertensive rats. Bioinformatical analysis of disease association, enriched target genes and the regulatory transcription factors of these differentially expressed miRNAs implied a potential functional link with cardiovascular disease-related functions. Comparisons between arterial and venous miRNAs in hypertension-versus-control conditions also revealed prominent disease association of circulating miRNAs and their target genes in arteries but not in veins. Moreover, a young non-hypertensive animal model in SHR background (i.e. JSHR) was used as a second control for SHR. Additional transcriptomic analysis and droplet digital PCR validation of arterial and venous deregulated miRNAs among SHR and its two controls (WKY, JSHR) revealed a noticeable consensus of artery-deregulated miRNAs in hypertension and two novel arterial circulating signatures (miR-455-3p and miR-140-3p) of hypertension. These results suggest the necessity of re-evaluating the efficacy of certain venous miRNAs identified in previous studies as potential biomarkers in cardiovascular diseases or a wider disease spectrum.
Collapse
|
24
|
A novel rationale for targeting FXI: Insights from the hemostatic microRNA targetome for emerging anticoagulant strategies. Pharmacol Ther 2021; 218:107676. [DOI: 10.1016/j.pharmthera.2020.107676] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 09/03/2020] [Indexed: 02/07/2023]
|
25
|
MicroRNA Signatures in Plasma of Patients With Venous Thrombosis: A Preliminary Report. Am J Med Sci 2021; 361:509-516. [PMID: 33781391 DOI: 10.1016/j.amjms.2020.12.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 10/11/2020] [Accepted: 12/04/2020] [Indexed: 11/23/2022]
Abstract
BACKGROUND Venous thromboembolism (VTE) is a frequent and potentially fatal disease, but its pathophysiology is incompletely understood. microRNAs (miR) dysregulate hemostatic proteins and influence thrombotic pathology by posttranscriptional regulation of gene expression. Consensus in defining VTE-related miR clusters and functionally relevant miR has not been reached. We aimed to generate a miR database in patients at high thrombotic risk of VTE and explored their biological functions by seeking information on their messenger RNA targets. METHODS By high-throughput screening (Affymetrix miRNA Microarray), we identified 159 miR in venous blood of male patients who had two unprovoked VTE and in age-matched male controls. RESULTS Of the 159 miR, 41 were significantly higher expressed in patients compared to controls. Six miR (hsa-miR-6798-3p, hsa-miR-6789-5p hsa-miR-4651, hsa-miR-6765-5p, hsa-miR-6816-5p, hsa-miR-4734) were modulated ≥ 5.0-fold higher. Higher expression levels of 4 of these miR (hsa-miR-6789-5p, hsa-miR-4651, hsa-miR-6765-5p, and hsa-miR-6816-5p; primers were unavailable for hsa-miR-6798-3p and hsa-miR-4734) were confirmed by quantitative real-time polymerase chain reaction in 10 independent patients and 10 control samples. Ingenuity Pathway Analysis identified 23 altered miR including hsa-miR-6789-5p, hsa-miR-4651, hsa-miR-6765-5p and hsa-miR-4734 as the main regulators of messenger RNAs involved in the pathology of VTE. Seven messenger RNA targets including thrombomodulin and four targets related to platelet function had a direct relationship to 4 identified miR. CONCLUSIONS We provide evidence of distinct, independently validated miR signatures in patients with VTE and identified a subset of miR as main regulators of messenger RNA involved in disorders related to pathophysiologic processes in venous thrombosis development.
Collapse
|
26
|
Ou M, Hao S, Chen J, Zhao S, Cui S, Tu J. Downregulation of interleukin-6 and C-reactive protein underlies a novel inhibitory role of microRNA-136-5p in acute lower extremity deep vein thrombosis. Aging (Albany NY) 2020; 12:21076-21090. [PMID: 33188660 PMCID: PMC7695373 DOI: 10.18632/aging.103140] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 03/31/2020] [Indexed: 12/23/2022]
Abstract
Deep vein thrombosis (DVT) comprises a critical and common health condition with high incidence, mortality, and long-term adverse sequelae. Several differentially expressed microRNAs (miRNAs) have emerged as promising prognostic markers in DVT. The present study intended to explore the functional relevance of miR-136-5p in acute lower extremity DVT (LEDVT). Rat models of acute LEDVT were established and miR-136-5p expression was altered by agomir or antagomir to assess its effects. In addition, in vitro gain- and loss-experiments, prior to exposure to CoCl2, were performed to investigate effects of miR-136-5p on human umbilical vein endothelial cell (HUVEC) apoptosis and levels of interleukin-6 (IL-6) and C-reactive protein (CRP). miR-136-5p was downregulated, whereas IL-6 and CRP were elevated in acute LEDVT patients. Notably, miR-136-5p was confirmed to target both IL-6 and CRP. Overexpression of miR-136-5p led to reduced length, weight, and ratio of weight to length of the venous thrombus. Furthermore, overexpressed miR-136-5p downregulated the expression of IL-6 and CRP, consequently inhibiting HUVEC apoptosis. Conjointly, our data indicate that the overexpression of miR-136-5p has the potential to bind to the 3’-UTR in the mRNAs for IL-6 and CRP and mitigate acute LEDVT, which provides a basis for new therapeutic targets in acute LEDVT treatment.
Collapse
Affiliation(s)
- Minghui Ou
- Department of Vascular Surgery, Qingdao Municipal Hospital, Qingdao 266011, P.R. China
| | - Shaobo Hao
- Department of Emergency, Qingdao Municipal Hospital, Qingdao 266011, P.R. China
| | - Jing Chen
- Department of Vascular Surgery, Qingdao Municipal Hospital, Qingdao 266011, P.R. China
| | - Shibo Zhao
- Department of Vascular Surgery, Qingdao Municipal Hospital, Qingdao 266011, P.R. China
| | - Shichao Cui
- Department of Vascular Surgery, Qingdao Municipal Hospital, Qingdao 266011, P.R. China
| | - Jie Tu
- Department of Science and Education, Qingdao Municipal Hospital, Qingdao 266011, P.R. China
| |
Collapse
|
27
|
Liang H, Chen Y, Li H, Yu X, Xia C, Ming Z, Zhong C. miR-22-3p Suppresses Endothelial Progenitor Cell Proliferation and Migration via Inhibiting Onecut 1 (OC1)/Vascular Endothelial Growth Factor A (VEGFA) Signaling Pathway and Its Clinical Significance in Venous Thrombosis. Med Sci Monit 2020; 26:e925482. [PMID: 32876075 PMCID: PMC7486795 DOI: 10.12659/msm.925482] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Background Proliferation and migration play crucial roles in various physiological processes, especially in injured endothelial repair. Endothelial progenitor cells (EPCs), as the precursors of endothelial cell, are involved in the regeneration of the endothelial lining of blood vessels. Furthermore, EPCs were found to be a potential choice for venous thrombosis (VT) treatment. Material/Methods EPCs were isolated from human peripheral blood of healthy adults and VT patients. Differently expressed micro(mi)RNAs were examined by quantitative real-time polymerase chain reaction, after which proliferative capacity and migration effect were tested by Cell-Counting Kit 8, scratch wound assay, and transwell assays. Bioinformatic analysis was applied to investigate the potential target messenger ribonucleic acid and a dual-luciferase reporting system was utilized to confirm the binding of miR-22-3p to its target gene. Western blot was carried out to detect candidate protein expression level. Finally, miR-22-3p expression was monitored in VT patients during follow-up to assess its correlation with prognosis of VT. Results Our data revealed that miR-22-3p was upregulated in EPCs derived from deep VT (DVT) individuals and suppression of miR-22-3p contributed to proliferation and migration of EPCs. In addition, miR-22-3p/onecut 1 (OC1)/vascular endothelial growth factor A (VEGFA) signaling pathway was involved in regulating EPC migration and proliferation. In addition, lower expression of miR-22-3p in DVT patients indicated decreased risk of VT recurrence. Conclusions Our results suggest that miR-22-3p regulates OC1/VEGFA signaling and is involved in regulating EPC proliferation and migration. The expression level of miR-22-3p could be monitored to predict DVT patients’ prognosis.
Collapse
Affiliation(s)
- Huoqi Liang
- Department of Vascular Surgery, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu, China (mainland)
| | - Yibiao Chen
- Department of Vascular Surgery, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu, China (mainland)
| | - Hefei Li
- Department of Vascular Surgery, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu, China (mainland)
| | - Xiaoqiang Yu
- Department of Vascular Surgery, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu, China (mainland)
| | - Chunqiu Xia
- Department of Vascular Surgery, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu, China (mainland)
| | - Zhibing Ming
- Department of Vascular Surgery, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu, China (mainland)
| | - Chongjun Zhong
- Department of Vascular Surgery, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu, China (mainland)
| |
Collapse
|
28
|
Du X, Hu N, Yu H, Hong L, Ran F, Huang D, Zhou M, Li C, Li X. miR-150 regulates endothelial progenitor cell differentiation via Akt and promotes thrombus resolution. Stem Cell Res Ther 2020; 11:354. [PMID: 32787969 PMCID: PMC7425584 DOI: 10.1186/s13287-020-01871-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 06/24/2020] [Accepted: 08/03/2020] [Indexed: 01/22/2023] Open
Abstract
Background Deep venous thrombosis (DVT) constitutes a major global disease burden. Endothelial progenitor cells (EPCs) have been described in association with recanalization of venous thrombus. Furthermore, emerging evidence suggests microRNAs are involved in this progression. The goal of this study was to investigate the influence of miR-150 on the behavior of EPCs and its potential contribution in venous thrombosis resolution. Methods We isolated and cultured EPCs from healthy adults. Next, early EPCs or endothelial colony-forming cells (ECFCs or late EPCs) were transfected with miR-150 agomir and antagomir. Gene expression profiles, proliferation, cytokine secretion, and angiogenic capacity of early EPCs and ECFCs were examined. The effects of miR-150 on c-Myb expression and Akt/FOXO1 signaling were also evaluated. Furthermore, a rat model of venous thrombosis was constructed to determine the in vivo function of EPCs. Results Our results showed that miR-150 overexpression in early EPCs significantly promoted differentiation to ECFCs and contributed to proliferation and tube formation. However, suppression of miR-150 in late EPCs inhibited proliferation and tube formation. Moreover, we identified that this progression is regulated by inhibition of c-Myb and activation of the Akt/FOXO1 pathway. Our findings also showed that miR-150 led to the enhanced resolution ability of EPCs in a rat venous thrombosis model. Conclusions In this study, we present a novel mechanism of miRNA-mediated regulation of EPCs and Akt activation in thrombus resolution.
Collapse
Affiliation(s)
- Xiaolong Du
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Nan Hu
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Huiying Yu
- Department of Vascular Surgery, Jining No. 1 People's Hospital, Jining Medical College, Jining, 272000, China
| | - Lei Hong
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Feng Ran
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Dian Huang
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Min Zhou
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China.
| | - Chenglong Li
- Department of Vascular Surgery, The Second Affiliated Hospital to Soochow University, Soochow University, Suzhou, 215000, China.
| | - Xiaoqiang Li
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China.
| |
Collapse
|
29
|
Metformin inhibits angiogenesis of endothelial progenitor cells via miR-221-mediated p27 expression and autophagy. Future Med Chem 2020; 11:2263-2272. [PMID: 31581911 DOI: 10.4155/fmc-2019-0017] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Aim: To explore the underlying mechanisms of metformin on the angiogenic capacity of endothelial progenitor cells (EPCs). Results: EPC growth and miR-221 expression decreased concentration-dependence with metformin, and a negative correlation was observed between miR-221 expression and metformin concentration (p < 0.001). miR-221 overexpression using a mimic decreased the metformin-mediated angiogenic effects in EPCs (p < 0.01). Metformin increased p27 and LC3II expression and AMP-activated protein kinase (AMPK) phosphorylation, and decreased p62 expression, while miR-221 overexpression reversed the effects of metformin. Additionally, AMPK inhibition by compound C reversed the increase in p27 and LC3II levels and AMPK phosphorylation or miR-221 siRNA treatment. Conclusion: Metformin inhibits the angiogenic capacity of EPCs. The underlying mechanism involves AMPK-mediated autophagy pathway activity and increases miR-221-mediated p27 expression.
Collapse
|
30
|
Jankowska KI, Sauna ZE, Atreya CD. Role of microRNAs in Hemophilia and Thrombosis in Humans. Int J Mol Sci 2020; 21:ijms21103598. [PMID: 32443696 PMCID: PMC7279366 DOI: 10.3390/ijms21103598] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 05/13/2020] [Accepted: 05/14/2020] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNA) play an important role in gene expression at the posttranscriptional level by targeting the untranslated regions of messenger RNA (mRNAs). These small RNAs have been shown to control cellular physiological processes including cell differentiation and proliferation. Dysregulation of miRNAs have been associated with numerous diseases. In the past few years miRNAs have emerged as potential biopharmaceuticals and the first miRNA-based therapies have entered clinical trials. Our recent studies suggest that miRNAs may also play an important role in the pathology of genetic diseases that are currently considered to be solely due to mutations in the coding sequence. For instance, among hemophilia A patients there exist a small subset, with normal wildtype genes; i.e., lacking in mutations in the coding and non-coding regions of the F8 gene. Similarly, in many patients with missense mutations in the F8 gene, the genetic defect does not fully explain the severity of the disease. Dysregulation of miRNAs that target mRNAs encoding coagulation factors have been shown to disturb gene expression. Alterations in protein levels involved in the coagulation cascade mediated by miRNAs could lead to bleeding disorders or thrombosis. This review summarizes current knowledge on the role of miRNAs in hemophilia and thrombosis. Recognizing and understanding the functions of miRNAs by identifying their targets is important in identifying their roles in health and diseases. Successful basic research may result in the development and improvement of tools for diagnosis, risk evaluation or even new treatment strategies.
Collapse
Affiliation(s)
- Katarzyna I. Jankowska
- OBRR/DBCD/LCH in the Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD 20993, USA;
| | - Zuben E. Sauna
- OTAT/DPPT/HB in the Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD 20993, USA;
| | - Chintamani D. Atreya
- OBRR/DBCD/LCH in the Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD 20993, USA;
- Correspondence:
| |
Collapse
|
31
|
MicroRNAs in venous thrombo-embolism. Clin Chim Acta 2020; 504:66-72. [DOI: 10.1016/j.cca.2020.01.034] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/31/2020] [Accepted: 01/31/2020] [Indexed: 02/07/2023]
|
32
|
Morelli VM, Brækkan SK, Hansen JB. Role of microRNAs in Venous Thromboembolism. Int J Mol Sci 2020; 21:ijms21072602. [PMID: 32283653 PMCID: PMC7177540 DOI: 10.3390/ijms21072602] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/05/2020] [Accepted: 04/06/2020] [Indexed: 12/16/2022] Open
Abstract
MicroRNAs (miRNAs) are non-coding RNAs that execute their function by targeted downregulation of gene expressions. There is growing evidence from epidemiological studies and animal models suggesting that the expression level of miRNAs is dysregulated in venous thromboembolism (VTE). In this review, we summarize the current knowledge on the role of miRNAs as biomarkers for VTE and provide general insight into research exploring the modulation of miRNA activity in animal models of venous thrombosis. Up to now, published studies have yielded inconsistent results on the role of miRNAs as biomarkers for VTE with most of the reports focused on diagnostic research. The limited statistical power of the individual studies, due to the small sample sizes, may substantially contribute to the poor reproducibility among studies. In animal models, over-expression or inhibition of some miRNAs appear to influence venous thrombus formation and resolution. However, there is an important gap in knowledge on the potential role of miRNAs as therapeutic targets in VTE. Future research involving large cohorts should be designed to clarify the clinical usefulness of miRNAs as biomarkers for VTE, and animal model studies should be pursued to unravel the role of miRNAs in the pathogenesis of VTE and their potential as therapeutic targets.
Collapse
Affiliation(s)
- Vânia M. Morelli
- K.G. Jebsen Thrombosis Research and Expertise Center (TREC), Department of Clinical Medicine, UiT—The Arctic University of Norway, N-9037 Tromsø, Norway; (S.K.B.); (J.-B.H.)
- Correspondence: ; Tel.: +47-77625105
| | - Sigrid K. Brækkan
- K.G. Jebsen Thrombosis Research and Expertise Center (TREC), Department of Clinical Medicine, UiT—The Arctic University of Norway, N-9037 Tromsø, Norway; (S.K.B.); (J.-B.H.)
- Division of Internal Medicine, University Hospital of North Norway, N-9037 Tromsø, Norway
| | - John-Bjarne Hansen
- K.G. Jebsen Thrombosis Research and Expertise Center (TREC), Department of Clinical Medicine, UiT—The Arctic University of Norway, N-9037 Tromsø, Norway; (S.K.B.); (J.-B.H.)
- Division of Internal Medicine, University Hospital of North Norway, N-9037 Tromsø, Norway
| |
Collapse
|
33
|
Ou M, Zhang Y, Cui S, Zhao S, Tu J. Upregulated MiR-9-5p Protects Against Inflammatory Response in Rats with Deep Vein Thrombosis via Inhibition of NF-κB p50. Inflammation 2020; 42:1925-1938. [PMID: 31463646 DOI: 10.1007/s10753-019-01031-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Recently, microRNAs (miRNAs) have been demonstrated to play important roles in the cardiovascular system, including heart, blood vessels, plasma, and vascular diseases. Deep vein thrombosis (DVT) refers to the formation of blood clot in the deep veins of the human body and is a common peripheral vascular disease. Herein, we explored the mechanism of miR-9-5p in DVT through nuclear factor-κB (NF-κB). The expression of miR-9-5p in DVT rats was measured through the establishment of DVT rat models, followed by the alteration of miR-9-5p and NF-κB p50 in rats through the injection of constructed lentiviral vectors so as to explore the role of miR-9-5p and NF-κB p50 expression in rats. Next, the expression of NF-κB p50 and levels of inflammation-related factors plasminogen activator inhibitor-1 (PAI-1), interleukin-6 (IL-6), tumor necrosis factor α (TNF-α), and interleukin-8 (IL-8) were measured after the injection with lentiviral vectors, followed by the assessment of platelet aggregation and TXB2 content. MiR-9-5p was found to be downregulated in DVT rats. Through dual luciferase reporter gene assay, NF-κB p50 was verified as the target gene of miR-9-5p and miR-9-5p could negatively regulate NF-κB p50. MiR-9-5p over-expression decreased the levels of PAI-1, TNF-α, IL-6, and IL-8 and platelet aggregation as well as TXB2 content, thus inhibiting thrombosis. Meanwhile, over-expressed NF-κB p50 could reverse the anti-inflammatory or anti-thrombotic effect of miR-9-5p. In summary, miR-9-5p over-expression can suppress the NF-κB signaling pathway through p50 downregulation, thus alleviating inflammation and thrombosis in DVT rats. MiR-9-5p could serve as a potential therapeutic target for DVT.
Collapse
Affiliation(s)
- Minghui Ou
- Department of Vascular Surgery, Qingdao Municipal Hospital, Qingdao, 266011, People's Republic of China
| | - Yunfeng Zhang
- Department of Orthopedics, Qingdao Municipal Hospital, Qingdao, 266011, People's Republic of China
| | - Shichao Cui
- Department of Vascular Surgery, Qingdao Municipal Hospital, Qingdao, 266011, People's Republic of China
| | - Shibo Zhao
- Department of Vascular Surgery, Qingdao Municipal Hospital, Qingdao, 266011, People's Republic of China
| | - Jie Tu
- Science and Education Department, Qingdao Municipal Hospital, No. 1, Jiaozhou Road Shandong Province, Qingdao, 266011, People's Republic of China.
| |
Collapse
|
34
|
Nicklas JM, Gordon AE, Henke PK. Resolution of Deep Venous Thrombosis: Proposed Immune Paradigms. Int J Mol Sci 2020; 21:E2080. [PMID: 32197363 PMCID: PMC7139924 DOI: 10.3390/ijms21062080] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/14/2020] [Accepted: 03/15/2020] [Indexed: 12/12/2022] Open
Abstract
Venous thromboembolism (VTE) is a pathology encompassing deep vein thrombosis (DVT) and pulmonary embolism (PE) associated with high morbidity and mortality. Because patients often present after a thrombus has already formed, the mechanisms that drive DVT resolution are being investigated in search of treatment. Herein, we review the current literature, including the molecular mechanisms of fibrinolysis and collagenolysis, as well as the critical cellular roles of macrophages, neutrophils, and endothelial cells. We propose two general models for the operation of the immune system in the context of venous thrombosis. In early thrombus resolution, neutrophil influx stabilizes the tissue through NETosis. Meanwhile, macrophages and intact neutrophils recognize the extracellular DNA by the TLR9 receptor and induce fibrosis, a complimentary stabilization method. At later stages of resolution, pro-inflammatory macrophages police the thrombus for pathogens, a role supported by both T-cells and mast cells. Once they verify sterility, these macrophages transform into their pro-resolving phenotype. Endothelial cells both coat the stabilized thrombus, a necessary early step, and can undergo an endothelial-mesenchymal transition, which impedes DVT resolution. Several of these interactions hold promise for future therapy.
Collapse
Affiliation(s)
| | | | - Peter K. Henke
- School of Medicine, University of Michigan, 1500 East Medical Center Drive, Ann Arbor, MI 48109, USA; (J.M.N.); (A.E.G.)
| |
Collapse
|
35
|
Zhou DM, Sun LL, Zhu J, Chen B, Li XQ, Li WD. MiR-9 promotes angiogenesis of endothelial progenitor cell to facilitate thrombi recanalization via targeting TRPM7 through PI3K/Akt/autophagy pathway. J Cell Mol Med 2020; 24:4624-4632. [PMID: 32147957 PMCID: PMC7176881 DOI: 10.1111/jcmm.15124] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 12/11/2019] [Accepted: 01/06/2020] [Indexed: 12/13/2022] Open
Abstract
Endothelial progenitor cells (EPCs) have emerged as a promising therapeutic choice for thrombi recanalization. However, this role of EPCs is confined by some detrimental factors. The aim of this study was to explore the role of the miR‐9‐5p in regulation of the proliferation, migration and angiogenesis of EPCs and the subsequent therapeutic role in thrombosis event. Wound healing, transwell assay, tube formation assay and in vivo angiogenesis assay were carried out to measure cell migration, invasion and angiogenic abilities, respectively. Western blot was performed to elucidate the relationship between miR‐9‐5p and TRPM7 in the autophagy pathway. It was found that miR‐9‐5p could promote migration, invasion and angiogenesis of EPCs by attenuating TRPM7 expression via activating PI3K/Akt/autophagy pathway. In conclusion, miR‐9‐5p, targets TRPM7 via the PI3K/Ak/autophagy pathway, thereby mediating cell proliferation, migration and angiogenesis in EPCs. Acting as a potential therapeutic target, miR‐9‐5p may play an important role in the prognosis of DVT.
Collapse
Affiliation(s)
- Dong-Ming Zhou
- Department of Hematology, The Affiliated Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Li-Li Sun
- Department of Vascular Surgery, The Affiliated Drum Tower Hospital, Nanjing University Medical School, Nanjing, China.,Department of Vascular Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Jian Zhu
- Department of Vascular Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Bing Chen
- Department of Hematology, The Affiliated Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Xiao-Qiang Li
- Department of Vascular Surgery, The Affiliated Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Wen-Dong Li
- Department of Vascular Surgery, The Affiliated Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| |
Collapse
|
36
|
Jing QB, Tong HX, Tang WJ, Tian SD. Clinical Significance and Potential Regulatory Mechanisms of Serum Response Factor in 1118 Cases of Thyroid Cancer Based on Gene Chip and RNA-Sequencing Data. Med Sci Monit 2020; 26:e919302. [PMID: 31967986 PMCID: PMC6995247 DOI: 10.12659/msm.919302] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background Thyroid cancer (TC) is one of the most prevalent endocrine malignancies and there may be many unclarified molecular events and gene types involved in TC. The objective of this study was to assess the clinical implications and potential mechanisms of serum response factor (SRF) in TC. Material/Methods RNA-sequencing and gene chip data with TC expression were collected from The Cancer Genome Atlas/Genotype-Tissue Expression, Gene Expression Omnibus, ArrayExpress, Sequence Read Archive, and Oncomine. SRF expression of all TC and adjacent non-cancerous tissue were calculated using the t test, STATA, and Meta-DiSc. The related pathways of the potential SRF target genes and target miRNAs were explored. Dual-luciferase reporter assay was performed to validate the association between SRF and its putative miRNA. Results One RNA-sequencing and 15 gene chips were collected, and the pooled standardized mean difference of SRF was −1.00. Furthermore, the area under the curve of sROC of SRF in TC was 0.8251, indicating a dramatic decreased expression of SRF in TC tissues based on 1118 cases. The intersection of differentially expressed genes in TC, SRF co-expressed genes, and SRF potential target genes achieved from Cistrome Cancer led to 169 overlapped genes. miR-330-5p was predicted to target SRF, which was further confirmed by dual-luciferase reporter assay. Conclusions The reduction of SRF appears to play a crucial role in the origin of TC. These properties are accomplished by the target genes of SRF, as a transcription factor, or by the axes with the associated miRNAs.
Collapse
Affiliation(s)
- Qiang-Bin Jing
- Center of Medical Oncology, The First People's Hospital of Huaihua, Huaihua, Hunan, China (mainland)
| | - Hai-Xiao Tong
- Center of Medical Oncology, The First People's Hospital of Huaihua, Huaihua, Hunan, China (mainland)
| | - Wei-Jian Tang
- Center of Medical Oncology, The First People's Hospital of Huaihua, Huaihua, Hunan, China (mainland)
| | - Shao-Dong Tian
- Center of Medical Oncology, The First People's Hospital of Huaihua, Huaihua, Hunan, China (mainland)
| |
Collapse
|
37
|
Hong G, Han X, He W, Xu J, Sun P, Shen Y, Wei Q, Chen Z. Analysis of circulating microRNAs aberrantly expressed in alcohol-induced osteonecrosis of femoral head. Sci Rep 2019; 9:18926. [PMID: 31831773 PMCID: PMC6908598 DOI: 10.1038/s41598-019-55188-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 11/22/2019] [Indexed: 01/05/2023] Open
Abstract
Serum miRNAs are potential biomarkers for predicting the progress of bone diseases, but little is known about miRNAs in alcohol-induced osteonecrosis of femoral head (AIONFH). This study evaluated disease-prevention value of specific serum miRNA expression profiles in AIONFH. MiRNA PCR Panel was taken to explore specific miRNAs in serum of AIONFH cases. The top differentially miRNAs were further validated by RT-qPCR assay in serum and bone tissues of two independent cohorts. Their biofunction and target genes were predicted by bioinformatics databases. Target genes related with angiogenesis and osteogenesis were quantified by RT-qPCR in necrotic bone tissue. Our findings demonstrated that multiple miRNAs were evaluated to be differentially expressed with high dignostic values. MiR-127-3p, miR-628-3p, and miR-1 were downregulated, whereas miR-885-5p, miR-483-3p, and miR-483-5p were upregulated in serum and bone samples from the AIONFH patients compared to those from the normal control individuals (p < 0.01). The predicted target genes of the indicated miRNAs quantified by qRT-PCR, including IGF2, PDGFA, RUNX2, PTEN, and VEGF, were presumed to be altered in necrotic bone tissue of AIONFH patients. The presence of five altered miRNAs in AIONFH patients may serve as non-invasive biomarkers and potential therapeutic targets for the early diagnosis of AIONFH.
Collapse
Affiliation(s)
- Guoju Hong
- Devision of Orthopeadic Surgery, the University of Alberta, Edmonton, Alberta, T6G 2R3, Canada
- The National Key Discipline and the Orthopedic Laboratory, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510405, P.R. China
| | - Xiaorui Han
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510641, P.R. China
| | - Wei He
- Department of Orthopedic, the First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510405, P.R. China
- Hip Preserving Ward, No. 3 Orthopaedic Region, the First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510405, P.R. China
| | - Jiake Xu
- School of Biomedical Sciences, the University of Western Australia, Perth, Western Australia, 6009, Australia
| | - Ping Sun
- Department of Endocrinology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, Guangdong, 510080, P.R. China
| | - Yingshan Shen
- The National Key Discipline and the Orthopedic Laboratory, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510405, P.R. China
| | - Qiushi Wei
- Department of Orthopedic, the First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510405, P.R. China.
- Hip Preserving Ward, No. 3 Orthopaedic Region, the First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510405, P.R. China.
| | - Zhenqiu Chen
- Department of Orthopedic, the First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510405, P.R. China.
- Hip Preserving Ward, No. 3 Orthopaedic Region, the First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510405, P.R. China.
| |
Collapse
|
38
|
Jin J, Wang C, Ouyang Y, Zhang D. Elevated miR-195-5p expression in deep vein thrombosis and mechanism of action in the regulation of vascular endothelial cell physiology. Exp Ther Med 2019; 18:4617-4624. [PMID: 31807149 PMCID: PMC6878892 DOI: 10.3892/etm.2019.8166] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Accepted: 09/24/2019] [Indexed: 12/12/2022] Open
Abstract
Deep vein thrombosis (DVT) is one of the most common cardiovascular diseases. The apoptosis of vascular endothelial cells is the most important cause of venous thrombosis. MicroRNAs (miRNAs) play important roles in the regulation of cell apoptosis. miRNA (miR)-195 is upregulated in the blood of patients with DVT, and it was predicted that Bcl-2 is a potential target of miR-195-5p. Therefore, it was hypothesized that miR-195-5p may play an important role in the development of DVT by targeting Bcl-2. The present study aimed to investigate the expression of miR-195-5p in DVT patients, and to explore whether miR-195-5p is involved in the development of DVT by regulating the apoptosis of vascular endothelial cells. The level of miR-195-5p was detected using reverse transcription-quantitative PCR. Dual luciferase reporter assays were used to determine the relationship between Bcl-2 and miR-195-5p. Cell viability was detected using MTT assays, and cell apoptosis was analyzed by flow cytometry. Protein levels of Bcl-2 and Bax were measured by western blotting. The results indicated that miR-195-5p was significantly upregulated in the blood of DVT patients. It was also revealed that Bcl-2 was a direct target of miR-195-5p, and that Bcl-2 was downregulated in the blood of patients with DVT. miR-195-5p downregulation promoted cell viability and inhibited the apoptosis of human umbilical vein endothelial cells (HUVECs). miR-195-5p upregulation inhibited cell viability and increased the apoptosis of HUVECs. All of the observed effects of miR-195-5p upregulation on HUVECs were reversed by raised Bcl-2 expression. In conclusion, miR-195-5p was significantly upregulated in patients with DVT, and it may be involved in the development of DVT by regulating the apoptosis of vascular endothelial cells. Therefore, miR-195-5p may be a potential target for predicting and treating DVT.
Collapse
Affiliation(s)
- Jinlong Jin
- Interventional Department of Peripheral Vascular Disease, Gansu Provincial Hospital of TCM, Lanzhou, Gansu 730050, P.R. China
| | - Caixia Wang
- Interventional Department of Peripheral Vascular Disease, Gansu Provincial Hospital of TCM, Lanzhou, Gansu 730050, P.R. China
| | - Yujuan Ouyang
- Department of Basic Nursing, Health School of Nuclear Industry, Affiliated Nanhua Hospital, University of South China, Hengyang, Hunan 421002, P.R. China
| | - Dandan Zhang
- Institute of Clinical Research, Communicable Diseases Department, Affiliated Nanhua Hospital, University of South China, Hengyang, Hunan 421002, P.R. China
| |
Collapse
|
39
|
Sun LL, Xiao L, Du XL, Hong L, Li CL, Jiao J, Li WD, Li XQ. MiR-205 promotes endothelial progenitor cell angiogenesis and deep vein thrombosis recanalization and resolution by targeting PTEN to regulate Akt/autophagy pathway and MMP2 expression. J Cell Mol Med 2019; 23:8493-8504. [PMID: 31633295 PMCID: PMC6850951 DOI: 10.1111/jcmm.14739] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/21/2019] [Accepted: 09/13/2019] [Indexed: 12/27/2022] Open
Abstract
MicroRNAs (MiRNAs, MiRs) represent a class of conserved small non-coding RNAs that affect post-transcriptional gene regulation and play a vital role in angiogenesis, proliferation, apoptosis, migration and invasion. They are essential for a wide range of physiological and pathological processes, especially for vascular diseases. However, data concerning miRNAs in endothelial progenitor cells (EPCs) and deep vein thrombosis (DVT) remain incomplete. We explored miRNAs that modulate angiogenesis in EPCs and thrombolysis, and analysed their underlying mechanisms using a DVT model, dual-luciferase reporter assay, qRT-PCR, Western blot, immunofluorescence staining, flow cytometry analysis, CCK-8 assay, angiogenesis assay, wound healing and Transwell assay. We found that miR-205 enhanced the homing ability of EPCs to DVT sites and promoted thrombosis resolution and recanalization, which significantly reduced venous thrombus. Additionally, we demonstrated that miR-205 overexpression significantly enhanced angiogenesis in vivo and in vitro, migration, invasion, F-actin filaments and proliferation in EPCs, and inhibited cell apoptosis. Conversely, down-regulation of miR-205 played the opposite role in EPCs. Importantly, this study demonstrated that miR-205 directly targeted PTEN to modulate the Akt/autophagy pathway and MMP2 expression, subsequently playing a key role in EPC function and DVT recanalization and resolution. These results elucidated the pro-angiogenesis effects of miR-205 in EPCs and established it as a potential target for DVT treatment.
Collapse
Affiliation(s)
- Li-Li Sun
- Department of Vascular Surgery, The Affiliated Drum Tower Hospital, Nanjing University Medical School, Nanjing, China.,Department of Vascular Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Lun Xiao
- Department of Vascular Surgery, The Affiliated Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Xiao-Long Du
- Department of Vascular Surgery, The Affiliated Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Lei Hong
- Department of Vascular Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Cheng-Long Li
- Department of Vascular Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Jian Jiao
- Department of Vascular Surgery, Fengyang County People's Hospital, Chuzhou, China
| | - Wen-Dong Li
- Department of Vascular Surgery, The Affiliated Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Xiao-Qiang Li
- Department of Vascular Surgery, The Affiliated Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| |
Collapse
|
40
|
Zhang Q, Cannavicci A, Dai SC, Wang C, Kutryk MJB. MicroRNA profiling of human myeloid angiogenic cells derived from peripheral blood mononuclear cells. Biochem Cell Biol 2019; 98:203-207. [PMID: 31484002 DOI: 10.1139/bcb-2019-0163] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Human myeloid angiogenic cells (MACs), also termed early endothelial progenitor cells, play an important role in neovascularization and vascular repair. MicroRNAs (miRNAs) are a class of naturally occurring, noncoding, short (∼22 nucleotides), single-stranded RNAs that regulate gene expression post-transcriptionally. MiRNAs have been shown to regulate MAC function. A miRNA signature of MACs was described approximately a decade ago, and many new miRNAs have been discovered in recent years. In this study, we aimed to provide an up-to-date miRNA signature for human MACs. MACs were obtained by culture of human peripheral blood mononuclear cells in endothelial medium for 7 days. Using qPCR array analysis we identified 72 highly expressed miRNAs (CT value < 30) in human MACs. RT-qPCR quantification of select miRNAs revealed a strong correlation between the CT values detected by the array analysis and RT-qPCR, suggesting the miRNA signature generated by the qPCR array assay is accurate and reliable. Experimentally validated target genes of the 10 most highly expressed miRNAs were retrieved. Only a few of the targets and their respective miRNAs have been studied for their role in MAC biology. Our study therefore provides a valuable repository of miRNAs for future exploration of miRNA function in MACs.
Collapse
Affiliation(s)
- Qiuwang Zhang
- Division of Cardiology, Keenan Research Center for Biomedical Science, St. Michael's Hospital, University of Toronto, Toronto, ON M5B 1T8, Canada
| | - Anthony Cannavicci
- Division of Cardiology, Keenan Research Center for Biomedical Science, St. Michael's Hospital, University of Toronto, Toronto, ON M5B 1T8, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Si-Cheng Dai
- Division of Cardiology, Keenan Research Center for Biomedical Science, St. Michael's Hospital, University of Toronto, Toronto, ON M5B 1T8, Canada
| | - Chenxi Wang
- Department of Cardiovascular Surgery, Renji Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Michael J B Kutryk
- Division of Cardiology, Keenan Research Center for Biomedical Science, St. Michael's Hospital, University of Toronto, Toronto, ON M5B 1T8, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
41
|
Du X, Hong L, Sun L, Sang H, Qian A, Li W, Zhuang H, Liang H, Song D, Li C, Wang W, Li X. miR-21 induces endothelial progenitor cells proliferation and angiogenesis via targeting FASLG and is a potential prognostic marker in deep venous thrombosis. J Transl Med 2019; 17:270. [PMID: 31416448 PMCID: PMC6694687 DOI: 10.1186/s12967-019-2015-z] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 08/04/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Deep venous thrombosis (DVT) of lower extremities is a common thrombotic disease, occurring either in isolation or as a complication of other diseases or procedures. MiR-21 is one of important microRNAs which play critical role in various cellular function. This study aim to determine the effect of miR-21 on endothelial progenitor cells (EPCs) and its role in predicting prognosis of DVT. METHODS EPCs was isolated from DVT models and control subjects. miR-21 expression was confirmed by RT-PCR. Potential target mRNA was predicted by bioinformatics analysis. EPCs biological functions were examined by CCK-8 and tube formation assay. Besides, miR-21 expression was determined in DVT patients to investigate the correlation between miR-21 expression and prognosis of DVT. Cox proportional hazard regression analyses were also performed to reveal the risk factors associated with prognosis. RESULTS Here, we found miR-21 was downregulated in EPCs of DVT model rats. Increased miR-21 expression promoted proliferation and angiogenesis of EPCs. Moreover, we demonstrated that FASLG was a target of miR-21 and revealed that FASLG knockdown inhibited function of EPCs. Upregulation of miR-21 led to thrombus resolution in a rat model of venous thrombosis. In addition, lower expression level of miR-21 in DVT patients was associated with an increase of recurrent DVT and post thrombotic syndrome (PTS). Furthermore, Cox proportional hazard regression analyses demonstrated miR-21 expression level as an independent predictor of recurrence of DVT. CONCLUSIONS Our data revealed a role of miR-21 in regulating biological function of EPCs and could be a predictor for recurrent DVT or PTS.
Collapse
Affiliation(s)
- Xiaolong Du
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210000, China
| | - Lei Hong
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210000, China.,Department of Vascular Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, 215000, China
| | - Lili Sun
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210000, China.,Department of Vascular Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, 215000, China
| | - Hongfei Sang
- Department of Vascular Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, 215000, China
| | - Aiming Qian
- Department of Vascular Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, 215000, China
| | - Wendong Li
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210000, China
| | - Hao Zhuang
- Department of Vascular Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, 215000, China
| | - Huoqi Liang
- Department of Vascular Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, 215000, China
| | - Dandan Song
- Department of Vascular Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, 215000, China
| | - Chenglong Li
- Department of Vascular Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, 215000, China
| | - Wenbin Wang
- Department of General Surgery, The Fourth Affiliated Hospital of Anhui Medical University, Hefei, 230032, China.
| | - Xiaoqiang Li
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210000, China.
| |
Collapse
|
42
|
Xiang Q, Zhang HX, Wang Z, Liu ZY, Xie QF, Hu K, Zhang Z, Mu GY, Ma LY, Jiang J, Cui YM. The predictive value of circulating microRNAs for venous thromboembolism diagnosis: A systematic review and diagnostic meta-analysis. Thromb Res 2019; 181:127-134. [PMID: 31401416 DOI: 10.1016/j.thromres.2019.07.024] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 07/16/2019] [Accepted: 07/25/2019] [Indexed: 01/15/2023]
Abstract
OBJECTIVE Venous thromboembolism (VTE) is a common cardiovascular disease, in which pulmonary embolism (PE) is potentially life-threatening. Accurate biological markers for the early diagnosis of VTE are needed. The purpose of this study was to analyze and validate the predictive value of microRNAs for the diagnosis of VTE. METHODS A comprehensive literature review was conducted using the PubMed, Embase, and Cochrane Library databases and is current through Sep 27, 2018. The diagnostic value of microRNAs for VTE was analyzed by creating a summary receiver operating characteristic curve (SROC) and calculating the area under the curve (AUC). RESULTS Our analysis included 12 articles assessing a total of 1057 individuals. The most frequently researched microRNA was miR-134, and the pooled results of the predictive ability of this miRNA with 95% confidence intervals (CIs) showed an average sensitivity of 0.82 (0.69-0.91) and an average specificity of 0.83 (0.68-0.92). The average AUC for the SROC curves was 0.89 (0.86-0.92). For other microRNAs, AUC values >0.8 were considered as potential diagnostic indices. These microRNAs included miR-1233, miR-134, miR-145, miR-483-3p, miR-582, miR-532, and miR-195. CONCLUSIONS MicroRNAs may act as novel diagnostic biomarkers for VTE, and miR-1233, miR-134, miR-145, miR-483-3p, miR-582, miR-532, and miR-195 are prime candidates. Of these, research on miR-134 is the most extensive and reliable.
Collapse
Affiliation(s)
- Qian Xiang
- Department of Pharmacy, Peking University First Hospital, No. 6, Dahongluochang Street, Xicheng District, Beijing 100034, China
| | - Han-Xu Zhang
- Department of Pharmacy, Peking University First Hospital, No. 6, Dahongluochang Street, Xicheng District, Beijing 100034, China
| | - Zhe Wang
- Department of Pharmacy, Peking University First Hospital, No. 6, Dahongluochang Street, Xicheng District, Beijing 100034, China
| | - Zhi-Yan Liu
- Department of Pharmacy, Peking University First Hospital, No. 6, Dahongluochang Street, Xicheng District, Beijing 100034, China
| | - Qiu-Fen Xie
- Department of Pharmacy, Peking University First Hospital, No. 6, Dahongluochang Street, Xicheng District, Beijing 100034, China
| | - Kun Hu
- Department of Pharmacy, Peking University First Hospital, No. 6, Dahongluochang Street, Xicheng District, Beijing 100034, China
| | - Zhuo Zhang
- Department of Pharmacy, Peking University First Hospital, No. 6, Dahongluochang Street, Xicheng District, Beijing 100034, China
| | - Guang-Yan Mu
- Department of Pharmacy, Peking University First Hospital, No. 6, Dahongluochang Street, Xicheng District, Beijing 100034, China
| | - Ling-Yue Ma
- Department of Pharmacy, Peking University First Hospital, No. 6, Dahongluochang Street, Xicheng District, Beijing 100034, China
| | - Jie Jiang
- Department of Cardiology, Peking University First Hospital, No. 8, Xi Shi Ku Da Jie Street, Xicheng District, Beijing 100034, China
| | - Yi-Min Cui
- Department of Pharmacy, Peking University First Hospital, No. 6, Dahongluochang Street, Xicheng District, Beijing 100034, China.
| |
Collapse
|
43
|
Wang W, Zhu X, Du X, Xu A, Yuan X, Zhan Y, Liu M, Wang S. MiR-150 promotes angiogensis and proliferation of endothelial progenitor cells in deep venous thrombosis by targeting SRCIN1. Microvasc Res 2019; 123:35-41. [PMID: 30315850 DOI: 10.1016/j.mvr.2018.10.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Revised: 09/24/2018] [Accepted: 10/09/2018] [Indexed: 01/19/2023]
Abstract
Venous thromboembolism (VTE), encompassing deep venous thrombosis (DVT) and pulmonary embolism (PE), is the third most common cardiovascular disease. miR-150 is one of important microRNAs which play critical role in various cellular function such as endothelial progenitor cells (EPCs). In this study, we investigate the effect of miR-150 on EPCs function ex vivo and thrombus resolution in vivo. We determined miR-150 expression in EPCs isolated from DVT patients and control subjects by RT-PCR. Potential target of miR-150 was confirmed by bioinformatics analysis and luciferase reporter respectively. The angiogenesis and proliferation were tested by MTT and tube formation assay. A murine model of venous thrombosis was developed as in vivo model. Finally, the effect of miR-150 on EPCs with inferior venous thrombosis were evaluated in vivo. Our data showed that miR-150 was downregulated in EPCs from DVT patients. By using miR-150 agomir and antagomir, we found that miR-150 promoted angiogenesis and proliferation of EPCs. Bioinformatics analysis revealed SRCIN1 as a target of miR-150 and SRCIN1 knockdown inhibited function of EPCs. Forced expression of miR-150 contributed thrombus resolution in a murine model of venous thrombosis. In general, miR-150 was downregulated in EPCs from DVT. Upregulation of miR-150 promoted angiogenesis and proliferation of EPCs by targeting SRCIN1 in vitro and thrombus resolution in vivo.
Collapse
Affiliation(s)
- Wenbin Wang
- Department of General Surgery, The Fourth Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Xingyang Zhu
- Department of General Surgery, The Fourth Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Xiaolong Du
- Department of Vascular Surgery, The Second Affiliated Hospital of Soochow Univeristy; Suzhou 215000, China
| | - Aman Xu
- Department of General Surgery, The Fourth Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Xiao Yuan
- Department of General Surgery, The Fourth Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Yanqing Zhan
- Department of General Surgery, The Fourth Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Mulin Liu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu 233004, China.
| | - Shuanhu Wang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu 233004, China.
| |
Collapse
|
44
|
Feng L, Yang X, Liang S, Xu Q, Miller MR, Duan J, Sun Z. Silica nanoparticles trigger the vascular endothelial dysfunction and prethrombotic state via miR-451 directly regulating the IL6R signaling pathway. Part Fibre Toxicol 2019; 16:16. [PMID: 30975181 PMCID: PMC6460825 DOI: 10.1186/s12989-019-0300-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 04/01/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Safety evaluation is a prerequisite for nanomaterials in a wide range of fields, including chemical industries, medicine or food sciences. Previously, we had demonstrated that SiNPs could trigger the thrombotic effects in vivo, but the underlying mechanisms remain unknown. This study was aimed to explore and verify the role of miR-451a on SiNPs-induced vascular endothelial dysfunction and pre-thrombotic state. RESULTS The color doppler ultrasound results showed that SiNPs had the inhibitory effects on aorta velocity and cardiac output. The histological and ultrastructural analysis manifested that SiNPs could induce the vascular endothelial damage. In addition, the expression level of MDA was elevated while the activity of SOD and GSH-Px were decreased in aortic arch triggered by SiNPs, accompanied with the release of iNOS and decline of eNOS in blood serum. The immunohistochemistry results showed that the positive staining of TF and PECAM-1 were elevated in a dose-dependent manner induced by SiNPs. The activation of coagulation function occurred via shortened TT, PT and APTT while the FIB was elevated markedly induced by SiNPs. Coagulant factors (TF, FXa and vWF) and PLT numbers were increased whereas the levels of anticoagulant factors (ATIII, TFPI and t-PA) were decreased. Microarray analysis showed that the down-regulated miR-451a could target the gene expression of IL6R, which further activated the JAK/STAT signaling pathway triggered by SiNPs. Dual-luciferase reporter gene assay confirmed the directly target relationship between miR-451a and IL6R. Additionally, the chemical mimics of miR-451a led to attenuate the expression of IL6R/STAT/TF signaling pathway in vitro and in vivo induced by SiNPs, while the inhibitor of miR-451a enhanced the activation of IL6R/STAT/TF signaling pathway. CONCLUSIONS In summary, SiNPs could accelerate the vascular endothelial dysfunction and prethrombotic state via miR-451a negative regulating the IL6R/STAT/TF signaling pathway.
Collapse
Affiliation(s)
- Lin Feng
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, People's Republic of China.,Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, People's Republic of China
| | - Xiaozhe Yang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, People's Republic of China.,Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, People's Republic of China
| | - Shuang Liang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, People's Republic of China.,Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, People's Republic of China
| | - Qing Xu
- Core Facilities for Electrophysiology, Core Facility Center, Capital Medical University, Beijing, 100069, People's Republic of China
| | - Mark R Miller
- University/BHF Centre for Cardiovascular Science, Queens Medical Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Junchao Duan
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, People's Republic of China. .,Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, People's Republic of China.
| | - Zhiwei Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, People's Republic of China. .,Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, People's Republic of China.
| |
Collapse
|
45
|
Menghini R, Federici M. MicroRNA Manipulation to Boost Endothelial Regeneration: Are We Ready for the Next Steps? Diabetes 2019; 68:268-270. [PMID: 30665956 DOI: 10.2337/dbi18-0044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Rossella Menghini
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Massimo Federici
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
- Center for Atherosclerosis, Policlinico Tor Vergata, Rome, Italy
| |
Collapse
|
46
|
Kuschnerus K, Straessler ET, Müller MF, Lüscher TF, Landmesser U, Kränkel N. Increased Expression of miR-483-3p Impairs the Vascular Response to Injury in Type 2 Diabetes. Diabetes 2019; 68:349-360. [PMID: 30257976 DOI: 10.2337/db18-0084] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 09/13/2018] [Indexed: 11/13/2022]
Abstract
Aggravated endothelial injury and impaired endothelial repair capacity contribute to the high cardiovascular risk in patients with type 2 diabetes (T2D), but the underlying mechanisms are still incompletely understood. Here we describe the functional role of a mature form of miRNA (miR) 483-3p, which limits endothelial repair capacity in patients with T2D. Expression of human (hsa)-miR-483-3p was higher in endothelial-supportive M2-type macrophages (M2MΦs) and in the aortic wall of patients with T2D than in control subjects without diabetes. Likewise, the murine (mmu)-miR-483* was higher in T2D than in nondiabetic murine carotid samples. Overexpression of miR-483-3p increased endothelial and macrophage apoptosis and impaired reendothelialization in vitro. The inhibition of hsa-miR-483-3p in human T2D M2MΦs transplanted to athymic nude mice (NMRI-Foxn1ν/Foxn1ν ) or systemic inhibition of mmu-miR-483* in B6.BKS(D)-Leprdb /J diabetic mice rescued diabetes-associated impairment of reendothelialization in the murine carotid-injury model. We identified the endothelial transcription factor vascular endothelial zinc finger 1 (VEZF1) as a direct target of miR-483-3p. VEZF1 expression was reduced in aortae of diabetic mice and upregulated in diabetic murine aortae upon systemic inhibition of mmu-483*. The miRNA miR-483-3p is a critical regulator of endothelial integrity in patients with T2D and may represent a therapeutic target to rescue endothelial regeneration after injury in patients with T2D.
Collapse
Affiliation(s)
- Kira Kuschnerus
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
- Deutsches Herzzentrum Berlin, Berlin, Germany
| | - Elisabeth T Straessler
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Maja F Müller
- University Hospital Zurich, Department of Cardiology, Zürich, Switzerland
| | - Thomas F Lüscher
- University Hospital Zurich, Department of Cardiology, Zürich, Switzerland
- Center of Molecular Cardiology, University of Zurich, Zurich, Switzerland
| | - Ulf Landmesser
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
- University Hospital Zurich, Department of Cardiology, Zürich, Switzerland
- Center of Molecular Cardiology, University of Zurich, Zurich, Switzerland
| | - Nicolle Kränkel
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
- Center of Molecular Cardiology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
47
|
Effect of miR-495 on lower extremity deep vein thrombosis through the TLR4 signaling pathway by regulation of IL1R1. Biosci Rep 2018; 38:BSR20180598. [PMID: 30287499 PMCID: PMC6435557 DOI: 10.1042/bsr20180598] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 08/30/2018] [Accepted: 09/17/2018] [Indexed: 12/11/2022] Open
Abstract
Lower extremity deep vein thrombosis (LEDVT), a common peripheral vascular disease caused by a blood clot in a deep vein is usually accompanied by swelling of the lower limbs. MicroRNAs (miRs) have been reported to play roles in LEDVT. We aimed to investigate the effect of miR-495 on LEDVT via toll-like receptor 4 (TLR4) signaling pathway through interleukin 1 receptor type 1 (IL1R1). LEDVT mouse model was established, and the femoral vein (FV) tissues were collected to detect expressions of miR-495, IL1R1, and TLR4 signaling-related genes. The expressions of both CD31 and CD34 (markers for endothelial progenitor cells) in the FV endothelial cells as well as the proportion of CD31+/CD34+ cells in peripheral blood were measured in order to evaluate thrombosis. The effect of miR-495 on cell viability, cell cycle, and apoptosis was analyzed. IL1R1 was confirmed as the target gene of miR-495. Besides, inhibiting the miR-495 expression could increase IL1R1 expression along with activating the TLR4 signaling pathway. The total number of the leukocytes along with the ratio of weight to length of thrombus in the FV tissue showed an increase. The overexpression of miR-495 could promote FV endothelial cell viability. By injecting agomiR-495 and antagomiR-495 in vivo, the number of leukocytes in the FV tissues and the ratio of weight to length of thrombus were significantly decreased in the mice injected with the overexpressed miR-495, and the IL1R1/TLR4 signaling pathway was inhibited. Collectively, overexpressed miR-495 directly promotes proliferation while simultaneously inhibiting apoptosis of FV endothelial cells, alleviating FV thrombosis by inhibiting IL1R1 via suppression of TLR4 signaling pathway.
Collapse
|
48
|
Li WD, Zhou DM, Sun LL, Xiao L, Liu Z, Zhou M, Wang WB, Li XQ. LncRNA WTAPP1 Promotes Migration and Angiogenesis of Endothelial Progenitor Cells via MMP1 Through MicroRNA 3120 and Akt/PI3K/Autophagy Pathways. Stem Cells 2018; 36:1863-1874. [PMID: 30171660 DOI: 10.1002/stem.2904] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 07/22/2018] [Accepted: 07/27/2018] [Indexed: 01/17/2023]
Affiliation(s)
- Wen-Dong Li
- Department of Vascular Surgery, The Affiliated Drum Tower Hospital; Nanjing University Medical School; Nanjing JiangSu People's Republic of China
| | - Dong-Ming Zhou
- Department of Hematology, The Affiliated Drum Tower Hospital; Nanjing University Medical School; Nanjing JiangSu People's Republic of China
| | - Li-Li Sun
- Department of Vascular Surgery; The Second Affiliated Hospital of Soochow University; Suzhou JiangSu People's Republic of China
| | - Lun Xiao
- Department of Vascular Surgery, The Affiliated Drum Tower Hospital; Nanjing University Medical School; Nanjing JiangSu People's Republic of China
| | - Zhao Liu
- Department of Vascular Surgery, The Affiliated Drum Tower Hospital; Nanjing University Medical School; Nanjing JiangSu People's Republic of China
| | - Min Zhou
- Department of Vascular Surgery, The Affiliated Drum Tower Hospital; Nanjing University Medical School; Nanjing JiangSu People's Republic of China
| | - Wen-Bin Wang
- Department of General Surgery; The Fourth Affiliated Hospital of Anhui Medical University; HeFei People's Republic of China
| | - Xiao-Qiang Li
- Department of Vascular Surgery, The Affiliated Drum Tower Hospital; Nanjing University Medical School; Nanjing JiangSu People's Republic of China
| |
Collapse
|
49
|
Wang W, Yuan X, Xu A, Zhu X, Zhan Y, Wang S, Liu M. Human cancer cells suppress behaviors of endothelial progenitor cells through miR-21 targeting IL6R. Microvasc Res 2018; 120:21-28. [PMID: 29777792 DOI: 10.1016/j.mvr.2018.05.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 12/27/2017] [Accepted: 05/15/2018] [Indexed: 12/21/2022]
Abstract
Deep vein thrombosis (DVT) is a severe clinical process and has a high rate of fatality. Cancer patients have a high incidence rate of venous thrombosis complication and increase the mortality of cancer patients for 2-8 times. The mechanisms involved in human cancers and venous thrombosis remains unclear. In this study, we determined miR-21 expressed higher in human breast cancer, colon cancer and hepatocellular cancer tissues compared with normal tissues and expressed higher in exosomes of breast cancer and hepatocellular cancer cell lines compared with normal cells. MiR-21 dramatically suppressed proliferation, migration and invasion of endothelial progenitor cells (EPCs), which performed promoting role in thrombus repairment and resolution. High levels of miR-21 in exosomes of human cancers dramatically inhibited behaviors of EPCs, and depletion of miR-21 abrogated the decreased proliferation, migration and invasion of EPCs induced by human cancer cells. Moreover, IL6R (interleukin 6 receptor) was identified to be a direct target of miR-21 and promoted cell proliferation, migration and invasion of EPCs. Therefore, the miR-21-IL6R pathway contributed to behaviors of EPCs and consequently mediated the vein thrombosis in patients with cancer. MiR-21-IL6R pathway based therapeutic methods would be beneficial to decrease the complicated venous thrombosis in cancer patients and promote thrombus resolution.
Collapse
Affiliation(s)
- Wenbin Wang
- Department of General Surgery, The Fourth Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Xiao Yuan
- Department of General Surgery, The Fourth Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Aman Xu
- Department of General Surgery, The Fourth Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Xingyang Zhu
- Department of General Surgery, The Fourth Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Yanqing Zhan
- Department of General Surgery, The Fourth Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Shuanhu Wang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu 233004, China.
| | - Mulin Liu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu 233004, China.
| |
Collapse
|
50
|
Sun L, Li W, Lei F, Li X. The regulatory role of microRNAs in angiogenesis-related diseases. J Cell Mol Med 2018; 22:4568-4587. [PMID: 29956461 PMCID: PMC6156236 DOI: 10.1111/jcmm.13700] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 04/17/2018] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that regulate gene expression at a post-transcriptional level via either the degradation or translational repression of a target mRNA. They play an irreplaceable role in angiogenesis by regulating the proliferation, differentiation, apoptosis, migration and tube formation of angiogenesis-related cells, which are indispensable for multitudinous physiological and pathological processes, especially for the occurrence and development of vascular diseases. Imbalance between the regulation of miRNAs and angiogenesis may cause many diseases such as cancer, cardiovascular disease, aneurysm, Kawasaki disease, aortic dissection, phlebothrombosis and diabetic microvascular complication. Therefore, it is important to explore the essential role of miRNAs in angiogenesis, which might help to uncover new and effective therapeutic strategies for vascular diseases. This review focuses on the interactions between miRNAs and angiogenesis, and miRNA-based biomarkers in the diagnosis, treatment and prognosis of angiogenesis-related diseases, providing an update on the understanding of the clinical value of miRNAs in targeting angiogenesis.
Collapse
Affiliation(s)
- Li‐Li Sun
- Department of Vascular Surgerythe Affiliated Drum Tower HospitalNanjing University Medical SchoolNanjingChina
- Department of Vascular Surgerythe Second Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Wen‐Dong Li
- Department of Vascular Surgerythe Affiliated Drum Tower HospitalNanjing University Medical SchoolNanjingChina
| | - Feng‐Rui Lei
- Department of Vascular Surgerythe Second Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Xiao‐Qiang Li
- Department of Vascular Surgerythe Affiliated Drum Tower HospitalNanjing University Medical SchoolNanjingChina
| |
Collapse
|