1
|
Bruton J, Hanke T. Exploitation of Unconventional CD8 T-Cell Responses Induced by Engineered Cytomegaloviruses for the Development of an HIV-1 Vaccine. Vaccines (Basel) 2025; 13:72. [PMID: 39852851 PMCID: PMC11769474 DOI: 10.3390/vaccines13010072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/08/2025] [Accepted: 01/12/2025] [Indexed: 01/26/2025] Open
Abstract
After four decades of intensive research, traditional vaccination strategies for HIV-1 remain ineffective due to HIV-1's extraordinary genetic diversity and complex immune evasion mechanisms. Cytomegaloviruses (CMV) have emerged as a novel type of vaccine vector with unique advantages due to CMV persistence and immunogenicity. Rhesus macaques vaccinated with molecular clone 68-1 of RhCMV (RhCMV68-1) engineered to express simian immunodeficiency virus (SIV) immunogens elicited an unconventional major histocompatibility complex class Ib allele E (MHC-E)-restricted CD8+ T-cell response, which consistently protected over half of the animals against a highly pathogenic SIV challenge. The RhCMV68-1.SIV-induced responses mediated a post-infection replication arrest of the challenge virus and eventually cleared it from the body. These observations in rhesus macaques opened a possibility that MHC-E-restricted CD8+ T-cells could achieve similar control of HIV-1 in humans. The potentially game-changing advantage of the human CMV (HCMV)-based vaccines is that they would induce protective CD8+ T-cells persisting at the sites of entry that would be insensitive to HIV-1 evasion. In the RhCMV68-1-protected rhesus macaques, MHC-E molecules and their peptide cargo utilise complex regulatory mechanisms and unique transport patterns, and researchers study these to guide human vaccine development. However, CMVs are highly species-adapted viruses and it is yet to be shown whether the success of RhCMV68-1 can be translated into an HCMV ortholog for humans. Despite some safety concerns regarding using HCMV as a vaccine vector in humans, there is a vision of immune programming of HCMV to induce pathogen-tailored CD8+ T-cells effective against HIV-1 and other life-threatening diseases.
Collapse
Affiliation(s)
- Joseph Bruton
- Hertford College, University of Oxford, Oxford OX1 3BW, UK;
| | - Tomáš Hanke
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7DQ, UK
| |
Collapse
|
2
|
Booth JS, Rapaka RR, McArthur MA, Fresnay S, Darton TC, Blohmke CJ, Jones C, Waddington CS, Levine MM, Pollard AJ, Sztein MB. Role of circulating T follicular helper subsets following Ty21a immunization and oral challenge with wild type S. Typhi in humans. Front Immunol 2024; 15:1384642. [PMID: 39328410 PMCID: PMC11424897 DOI: 10.3389/fimmu.2024.1384642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 08/16/2024] [Indexed: 09/28/2024] Open
Abstract
Despite decades of intense research, our understanding of the correlates of protection against Salmonella Typhi (S. Typhi) infection and disease remains incomplete. T follicular helper cells (TFH), an important link between cellular and humoral immunity, play an important role in the development and production of high affinity antibodies. While traditional TFH cells reside in germinal centers, circulating TFH (cTFH) (a memory subset of TFH) are present in blood. We used specimens from a typhoid controlled human infection model whereby participants were immunized with Ty21a live attenuated S. Typhi vaccine and then challenged with virulent S. Typhi. Some participants developed typhoid disease (TD) and some did not (NoTD), which allowed us to assess the association of cTFH subsets in the development and prevention of typhoid disease. Of note, the frequencies of cTFH were higher in NoTD than in TD participants, particularly 7 days after challenge. Furthermore, the frequencies of cTFH2 and cTFH17, but not cTFH1 subsets were higher in NoTD than TD participants. However, we observed that ex-vivo expression of activation and homing markers were higher in TD than in NoTD participants, particularly after challenge. Moreover, cTFH subsets produced higher levels of S. Typhi-specific responses (cytokines/chemokines) in both the immunization and challenge phases. Interestingly, unsupervised analysis revealed unique clusters with distinct signatures for each cTFH subset that may play a role in either the development or prevention of typhoid disease. Importantly, we observed associations between frequencies of defined cTFH subsets and anti-S. Typhi antibodies. Taken together, our results suggest that circulating TFH2 and TFH17 subsets might play an important role in the development or prevention of typhoid disease. The contribution of these clusters was found to be distinct in the immunization and/or challenge phases. These results have important implications for vaccines aimed at inducing long-lived protective T cell and antibody responses.
Collapse
Affiliation(s)
- Jayaum S. Booth
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Rekha R. Rapaka
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Monica A. McArthur
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, United States
- Global Clinical Development, Sanofi, Swiftwater, PA, United States
| | - Stephanie Fresnay
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, United States
- Rockville Center for Vaccine Research, GlaxsoSmithKline (GSK), Rockville, MD, United States
| | - Thomas C. Darton
- Oxford Vaccine Group, Department of Pediatrics, University of Oxford, and the National Institute for Health and Care Research (NIHR), Oxford Biomedical Research Centre, Oxford, United Kingdom
- Clinical Infection Research Group, Division of Clinical Medicine, School of Medicine and Population Health, University of Sheffield, and the National Institute for Health and Care Research (NIHR), Sheffield Biomedical Research Centre, Sheffield, United Kingdom
| | - Christoph J. Blohmke
- Oxford Vaccine Group, Department of Pediatrics, University of Oxford, and the National Institute for Health and Care Research (NIHR), Oxford Biomedical Research Centre, Oxford, United Kingdom
- GlaxsoSmithKline (GSK) Vaccines, London, United Kingdom
| | - Claire Jones
- Oxford Vaccine Group, Department of Pediatrics, University of Oxford, and the National Institute for Health and Care Research (NIHR), Oxford Biomedical Research Centre, Oxford, United Kingdom
| | - Claire S. Waddington
- Oxford Vaccine Group, Department of Pediatrics, University of Oxford, and the National Institute for Health and Care Research (NIHR), Oxford Biomedical Research Centre, Oxford, United Kingdom
- Department of Infection, Imperial College Healthcare, National Health Service (NHS) Trust, London, United Kingdom
- Department of Medicine, Imperial College London, London, United Kingdom
| | - Myron M. Levine
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Andrew J. Pollard
- Oxford Vaccine Group, Department of Pediatrics, University of Oxford, and the National Institute for Health and Care Research (NIHR), Oxford Biomedical Research Centre, Oxford, United Kingdom
| | - Marcelo B. Sztein
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
- Tumor Immunology and Immunotherapy Program, University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, United States
| |
Collapse
|
3
|
Carreto-Binaghi LE, Sztein MB, Booth JS. Role of cellular effectors in the induction and maintenance of IgA responses leading to protective immunity against enteric bacterial pathogens. Front Immunol 2024; 15:1446072. [PMID: 39324143 PMCID: PMC11422102 DOI: 10.3389/fimmu.2024.1446072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 08/26/2024] [Indexed: 09/27/2024] Open
Abstract
The mucosal immune system is a critical first line of defense to infectious diseases, as many pathogens enter the body through mucosal surfaces, disrupting the balanced interactions between mucosal cells, secretory molecules, and microbiota in this challenging microenvironment. The mucosal immune system comprises of a complex and integrated network that includes the gut-associated lymphoid tissues (GALT). One of its primary responses to microbes is the secretion of IgA, whose role in the mucosa is vital for preventing pathogen colonization, invasion and spread. The mechanisms involved in these key responses include neutralization of pathogens, immune exclusion, immune modulation, and cross-protection. The generation and maintenance of high affinity IgA responses require a delicate balance of multiple components, including B and T cell interactions, innate cells, the cytokine milieu (e.g., IL-21, IL-10, TGF-β), and other factors essential for intestinal homeostasis, including the gut microbiota. In this review, we will discuss the main cellular components (e.g., T cells, innate lymphoid cells, dendritic cells) in the gut microenvironment as mediators of important effector responses and as critical players in supporting B cells in eliciting and maintaining IgA production, particularly in the context of enteric infections and vaccination in humans. Understanding the mechanisms of humoral and cellular components in protection could guide and accelerate the development of more effective mucosal vaccines and therapeutic interventions to efficiently combat mucosal infections.
Collapse
Affiliation(s)
- Laura E. Carreto-Binaghi
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, United States
- Laboratorio de Inmunobiologia de la Tuberculosis, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City, Mexico
| | - Marcelo B. Sztein
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
- Tumor Immunology and Immunotherapy Program, University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, United States
| | - Jayaum S. Booth
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
4
|
He W, Gea-Mallorquí E, Colin-York H, Fritzsche M, Gillespie GM, Brackenridge S, Borrow P, McMichael AJ. Intracellular trafficking of HLA-E and its regulation. J Exp Med 2023; 220:214089. [PMID: 37140910 PMCID: PMC10165540 DOI: 10.1084/jem.20221941] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 03/13/2023] [Accepted: 04/17/2023] [Indexed: 05/05/2023] Open
Abstract
Interest in MHC-E-restricted CD8+ T cell responses has been aroused by the discovery of their efficacy in controlling simian immunodeficiency virus (SIV) infection in a vaccine model. The development of vaccines and immunotherapies utilizing human MHC-E (HLA-E)-restricted CD8+ T cell response requires an understanding of the pathway(s) of HLA-E transport and antigen presentation, which have not been clearly defined previously. We show here that, unlike classical HLA class I, which rapidly exits the endoplasmic reticulum (ER) after synthesis, HLA-E is largely retained because of a limited supply of high-affinity peptides, with further fine-tuning by its cytoplasmic tail. Once at the cell surface, HLA-E is unstable and is rapidly internalized. The cytoplasmic tail plays a crucial role in facilitating HLA-E internalization, which results in its enrichment in late and recycling endosomes. Our data reveal distinctive transport patterns and delicate regulatory mechanisms of HLA-E, which help to explain its unusual immunological functions.
Collapse
Affiliation(s)
- Wanlin He
- Nuffield Department of Medicine, Center for Immuno-Oncology, University of Oxford, Oxford, UK
| | - Ester Gea-Mallorquí
- Nuffield Department of Medicine, Center for Immuno-Oncology, University of Oxford, Oxford, UK
| | - Huw Colin-York
- Kennedy Institute of Rheumatology, University of Oxford , Oxford, UK
| | - Marco Fritzsche
- Kennedy Institute of Rheumatology, University of Oxford , Oxford, UK
| | - Geraldine M Gillespie
- Nuffield Department of Medicine, Center for Immuno-Oncology, University of Oxford, Oxford, UK
| | - Simon Brackenridge
- Nuffield Department of Medicine, Center for Immuno-Oncology, University of Oxford, Oxford, UK
| | - Persephone Borrow
- Nuffield Department of Medicine, Center for Immuno-Oncology, University of Oxford, Oxford, UK
| | - Andrew J McMichael
- Nuffield Department of Medicine, Center for Immuno-Oncology, University of Oxford, Oxford, UK
| |
Collapse
|
5
|
Allen JC, Toapanta FR, Baliban SM, Sztein MB, Tennant SM. Reduced immunogenicity of a live Salmonella enterica serovar Typhimurium vaccine in aged mice. Front Immunol 2023; 14:1190339. [PMID: 37207226 PMCID: PMC10188964 DOI: 10.3389/fimmu.2023.1190339] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 04/13/2023] [Indexed: 05/21/2023] Open
Abstract
Introduction Non-typhoidal Salmonella (NTS) is responsible for a high burden of foodborne infections and deaths worldwide. In the United States, NTS infections are the leading cause of hospitalizations and deaths due to foodborne illnesses, and older adults (≥65 years) are disproportionately affected by Salmonella infections. Due to this public health concern, we have developed a live attenuated vaccine, CVD 1926 (I77 ΔguaBA ΔclpP ΔpipA ΔhtrA), against Salmonella enterica serovar Typhimurium, a common serovar of NTS. Little is known about the effect of age on oral vaccine responses, and due to the decline in immune function with age, it is critical to evaluate vaccine candidates in older age groups during early product development. Methods In this study, adult (six-to-eight-week-old) and aged (18-month-old) C57BL/6 mice received two doses of CVD 1926 (109 CFU/dose) or PBS perorally, and animals were evaluated for antibody and cell-mediated immune responses. A separate set of mice were immunized and then pre-treated with streptomycin and challenged orally with 108 CFU of wild-type S. Typhimurium SL1344 at 4 weeks postimmunization. Results Compared to PBS-immunized mice, adult mice immunized with CVD 1926 had significantly lower S. Typhimurium counts in the spleen, liver, and small intestine upon challenge. In contrast, there were no differences in bacterial loads in the tissues of vaccinated versus PBS aged mice. Aged mice exhibited reduced Salmonella-specific antibody titers in the serum and feces following immunization with CVD 1926 compared to adult mice. In terms of T cell responses (T-CMI), immunized adult mice showed an increase in the frequency of IFN-γ- and IL-2-producing splenic CD4 T cells, IFN-γ- and TNF-α-producing Peyer's Patch (PP)-derived CD4 T cells, and IFN-γ- and TNF-α-producing splenic CD8 T cells compared to adult mice administered PBS. In contrast, in aged mice, T-CMI responses were similar in vaccinated versus PBS mice. CVD 1926 elicited significantly more PP-derived multifunctional T cells in adult compared to aged mice. Conclusion These data suggest that our candidate live attenuated S. Typhimurium vaccine, CVD 1926, may not be sufficiently protective or immunogenic in older humans and that mucosal responses to live-attenuated vaccines decrease with increasing age.
Collapse
Affiliation(s)
- Jessica C. Allen
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Franklin R. Toapanta
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Scott M. Baliban
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Marcelo B. Sztein
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Sharon M. Tennant
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
6
|
Choi J, Marshall B, Ko H, Shi H, Singh AK, Thippareddi H, Holladay S, Gogal RM, Kim WK. Antimicrobial and immunomodulatory effects of tannic acid supplementation in broilers infected with Salmonella Typhimurium. Poult Sci 2022; 101:102111. [PMID: 36081234 PMCID: PMC9465346 DOI: 10.1016/j.psj.2022.102111] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/03/2022] [Accepted: 07/27/2022] [Indexed: 12/23/2022] Open
Abstract
Infection by Salmonella Typhimurium, a food-borne pathogen, can reduce the poultry production efficiency. The objective of this study was to investigate the effects of tannic acid (TA) supplementation on growth performance, Salmonella colonization, gut barrier integrity, serum endotoxin levels, antioxidant capacity, gut health, and immune function in broilers infected with the Salmonella enterica serovar Typhimurium nalidixic acid resistant strain (STNR). A total of 546 one-day-old broilers were arbitrarily allocated into 6 treatments including 1) Sham-challenged control (SCC; birds fed a basal diet and administrated peptone water); 2) Challenged control (CC; birds fed a basal diet and inoculated with 108 STNR); 3) Tannic acid 0.25 (TA0.25; CC + 0.25 g/kg TA); 4) TA0.5 (CC + 0.5 g/kg TA); 5) TA1 (CC + 1 g/kg TA); and 6) TA2 (CC + 2 g/kg TA). On D 7, supplemental TA linearly reduced STNR colonization in the ceca (P < 0.01), and TA1 and TA2 group had significantly lower reduced STNR colonization in the ceca (P < 0.01). On D 7 to 21, average daily gain tended to be linearly increased by supplemental TA (P = 0.097). The serum endotoxin levels were quadratically decreased by supplemental TA on D 21 (P < 0.05). Supplemental TA quadratically increased ileal villus height (VH; P < 0.05), and the TA0.25 group had higher ileal VH compared to the CC group (P < 0.05). Supplemental TA linearly increased percentage of peripheral blood CD8+ T cells on D 18 (P < 0.01). The TA0.5 group had significantly lower lymphocyte numbers compared to the CC groups (P < 0.05). The abundance of monocytes linearly increased with TA supplementation (P < 0.01). Therefore, broilers fed TA had reduced STNR colonization, increased growth performance, decreased serum endotoxin levels, enhanced gut health in the broilers, and stimulated the immune system in broilers infected with STNR. Supplementation of TA (1-2 g/kg) enhanced growth performance and gut health via antimicrobial and immunostimulatory effects in broilers infected with STNR.
Collapse
Affiliation(s)
- Janghan Choi
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| | - Brett Marshall
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| | - Hanseo Ko
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| | - Hanyi Shi
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| | - Amit Kumar Singh
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| | | | - Steven Holladay
- Department of Biosciences and Diagnostic Imaging, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | - Robert M Gogal
- Department of Biosciences and Diagnostic Imaging, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | - Woo Kyun Kim
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
7
|
Sztein MB, Booth JS. Controlled human infectious models, a path forward in uncovering immunological correlates of protection: Lessons from enteric fevers studies. Front Microbiol 2022; 13:983403. [PMID: 36204615 PMCID: PMC9530043 DOI: 10.3389/fmicb.2022.983403] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/24/2022] [Indexed: 11/13/2022] Open
Abstract
Enteric infectious diseases account for more than a billion disease episodes yearly worldwide resulting in approximately 2 million deaths, with children under 5 years old and the elderly being disproportionally affected. Enteric pathogens comprise viruses, parasites, and bacteria; the latter including pathogens such as Salmonella [typhoidal (TS) and non-typhoidal (nTS)], cholera, Shigella and multiple pathotypes of Escherichia coli (E. coli). In addition, multi-drug resistant and extensively drug-resistant (XDR) strains (e.g., S. Typhi H58 strain) of enteric bacteria are emerging; thus, renewed efforts to tackle enteric diseases are required. Many of these entero-pathogens could be controlled by oral or parenteral vaccines; however, development of new, effective vaccines has been hampered by lack of known immunological correlates of protection (CoP) and limited knowledge of the factors contributing to protective responses. To fully comprehend the human response to enteric infections, an invaluable tool that has recently re-emerged is the use of controlled human infection models (CHIMs) in which participants are challenged with virulent wild-type (wt) organisms. CHIMs have the potential to uncover immune mechanisms and identify CoP to enteric pathogens, as well as to evaluate the efficacy of therapeutics and vaccines in humans. CHIMs have been used to provide invaluable insights in the pathogenesis, host-pathogen interaction and evaluation of vaccines. Recently, several Oxford typhoid CHIM studies have been performed to assess the role of multiple cell types (B cells, CD8+ T, Tregs, MAIT, Monocytes and DC) during S. Typhi infection. One of the key messages that emerged from these studies is that baseline antigen-specific responses are important in that they can correlate with clinical outcomes. Additionally, volunteers who develop typhoid disease (TD) exhibit higher levels and more activated cell types (e.g., DC and monocytes) which are nevertheless defective in discrete signaling pathways. Future critical aspects of this research will involve the study of immune responses to enteric infections at the site of entry, i.e., the intestinal mucosa. This review will describe our current knowledge of immunity to enteric fevers caused byS. Typhi and S. Paratyphi A, with emphasis on the contributions of CHIMs to uncover the complex immunological responses to these organisms and provide insights into the determinants of protective immunity.
Collapse
Affiliation(s)
- Marcelo B. Sztein
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
- *Correspondence: Marcelo B. Sztein,
| | - Jayaum S. Booth
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, United States
- Jayaum S. Booth,
| |
Collapse
|
8
|
Salerno-Gonçalves R, Fresnay S, Magder L, Darton TC, Waddington CS, Blohmke CJ, Angus B, Levine MM, Pollard AJ, Sztein MB. Mucosal-Associated Invariant T cells exhibit distinct functional signatures associated with protection against typhoid fever. Cell Immunol 2022; 378:104572. [PMID: 35772315 PMCID: PMC9377420 DOI: 10.1016/j.cellimm.2022.104572] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/15/2022] [Accepted: 06/16/2022] [Indexed: 11/26/2022]
Abstract
First demonstration of cytokine-secreting MAIT cell kinetics after human challenge with Salmonella enterica serovar Typhi. MAIT cell's functional signatures and association with typhoid fever protection. Predictive value of MAIT cell cytokine pattern. Lack of association between the number of cytokines expressed by MAIT cells and prevention against typhoid fever.
We have previously demonstrated that Mucosal-Associated Invariant T (MAIT) cells secrete multiple cytokines after exposure to Salmonella enterica serovar Typhi (S. Typhi), the causative agent of typhoid fever in humans. However, whether cytokine secreting MAIT cells can enhance or attenuate the clinical severity of bacterial infections remain debatable. This study characterizes human MAIT cell functions in subjects participating in a wild-type S. Typhi human challenge model. Here, we found that MAIT cells exhibit distinct functional signatures associated with protection against typhoid fever. We also observed that the cytokine patterns of MAIT cell responses, rather than the average number of cytokines expressed, are more predictive of typhoid fever outcomes. These results might enable us to objectively, based on functional parameters, identify cytokine patterns that may serve as predictive biomarkers during natural infection and vaccination.
Collapse
|
9
|
Voogd L, Ruibal P, Ottenhoff TH, Joosten SA. Antigen presentation by MHC-E: a putative target for vaccination? Trends Immunol 2022; 43:355-365. [PMID: 35370095 PMCID: PMC9058203 DOI: 10.1016/j.it.2022.03.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/03/2022] [Accepted: 03/03/2022] [Indexed: 12/30/2022]
Abstract
The essentially monomorphic human antigen presentation molecule HLA-E is an interesting candidate target to enable vaccination irrespective of genetic diversity. Predictive HLA-E peptide-binding motifs have been refined to facilitate HLA-E peptide discovery. HLA-E can accommodate structurally divergent peptides of both self and microbial origin. Intracellular processing and presentation pathways for peptides by HLA-E for T cell receptor (TCR) recognition remain to be elucidated. Recent studies show that, unlike canonical peptides, inhibition of the transporter associated with antigen presentation (TAP) is essential to allow HLA-E antigen presentation in cytomegalovirus (CMV) infection and possibly also of other non-canonical peptides. We propose three alternative and TAP-independent MHC-E antigen-presentation pathways, including for Mycobacterium tuberculosis infections. These insights may help in designing potential HLA-E targeting vaccines against tumors and pathogens.
Collapse
|
10
|
Vaurs J, Douchin G, Echasserieau K, Oger R, Jouand N, Fortun A, Hesnard L, Croyal M, Pecorari F, Gervois N, Bernardeau K. A novel and efficient approach to high-throughput production of HLA-E/peptide monomer for T-cell epitope screening. Sci Rep 2021; 11:17234. [PMID: 34446788 PMCID: PMC8390762 DOI: 10.1038/s41598-021-96560-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 08/10/2021] [Indexed: 12/05/2022] Open
Abstract
Over the past two decades, there has been a great interest in the study of HLA-E-restricted αβ T cells during bacterial and viral infections, including recently SARS-CoV-2 infection. Phenotyping of these specific HLA-E-restricted T cells requires new tools such as tetramers for rapid cell staining or sorting, as well as for the identification of new peptides capable to bind to the HLA-E pocket. To this aim, we have developed an optimal photosensitive peptide to generate stable HLA-E/pUV complexes allowing high-throughput production of new HLA-E/peptide complexes by peptide exchange. We characterized the UV exchange by ELISA and improved the peptide exchange readout using size exclusion chromatography. This novel approach for complex quantification is indeed very important to perform tetramerization of MHC/peptide complexes with the high quality required for detection of specific T cells. Our approach allows the rapid screening of peptides capable of binding to the non-classical human HLA-E allele, paving the way for the development of new therapeutic approaches based on the detection of HLA-E-restricted T cells.
Collapse
Affiliation(s)
- Juliette Vaurs
- P2R "Production de Protéines Recombinantes", Université de Nantes, CRCINA, SFR-Santé, INSERM, CNRS, CHU Nantes, Nantes, France
| | - Gaël Douchin
- P2R "Production de Protéines Recombinantes", Université de Nantes, CRCINA, SFR-Santé, INSERM, CNRS, CHU Nantes, Nantes, France
| | - Klara Echasserieau
- P2R "Production de Protéines Recombinantes", Université de Nantes, CRCINA, SFR-Santé, INSERM, CNRS, CHU Nantes, Nantes, France
- Université de Nantes, Inserm, CRCINA, 44000, Nantes, France
| | - Romain Oger
- Université de Nantes, Inserm, CRCINA, 44000, Nantes, France
- LabEx IGO «Immunotherapy, Graft, Oncology», Nantes, France
| | - Nicolas Jouand
- Université de Nantes, Inserm, CRCINA, 44000, Nantes, France
- Université de Nantes, CHU Nantes, Inserm, CNRS, SFR Santé, Inserm UMS 016, CNRS UMS 3556, 44000, Nantes, France
| | - Agnès Fortun
- P2R "Production de Protéines Recombinantes", Université de Nantes, CRCINA, SFR-Santé, INSERM, CNRS, CHU Nantes, Nantes, France
- Université de Nantes, CHU de Nantes, Cibles et médicaments des infections et du cancer, IICiMed, EA 1155, 44000, Nantes, France
| | - Leslie Hesnard
- Université de Nantes, Inserm, CRCINA, 44000, Nantes, France
| | - Mikaël Croyal
- Université de Nantes, CHU Nantes, Inserm, CNRS, SFR Santé, Inserm UMS 016, CNRS UMS 3556, 44000, Nantes, France
- Université de Nantes, CHU Nantes, CNRS, INSERM, l'institut du thorax, 44000, Nantes, France
- CRNH-Ouest Mass Spectrometry Core Facility, 44000, Nantes, France
| | - Frédéric Pecorari
- P2R "Production de Protéines Recombinantes", Université de Nantes, CRCINA, SFR-Santé, INSERM, CNRS, CHU Nantes, Nantes, France
- Université de Nantes, Inserm, CRCINA, 44000, Nantes, France
| | - Nadine Gervois
- Université de Nantes, Inserm, CRCINA, 44000, Nantes, France.
- LabEx IGO «Immunotherapy, Graft, Oncology», Nantes, France.
| | - Karine Bernardeau
- P2R "Production de Protéines Recombinantes", Université de Nantes, CRCINA, SFR-Santé, INSERM, CNRS, CHU Nantes, Nantes, France.
- Université de Nantes, Inserm, CRCINA, 44000, Nantes, France.
| |
Collapse
|
11
|
Bansal A, Gehre MN, Qin K, Sterrett S, Ali A, Dang Y, Abraham S, Costanzo MC, Venegas LA, Tang J, Manjunath N, Brockman MA, Yang OO, Kan-Mitchell J, Goepfert PA. HLA-E-restricted HIV-1-specific CD8+ T cell responses in natural infection. J Clin Invest 2021; 131:148979. [PMID: 34228645 PMCID: PMC8363272 DOI: 10.1172/jci148979] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 07/01/2021] [Indexed: 01/07/2023] Open
Abstract
CD8+ T cell responses restricted by MHC-E, a nonclassical MHC molecule, have been associated with protection in an SIV/rhesus macaque model. The biological relevance of HLA-E-restricted CD8+ T cell responses in HIV infection, however, remains unknown. In this study, CD8+ T cells responding to HIV-1 Gag peptides presented by HLA-E were analyzed. Using in vitro assays, we observed HLA-E-restricted T cell responses to what we believe to be a newly identified subdominant Gag-KL9 as well as a well-described immunodominant Gag-KF11 epitope in T cell lines derived from chronically HIV-infected patients and also primed from healthy donors. Blocking of the HLA-E/KF11 binding by the B7 signal peptide resulted in decreased CD8+ T cell responses. KF11 presented via HLA-E in HIV-infected cells was recognized by antigen-specific CD8+ T cells. Importantly, bulk CD8+ T cells obtained from HIV-infected individuals recognized infected cells via HLA-E presentation. Ex vivo analyses at the epitope level showed a higher responder frequency of HLA-E-restricted responses to KF11 compared with KL9. Taken together, our findings of HLA-E-restricted HIV-specific immune responses offer intriguing and possibly paradigm-shifting insights into factors that contribute to the immunodominance of CD8+ T cell responses in HIV infection.
Collapse
Affiliation(s)
- Anju Bansal
- Department of Medicine, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama, USA
| | - Mika N. Gehre
- Department of Biological Sciences, University of Texas at El Paso, El Paso, Texas, USA
| | - Kai Qin
- Department of Medicine, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama, USA
| | - Sarah Sterrett
- Department of Medicine, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama, USA
| | - Ayub Ali
- Department of Medicine and AIDS Institute, UCLA, Los Angeles, California, USA
| | - Ying Dang
- Department of Biomedical Sciences, Texas Tech University Health Sciences Center, Paul L. Foster School of Medicine, El Paso, Texas, USA
| | - Sojan Abraham
- Department of Biomedical Sciences, Texas Tech University Health Sciences Center, Paul L. Foster School of Medicine, El Paso, Texas, USA
| | - Margaret C. Costanzo
- Department of Biological Sciences, University of Texas at El Paso, El Paso, Texas, USA
| | - Leon A. Venegas
- Department of Biological Sciences, University of Texas at El Paso, El Paso, Texas, USA
| | - Jianming Tang
- Department of Medicine, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama, USA
| | - N. Manjunath
- Department of Biomedical Sciences, Texas Tech University Health Sciences Center, Paul L. Foster School of Medicine, El Paso, Texas, USA
| | | | - Otto O. Yang
- Department of Medicine and AIDS Institute, UCLA, Los Angeles, California, USA
| | - June Kan-Mitchell
- Department of Biological Sciences, University of Texas at El Paso, El Paso, Texas, USA
| | - Paul A. Goepfert
- Department of Medicine, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama, USA
| |
Collapse
|
12
|
T-Cell Cytokine Response in Salmonella Typhimurium-Vaccinated versus Infected Pigs. Vaccines (Basel) 2021; 9:vaccines9080845. [PMID: 34451970 PMCID: PMC8402558 DOI: 10.3390/vaccines9080845] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/26/2021] [Accepted: 07/29/2021] [Indexed: 11/16/2022] Open
Abstract
Vaccination with the live attenuated vaccine Salmoporc is an effective measure to control Salmonella Typhimurium (STM) in affected swine populations. However, the cellular immune response evoked by the Salmoporc vaccine including differences in vaccinated pigs versus non-vaccinated pigs upon STM infection have not been characterized yet. To investigate this, tissue-derived porcine lymphocytes from different treatment groups (vaccination-only, vaccination and infection, infection-only, untreated controls) were stimulated in vitro with heat-inactivated STM and abundances of IFN-γ, TNF-α and/or IL-17A-producing T-cell subsets were compared across organs and treatment groups. Overall, our results show the induction of a strong CD4+ T-cell response after STM infection, both locally and systemically. Low-level induction of STM-specific cytokine-producing CD4+ T cells, notably for the IFN-γ/TNF-α co-producing phenotype, was detected after vaccination-only. Numerous significant contrasts in cytokine-producing T-cell phenotypes were observed after infection in vaccinated and infected versus infected-only animals. These results suggest that vaccine-induced STM-specific cytokine-producing CD4+ T cells contribute to local immunity in the gut and may limit the spread of STM to lymph nodes and systemic organs. Hence, our study provides insights into the underlying immune mechanisms that account for the efficacy of the Salmoporc vaccine.
Collapse
|
13
|
Immunogenicity and efficacy of live-attenuated Salmonella Typhimurium vaccine candidate CVD 1926 in a rhesus macaque model of gastroenteritis. Infect Immun 2021; 89:e0008721. [PMID: 34310885 DOI: 10.1128/iai.00087-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Salmonella Typhimurium are a common cause of food-borne gastroenteritis, and a less frequent but important cause of invasive disease, especially in developing countries. In our previous work, we showed that a live-attenuated S. Typhimurium vaccine (CVD 1921) was safe and immunogenic in rhesus macaques, although shed for an unacceptably long period (10 days) post-immunization. Consequently, we engineered a new strain, CVD 1926, which was shown to be safe and immunogenic in mice, as well as less reactogenic in mice and human cell-derived organoids than CVD 1921. In this study, we assessed reactogenicity and efficacy of CVD 1926 in rhesus macaques. Animals were given two doses of either CVD 1926 or saline perorally. The vaccine was well-tolerated, with shedding in stool limited to a mean of 5 days. All CVD 1926 immunized animals made both a serological and a T cell response to vaccination. At four weeks post-immunization, animals were challenged with wild-type S. Typhimurium I77. Unvaccinated (saline) animals had severe diarrhea, with two animals succumbing to infection. Animals receiving CVD 1926 were largely protected, with only one animal having moderate diarrhea. Vaccine efficacy in this gastroenteritis model was 80%. S. Typhimurium vaccine strain CVD 1926 was safe and effective in rhesus macaques and shed for a shorter period than other previously tested live-attenuated vaccine strains. This strain could be combined with other live-attenuated Salmonella vaccine strains to create a pan-Salmonella vaccine.
Collapse
|
14
|
Booth JS, Goldberg E, Patil SA, Barnes RS, Greenwald BD, Sztein MB. Age-dependency of terminal ileum tissue resident memory T cell responsiveness profiles to S. Typhi following oral Ty21a immunization in humans. Immun Ageing 2021; 18:19. [PMID: 33874975 PMCID: PMC8053564 DOI: 10.1186/s12979-021-00227-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 03/16/2021] [Indexed: 01/02/2023]
Abstract
BACKGROUND The impact of aging on the immune system is unequivocal and results in an altered immune status termed immunosenescence. In humans, the mechanisms of immunosenescence have been examined almost exclusively in blood. However, most immune cells are present in tissue compartments and exhibit differential cell (e.g., memory T cells -TM) subset distributions. Thus, it is crucial to understand immunosenescence in tissues, especially those that are exposed to pathogens (e.g., intestine). Using a human model of oral live attenuated typhoid vaccine, Ty21a, we investigated the effect of aging on terminal ileum (TI) tissue resident memory T (TRM) cells. TRM provide immediate adaptive effector immune responsiveness at the infection site. However, it is unknown whether aging impacts TRM S. Typhi-responsive cells at the site of infection (e.g., TI). Here, we determined the effect of aging on the induction of TI S. Typhi-responsive TRM subsets elicited by Ty21a immunization. RESULTS We observed that aging impacts the frequencies of TI-lamina propria mononuclear cells (LPMC) TM and TRM in both Ty21a-vaccinated and control groups. In unvaccinated volunteers, the frequencies of LPMC CD103- CD4+ TRM displayed a positive correlation with age whilst the CD4/CD8 ratio in LPMC displayed a negative correlation with age. We observed that elderly volunteers have weaker S. Typhi-specific mucosal immune responses following Ty21a immunization compared to adults. For example, CD103+ CD4+ TRM showed reduced IL-17A production, while CD103- CD4+ TRM exhibited lower levels of IL-17A and IL-2 in the elderly than in adults following Ty21a immunization. Similar results were observed in LPMC CD8+ TRM and CD103- CD8+ T cell subsets. A comparison of multifunctional (MF) profiles of both CD4+ and CD8+ TRM subsets between elderly and adults also showed significant differences in the quality and quantity of elicited single (S) and MF responses. CONCLUSIONS Aging influences tissue resident TM S. Typhi-specific responses in the terminal ileum following oral Ty21a-immunization. This study is the first to provide insights in the generation of local vaccine-specific responses in the elderly population and highlights the importance of evaluating tissue immune responses in the context of infection and aging. TRIAL REGISTRATION This study was approved by the Institutional Review Board and registered on ClinicalTrials.gov (identifier NCT03970304 , Registered 29 May 2019 - Retrospectively registered).
Collapse
Affiliation(s)
- Jayaum S Booth
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, USA.
| | - Eric Goldberg
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
- Division of Gastroenterology and Hepatology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Seema A Patil
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
- Division of Gastroenterology and Hepatology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Robin S Barnes
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Bruce D Greenwald
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
- Division of Gastroenterology and Hepatology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Marcelo B Sztein
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, USA.
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA.
- Program in Oncology, University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, 21201, USA.
| |
Collapse
|
15
|
Harrell JE, Hahn MM, D'Souza SJ, Vasicek EM, Sandala JL, Gunn JS, McLachlan JB. Salmonella Biofilm Formation, Chronic Infection, and Immunity Within the Intestine and Hepatobiliary Tract. Front Cell Infect Microbiol 2021; 10:624622. [PMID: 33604308 PMCID: PMC7885405 DOI: 10.3389/fcimb.2020.624622] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 12/17/2020] [Indexed: 12/12/2022] Open
Abstract
Within the species of Salmonella enterica, there is significant diversity represented among the numerous subspecies and serovars. Collectively, these account for microbes with variable host ranges, from common plant and animal colonizers to extremely pathogenic and human-specific serovars. Despite these differences, many Salmonella species find commonality in the ability to form biofilms and the ability to cause acute, latent, or chronic disease. The exact outcome of infection depends on many factors such as the growth state of Salmonella, the environmental conditions encountered at the time of infection, as well as the infected host and immune response elicited. Here, we review the numerous biofilm lifestyles of Salmonella (on biotic and abiotic surfaces) and how the production of extracellular polymeric substances not only enhances long-term persistence outside the host but also is an essential function in chronic human infections. Furthermore, careful consideration is made for the events during initial infection that allow for gut transcytosis which, in conjunction with host immune functions, often determine the progression of disease. Both typhoidal and non-typhoidal salmonellae can cause chronic and/or secondary infections, thus the adaptive immune responses to both types of bacteria are discussed with particular attention to the differences between Salmonella Typhi, Salmonella Typhimurium, and invasive non-typhoidal Salmonella that can result in differential immune responses. Finally, while strides have been made in our understanding of immunity to Salmonella in the lymphoid organs, fewer definitive studies exist for intestinal and hepatobiliary immunity. By examining our current knowledge and what remains to be determined, we provide insight into new directions in the field of Salmonella immunity, particularly as it relates to chronic infection.
Collapse
Affiliation(s)
- Jaikin E Harrell
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, United States
| | - Mark M Hahn
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, United States.,Infectious Diseases Institute, The Ohio State University, Columbus, OH, United States
| | - Shaina J D'Souza
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, United States
| | - Erin M Vasicek
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, United States.,Infectious Diseases Institute, The Ohio State University, Columbus, OH, United States
| | - Jenna L Sandala
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, United States.,Infectious Diseases Institute, The Ohio State University, Columbus, OH, United States
| | - John S Gunn
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, United States.,Infectious Diseases Institute, The Ohio State University, Columbus, OH, United States.,Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - James B McLachlan
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, United States
| |
Collapse
|
16
|
Schmidt S, Sassu EL, Vatzia E, Pierron A, Lagler J, Mair KH, Stadler M, Knecht C, Spergser J, Dolezal M, Springer S, Theuß T, Fachinger V, Ladinig A, Saalmüller A, Gerner W. Vaccination and Infection of Swine With Salmonella Typhimurium Induces a Systemic and Local Multifunctional CD4 + T-Cell Response. Front Immunol 2021; 11:603089. [PMID: 33584671 PMCID: PMC7874209 DOI: 10.3389/fimmu.2020.603089] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 11/25/2020] [Indexed: 01/14/2023] Open
Abstract
The gram-negative facultative intracellular bacteria Salmonella Typhimurium (STM) often leads to subclinical infections in pigs, but can also cause severe enterocolitis in this species. Due to its high zoonotic potential, the pathogen is likewise dangerous for humans. Vaccination with a live attenuated STM strain (Salmoporc) is regarded as an effective method to control STM infections in affected pig herds. However, information on the cellular immune response of swine against STM is still scarce. In this study, we investigated the T-cell immune response in pigs that were vaccinated twice with Salmoporc followed by a challenge infection with a virulent STM strain. Blood- and organ-derived lymphocytes (spleen, tonsils, jejunal and ileocolic lymph nodes, jejunum, ileum) were stimulated in vitro with heat-inactivated STM. Subsequently, CD4+ T cells present in these cell preparations were analyzed for the production of IFN-γ, TNF-α, and IL-17A by flow cytometry and Boolean gating. Highest frequencies of STM-specific cytokine-producing CD4+ T cells were found in lamina propria lymphocytes of jejunum and ileum. Significant differences of the relative abundance of cytokine-producing phenotypes between control group and vaccinated + infected animals were detected in most organs, but dominated in gut and lymph node-residing CD4+ T cells. IL-17A producing CD4+ T cells dominated in gut and gut-draining lymph nodes, whereas IFN-γ/TNF-α co-producing CD4+ T cells were present in all locations. Additionally, the majority of cytokine-producing CD4+ T cells had a CD8α+CD27- phenotype, indicative of a late effector or effector memory stage of differentiation. In summary, we show that Salmonella-specific multifunctional CD4+ T cells exist in vaccinated and infected pigs, dominate in the gut and most likely contribute to protective immunity against STM in the pig.
Collapse
Affiliation(s)
- Selma Schmidt
- Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine, Vienna, Austria
| | - Elena L Sassu
- University Clinic for Swine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| | - Eleni Vatzia
- Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine, Vienna, Austria
| | - Alix Pierron
- Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine, Vienna, Austria
| | - Julia Lagler
- Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine, Vienna, Austria.,Clinic for Poultry and Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| | - Kerstin H Mair
- Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine, Vienna, Austria
| | - Maria Stadler
- Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine, Vienna, Austria
| | - Christian Knecht
- University Clinic for Swine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| | - Joachim Spergser
- Institute of Microbiology, Department of Pathobiology, University of Veterinary Medicine, Vienna, Austria
| | - Marlies Dolezal
- Platform for Bioinformatics and Biostatistics, Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria
| | | | - Tobias Theuß
- Ceva Innovation Center GmbH, Dessau-Roßlau, Germany
| | | | - Andrea Ladinig
- University Clinic for Swine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| | - Armin Saalmüller
- Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine, Vienna, Austria
| | - Wilhelm Gerner
- Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine, Vienna, Austria
| |
Collapse
|
17
|
Booth JS, Toapanta FR. B and T Cell Immunity in Tissues and Across the Ages. Vaccines (Basel) 2021; 9:vaccines9010024. [PMID: 33419014 PMCID: PMC7825307 DOI: 10.3390/vaccines9010024] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/23/2020] [Accepted: 01/02/2021] [Indexed: 02/06/2023] Open
Abstract
B and T cells are key components of the adaptive immune system and coordinate multiple facets of immunity including responses to infection, vaccines, allergens, and the environment. In humans, B- and T-cell immunity has been determined using primarily peripheral blood specimens. Conversely, human tissues have scarcely been studied but they host multiple adaptive immune cells capable of mounting immune responses to pathogens and participate in tissue homeostasis. Mucosal tissues, such as the intestines and respiratory track, are constantly bombarded by foreign antigens and contain tissue-resident memory T (TRM) cells that exhibit superior protective capacity to pathogens. Also, tissue-resident memory B (BRM) cells have been identified in mice but whether humans have a similar population remains to be confirmed. Moreover, the immune system evolves throughout the lifespan of humans and undergoes multiple changes in its immunobiology. Recent studies have shown that age-related changes in tissues are not necessarily reflected in peripheral blood specimens, highlighting the importance of tissue localization and subset delineation as essential determinants of functional B and T cells at different life stages. This review describes our current knowledge of the main B- and T-cell subsets in peripheral blood and tissues across age groups.
Collapse
Affiliation(s)
- Jayaum S. Booth
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD 21075, USA;
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Franklin R. Toapanta
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD 21075, USA;
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Correspondence:
| |
Collapse
|
18
|
Rapaka RR, Wahid R, Fresnay S, Booth JS, Darton TC, Jones C, Waddington CS, Levine MM, Pollard AJ, Sztein MB. Human Salmonella Typhi exposure generates differential multifunctional cross-reactive T-cell memory responses against Salmonella Paratyphi and invasive nontyphoidal Salmonella. Clin Transl Immunology 2020; 9:e1178. [PMID: 33005416 PMCID: PMC7512505 DOI: 10.1002/cti2.1178] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 08/16/2020] [Accepted: 08/17/2020] [Indexed: 12/19/2022] Open
Abstract
Objective There are no vaccines for most of the major invasive Salmonella strains causing severe infection in humans. We evaluated the specificity of adaptive T memory cell responses generated after Salmonella Typhi exposure in humans against other major invasive Salmonella strains sharing capacity for dissemination. Methods T memory cells from eleven volunteers who underwent controlled oral challenge with wtS. Typhi were characterised by flow cytometry for cross‐reactive cellular cytokine/chemokine effector responses or evidence of degranulation upon stimulation with autologous B‐lymphoblastoid cells infected with either S. Typhi, Salmonella Paratyphi A (PA), S. Paratyphi B (PB) or an invasive nontyphoidal Salmonella strain of the S. Typhimurium serovar (iNTSTy). Results Blood T‐cell effector memory (TEM) responses after exposure to S. Typhi in humans evolve late, peaking weeks after infection in most volunteers. Induced multifunctional CD4+ Th1 and CD8+ TEM cells elicited after S. Typhi challenge were cross‐reactive with PA, PB and iNTSTy. The magnitude of multifunctional CD4+ TEM cell responses to S. Typhi correlated with induction of cross‐reactive multifunctional CD8+ TEM cells against PA, PB and iNTSTy. Highly multifunctional subsets and T central memory and T effector memory cells that re‐express CD45 (TEMRA) demonstrated less heterologous T‐cell cross‐reactivity, and multifunctional Th17 elicited after S. Typhi challenge was not cross‐reactive against other invasive Salmonella. Conclusion Gaps in cross‐reactive immune effector functions in human T‐cell memory compartments were highly dependent on invasive Salmonella strain, underscoring the importance of strain‐dependent vaccination in the design of T‐cell‐based vaccines for invasive Salmonella.
Collapse
Affiliation(s)
- Rekha R Rapaka
- Center for Vaccine Development and Global Health University of Maryland School of Medicine Baltimore MD USA.,Department of Medicine University of Maryland School of Medicine Baltimore MD USA
| | - Rezwanul Wahid
- Center for Vaccine Development and Global Health University of Maryland School of Medicine Baltimore MD USA.,Department of Pediatrics University of Maryland School of Medicine Baltimore MD USA
| | - Stephanie Fresnay
- Center for Vaccine Development and Global Health University of Maryland School of Medicine Baltimore MD USA.,Department of Pediatrics University of Maryland School of Medicine Baltimore MD USA.,Present address: Stephanie Fresnay GlaxoSmithKline Rockville MD USA
| | - Jayaum S Booth
- Center for Vaccine Development and Global Health University of Maryland School of Medicine Baltimore MD USA.,Department of Pediatrics University of Maryland School of Medicine Baltimore MD USA
| | - Thomas C Darton
- Oxford Vaccine Group Department of Paediatrics University of Oxford and the NIHR Oxford Biomedical Research Centre Oxford UK.,Present address: Thomas C Darton University of Sheffield Medical School Sheffield UK
| | - Claire Jones
- Oxford Vaccine Group Department of Paediatrics University of Oxford and the NIHR Oxford Biomedical Research Centre Oxford UK
| | - Claire S Waddington
- Oxford Vaccine Group Department of Paediatrics University of Oxford and the NIHR Oxford Biomedical Research Centre Oxford UK.,Present address: University of Cambridge Cambridge UK
| | - Myron M Levine
- Center for Vaccine Development and Global Health University of Maryland School of Medicine Baltimore MD USA.,Department of Medicine University of Maryland School of Medicine Baltimore MD USA.,Department of Pediatrics University of Maryland School of Medicine Baltimore MD USA
| | - Andrew J Pollard
- Oxford Vaccine Group Department of Paediatrics University of Oxford and the NIHR Oxford Biomedical Research Centre Oxford UK
| | - Marcelo B Sztein
- Center for Vaccine Development and Global Health University of Maryland School of Medicine Baltimore MD USA.,Department of Medicine University of Maryland School of Medicine Baltimore MD USA.,Department of Pediatrics University of Maryland School of Medicine Baltimore MD USA
| |
Collapse
|
19
|
Shepherd FR, McLaren JE. T Cell Immunity to Bacterial Pathogens: Mechanisms of Immune Control and Bacterial Evasion. Int J Mol Sci 2020; 21:E6144. [PMID: 32858901 PMCID: PMC7504484 DOI: 10.3390/ijms21176144] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 08/21/2020] [Accepted: 08/24/2020] [Indexed: 02/06/2023] Open
Abstract
The human body frequently encounters harmful bacterial pathogens and employs immune defense mechanisms designed to counteract such pathogenic assault. In the adaptive immune system, major histocompatibility complex (MHC)-restricted αβ T cells, along with unconventional αβ or γδ T cells, respond to bacterial antigens to orchestrate persisting protective immune responses and generate immunological memory. Research in the past ten years accelerated our knowledge of how T cells recognize bacterial antigens and how many bacterial species have evolved mechanisms to evade host antimicrobial immune responses. Such escape mechanisms act to corrupt the crosstalk between innate and adaptive immunity, potentially tipping the balance of host immune responses toward pathological rather than protective. This review examines the latest developments in our knowledge of how T cell immunity responds to bacterial pathogens and evaluates some of the mechanisms that pathogenic bacteria use to evade such T cell immunosurveillance, to promote virulence and survival in the host.
Collapse
Affiliation(s)
| | - James E. McLaren
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, UK;
| |
Collapse
|
20
|
Protection conferred by typhoid fever against recurrent typhoid fever in urban Kolkata. PLoS Negl Trop Dis 2020; 14:e0008530. [PMID: 32804950 PMCID: PMC7430703 DOI: 10.1371/journal.pntd.0008530] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 06/27/2020] [Indexed: 11/19/2022] Open
Abstract
We evaluated the protection conferred by a first documented visit for clinical care of typhoid fever against recurrent typhoid fever prompting a visit. This study takes advantage of multi-year follow-up of a population with endemic typhoid participating in a cluster-randomized control trial of Vi capsular polysaccharide typhoid vaccine in Kolkata, India. A population of 70,566 individuals, of whom 37,673 were vaccinated with one dose of either Vi vaccine or a control (Hepatitis A) vaccine, were observed for four years. Surveillance detected 315 first typhoid visits, among whom 4 developed subsequent typhoid, 3 due to reinfection, defined using genomic criteria and corresponding to -124% (95% CI: -599, 28) protection by the initial illness. Point estimates of protection conferred by an initial illness were negative or negligible in both vaccinated and non-vaccinated subjects, though confidence intervals around the point estimates were wide. These data provide little support for a protective immunizing effect of clinically treated typhoid illness, though modest levels of protection cannot be excluded.
Collapse
|
21
|
Grant EJ, Nguyen AT, Lobos CA, Szeto C, Chatzileontiadou DSM, Gras S. The unconventional role of HLA-E: The road less traveled. Mol Immunol 2020; 120:101-112. [PMID: 32113130 DOI: 10.1016/j.molimm.2020.02.011] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 02/16/2020] [Accepted: 02/18/2020] [Indexed: 12/14/2022]
Abstract
Histocompatibility Leukocyte Antigens, or HLAs, are one of the most polymorphic molecules in humans. This high degree of polymorphism endows HLA molecules with the ability to present a vast array of peptides, an essential trait for responding to ever-evolving pathogens. Unlike classical HLA molecules (HLA-Ia), some non-classical HLA-Ib molecules, including HLA-E, are almost monomorphic. Several studies show HLA-E can present self-peptides originating from the leader sequence of other HLA molecules, which signals to our immune system that the cell is healthy. Therefore, it was traditionally thought that the chief role of HLA-E in the body was in immune surveillance. However, there is emerging evidence that HLA-E is also able to present pathogen-derived peptides to the adaptive immune system, namely T cells, in a manner that is similar to classical HLA-Ia molecules. Here we describe the early findings of this less conventional role of HLA-E in the adaptive immune system and its importance for immunity.
Collapse
Affiliation(s)
- Emma J Grant
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Andrea T Nguyen
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Christian A Lobos
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Christopher Szeto
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Demetra S M Chatzileontiadou
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Stephanie Gras
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia.
| |
Collapse
|
22
|
Booth JS, Goldberg E, Barnes RS, Greenwald BD, Sztein MB. Oral typhoid vaccine Ty21a elicits antigen-specific resident memory CD4 + T cells in the human terminal ileum lamina propria and epithelial compartments. J Transl Med 2020; 18:102. [PMID: 32098623 PMCID: PMC7043047 DOI: 10.1186/s12967-020-02263-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 02/10/2020] [Indexed: 12/29/2022] Open
Abstract
Background Salmonella enterica serovar Typhi (S. Typhi) is a highly invasive bacterium that infects the human intestinal mucosa and causes ~ 11.9–20.6 million infections and ~ 130,000–223,000 deaths annually worldwide. Oral typhoid vaccine Ty21a confers a moderate level of long-lived protection (5–7 years) in the field. New and improved vaccines against enteric pathogens are needed but their development is hindered by a lack of the immunological correlates of protection especially at the site of infection. Tissue resident memory T (TRM) cells provide immediate adaptive effector immune responsiveness at the infection site. However, the mechanism(s) by which S. Typhi induces TRM in the intestinal mucosa are unknown. Here, we focus on the induction of S. Typhi-specific CD4+TRM subsets by Ty21a in the human terminal ileum lamina propria and epithelial compartments. Methods Terminal ileum biopsies were obtained from consenting volunteers undergoing routine colonoscopy who were either immunized orally with 4 doses of Ty21a or not. Isolated lamina propria mononuclear cells (LPMC) and intraepithelial lymphocytes (IEL) CD4+TRM immune responses were determined using either S. Typhi-infected or non-infected autologous EBV-B cell lines as stimulator cells. T-CMI was assessed by the production of 4 cytokines [interferon (IFN)γ, interleukin (IL)-2, IL-17A and tumor necrosis factor (TNF)α] in 36 volunteers (18 vaccinees and 18 controls volunteers). Results Although the frequencies of LPMC CD103+ CD4+TRM were significant decreased, both CD103+ and CD103− CD4+TRM subsets spontaneously produced significantly higher levels of cytokines (IFNγ and IL-17A) following Ty21a-immunization. Importantly, we observed significant increases in S. Typhi-specific LPMC CD103+ CD4+TRM (IFNγ and IL-17A) and CD103− CD4+TRM (IL-2 and IL-17A) responses following Ty21a-immunization. Further, differences in S. Typhi-specific responses between these two CD4+TRM subsets were observed following multifunctional analysis. In addition, we determined the effect of Ty21a-immunization on IEL and observed significant changes in the frequencies of IEL CD103+ (decrease) and CD103− CD4+TRM (increase) following immunization. Finally, we observed that IEL CD103− CD4+TRM, but not CD103+ CD4+TRM, produced increased cytokines (IFNγ, TNFα and IL-17A) to S. Typhi-specific stimulation following Ty21a-immunization. Conclusions Oral Ty21a-immunization elicits distinct compartment specific immune responses in CD4+TRM (CD103+ and CD103−) subsets. This study provides novel insights in the generation of local vaccine-specific responses. Trial registration This study was approved by the Institutional Review Board and registered on ClinicalTrials.gov (identifier NCT03970304, Registered 29 May 2019—Retrospectively registered, http://www.ClinicalTrials.gov/NCT03970304)
Collapse
Affiliation(s)
- Jayaum S Booth
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, 21201, USA. .,Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, USA.
| | - Eric Goldberg
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Robin S Barnes
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Bruce D Greenwald
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA.,Division of Gastroenterology and Hepatology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Marcelo B Sztein
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, 21201, USA. .,Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, USA. .,Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
23
|
Rudolph ME, McArthur MA, Magder LS, Barnes RS, Chen WH, Sztein MB. Diversity of Salmonella Typhi-responsive CD4 and CD8 T cells before and after Ty21a typhoid vaccination in children and adults. Int Immunol 2020; 31:315-333. [PMID: 30951606 DOI: 10.1093/intimm/dxz011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 03/18/2019] [Indexed: 11/13/2022] Open
Abstract
Typhoid fever is a life-threatening disease caused by the human-restricted pathogen Salmonella enterica serovar Typhi (S. Typhi). The oral live attenuated Ty21a typhoid vaccine protects against this severe disease by eliciting robust, multifunctional cell-mediated immunity (CMI), shown to be associated with protection in wild-type S. Typhi challenge studies. Ty21a induces S. Typhi-responsive CD8+ and CD4+ T cells but little is known about the response to this vaccine in children. To address this important gap in knowledge, we have used mass cytometry to analyze pediatric and adult pre- and post-Ty21a vaccination CMI in an autologous S. Typhi antigen presentation model. Here, using conventional supervised analytical tools, we show adult T cells are more multifunctional at baseline than those obtained from children. Moreover, pediatric and adult T cells respond similarly to Ty21a vaccination, but adult responders remain more multifunctional. The use of the unsupervised dimensionality reduction tool tSNE (t-distributed Stochastic Neighbor Embedding) allowed us to confirm these findings, as well as to identify increases and decreases in well-defined specific CD4+ and CD8+ T-cell populations that were not possible to uncover using the conventional gating strategies. These findings evidenced age-associated maturation of multifunctional S. Typhi-responsive T-cell populations, including those which we have previously shown to be associated with protection from, and/or delayed onset of, typhoid disease. These findings are likely to play an important role in improving pediatric vaccination strategies against S. Typhi and other enteric pathogens.
Collapse
Affiliation(s)
- Mark E Rudolph
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA.,Molecular Microbiology and Immunology Department, University of Maryland Graduate Program in Life Sciences, Baltimore, MD, USA
| | - Monica A McArthur
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA.,Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Laurence S Magder
- Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Robin S Barnes
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Wilbur H Chen
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA.,Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Marcelo B Sztein
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA.,Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
24
|
Booth JS, Goldberg E, Patil SA, Barnes RS, Greenwald BD, Sztein MB. Effect of the live oral attenuated typhoid vaccine, Ty21a, on systemic and terminal ileum mucosal CD4+ T memory responses in humans. Int Immunol 2020; 31:101-116. [PMID: 30346608 PMCID: PMC6376105 DOI: 10.1093/intimm/dxy070] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Accepted: 10/07/2018] [Indexed: 01/01/2023] Open
Abstract
Our current understanding of CD4+ T-cell-mediated immunity (CMI) elicited by the oral live attenuated typhoid vaccine Ty21a is primarily derived from studies using peripheral blood. Very limited data are available in humans regarding mucosal immunity (especially CD4+ T) at the site of infection (e.g. terminal ileum; TI). Here using multiparametric flow cytometry, we examined the effect of Ty21a immunization on TI-lamina propria mononuclear cells (LPMC) and peripheral blood CD4+ T memory (TM) subsets in volunteers undergoing routine colonoscopy. Interestingly, we observed significant increases in the frequencies of LPMC CD4+ T cells following Ty21a immunization, restricted to the T effector/memory (TEM)-CD45RA+ (TEMRA) subset. Importantly, Ty21a immunization elicited Salmonella Typhi-responsive LPMC CD4+ T cells in all major TM subsets [interferon (IFN)γ and interleukin (IL)-17A in TEM; IFNγ and macrophage inflammatory protein (MIP)1β in T central/memory (TCM); and IL-2 in TEMRA]. Subsequently, we analyzed LPMC S. Typhi-responsive CD4+ T cells in depth for multifunctional (MF) effectors. We found that LPMC CD4+ TEM responses were mostly MF, except for those cells exhibiting the characteristics associated with IL-17A responses. Finally, we compared mucosal to systemic responses and observed that LPMC CD4+S. Typhi-specific responses were unique and distinct from their systemic counterparts. This study provides the first demonstration of S. Typhi-specific CD4+ TM responses in the human TI mucosa and provides valuable information about the generation of mucosal immune responses following oral Ty21a immunization.
Collapse
Affiliation(s)
- Jayaum S Booth
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA.,Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Eric Goldberg
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA.,Division of Gastroenterology and Hepatology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Seema A Patil
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA.,Division of Gastroenterology and Hepatology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Robin S Barnes
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Bruce D Greenwald
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA.,Division of Gastroenterology and Hepatology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Marcelo B Sztein
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA.,Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, USA.,Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
25
|
Salerno-Gonçalves R, Tettelin H, Luo D, Guo Q, Ardito MT, Martin WD, De Groot AS, Sztein MB. Differential functional patterns of memory CD4 + and CD8 + T-cells from volunteers immunized with Ty21a typhoid vaccine observed using a recombinant Escherichia coli system expressing S. Typhi proteins. Vaccine 2019; 38:258-270. [PMID: 31629569 DOI: 10.1016/j.vaccine.2019.10.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 10/03/2019] [Accepted: 10/07/2019] [Indexed: 02/01/2023]
Abstract
It is widely accepted that CD4+ and CD8+ T-cells play a significant role in protection against Salmonella enterica serovar Typhi (S. Typhi), the causative agent of the typhoid fever. However, the antigen specificity of these T-cells remains largely unknown. Previously, we demonstrated the feasibility of using a recombinant Escherichia coli (E. coli) expression system to uncover the antigen specificity of CD4+ and CD8+ T cells. Here, we expanded these studies to include the evaluation of 12 additional S. Typhi proteins: 4 outer membrane proteins (OmpH, OmpL, OmpR, OmpX), 3 Vi-polysaccharide biosynthesis proteins (TviA, TviB, TviE), 3 cold shock proteins (CspA, CspB, CspC), and 2 conserved hypothetical proteins (Chp 1 and Chp2), all selected based on the bioinformatic analyses of the content of putative T-cell epitopes. CD4+ and CD8+ T cells from 15 adult volunteers, obtained before and 42 days after immunization with oral live attenuated Ty21a vaccine, were assessed for their functionality (i.e., production of cytokines and cytotoxic expression markers in response to stimulation with selected antigens) as measured by flow cytometry. Although volunteers differed on their T-cell antigen specificity, we observed T-cell immune responses against all S. Typhi proteins evaluated. These responses included 9 proteins, OmpH, OmpR, TviA, TviE, CspA, CspB, CspC, Chp 1 and Chp 2, which have not been previously reported to elicit T-cell responses. Interestingly, we also observed that, regardless of the protein, the functional patterns of the memory T-cells were different between CD4+ and CD8+ T cells. In sum, these studies demonstrated the feasibility of using bioinformatic analysis and the E. coli expressing system described here to uncover novel immunogenic T-cell proteins that could serve as potential targets for the production of protein-based vaccines.
Collapse
Affiliation(s)
- Rosângela Salerno-Gonçalves
- Center for Vaccine Development and Global Health (CVD), Department of Pediatrics, University of Maryland School of Medicine, 685 West Baltimore Street, HSF1, Baltimore, MD 21201, USA.
| | - Hervé Tettelin
- Department of Microbiology and Immunology and Institute for Genome Sciences (IGS), University of Maryland School of Medicine, 670 West Baltimore Street, HSF3, Baltimore, MD 21201, USA
| | - David Luo
- Center for Vaccine Development and Global Health (CVD), Department of Pediatrics, University of Maryland School of Medicine, 685 West Baltimore Street, HSF1, Baltimore, MD 21201, USA
| | - Qin Guo
- Department of Microbiology and Immunology and Institute for Genome Sciences (IGS), University of Maryland School of Medicine, 670 West Baltimore Street, HSF3, Baltimore, MD 21201, USA
| | - Matthew T Ardito
- Institute for Immunology and Informatics (iCubed), Department of Cell and Molecular Biology, University of Rhode Island, 80 Washington Street, Providence, RI, USA; EpiVax, Inc., 188 Valley Street Suite 424, Providence, RI, USA
| | - William D Martin
- Institute for Immunology and Informatics (iCubed), Department of Cell and Molecular Biology, University of Rhode Island, 80 Washington Street, Providence, RI, USA; EpiVax, Inc., 188 Valley Street Suite 424, Providence, RI, USA
| | - Anne S De Groot
- Institute for Immunology and Informatics (iCubed), Department of Cell and Molecular Biology, University of Rhode Island, 80 Washington Street, Providence, RI, USA; EpiVax, Inc., 188 Valley Street Suite 424, Providence, RI, USA
| | - Marcelo B Sztein
- Center for Vaccine Development and Global Health (CVD), Department of Pediatrics, University of Maryland School of Medicine, 685 West Baltimore Street, HSF1, Baltimore, MD 21201, USA
| |
Collapse
|
26
|
Mani S, Toapanta FR, McArthur MA, Qadri F, Svennerholm AM, Devriendt B, Phalipon A, Cohen D, Sztein MB. Role of antigen specific T and B cells in systemic and mucosal immune responses in ETEC and Shigella infections, and their potential to serve as correlates of protection in vaccine development. Vaccine 2019; 37:4787-4793. [PMID: 31230883 PMCID: PMC7413037 DOI: 10.1016/j.vaccine.2019.03.040] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 03/07/2019] [Accepted: 03/19/2019] [Indexed: 12/13/2022]
Abstract
The generation of robust systemic and mucosal antibody and cell-mediated immune (CMI) responses that are protective, long-lasting, and can quickly be recalled upon subsequent re-exposure to the cognate antigen is the key to the development of effective vaccine candidates. These responses, whether they represent mechanistic or non-mechanistic immunological correlates of protection, usually entail the activation of T cell memory and effector subsets (T-CMI) and induction of long-lasting memory B cells. However, for ETEC and Shigella, the precise role of these key immune cells in primary and secondary (anamnestic) immune responses remains ill-defined. A workshop to address immune correlates for ETEC and Shigella, in general, and to elucidate the mechanistic role of T-cell subsets and B-cells, both systemically and in the mucosal microenvironment, in the development of durable protective immunity against ETEC and Shigella was held at the recent 2nd Vaccines against Shigella and ETEC (VASE) conference in June 2018. This report is a summary of the presentations and the discussion that ensued at the workshop.
Collapse
Affiliation(s)
| | - Franklin R Toapanta
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Monica A McArthur
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Firdausi Qadri
- Infectious Diseases Division, International Center for Diarrheal Diseases Research, Dhaka, Bangladesh
| | - Ann-Mari Svennerholm
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Sweden
| | - Bert Devriendt
- Faculty of Veterinary Medicine, Department of Virology, Parasitology, and Immunology, Ghent University, Belgium
| | - Armelle Phalipon
- Molecular Microbial Pathogenesis, INSERM U1202, Institut Pasteur, Paris, France
| | - Daniel Cohen
- School of Public Health, Sackler Faculty of Medicine, Tel Aviv University, Israel
| | - Marcelo B Sztein
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States.
| |
Collapse
|
27
|
Brunner K, Samassa F, Sansonetti PJ, Phalipon A. Shigella-mediated immunosuppression in the human gut: subversion extends from innate to adaptive immune responses. Hum Vaccin Immunother 2019; 15:1317-1325. [PMID: 30964713 PMCID: PMC6663138 DOI: 10.1080/21645515.2019.1594132] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 02/13/2019] [Accepted: 02/27/2019] [Indexed: 02/07/2023] Open
Abstract
The enteropathogen, Shigella, is highly virulent and remarkably adjusted to the intestinal environment of its almost exclusive human host. Key for Shigella pathogenicity is the injection of virulence effectors into the host cell via its type three secretion system (T3SS), initiating disease onset and progression by the vast diversity of the secreted T3SS effectors and their respective cellular targets. The multifaceted modulation of host signaling pathways exerted by Shigella T3SS effectors, which include the subversion of host innate immune defenses and the promotion of intracellular bacterial survival and dissemination, have been extensively reviewed in the recent past. This review focuses on the human species specificity of Shigella by discussing some possible evasion mechanisms towards the human, but not non-human or rodent gut innate defense barrier, leading to the lack of a relevant animal infection model. In addition, subversion mechanisms of the adaptive immune response are highlighted summarizing research advances of the recent years. In particular, the new paradigm of Shigella pathogenicity constituted of invasion-independent T3SS effector-mediated targeting of activated, human lymphocytes is discussed. Along with consequences on vaccine development, these findings offer new directions for future research endeavors towards a better understanding of immunity to Shigella infection.
Collapse
Affiliation(s)
- Katja Brunner
- Molecular Microbial Pathogenesis Unit, Department of Cellular Biology of Infection, Institut Pasteur, Paris, France
- INSERM U1202, Paris, France
| | - Fatoumata Samassa
- Molecular Microbial Pathogenesis Unit, Department of Cellular Biology of Infection, Institut Pasteur, Paris, France
- INSERM U1202, Paris, France
| | - Philippe J. Sansonetti
- Molecular Microbial Pathogenesis Unit, Department of Cellular Biology of Infection, Institut Pasteur, Paris, France
- INSERM U1202, Paris, France
- Chaire de Microbiologie et Maladies Infectieuses, Collège de France, Paris, France
| | - Armelle Phalipon
- Molecular Microbial Pathogenesis Unit, Department of Cellular Biology of Infection, Institut Pasteur, Paris, France
- INSERM U1202, Paris, France
| |
Collapse
|
28
|
Characteristics of regulatory T-cell populations before and after Ty21a typhoid vaccination in children and adults. Clin Immunol 2019; 203:14-22. [PMID: 30953793 DOI: 10.1016/j.clim.2019.04.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 03/10/2019] [Accepted: 04/02/2019] [Indexed: 11/23/2022]
Abstract
Typhoid fever, caused by the pathogen Salmonella enterica serovar Typhi (S. Typhi), is a serious global health concern. Challenge studies with wild type S. Typhi identified associations between gut-homing regulatory T cells (Treg) and development of typhoid disease. Whether oral live-attenuated Ty21a vaccination induces gut-homing Treg remains unclear. Here, we analyze pediatric and adult Treg pre- and post-Ty21a vaccination in an autologous S. Typhi-antigen presentation model to address this knowledge gap. We show that peripheral memory Treg populations change from childhood to adulthood, but not following Ty21a vaccination. Unsupervised dimensionality reduction with t-distributed stochastic neighbor embedding (tSNE) identifies homing, memory, and functional features which evidence age-associated maturation of multifunctional S. Typhi-responsive Treg, which were not impacted by Ty21a vaccination. These findings improve understanding of pediatric regulatory T cells, while identifying age-related differences in S. Typhi-responsive Treg, which may aid in the development of improved pediatric vaccination strategies against S. Typhi.
Collapse
|
29
|
Booth JS, Goldberg E, Patil SA, Greenwald BD, Sztein MB. Association between S. Typhi-specific memory CD4+ and CD8+ T responses in the terminal ileum mucosa and in peripheral blood elicited by the live oral typhoid vaccine Ty21a in humans. Hum Vaccin Immunother 2019; 15:1409-1420. [PMID: 30836838 PMCID: PMC6663141 DOI: 10.1080/21645515.2018.1564570] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
CD4+ and CD8+ T subsets are essential components of the adaptive immune system which act in concert at the site of infections to effectively protect against pathogens. Very limited data is available in humans regarding the relationship between CD4+ and CD8+ S. Typhi responsive cells in the terminal ileum mucosa (TI) and peripheral blood following Ty21a oral typhoid immunization. Here, we compared TI lamina propria mononuclear cells (LPMC) and peripheral blood CD4+ and CD8+ T memory (TM) subsets responses and their relationship by Spearman’s correlation following Ty21a immunization in volunteers undergoing routine colonoscopy. We observed that Ty21a immunization (i) influences the homing and accumulation of both CD4+ and CD8+ T cells in the TI, particularly integrin α4β7+ CCR9+ CD8+ T cells, (ii) elicits significantly higher frequencies of LPMC S. Typhi-responsive CD8+ T multifunctional (CD107a, IFNγ, IL-17A and/or MIP1β) cells than their CD4+ T counterparts, and (iii) results in the correlation of LPMC CD4+ Teffector/memory (TEM) S. Typhi responses (CD107a, IFNγ, TNFα, IL-17A and/or MIP1β) to their LPMC CD8+ TEM counterparts. Moreover, we demonstrated that these positive correlations between CD4+ and CD8+ TEM occur primarily in TI LPMC but not in PBMC, suggesting important differences in responses between the mucosal and systemic compartments following oral Ty21a immunization. This study provides the first demonstration of the correlation of S. Typhi-specific CD4+ and CD8+ TM responses in the human terminal ileum mucosa and provides valuable information regarding the generation of mucosal and systemic immune responses following oral Ty21a-immunization which might impact future vaccine design and development.
Collapse
Affiliation(s)
- Jayaum S Booth
- a Center for Vaccine Development and Global Health , University of Maryland School of Medicine , Baltimore , MD , USA.,b Department of Pediatrics , University of Maryland School of Medicine , Baltimore , MD , USA
| | - Eric Goldberg
- c Department of Medicine , University of Maryland School of Medicine , Baltimore , MD , USA.,d Division of Gastroenterology and Hepatology , University of Maryland School of Medicine , Baltimore , MD , USA
| | - Seema A Patil
- c Department of Medicine , University of Maryland School of Medicine , Baltimore , MD , USA.,d Division of Gastroenterology and Hepatology , University of Maryland School of Medicine , Baltimore , MD , USA
| | - Bruce D Greenwald
- c Department of Medicine , University of Maryland School of Medicine , Baltimore , MD , USA.,d Division of Gastroenterology and Hepatology , University of Maryland School of Medicine , Baltimore , MD , USA
| | - Marcelo B Sztein
- a Center for Vaccine Development and Global Health , University of Maryland School of Medicine , Baltimore , MD , USA.,b Department of Pediatrics , University of Maryland School of Medicine , Baltimore , MD , USA.,c Department of Medicine , University of Maryland School of Medicine , Baltimore , MD , USA
| |
Collapse
|
30
|
Booth JS, Patil SA, Goldberg E, Barnes RS, Greenwald BD, Sztein MB. Attenuated Oral Typhoid Vaccine Ty21a Elicits Lamina Propria and Intra-Epithelial Lymphocyte Tissue-Resident Effector Memory CD8 T Responses in the Human Terminal Ileum. Front Immunol 2019; 10:424. [PMID: 30923521 PMCID: PMC6426796 DOI: 10.3389/fimmu.2019.00424] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Accepted: 02/18/2019] [Indexed: 11/16/2022] Open
Abstract
Tissue-resident memory T cells (TRM) are newly defined memory T cells (TM) distinct from circulating TM subsets which have the potential to mount rapid protective immune responses at the site of infection. However, very limited information is available regarding the role and contribution of TRM in vaccine-mediated immune responses in humans at the site of infection. Here, we studied the role and contribution of tissue resident memory T cells (TRM) located in the terminal ileum (TI) (favored site of infection for S. Typhi) following oral Ty21a immunization in humans. We examined TI-lamina propria mononuclear cells (LPMC) and intra-epithelial lymphocytes (IEL) CD8+ TRM subsets obtained from healthy volunteers undergoing medically-indicated colonoscopies who were either immunized with Ty21a or unvaccinated. No significant differences in the frequencies of LPMC CD8+ TRM and CD8+CD69+CD103– T cells subsets were observed following Ty21a-immunization. However, LPMC CD8+ TRM exhibited significantly higher levels of cytokines (IFN-γ, IL-17A, and TNF-α) ex-vivo in Ty21a-vaccinated than in unvaccinated volunteers. LPMC CD8+ TRMS. Typhi-specific responses were evaluated using S. Typhi-infected targets and found to produce significantly higher levels of S. Typhi-specific IL-17A. In contrast, LPMC CD8+CD69+CD103- T cells produced significantly increased S. Typhi-specific levels of IFN-γ, IL-2, and IL-17A. Finally, we assessed CD8+ TRM in IEL and observed that the frequency of IEL CD8+ TRM is significantly lower following Ty21a immunization. However, ex-vivo IEL CD8+ TRM elicited by Ty21a immunization spontaneously produced significantly higher levels of cytokines (IFN-γ, IL-17A, IL-2, and TNF-α). This study provides the first demonstration of the effect of oral Ty21a vaccination on CD8+ TRM subsets (spontaneous and S. Typhi-specific) responses in the LPMC and IEL compartment of the human terminal ileum mucosa, contributing novel information to our understanding of the generation of mucosal immune responses following oral Ty21a-immunization.
Collapse
Affiliation(s)
- Jayaum S Booth
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States.,Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Seema A Patil
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States.,Division of Gastroenterology and Hepatology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Eric Goldberg
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States.,Division of Gastroenterology and Hepatology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Robin S Barnes
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Bruce D Greenwald
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States.,Division of Gastroenterology and Hepatology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Marcelo B Sztein
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States.,Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, United States.,Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
31
|
Wahid R, Kotloff KL, Levine MM, Sztein MB. Cell mediated immune responses elicited in volunteers following immunization with candidate live oral Salmonella enterica serovar Paratyphi A attenuated vaccine strain CVD 1902. Clin Immunol 2019; 201:61-69. [PMID: 30849494 DOI: 10.1016/j.clim.2019.03.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 02/22/2019] [Accepted: 03/03/2019] [Indexed: 01/01/2023]
Abstract
The incidence of Salmonella enterica serovar Paratyphi A (PA) infection is on the rise and no licensed vaccines are available. We evaluated cell mediated immune (CMI) responses elicited in volunteers following immunization with a single dose (109 or 1010 cfu) of a novel attenuated live oral PA-vaccine strain (CVD 1902). Results showed increases in PA-lipopolysaccharide-specific IgG- and/or IgA B-memory cells and production of IFN-γ, TNF-α, IL-10, IL-23 and RANTES following stimulation with PA-antigens by peripheral blood mononuclear cells obtained 28 days post immunization. Flow cytometry assays revealed that vaccine elicited PA-specific CD8+ and/or CD4+ T effector/memory cells were predominantly multifunctional concomitantly expressing CD107a and/or producing IFN-γ, TNF-α and/or IL-2. Similar proportions of these MF cells expressed, or not, the gut homing marker integrin α4β7. The results suggest that immunization with CVD 1902 elicits CMI responses against PA supporting its further evaluation as a potential vaccine candidate against paratyphoid A fever.
Collapse
Affiliation(s)
- Rezwanul Wahid
- Department of Pediatrics, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA.
| | - Karen L Kotloff
- Department of Pediatrics, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA; Department of Medicine, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Myron M Levine
- Department of Pediatrics, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA; Department of Medicine, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Marcelo B Sztein
- Department of Pediatrics, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA; Department of Medicine, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
32
|
Rudolph ME, McArthur MA, Magder LS, Barnes RS, Chen WH, Sztein MB. Age-Associated Heterogeneity of Ty21a-Induced T Cell Responses to HLA-E Restricted Salmonella Typhi Antigen Presentation. Front Immunol 2019; 10:257. [PMID: 30886613 PMCID: PMC6409365 DOI: 10.3389/fimmu.2019.00257] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 01/29/2019] [Indexed: 01/15/2023] Open
Abstract
Human-restricted Salmonella enterica serovar Typhi (S. Typhi) is the causative agent of typhoid fever—a life-threatening disease of great global health significance, particularly in the developing world. Ty21a is an oral live-attenuated vaccine that protects against the development of typhoid disease in part by inducing robust T cell responses, among which multifunctional CD8+ cytotoxic T lymphocytes (CTL) play an important role. Following Ty21a vaccination, a significant component of adult CTL have shown to be targeted to S. Typhi antigen presented by the conserved major histocompatibility complex (MHC) class Ib molecule, human leukocyte antigen-E (HLA-E). S. Typhi challenge studies have shown that baseline, multifunctional HLA-E responsive T cells are associated with protection from, and delayed onset of, typhoid disease. However, despite the overwhelming burden of typhoid fever in school-aged children, and due to limited availability of pediatric samples, incomplete information is available regarding these important HLA-E-restricted responses in children, even though studies have shown that younger children may be less likely to develop protective cell mediated immune (CMI) responses than adults following vaccination. To address this gap, we have studied this phenomenon in depth by using mass cytometry to analyze pediatric and adult T cell responses to HLA-E-restricted S. Typhi antigen presentation, before and after Ty21a vaccination. Herein, we show variable responses in all age strata following vaccination among T effector memory (TEM) and T effector memory CD45RA+ (TEMRA) cells based on conventional gating analysis. However, by utilizing the dimensionality reduction tool tSNE (t-distributed Stochastic Neighbor Embedding), we are able to identify diverse, highly multifunctional gut-homing- TEM and TEMRA clusters of cells which are more abundant in adult and older pediatric participants than in younger children. These findings highlight a potential age-associated maturation of otherwise conserved HLA-E restricted T cell responses. Such insights, coupled with the marked importance of multifunctional T cell responses to combat infection, may better inform future pediatric vaccination strategies against S. Typhi and other infectious diseases.
Collapse
Affiliation(s)
- Mark E Rudolph
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States.,Molecular Microbiology and Immunology Department, University of Maryland Graduate Program in Life Sciences, Baltimore, MD, United States
| | - Monica A McArthur
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States.,Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Laurence S Magder
- Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Robin S Barnes
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Wilbur H Chen
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States.,Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Marcelo B Sztein
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States.,Molecular Microbiology and Immunology Department, University of Maryland Graduate Program in Life Sciences, Baltimore, MD, United States.,Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, United States.,Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
33
|
Winarsih S, Kosasih T, Putera MA, Rahmadhiani N, Poernomo EL, Runtuk KS, Oswari MV. β-Glucan of Candida albicans Cell Wall Extract Inhibits Salmonella Typhimurium Colonization by Potentiating Cellular Immunity (CD8 + and CD4 + T Cells). Rev Soc Bras Med Trop 2019; 52:e20180254. [PMID: 30726315 DOI: 10.1590/0037-8682-0254-2018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Accepted: 12/20/2018] [Indexed: 11/21/2022] Open
Abstract
INTRODUCTION Antimicrobial resistance has been reported in the drugs used for the treatment of typhoid fever. The immunomodulatory substance β-glucan can be used as an alternative therapy as it potentiates host immunity. The aims of this study are to observe the effect of Candida albicans cell wall (CCW) extract towards host immunity (TCD8+ and TCD4+ cells in spleen, intestinal sIgA) and its capacity to kill Salmonella in the intestine and liver of typhoid fever mice models. METHODS Typhoid fever mice models were created by infecting mice with S. Typhimurium orally. Mice were divided into four groups: the Non-Infected, Infected, CCW (infected mice treated with 300 µg CCW extract/mouse once a day), and Ciprofloxacin groups (infected mice treated with 15 mg/kg BW ciprofloxacin twice a day). RESULTS Secretory IgA (sIgA) concentrations of mice in the CCW group remained unchanged. However, their TCD4+ and TCD8+ cells increased substantially compared to those in the Non-Infected group. In the Ciprofloxacin group, sIgA concentrations increased markedly compared to those in the Non-Infected and CCW groups; TCD4+ and TCD8+ cells also increased significantly compared to those in the Infected Group, but not significant compared to those in the CCW group. Colonization of S. Typhimurium in the intestine and liver decreased significantly in the CCW and Ciprofloxacin groups compared to that in the Infected group, with the lowest reduction being found in the Ciprofloxacin group. CONCLUSIONS The inhibition of S. Typhimurium colonization by CCW is associated with the increase in TCD4+ and TCD8+ cells.
Collapse
Affiliation(s)
- Sri Winarsih
- Pharmacy Study Program, Faculty of Medicine, Universitas Brawijaya, Indonesia
| | - Tomson Kosasih
- Pharmacy Study Program, Faculty of Medicine, Universitas Brawijaya, Indonesia
| | | | - Nayla Rahmadhiani
- Medicine Study Program, Faculty of Medicine, Universitas Brawijaya, Indonesia
| | | | | | | |
Collapse
|
34
|
Wagar LE, DiFazio RM, Davis MM. Advanced model systems and tools for basic and translational human immunology. Genome Med 2018; 10:73. [PMID: 30266097 PMCID: PMC6162943 DOI: 10.1186/s13073-018-0584-8] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 09/17/2018] [Indexed: 12/31/2022] Open
Abstract
There are fundamental differences between humans and the animals we typically use to study the immune system. We have learned much from genetically manipulated and inbred animal models, but instances in which these findings have been successfully translated to human immunity have been rare. Embracing the genetic and environmental diversity of humans can tell us about the fundamental biology of immune cell types and the elasticity of the immune system. Although people are much more immunologically diverse than conventionally housed animal models, tools and technologies are now available that permit high-throughput analysis of human samples, including both blood and tissues, which will give us deep insights into human immunity in health and disease. As we gain a more detailed picture of the human immune system, we can build more sophisticated models to better reflect this complexity, both enabling the discovery of new immunological mechanisms and facilitating translation into the clinic.
Collapse
Affiliation(s)
- Lisa E Wagar
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Robert M DiFazio
- Institute for Immunity, Transplantation, and Infection, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Mark M Davis
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, 94305, USA.
- Institute for Immunity, Transplantation, and Infection, Stanford University School of Medicine, Stanford, CA, 94305, USA.
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| |
Collapse
|
35
|
Sztein MB. Is a Human CD8 T-Cell Vaccine Possible, and if So, What Would It Take? CD8 T-Cell-Mediated Protective Immunity and Vaccination against Enteric Bacteria. Cold Spring Harb Perspect Biol 2018; 10:cshperspect.a029546. [PMID: 29254983 DOI: 10.1101/cshperspect.a029546] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Although induction of CD8+ responses is widely accepted as critical in clearing viral infections and necessary for effective vaccines against viruses, much less is known regarding the role of these cells in bacterial and other infections, particularly those that enter the host via the gastrointestinal tract. In this commentary, I discuss the likelihood that CD8+ responses are also important in protection from intestinal Gram-negative bacteria, as well as the many factors that should be taken into consideration during the development of vaccines, based on eliciting long-term protection predominantly mediated by CD8+ responses against these organisms.
Collapse
Affiliation(s)
- Marcelo B Sztein
- Center for Vaccine Development, Department of Pediatrics, University of Maryland School of Medicine, Baltimore, Maryland 21201
| |
Collapse
|
36
|
Pennington SH, Ferreira DM, Reiné J, Nyirenda TS, Thompson AL, Hancock CA, Wright AD, Gordon SB, Gordon MA. Longevity of duodenal and peripheral T-cell and humoral responses to live-attenuated Salmonella Typhi strain Ty21a. Vaccine 2018; 36:4725-4733. [PMID: 29958737 PMCID: PMC6041722 DOI: 10.1016/j.vaccine.2018.05.114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 05/08/2018] [Accepted: 05/31/2018] [Indexed: 12/26/2022]
Abstract
BACKGROUND We have previously demonstrated that polyfunctional Ty21a-responsive CD4+ and CD8+ T cells are generated at the duodenal mucosa 18 days following vaccination with live-attenuated S. Typhi (Ty21a). The longevity of cellular responses has been assessed in peripheral blood, but persistence of duodenal responses is unknown. METHODS We vaccinated eight healthy adults with Ty21a. Peripheral blood and duodenal samples were acquired after a median of 1.5 years (ranging from 1.1 to 3.7 years) following vaccination. Cellular responses were assessed in peripheral blood and at the duodenal mucosa by flow cytometry. Levels of IgG and IgA were also assessed in peripheral blood by enzyme-linked immunosorbent assay. RESULTS No T-cell responses were observed at the duodenal mucosa, but CD4+ T-cell responses to Ty21a and FliC were observed in peripheral blood. Peripheral anti-lipopolysaccharide IgG and IgA responses were also observed. Early immunoglobulin responses were not associated with the persistence of long-term cellular immune responses. CONCLUSIONS Early T-cell responses which we have previously observed at the duodenal mucosa 18 days following oral vaccination with Ty21a could not be detected at a median of 1.5 years. Peripheral responses were observed at this time. Immunoglobulin responses observed shortly after vaccination were not associated with cellular immune responses at 1.5 years, suggesting that the persistence of cellular immunity is not associated with the strength of the initial humoral response to vaccination.
Collapse
Affiliation(s)
- Shaun H Pennington
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, UK; Department of Clinical Sciences, Liverpool School of Tropical Medicine, UK
| | - Daniela M Ferreira
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, UK
| | - Jesús Reiné
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, UK
| | - Tonney S Nyirenda
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, UK; Malawi-Liverpool-Wellcome Trust Clinical Research Programme, College of Medicine, Queen Elizabeth Central Hospital, Malawi
| | - Ameeka L Thompson
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, UK; Department of Clinical Sciences, Liverpool School of Tropical Medicine, UK
| | - Carole A Hancock
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, UK
| | - Angela D Wright
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, UK
| | - Stephen B Gordon
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, UK; Malawi-Liverpool-Wellcome Trust Clinical Research Programme, College of Medicine, Queen Elizabeth Central Hospital, Malawi
| | - Melita A Gordon
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, UK; Malawi-Liverpool-Wellcome Trust Clinical Research Programme, College of Medicine, Queen Elizabeth Central Hospital, Malawi.
| |
Collapse
|
37
|
Rudolph ME, McArthur MA, Barnes RS, Magder LS, Chen WH, Sztein MB. Differences Between Pediatric and Adult T Cell Responses to In Vitro Staphylococcal Enterotoxin B Stimulation. Front Immunol 2018; 9:498. [PMID: 29616025 PMCID: PMC5869216 DOI: 10.3389/fimmu.2018.00498] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 02/26/2018] [Indexed: 12/23/2022] Open
Abstract
Toxic shock syndrome (TSS) is capable of inducing life-threatening fever, rash, and systemic organ failure, though the specific mechanisms behind these symptoms remain poorly understood. Staphylococcal enterotoxin B (SEB) and other superantigens have shown to be important factors in TSS, capable of promoting cross-linking between T cell receptors and major histocompatibility complexes which results in overwhelming T cell activation, proliferation, and cytokine production. The resulting proinflammatory cytokine cascade, often referred to as the “cytokine storm,” seems to be critical to the development of disease. Interestingly, clinical studies have shown that children exhibit less severe TSS-associated morbidity than adults, though the mechanism behind this phenomenon has not been addressed. Indeed, despite the fact that most novel antigen exposure occurs early in life, be it from environmentally acquired pathogens or routine vaccination, normal pediatric T cell immune functions remain critically underexplored. This is largely due to difficulty in obtaining enough samples to explore more than a narrow sliver of the cell-mediated immune compartment. To address this limitation, we optimized a T effector (Teff)/circulating T follicular helper (cTFH) cell mass cytometry panel which allowed us to analyze a wide array of T cell populations and effector functions following in vitro SEB stimulation. We show that T cell activation—as measured by CD69 expression—following SEB stimulation is lower in pediatric participants, increasing throughout childhood, and reaching adult levels by around 15 years old. Further, while individual CD4+ effector memory T cell (TEM) effector molecules show limited age-associated differences following SEB stimulation, multifunctional CD4+ TEM are shown to positively correlate with increasing age through adolescence. Individual CD8+ TEM effectors and multifunctional phenotypes also show very strong age-associated increases following SEB stimulation. SEB stimulation has little impact on cTFH activation or functional cellular markers, regardless of age. These results, coupled with the fact that a robust proinflammatory cytokine response seems critical to developing severe TSS, suggest a possible connection between the significantly reduced T cell activation and multifunctional populations following in vitro SEB stimulation in our pediatric participants and clinical observations relating to reduced TSS mortality in children.
Collapse
Affiliation(s)
- Mark E Rudolph
- Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, MD, United States.,Molecular Microbiology and Immunology Department, University of Maryland Graduate Program in Life Sciences, Baltimore, MD, United States
| | - Monica A McArthur
- Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, MD, United States.,Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Robin S Barnes
- Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Laurence S Magder
- Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Wilbur H Chen
- Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, MD, United States.,Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Marcelo B Sztein
- Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, MD, United States.,Molecular Microbiology and Immunology Department, University of Maryland Graduate Program in Life Sciences, Baltimore, MD, United States.,Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, United States.,Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
38
|
Toapanta FR, Bernal PJ, Kotloff KL, Levine MM, Sztein MB. T cell mediated immunity induced by the live-attenuated Shigella flexneri 2a vaccine candidate CVD 1208S in humans. J Transl Med 2018. [PMID: 29534721 PMCID: PMC5851169 DOI: 10.1186/s12967-018-1439-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Background Shigellosis persists as a public health problem worldwide causing ~ 165,000 deaths every year, of which ~ 55,000 are in children less than 5 years of age. No vaccine against shigellosis is currently licensed. The live-attenuated Shigella flexneri 2a vaccine candidate CVD 1208S (S. flexneri 2a; ΔguaBA, Δset, Δsen) demonstrated to be safe and immunogenic in phase 1 and 2 clinical trials. Earlier reports focused on humoral immunity. However, Shigella is an intracellular pathogen and therefore, T cell mediated immunity (T-CMI) is also expected to play an important role. T-CMI responses after CVD 1208S immunization are the focus of the current study. Methods Consenting volunteers were immunized orally (3 doses, 108 CFU/dose, 28 days apart) with CVD 1208S. T-CMI to IpaB was assessed using autologous EBV-transformed B-Lymphocytic cell lines as stimulator cells. T-CMI was assessed by the production of 4 cytokines (IFN-γ, IL-2, IL-17A and TNF-α) and/or expression of the degranulation marker CD107a in 14 volunteers (11 vaccine and 3 placebo recipients). Results Following the first immunization, T-CMI was detected in CD8 and CD4 T cells obtained from CVD 1208S recipients. Among CD8 T cells, the T effector memory (TEM) and central memory (TCM) subsets were the main cytokine/CD107a producers/expressors. Multifunctional (MF) cells were also detected in CD8 TEM cells. Cells with 2 and 3 functions were the most abundant. Interestingly, TNF-α appeared to be dominant in CD8 TEM MF cells. In CD4 T cells, TEM responses predominated. Following subsequent immunizations, no booster effect was detected. However, production of cytokines/expression of CD107a was detected in individuals who had previously not responded. After three doses, production of at least one cytokine/CD107a was detected in 8 vaccinees (73%) in CD8 TEM cells and in 10 vaccinees (90%) in CD4 TEM cells. Conclusions CVD 1208S induces diverse T-CMI responses, which likely complement the humoral responses in protection from disease. Trial registration This study was approved by the Institutional Review Board and registered on ClinicalTrials.gov (identifier NCT01531530) Electronic supplementary material The online version of this article (10.1186/s12967-018-1439-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Franklin R Toapanta
- Department of Medicine, Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
| | - Paula J Bernal
- Department of Pediatrics, Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Karen L Kotloff
- Department of Pediatrics, Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Myron M Levine
- Department of Pediatrics, Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Marcelo B Sztein
- Department of Medicine, Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, MD, 21201, USA. .,Department of Pediatrics, Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
| |
Collapse
|
39
|
Prezzemolo T, van Meijgaarden KE, Franken KLMC, Caccamo N, Dieli F, Ottenhoff THM, Joosten SA. Detailed characterization of human Mycobacterium tuberculosis specific HLA-E restricted CD8 + T cells. Eur J Immunol 2018; 48:293-305. [PMID: 29124751 PMCID: PMC6266868 DOI: 10.1002/eji.201747184] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 09/18/2017] [Accepted: 11/06/2017] [Indexed: 12/24/2022]
Abstract
HLA-E presented antigens are interesting targets for vaccination given HLA-Es' essentially monomorphic nature. We have shown previously that Mycobacterium tuberculosis (Mtb) peptides are presented by HLA-E to CD8+ effector T cells, but the precise phenotype and functional capacity of these cells remains poorly characterized. We have developed and utilized in this study a new protocol combining HLA-E tetramer with intracellular staining for cytokines, transcription factors and cytotoxic molecules to characterize these cells in depth. We confirm in this study the significantly increased ex vivo frequency of Mtb-peptide/HLA-E-TM+ CD8+ T cells in the circulation of patients with active tuberculosis (TB). HLA-E restricted CD8+ T cells from TB patients produced more IL-13 than cells from controls or subjects with latent tuberculosis infection (LTBI). Compared to total CD8+ T cells, HLA-E restricted cells produced more IFNγ, IL-4, IL-10, and granulysin but less granzyme-A. Moreover, compared to "classical" Mtb specific HLA-A2 restricted CD8+ T cells, HLA-E restricted CD8+ T cells produced less TNFα and perforin, but more IL-4. In conclusion, HLA-E restricted- Mtb specific cells can produce Th2 cytokines directly.
Collapse
Affiliation(s)
- Teresa Prezzemolo
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
- Central Laboratory for Advanced Diagnostics and Biomedical Research (CLADIBIOR), University of Palermo, Palermo, Italy
| | | | - Kees L M C Franken
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Nadia Caccamo
- Central Laboratory for Advanced Diagnostics and Biomedical Research (CLADIBIOR), University of Palermo, Palermo, Italy
| | - Francesco Dieli
- Central Laboratory for Advanced Diagnostics and Biomedical Research (CLADIBIOR), University of Palermo, Palermo, Italy
| | - Tom H M Ottenhoff
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Simone A Joosten
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
40
|
Juel HB, Thomaides-Brears HB, Darton TC, Jones C, Jones E, Shrestha S, Sie R, Eustace A, Galal U, Kurupati P, Van TT, Thieu NTV, Baker S, Blohmke CJ, Pollard AJ. Salmonella Typhi Bactericidal Antibodies Reduce Disease Severity but Do Not Protect against Typhoid Fever in a Controlled Human Infection Model. Front Immunol 2018; 8:1916. [PMID: 29387052 PMCID: PMC5776093 DOI: 10.3389/fimmu.2017.01916] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 12/14/2017] [Indexed: 01/12/2023] Open
Abstract
Effective vaccines against Salmonella Typhi, a major cause of febrile illness in tropical regions, can have a significant effect as a disease control measure. Earlier work has shown that immunization with either of two Salmonella Typhi vaccines, licensed Ty21a or candidate M01ZH09, did not provide full immunity in a controlled human infection model. Here, we describe the human humoral immune responses to these oral vaccines and their functional role in protection after challenge with S. Typhi. Serum, obtained from healthy volunteers before and after vaccination with Ty21a or M01ZH09 or placebo and before and after oral challenge with wild-type S. Typhi, was assessed for bactericidal activity. Single-dose vaccination with M01ZH09 induced an increase in serum bactericidal antibodies (p = 0.001) while three doses of Ty21a did not. No association between bactericidal activity and protection against typhoid after challenge was seen in either vaccine arm. Bactericidal activity after vaccination correlated significantly with delayed disease onset (p = 0.013), lower bacterial burden (p = 0.006), and decreased disease severity scores (p = 0.021). Depletion of antibodies directed against lipopolysaccharide significantly reduced bactericidal activity (p = 0.009). We conclude that antibodies induced after ingestion of oral live-attenuated typhoid vaccines or after challenge with wild-type S. Typhi exhibit bactericidal activity. This bactericidal activity is mediated by anti-O:LPS antibodies and significantly reduces clinical symptoms but does not provide sterile immunity. This directs future vaccine studies toward other antigens or mechanisms of protection against typhoid.
Collapse
Affiliation(s)
- Helene B Juel
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, The NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom.,Statens Serum Institut, Copenhagen, Denmark
| | - Helena B Thomaides-Brears
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, The NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom
| | - Thomas C Darton
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, The NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom.,Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | - Claire Jones
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, The NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom
| | - Elizabeth Jones
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, The NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom
| | - Sonu Shrestha
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, The NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom
| | - Rebecca Sie
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, The NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom
| | - Andrew Eustace
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, The NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom
| | - Ushma Galal
- Nuffield Department of Primary Care Health Sciences, Clinical Trials Unit, University of Oxford, Oxford, United Kingdom
| | - Prathiba Kurupati
- Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Tan T Van
- The Hospital for Tropical Diseases, Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Nga T V Thieu
- The Hospital for Tropical Diseases, Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Stephen Baker
- The Hospital for Tropical Diseases, Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom.,The Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Christoph J Blohmke
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, The NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom
| | - Andrew J Pollard
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, The NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom
| |
Collapse
|
41
|
Barton AJ, Hill J, Pollard AJ, Blohmke CJ. Transcriptomics in Human Challenge Models. Front Immunol 2017; 8:1839. [PMID: 29326715 PMCID: PMC5741696 DOI: 10.3389/fimmu.2017.01839] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 12/05/2017] [Indexed: 12/22/2022] Open
Abstract
Human challenge models, in which volunteers are experimentally infected with a pathogen of interest, provide the opportunity to directly identify both natural and vaccine-induced correlates of protection. In this review, we highlight how the application of transcriptomics to human challenge studies allows for the identification of novel correlates and gives insight into the immunological pathways required to develop functional immunity. In malaria challenge trials for example, innate immune pathways appear to play a previously underappreciated role in conferring protective immunity. Transcriptomic analyses of samples obtained in human challenge studies can also deepen our understanding of the immune responses preceding symptom onset, allowing characterization of innate immunity and early gene signatures, which may influence disease outcome. Influenza challenge studies demonstrate that these gene signatures have diagnostic potential in the context of pandemics, in which presymptomatic diagnosis of at-risk individuals could allow early initiation of antiviral treatment and help limit transmission. Furthermore, gene expression analysis facilitates the identification of host factors contributing to disease susceptibility, such as C4BPA expression in enterotoxigenic Escherichia coli infection. Overall, these studies highlight the exceptional value of transcriptional data generated in human challenge trials and illustrate the broad impact molecular data analysis may have on global health through rational vaccine design and biomarker discovery.
Collapse
Affiliation(s)
- Amber J Barton
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom
| | - Jennifer Hill
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom
| | - Andrew J Pollard
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom
| | - Christoph J Blohmke
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom
| |
Collapse
|
42
|
Roestenberg M, Mo A, Kremsner PG, Yazdanbakhsh M. Controlled human infections: A report from the controlled human infection models workshop, Leiden University Medical Centre 4-6 May 2016. Vaccine 2017; 35:7070-7076. [PMID: 29162320 DOI: 10.1016/j.vaccine.2017.10.092] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 10/30/2017] [Accepted: 10/31/2017] [Indexed: 10/18/2022]
Abstract
The principle of deliberately infecting humans with infectious agents in a controlled setting, so-called controlled human infections (CHI), is not novel. Many CHI models have a long history and were established decades ago such as the intentional exposure to yellow fever and dengue performed in the 1900's (Reed, 1902) [2]. In these times bioethics and scientific reasoning were in their infancy. Nowadays, clinical trials are highly regulated and CHI are executed worldwide. Controlled human malaria infections and influenza infections are the two most frequently practiced. Others are experiencing a revival or are being carefully developed. Because CHI models test the efficacy of promising vaccine or drug candidates early in clinical development, they offer the potential to decrease the number of failing phase 2 and 3 trials, reducing risks for patients and saving costs and efforts. In addition, CHI models provide unprecedented opportunities to dissect the physiological, immunological and metabolic changes that occur upon infection. However, it is clear that controlled infections require careful deliberation of safety, ethics, quarantine, scientific output and the production of infectious material. An independent international workshop was hosted by the Leiden University Medical Centre in The Netherlands, bringing together clinical investigators, basic scientists, regulators, funders and policy makers from 22 different countries to discuss the opportunities and challenges in CHI. The aim of the workshop was to discuss CHI as a tool to advance science, drug and vaccine development, share the challenges of establishing a CHI model with specific focus on neglected tropical diseases and the possibilities to transfer models to endemic sites. Noticeably, among the 128 participants were clinical investigators from ten different countries in Sub-Saharan Africa. An important dimension of the meeting was to give the floor to young established clinicians and scientists to voice their perspective on the future of CHI models.
Collapse
Affiliation(s)
| | - Annie Mo
- Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, USA
| | - Peter G Kremsner
- Universitätsklinikum Tübingen, Germany and Centre de Recherches Médicales de Lambaréné, Gabon
| | | |
Collapse
|
43
|
Use of a novel antigen expressing system to study the Salmonella enterica serovar Typhi protein recognition by T cells. PLoS Negl Trop Dis 2017; 11:e0005912. [PMID: 28873442 PMCID: PMC5600385 DOI: 10.1371/journal.pntd.0005912] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 09/15/2017] [Accepted: 08/28/2017] [Indexed: 11/19/2022] Open
Abstract
Salmonella enterica serovar Typhi (S. Typhi), the causative agent of the typhoid fever, is a pathogen of great public health importance. Typhoid vaccines have the potential to be cost-effective measures towards combating this disease, yet the antigens triggering host protective immune responses are largely unknown. Given the key role of cellular-mediated immunity in S. Typhi protection, it is crucial to identify S. Typhi proteins involved in T-cell responses. Here, cells from individuals immunized with Ty21a typhoid vaccine were collected before and after immunization and used as effectors. We also used an innovative antigen expressing system based on the infection of B-cells with recombinant Escherichia coli (E. coli) expressing one of four S. Typhi gene products (i.e., SifA, OmpC, FliC, GroEL) as targets. Using flow cytometry, we found that the pattern of response to specific S. Typhi proteins was variable. Some individuals responded to all four proteins while others responded to only one or two proteins. We next evaluated whether T-cells responding to recombinant E. coli also possess the ability to respond to purified proteins. We observed that CD4+ cell responses, but not CD8+ cell responses, to recombinant E. coli were significantly associated with the responses to purified proteins. Thus, our results demonstrate the feasibility of using an E. coli expressing system to uncover the antigen specificity of T-cells and highlight its applicability to vaccine studies. These results also emphasize the importance of selecting the stimuli appropriately when evaluating CD4+ and CD8+ cell responses. Salmonella enterica serovar Typhi (S. Typhi) is the causative agent of the life-threatening typhoid fever that affects 11.9–20.6 million individuals annually in low-income and middle-income countries. The T-cells, CD4+ and CD8+ T cells, play a significant role in protection against S. Typhi infection. Yet, the antigens triggering host protective immune responses recognized by these cells are largely unknown. To address this shortcoming, in this study we used an E. coli expression system methodology for identifying immunogenic proteins of S. Typhi. We found that although the pattern of response to individual S. Typhi proteins was variable among the typhoid vaccinees, the E. coli expressing system uncovered the antigen specificity of T-cells, and highlight its applicability to vaccine studies.
Collapse
|
44
|
Booth JS, Patil SA, Ghazi L, Barnes R, Fraser CM, Fasano A, Greenwald BD, Sztein MB. Systemic and Terminal Ileum Mucosal Immunity Elicited by Oral Immunization With the Ty21a Typhoid Vaccine in Humans. Cell Mol Gastroenterol Hepatol 2017; 4:419-437. [PMID: 29022005 PMCID: PMC5626924 DOI: 10.1016/j.jcmgh.2017.08.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 08/04/2017] [Indexed: 12/10/2022]
Abstract
BACKGROUND & AIMS Systemic cellular immunity elicited by the Ty21a oral typhoid vaccine has been extensively characterized. However, very limited data are available in humans regarding mucosal immunity at the site of infection (terminal ileum [TI]). Here we investigated the host immunity elicited by Ty21a immunization on terminal ileum-lamina propria mononuclear cells (LPMC) and peripheral blood in volunteers undergoing routine colonoscopy. METHODS We characterized LPMC-T memory (TM) subsets and assessed Salmonella enterica serovar Typhi (S Typhi)-specific responses by multichromatic flow cytometry. RESULTS No differences were observed in cell yields and phenotypes in LPMC CD8+-TM subsets following Ty21a immunization. However, Ty21a immunization elicited LPMC CD8+ T cells exhibiting significant S Typhi-specific responses (interferon-γ, tumor necrosis factor-α, interleukin-17A, and/or CD107a) in all major TM subsets (T-effector/memory [TEM], T-central/memory, and TEM-CD45RA+), although each TM subset exhibited unique characteristics. We also investigated whether Ty21a immunization elicited S Typhi-specific multifunctional effectors in LPMC CD8+ TEM. We observed that LPMC CD8+ TEM responses were mostly multifunctional, except for those cells exhibiting the characteristics associated with cytotoxic responses. Finally, we compared mucosal with systemic responses and made the important observation that LPMC CD8+S Typhi-specific responses were unique and distinct from their systemic counterparts. CONCLUSIONS This study provides the first demonstration of S Typhi-specific responses in the human terminal ileum mucosa and provides novel insights into the generation of mucosal immune responses following oral Ty21a immunization.
Collapse
Key Words
- CD8+-T Memory Cells
- CMI, cell-mediated immune responses
- EBV-B, Epstein-Barr virus–transformed lymphoblastoid B cells
- IFN, interferon
- IL, interleukin
- LPMC, lamina propria mononuclear cells
- Lamina Propria Mononuclear Cells
- MF, multifunctional
- MIP, macrophage inflammatory protein
- Multifunctional T Cells
- PBMC, peripheral blood mononuclear cells
- S, S Typhi–specific single producing cells
- TCM, T-central/memory (CD62L+CD45RA-)
- TEM, T-effector/memory (CD62L-CD45RA-)
- TEMRA, TEM-CD45RA+ (CD62L-CD45RA+)
- TI, terminal ileum
- TM, CD8+ T memory
- TNF, tumor necrosis factor
- Typhoid
- Vaccines
- wt, wild-type
Collapse
Affiliation(s)
- Jayaum S. Booth
- Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, Maryland
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, Maryland
| | - Seema A. Patil
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
- Division of Gastroenterology and Hepatology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Leyla Ghazi
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
- Division of Gastroenterology and Hepatology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Robin Barnes
- Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, Maryland
| | - Claire M. Fraser
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland
| | - Alessio Fasano
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital for Children, Boston, Massachusetts
| | - Bruce D. Greenwald
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
- Division of Gastroenterology and Hepatology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Marcelo B. Sztein
- Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, Maryland
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, Maryland
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
- Correspondence Address correspondence to: Dr. Marcelo B. Sztein, Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, Maryland 21201. fax: (410) 706 6205.Center for Vaccine DevelopmentUniversity of Maryland School of MedicineBaltimoreMaryland 21201
| |
Collapse
|
45
|
Wang W, Baloch Z, Peng Z, Hu Y, Xu J, Fanning S, Li F. Genomic characterization of a large plasmid containing a bla NDM-1 gene carried on Salmonella enterica serovar Indiana C629 isolate from China. BMC Infect Dis 2017; 17:479. [PMID: 28687066 PMCID: PMC5501952 DOI: 10.1186/s12879-017-2515-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Accepted: 06/01/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The bla NDM-1 gene in Salmonella species is mostly reported in clinical cases, but is rarely isolated from red and white meat in China. METHODS A Salmonella Indiana (S. Indiana) isolate was cultured from a chicken carcass procured from a slaughterhouse in China. Antimicrobial susceptibility was tested against a panel of agents. Whole-genome sequencing of the isolate was carried out and data was analyzed. RESULTS A large plasmid, denoted as plasmid pC629 (210,106 bp), containing a composite cassette, consisting of IS26-bla NDM-1-ble MBL -△trpF-tat-cutA-ISCR1-sul1-qacE△1-aadA2-dfrA12-intI1-IS26 was identified. The latter locus was physically linked with bla OXA-1, bla CTX-M-65, bla TEM-1-encoding genes. A mercury resistance operon merACDEPTR was also identified; it was flanked on the proximal side, among IS26 element and the distally located on the bla NDM-1 gene. Plasmid pC629 also contained 21 other antimicrobial resistance-encoding genes, such as aac(6')-Ib-cr, aac(3)-VI, aadA5, aph(4)-Ia, arr-3, blmS, brp, catB3, dfrA17, floR, fosA, mph(A), mphR, mrx, nimC/nimA, oqxA, oqxB, oqxR, rmtB, sul1, sul2. Two virulence genes were also identified on plasmid pC629. CONCLUSION To the best of our knowledge, this is the first report of bla NDM-1 gene being identified from a plasmid in a S. Indiana isolate cultured from chicken carcass in China.
Collapse
Affiliation(s)
- Wei Wang
- Key Laboratory of Food Safety Risk Assessment, Ministry of Health, China National Center for food safety Risk Assessment, Beijing, People’s Republic of China
| | - Zulqarnain Baloch
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642 People’s Republic of China
| | - Zixin Peng
- Key Laboratory of Food Safety Risk Assessment, Ministry of Health, China National Center for food safety Risk Assessment, Beijing, People’s Republic of China
| | - Yujie Hu
- Key Laboratory of Food Safety Risk Assessment, Ministry of Health, China National Center for food safety Risk Assessment, Beijing, People’s Republic of China
| | - Jin Xu
- Key Laboratory of Food Safety Risk Assessment, Ministry of Health, China National Center for food safety Risk Assessment, Beijing, People’s Republic of China
| | - Séamus Fanning
- Key Laboratory of Food Safety Risk Assessment, Ministry of Health, China National Center for food safety Risk Assessment, Beijing, People’s Republic of China
- UCD-Centre for Food Safety, School of Public Health, Physiotherapy and Sports Science, University College Dublin, Belfield D04 N2E5, Dublin, Ireland
- Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, Stranmillis Road, Belfast, BT9 5AG Northern Ireland
| | - Fengqin Li
- Key Laboratory of Food Safety Risk Assessment, Ministry of Health, China National Center for food safety Risk Assessment, Beijing, People’s Republic of China
- Microbiology Laboratory, China National Centre for Food Safety Risk Assessment, No.7 Panjiayuan Nanli, Chaoyang District, Beijing, 100021 People’s Republic of China
| |
Collapse
|
46
|
Fløe A, Løppke C, Hilberg O, Wejse C, Brix L, Jacobsen K. Development of an epitope panel for consistent identification of antigen-specific T-cells in humans. Immunology 2017; 152:298-307. [PMID: 28564390 DOI: 10.1111/imm.12769] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 05/11/2017] [Accepted: 05/15/2017] [Indexed: 11/27/2022] Open
Abstract
We aimed to establish a panel of MHC-peptide multimers suitable as a positive control in the detection of HLA A*0201 restricted antigen specific T cells (ASTC) by flow cytometry. MHC Dextramers were loaded with HLA A*0201 binding peptides from viral antigens and melanoma targets identified from a literature search and in silico prediction. Peripheral blood mononuclear cells (PBMC) from healthy donors were analysed with the MHC Dextramers using flow cytometry. The best performing epitopes were tested on PBMC from patients undergoing testing for Mycobacterium tuberculosis infection to assess the coverage of this epitope panel. Of 21 candidate epitopes, ASTC could be detected against 12 (57·1%) in at least one of 18 healthy blood donors. Reactivity to two or more epitopes was seen in 17 of the 18 donors (94·4%). We selected the six best-performing epitopes and demonstrated a positive response in 42 (97·7%) of 43 patient samples (healthy, latent and active M. tuberculosis infection). The selected panel of six antigenic epitopes sufficed as a positive control in the detection of ASTC in HLA A*0201. Performance was robust in different stages of latent and active M. tuberculosis infection, indicating reliability also during infection.
Collapse
Affiliation(s)
- Andreas Fløe
- Department of Respiratory Diseases and Allergy, Aarhus University Hospital, Aarhus, Denmark.,Immudex ApS, Copenhagen, Denmark
| | | | - Ole Hilberg
- University of Southern Denmark, Odense, Denmark.,Department of Respiratory Medicine, Sygehus Lillabaelt, Vejle, Denmark
| | - Christian Wejse
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark.,GloHAU Centre for Global Health, Department of Public Health, Aarhus University, Aarhus, Denmark
| | | | | |
Collapse
|
47
|
Gu XX, Plotkin SA, Edwards KM, Sette A, Mills KHG, Levy O, Sant AJ, Mo A, Alexander W, Lu KT, Taylor CE. Waning Immunity and Microbial Vaccines-Workshop of the National Institute of Allergy and Infectious Diseases. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2017; 24:e00034-17. [PMID: 28490424 PMCID: PMC5498725 DOI: 10.1128/cvi.00034-17] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Since the middle of the 20th century, vaccines have made a significant public health impact by controlling infectious diseases globally. Although long-term protection has been achieved with some vaccines, immunity wanes over time with others, resulting in outbreaks or epidemics of infectious diseases. Long-term protection against infectious agents that have a complex life cycle and antigenic variation remains a key challenge. Novel strategies to characterize the short- and long-term immune responses to vaccines and to induce immune responses that mimic natural infection have recently emerged. New technologies and approaches in vaccinology, such as adjuvants, delivery systems, and antigen formulations, have the potential to elicit more durable protection and fewer adverse reactions; together with in vitro systems, these technologies have the capacity to model and accelerate vaccine development. The National Institute of Allergy and Infectious Diseases (NIAID) held a workshop on 19 September 2016 that focused on waning immunity to selected vaccines (for Bordetella pertussis, Salmonella enterica serovar Typhi, Neisseria meningitidis, influenza, mumps, and malaria), with an emphasis on identifying knowledge gaps, future research needs, and how this information can inform development of more effective vaccines for infectious diseases.
Collapse
Affiliation(s)
- Xin-Xing Gu
- Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | | | | | - Alessandro Sette
- La Jolla Institute of Allergy and Immunology, La Jolla, California, USA
| | - Kingston H G Mills
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Ofer Levy
- Precision Vaccines Program, Boston Children's Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Andrea J Sant
- University of Rochester Medical Center, Rochester, New York, USA
| | - Annie Mo
- Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - William Alexander
- Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Kristina T Lu
- Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Christopher E Taylor
- Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| |
Collapse
|
48
|
Holmgren J, Parashar UD, Plotkin S, Louis J, Ng SP, Desauziers E, Picot V, Saadatian-Elahi M. Correlates of protection for enteric vaccines. Vaccine 2017; 35:3355-3363. [PMID: 28504192 PMCID: PMC11342448 DOI: 10.1016/j.vaccine.2017.05.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 04/04/2017] [Accepted: 05/03/2017] [Indexed: 12/26/2022]
Abstract
An immunological Correlate of Protection (CoP) is an immune response that is statistically interrelated with protection. Identification of CoPs for enteric vaccines would help design studies to improve vaccine performance of licensed vaccines in low income settings, and would facilitate the testing of future vaccines in development that might be more affordable. CoPs are lacking today for most existing and investigational enteric vaccines. In order to share the latest information on CoPs for enteric vaccines and to discuss novel approaches to correlate mucosal immune responses in humans with protection, the Foundation Mérieux organized an international conference of experts where potential CoPs for vaccines were examined using case-studies for both bacterial and viral enteric pathogens. Experts on the panel concluded that to date, all established enteric vaccine CoPs, such as those for hepatitis A, Vi typhoid and poliovirus vaccines, are based on serological immune responses even though these may poorly reflect the relevant gut immune responses or predict protective efficacy. Known CoPs for cholera, norovirus and rotavirus could be considered as acceptable for comparisons of similarly composed vaccines while more work is still needed to establish CoPs for the remaining enteric pathogens and their candidate vaccines. Novel approaches to correlate human mucosal immune responses with protection include the investigation of gut-originating antibody-secreting cells (ASCs), B memory cells and follicular helper T cells from samples of peripheral blood during their recirculation.
Collapse
Affiliation(s)
- Jan Holmgren
- University of Gothenburg Vaccine Research Institute, Box 435, S-40530 Gothenburg, Sweden.
| | - Umesh D Parashar
- National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta GA, United States.
| | - Stanley Plotkin
- University of Pennsylvania and Vaxconsult, LLC, United States.
| | - Jacques Louis
- Fondation Mérieux, 17 rue Bourgelat, 69002 Lyon, France.
| | - Su-Peing Ng
- Sanofi Pasteur, Global Medical Affairs, 2 Avenue du Pont Pasteur, 69367 Lyon cedex 07, France.
| | - Eric Desauziers
- Sanofi Pasteur, Global Medical Affairs, 2 Avenue du Pont Pasteur, 69367 Lyon cedex 07, France.
| | | | - Mitra Saadatian-Elahi
- Hospices Civils de Lyon, Groupement Hospitalier Edouard Herriot, 5 Place d'Arsonval, 69437 Lyon cedex 03, France.
| |
Collapse
|
49
|
Salerno-Goncalves R, Luo D, Fresnay S, Magder L, Darton TC, Jones C, Waddington CS, Blohmke CJ, Angus B, Levine MM, Pollard AJ, Sztein MB. Challenge of Humans with Wild-type Salmonella enterica Serovar Typhi Elicits Changes in the Activation and Homing Characteristics of Mucosal-Associated Invariant T Cells. Front Immunol 2017; 8:398. [PMID: 28428786 PMCID: PMC5382150 DOI: 10.3389/fimmu.2017.00398] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 03/21/2017] [Indexed: 12/20/2022] Open
Abstract
Gastrointestinal infections by Salmonella enterica serovar Typhi (S. Typhi) are rare in industrialized countries. However, they remain a major public health problem in the developing world with an estimated 26.9 million new cases annually and significant mortality when untreated. Recently, we provided the first direct evidence that CD8+ MAIT cells are activated and have the potential to kill cells exposed to S. Typhi, and that these responses are dependent on bacterial load. However, MAIT cell kinetics and function during bacterial infections in humans remain largely unknown. In this study, we characterize the human CD8+ MAIT cell immune response to S. Typhi infection in subjects participating in a challenge clinical trial who received a low- or high dose of wild-type S. Typhi. We define the kinetics of CD8+ MAIT cells as well as their levels of activation, proliferation, exhaustion/apoptosis, and homing potential. Regardless of the dose, in volunteers resistant to infection (NoTD), the levels of CD8+ MAIT cells after S. Typhi challenge fluctuated around their baseline values (day 0). In contrast, volunteers susceptible to the development of typhoid disease (TD) exhibited a sharp decline in circulating MAIT cells during the development of typhoid fever. Interestingly, MAIT cells from low-dose TD volunteers had higher levels of CD38 coexpressing CCR9, CCR6, and Ki67 during the development of typhoid fever than high-dose TD volunteers. No substantial perturbations on the levels of these markers were observed in NoTD volunteers irrespective of the dose. In sum, we describe, for the first time, that exposure to an enteric bacterium, in this case S. Typhi, results in changes in MAIT cell activation, proliferation, and homing characteristics, suggesting that MAIT cells are an important component of the human host response to bacterial infection.
Collapse
Affiliation(s)
| | - David Luo
- Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Stephanie Fresnay
- Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Laurence Magder
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Thomas C Darton
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
| | - Claire Jones
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
| | - Claire S Waddington
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
| | - Christoph J Blohmke
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
| | - Brian Angus
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
| | - Myron M Levine
- Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Andrew J Pollard
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
| | - Marcelo B Sztein
- Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
50
|
Fresnay S, McArthur MA, Magder LS, Darton TC, Jones C, Waddington CS, Blohmke CJ, Angus B, Levine MM, Pollard AJ, Sztein MB. Importance of Salmonella Typhi-Responsive CD8+ T Cell Immunity in a Human Typhoid Fever Challenge Model. Front Immunol 2017; 8:208. [PMID: 28303138 PMCID: PMC5332428 DOI: 10.3389/fimmu.2017.00208] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 02/15/2017] [Indexed: 01/25/2023] Open
Abstract
Typhoid fever, caused by the human-restricted organism Salmonella enterica serovar Typhi (S. Typhi), constitutes a major global health problem. The development of improved attenuated vaccines is pressing, but delayed by the lack of appropriate preclinical models. Herein, we report that high levels of S. Typhi-responsive CD8+ T cells at baseline significantly correlate with an increased risk of disease in humans challenged with a high dose (~104 CFU) wild-type S. Typhi. Typhoid fever development was associated with higher multifunctional S. Typhi-responsive CD8+ T effector memory cells at baseline. Early decreases of these cells in circulation following challenge were observed in both S. Typhi-responsive integrin α4β7− and integrin α4β7+ CD8+ T effector memory (TEM) cells, suggesting their potential to home to both mucosal and extra-intestinal sites. Participants with higher baseline levels of S. Typhi-responsive CD8+ T memory cells had a higher risk of acquiring disease, but among those who acquired disease, those with a higher baseline responses took longer to develop disease. In contrast, protection against disease was associated with low or absent S. Typhi-responsive T cells at baseline and no changes in circulation following challenge. These data highlight the importance of pre-existing S. Typhi-responsive immunity in predicting clinical outcome following infection with wild-type S. Typhi and provide novel insights into the complex mechanisms involved in protective immunity to natural infection in a stringent human model with a high challenge dose. They also contribute important information on the immunological responses to be assessed in the appraisal and selection of new generation typhoid vaccines.
Collapse
Affiliation(s)
- Stephanie Fresnay
- Center for Vaccine Development, University of Maryland School of Medicine , Baltimore, MD , USA
| | - Monica A McArthur
- Center for Vaccine Development, University of Maryland School of Medicine , Baltimore, MD , USA
| | - Laurence S Magder
- Department of Epidemiology and Public Health, University of Maryland School of Medicine , Baltimore, MD , USA
| | - Thomas C Darton
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, NIHR Oxford Biomedical Research Centre , Oxford , UK
| | - Claire Jones
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, NIHR Oxford Biomedical Research Centre , Oxford , UK
| | - Claire S Waddington
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, NIHR Oxford Biomedical Research Centre , Oxford , UK
| | - Christoph J Blohmke
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, NIHR Oxford Biomedical Research Centre , Oxford , UK
| | - Brian Angus
- Nuffield Department of Medicine, University of Oxford , Oxford , UK
| | - Myron M Levine
- Center for Vaccine Development, University of Maryland School of Medicine , Baltimore, MD , USA
| | - Andrew J Pollard
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, NIHR Oxford Biomedical Research Centre , Oxford , UK
| | - Marcelo B Sztein
- Center for Vaccine Development, University of Maryland School of Medicine , Baltimore, MD , USA
| |
Collapse
|