1
|
Zhang HC, Yang XQ, Wang CH, Shang CY, Shi CY, Chen GW, Liu DZ. Toxicity of microplastics polystyrene to freshwater planarians and the alleviative effects of anthocyanins. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2025; 282:107310. [PMID: 40058299 DOI: 10.1016/j.aquatox.2025.107310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 03/03/2025] [Accepted: 03/03/2025] [Indexed: 04/05/2025]
Abstract
It is impossible to overlook the effects of microplastics (MPs) on aquatic organisms as they continuously accumulate in water environment. Freshwater planarians, which exist in the benthic zone of water bodies and come into contact with the deposited MPs particles, provide a highly representative model for studying the effects of MPs on aquatic organisms. Anthocyanins (ANTs) have gained significant popularity in recent years for their diverse health benefits. In the current study, the median lethal concentration (LC50) of polystyrene (PS) to planarian Dugesia japonica was determined for the first time. Based on this, multiple toxic effects of single PS and PS in combination with ANTs on planarians were explored. The results showed that PS exposure disrupted the redox homeostasis and induced oxidative damage in planarians. Also, PS stress affected the neuromorphology, aggravated cell apoptosis in planarians probably by altering neural gene expressions as well as promoting the expression of apoptosis-related genes while inhibiting stem cell marker genes. In addition, the results also suggested that co-exposure of ANTs could effectively alleviate the toxicity of PS on planarians. Particularly, long-term environmentally relevant concentration PS exposure exhibited a higher propensity for inducing toxicity on planarians than short-term high concentration acute exposure, indicating that the harm of environmental MPs to humans and wildlife exposed to them should not be underestimated. Therefore, considering the recently rising and rapid development of ecotoxicomics, more in-depth research on the toxicity mechanism of environmentally relevant concentration PS-MPs to freshwater planarians from multi-omics levels will be our future work.
Collapse
Affiliation(s)
- He-Cai Zhang
- College of Life Sciences, Henan Normal University, No.46, Jianshedong Road, Xinxiang 453007, China
| | - Xiao-Qing Yang
- College of Life Sciences, Henan Normal University, No.46, Jianshedong Road, Xinxiang 453007, China
| | - Cai-Hui Wang
- College of Life Sciences, Henan Normal University, No.46, Jianshedong Road, Xinxiang 453007, China
| | - Chang-Yang Shang
- College of Life Sciences, Henan Normal University, No.46, Jianshedong Road, Xinxiang 453007, China
| | - Chang-Ying Shi
- College of Life Sciences, Henan Normal University, No.46, Jianshedong Road, Xinxiang 453007, China
| | - Guang-Wen Chen
- College of Life Sciences, Henan Normal University, No.46, Jianshedong Road, Xinxiang 453007, China.
| | - De-Zeng Liu
- College of Life Sciences, Henan Normal University, No.46, Jianshedong Road, Xinxiang 453007, China
| |
Collapse
|
2
|
Ashique S, Mukherjee T, Mohanty S, Garg A, Mishra N, Kaushik M, Bhowmick M, Chattaraj B, Mohanto S, Srivastava S, Taghizadeh-Hesary F. Blueberries in focus: Exploring the phytochemical potentials and therapeutic applications. JOURNAL OF AGRICULTURE AND FOOD RESEARCH 2024; 18:101300. [DOI: 10.1016/j.jafr.2024.101300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
|
3
|
Ashique S, Mukherjee T, Mohanty S, Garg A, Mishra N, Kaushik M, Bhowmick M, Chattaraj B, Mohanto S, Srivastava S, Taghizadeh-Hesary F. Blueberries in focus: Exploring the phytochemical potentials and therapeutic applications. JOURNAL OF AGRICULTURE AND FOOD RESEARCH 2024; 18:101300. [DOI: https:/doi.org/10.1016/j.jafr.2024.101300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
|
4
|
Borda MG, Barreto GE, Baldera JP, de Lucia C, Khalifa K, Bergland AK, Pola I, Botero-Rodríguez F, Siow RC, Kivipelto M, Zetterberg H, Ashton NJ, Ballard C, Aarsland D. A randomized, placebo-controlled trial of purified anthocyanins on cognitive function in individuals at elevated risk for dementia: Analysis of inflammatory biomarkers toward personalized interventions. Exp Gerontol 2024; 196:112569. [PMID: 39226946 DOI: 10.1016/j.exger.2024.112569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/30/2024] [Accepted: 08/31/2024] [Indexed: 09/05/2024]
Abstract
BACKGROUND Dementia poses a significant global health challenge. Anthocyanins neutralize free radicals, modulate signaling pathways, inhibit pro-inflammatory genes, and suppress cytokine production and may thus have positive cognitive effects in people at increased risk of dementia. We aim to investigate the effects of purified anthocyanins on cognitive function in people at increased risk of dementia according to their inflammation status based on blood-based inflammatory biomarkers. METHODS This is a secondary analysis of a 24-week randomized, double-blind, placebo-controlled trial. Cluster analysis was performed to categorize two groups based on their individual inflammatory biomarker profile using multiplex sandwich ELISA for the quantitative measurement of cytokines. Descriptive statistics and longitudinal models assessed cognitive outcomes. The primary comparison was the group difference at week 24 based on a modified intention-to-treat analysis. RESULTS Cluster analysis revealed two distinct inflammatory biomarker profiles. In Cluster 1 (high levels of inflammation biomarkers), anthocyanin treatment showed a statistically significant improvement on cognitive function compared to placebo at 24 weeks. No significant differences were observed in Cluster 2 (low levels of inflammation biomarkers). The demographic characteristics, cognitive scores, and biomarker distributions were similar between treatment groups at baseline. However, cluster 1 exhibited higher BMI, diabetes prevalence, medication usage, and lower HDL cholesterol levels. CONCLUSION Individuals with elevated levels of inflammation markers benefited from anthocyanin treatment to enhance cognitive performance, whereas those with lower levels did not. The anti-inflammatory and antioxidant properties of anthocyanins make them a promising intervention, and future prospective trials in people with increased inflammation are warranted.
Collapse
Affiliation(s)
- Miguel German Borda
- Centre for Age-Related Medicine (SESAM), Stavanger University Hospital, Stavanger, Norway; Semillero de Neurociencias y Envejecimiento, Ageing Institute, Medical School, Pontificia Universidad Javeriana, Bogotá, Colombia; Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden; Centro de Investigación en Ciencias de la Salud (CICSA), FCS, Universidad Anáhuac México, Huixquilucan Edo. de México, Mexico.
| | - George E Barreto
- Department of Biological Sciences, University of Limerick, Limerick, Ireland
| | - Jonathan Patricio Baldera
- Centre for Age-Related Medicine (SESAM), Stavanger University Hospital, Stavanger, Norway; Instituto de Investigación en Salud, Facultad de Ciencias de la Salud de la Universidad Autónoma de Santo Domingo, Santo Domingo, Dominican Republic
| | - Chiara de Lucia
- Centre for Age-Related Medicine (SESAM), Stavanger University Hospital, Stavanger, Norway; Centre for Healthy Brain Ageing, Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, London, UK
| | - Khadija Khalifa
- Centre for Age-Related Medicine (SESAM), Stavanger University Hospital, Stavanger, Norway
| | - Anne Katrine Bergland
- Centre for Age-Related Medicine (SESAM), Stavanger University Hospital, Stavanger, Norway; Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Ilaria Pola
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Felipe Botero-Rodríguez
- Semillero de Neurociencias y Envejecimiento, Ageing Institute, Medical School, Pontificia Universidad Javeriana, Bogotá, Colombia; Fundación para la Ciencia, Innovación y Tecnología - Fucintec, Bogotá, Colombia
| | - Richard C Siow
- Centre for Healthy Brain Ageing, Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, London, UK; Ageing Research at King's (ARK) and School of Cardiovascular and Metabolic Medicine & Sciences, King's BHF Centre of Research Excellence, Faculty of Life Sciences & Medicine, King's College London, UK; Department of Physiology, Anatomy and Genetics, Medical Sciences Division, University of Oxford, Oxford, UK
| | - Miia Kivipelto
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden; Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - Henrik Zetterberg
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK; UK Dementia Research Institute at UCL, London, UK; Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong; Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Nicholas J Ashton
- Centre for Age-Related Medicine (SESAM), Stavanger University Hospital, Stavanger, Norway; Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Clive Ballard
- University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Dag Aarsland
- Centre for Age-Related Medicine (SESAM), Stavanger University Hospital, Stavanger, Norway; Centre for Healthy Brain Ageing, Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, London, UK
| |
Collapse
|
5
|
Zagórska-Dziok M, Mokrzyńska A, Ziemlewska A, Nizioł-Łukaszewska Z, Sowa I, Feldo M, Wójciak M. Assessment of the Antioxidant and Photoprotective Properties of Cornus mas L. Extracts on HDF, HaCaT and A375 Cells Exposed to UVA Radiation. Int J Mol Sci 2024; 25:10993. [PMID: 39456776 PMCID: PMC11507244 DOI: 10.3390/ijms252010993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/09/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024] Open
Abstract
The influence of UV radiation on skin discoloration, skin aging and the development of skin cancer is widely known. As a part of this study, the effect of extracts from three varieties of Cornus mas L. (C. mas L.) on skin cells exposed to UVA radiation was assessed. The analyses were performed on both normal and cancer skin cells. For this purpose, the potential photoprotective effects of the obtained extracts (aqueous and ethanolic) was assessed by performing two cytotoxicity tests (Alamar blue and Neutral red). Additionally, the antioxidant capacity was compared using three different assays. The 2',7'-dichlorodihydrofluorescein diacetate (H2DCFDA) probe was used to evaluate the intracellular level of free radicals in cells exposed to the simultaneous action of UVA radiation and dogwood extracts. Additionally, the ability to inhibit excessive pigmentation was determined by assessing the inhibition of melanin formation and tyrosinase activity. The obtained results confirmed the strong antioxidant properties of dogwood extracts and their photoprotective effect on normal skin cells. The ability to inhibit the viability of melanoma cells was also observed. Additionally, a reduction in oxidative stress in skin cells exposed to UVA radiation and a strong inhibition of melanin formation and tyrosinase activity have been demonstrated. This study shows that dogwood extract could be a valuable cosmetic raw material that can play both a photoprotective and antihyperpigmentation role in cosmetic preparations.
Collapse
Affiliation(s)
- Martyna Zagórska-Dziok
- Department of Technology of Cosmetic and Pharmaceutical Products, Medical College, University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225 Rzeszow, Poland; (M.Z.-D.); (A.M.); (A.Z.); (Z.N.-Ł.)
| | - Agnieszka Mokrzyńska
- Department of Technology of Cosmetic and Pharmaceutical Products, Medical College, University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225 Rzeszow, Poland; (M.Z.-D.); (A.M.); (A.Z.); (Z.N.-Ł.)
| | - Aleksandra Ziemlewska
- Department of Technology of Cosmetic and Pharmaceutical Products, Medical College, University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225 Rzeszow, Poland; (M.Z.-D.); (A.M.); (A.Z.); (Z.N.-Ł.)
| | - Zofia Nizioł-Łukaszewska
- Department of Technology of Cosmetic and Pharmaceutical Products, Medical College, University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225 Rzeszow, Poland; (M.Z.-D.); (A.M.); (A.Z.); (Z.N.-Ł.)
| | - Ireneusz Sowa
- Department of Analytical Chemistry, Medical University of Lublin, Aleje Raclawickie 1, 20-059 Lublin, Poland;
| | - Marcin Feldo
- Department of Vascular Surgery, Medical University of Lublin, Staszica 11 St., 20-081 Lublin, Poland;
| | - Magdalena Wójciak
- Department of Analytical Chemistry, Medical University of Lublin, Aleje Raclawickie 1, 20-059 Lublin, Poland;
| |
Collapse
|
6
|
Yang C, Zhang S, John Martin JJ, Fu X, Li X, Cheng S, Cao H, Liu X. An in-depth study of anthocyanin synthesis in the exocarp of virescens and nigrescens oil palm: metabolomic and transcriptomic analysis. BMC PLANT BIOLOGY 2024; 24:910. [PMID: 39349997 PMCID: PMC11441260 DOI: 10.1186/s12870-024-05607-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 09/19/2024] [Indexed: 10/04/2024]
Abstract
BACKGROUND Oil palm (Elaeis guineensis Jacq.) is a very important tropical woody oil plant with high commercial and ornamental value. The exocarp of the oil palm fruit is rich in anthocyanosides and proanthocyanidins, which not only give it a bright colour, but also mark the maturity of the fruit. The study of the dynamic change pattern of anthocyanoside content and important anthocyanoside metabolism-related regulatory genes during oil palm ripening is conducive to the improvement of the ornamental value of oil palm and the determination of the optimal harvesting period of the fruits. METHODS We analyzed the virescens oil palm (AS) and nigrescens oil palm (AT) at 95 days (AS1, AT1), 125 days (AS2, AT2) and 185 days (AS3, AT3) after pollination were used as experimental materials for determining the changes in the total amount of anthocyanins as well as their metabolomics and transcriptomics studies by using the LC-MS/MS technique and RNA-Seq technique. RESULT The results showed that the total anthocyanin content decreased significantly from AS1 (119 µg/g) to AS3 (23 µg/g), and from AT1 (1302 µg/g) to AT3 (170 µg/g), indicating a clear decreasing trend during fruit development. Among them, the higher flavonoids in AS and AT included anthocyanins such as peonidin-3-O-rutinoside (H35), pelargonidin-3-O-rutinoside (H21), and cyanidin-3-O-glucoside (H7), as well as condensed tannins such as procyanidin B2 (H47), procyanidin C1 (H49), and procyanidin B3 (H48). Notably, nine genes involved in the anthocyanin biosynthetic pathway exhibited up-regulated expression during the pre-development stage of oil palm fruits, particularly during the AS1 and AT1 periods. These genes include: Chalcone synthase (CHS; LOC105036364); Flavanone 3-hydroxylase (F3H; LOC105054663); Dihydroflavonol 4-reductase (DFR; LOC105040724, LOC105048473); Anthocyanidin synthase (ANS; LOC105035842), UDP-glucose: flavonoid 3-O-glucosyltransferase (UFGT; LOC105039612); Flavonoid 3',5'-hydroxylase (F3'5'H; LOC105036086, LOC105044124, LOC105045493). In contrast, five genes demonstrated up-regulated expression as the fruits developed, specifically during the AS3 and AT3 periods. These genes include: Chalcone synthase (CHS; LOC105036921, LOC105035716); Chalcone isomerase (CHI; LOC105045978); UDP-glucose: flavonoid 3-O-glucosyltransferase (UFGT; LOC105046326); Flavonoid 3'-hydroxylase (F3'H; LOC105036086). CONCLUSION Most of differentially expressed genes exhibited up-regulation during the early stages of fruit development, which may contribute to the elevated anthocyanin content observed in oil palm fruits of both types during the pre-developmental period. Furthermore, the expression levels of most genes were found to be higher in the AT fruit type compared to the AS fruit type, suggesting that the differential expression of these genes may be a key factor underlying the differences in anthocyanoside production in the exocarp of oil palm fruits from these two fruit types. The findings of this study provide a theoretical foundation for the identification and characterization of genes involved in anthocyanin synthesis in oil palm fruits, as well as the development of novel variations using molecular biology approaches.
Collapse
Affiliation(s)
- Cheng Yang
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, National Key Laboratory for Tropical Crop Breeding, Wenchang, 571339, China
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430000, China
| | - Shuyan Zhang
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, National Key Laboratory for Tropical Crop Breeding, Wenchang, 571339, China
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430000, China
| | - Jerome Jeyakumar John Martin
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, National Key Laboratory for Tropical Crop Breeding, Wenchang, 571339, China
- National Key Laboratory for Tropical Crop Breeding, Haikou, 571101, China
| | - Xiaopeng Fu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430000, China
| | - Xinyu Li
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, National Key Laboratory for Tropical Crop Breeding, Wenchang, 571339, China
- National Key Laboratory for Tropical Crop Breeding, Haikou, 571101, China
| | - Shuanghong Cheng
- College of Tropical Crops, Yunnan Agricultural University, Pu'er, Kunming, 665000, China
| | - Hongxing Cao
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, National Key Laboratory for Tropical Crop Breeding, Wenchang, 571339, China.
- National Key Laboratory for Tropical Crop Breeding, Haikou, 571101, China.
| | - Xiaoyu Liu
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, National Key Laboratory for Tropical Crop Breeding, Wenchang, 571339, China.
- National Key Laboratory for Tropical Crop Breeding, Haikou, 571101, China.
| |
Collapse
|
7
|
do Rosario V, Lorzadeh E, Brodaty H, Anstey KJ, Chan K, Roodenrys S, Kent K, Bliokas V, Phillipson L, Weston-Green K, Francois ME, Jiang X, George J, Potter J, Batterham MJ, Charlton K. Assessing the effect of anthocyanins through diet and supplementation on cognitive function in older adults at risk for dementia: protocol for a randomised controlled trial. BMJ Open 2024; 14:e086435. [PMID: 39260845 PMCID: PMC11409387 DOI: 10.1136/bmjopen-2024-086435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 08/27/2024] [Indexed: 09/13/2024] Open
Abstract
INTRODUCTION Promising evidence is emerging for the procognitive, anti-inflammatory and neuroprotective properties of dietary flavonoids, particularly anthocyanins that provide red, purple and blue plant pigments. METHODS AND ANALYSIS The 'Food for Thought' study is a multicentre, 6-month randomised, parallel 3-arm clinical trial. Its primary aim is to investigate whether anthocyanin consumption, either through diet or supplementation, can prevent memory loss progression and improve inflammatory and cardiovascular health in older adults at risk for dementia. Eligible participants will include those aged 60-85 years with a diagnosis of amnestic mild cognitive impairment or with a self-referral of memory concerns and scoring ≤13 on the Memory Index Score within the Telephone Montreal Cognitive Assessment screening test. Participants will be randomised to one of three arms: High anthocyanin ('purple foods') diet (aiming for a target of 250 mg anthocyanins/day); freeze-dried product derived from blackcurrants (250 mg anthocyanins/day); or control (coloured maltose powder). The primary outcome is auditory anterograde memory functioning assessed by the Buschke and Grober Free and Cued Selective Reminding Test-Immediate Recall. Secondary outcomes are additional cognitive functions including processing speed, working memory, aspects of executive functioning (attentional shifting and word generativity) and premorbid estimate as well as subjective memory problems and self-reported depression symptoms. Additional secondary outcomes are blood pressure, inflammatory biomarkers, brain-derived neurotrophic factor, fatty acid profile, apolipoprotein E and polyphenol metabolites, gut microbiota composition and function and vascular and microvascular endothelial function tests. Repeated measures analysis of variance and/or mixed linear modelling will evaluate changes over time, with the inclusion of covariates. ETHICS AND DISSEMINATION Ethics approval has been obtained from the Greater Western Human Research Ethics Committee (2021/ETH12083). A Consumer Advisory Group was established to guide and review the protocol and dissemination strategy. The results of this trial are intended to be published in a peer-reviewed journal. TRIAL SPONSOR National Health and Medical Research Centre Dementia Collaborative Research Centre.Start date of clinical trial: 02 September 2022.Expected end date: 11 October 2024. TRIAL REGISTRATION NUMBER ACTRN12622000065796.
Collapse
Affiliation(s)
- Vinicius do Rosario
- School of Medical, Indigenous and Health Sciences, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, New South Wales, Australia
| | - Elnaz Lorzadeh
- School of Medical, Indigenous and Health Sciences, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, New South Wales, Australia
| | - Henry Brodaty
- Centre for Healthy Brain Ageing, School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, New South Wales, Australia
| | - Kaarin J Anstey
- Neuroscience Research Australia, University of New South Wales, Sydney, New South Wales, Australia
- UNSW Ageing Futures Institute, Sydney, New South Wales, Australia
| | - Karina Chan
- Centre for Healthy Brain Ageing, School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, New South Wales, Australia
| | - Steven Roodenrys
- School of Psychology, Faculty of Arts and Social Science, University of Wollongong, Wollongong, New South Wales, Australia
| | - Katherine Kent
- School of Medical, Indigenous and Health Sciences, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, New South Wales, Australia
- School of Health Sciences, Western Sydney University, Sydney, New South Wales, Australia
| | - Vida Bliokas
- School of Psychology, Faculty of Arts and Social Science, University of Wollongong, Wollongong, New South Wales, Australia
| | - Lyn Phillipson
- School of Health and Society, Faculty of Arts and Social Science, University of Wollongong, Wollongong, New South Wales, Australia
| | - Katrina Weston-Green
- School of Medical, Indigenous and Health Sciences, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, New South Wales, Australia
- Molecular Horizons Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, New South Wales, Australia
| | - Monique E Francois
- School of Medical, Indigenous and Health Sciences, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, New South Wales, Australia
| | - Xiaotao Jiang
- Microbiome Research Centre (MRC), University of New South Wales, Sydney, New South Wales, Australia
| | - Jenson George
- Department of Agriculture and Fisheries, Queensland Government, Brisbane, Queensland, Australia
| | - Jan Potter
- Division of Aged Care, Rehabilitation and Palliative Care, Illawarra Shoalhaven Local Health District, Wollongong, New South Wales, Australia
| | - Marijka J Batterham
- National Institute for Applied Statistical Research Australia and the Statistical Consulting Centre, School of Mathematics and Applied Statistics, University of Wollongong, Wollongong, New South Wales, Australia
| | - Karen Charlton
- School of Medical, Indigenous and Health Sciences, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, New South Wales, Australia
| |
Collapse
|
8
|
Ellis LR, Boesch C, Dye L. Effects of Anthocyanins on Cognition and Vascular Function: A Systematic Review. Mol Nutr Food Res 2024; 68:e2300502. [PMID: 38961529 DOI: 10.1002/mnfr.202300502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 03/06/2024] [Indexed: 07/05/2024]
Abstract
SCOPE Good vascular function is crucial for cerebral blood flow and cognitive performance. Diets high in anthocyanins have been shown to improve vascular function and are associated with improvements in cognition. This systematic review investigates randomized controlled trials examining the impact of anthocyanin intake on both cognition and vascular function. METHODS AND RESULTS Of the 1486 studies identified through searching Ovid Medline and AMED, PsychInfo, Web of Science, and Scopus, 20 studies are selected which measured cognitive and vascular function. Overall, positive effects on verbal and working memory are observed, which are supported by studies using functional magnetic resonance imaging to demonstrate increased blood flow in brain regions related to these cognitive domains. However, effects of anthocyanins on blood pressure and markers of endothelial function are inconsistent. CONCLUSION This systematic review provides evidence for a positive effect of anthocyanins on cognition and insight into the relevance of endothelial function. Anthocyanins are widely available and can be easily consumed in a range of different fruits, vegetables, and other products. Further studies should establish the optimal daily intake of anthocyanins for cardiovascular and cognitive health.
Collapse
Affiliation(s)
- Lucy R Ellis
- School of Psychology, Faculty of Medicine and Health, University of Leeds, Leeds, LS2 9JT, UK
| | - Christine Boesch
- School of Food Science and Nutrition, Faculty of Environment, University of Leeds, Leeds, LS2 9JT, UK
| | - Louise Dye
- School of Psychology, Faculty of Medicine and Health, University of Leeds, Leeds, LS2 9JT, UK
- School of Food Science and Nutrition, Faculty of Environment, University of Leeds, Leeds, LS2 9JT, UK
- Institute of Sustainable Food, University of Sheffield, Sheffield, S10 2TN, UK
| |
Collapse
|
9
|
Liang A, Leonard W, Beasley JT, Fang Z, Zhang P, Ranadheera CS. Anthocyanins-gut microbiota-health axis: A review. Crit Rev Food Sci Nutr 2024; 64:7563-7588. [PMID: 36927343 DOI: 10.1080/10408398.2023.2187212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Anthocyanins are a subclass of flavonoids responsible for color in some fruits and vegetables with potent antioxidative capacity. During digestion, a larger proportion of dietary anthocyanins remains unabsorbed and reach the large intestine where they interact with the gut microbiota. Anthocyanins can modulate gut microbial populations to improve diversity and the proportion of beneficial populations, leading to alterations in short chain fatty acid and bile acid production. Some anthocyanins can be degraded into colonic metabolites, such as phenolic acids, which accumulate in the body and regulate a range of biological activities. Here we provide an overview of the effects of dietary anthocyanin consumption on gut microbial interactions, metabolism, and composition. Progression of chronic diseases has been strongly associated with imbalances in gut microbial populations. We therefore focus on the role of the gut microbiota as the 'mediator' that facilitates the therapeutic potential of anthocyanins against various chronic diseases, including obesity, type II diabetes, cardiovascular disease, neurodegenerative disease, inflammatory bowel disease, cancer, fatty liver disease, chronic kidney disease and osteoarthritis.
Collapse
Affiliation(s)
- Anqi Liang
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria, Australia
| | - William Leonard
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria, Australia
| | - Jesse T Beasley
- School of BioSciences, Faculty of Science, University of Melbourne, Parkville, Victoria, Australia
| | - Zhongxiang Fang
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria, Australia
| | - Pangzhen Zhang
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria, Australia
| | - Chaminda Senaka Ranadheera
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
10
|
Zima K, Khaidakov B, Banaszkiewicz L, Lemke K, Kowalczyk PK. Exploring the Potential of Ribes nigrum L., Aronia melanocarpa (Michx.) Elliott, and Sambucus nigra L. Fruit Polyphenol-Rich Composition and Metformin Synergy in Type 2 Diabetes Management. J Diabetes Res 2024; 2024:1092462. [PMID: 38919261 PMCID: PMC11199064 DOI: 10.1155/2024/1092462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/04/2024] [Accepted: 04/30/2024] [Indexed: 06/27/2024] Open
Abstract
Type 2 diabetes, characterized by insulin resistance and impaired glucose homeostasis, is commonly managed through lifestyle interventions and medications such as metformin. Although metformin is generally well-tolerated, it may cause gastrointestinal adverse effects and, in rare cases, precipitate lactic acidosis, necessitating cautious use in individuals with renal dysfunction. Additionally, concerns regarding its impact on hepatic function have led to its discontinuation in cirrhotic patients. This study explores the potential synergistic benefits of a polyphenol-rich blend containing black currant, chokeberry, and black elderberry extracts alongside metformin in managing type 2 diabetes. In vitro results highlighted distinct effects of AMPK pathway modulation, showcasing reductions in cholesterol and triglyceride levels alongside a notable enhancement in glucose uptake. The blend, when combined with metformin, significantly reduced insulin levels and fasting glucose concentrations in an in vivo model. Furthermore, hepatic analyses unveiled a modulation in cellular pathways, suggesting a potential influence on lipid metabolism, attenuation of inflammatory pathways, a decrease in cellular stress response, and antioxidant defense mechanisms, collectively implying a potential reduction in liver fat accumulation. The findings suggest a potential complementary role of polyphenols in enhancing the efficacy of metformin, possibly allowing for reduced metformin dosage and mitigating its side effects. Further clinical studies are warranted to validate these findings and establish the safety and efficacy of this nutraceutical approach in managing type 2 diabetes.
Collapse
Affiliation(s)
- Katarzyna Zima
- Department of PhysiologyMedical University of GdańskDębinki 1 80-211, Gdańsk, Poland
- R&D DepartmentAronPharma Ltd.Trzy Lipy Street 3 80-172, Gdańsk, Poland
| | - Barbara Khaidakov
- R&D DepartmentAronPharma Ltd.Trzy Lipy Street 3 80-172, Gdańsk, Poland
| | | | - Krzysztof Lemke
- R&D DepartmentAronPharma Ltd.Trzy Lipy Street 3 80-172, Gdańsk, Poland
| | | |
Collapse
|
11
|
Christoudia N, Bekas N, Kanata E, Chatziefsthathiou A, Pettas S, Karagianni K, Da Silva Correia SM, Schmitz M, Zerr I, Tsamesidis I, Xanthopoulos K, Dafou D, Sklaviadis T. Αnti-prion effects of anthocyanins. Redox Biol 2024; 72:103133. [PMID: 38565068 PMCID: PMC10990977 DOI: 10.1016/j.redox.2024.103133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/22/2024] [Accepted: 03/24/2024] [Indexed: 04/04/2024] Open
Abstract
Prion diseases, also known as Transmissible Spongiform Encephalopathies (TSEs), are protein-based neurodegenerative disorders (NDs) affecting humans and animals. They are characterized by the conformational conversion of the normal cellular prion protein, PrPC, into the pathogenic isoform, PrPSc. Prion diseases are invariably fatal and despite ongoing research, no effective prophylactic or therapeutic avenues are currently available. Anthocyanins (ACNs) are unique flavonoid compounds and interest in their use as potential neuroprotective and/or therapeutic agents against NDs, has increased significantly in recent years. Therefore, we investigated the potential anti-oxidant and anti-prion effects of Oenin and Myrtillin, two of the most common anthocyanins, using the most accepted in the field overexpressing PrPScin vitro model and a cell free protein aggregation model. Our results, indicate both anthocyanins as strong anti-oxidant compounds, upregulating the expression of genes involved in the anti-oxidant response, and reducing the levels of Reactive Oxygen Species (ROS), produced due to pathogenic prion infection, through the activation of the Keap1-Nrf2 pathway. Importantly, they showcased remarkable anti-prion potential, as they not only caused the clearance of pathogenic PrPSc aggregates, but also completely inhibited the formation of PrPSc fibrils in the Cerebrospinal Fluid (CSF) of patients with Creutzfeldt-Jakob disease (CJD). Therefore, Oenin and Myrtillin possess pleiotropic effects, suggesting their potential use as promising preventive and/or therapeutic agents in prion diseases and possibly in the spectrum of neurodegenerative proteinopathies.
Collapse
Affiliation(s)
- Nikoletta Christoudia
- Department of Genetics, Development and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, 541 24, Thessaloniki, Greece.
| | - Nikolaos Bekas
- Department of Genetics, Development and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, 541 24, Thessaloniki, Greece.
| | - Eirini Kanata
- Neurodegenerative Diseases Research Group, Department of Pharmacy, School of Health Sciences, Aristotle University of Thessaloniki, 541 24, Thessaloniki, Greece.
| | - Athanasia Chatziefsthathiou
- Department of Genetics, Development and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, 541 24, Thessaloniki, Greece.
| | - Spyros Pettas
- Department of Genetics, Development and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, 541 24, Thessaloniki, Greece; Neurodegenerative Diseases Research Group, Department of Pharmacy, School of Health Sciences, Aristotle University of Thessaloniki, 541 24, Thessaloniki, Greece.
| | - Korina Karagianni
- Department of Genetics, Development and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, 541 24, Thessaloniki, Greece.
| | - Susana Margarida Da Silva Correia
- Department of Neurology, German Center for Neurodegenerative Diseases (DZNE), University Medicine Goettingen, 37075, Goettingen, Germany
| | - Matthias Schmitz
- Department of Neurology, German Center for Neurodegenerative Diseases (DZNE), University Medicine Goettingen, 37075, Goettingen, Germany.
| | - Inga Zerr
- Department of Neurology, German Center for Neurodegenerative Diseases (DZNE), University Medicine Goettingen, 37075, Goettingen, Germany.
| | - Ioannis Tsamesidis
- Department of Prosthodontics, School of Dentistry, Faculty of Health Sciences, Aristotle University of Thessaloniki, 541 24, Thessaloniki, Greece.
| | - Konstantinos Xanthopoulos
- Neurodegenerative Diseases Research Group, Department of Pharmacy, School of Health Sciences, Aristotle University of Thessaloniki, 541 24, Thessaloniki, Greece.
| | - Dimitra Dafou
- Department of Genetics, Development and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, 541 24, Thessaloniki, Greece.
| | - Theodoros Sklaviadis
- Neurodegenerative Diseases Research Group, Department of Pharmacy, School of Health Sciences, Aristotle University of Thessaloniki, 541 24, Thessaloniki, Greece.
| |
Collapse
|
12
|
Yu F, Yu Q, Yin N, Sun G, Peng Y, Zeng Y, Sun Y, Wang X, Zhang H. In Vitro and In Vivo Evaluating Bioaccessibility, Bioavailability, and Antioxidant Activities of Butterfly Pea Flower Containing Bioactive Constitutes. Foods 2024; 13:1485. [PMID: 38790785 PMCID: PMC11120612 DOI: 10.3390/foods13101485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/27/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
The antioxidant properties of butterfly pea flower (BF), which is rich in natural anthocyanins, have garnered significant attention. The impact of digestion and metabolism on BF extracts and evaluate their subsequent antioxidant activities in vivo were explored in the present study. After in vitro digestion, 42.03 ± 2.74% of total anthocyanins from BF extracts remained, indicating a negative influence of the digestion process on the bioaccessibility of phenolic compounds derived from BF. Furthermore, UPLC-LTQ-Orbitrap-MS2 analysis identified a total of four prototypes and twenty-seven metabolites in rat plasma or urine samples following the intake of BF extracts. The kinetics of key metabolites including delphinidin 3-glucoside (D3G), cyanidin-3-glucoside (C3G), and 4-hydroxybenzoic acid were subsequently determined in blood, and the Cmax values were 69.034 ± 8.05 nM and 51.65 ± 3.205 nM. These key metabolites derived from BF anthocyanins, including C3G and D3G, and flavonoid quercetin exhibited main antioxidant attributes that improved the plasmic and hepatic activities of various antioxidant enzymes and the total antioxidant capacity (T-AOC) and malondialdehyde (MDA) in a D-galactose-induced rat model. These findings provide insights into the bioaccessibility and bioavailability of bioactive constitutes derived from BF extracts, which are crucial for determining the actual efficacy of BF as well as developing functional foods based on BF.
Collapse
Affiliation(s)
- Fengyao Yu
- Department of Food Nutrition and Safety, College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang 330004, China; (F.Y.); (Q.Y.); (N.Y.); (G.S.); (Y.Z.)
| | - Qinqin Yu
- Department of Food Nutrition and Safety, College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang 330004, China; (F.Y.); (Q.Y.); (N.Y.); (G.S.); (Y.Z.)
| | - Ning Yin
- Department of Food Nutrition and Safety, College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang 330004, China; (F.Y.); (Q.Y.); (N.Y.); (G.S.); (Y.Z.)
| | - Genlin Sun
- Department of Food Nutrition and Safety, College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang 330004, China; (F.Y.); (Q.Y.); (N.Y.); (G.S.); (Y.Z.)
| | - You Peng
- Jiangxi Province Engineering Research Center of Ecological Chemical Industry, Jiujiang University, Jiujiang 332005, China;
| | - Yan Zeng
- Department of Food Nutrition and Safety, College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang 330004, China; (F.Y.); (Q.Y.); (N.Y.); (G.S.); (Y.Z.)
| | - Yong Sun
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China;
| | - Xiaoya Wang
- Chemical Biology Center, Lishui Institute of Agriculture and Forestry Sciences, Lishui 323000, China
| | - Hua Zhang
- Department of Food Nutrition and Safety, College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang 330004, China; (F.Y.); (Q.Y.); (N.Y.); (G.S.); (Y.Z.)
| |
Collapse
|
13
|
Kumkum R, Aston-Mourney K, McNeill BA, Hernández D, Rivera LR. Bioavailability of Anthocyanins: Whole Foods versus Extracts. Nutrients 2024; 16:1403. [PMID: 38794640 PMCID: PMC11123854 DOI: 10.3390/nu16101403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/02/2024] [Accepted: 05/04/2024] [Indexed: 05/26/2024] Open
Abstract
Anthocyanins have gained significant popularity in recent years for their diverse health benefits, yet their limited bioavailability poses a challenge. To address this concern, technologies have emerged to enhance anthocyanin concentration, often isolating these compounds from other food constituents. However, the extent to which isolated anthocyanins confer health benefits compared to their whole-food counterparts remains unclear. This review explores the current literature on anthocyanin bioavailability and metabolism in the body, with a focus on comparing bioavailability when consumed as extracts versus whole foods rich in anthocyanins, drawing from in vitro, in vivo, and human clinical studies. While direct comparisons between anthocyanin bioavailability in whole foods versus isolates are scarce, prevailing evidence favours whole-food consumption over anthocyanin extracts. Further clinical investigations, preferably with direct comparisons, are needed to validate these findings and elucidate the nuanced interplay between anthocyanins and food matrices, informing future research directions and practical recommendations.
Collapse
Affiliation(s)
| | | | | | | | - Leni R. Rivera
- Institute for Innovation in Physical and Mental Health and Clinical Translation (IMPACT), Deakin University, Geelong 3220, Australia; (R.K.); (K.A.-M.); (B.A.M.); (D.H.)
| |
Collapse
|
14
|
Mohammadi N, Farrell M, O'Sullivan L, Langan A, Franchin M, Azevedo L, Granato D. Effectiveness of anthocyanin-containing foods and nutraceuticals in mitigating oxidative stress, inflammation, and cardiovascular health-related biomarkers: a systematic review of animal and human interventions. Food Funct 2024; 15:3274-3299. [PMID: 38482946 DOI: 10.1039/d3fo04579j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Cardiovascular diseases (CVDs) are a group of chronic health disorders prevalent worldwide that claim millions of lives yearly. Inflammation and oxidative stress are intricately associated with myocardial tissue damage, endothelial dysfunction, and increased odds of heart failure. Thus, dietary strategies aimed at decreasing the odds of CVDs are paramount. In this regard, the consumption of anthocyanins, natural pigments found in edible flowers, fruits, and vegetables, has attracted attention due to their potential to promote cardiovascular health. The main mechanisms of action linked with their protective effects on antioxidant and anti-inflammatory activities, serum lipid profile modulation, and other cardiovascular health parameters are explained and exemplified. However, little is known about the dose-dependency nature of the effects, which anthocyanin has better efficiency, and whether anthocyanin-containing foods display better in vivo efficacy than nutraceuticals (i.e., concentrated extracts containing higher levels of anthocyanins than foods). Thus, this systematic review focused on determining the effects of anthocyanin-containing foods and nutraceuticals on biomarkers associated with CVDs using animal studies and human interventions supported by in vitro mechanistic insights. Overall, the results showed that the regular consumption of anthocyanin-containing foods and nutraceuticals improved vascular function, lipid profile, and antioxidant and anti-inflammatory effects. The daily dosage, the participants' health status, and the duration of the intervention also significantly influenced the results.
Collapse
Affiliation(s)
- Nima Mohammadi
- University of Limerick, School of Natural Sciences, Faculty of Science and Engineering, Department of Biological Sciences, Bioactivity and Applications Lab, V94 T9PX Limerick, Ireland.
| | - Michelle Farrell
- University of Limerick, School of Natural Sciences, Faculty of Science and Engineering, Department of Biological Sciences, Bioactivity and Applications Lab, V94 T9PX Limerick, Ireland.
| | - Laura O'Sullivan
- University of Limerick, School of Natural Sciences, Faculty of Science and Engineering, Department of Biological Sciences, Bioactivity and Applications Lab, V94 T9PX Limerick, Ireland.
| | - Andrea Langan
- University of Limerick, School of Natural Sciences, Faculty of Science and Engineering, Department of Biological Sciences, Bioactivity and Applications Lab, V94 T9PX Limerick, Ireland.
| | - Marcelo Franchin
- University of Limerick, School of Natural Sciences, Faculty of Science and Engineering, Department of Biological Sciences, Bioactivity and Applications Lab, V94 T9PX Limerick, Ireland.
| | - Luciana Azevedo
- Federal University of Alfenas, In Vitro and In Vivo Nutritional and Toxicological Analysis Laboratory, Av. Jovino Fernandes Sales, 2600, Bairro Santa Clara - CEP 37133-840, Alfenas, Minas Gerais, Brazil
| | - Daniel Granato
- University of Limerick, School of Natural Sciences, Faculty of Science and Engineering, Department of Biological Sciences, Bioactivity and Applications Lab, V94 T9PX Limerick, Ireland.
- Health Research Institute, University of Limerick, V94 T9PX Limerick, Ireland
| |
Collapse
|
15
|
Li Y, Ma Q, Jiang C, Wang W, Song L, Wang R, Sun J. Effects of purple potato anthocyanins on the in vitro digestive properties of starches of different crystalline types. Int J Biol Macromol 2024; 265:131052. [PMID: 38522698 DOI: 10.1016/j.ijbiomac.2024.131052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 03/07/2024] [Accepted: 03/08/2024] [Indexed: 03/26/2024]
Abstract
This study explored the potential of purple potato anthocyanins (PPAs) in regulating the digestive properties of starches of various crystalline types. In vitro digestion experiments indicated that PPAs inhibit the hydrolysis of rice starch (A-type) better than that of garden pea starch (C-type) and potato starch (B-type). Further structural assessment of different PPA-starch systems showed that PPAs and starch likely interact through non-covalent bonds, resulting in structural changes. Microstructural changes observed in the starches were consistent with the in vitro digestion results, and the chain length and proportions of short/long chains in amylopectin molecules affected the binding strengths and interaction modes between PPAs and starch. Hence, the three starches differed in their PPA loading efficiency and digestibility. These discoveries contribute to a deeper understanding of the mechanisms underlying the inhibition of starch digestibility by PPAs. They can aid the formulation of value-added products and low-glycemic-index foods.
Collapse
Affiliation(s)
- Yuwen Li
- College of Food Science and Technology, Hebei Agricultural University, 289th Lingyusi Street, Lianchi District, Baoding 071000, China
| | - Qianyun Ma
- College of Food Science and Technology, Hebei Agricultural University, 289th Lingyusi Street, Lianchi District, Baoding 071000, China.
| | - Chengbin Jiang
- College of Food Science and Technology, Hebei Agricultural University, 289th Lingyusi Street, Lianchi District, Baoding 071000, China
| | - Wenxiu Wang
- College of Food Science and Technology, Hebei Agricultural University, 289th Lingyusi Street, Lianchi District, Baoding 071000, China
| | - Lijuan Song
- Hebei Jinxu Noodle Industry Co, Xingtai 055350, China
| | - Rui Wang
- Hebei Potato Processing Technology Innovation Center, Hebei 076576, China; Zhangjiakou Hongji Agricultural Science and Technology Development Co, Hebei, China
| | - Jianfeng Sun
- College of Food Science and Technology, Hebei Agricultural University, 289th Lingyusi Street, Lianchi District, Baoding 071000, China; Hebei Potato Processing Technology Innovation Center, Hebei 076576, China; Sino-US and Sino-Japan Joint Center of Food Science and Technology, Baoding, Hebei, China.
| |
Collapse
|
16
|
Peniche-Pavía HA, González-Rodríguez T, Tiessen A, García-Lara S, Winkler R. Backcrossing Modulates the Metabolic Profiles of Anthocyanin-Pigmented 'Vitamaize' Lines Derived from Elite Maize Lines. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2024; 79:202-208. [PMID: 38334939 PMCID: PMC10891256 DOI: 10.1007/s11130-024-01155-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/31/2024] [Indexed: 02/10/2024]
Abstract
Vitamaize lines (VMLs) were created by backcrossing the pigmented aleurone trait into Centro Internacional de Mejoramiento de Maíz y Trigo (CIMMYT) maize lines (CMLs). This study evaluates metabolic differences between the VMLs and their original CMLs. Direct infusion mass spectrometry (DIMS) analyses, carotenoid profiling, total anthocyanins content (TAC) determination, and biochemical evaluation of the quality protein maize (QPM) endosperm trait allowed a comprehensive chemical characterization of the maize lines. DIMS data indicate higher hexoses and trigonelline content for most VMLs; the carotenoid profile revealed a decrease in β-cryptoxanthin to less than half of the original parent content for two VMLs but an augmentation for one VML. The pigmented aleurone VMLs did not inherit the complex QPM endosperm trait of the QPM CMLs. Except for anthocyanin accumulation, no other metabolites were consistently modified across all the backcross-generated maize lines with a pigmented aleurone trait. These findings suggest using genetic or metabolic markers rather than morphological or visual traits for future breeding programs.
Collapse
Affiliation(s)
- Héctor Arturo Peniche-Pavía
- Cinvestav Unidad Irapuato and UGA-Langebio Irapuato, Km. 9.6 Libramiento Norte Carr. Irapuato-León, 36824, Irapuato, Gto., Mexico
- Cinvestav Unidad Mérida, Department of Marine Resources, 97310, Mérida, Yuc., Mexico
| | - Tzitziki González-Rodríguez
- Cinvestav Unidad Irapuato and UGA-Langebio Irapuato, Km. 9.6 Libramiento Norte Carr. Irapuato-León, 36824, Irapuato, Gto., Mexico
- Tecnológico de Monterrey, School of Engineering and Sciences, EIC, Ave. Eugenio Garza Sada 2501, 64849, Monterrey, NL, Mexico
| | - Axel Tiessen
- Cinvestav Unidad Irapuato and UGA-Langebio Irapuato, Km. 9.6 Libramiento Norte Carr. Irapuato-León, 36824, Irapuato, Gto., Mexico
| | - Silvero García-Lara
- Tecnológico de Monterrey, School of Engineering and Sciences, EIC, Ave. Eugenio Garza Sada 2501, 64849, Monterrey, NL, Mexico
| | - Robert Winkler
- Cinvestav Unidad Irapuato and UGA-Langebio Irapuato, Km. 9.6 Libramiento Norte Carr. Irapuato-León, 36824, Irapuato, Gto., Mexico.
| |
Collapse
|
17
|
Wang FH, Tan HX, Hu JH, Duan XY, Bai WT, Wang XB, Wang BL, Su Y, Hu JP. Inhibitory interaction of flavonoids with organic anion transporter 3 and their structure-activity relationships for predicting nephroprotective effects. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2024; 26:353-371. [PMID: 37589480 DOI: 10.1080/10286020.2023.2240722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 07/20/2023] [Indexed: 08/18/2023]
Abstract
The organic anion transporter 3 (OAT3), an important renal uptake transporter, is associated with drug-induced acute kidney injury (AKI). Screening and identifying potent OAT3 inhibitors with little toxicity in natural products, especially flavonoids, in reducing OAT3-mediated AKI is of great value. The five strongest OAT3 inhibitors from the 97 flavonoids markedly decreased aristolochic acid I-induced cytotoxicity and alleviated methotrexate-induced nephrotoxicity. The pharmacophore model clarified hydrogen bond acceptors and hydrophobic groups are the critical pharmacophores. These findings would provide valuable information in predicting the potential risks of flavonoid-containing food/herb-drug interactions and optimizing flavonoid structure to alleviate OAT3-related AKI.
Collapse
Affiliation(s)
- Feng-He Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD study, Beijing Key Laboratory of Active Substances Discovery and Drug Ability Evaluation, Department of Drug Metabolism, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Hui-Xin Tan
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD study, Beijing Key Laboratory of Active Substances Discovery and Drug Ability Evaluation, Department of Drug Metabolism, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Jia-Huan Hu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD study, Beijing Key Laboratory of Active Substances Discovery and Drug Ability Evaluation, Department of Drug Metabolism, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- Department of Health Management and Service, Cangzhou Medical College, Cangzhou 061001, China
| | - Xiao-Yan Duan
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD study, Beijing Key Laboratory of Active Substances Discovery and Drug Ability Evaluation, Department of Drug Metabolism, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Wan-Ting Bai
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD study, Beijing Key Laboratory of Active Substances Discovery and Drug Ability Evaluation, Department of Drug Metabolism, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Xin-Bo Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD study, Beijing Key Laboratory of Active Substances Discovery and Drug Ability Evaluation, Department of Drug Metabolism, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Bao-Lian Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD study, Beijing Key Laboratory of Active Substances Discovery and Drug Ability Evaluation, Department of Drug Metabolism, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Yan Su
- Department of Health Management and Service, Cangzhou Medical College, Cangzhou 061001, China
| | - Jin-Ping Hu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD study, Beijing Key Laboratory of Active Substances Discovery and Drug Ability Evaluation, Department of Drug Metabolism, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
18
|
Gunawan M, Boonkanokwong V. Current applications of solid lipid nanoparticles and nanostructured lipid carriers as vehicles in oral delivery systems for antioxidant nutraceuticals: A review. Colloids Surf B Biointerfaces 2024; 233:113608. [PMID: 37925866 DOI: 10.1016/j.colsurfb.2023.113608] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 10/08/2023] [Accepted: 10/18/2023] [Indexed: 11/07/2023]
Abstract
Antioxidant nutraceuticals can be found in several dietary sources and have been utilized for various medical benefits including health promotion, disease prevention, and support for treatment of acute and/or chronic diseases. Nonetheless, there are some limitations in delivering antioxidants via oral administration such as low solubility and permeability, pH and enzyme degradation, and instability of the compounds along the gastrointestinal tract leading to low bioavailability. In order to tackle these challenges, the utilization of lipid nanoparticles has numerous advantages to the escalating delivery system of antioxidants in nutraceuticals across the gastrointestinal tract barrier. Nowadays, several types of lipid nanoparticles can be used in antioxidant nutraceutical delivery systems through the oral route, namely solid lipid nanoparticles and nanostructured lipid carriers. This review article aims to provide notable information on the importance and applications of lipid nanoparticles in antioxidant delivery systems from nutraceuticals by an oral route. The mechanism in enhancing antioxidant compound transport across the gastrointestinal tract can occur by elevating loading capacity, improving chemical and physical stability, and increasing its bioavailability. To date, lipid nanoparticle vehicles have been developed to improve the delivery of antioxidant compounds to enhance bioavailability via oral routes. Lipid nanoparticles have remarkable benefits in delivering antioxidant nutraceuticals via oral administration. Hence, scale-up and commercialization of antioxidant nutraceutical-loaded lipid nanoparticles have been a potential technology in recent years. Subsequently, several vegetable and natural oils with antioxidant activity can also be utilized for nanoparticle formulation lipid components to increase nutraceuticals' antioxidant properties and bioavailability.
Collapse
Affiliation(s)
- Maxius Gunawan
- Graduate Program of Industrial Pharmacy, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Veerakiet Boonkanokwong
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
19
|
SASMANA IGAP, WIHANDANI DM, SADEVA IGKA, HALIM W, AGUSTINI PP, SAMALA L, PRATAMA IGNAS, RACHMAWATI LN, PRASETYO AV, JAYA NKAAS. Antiobesity and antidyslipidemic properties of Clitoria ternatea petals aqueous extract against rats induced by high-fat diet. Turk J Med Sci 2023; 54:401-410. [PMID: 39050394 PMCID: PMC11265884 DOI: 10.55730/1300-0144.5805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/04/2024] [Accepted: 12/18/2023] [Indexed: 07/27/2024] Open
Abstract
Background/aim Obesity is a chronic metabolic disease involving dysregulation of fat metabolism that affects 13% of the world's population. Obesity has been linked to dyslipidemia with a lot of complication, including stroke, chronic kidney disease, fatty liver disease, and so on. One of the natural resources that have several potential effects including anticholesterol, antiobesity, and antidyslipidemia is the butterfly pea (Clitoria ternatea/CT). CT's petal has been found to contain high levels of anthocyanins and tannins that can inhibit the biosynthesis of cholesterol and lipid. This study aims to investigate the antiobesity and antidyslipidemic effects of Clitoria ternatea extract (CTE). Materials and methods The CTE was obtained through the aqueous extract method and then was investigated using spectrophotometry to determine anthocyanin and tannin content. The effect of CTE against a high-fat diet (HFD)-induced rat model was measured by weight and obesity index, lipid profile (total cholesterol (TC), triglycerides (TG), and HDL-C), and histopathology analysis. Results CTE showed total anthocyanin and tannin content of 78.0943 mg/100 g and 1424.90 mg/100 g, respectively. The data analysis also showed significantly different within groups (p < 0,05), especially between HFD and HFD + CT750 groups on the cholesterol (MD 111.12 mg/dL; 95% CI (99.57 to 122.67); p < 0.001), LDL (MD; 76.38 mg/dL; 95% CI (56.77 to 96.00); p < 0.001), VLDL (MD 0.37 mg/dL; 95% CI (0.18 to 0.57); p < 0.001), body weight (MD: 56.20 g; 95% CI (13.89 to 98.51); p = 0.012); and thickening of tunica layer in the thoracic aorta (MD 22.76 μm; 95% CI (20.11 to 24.4); p < 0.001). Conclusion This study shows that Clitoria ternatea petals aqueous extract promotes amelioration of the lipid profile, body weight, and tunica thickness in rats with the high-fat diet.
Collapse
Affiliation(s)
| | - Desak Made WIHANDANI
- Department of Biochemistry, Faculty of Medicine, Udayana University, Denpasar,
Indonesia
| | | | - Wilson HALIM
- Undergraduate Student, Faculty of Medicine, Udayana University, Denpasar,
Indonesia
| | - Putu Putri AGUSTINI
- Undergraduate Student, Faculty of Medicine, Udayana University, Denpasar,
Indonesia
| | - Lalita SAMALA
- Undergraduate Student, Faculty of Medicine, Udayana University, Denpasar,
Indonesia
| | | | | | - Aizar Vesa PRASETYO
- Undergraduate Student, Faculty of Medicine, Udayana University, Denpasar,
Indonesia
| | | |
Collapse
|
20
|
Liu Y, Wang Q, Wu K, Sun Z, Tang Z, Li X, Zhang B. Anthocyanins' effects on diabetes mellitus and islet transplantation. Crit Rev Food Sci Nutr 2023; 63:12102-12125. [PMID: 35822311 DOI: 10.1080/10408398.2022.2098464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The incidence of diabetes mellitus is dramatically increasing every year, causing a huge global burden. Moreover, existing anti-diabetic drugs inevitably bring adverse reactions, and the application of islet transplantation is often limited by the damage caused by oxidative stress after transplantation. Thus, new approaches are needed to combat the growing burden of diabetes mellitus. Anthocyanins are of great nutritional interest and have been documented that have beneficial effects on chronic diseases, including diabetes mellitus. Here, we describe the health effects of anthocyanins on diabetes mellitus and islet transplantation. Epidemiological studies demonstrated that moderate intake of anthocyanins leading to a reduction in risk of diabetes mellitus. Numerous experiments both animal and clinical studies also showed positive effects of anthocyanins on prevention and treatment of diabetes and diabetic complications. These effects of anthocyanins may be related to mechanisms of improving glucose and lipid metabolism and insulin resistance, antioxidant, and anti-inflammatory activities. In addition, damage and function of pancreatic islets after transplantation are also improved by anthocyanins. These findings suggest that daily intake of anthocyanins may not only improve nutritional metabolism in healthy individuals to prevent from diabetes, but also as a supplementary treatment of diabetes mellitus and islet transplantation. Thus, more evidence is needed to better understand the potential health benefits of anthocyanins.
Collapse
Affiliation(s)
- Yang Liu
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| | - Qianwen Wang
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| | - Kangze Wu
- The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhouyi Sun
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| | - Zhe Tang
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| | - Xian Li
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou, China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou, China
| | - Bo Zhang
- The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
21
|
Mao T, Akshit FNU, Mohan MS. Effects of anthocyanin supplementation in diet on glycemic and related cardiovascular biomarkers in patients with type 2 diabetes: a systematic review and meta-analysis of randomized controlled trials. Front Nutr 2023; 10:1199815. [PMID: 37810926 PMCID: PMC10556752 DOI: 10.3389/fnut.2023.1199815] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 09/01/2023] [Indexed: 10/10/2023] Open
Abstract
Purpose This study is the first systematic review and meta-analysis based on RCTs on the effects of anthocyanins on patients with type 2 diabetes mellitus (T2DM) and the effect on T2DM-related cardiovascular disease. Methods RCTs published in English from five electronic databases were evaluated for glycated hemoglobin (HbA1c), fasting blood glucose (FBG), 2-h postprandial blood glucose, fasting insulin, model assessment for insulin resistance, triglycerides (TG), total cholesterol (TC), high-density lipoprotein (HDL) cholesterol, low-density lipoprotein (LDL) cholesterol, systolic blood pressure, and diastolic blood pressure. The quality of the studies was rated (Cochrane Risk of Bias tool) and weighted mean differences were calculated (DerSimonian-Laird model with random effects). Leave-one-out sensitivity, subgroup, and publication bias analyses were conducted. The strength of the evidence was rated according to the GRADE guidelines. Results In all, 13 RCTs were analyzed out of the 239 identified studies, with a duration longer than 4 weeks (703 participants with T2DM). Our findings indicate that a median dose of 320 mg/day anthocyanins, either from fruit extracts or pure supplements, for a median intervention length of 8 weeks significantly reduced HbA1c [Weighted Mean Difference (WMD) -0.31, p = 0.00], FBG (WMD -0.63, p = 0.00), 2-h postprandial glucose (WMD -1.60, p = 0.00), TG (WMD -0.45, p = 0.01), and LDL (WMD -0.26 p = 0.02). However, the effects of anthocyanins on fasting insulin, HOMA-IR, TC, HDL cholesterol, systolic blood pressure, and diastolic blood pressure in patients with T2DM were not statistically significant. Anthocyanins from fruit extracts or powder exhibited a higher reduction of HbA1c compared to pure anthocyanin supplements. Conclusion The significant improvements in glycemic parameters and lipid profile, suggest the benefits of anthocyanins, especially from fruit extract or powder, in the management of T2DM, and their ability to delay the onset of lipid disorder-related diseases such as cardiovascular disease associated with T2DM. The mechanism behind this reduction in glycemic markers could be attributed to the antioxidant and anti-inflammatory activity of anthocyanins. Further research with well-designed RCTs is required to determine the optimal dosage of anthocyanins for the treatment of T2DM and to comprehend the consequences.
Collapse
Affiliation(s)
| | | | - Maneesha S. Mohan
- Alfred Dairy Science Laboratory, Department of Dairy and Food Science, South Dakota State University, Brookings, SD, United States
| |
Collapse
|
22
|
Szekeres R, Priksz D, Kiss R, Romanescu DD, Bombicz M, Varga B, Gesztelyi R, Szilagyi A, Takacs B, Tarjanyi V, Pelles-Tasko B, Forgacs I, Remenyik J, Szilvassy Z, Juhasz B. Therapeutic Aspects of Prunus cerasus Extract in a Rabbit Model of Atherosclerosis-Associated Diastolic Dysfunction. Int J Mol Sci 2023; 24:13253. [PMID: 37686067 PMCID: PMC10488229 DOI: 10.3390/ijms241713253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/21/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023] Open
Abstract
This study evaluates the potential therapeutic effects of anthocyanin-rich Prunus cerasus (sour cherry) extract (PCE) on atherosclerosis-associated cardiac dysfunction, described by the impairment of the NO-PKG (nitric oxide-protein kinase G) pathway and the antioxidant capacity. Initially, a rabbit model of atherosclerotic cardiovascular disease was established by administering a cholesterol-rich diet, enabling the examination of the impact of 9 g/kg PCE on the pre-existing compromised cardiovascular condition. After that, the animals were divided into four groups for 12 weeks: the (1) untreated control group; (2) PCE-administered healthy rabbits; (3) hypercholesterolemic (HC) group kept on an atherogenic diet; and (4) PCE-treated HC group. Dyslipidemia, impaired endothelial function, and signs of diastolic dysfunction were evident in hypercholesterolemic rabbits, accompanied by a reduced cardiac expression of eNOS (endothelial nitric oxide synthase), PKG, and SERCA2a (sarco/endoplasmic reticulum calcium ATPase 2a). Subsequent PCE treatment improved the lipid profile and the cardiac function. Additionally, PCE administration was associated with elevated myocardial levels of eNOS, PKG, and SERCA2a, while no significant changes in the vascular status were observed. Western blot analysis further revealed hypercholesterolemia-induced increase and PCE-associated reduction in heme oxygenase-1 expression. The observed effects of anthocyanins indicate their potential as a valuable addition to the treatment regimen for atherosclerosis-associated cardiac dysfunction.
Collapse
Affiliation(s)
- Reka Szekeres
- Department of Pharmacology and Pharmacotherapy, Faculty of General Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (R.S.); (D.P.); (R.K.); (M.B.); (B.V.); (R.G.); (A.S.); (B.T.); (V.T.); (B.P.-T.); (Z.S.)
| | - Daniel Priksz
- Department of Pharmacology and Pharmacotherapy, Faculty of General Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (R.S.); (D.P.); (R.K.); (M.B.); (B.V.); (R.G.); (A.S.); (B.T.); (V.T.); (B.P.-T.); (Z.S.)
| | - Rita Kiss
- Department of Pharmacology and Pharmacotherapy, Faculty of General Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (R.S.); (D.P.); (R.K.); (M.B.); (B.V.); (R.G.); (A.S.); (B.T.); (V.T.); (B.P.-T.); (Z.S.)
| | - Dana Diana Romanescu
- Department of Diabetology, Pelican Clinical Hospital, 410087 Oradea, Romania;
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410087 Oradea, Romania
| | - Mariann Bombicz
- Department of Pharmacology and Pharmacotherapy, Faculty of General Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (R.S.); (D.P.); (R.K.); (M.B.); (B.V.); (R.G.); (A.S.); (B.T.); (V.T.); (B.P.-T.); (Z.S.)
| | - Balazs Varga
- Department of Pharmacology and Pharmacotherapy, Faculty of General Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (R.S.); (D.P.); (R.K.); (M.B.); (B.V.); (R.G.); (A.S.); (B.T.); (V.T.); (B.P.-T.); (Z.S.)
| | - Rudolf Gesztelyi
- Department of Pharmacology and Pharmacotherapy, Faculty of General Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (R.S.); (D.P.); (R.K.); (M.B.); (B.V.); (R.G.); (A.S.); (B.T.); (V.T.); (B.P.-T.); (Z.S.)
| | - Anna Szilagyi
- Department of Pharmacology and Pharmacotherapy, Faculty of General Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (R.S.); (D.P.); (R.K.); (M.B.); (B.V.); (R.G.); (A.S.); (B.T.); (V.T.); (B.P.-T.); (Z.S.)
| | - Barbara Takacs
- Department of Pharmacology and Pharmacotherapy, Faculty of General Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (R.S.); (D.P.); (R.K.); (M.B.); (B.V.); (R.G.); (A.S.); (B.T.); (V.T.); (B.P.-T.); (Z.S.)
| | - Vera Tarjanyi
- Department of Pharmacology and Pharmacotherapy, Faculty of General Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (R.S.); (D.P.); (R.K.); (M.B.); (B.V.); (R.G.); (A.S.); (B.T.); (V.T.); (B.P.-T.); (Z.S.)
| | - Beata Pelles-Tasko
- Department of Pharmacology and Pharmacotherapy, Faculty of General Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (R.S.); (D.P.); (R.K.); (M.B.); (B.V.); (R.G.); (A.S.); (B.T.); (V.T.); (B.P.-T.); (Z.S.)
| | - Ildiko Forgacs
- Center for Complex Systems and Microbiome Innovations, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, H-4032 Debrecen, Hungary; (I.F.); (J.R.)
| | - Judit Remenyik
- Center for Complex Systems and Microbiome Innovations, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, H-4032 Debrecen, Hungary; (I.F.); (J.R.)
| | - Zoltan Szilvassy
- Department of Pharmacology and Pharmacotherapy, Faculty of General Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (R.S.); (D.P.); (R.K.); (M.B.); (B.V.); (R.G.); (A.S.); (B.T.); (V.T.); (B.P.-T.); (Z.S.)
| | - Bela Juhasz
- Department of Pharmacology and Pharmacotherapy, Faculty of General Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (R.S.); (D.P.); (R.K.); (M.B.); (B.V.); (R.G.); (A.S.); (B.T.); (V.T.); (B.P.-T.); (Z.S.)
| |
Collapse
|
23
|
Xing W, Gao W, Zhao Z, Xu X, Bu H, Su H, Mao G, Chen J. Dietary flavonoids intake contributes to delay biological aging process: analysis from NHANES dataset. J Transl Med 2023; 21:492. [PMID: 37480074 PMCID: PMC10362762 DOI: 10.1186/s12967-023-04321-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 07/01/2023] [Indexed: 07/23/2023] Open
Abstract
BACKGROUND Diet may influence biological aging and the discrepancy (∆age) between a subject's biological age (BA) and chronological age (CA). We aimed to investigate the correlation of dietary flavonoids with the ∆age of organs (heart, kidney, liver) and the whole body. METHOD A total of 3193 United States adults were extracted from the National Health and Nutrition Examination Survey (NHANES) in 2007-2008 and 2017-2018. Dietary flavonoids intake was assessed using 24-h dietary recall method. Multiple linear regression analysis was performed to evaluate the association of dietary flavonoids intake with the ∆age of organs (heart, kidney, liver) and the whole body. BA was computed based on circulating biomarkers, and the resulting ∆age was tested as an outcome in linear regression analysis. RESULTS The ∆age of the whole body, heart, and liver was inversely associated with higher flavonoids intake (the whole body ∆age β = - 0.58, cardiovascular ∆age β = - 0.96, liver ∆age β = - 3.19) after adjustment for variables. However, higher flavonoids intake positively related to renal ∆age (β = 0.40) in participants with chronic kidney disease (CKD). Associations were influenced by population characteristics, such as age, health behavior, or chronic diseases. Anthocyanidins, isoflavones and flavones had the strongest inverse associations between the whole body ∆age and cardiovascular ∆age among all the flavonoids subclasses. CONCLUSION Flavonoids intake positively contributes to delaying the biological aging process, especially in the heart, and liver organ, which may be beneficial for reducing the long-term risk of cardiovascular or liver disease.
Collapse
Affiliation(s)
- Wenmin Xing
- Department of Geriatrics, Zhejiang Provincial Key Laboratory of Geriatrics, Zhejiang Hospital, No. 1229, Gudun Road, 310013, Hangzhou, China
| | - Wenyan Gao
- School of Pharmacy, Hangzhou Medical College, Hangzhou, China
| | - Zhenlei Zhao
- Department of Geriatrics, Zhejiang Provincial Key Laboratory of Geriatrics, Zhejiang Hospital, No. 1229, Gudun Road, 310013, Hangzhou, China
| | - Xiaogang Xu
- Department of Geriatrics, Zhejiang Provincial Key Laboratory of Geriatrics, Zhejiang Hospital, No. 1229, Gudun Road, 310013, Hangzhou, China
| | - Hongyan Bu
- School of Pharmacy, Hangzhou Medical College, Hangzhou, China
| | - Huili Su
- Department of Geriatrics, Zhejiang Provincial Key Laboratory of Geriatrics, Zhejiang Hospital, No. 1229, Gudun Road, 310013, Hangzhou, China.
| | - Genxiang Mao
- Department of Geriatrics, Zhejiang Provincial Key Laboratory of Geriatrics, Zhejiang Hospital, No. 1229, Gudun Road, 310013, Hangzhou, China.
| | - Jun Chen
- Department of Geriatrics, Zhejiang Provincial Key Laboratory of Geriatrics, Zhejiang Hospital, No. 1229, Gudun Road, 310013, Hangzhou, China.
| |
Collapse
|
24
|
Posadino AM, Giordo R, Ramli I, Zayed H, Nasrallah GK, Wehbe Z, Eid AH, Gürer ES, Kennedy JF, Aldahish AA, Calina D, Razis AFA, Modu B, Habtemariam S, Sharifi-Rad J, Pintus G, Cho WC. An updated overview of cyanidins for chemoprevention and cancer therapy. Biomed Pharmacother 2023; 163:114783. [PMID: 37121149 DOI: 10.1016/j.biopha.2023.114783] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 04/16/2023] [Accepted: 04/24/2023] [Indexed: 05/02/2023] Open
Abstract
Anthocyanins are colored polyphenolic compounds that belong to the flavonoids family and are largely present in many vegetables and fruits. They have been used in traditional medicine in many cultures for a long time. The most common and abundant anthocyanins are those presenting an O-glycosylation at C-3 (C ring) of the flavonoid skeleton to form -O-β-glucoside derivatives. The present comprehensive review summarized recent data on the anticancer properties of cyanidings along with natural sources, phytochemical data, traditional medical applications, molecular mechanisms and recent nanostrategies to increase the bioavailability and anticancer effects of cyanidins. For this analysis, in vitro, in vivo and clinical studies published up to the year 2022 were sourced from scientific databases and search engines such as PubMed/Medline, Google scholar, Web of Science, Scopus, Wiley and TRIP database. Cyanidins' antitumor properties are exerted during different stages of carcinogenesis and are based on a wide variety of biological activities. The data gathered and discussed in this review allows for affirming that cyanidins have relevant anticancer activity in vitro, in vivo and clinical studies. Future research should focus on studies that bring new data on improving the bioavailability of anthocyanins and on conducting detailed translational pharmacological studies to accurately establish the effective anticancer dose in humans as well as the correct route of administration.
Collapse
Affiliation(s)
- Anna Maria Posadino
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
| | - Roberta Giordo
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, 505055 Dubai, United Arab Emirates
| | - Iman Ramli
- Département de Biologie Animale, Université des frères Mentouri Constantine 1, 25000 Constantine, Algeria
| | - Hatem Zayed
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
| | - Gheyath K Nasrallah
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
| | - Zena Wehbe
- Vascular Biology Research Centre, Molecular and Clinical Research Institute, University of London, London, United Kingdom
| | - Ali H Eid
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Eda Sönmez Gürer
- Sivas Cumhuriyet University, Faculty of Pharmacy, Department of Pharmacognosy, Sivas, Turkey
| | - John F Kennedy
- Chembiotech Laboratories, Advanced Science and Technology Institute, Kyrewood House, Tenbury Wells, Worcs WR15 8FF, UK
| | - Afaf Ahmed Aldahish
- Department of Pharmacology & Toxicology, College of Pharmacy, King Khalid University, Abha 62529, Asir, Saudi Arabia
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania.
| | - Ahmad Faizal Abdull Razis
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| | - Babagana Modu
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Department of Biochemistry, Faculty of Science, University of Maiduguri, 1069 Maiduguri, Borno state, Nigeria
| | - Solomon Habtemariam
- Pharmacognosy Research & Herbal Analysis Services UK, University of Greenwich, Central Avenue, Chatham-Maritime, Kent ME4 4TB, UK
| | | | - Gianfranco Pintus
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; Department of Medical Laboratory Sciences, College of Health Sciences, and Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates.
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong.
| |
Collapse
|
25
|
Merecz-Sadowska A, Sitarek P, Kowalczyk T, Zajdel K, Jęcek M, Nowak P, Zajdel R. Food Anthocyanins: Malvidin and Its Glycosides as Promising Antioxidant and Anti-Inflammatory Agents with Potential Health Benefits. Nutrients 2023; 15:3016. [PMID: 37447342 DOI: 10.3390/nu15133016] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/23/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Anthocyanins are flavonoid compounds that are abundantly present in fruits and vegetables. These compounds contribute to the color of these foods and offer various health benefits to consumers due to their biological properties. There are more than 1000 types of anthocyanins in nature, all derived from 27 anthocyanidin aglycones that have different glycosylations and acylations. Malvidin is one of the most well-known anthocyanidins. Several studies, including those conducted on cell lines, animals, and humans, have suggested that malvidin and its glycosides possess anti-carcinogenic, diabetes-control, cardiovascular-disease-prevention, and brain-function-improvement properties. These health benefits are primarily attributed to their antioxidant and anti-inflammatory effects, which are influenced by the molecular mechanisms related to the expression and modulation of critical genes. In this article, we review the available information on the biological activity of malvidin and its glycosides concerning their health-promoting effects.
Collapse
Affiliation(s)
- Anna Merecz-Sadowska
- Department of Economic and Medical Informatics, University of Lodz, 90-214 Lodz, Poland
| | - Przemysław Sitarek
- Department of Medical Biology, Medical University of Lodz, 90-151 Lodz, Poland
| | - Tomasz Kowalczyk
- Department of Molecular Biotechnology and Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 90-237 Lodz, Poland
| | - Karolina Zajdel
- Department of Medical Informatics and Statistics, Medical University of Lodz, 90-645 Lodz, Poland
| | - Mariusz Jęcek
- Department of Economic and Medical Informatics, University of Lodz, 90-214 Lodz, Poland
| | - Paweł Nowak
- Department of Economic and Medical Informatics, University of Lodz, 90-214 Lodz, Poland
| | - Radosław Zajdel
- Department of Economic and Medical Informatics, University of Lodz, 90-214 Lodz, Poland
| |
Collapse
|
26
|
Neyestani TR, Yari Z, Rasekhi H, Nikooyeh B. How effective are anthocyanins on healthy modification of cardiometabolic risk factors: a systematic review and meta-analysis. Diabetol Metab Syndr 2023; 15:106. [PMID: 37221605 DOI: 10.1186/s13098-023-01075-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 04/30/2023] [Indexed: 05/25/2023] Open
Abstract
BACKGROUND In this meta-analysis, findings from recent studies on the preventive properties of anthocyanins (ACN) against cardiovascular disease are summarized. METHODS MEDLINE, PubMed, Embase, Cochrane Library, and Google Scholar were searched and 2512 studies were found in a preliminary search. After screening of titles and abstracts, 47 studies met the inclusion criteria (randomized clinical trial design and sufficient data of outcomes). Studies were excluded based on the following criteria: incomplete data; obscurely reported outcomes, or lack of control groups; and animal studies. RESULTS The results showed that intervention with ACNs resulted in a significant decrease in body mass index ((MD),- 0.21; 95% CI, - 0.38, - 0.04; P < 0.001) and body fat mass (MD: - 0.3%, 95% CI - 0.42 to - 0.18%, p < 0.001). Pooled data comparing ACN with control showed statistically significant effect on fasting blood sugar and HbA1c. However, the reductions were significantly more in the subjects with type 2 diabetes and in those who used ACN as supplement/extract. The subgroup analysis test showed that there was a significant effect of ACN on triglyceride concentrations, total cholesterol, LDL-C and HDL-C concentrations in all subgroups of participants (with vs. without dyslipidemia at baseline) and intervention type (supplement/extract vs. food). However, we did not observe any significant effect on apo A and apo B concentrations. CONCLUSIONS ACN intake in the forms of natural foods and supplements can induce healthy changes in body fat mass, glycemic and lipidemic status and these effects are more prominent in the subjects with above-normal values. This meta-analysis was registered at http://www.crd.york.ac.uk/Prospero (Registration no. CRD42021286466).
Collapse
Affiliation(s)
- Tirang R Neyestani
- Nutrition Research Department, National Nutrition and Food Technology Research Institute and Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, 198161957, Iran
| | - Zahra Yari
- Nutrition Research Department, National Nutrition and Food Technology Research Institute and Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, 198161957, Iran
| | - Hamid Rasekhi
- Nutrition Research Department, National Nutrition and Food Technology Research Institute and Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, 198161957, Iran
| | - Bahareh Nikooyeh
- Nutrition Research Department, National Nutrition and Food Technology Research Institute and Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, 198161957, Iran.
| |
Collapse
|
27
|
Shahid Nadeem M, Khan JA, Al-Abbasi FA, AlGhamdi SA, Alghamdi AM, Sayyed N, Gupta G, Kazmi I. Protective Effect of Hirsutidin against Rotenone-Induced Parkinsonism via Inhibition of Caspase-3/Interleukins-6 and 1β. ACS OMEGA 2023; 8:13016-13025. [PMID: 37065035 PMCID: PMC10099452 DOI: 10.1021/acsomega.3c00201] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 03/16/2023] [Indexed: 06/19/2023]
Abstract
A participant of the chemical family recognized as anthocyanins, hirsutidin is an O-methylated anthocyanidin. It is a natural substance, i.e., existing in Catharanthus roseus (Madagascar periwinkle), the predominant component in petals, as well as callus cultures. The literature review indicated a lack of scientifically verified findings on hirsutidin's biological activities, particularly its anti-Parkinson's capabilities. Using the information from the previous section as a reference, a present study has been assessed to evaluate the anti-Parkinson properties of hirsutidin against rotenone-activated Parkinson's in experimental animals. For 28 days, rats received hirsutidin at a dose of 10 mg/kg and rotenone at a dose of 0.5 mg/kg s.c. to test the neuroprotective effects. The hirsutidin was given 1 h before the rotenone. Behavioral tests, including the rotarod test, catalepsy, Kondziela's inverted screen activity, and open-field analysis, were performed. The levels of neurotransmitters (5-HT, DOPAC, 5-HIAA, dopamine, and HVA), neuroinflammatory markers (TNF-α, IL-6, IL-1β, caspase-3), an endogenous antioxidant, nitrite content, and acetylcholine were measured in all the rats on the 29th day. Hirsutidin exhibited substantial behavioral improvement in the rotarod test, catalepsy, Kondziela's inverted screen activity, and open-field test. Furthermore, hirsutidin restored neuroinflammatory markers, cholinergic function, nitrite content, neurotransmitters, and endogenous antioxidant levels. According to the study, hirsutidin has anti-inflammatory and antioxidant characteristics. As a result, it implies that hirsutidin may have anti-Parkinsonian effects in rats.
Collapse
Affiliation(s)
- Muhammad Shahid Nadeem
- Department
of Biochemistry, Faculty of Sciences, King
Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Jalaluddin Azam Khan
- Department
of Biochemistry, Faculty of Sciences, King
Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Fahad A. Al-Abbasi
- Department
of Biochemistry, Faculty of Sciences, King
Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Shareefa A. AlGhamdi
- Department
of Biochemistry, Faculty of Sciences, King
Abdulaziz University, Jeddah 21589, Saudi Arabia
- Experimental
Biochemistry Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Amira M. Alghamdi
- Department
of Biochemistry, Faculty of Sciences, King
Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Nadeem Sayyed
- School
of Pharmacy, Glocal University, Saharanpur 247121, India
| | - Gaurav Gupta
- School
of Pharmacy, Suresh Gyan Vihar University, Mahal Road, Jagatpura, Jaipur 302017, India
- Department
of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical
and Technical Sciences, Saveetha University, Chennai 602105, India
- Uttaranchal
Institute of Pharmaceutical Sciences, Uttaranchal
University, Dehradun 248007, India
| | - Imran Kazmi
- Department
of Biochemistry, Faculty of Sciences, King
Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
28
|
Hirsutidin Prevents Cisplatin-Evoked Renal Toxicity by Reducing Oxidative Stress/Inflammation and Restoring the Endogenous Enzymatic and Non-Enzymatic Level. Biomedicines 2023; 11:biomedicines11030804. [PMID: 36979784 PMCID: PMC10045162 DOI: 10.3390/biomedicines11030804] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/24/2023] [Accepted: 02/28/2023] [Indexed: 03/09/2023] Open
Abstract
Recent research has shown that phytocomponents may be useful in the treatment of renal toxicity. This study was conducted to evaluate the renal disease hirsutidin in the paradigm of renal toxicity induced by cisplatin. Male Wistar rats were given cisplatin (3 mg/kg body weight/day, for 25 days, i.p.) to induce renal toxicity. Experimental rats were randomly allocated to four different groups: group I received saline, group II received cisplatin, group III received cisplatin + hirsutidin (10 mg/kg)and group IV (per se)received hirsutidin (10 m/kg)for 25 days. Various biochemical parameters were assessed, oxidative stress (superoxide dismutase (SOD), glutathione transferase (GSH), malonaldehyde (MDA) and catalase (CAT)), blood-chemistry parameters (blood urea nitrogen (BUN) and cholesterol), non-protein-nitrogenous components (uric acid, urea, and creatinine), and anti-inflammatory-tumor necrosis factor-α (TNF-α), interleukin-1β(IL-1β). IL-6 and nuclear factor-kB (NFκB) were evaluated and histopathology was conducted. Hirsutidin alleviated renal injury which was manifested by significantly diminished uric acid, urea, urine volume, creatinine, and BUN, compared to the cisplatin group. Hirsutidin restored the activities of several antioxidant enzyme parameters—MDA, CAT, GSH, and SOD. Additionally, there was a decline in the levels of inflammatory markers—TNF-α, IL-1β, IL-6, and NFκB—compared to the cisplatin group. The current research study shows that hirsutidin may act as a therapeutic agent for the treatment of nephrotoxicity induced by cisplatin.
Collapse
|
29
|
Martins ICVS, Maciel MG, do Nascimento JLM, Mafra D, Santos AF, Padilha CS. Anthocyanins-rich interventions on oxidative stress, inflammation and lipid profile in patients undergoing hemodialysis: meta-analysis and meta-regression. Eur J Clin Nutr 2023; 77:316-324. [PMID: 35831559 DOI: 10.1038/s41430-022-01175-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 05/31/2022] [Accepted: 06/06/2022] [Indexed: 11/08/2022]
Abstract
The aim of this systematic review and meta-analysis was to evaluate the effects of anthocyanins-interventions on oxidative stress, inflammation, and lipid profile in patients undergoing hemodialysis. This systematic review and meta-analysis were registered on the International Prospective Register of Systematic Reviews (PROSPERO CRD42020209742). The primary outcome was anthocyanins-rich intervention on OS parameters and secondary outcome was anthocyanins-rich intervention on inflammation and dyslipidemia. RevMan 5.4 software was used to analyze the effect size of anthocyanins-rich intervention on OS, inflammation and dyslipidemia. Meta-analysis effect size calculations incorporated random-effects model for both outcomes 1 and 2. Eight studies were included in the systematic review (trials enrolling 715 patients; 165 men and 195 women; age range between 30 and 79 years). Anthocyanin intervention in patients undergoing hemodialysis decrease the oxidant parameters (std. mean: -2.64, 95% CI: [-3.77, -1.50], P ≤ 0.0001, I2 = 97%). Specially by reduction of malondialdehyde products in favor of anthocyanins-rich intervention (std. mean: -14.58 µmol.L, 95% CI: [-26.20, -2.96], P ≤ 0.0001, I2 = 99%) and myeloperoxidase (std. mean: -1.28 ηg.mL, 95% CI: [-2.11, -0.45], P = 0.003, I2 = 77%) against placebo group. Decrease inflammatory parameters (std. mean: -0.57, 95% CI: [-0.98, -0.16], P = 0.007, I2 = 79%), increase HDL cholesterol levels (std. mean: 0.58 mg.dL, 95% CI: [0.23, 0.94], P = 0.001, I2 = 12%) against placebo group. Anthocyanins-rich intervention seems to reduce oxidative stress, inflammatory parameters and improve lipid profile by increasing HDL cholesterol levels in patients with chronic kidney disease undergoing hemodialysis.
Collapse
Affiliation(s)
- Isabelle C V S Martins
- Postgraduation Program in Neuroscience and Cellular Biology, Cellular and Molecular Neurochemistry Laboratory, Federal University of Pará (UFPA), Belém, Pará, Brazil.
| | - Michel G Maciel
- School of Health Sciences, University of Brasília (UNB), Brasília, Brazil
| | - José L M do Nascimento
- Postgraduation Program in Neuroscience and Cellular Biology, Cellular and Molecular Neurochemistry Laboratory, Federal University of Pará (UFPA), Belém, Pará, Brazil
| | - Denise Mafra
- Post-Graduation Program in Medical Sciences and Post-Graduation Program in Nutrition Sciences, Federal Fluminense University (UFF), Niterói, Rio de Janeiro, Brazil
| | - Alexsandro F Santos
- Postgraduation Program in Health Sciences, Federal University of Maranhão (UFMA), São Luiz, Maranhão, Brazil
| | - Camila S Padilha
- Exercise and Immunometabolism Research Group, Postgraduation Program in Movement Sciences, Department of Physical Education, São Paulo State University (UNESP), Presidente Prudente, São Paulo, Brazil
| |
Collapse
|
30
|
Miralles-Amorós L, Asencio-Mas N, Martínez-Olcina M, Vicente-Martínez M, Frutos JMGD, Peñaranda-Moraga M, Gonzálvez-Alvarado L, Yáñez-Sepúlveda R, Cortés-Roco G, Martínez-Rodríguez A. Study the Effect of Relative Energy Deficiency on Physiological and Physical Variables in Professional Women Athletes: A Randomized Controlled Trial. Metabolites 2023; 13:metabo13020168. [PMID: 36837787 PMCID: PMC9962361 DOI: 10.3390/metabo13020168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/26/2023] Open
Abstract
Energy deficits are often observed in athletes, especially in female athletes, due to the high expenditure of sport and strict diets. Low energy availability can cause serious health problems and affect sport performance. The aim of this study was to evaluate the effects of different personalized dietary plans on physiological and physical factors related to energy deficit syndrome in female professional handball players. Twenty-one professional female handball players, aged 22 ± 4 years, 172.0 ± 5.4 cm and 68.4 ± 6.7 kg, divided into three groups (FD: free diet; MD: Mediterranean diet; and AD: high antioxidant diet), participated in this 12-week randomized controlled trial. Energy expenditure through indirect calorimetry, energy availability, 7 day dietary intake analysis, blood pressure, cholesterol, menstrual function, body composition by both anthropometry and bioelectrical impedance, and strength performance were assessed. All participants showed low energy availability (<30 kcal/lean mass per day); despite this, all had eumenorrhea. Significant improvements were found after the intervention in all components of body composition (p < 0.05). In the remaining variables, despite slight improvements, none were significant neither over time nor between the different groups. Low energy availability has been observed in all professional female handball players, which may lead to serious consequences. A longer period of intervention is required to assess the differences between diets and improvements in other parameters.
Collapse
Affiliation(s)
- Laura Miralles-Amorós
- Department of Analytical Chemistry, Nutrition and Food Science, University of Alicante, 03690 Alicante, Spain
| | - Nuria Asencio-Mas
- Department of Analytical Chemistry, Nutrition and Food Science, University of Alicante, 03690 Alicante, Spain
| | - María Martínez-Olcina
- Department of Analytical Chemistry, Nutrition and Food Science, University of Alicante, 03690 Alicante, Spain
| | | | - José Manuel García-De Frutos
- Physical Activity and Sport Sciences Department, Faculty of Sport, Catholic University San Antonio of Murcia, 30107 Murcia, Spain
| | - Marcelo Peñaranda-Moraga
- Department of Analytical Chemistry, Nutrition and Food Science, University of Alicante, 03690 Alicante, Spain
| | - Lucía Gonzálvez-Alvarado
- Department of Analytical Chemistry, Nutrition and Food Science, University of Alicante, 03690 Alicante, Spain
| | - Rodrigo Yáñez-Sepúlveda
- Faculty of Education and Social Sciences, Universidad Andres Bello, Viña del Mar 2520000, Chile
| | - Guillermo Cortés-Roco
- Escuela de Educación, Pedagogía en Educación Física, Entrenador Deportivo, Universidad Viña del Mar, Viña del Mar 2520000, Chile
| | - Alejandro Martínez-Rodríguez
- Department of Analytical Chemistry, Nutrition and Food Science, University of Alicante, 03690 Alicante, Spain
- Alicante Institute for Health and Biomedical Research (ISABIAL), 03010 Alicante, Spain
- Correspondence:
| |
Collapse
|
31
|
Potential health benefits of fermented blueberry: A review of current scientific evidence. Trends Food Sci Technol 2023. [DOI: 10.1016/j.tifs.2023.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
32
|
Zhou Y, Suo W, Zhang X, Yang Y, Zhao W, Li H, Ni Q. Targeting epigenetics in diabetic cardiomyopathy: Therapeutic potential of flavonoids. Biomed Pharmacother 2023; 157:114025. [PMID: 36399824 DOI: 10.1016/j.biopha.2022.114025] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/05/2022] [Accepted: 11/14/2022] [Indexed: 11/17/2022] Open
Abstract
The pathophysiological mechanisms of diabetic cardiomyopathy have been extensively studied, but there is still a lack of effective prevention and treatment methods. The ability of flavonoids to protect the heart from diabetic cardiomyopathy has been extensively described. In recent years, epigenetics has received increasing attention from scholars in exploring the etiology and treatment of diabetes and its complications. DNA methylation, histone modifications and non-coding RNAs play key functions in the development, maintenance and progression of diabetic cardiomyopathy. Hence, prevention or reversal of the epigenetic alterations that have occurred during the development of diabetic cardiomyopathy may alleviate the personal and social burden of the disease. Flavonoids can be used as natural epigenetic modulators in alternative therapies for diabetic cardiomyopathy. In this review, we discuss the epigenetic effects of different flavonoid subtypes in diabetic cardiomyopathy and summarize the evidence from preclinical and clinical studies that already exist. However, limited research is available on the potential beneficial effects of flavonoids on the epigenetics of diabetic cardiomyopathy. In the future, clinical trials in which different flavonoids exert their antidiabetic and cardioprotective effects through various epigenetic mechanisms should be further explored.
Collapse
Affiliation(s)
- Yutong Zhou
- Guang'an Men Hospital, China Academy of Chinese Medicine, Beijing 100053, China
| | - Wendong Suo
- LongHua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Xinai Zhang
- Guang'an Men Hospital, China Academy of Chinese Medicine, Beijing 100053, China
| | - Yanan Yang
- Guang'an Men Hospital, China Academy of Chinese Medicine, Beijing 100053, China
| | - Weizhe Zhao
- College of Traditional Chinese Medicine, Beijing University of Traditional Chinese Medicine, Beijing 100105, China
| | - Hong Li
- LongHua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China.
| | - Qing Ni
- Guang'an Men Hospital, China Academy of Chinese Medicine, Beijing 100053, China.
| |
Collapse
|
33
|
Santos AL, Sinha S. Ageing, Metabolic Dysfunction, and the Therapeutic Role of Antioxidants. Subcell Biochem 2023; 103:341-435. [PMID: 37120475 DOI: 10.1007/978-3-031-26576-1_15] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2023]
Abstract
The gradual ageing of the world population has been accompanied by a dramatic increase in the prevalence of obesity and metabolic diseases, especially type 2 diabetes. The adipose tissue dysfunction associated with ageing and obesity shares many common physiological features, including increased oxidative stress and inflammation. Understanding the mechanisms responsible for adipose tissue dysfunction in obesity may help elucidate the processes that contribute to the metabolic disturbances that occur with ageing. This, in turn, may help identify therapeutic targets for the treatment of obesity and age-related metabolic disorders. Because oxidative stress plays a critical role in these pathological processes, antioxidant dietary interventions could be of therapeutic value for the prevention and/or treatment of age-related diseases and obesity and their complications. In this chapter, we review the molecular and cellular mechanisms by which obesity predisposes individuals to accelerated ageing. Additionally, we critically review the potential of antioxidant dietary interventions to counteract obesity and ageing.
Collapse
Affiliation(s)
- Ana L Santos
- IdISBA - Fundación de Investigación Sanitaria de las Islas Baleares, Palma, Spain.
| | | |
Collapse
|
34
|
Xue H, Sang Y, Gao Y, Zeng Y, Liao J, Tan J. Research Progress on Absorption, Metabolism, and Biological Activities of Anthocyanins in Berries: A Review. Antioxidants (Basel) 2022; 12:antiox12010003. [PMID: 36670865 PMCID: PMC9855064 DOI: 10.3390/antiox12010003] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/11/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Berries, as the best dietary sources for human health, are rich in anthocyanins, vitamins, fiber, polyphenols, essential amino acids, and other ingredients. Anthocyanins are one of the most important bioactive components in berries. The attractive color of berries is attributed to the fact that berries contain different kinds of anthocyanins. Increasing research activity has indicated that anthocyanins in berries show various biological activities, including protecting vision; antioxidant, anti-inflammatory and anti-tumor qualities; inhibition of lipid peroxidation; anti-cardiovascular disease properties; control of hypoglycemic conditions; and other activities. Hence, berries have high nutritional and medicinal values. The recognized absorption, metabolism, and biological activities of anthocyanins have promoted their research in different directions. Hence, it is necessary to systematically review the research progress and future prospects of anthocyanins to promote a better understanding of anthocyanins. The absorption, metabolism, and biological activities of anthocyanins from berries were reviewed in this paper. The findings of this study provide an important reference for basic research, product development and utilization of berries' anthocyanins in food, cosmetics, and drugs.
Collapse
Affiliation(s)
- Hongkun Xue
- College of Traditional Chinese Medicine, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China
| | - Yumei Sang
- College of Traditional Chinese Medicine, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China
| | - Yuchao Gao
- College of Traditional Chinese Medicine, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China
| | - Yuan Zeng
- College of Traditional Chinese Medicine, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China
| | - Jianqing Liao
- College of Physical Science and Engineering, Yichun University, No. 576 Xuefu Road, Yichun 336000, China
- Correspondence: (J.L.); (J.T.); Tel.: +86-0312-5075644 (J.L. & J.T.)
| | - Jiaqi Tan
- College of Traditional Chinese Medicine, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China
- Medical Comprehensive Experimental Center, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China
- Correspondence: (J.L.); (J.T.); Tel.: +86-0312-5075644 (J.L. & J.T.)
| |
Collapse
|
35
|
Interference of malvidin and its mono- and di-glucosides on the membrane — Combined in vitro and computational chemistry study. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
36
|
Del Bo’ C, Tucci M, Martini D, Marino M, Bertoli S, Battezzati A, Porrini M, Riso P. Acute effect of blueberry intake on vascular function in older subjects: Study protocol for a randomized, controlled, crossover trial. PLoS One 2022; 17:e0275132. [PMID: 36454906 PMCID: PMC9714894 DOI: 10.1371/journal.pone.0275132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 08/18/2022] [Indexed: 12/03/2022] Open
Abstract
Aging is associated with an increased risk of developing cardiovascular disease which is often accompanied by a decline in vascular health and function. Current evidence suggests that berries may have a potential role in the modulation of vascular function, but dietary interventions are still needed to confirm findings, especially in older subjects. In the context of the MIND FoodS HUB project, this study aims to investigate the effect of a single serving of blueberry (250 g of blueberry versus a control product) in a group of older subjects (≥ 60y) through a randomized, controlled, cross-over dietary intervention trial. Specifically, the study evaluates the absorption kinetics of bioactives following the blueberries intake and the effects on markers related to oxidative stress, inflammation, and vascular function analyzed at different time points. By considering a drop-out rate estimate of 25%, at least 20 subjects will be recruited in the study. The study will provide evidence to support the potential beneficial effects of blueberry and its bioactive compounds on vascular function in a group of population more susceptible to vascular dysfunction and to the development of cardiovascular diseases. Moreover, the study will contribute the analysis of several metabolic and functional markers that can support the biological plausibility of the results obtained. Finally, the trial will provide data on the absorption and metabolism of blueberry bioactives which will be used to study their association with the different markers under study. Trail registration: The trial is registered at ISRCTN (http://isrctn.com/ISRCTN18262533); May 7, 2021.
Collapse
Affiliation(s)
- Cristian Del Bo’
- Division of Human Nutrition, Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, Milano, Italy
| | - Massimiliano Tucci
- Division of Human Nutrition, Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, Milano, Italy
| | - Daniela Martini
- Division of Human Nutrition, Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, Milano, Italy
| | - Mirko Marino
- Division of Human Nutrition, Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, Milano, Italy
| | - Simona Bertoli
- Division of Human Nutrition, Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, Milano, Italy
- International Center for the Assessment of Nutritional Status (ICANS), Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, Milano, Italy
| | - Alberto Battezzati
- Division of Human Nutrition, Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, Milano, Italy
- International Center for the Assessment of Nutritional Status (ICANS), Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, Milano, Italy
| | - Marisa Porrini
- Division of Human Nutrition, Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, Milano, Italy
| | - Patrizia Riso
- Division of Human Nutrition, Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, Milano, Italy
- * E-mail:
| |
Collapse
|
37
|
Alharbi KS, Al-Abbasi FA, Alzarea SI, Afzal O, Altamimi ASA, Almalki WH, Shahid Nadeem M, Afzal M, Sayyed N, Kazmi I. Effects of the Anthocyanin Hirsutidin on Gastric Ulcers: Improved Healing through Antioxidant Mechanisms. JOURNAL OF NATURAL PRODUCTS 2022; 85:2406-2412. [PMID: 36215657 DOI: 10.1021/acs.jnatprod.2c00620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The goal of this study was to determine the effect of hirsutidin on ethanol-induced stomach ulcers in rats. Rats (n = 24 rats/group) were separated at random into the following groups: normal saline-treated (normal control), ethanol-treated (ethanol control), 10 mg/kg hirsutidin + ethanol-treated (hirsutidin 10), and 20 mg/kg hirsutidin + ethanol-treated (hirsutidin 20). All the groups received the respective treatment orally for 7 days. On day 7, i.e., after 24 h of fasting, except for the normal control group, all the groups orally received 5 mL/kg of ethanol. Four hours later, rats were anaesthetized, serum was isolated from the blood, and biochemical tests were performed. The stomach tissue was utilized for ulcer grading, histology, and biochemical analysis. The rats developed stomach acidity and ulcers after being given ethanol based on increased ulcer score, disturbed cellular architecture, increased oxidative stress, myeloperoxidase and decreased endogenous antioxidants, and nitric oxide and prostaglandin E2 concentration. Ethanol-treated rats also displayed increased tumor necrosis factor-α, aspartate aminotransferase, alanine transaminase, alkaline phosphatase, and inflammatory cytokines. The treatment with hirsutidin protected and significantly restored all serum parameters in ethanol-induced stomach ulcers and may have antiulcer activity.
Collapse
Affiliation(s)
- Khalid Saad Alharbi
- Department of Pharmacology, College of Pharmacy, Jouf University, Aljouf, Sakaka 72341, Saudi Arabia
| | - Fahad A Al-Abbasi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589 Saudi Arabia
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Aljouf, Sakaka 72341, Saudi Arabia
| | - Obaid Afzal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Abdulmalik S A Altamimi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Muhammad Shahid Nadeem
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589 Saudi Arabia
| | - Muhammad Afzal
- Department of Pharmacology, College of Pharmacy, Jouf University, Aljouf, Sakaka 72341, Saudi Arabia
| | - Nadeem Sayyed
- School of Pharmacy, Glocal University, Saharanpur 247121, India
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589 Saudi Arabia
| |
Collapse
|
38
|
Polyphenols as Potent Epigenetics Agents for Cancer. Int J Mol Sci 2022; 23:ijms231911712. [PMID: 36233012 PMCID: PMC9570183 DOI: 10.3390/ijms231911712] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/25/2022] [Accepted: 09/27/2022] [Indexed: 02/06/2023] Open
Abstract
Human diseases such as cancer can be caused by aberrant epigenetic regulation. Polyphenols play a major role in mammalian epigenome regulation through mechanisms and proteins that remodel chromatin. In fruits, seeds, and vegetables, as well as food supplements, polyphenols are found. Compounds such as these ones are powerful anticancer agents and antioxidants. Gallic acid, kaempferol, curcumin, quercetin, and resveratrol, among others, have potent anti-tumor effects by helping reverse epigenetic changes associated with oncogene activation and tumor suppressor gene inactivation. The role dietary polyphenols plays in restoring epigenetic alterations in cancer cells with a particular focus on DNA methylation and histone modifications was summarized. We also discussed how these natural compounds modulate gene expression at the epigenetic level and described their molecular targets in cancer. It highlights the potential of polyphenols as an alternative therapeutic approach in cancer since they modulate epigenetic activity.
Collapse
|
39
|
Luo M, Mai M, Song W, Yuan Q, Feng X, Xia E, Guo H. The Antiaging Activities of Phytochemicals in Dark-Colored Plant Foods: Involvement of the Autophagy- and Apoptosis-Associated Pathways. Int J Mol Sci 2022; 23:ijms231911038. [PMID: 36232338 PMCID: PMC9569742 DOI: 10.3390/ijms231911038] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/07/2022] [Accepted: 09/13/2022] [Indexed: 11/23/2022] Open
Abstract
In the last two decades, human life expectancy has increased by about 10 years, but this has not been accompanied by a corresponding increase in healthy lifespan. Aging is associated with a wide range of human disorders, including cancer, diabetes, and cardiovascular and neurodegenerative diseases. Delaying the aging of organs or tissues and improving the physiological functions of the elderly can reduce the risk of aging-related diseases. Autophagy and apoptosis are crucial mechanisms for cell survival and tissue homeostasis, and may also be primary aging-regulatory pathways. Recent epidemiological studies have shown that eating more colorful plant foods could increase life expectancy. Several representative phytochemicals in dark-colored plant foods such as quercetin, catechin, curcumin, anthocyanins, and lycopene have apparent antiaging potential. Nevertheless, the antiaging signaling pathways of the phytochemicals from dark-colored plant foods remain elusive. In the present review, we summarized autophagy- and apoptosis-associated targeting pathways of those phytochemicals and discussed the core targets involved in the antiaging effects. Further clinical evaluation and exploitation of phytochemicals as antiaging agents are needed to develop novel antiaging therapeutics for preventing age-related diseases and improving a healthy lifespan.
Collapse
Affiliation(s)
- Mengliu Luo
- Department of Nutrition, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Meiqing Mai
- Department of Nutrition, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Wanhan Song
- Department of Nutrition, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Qianhua Yuan
- Department of Nutrition, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Xiaoling Feng
- Department of Nutrition, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Enqin Xia
- Department of Nutrition, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Honghui Guo
- Department of Nutrition, School of Public Health, Guangdong Medical University, Dongguan 523808, China
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, China
- Correspondence: ; Tel.: +86-769-2289-6576
| |
Collapse
|
40
|
Barrantes-Martínez YV, Liévano M, Ruiz ÁJ, Cuéllar- Rios I, Paola Valencia D, Wiesner-Reinhold M, Schreiner M, Ballesteros-Vivas D, Guzmán-Pérez V. Nasturtium (Tropaeolum majus L.) sub-chronic consumption on insulin resistance and lipid profile in prediabetic subjects. A pilot study. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
|
41
|
Guo S, Qi M, Li H, Cui Y, Qi C, Cheng G, Lv M, Zheng P, Liu J. The Protective Effect of Lycium Ruthenicum Murr Anthocyanins in Cr (VI)-Induced Mitophagy in DF-1 Cells. Life (Basel) 2022; 12:1115. [PMID: 35892917 PMCID: PMC9332502 DOI: 10.3390/life12081115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 07/15/2022] [Accepted: 07/19/2022] [Indexed: 11/20/2022] Open
Abstract
Cr (VI) is an extremely toxic environment and professional pollutant that seriously damages mitochondrial dysfunction when it enters a cell. Anthocyanins possess anti-oxidant, antiaging, and antifatigue properties. The regulatory effect of Lycium ruthenicum Murr anthocyanin (LRMA) on Cr (VI)-induced mitophagy in DF-1 cells was determined. The experimental design was divided into blank group, groups subjected to Cr (VI) and Cr (VI), and LRMA co-treatment groups. Cell viability was determined by the CCK-8 assay. Mitochondrial membrane potential (MMP) and reactive oxygen species (ROS) were assessed by flow cytometry and immunofluorescence. Mitophagy was monitored by ELISA and Western blot. Data showed that Cr (VI) caused the overexpression of autophagy-related proteins (LC3, Beclin-1) and reduced the expressions of autophagy protein p62 and TOMM20. Compared with the Cr (VI) group, the LRMA group showed considerably decreased mitochondrial damage and mitophagy. LRMA decreased the mitochondrial protein expression of PINK1 and Parkin's transfer from the cytoplasm to mitochondria. LRMA may confer protective effects by reducing PINK1/Parkin-mediated mitophagy in Cr (VI)-induced DF-1 cell models.
Collapse
Affiliation(s)
- Shuhua Guo
- College of Veterinary Medicine, Shandong Agricultural University, Tai’an 271018, China; (S.G.); (G.C.); (M.L.)
| | - Mengzhu Qi
- Research Center for Animal Disease Control Engineering, Shandong Agricultural University, Tai’an 271018, China; (M.Q.); (Y.C.); (C.Q.)
| | - Hongyan Li
- Central Hospital of Tai’an City, Tai’an 271018, China;
| | - Yukun Cui
- Research Center for Animal Disease Control Engineering, Shandong Agricultural University, Tai’an 271018, China; (M.Q.); (Y.C.); (C.Q.)
| | - Changxi Qi
- Research Center for Animal Disease Control Engineering, Shandong Agricultural University, Tai’an 271018, China; (M.Q.); (Y.C.); (C.Q.)
| | - Guodong Cheng
- College of Veterinary Medicine, Shandong Agricultural University, Tai’an 271018, China; (S.G.); (G.C.); (M.L.)
| | - Meiyun Lv
- College of Veterinary Medicine, Shandong Agricultural University, Tai’an 271018, China; (S.G.); (G.C.); (M.L.)
| | - Pimiao Zheng
- Research Center for Animal Disease Control Engineering, Shandong Agricultural University, Tai’an 271018, China; (M.Q.); (Y.C.); (C.Q.)
| | - Jianzhu Liu
- College of Veterinary Medicine, Shandong Agricultural University, Tai’an 271018, China; (S.G.); (G.C.); (M.L.)
- Research Center for Animal Disease Control Engineering, Shandong Agricultural University, Tai’an 271018, China; (M.Q.); (Y.C.); (C.Q.)
| |
Collapse
|
42
|
Plant-Based Foods and Vascular Function: A Systematic Review of Dietary Intervention Trials in Older Subjects and Hypothesized Mechanisms of Action. Nutrients 2022; 14:nu14132615. [PMID: 35807796 PMCID: PMC9268664 DOI: 10.3390/nu14132615] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/20/2022] [Accepted: 06/21/2022] [Indexed: 02/04/2023] Open
Abstract
Cardiovascular diseases, still the leading cause of mortality in the world, are closely related to vascular function. Older subjects are more susceptible to endothelial dysfunction and therefore it is important to define possible preventive or support strategies, such as consumption of foods with health-promoting effects. This systematic review aims to summarize the currently available evidence on acute or chronic trials testing the effect of selected plant-based foods on vascular function parameters in older subjects, and consider plausible mechanisms that may support the main findings. A total of 15 trials were included and analyzed, testing the effects of beetroot, plum, blueberry, and vegetable oils. We found some interesting results regarding markers of vascular reactivity, in particular for beetroot, while no effects were found for markers of arterial stiffness. The amelioration of vascular function seems to be more related to the restoration of a condition of nitric oxide impairment, exacerbated by diseases or hypoxic condition, rather than the enhancement of a physiological situation, as indicated by the limited effects on healthy older subjects or in control groups with young subjects. However, the overall set of selected studies is, in any case, rather limited and heterogeneous in terms of characteristics of the studies, indicating the need for additional high-quality intervention trials to better clarify the role of vegetable foods in restoring and/or improving vascular function in order to better elucidate the mechanisms through which these foods may exert their vascular health benefits in older subjects.
Collapse
|
43
|
Shi M, Gu J, Wu H, Rauf A, Emran TB, Khan Z, Mitra S, Aljohani ASM, Alhumaydhi FA, Al-Awthan YS, Bahattab O, Thiruvengadam M, Suleria HAR. Phytochemicals, Nutrition, Metabolism, Bioavailability, and Health Benefits in Lettuce-A Comprehensive Review. Antioxidants (Basel) 2022; 11:1158. [PMID: 35740055 PMCID: PMC9219965 DOI: 10.3390/antiox11061158] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 12/17/2022] Open
Abstract
Lettuce is one of the most famous leafy vegetables worldwide with lots of applications from food to other specific uses. There are different types in the lettuce group for consumers to choose from. Additionally, lettuce is an excellent source of bioactive compounds such as polyphenols, carotenoids, and chlorophyll with related health benefits. At the same time, nutrient composition and antioxidant compounds are different between lettuce varieties, especially for green and red lettuce types. The benefit of lettuce consumption depends on its composition, particularly antioxidants, which can function as nutrients. The health benefits rely on their biochemical effect when reaching the bloodstream. Some components can be released from the food matrix and altered in the digestive system. Indeed, the bioaccessibility of lettuce is measuring the quantity of these compounds released from the food matrix during digestion, which is important for health-promoting features. Extraction of bioactive compounds is one of the new trends observed in lettuce and is necessarily used for several application fields. Therefore, this review aims to demonstrate the nutritional value of lettuce and its pharmacological properties. Due to their bioaccessibility and bioavailability, the consumer will be able to comprehensively understand choosing a healthier lettuce diet. The common utilization pattern of lettuce extracted nutrients will also be summarized for further direction.
Collapse
Affiliation(s)
- Min Shi
- Faculty of Veterinary and Agricultural Sciences, School of Agriculture and Food, The University of Melbourne, Parkville, VIC 3010, Australia; (M.S.); (J.G.); (H.W.)
| | - Jingyu Gu
- Faculty of Veterinary and Agricultural Sciences, School of Agriculture and Food, The University of Melbourne, Parkville, VIC 3010, Australia; (M.S.); (J.G.); (H.W.)
| | - Hanjing Wu
- Faculty of Veterinary and Agricultural Sciences, School of Agriculture and Food, The University of Melbourne, Parkville, VIC 3010, Australia; (M.S.); (J.G.); (H.W.)
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Swabi 94640, Pakistan;
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh;
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Zidan Khan
- Department of Pharmacy, International Islamic University Chittagong, Chittagong 4318, Bangladesh;
| | - Saikat Mitra
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh;
| | - Abdullah S. M. Aljohani
- Department of Veterinary of Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah 52571, Saudi Arabia;
| | - Fahad A. Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Science, Qassim University, Buraydah 52571, Saudi Arabia;
| | - Yahya S. Al-Awthan
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk 47512, Saudi Arabia; (Y.S.A.-A.); (O.B.)
- Department of Biology Faculty of Sciences, Ibb University, Ibb 70270, Yemen
| | - Omar Bahattab
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk 47512, Saudi Arabia; (Y.S.A.-A.); (O.B.)
| | - Muthu Thiruvengadam
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul 05029, Korea
| | - Hafiz A. R. Suleria
- Faculty of Veterinary and Agricultural Sciences, School of Agriculture and Food, The University of Melbourne, Parkville, VIC 3010, Australia; (M.S.); (J.G.); (H.W.)
| |
Collapse
|
44
|
Drummer DJ, Many GM, Pritchett K, Young M, Connor KR, Tesfaye J, Dondji B, Pritchett RC. Montmorency Cherry Juice Consumption does not Improve Muscle Soreness or Inhibit Pro-inflammatory Monocyte Responses Following an Acute Bout of Whole-body Resistance Training. INTERNATIONAL JOURNAL OF EXERCISE SCIENCE 2022; 15:686-701. [PMID: 35991938 PMCID: PMC9365115 DOI: 10.70252/aeyr7972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/15/2025]
Abstract
Montmorency Cherry Juice (MCJ) may improve acute exercise recovery by attenuating inflammation and oxidative stress. However, the anti-inflammatory effects of MCJ on monocyte responses following resistance exercise have not been explored. Seven resistance-trained males (age: 22.9 ± 4.1 yrs; height: 1.8 ± 0.1 m; weight: 81.7 ± 13.2 kg) participated in this study. Participants completed a placebo-controlled crossover design, drinking either MCJ or placebo beverages, 7 days prior to completing an acute bout of unilateral resistance exercise. Statistical significance was assessed using a withinsubjects repeated measures ANOVA; alpha level p ≤ 0.05. Main effects for time were observed for changes in classical and intermediate monocytes (p ≤ 0.05), but no significant treatment effects were observed for monocyte subtypes p > 0.05. Classical monocytes (CD14+ CD16-) increased and peaked 24 hr post-exercise (placebo 1.14 ± 0.04 and MCJ 1.06 ± 0.06-fold). Intermediate monocytes peaked 48 hr post-exercise increasing 1.82 ± 0.41 and 2.01 ± 0.80- fold. Nonclassical monocytes peaked post-exercise (placebo 1.17 ± 0.31 and MCJ 1.02 ± 0.20-fold). Peak pain visual analog scale (VAS) occurred post-exercise for MCJ (3.63 ± 2.01-fold) and 72 hr post-exercise for placebo (4.26 ± 3.46- fold). IL-6 and pressure pain threshold (PPT) peaked 24 hr post-exercise (IL-6 placebo 3.83 ± 1.01- and MCJ 6.43 ± 3.43-fold) and (PPT placebo 86.37 ± 3.95% and MCJ 82.81 ± 2.90% of pressure needed at pre-exercise). Our data suggests MCJ consumption does not decrease muscle soreness, IL-6, or monocyte subset responses following a high-intensity resistance exercise protocol in resistance-trained males.
Collapse
Affiliation(s)
- Devin J Drummer
- Department of Health Sciences, Central Washington University, Ellensburg, WA, USA
| | - Gina M Many
- Department of Health Sciences, Pacific Northwest University, WA, USA
| | - Kelly Pritchett
- Department of Health Sciences, Central Washington University, Ellensburg, WA, USA
| | - Mark Young
- Department of Biological Sciences, Central Washington University, Ellensburg, WA, USA
| | - Kathleen R Connor
- Department of Health Sciences, Central Washington University, Ellensburg, WA, USA
| | - Jerusalem Tesfaye
- Department of Health Sciences, Central Washington University, Ellensburg, WA, USA
| | - Blaise Dondji
- Laboratory of Cellular Immunology & Parasitology, Department of Biological Sciences, Central Washington University, Ellensburg, WA, USA
| | - Robert C Pritchett
- Department of Health Sciences, Central Washington University, Ellensburg, WA, USA
| |
Collapse
|
45
|
Quirós-Fernández R, López-Plaza B, Bermejo LM, Palma Milla S, Zangara A, Candela CG. Oral Supplement Containing Hydroxytyrosol and Punicalagin Improves Dyslipidemia in an Adult Population without Co-Adjuvant Treatment: A Randomized, Double-Blind, Controlled and Crossover Trial. Nutrients 2022; 14:nu14091879. [PMID: 35565844 PMCID: PMC9103949 DOI: 10.3390/nu14091879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 04/22/2022] [Accepted: 04/26/2022] [Indexed: 12/04/2022] Open
Abstract
Hydroxytyrosol (HT) and punicalagin (PC) exert cardioprotective and antiatherosclerotic effects. This study evaluated the effect of an oral supplement containing HT and PC (SAx) on dyslipidemia in an adult population. A randomized, double-blind, controlled, crossover trial was conducted over a 20-week period. SAx significantly reduced the plasma levels of triglycerides (TG) in subjects with hypertriglyceridemia (≥150 mg/dL) (from 200.67 ± 51.38 to 155.33 ± 42.44 mg/dL; p < 0.05), while no such effects were observed in these subjects after the placebo. SAx also significantly decreased the plasma levels of low-density lipoprotein cholesterol (LDL-C) in subjects with high plasma levels of LDL-C (≥160 mg/dL) (from 179.13 ± 16.18 to 162.93 ± 27.05 mg/dL; p < 0.01), while no such positive effect was observed with the placebo. In addition, the placebo significantly reduced the plasma levels of high-density lipoprotein cholesterol (HDL-C) in the total population (from 64.49 ± 12.65 to 62.55 ± 11.57 mg/dL; p < 0.05), while SAx significantly increased the plasma levels of HDL-C in subjects with low plasma levels of HDL-C (<50 mg/dL) (from 44.25 ± 3.99 to 48.00 ± 7.27 mg/dL; p < 0.05). In conclusion, the supplement containing HT and PC exerted antiatherosclerotic and cardio-protective effects by considerably improving dyslipidemia in an adult population, without co-adjuvant treatment or adverse effects.
Collapse
Affiliation(s)
- Rebeca Quirós-Fernández
- Nutrition Research Group, Hospital La Paz Institute for Health Research (IdiPAZ), 28046 Madrid, Spain;
- Correspondence: (R.Q.-F.); (B.P.-L.)
| | - Bricia López-Plaza
- Nutrition Research Group, Hospital La Paz Institute for Health Research (IdiPAZ), 28046 Madrid, Spain;
- Correspondence: (R.Q.-F.); (B.P.-L.)
| | - Laura M. Bermejo
- Nutrition Research Group, Hospital La Paz Institute for Health Research (IdiPAZ), 28046 Madrid, Spain;
| | - Samara Palma Milla
- Nutrition Department, Hospital University La Paz, 28046 Madrid, Spain; (S.P.M.); (C.G.C.)
| | - Andrea Zangara
- Centre for Human Psychopharmacology, Swinburne University, Melbourne, VIC 3122, Australia;
- Euromed S.A., C/Rec de Dalt, 21-23, Pol. Ind. Can Magarola, 08100 Mollet del Valles, Spain
| | - Carmen Gómez Candela
- Nutrition Department, Hospital University La Paz, 28046 Madrid, Spain; (S.P.M.); (C.G.C.)
| |
Collapse
|
46
|
Sinclair J, Bottoms L, Dillon S, Allan R, Shadwell G, Butters B. Effects of Montmorency Tart Cherry and Blueberry Juice on Cardiometabolic and Other Health-Related Outcomes: A Three-Arm Placebo Randomized Controlled Trial. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19095317. [PMID: 35564709 PMCID: PMC9103925 DOI: 10.3390/ijerph19095317] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/21/2022] [Accepted: 04/24/2022] [Indexed: 12/16/2022]
Abstract
The current study aimed to investigate the influence of tart cherry and blueberry juices on cardiometabolic and other health indices following a 20-day supplementation period. Forty-five adults were randomly assigned to receive tart cherry, blueberry, or a placebo, of which they drank 60 mL per day for 20 days. The primary outcome, which was systolic blood pressure, and secondary measures, including anthropometric, energy expenditure, substrate oxidation, hematological, diastolic blood pressure/resting heart rate, psychological wellbeing, and sleep efficacy, were measured before and after the intervention. There were no statistically significant differences (p > 0.05) for systolic blood pressure; however, total and LDL cholesterol were significantly improved with blueberry intake (pre: total cholesterol = 4.36 mmol/L and LDL cholesterol = 2.71 mmol/L; post: total cholesterol = 3.79 mmol/L and LDL cholesterol = 2.23 mmol/L) compared to placebo (pre: total cholesterol = 4.01 mmol/L and LDL cholesterol = 2.45 mmol/L; post: total cholesterol = 4.34 mmol/L and LDL cholesterol = 2.67 mmol/L). Furthermore, psychological wellbeing indices measured using the Beck Depression Inventory, State Trait Anxiety Inventory, and COOP WONCA improved statistically in the blueberry arm compared to placebo. Given the clear association between lipid concentrations and the risk of cardiovascular disease as well as the importance of psychological wellbeing to health-related quality of life, this investigation indicates that it could be an effective approach to assist in managing cardiometabolic disease.
Collapse
Affiliation(s)
- Jonathan Sinclair
- Research Centre for Applied Sport, Physical Activity and Performance, School of Sport & Health Sciences, Faculty of Allied Health and Wellbeing, University of Central Lancashire, Preston PR1 2HE, UK; (S.D.); (R.A.); (G.S.); (B.B.)
- Correspondence:
| | - Lindsay Bottoms
- Centre for Research in Psychology and Sport Sciences, School of Life and Medical Sciences, University of Hertfordshire, Hatfield AL10 9AB, UK;
| | - Stephanie Dillon
- Research Centre for Applied Sport, Physical Activity and Performance, School of Sport & Health Sciences, Faculty of Allied Health and Wellbeing, University of Central Lancashire, Preston PR1 2HE, UK; (S.D.); (R.A.); (G.S.); (B.B.)
| | - Robert Allan
- Research Centre for Applied Sport, Physical Activity and Performance, School of Sport & Health Sciences, Faculty of Allied Health and Wellbeing, University of Central Lancashire, Preston PR1 2HE, UK; (S.D.); (R.A.); (G.S.); (B.B.)
| | - Gareth Shadwell
- Research Centre for Applied Sport, Physical Activity and Performance, School of Sport & Health Sciences, Faculty of Allied Health and Wellbeing, University of Central Lancashire, Preston PR1 2HE, UK; (S.D.); (R.A.); (G.S.); (B.B.)
| | - Bobbie Butters
- Research Centre for Applied Sport, Physical Activity and Performance, School of Sport & Health Sciences, Faculty of Allied Health and Wellbeing, University of Central Lancashire, Preston PR1 2HE, UK; (S.D.); (R.A.); (G.S.); (B.B.)
| |
Collapse
|
47
|
Cai J, Lv L, Zeng X, Zhang F, Chen Y, Tian W, Li J, Li X, Li Y. Integrative Analysis of Metabolomics and Transcriptomics Reveals Molecular Mechanisms of Anthocyanin Metabolism in the Zikui Tea Plant ( Camellia sinensis cv. Zikui). Int J Mol Sci 2022; 23:4780. [PMID: 35563169 PMCID: PMC9103729 DOI: 10.3390/ijms23094780] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/15/2022] [Accepted: 04/24/2022] [Indexed: 02/07/2023] Open
Abstract
In this study, we performed an association analysis of metabolomics and transcriptomics to reveal the anthocyanin biosynthesis mechanism in a new purple-leaf tea cultivar Zikui (Camellia sinensis cv. Zikui) (ZK). Three glycosylated anthocyanins were identified, including petunidin 3-O-glucoside, cyanidin 3-O-galactoside, and cyanidin 3-O-glucoside, and their contents were the highest in ZK leaves at 15 days. This is the first report on petunidin 3-O-glucoside in purple-leaf tea. Integrated analysis of the transcriptome and metabolome identified eleven dependent transcription factors, among which CsMYB90 had strong correlations with petunidin 3-O-glucoside, cyanidin 3-O-galactoside, and cyanidin 3-O-glucoside (PCC > 0.8). Furthermore, we also identified key correlated structural genes, including two positively correlated F3’H (flavonoid-3′-hydroxylase) genes, two positively correlated ANS (anthocyanin synthase) genes, and three negatively correlated PPO (polyphenol oxidase) genes. Overexpression of CsMYB90 in tobacco resulted in dark-purple transgenic calluses. These results showed that the increased accumulation of three anthocyanins in ZK may promote purple-leaf coloration because of changes in the expression levels of genes, including CsMYB90, F3’Hs, ANSs, and PPOs. These findings reveal new insight into the molecular mechanism of anthocyanin biosynthesis in purple-leaf tea plants and provide a series of candidate genes for the breeding of anthocyanin-rich cultivars.
Collapse
Affiliation(s)
- Ju Cai
- The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang 550025, China; (J.C.); (X.Z.); (F.Z.); (Y.C.); (W.T.); (J.L.)
| | - Litang Lv
- College of Tea Sciences, Guizhou University, Guiyang 550025, China;
| | - Xiaofang Zeng
- The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang 550025, China; (J.C.); (X.Z.); (F.Z.); (Y.C.); (W.T.); (J.L.)
| | - Fen Zhang
- The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang 550025, China; (J.C.); (X.Z.); (F.Z.); (Y.C.); (W.T.); (J.L.)
| | - Yulu Chen
- The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang 550025, China; (J.C.); (X.Z.); (F.Z.); (Y.C.); (W.T.); (J.L.)
| | - Weili Tian
- The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang 550025, China; (J.C.); (X.Z.); (F.Z.); (Y.C.); (W.T.); (J.L.)
| | - Jianrong Li
- The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang 550025, China; (J.C.); (X.Z.); (F.Z.); (Y.C.); (W.T.); (J.L.)
| | - Xiangyang Li
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Yan Li
- The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang 550025, China; (J.C.); (X.Z.); (F.Z.); (Y.C.); (W.T.); (J.L.)
| |
Collapse
|
48
|
Anti-Inflammatory and Antioxidant Properties of Tart Cherry Consumption in the Heart of Obese Rats. BIOLOGY 2022; 11:biology11050646. [PMID: 35625374 PMCID: PMC9138407 DOI: 10.3390/biology11050646] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/20/2022] [Accepted: 04/21/2022] [Indexed: 12/15/2022]
Abstract
Obesity is a risk factor for cardiovascular diseases, frequently related to oxidative stress and inflammation. Dietary antioxidant compounds improve heart health. Here, we estimate the oxidative grade and inflammation in the heart of dietary-induced obese (DIO) rats after exposure to a high-fat diet compared to a standard diet. The effects of tart cherry seed powder and seed powder plus tart cherries juice were explored. Morphological analysis and protein expressions were performed in the heart. The oxidative status was assessed by the measurement of protein oxidation and 4-hydroxynonenal in samples. Immunochemical and Western blot assays were performed to elucidate the involved inflammatory markers as proinflammatory cytokines and cellular adhesion molecules. In the obese rats, cardiomyocyte hypertrophy was accompanied by an increase in oxidative state proteins and lipid peroxidation. However, the intake of tart cherries significantly changed these parameters. An anti-inflammatory effect was raised from tart cherry consumption, as shown by the downregulation of analyzed endothelial cell adhesion molecules and cytokines compared to controls. Tart cherry intake should be recommended as a dietary supplement to prevent or counteract heart injury in obese conditions.
Collapse
|
49
|
Kimble R, Gouinguenet P, Ashor A, Stewart C, Deighton K, Matu J, Griffiths A, Malcomson FC, Joel A, Houghton D, Stevenson E, Minihane AM, Siervo M, Shannon OM, Mathers JC. Effects of a mediterranean diet on the gut microbiota and microbial metabolites: A systematic review of randomized controlled trials and observational studies. Crit Rev Food Sci Nutr 2022; 63:8698-8719. [PMID: 35361035 DOI: 10.1080/10408398.2022.2057416] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Consumption of the Mediterranean dietary pattern (MedDiet) is associated with reduced risk of numerous non-communicable diseases. Modulation of the composition and metabolism of the gut microbiota represents a potential mechanism through which the MedDiet elicits these effects. We conducted a systematic literature search (Prospero registration: CRD42020168977) using PubMed, The Cochrane Library, MEDLINE, SPORTDiscuss, Scopus and CINAHL databases for randomized controlled trials (RCTs) and observational studies exploring the impact of a MedDiet on gut microbiota composition (i.e., relative abundance of bacteria or diversity metrics) and metabolites (e.g., short chain fatty acids). Seventeen RCTs and 17 observational studies were eligible for inclusion in this review. Risk of bias across the studies was mixed but mainly identified as low and unclear. Overall, RCTs and observational studies provided no clear evidence of a consistent effect of a MedDiet on composition or metabolism of the gut microbiota. These findings may be related to the diverse methods across studies (e.g., MedDiet classification and analytical techniques), cohort characteristics, and variable quality of studies. Further, well-designed studies are warranted to advance understanding of the potential effects of the MedDiet using more detailed examination of microbiota and microbial metabolites with reference to emerging characteristics of a healthy gut microbiome.
Collapse
Affiliation(s)
- Rachel Kimble
- Human Nutrition Research Centre, Centre for Healthier Lives, Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Phebee Gouinguenet
- Human Nutrition Research Centre, Centre for Healthier Lives, Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK
- Nutrition & Food Sciences, University of Bordeaux, Bordeaux, France
| | - Ammar Ashor
- Department of Pharmacology, College of Medicine, Al-Mustansiriyah University, Baghdad, Iraq
| | - Christopher Stewart
- Clinical and Translational Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | | | - Jamie Matu
- School of Clinical Applied Sciences, Leeds Beckett University, Leeds, UK
| | - Alex Griffiths
- Institute for Sport, Physical Activity & Leisure, Leeds Beckett University, Leeds, UK
| | - Fiona C Malcomson
- Human Nutrition Research Centre, Centre for Healthier Lives, Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Abraham Joel
- Human Nutrition Research Centre, Centre for Healthier Lives, Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - David Houghton
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Emma Stevenson
- Human Nutrition Research Centre, Centre for Healthier Lives, Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Anne Marie Minihane
- Department of Nutrition and Preventive Medicine, Norwich Medical School, University of East Anglia (UEA), Norwich, UK
| | - Mario Siervo
- School of Life Sciences, The University of Nottingham Medical School, Queen's Medical Centre, Nottingham, UK
| | - Oliver M Shannon
- Human Nutrition Research Centre, Centre for Healthier Lives, Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - John C Mathers
- Human Nutrition Research Centre, Centre for Healthier Lives, Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
50
|
Hahm TH, Tanaka M, Matsui T. Current Knowledge on Intestinal Absorption of Anthocyanins. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:2501-2509. [PMID: 35179384 DOI: 10.1021/acs.jafc.1c08207] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Anthocyanins are flavonoid compounds that are natural color pigments occurring in various colored plants, such as berry fruits, vegetables, and grapes. With the elucidation of their various physiological effects, anthocyanins have been identified as promising functional food ingredients. However, findings on the bioavailability of anthocyanins, which are present in various chemical structures in foods, are limited; their intestinal absorption behaviors, including their transport route(s), have not been fully explained. This perspective overviews the current knowledge and issues and discusses advanced techniques, such as in situ matrix-assisted laser desorption/ionization mass spectrometry imaging, and future perspectives on the study of the bioavailability of anthocyanins.
Collapse
Affiliation(s)
- Tae Hun Hahm
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Mitsuru Tanaka
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Toshiro Matsui
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|