1
|
Garre E, Rhost S, Gustafsson A, Szeponik L, Araujo TF, Quiding-Järbrink M, Helou K, Ståhlberg A, Landberg G. Breast cancer patient-derived scaffolds enhance the understanding of PD-L1 regulation and T cell cytotoxicity. Commun Biol 2025; 8:621. [PMID: 40240529 PMCID: PMC12003762 DOI: 10.1038/s42003-025-08054-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 04/08/2025] [Indexed: 04/18/2025] Open
Abstract
Recent advances as well as obstacles for immune-based cancer treatment strategies, highlight the notable impact of patient cancer microenvironments on the immune cells and immune targets. Here, we use patient-derived scaffolds (PDS) generated from 110 primary breast cancers to monitor the impact of the cancer microenvironment on immune regulators. Pronounced variation in PD-L1 expression is observed in cancer cells adapted to different patient scaffolds. This variation is further linked to clinical observations and correlated with specific proteins detected in the cell-free PDSs using mass spectrometry. When adding T cells to the PDS-based cancer cultures, the killing efficiency of activated T cells vary between the cultures, whereas non-activated T cells modulate the cancer cell PD-L1 expression to treatment-predictive values, matching killing capacities of activated T cells. Surviving cancer cells show enrichment in cancer stem cell and epithelial-to-mesenchymal transition (EMT) features, suggesting that T cells may not efficiently target cells with metastatic potential. We conclude that clinically relevant insights in how to optimally target and guide immune-based cancer therapies can be obtained by including patient-derived scaffolds and cues from the cancer microenvironment in cancer patient handling and drug development.
Collapse
Affiliation(s)
- Elena Garre
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, Sahlgrenska Center for Cancer Research, University of Gothenburg, Gothenburg, Sweden.
- Department of Clinical Pathology, Sahlgrenska University Hospital, Gothenburg, Sweden.
| | - Sara Rhost
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, Sahlgrenska Center for Cancer Research, University of Gothenburg, Gothenburg, Sweden
| | - Anna Gustafsson
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, Sahlgrenska Center for Cancer Research, University of Gothenburg, Gothenburg, Sweden
| | - Louis Szeponik
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Thais Fenz Araujo
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, Sahlgrenska Center for Cancer Research, University of Gothenburg, Gothenburg, Sweden
| | - Marianne Quiding-Järbrink
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Khalil Helou
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Center for Cancer Research, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anders Ståhlberg
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, Sahlgrenska Center for Cancer Research, University of Gothenburg, Gothenburg, Sweden
- Wallenberg Center for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Genetics and Genomics, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Göran Landberg
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, Sahlgrenska Center for Cancer Research, University of Gothenburg, Gothenburg, Sweden.
- Department of Clinical Pathology, Sahlgrenska University Hospital, Gothenburg, Sweden.
| |
Collapse
|
2
|
Dos Santos ALS, Da Silva JL, De Albuquerque LZ, Neto ALA, Da Silva CF, Cerva LAM, Small IA, Rodrigues FR, De Macedo FC, Marcelino CP, Batista PDM, Rego MADC, Borba MACSM, De Melo AC. Unveiling the Landscape of PD-L1 Expression and Tumor-Infiltrating Lymphocyte Subtypes in Advanced Triple-Negative Breast Cancer in Brazil. BREAST CANCER (DOVE MEDICAL PRESS) 2025; 17:349-358. [PMID: 40256247 PMCID: PMC12009053 DOI: 10.2147/bctt.s499373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 03/12/2025] [Indexed: 04/22/2025]
Abstract
Purpose This study aimed to assess the frequency and prognostic significance of programmed cell death ligand 1 (PD-L1) expression and tumor-infiltrating lymphocyte (TIL) subtypes in advanced triple-negative breast cancer (TNBC). Patients and Methods A database search was conducted to identify women with previously untreated locally recurrent inoperable or metastatic TNBC treated between January 2018 and December 2022. The inclusion criteria required formalin-fixed paraffin-embedded samples aged less than four years. PD-L1 expression was evaluated using the PD-L1 IHC 22C3 pharmDx assay, and the combined positive score (CPS) was calculated. TIL subtypes were assessed using immunohistochemical staining. Results The study included 150 patients, with a median age of 51.5 years. The majority of patients were younger than 65 years, postmenopausal, non-white, and had metastatic TNBC. CPS≥10 was observed in 20.9% of cases, mainly in postmenopausal women. No significant differences were found in demographic characteristics and clinicopathological variables across PD-L1 subgroups. Tumors with PD-L1 CPS≥10 had higher expression of CD3+, CD4+, and CD8+ TIL subtypes. Most patients received first-line chemotherapy, with smaller proportions undergoing second, third, and fourth-line treatments. No statistically significant differences were observed in median progression-free survival (PFS) or overall survival (OS) across PD-L1 subgroups in this cohort of chemotherapy-treated patients. Conclusion This study provides insights into the expression profiles of PD-L1 and TIL subtypes in advanced TNBC. The PD-L1 CPS status did not significantly affect survival outcomes, but variations in TIL subtype composition were observed based on PD-L1 CPS status.
Collapse
Affiliation(s)
| | - Jesse Lopes Da Silva
- Division of Clinical Research and Technological Development, Brazilian National Cancer Institute, Rio de Janeiro, Brazil
| | - Lucas Zanetti De Albuquerque
- Division of Clinical Research and Technological Development, Brazilian National Cancer Institute, Rio de Janeiro, Brazil
| | - Antônio Lucas Araújo Neto
- Division of Clinical Research and Technological Development, Brazilian National Cancer Institute, Rio de Janeiro, Brazil
| | - Cecília Ferreira Da Silva
- Division of Clinical Research and Technological Development, Brazilian National Cancer Institute, Rio de Janeiro, Brazil
| | - Luana Aguiar Mesquita Cerva
- Division of Clinical Research and Technological Development, Brazilian National Cancer Institute, Rio de Janeiro, Brazil
| | - Isabele Avila Small
- Division of Clinical Research and Technological Development, Brazilian National Cancer Institute, Rio de Janeiro, Brazil
| | | | | | | | | | | | | | - Andreia Cristina De Melo
- Division of Clinical Research and Technological Development, Brazilian National Cancer Institute, Rio de Janeiro, Brazil
| |
Collapse
|
3
|
Zhao R, Lian W, Xu Q. Sex hormones and immune regulation in ovarian cancer. Discov Oncol 2024; 15:849. [PMID: 39738765 DOI: 10.1007/s12672-024-01675-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 12/06/2024] [Indexed: 01/02/2025] Open
Abstract
Ovarian cancer continues to be a major cause of morbidity and mortality in women, with immune regulation playing a critical role in its progression and treatment response. This review explores the interplay between sex hormones, particularly estrogen and progesterone, and immune regulation in ovarian cancer. We delve into the mechanisms by which these hormones influence immune cell function, modulate immune checkpoints, and alter the tumor microenvironment. Key pathways involving estrogen and progesterone receptors are examined, highlighting their impact on tumor growth and immune evasion. The review also discusses the therapeutic implications of these interactions, including the potential for combining hormone-based therapies with immune checkpoint inhibitors. Personalized medicine approaches, leveraging biomarkers for predicting treatment response, are considered essential for optimizing patient outcomes. Finally, we address current research gaps and future directions, emphasizing the need for advanced research technologies and novel therapeutic strategies to improve the treatment of ovarian cancer through a better understanding of hormone-immune interactions.
Collapse
Affiliation(s)
- Rui Zhao
- Department of Obstetrics and Gynecology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Tianhe District, Guangzhou, 510623, Guangdong, China
| | - Wenqin Lian
- Department of Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Tianhe District, Guangzhou, 510623, Guangdong, China.
| | - Qiong Xu
- Department of Obstetrics and Gynecology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Tianhe District, Guangzhou, 510623, Guangdong, China.
| |
Collapse
|
4
|
Jiang QH, Hu H, Xu ZH, Duan P, Li ZH, Tan JT. Impact of neoadjuvant chemotherapy on perioperative immune function in breast cancer patients: a propensity score-matched retrospective study. Sci Rep 2024; 14:18738. [PMID: 39134566 PMCID: PMC11319620 DOI: 10.1038/s41598-024-69546-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 08/06/2024] [Indexed: 08/15/2024] Open
Abstract
To evaluate the impact of neoadjuvant chemotherapy on perioperative immune function in breast cancer patients, focusing on CD3+, CD4+, CD8+, and natural killer (NK) cells, as well as the CD4+/CD8+ ratio. We retrospectively reviewed medical records of breast cancer patients who underwent surgery with or without neoadjuvant chemotherapy at our medical center from January 2020 to December 2022. Patients were matched 1:1 based on propensity scores. Immune cell proportions and the CD4+/CD8+ ratio were compared on preoperative day one and postoperative days one and seven. Among matched patients, immune cell proportions and the CD4+/CD8+ ratio did not significantly differ between those who received neoadjuvant chemotherapy and those who did not at any of the three time points. Similar results were observed in chemotherapy-sensitive patients compared to the entire group of patients who did not receive neoadjuvant chemotherapy. However, chemotherapy-insensitive patients had significantly lower proportions of CD4+ and NK cells, as well as a lower CD4+/CD8+ ratio, at all three time points compared to patients who did not receive neoadjuvant chemotherapy. Neoadjuvant chemotherapy may impair immune function in chemotherapy-insensitive patients, but not in those who are sensitive to the treatment.
Collapse
Affiliation(s)
- Qi-Hua Jiang
- Department of Breast Surgery, The Third Hospital of Nanchang, No. 2, Xiangshan South Road, Xi hu District, Nanchang City, 330008, Jiangxi Province, China
| | - Hai Hu
- Department of Breast Surgery, The Third Hospital of Nanchang, No. 2, Xiangshan South Road, Xi hu District, Nanchang City, 330008, Jiangxi Province, China
- Department of General Surgery, The Third Hospital of Nanchang, Nanchang City, 330008, China
| | - Zhi-Hong Xu
- Department of Breast Surgery, The Third Hospital of Nanchang, No. 2, Xiangshan South Road, Xi hu District, Nanchang City, 330008, Jiangxi Province, China
| | - Peng Duan
- Jiangxi Province Key Laboratory of Breast Diseases, The Third Hospital of Nanchang, Nanchang City, 330008, China.
- Department of Endocrinology, The Third Hospital of Nanchang, No. 2, Xiangshan South Road, Xihu District, Nanchang City, 330008, Jiangxi Province, China.
| | - Zhi-Hua Li
- Department of Breast Surgery, The Third Hospital of Nanchang, No. 2, Xiangshan South Road, Xi hu District, Nanchang City, 330008, Jiangxi Province, China.
- Jiangxi Province Key Laboratory of Breast Diseases, The Third Hospital of Nanchang, Nanchang City, 330008, China.
| | - Jun-Tao Tan
- Department of Breast Surgery, The Third Hospital of Nanchang, No. 2, Xiangshan South Road, Xi hu District, Nanchang City, 330008, Jiangxi Province, China.
- Jiangxi Province Key Laboratory of Breast Diseases, The Third Hospital of Nanchang, Nanchang City, 330008, China.
| |
Collapse
|
5
|
Jorns JM, Sun Y, Kamaraju S, Cheng YC, Kong A, Yen T, Patten CR, Cortina CS, Chitambar CR, Rui H, Chaudhary LN. Divergent Cellular Expression Patterns of PD-L1 and PD-L2 Proteins in Breast Cancer. J Pers Med 2024; 14:478. [PMID: 38793060 PMCID: PMC11121947 DOI: 10.3390/jpm14050478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/27/2024] [Accepted: 04/28/2024] [Indexed: 05/26/2024] Open
Abstract
PD-L1 immunohistochemistry (IHC) has become an established method for predicting cancer response to targeted anti-PD1 immunotherapies, including breast cancer (BC). The alternative PD-1 ligand, PD-L2, remains understudied but may be a complementary predictive marker. Prospective analysis of 32 breast cancers revealed divergent expression patterns of PD-L1 and PD-L2. PD-L1-positivity was higher in immune cells than in cancer cells (median = 5.0% vs. 0.0%; p = 0.001), whereas PD-L2-positivity was higher in cancer cells than immune cells (median = 30% vs. 5.0%; p = 0.001). Percent positivity of PD-L1 and PD-L2 were not correlated, neither in cancer cells nor immune cells. Based on a cut-point of ≥1% positivity, ER+ tumors (n = 23) were frequently PD-L2-positive (73.9%), whereas only 40.9% were PD-L1-positive. These data suggest differential control of cellular PD-L1 and PD-L2 expression in BC and a potential role for PD-L2 IHC as a complementary marker to PD-L1 to improve selection of aggressive ER+ BC that may benefit from anti-PD-1 therapy.
Collapse
Affiliation(s)
- Julie M. Jorns
- Department of Pathology, Froedtert and Medical College of Wisconsin, Milwaukee, WI 53226, USA;
| | - Yunguang Sun
- Department of Pathology, Froedtert and Medical College of Wisconsin, Milwaukee, WI 53226, USA;
| | - Sailaja Kamaraju
- Division of Hematology and Oncology, Department of Medicine, Froedtert and Medical College of Wisconsin, Milwaukee, WI 53226, USA; (S.K.); (Y.C.C.); (C.R.C.); (L.N.C.)
| | - Yee Chung Cheng
- Division of Hematology and Oncology, Department of Medicine, Froedtert and Medical College of Wisconsin, Milwaukee, WI 53226, USA; (S.K.); (Y.C.C.); (C.R.C.); (L.N.C.)
| | - Amanda Kong
- Division of Surgical Oncology, Department of Surgery, Froedtert and Medical College of Wisconsin, Milwaukee, WI 53226, USA; (A.K.); (T.Y.); (C.S.C.)
| | - Tina Yen
- Division of Surgical Oncology, Department of Surgery, Froedtert and Medical College of Wisconsin, Milwaukee, WI 53226, USA; (A.K.); (T.Y.); (C.S.C.)
| | - Caitlin R. Patten
- Division of Surgical Oncology, Department of Surgery, Froedtert and Medical College of Wisconsin, Milwaukee, WI 53226, USA; (A.K.); (T.Y.); (C.S.C.)
| | - Chandler S. Cortina
- Division of Surgical Oncology, Department of Surgery, Froedtert and Medical College of Wisconsin, Milwaukee, WI 53226, USA; (A.K.); (T.Y.); (C.S.C.)
| | - Christopher R. Chitambar
- Division of Hematology and Oncology, Department of Medicine, Froedtert and Medical College of Wisconsin, Milwaukee, WI 53226, USA; (S.K.); (Y.C.C.); (C.R.C.); (L.N.C.)
| | - Hallgeir Rui
- Department of Pharmacology, Physiology & Cancer Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19144, USA;
- Sidney Kimmel Cancer Center, Philadelphia, PA 19144, USA
| | - Lubna N. Chaudhary
- Division of Hematology and Oncology, Department of Medicine, Froedtert and Medical College of Wisconsin, Milwaukee, WI 53226, USA; (S.K.); (Y.C.C.); (C.R.C.); (L.N.C.)
| |
Collapse
|
6
|
Kina Kilicaslan U, Aru B, Aydin Aksu S, Vardar Aker F, Yanikkaya Demirel G, Gurleyik MG. Relationship between immune checkpoint proteins and neoadjuvant chemotherapy response in breast cancer. Surg Oncol 2024; 52:102037. [PMID: 38290327 DOI: 10.1016/j.suronc.2024.102037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 01/02/2024] [Accepted: 01/19/2024] [Indexed: 02/01/2024]
Abstract
INTRODUCTION Following major developments in cancer immunotherapy, treatments targeting immune checkpoint proteins (ICP) gained interest in breast cancer, though studies mostly focus on patients with metastatic disease as well as patients nonresponsive to the conventional treatments. Herein, we aimed to investigate the levels of ICP in tumor stroma and tumor infiltrating lymphocytes, and tumor tissue prior to neoadjuvant chemotherapy administration to evaluate the relationship between ICP levels, clinicopathological parameters, and NAC response. MATERIALS AND METHODS This study was conducted with 51 patients where PD-1, PD-L1, CTLA-4, TIM-3, CD24 and CD44 levels were investigated in CD45+ cells while CD326, CD24, CD44 and PD-L1 protein expression levels were investigated in CD45- population. In addition, CD44 and CD24 levels were evaluated in the tumor stroma. TIL levels were investigated according to the TILS Working Group. Treatment responses after NAC were evaluated according to the MD Anderson RCB score. RESULTS Our results revealed positive correlation between CTLA-4 and CD44 expression in cases with high TIL levels as well as TIL levels and CTLA-4 expression in cases with partial response. Similarly, positive correlation was detected between TIM3 and PD-L1 levels in cases with good response. In addition, a negative correlation between TILs after NAC and PD-1/PD-L1 expression in lymphocytes in cases with partial complete response. CONCLUSIONS Our study provides preliminary data about the correlation between ICP and clinicopathological status and NAC response in breast cancer, in addition to underlining the requirement for further research to determine their potential as therapeutic targets.
Collapse
Affiliation(s)
- Umut Kina Kilicaslan
- Department of General Surgery, Istanbul Haydarpasa Numune Training and Research Hospital, University of Health Sciences Turkey, İstanbul, Turkey
| | - Basak Aru
- Department of Immunology, Faculty of Medicine, Yeditepe University, Istanbul, Turkey
| | - Sibel Aydin Aksu
- Department of Radiology, Istanbul Haydarpasa Numune Training and Research Hospital, University of Health Sciences Turkey, İstanbul, Turkey
| | - Fugen Vardar Aker
- Department of Pathology, Istanbul Haydarpasa Numune Training and Research Hospital, University of Health Sciences Turkey, İstanbul, Turkey
| | | | - Meryem Gunay Gurleyik
- Department of General Surgery, Istanbul Haydarpasa Numune Training and Research Hospital, University of Health Sciences Turkey, İstanbul, Turkey.
| |
Collapse
|
7
|
Zubareva E, Senchukova M, Karmakova T. Predictive significance of HIF-1α, Snail, and PD-L1 expression in breast cancer. Clin Exp Med 2023; 23:2369-2383. [PMID: 36802309 DOI: 10.1007/s10238-023-01026-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 02/08/2023] [Indexed: 02/23/2023]
Abstract
Currently, the prediction of breast cancer (BC) effectiveness to drug treatment is based on determining the expression level of steroid hormone receptors and human epidermal growth factor receptor type 2 (HER2). However, significant differences in individual response to drug treatment require the search for new predictive markers. Here, by comprehensively examining HIF-1α, Snail, and PD-L1 expression in BC tumor tissue, we demonstrate that high levels of these markers correlate with unfavorable factors of BC prognosis: the presence of regional and distant metastases and lymphovascular and perineural invasion. Analyzing the predictive significance of markers, we show that the most significant predictors of chemoresistant HER2-negative BC are a high PD-L1 level and a low Snail level, while in HER2-positive BC, only a high PD-L1 level is an independent predictor of chemoresistant BC. Our results suggest that using immune checkpoint inhibitors in these groups of patients may improve drug therapy effectiveness.
Collapse
Affiliation(s)
- Evgenia Zubareva
- Mammological Center, Orenburg Regional Clinical Oncology Center, Orenburg, Orenburg Region, Russian Federation, 460021
| | - Marina Senchukova
- Department of Oncology, Orenburg State Medical University, Orenburg, Orenburg Region, Russian Federation, 460000.
| | - Tatyana Karmakova
- Department of Predicting the Effectiveness of Conservative Therapy, P.A. Herzen Moscow Oncology Research Institute, Branch of the National Medical Research Radiological Center of the Ministry of Health of Russian Federation, Moscow, Moscow Region, Russian Federation, 125284
| |
Collapse
|
8
|
Hoffmann O, Wormland S, Bittner AK, Collenburg M, Horn PA, Kimmig R, Kasimir-Bauer S, Rebmann V. Programmed death receptor ligand-2 (PD-L2) bearing extracellular vesicles as a new biomarker to identify early triple-negative breast cancer patients at high risk for relapse. J Cancer Res Clin Oncol 2023; 149:1159-1174. [PMID: 35366112 PMCID: PMC9984327 DOI: 10.1007/s00432-022-03980-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 03/09/2022] [Indexed: 12/24/2022]
Abstract
PURPOSE Based on the tumor-promoting features of extracellular vesicles (EV) and PD-L1/2-bearing EV subpopulations (PD-L1/2EV), we evaluated their potential as surrogate markers for disease progression or eligibility criteria for PD-1 immune checkpoint inhibition (ICI) approaches in early triple-negative breast cancer (TNBC). METHODS After enrichment of EV from plasma samples of 56 patients before and 50 after chemotherapy (CT), we determined levels of EV particle number and PD-L1/2EV by nanoparticle tracking analysis or ELISA and associated the results with clinical status/outcome and the presence of distinct circulating tumor cells (CTC) subpopulations. RESULTS Compared to healthy controls, patients had a tenfold higher EV concentration and significantly elevated PD L2EV but not PD L1EV levels. The most important clinical implications were found for PD-L2EV. High PD-L2EV levels were associated with a significantly reduced 3-year progression-free and overall survival (PFS and OS). A loss of PD-L2EV after CT was significantly more prominent in patients achieving pathological complete response (pCR). Increased pre-CT PD-L2EV levels were found in patients having NOTCH1-positive or ERBB3-positive CTC. The presence of ERBB3-positive CTC combined with high pre-CT PD-L2EV resulted in a shorter PFS. CONCLUSION This study highlights PD L2EV as a promising biomarker for risk assessment of TNBC patients and represents the basic for additional studies introducing PD-L2EV as an eligibility criterion for PD-1 ICI approaches.
Collapse
Affiliation(s)
- Oliver Hoffmann
- Department of Gynecology and Obstetrics, University Hospital of Essen, Hufelandstrasse 55, 45122, Essen, Germany.
| | - Sebastian Wormland
- Institute for Transfusion Medicine, University Hospital Essen, Hufelandstrasse 55, 45122, Essen, Germany
| | - Ann-Kathrin Bittner
- Department of Gynecology and Obstetrics, University Hospital of Essen, Hufelandstrasse 55, 45122, Essen, Germany
| | - Monika Collenburg
- Institute for Transfusion Medicine, University Hospital Essen, Hufelandstrasse 55, 45122, Essen, Germany
| | - Peter A Horn
- Institute for Transfusion Medicine, University Hospital Essen, Hufelandstrasse 55, 45122, Essen, Germany
| | - Rainer Kimmig
- Department of Gynecology and Obstetrics, University Hospital of Essen, Hufelandstrasse 55, 45122, Essen, Germany
| | - Sabine Kasimir-Bauer
- Department of Gynecology and Obstetrics, University Hospital of Essen, Hufelandstrasse 55, 45122, Essen, Germany
| | - Vera Rebmann
- Institute for Transfusion Medicine, University Hospital Essen, Hufelandstrasse 55, 45122, Essen, Germany.
| |
Collapse
|
9
|
Chervoneva I, Peck AR, Sun Y, Yi M, Udhane SS, Langenheim JF, Girondo MA, Jorns JM, Chaudhary LN, Kamaraju S, Bergom C, Flister MJ, Hooke JA, Kovatich AJ, Shriver CD, Hu H, Palazzo JP, Bibbo M, Hyslop T, Nevalainen MT, Pestell RG, Fuchs SY, Mitchell EP, Rui H. High PD-L2 Predicts Early Recurrence of ER-Positive Breast Cancer. JCO Precis Oncol 2023; 7:e2100498. [PMID: 36652667 PMCID: PMC9928763 DOI: 10.1200/po.21.00498] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 09/26/2022] [Accepted: 12/08/2022] [Indexed: 01/20/2023] Open
Abstract
PURPOSE T-cell-mediated cytotoxicity is suppressed when programmed cell death-1 (PD-1) is bound by PD-1 ligand-1 (PD-L1) or PD-L2. Although PD-1 inhibitors have been approved for triple-negative breast cancer, the lower response rates of 25%-30% in estrogen receptor-positive (ER+) breast cancer will require markers to identify likely responders. The focus of this study was to evaluate whether PD-L2, which has higher affinity than PD-L1 for PD-1, is a predictor of early recurrence in ER+ breast cancer. METHODS PD-L2 protein levels in cancer cells and stromal cells of therapy-naive, localized or locoregional ER+ breast cancers were measured retrospectively by quantitative immunofluorescence histocytometry and correlated with progression-free survival (PFS) in the main study cohort (n = 684) and in an independent validation cohort (n = 273). All patients subsequently received standard-of-care adjuvant therapy without immune checkpoint inhibitors. RESULTS Univariate analysis of the main cohort revealed that high PD-L2 expression in cancer cells was associated with shorter PFS (hazard ratio [HR], 1.8; 95% CI, 1.3 to 2.6; P = .001), which was validated in an independent cohort (HR, 2.3; 95% CI, 1.1 to 4.8; P = .026) and remained independently predictive after multivariable adjustment for common clinicopathological variables (HR, 2.0; 95% CI, 1.4 to 2.9; P < .001). Subanalysis of the ER+ breast cancer patients treated with adjuvant chemotherapy (n = 197) revealed that high PD-L2 levels in cancer cells associated with short PFS in univariate (HR, 2.5; 95% CI, 1.4 to 4.4; P = .003) and multivariable analyses (HR, 3.4; 95% CI, 1.9 to 6.2; P < .001). CONCLUSION Up to one third of treatment-naive ER+ breast tumors expressed high PD-L2 levels, which independently predicted poor clinical outcome, with evidence of further elevated risk of progression in patients who received adjuvant chemotherapy. Collectively, these data warrant studies to gain a deeper understanding of PD-L2 in the progression of ER+ breast cancer and may provide rationale for immune checkpoint blockade for this patient group.
Collapse
Affiliation(s)
- Inna Chervoneva
- Division of Biostatistics, Thomas Jefferson University, Philadelphia, PA
| | - Amy R. Peck
- Department of Pathology, Medical College of Wisconsin, Milwaukee, WI
| | - Yunguang Sun
- Department of Pathology, Medical College of Wisconsin, Milwaukee, WI
| | - Misung Yi
- Division of Biostatistics, Thomas Jefferson University, Philadelphia, PA
| | - Sameer S. Udhane
- Department of Pathology, Medical College of Wisconsin, Milwaukee, WI
| | | | | | - Julie M. Jorns
- Department of Pathology, Medical College of Wisconsin, Milwaukee, WI
| | | | - Sailaja Kamaraju
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI
| | - Carmen Bergom
- Department Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI
| | | | - Jeffrey A. Hooke
- John P. Murtha Cancer Center, Uniformed Services University, Bethesda, MD
| | - Albert J. Kovatich
- John P. Murtha Cancer Center, Uniformed Services University, Bethesda, MD
| | - Craig D. Shriver
- John P. Murtha Cancer Center, Uniformed Services University, Bethesda, MD
| | - Hai Hu
- Chan Soon-Shiong Institute of Molecular Medicine at Windber, Windber, PA
| | - Juan P. Palazzo
- Department of Pathology, Thomas Jefferson University, Philadelphia, PA
| | - Marluce Bibbo
- Department of Pathology, Thomas Jefferson University, Philadelphia, PA
| | - Terry Hyslop
- Center for Health Equity, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA
| | | | - Richard G. Pestell
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, Doylestown, PA
- The Wistar Cancer Center, Philadelphia, PA
| | - Serge Y. Fuchs
- Department of Biomedical Sciences, University of Pennsylvania, Philadelphia, PA
| | - Edith P. Mitchell
- Department of Medical Oncology, Thomas Jefferson University, Philadelphia, PA
| | - Hallgeir Rui
- Department of Pathology, Medical College of Wisconsin, Milwaukee, WI
| |
Collapse
|
10
|
Imanishi S, Morishima H, Gotoh T. Significance of the effects of chemotherapy on programmed death-ligand 1 expression in triple-negative breast cancer. Jpn J Clin Oncol 2022; 52:1167-1175. [PMID: 35766179 DOI: 10.1093/jjco/hyac106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 06/07/2022] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Atezolizumab has been approved as an antibody against programmed death-ligand 1 (PD-L1)-positive immune cells in patients with advanced or recurrent triple-negative breast cancer. However, the optimal timing to examine PD-L1 expression remains controversial. We retrospectively researched PD-L1 positivity rates in biopsy, surgical and recurrent specimens from patients with triple-negative breast cancer treated with neoadjuvant chemotherapy. We also examined alterations in PD-L1 and their meaning. METHODS In total, 35 triple-negative breast cancer biopsy specimens obtained before neoadjuvant chemotherapy, 20 corresponding specimens obtained after neoadjuvant chemotherapy and 5 corresponding recurrent specimens were obtained. We examined PD-L1 immunohistochemistry on tumor cells and tumor-infiltrating immune cells using SP142 antibody. RESULTS In comparison with specimens obtained before neoadjuvant chemotherapy, PD-L1 expression randomly changed in immune cells after neoadjuvant chemotherapy, but PD-L1 expression was significantly reduced in tumor cells. Pre-neoadjuvant chemotherapy specimens with low PD-L1 expression (PD-L1 scores of ≤1 for both immune cells and tumor cells) were linked to better disease-free survival (P < 0.001) and overall survival (P < 0.001) than the other specimens. CONCLUSION This is the first study to evaluate PD-L1 expression both before and after chemotherapy in breast cancer and examine its relationship with prognosis. The results suggest that the PD-L1 level may be useful for predicting the prognosis of patients with triple-negative breast cancer who do not have pathological complete responses to neoadjuvant chemotherapy.
Collapse
Affiliation(s)
- Seiichi Imanishi
- Department of Breast Surgery, Osaka Rosai Hospital, Sakai city, Osaka, Japan
| | - Hirotaka Morishima
- Department of Breast Surgery, Osaka Rosai Hospital, Sakai city, Osaka, Japan
| | - Takayoshi Gotoh
- Department of Diagnostic Pathology, Osaka Rosai Hospital, Sakai city, Osaka, Japan
| |
Collapse
|
11
|
Chen L, Huang S, Liu Q, Kong X, Su Z, Zhu M, Fang Y, Zhang L, Li X, Wang J. PD-L1 Protein Expression Is Associated With Good Clinical Outcomes and Nomogram for Prediction of Disease Free Survival and Overall Survival in Breast Cancer Patients Received Neoadjuvant Chemotherapy. Front Immunol 2022; 13:849468. [PMID: 35669769 PMCID: PMC9163312 DOI: 10.3389/fimmu.2022.849468] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 04/26/2022] [Indexed: 11/13/2022] Open
Abstract
ObjectiveThis study aims to investigate the potential prognostic significance of programmed death ligand-1 (PD-L1) protein expression in tumor cells of breast cancer patients received neoadjuvant chemotherapy (NACT).MethodsUsing semiquantitative immunohistochemistry, the PD-L1 protein expression in breast cancer tissues was analyzed. The correlations between PD-L1 protein expression and clinicopathologic characteristics were analyzed using Chi-square test or Fisher’s exact test. The survival curve was stemmed from Kaplan-Meier assay, and the log-rank test was used to compare survival distributions against individual index levels. Univariate and multivariate Cox proportional hazards regression models were accessed to analyze the associations between PD-L1 protein expression and survival outcomes. A predictive nomogram model was constructed in accordance with the results of multivariate Cox model. Calibration analyses and decision curve analyses (DCA) were performed for the calibration of the nomogram model, and subsequently adopted to assess the accuracy and benefits of the nomogram model.ResultsA total of 104 breast cancer patients received NACT were enrolled into this study. According to semiquantitative scoring for IHC, patients were divided into: low PD-L1 group (61 cases) and high PD-L1 group (43 cases). Patients with high PD-L1 protein expression were associated with longer disease free survival (DFS) (mean: 48.21 months vs. 31.16 months; P=0.011) and overall survival (OS) (mean: 83.18 months vs. 63.31 months; P=0.019) than those with low PD-L1 protein expression. Univariate and multivariate analyses indicated that PD-L1, duration of neoadjuvant therapy, E-Cadherin, targeted therapy were the independent prognostic factors for patients’ DFS and OS. Nomogram based on these independent prognostic factors was used to evaluate the DFS and OS time. The calibration plots shown PD-L1 based nomogram predictions were basically consistent with actual observations for assessments of 1-, 3-, and 5-year DFS and OS time. The DCA curves indicated the PD-L1 based nomogram had better predictive clinical applications regarding prognostic assessments of 3- and 5-year DFS and OS, respectively.ConclusionHigh PD-L1 protein expression was associated with significantly better prognoses and longer DFS and OS in breast cancer patients. Furthermore, PD-L1 protein expression was found to be a significant prognostic factor for patients who received NACT.
Collapse
Affiliation(s)
- Li Chen
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shaolong Huang
- Department of Thyroid and Breast, Burn and Plastic Surgery, Tongren City People’s Hospital, Tongren, China
| | - Qiang Liu
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiangyi Kong
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhaohui Su
- School of Public Health, Southeast University, Nanjing, China
| | - Mengliu Zhu
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yi Fang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lin Zhang
- Melbourne School of Population and Global Health, The University of Melbourne, VIC, Australia
- Centre of Cancer Research, Victorian Comprehensive Cancer Centre, Melbourne, VIC, Australia
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- *Correspondence: Lin Zhang, ; Xingrui Li, ; Jing Wang,
| | - Xingrui Li
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Lin Zhang, ; Xingrui Li, ; Jing Wang,
| | - Jing Wang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- *Correspondence: Lin Zhang, ; Xingrui Li, ; Jing Wang,
| |
Collapse
|
12
|
Alhesa A, Awad H, Bloukh S, Al-Balas M, El-Sadoni M, Qattan D, Azab B, Saleh T. PD-L1 expression in breast invasive ductal carcinoma with incomplete pathological response to neoadjuvant chemotherapy. Int J Immunopathol Pharmacol 2022; 36:3946320221078433. [PMID: 35225058 PMCID: PMC8891930 DOI: 10.1177/03946320221078433] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Objectives: To investigate the expression of programmed death-ligand 1 (PD-L1) in breast cancer in association with incomplete pathological response (PR) to neoadjuvant chemotherapy (NAC). Methods PD-L1 expression was evaluated using immunohistochemistry in post-operative, post-NAC samples of 60 patients (n = 60) diagnosed with breast invasive ductal carcinoma with incomplete PR to NAC, including 31 matched pre-NAC and post-NAC samples (n = 31). PD-L1 protein expression was assessed using three scoring approaches, including the tumor proportion score (TPS), the immune cell score (ICS), and the combined tumor and immune cell score (combined positive score, CPS) with a 1% cut-off. Results In the post-operative, post-NAC samples (n = 60), positive expression rate of PD-L1 was observed in 18.3% (11/60) of cases by TPS, 31.7% (19/60) by ICS, and 25% (15/60) by CPS. In matched samples, positive expression rate of PD-L1 was observed in 19.3% (6/31) of patients by TPS, 51.6% (16/31) by ICS, and 19.3% (6/31) by CPS in pre-NAC specimens, while it was observed in 22.6% (7/31) of matched post-NAC samples by TPS, 22.6% (7/31) by ICS, and 19.3% (6/31) by CPS. In the matched samples, there was a significant decrease in PD-L1 immunoexpression using ICS in post-NAC specimens (McNemar’s, p = 0.020), while no significant differences were found using TPS and CPS between pre- and post-NAC samples (p = 1.000, p = 0.617; respectively). PD-L1 immunoexpression determined by TPS or CPS was only significantly associated with ER status (p = 0.022, p = 0.021; respectively), but not with other clinicopathological variables. We could not establish a correlation between PD-L1 expression and the overall survival rate (p > 0.05). There were no significant differences in the tumor infiltrating lymphocytes count between the paired pre- and post-NAC samples (t = 0.581, p = 0.563 or Wilcoxon’s Signed Rank test; z = -0.625, p = 0.529). Conclusion Our findings indicate that PD-L1 protein expression in infiltrating immune cells was significantly reduced in breast tumors that developed incomplete PR following the exposure to NAC.
Collapse
Affiliation(s)
- Ahmad Alhesa
- Department of Pathology, Microbiology and Forensic Medicine, School of Medicine, The University of Jordan, Amman, Jordan
| | - Heyam Awad
- Department of Pathology, Microbiology and Forensic Medicine, School of Medicine, The University of Jordan, Amman, Jordan
| | - Sarah Bloukh
- Department of Pathology, Microbiology and Forensic Medicine, School of Medicine, The University of Jordan, Amman, Jordan
| | - Mahmoud Al-Balas
- Department of General and Specialized Surgery, Faculty of Medicine, The Hashemite University, Zarqa, Jordan
| | - Mohammed El-Sadoni
- Department of Pathology, Microbiology and Forensic Medicine, School of Medicine, The University of Jordan, Amman, Jordan
| | - Duaa Qattan
- Department of Pathology, Microbiology and Forensic Medicine, School of Medicine, The University of Jordan, Amman, Jordan
| | - Bilal Azab
- Department of Pathology, Microbiology and Forensic Medicine, School of Medicine, The University of Jordan, Amman, Jordan
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Tareq Saleh
- Department of Basic Medical Sciences, Faculty of Medicine, The Hashemite University, Zarqa, Jordan
| |
Collapse
|
13
|
Feng J, Zhao D, Lv F, Yuan Z. Epigenetic Inheritance From Normal Origin Cells Can Determine the Aggressive Biology of Tumor-Initiating Cells and Tumor Heterogeneity. Cancer Control 2022; 29:10732748221078160. [PMID: 35213254 PMCID: PMC8891845 DOI: 10.1177/10732748221078160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
The acquisition of genetic- and epigenetic-abnormalities during transformation has been recognized as the two fundamental factors that lead to tumorigenesis and determine the aggressive biology of tumor cells. However, there is a regularity that tumors derived from less-differentiated normal origin cells (NOCs) usually have a higher risk of vascular involvement, lymphatic and distant metastasis, which can be observed in both lymphohematopoietic malignancies and somatic cancers. Obviously, the hypothesis of genetic- and epigenetic-abnormalities is not sufficient to explain how the linear relationship between the cellular origin and the biological behavior of tumors is formed, because the cell origin of tumor is an independent factor related to tumor biology. In a given system, tumors can originate from multiple cell types, and tumor-initiating cells (TICs) can be mapped to different differentiation hierarchies of normal stem cells, suggesting that the heterogeneity of the origin of TICs is not completely chaotic. TIC’s epigenome includes not only genetic- and epigenetic-abnormalities, but also established epigenetic status of genes inherited from NOCs. In reviewing previous studies, we found much evidence supporting that the status of many tumor-related “epigenetic abnormalities” in TICs is consistent with that of the corresponding NOC of the same differentiation hierarchy, suggesting that they may not be true epigenetic abnormalities. So, we speculate that the established statuses of genes that control NOC’s migration, adhesion and colonization capabilities, cell-cycle quiescence, expression of drug transporters, induction of mesenchymal formation, overexpression of telomerase, and preference for glycolysis can be inherited to TICs through epigenetic memory and be manifested as their aggressive biology. TICs of different origins can maintain different degrees of innate stemness from NOC, which may explain why malignancies with stem cell phenotypes are usually more aggressive.
Collapse
Affiliation(s)
- Jiliang Feng
- Clinical-Pathology Center, Capital Medical University Affiliated Beijing Youan Hospital, Beijing, China
| | - Dawei Zhao
- Medical Imaging Department, Capital Medical University Affiliated Beijing Youan Hospital, Beijing, China
| | - Fudong Lv
- Clinical-Pathology Center, Capital Medical University Affiliated Beijing Youan Hospital, Beijing, China
| | - Zhongyu Yuan
- Clinical-Pathology Center, Capital Medical University Affiliated Beijing Youan Hospital, Beijing, China
| |
Collapse
|
14
|
da Silva JL, de Albuquerque LZ, Rodrigues FR, de Mesquita GG, Fernandes PV, Thuler LCS, de Melo AC. Prognostic Influence of Residual Tumor-Infiltrating Lymphocyte Subtype After Neoadjuvant Chemotherapy in Triple-Negative Breast Cancer. Front Oncol 2021; 11:636716. [PMID: 34858800 PMCID: PMC8630741 DOI: 10.3389/fonc.2021.636716] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 10/18/2021] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVE This study aimed to examine the prevalence and prognostic role of tumor microenvironment (TME) in triple-negative breast cancer (TNBC) after neoadjuvant chemotherapy (NACT) through immunohistochemical characterization. METHODS The internal database of the Brazilian National Cancer Institute for women diagnosed with TNBC who underwent NACT and thereafter curative surgery between January 2010 and December 2014 was queried out. Core biopsy specimens and tissue microarrays containing surgical samples of TNBC from 171 and 134 women, respectively, were assessed by immunohistochemistry for CD3, CD4, CD8, CD14, CD56, CD68, CD117, FOXP3, PD-1, PD-L1, and PD-L2. Immune cell profiles were analyzed and correlated with response and survival. RESULTS Mean age was 50.5 years, and most cases were clinical stage III [143 cases (83.6%)]. According to the multivariate analysis, only Ki67 and clinical stage significantly influenced the pattern of response to systemic treatment (p = 0.019 and p = 0.033, respectively). None of the pre-NACT IHC markers showed a significant association with event-free survival (EFS) or overall survival (OS). As for post-NACT markers, patients with high CD14 had significantly shorter EFS (p = 0.015), while patients with high CD3 (p = 0.025), CD4 (p = 0.025), CD8 (p = 0.030), CD14 (p = 0.015), FOXP3 (p = 0.005), high CD4/FOXP3 (p = 0.034), and CD8/FOXP3 (p = 0.008) showed longer EFS. Only high post-NACT CD4 showed significantly influenced OS (p = 0.038). CONCLUSION The present study demonstrated that the post-NACT TIL subtype can be a determining factor in the prognosis of patients with TNBC.
Collapse
Affiliation(s)
- Jesse Lopes da Silva
- Division of Clinical Research and Technological Development, Brazilian National Cancer Institute, Rio de Janeiro, Brazil
| | - Lucas Zanetti de Albuquerque
- Division of Clinical Research and Technological Development, Brazilian National Cancer Institute, Rio de Janeiro, Brazil
| | | | - Guilherme Gomes de Mesquita
- Division of Clinical Research and Technological Development, Brazilian National Cancer Institute, Rio de Janeiro, Brazil
- Division of Pathology, Brazilian National Cancer Institute, Rio de Janeiro, Brazil
| | | | - Luiz Claudio Santos Thuler
- Division of Clinical Research and Technological Development, Brazilian National Cancer Institute, Rio de Janeiro, Brazil
| | - Andreia Cristina de Melo
- Division of Clinical Research and Technological Development, Brazilian National Cancer Institute, Rio de Janeiro, Brazil
| |
Collapse
|
15
|
Davey MG, Hynes SO, Kerin MJ, Miller N, Lowery AJ. Ki-67 as a Prognostic Biomarker in Invasive Breast Cancer. Cancers (Basel) 2021; 13:4455. [PMID: 34503265 PMCID: PMC8430879 DOI: 10.3390/cancers13174455] [Citation(s) in RCA: 133] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/31/2021] [Accepted: 09/01/2021] [Indexed: 12/12/2022] Open
Abstract
The advent of molecular medicine has transformed breast cancer management. Breast cancer is now recognised as a heterogenous disease with varied morphology, molecular features, tumour behaviour, and response to therapeutic strategies. These parameters are underpinned by a combination of genomic and immunohistochemical tumour factors, with estrogen receptor (ER) status, progesterone receptor (PgR) status, human epidermal growth factor receptor-2 (HER2) status, Ki-67 proliferation indices, and multigene panels all playing a contributive role in the substratification, prognostication and personalization of treatment modalities for each case. The expression of Ki-67 is strongly linked to tumour cell proliferation and growth and is routinely evaluated as a proliferation marker. This review will discuss the clinical utility, current pitfalls, and promising strategies to augment Ki-67 proliferation indices in future breast oncology.
Collapse
Affiliation(s)
- Matthew G. Davey
- Discipline of Surgery, The Lambe Institute for Translational Research, National University of Ireland, H91 YR71 Galway, Ireland; (M.J.K.); (N.M.); (A.J.L.)
- Department of Surgery, Galway University Hospitals, H91 YR71 Galway, Ireland
| | - Sean O. Hynes
- Department of Histopathology, National University of Ireland, H91 YR71 Galway, Ireland;
| | - Michael J. Kerin
- Discipline of Surgery, The Lambe Institute for Translational Research, National University of Ireland, H91 YR71 Galway, Ireland; (M.J.K.); (N.M.); (A.J.L.)
| | - Nicola Miller
- Discipline of Surgery, The Lambe Institute for Translational Research, National University of Ireland, H91 YR71 Galway, Ireland; (M.J.K.); (N.M.); (A.J.L.)
| | - Aoife J. Lowery
- Discipline of Surgery, The Lambe Institute for Translational Research, National University of Ireland, H91 YR71 Galway, Ireland; (M.J.K.); (N.M.); (A.J.L.)
| |
Collapse
|
16
|
Hossain F, Majumder S, David J, Miele L. Precision Medicine and Triple-Negative Breast Cancer: Current Landscape and Future Directions. Cancers (Basel) 2021; 13:cancers13153739. [PMID: 34359640 PMCID: PMC8345034 DOI: 10.3390/cancers13153739] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 07/10/2021] [Accepted: 07/13/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary The implementation of precision medicine will revolutionize cancer treatment paradigms. Notably, this goal is not far from reality: genetically similar cancers can be treated similarly. The heterogeneous nature of triple-negative breast cancer (TNBC) made it a suitable candidate to practice precision medicine. Using TNBC molecular subtyping and genomic profiling, a precision medicine-based clinical trial is ongoing. This review summarizes the current landscape and future directions of precision medicine and TNBC. Abstract Triple-negative breast cancer (TNBC) is an aggressive and heterogeneous subtype of breast cancer associated with a high recurrence and metastasis rate that affects African-American women disproportionately. The recent approval of targeted therapies for small subgroups of TNBC patients by the US ‘Food and Drug Administration’ is a promising development. The advancement of next-generation sequencing, particularly somatic exome panels, has raised hopes for more individualized treatment plans. However, the use of precision medicine for TNBC is a work in progress. This review will discuss the potential benefits and challenges of precision medicine for TNBC. A recent clinical trial designed to target TNBC patients based on their subtype-specific classification shows promise. Yet, tumor heterogeneity and sub-clonal evolution in primary and metastatic TNBC remain a challenge for oncologists to design adaptive precision medicine-based treatment plans.
Collapse
Affiliation(s)
- Fokhrul Hossain
- Department of Genetics, Louisiana State University Health Sciences Center (LSUHSC), New Orleans, LA 70112, USA; (S.M.); (L.M.)
- Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center (LSUHSC), New Orleans, LA 70112, USA
- Correspondence:
| | - Samarpan Majumder
- Department of Genetics, Louisiana State University Health Sciences Center (LSUHSC), New Orleans, LA 70112, USA; (S.M.); (L.M.)
- Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center (LSUHSC), New Orleans, LA 70112, USA
| | - Justin David
- School of Medicine, Louisiana State University Health Sciences Center (LSUHSC), New Orleans, LA 70112, USA;
| | - Lucio Miele
- Department of Genetics, Louisiana State University Health Sciences Center (LSUHSC), New Orleans, LA 70112, USA; (S.M.); (L.M.)
- Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center (LSUHSC), New Orleans, LA 70112, USA
- School of Medicine, Louisiana State University Health Sciences Center (LSUHSC), New Orleans, LA 70112, USA;
| |
Collapse
|
17
|
Zong B, Sun L, Peng Y, Wang Y, Yu Y, Lei J, Zhang Y, Guo S, Li K, Liu S. HORMAD1 promotes docetaxel resistance in triple negative breast cancer by enhancing DNA damage tolerance. Oncol Rep 2021; 46:138. [PMID: 34036395 PMCID: PMC8165579 DOI: 10.3892/or.2021.8089] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 04/28/2021] [Indexed: 12/13/2022] Open
Abstract
HORMA domain‑containing protein 1 (HORMAD1), is normally expressed only in the germline, but is frequently re‑activated in human triple‑negative breast cancer (TNBC); however, its function in TNBC is largely unknown. In the present study, the expression and biological significance of HORMAD1 in human TNBC was evaluated. Bioinformatics analysis and reverse transcription‑quantitative PCR were used to evaluate HORMAD1 expression in datasets and cell lines. HORMAD1 protein expression was detected in TNBC samples using immunohistochemical assays, and the effect of HORMAD1 on cell proliferation was determined using Cell Counting Kit‑8, plate colony formation and standard growth curve assays. Cell cycle, reactive oxygen species (ROS) and apoptosis analyses were conducted using flow cytometry. The activity of caspases was measured using caspase activity assay kit. The levels of key apoptosis regulators and autophagy markers were detected by western blot analysis. TNBC cell survival and apoptosis were not influenced by small interfering RNA targeting HORMAD1 alone; however, HORMAD1 knockdown enhanced autophagy and docetaxel (Doc)‑induced apoptosis, compared with the control group. Furthermore, higher ROS levels and caspase‑3, ‑8 and ‑9 activity were detected in MDA‑MB‑436 TNBC cells with HORMAD1 knockdown upon exposure to Doc. The levels of the induced DNA damage marker γH2AX were also higher, while those of the DNA repair protein RAD51 were lower in TNBC cells with HORMAD1 knockdown compared with the controls. Furthermore, the expression of the autophagy marker P62 was enhanced in MDA‑MB‑231 cells in response to HORMAD1 overexpression. Notably, Doc‑induced apoptosis was similarly increased by both HORMAD1 overexpression and treatment with the autophagy inhibitor, 3‑methyladenine (3MA); however, the Doc‑induced increase in autophagy was not inhibited by 3MA. The present data indicated that HORMAD1 was involved in autophagy and that the inhibition of autophagy can partially enhance the induction of apoptosis by Doc. The role of HORMAD1 in the DNA damage tolerance of tumor cells may be the main reason for Doc resistance; hence, HORMAD1 could be an important therapeutic target in TNBC.
Collapse
Affiliation(s)
- Beige Zong
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, P.R. China
- Chongqing City Key Lab of Translational Medical Research in Cognitive Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Lu Sun
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, P.R. China
| | - Yang Peng
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, P.R. China
- Chongqing City Key Lab of Translational Medical Research in Cognitive Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Yihua Wang
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, P.R. China
| | - Yu Yu
- Department of Pathology, Chongqing Medical University, Chongqing 400015, P.R. China
| | - Jinwei Lei
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, P.R. China
- Chongqing City Key Lab of Translational Medical Research in Cognitive Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Yingzi Zhang
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, P.R. China
- Chongqing City Key Lab of Translational Medical Research in Cognitive Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Shipeng Guo
- Chongqing City Key Lab of Translational Medical Research in Cognitive Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Kang Li
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, P.R. China
- Chongqing City Key Lab of Translational Medical Research in Cognitive Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Shengchun Liu
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, P.R. China
| |
Collapse
|
18
|
Davey MG, Ryan ÉJ, Davey MS, Lowery AJ, Miller N, Kerin MJ. Clinicopathological and prognostic significance of programmed cell death ligand 1 expression in patients diagnosed with breast cancer: meta-analysis. Br J Surg 2021; 108:622-631. [PMID: 33963374 PMCID: PMC10364926 DOI: 10.1093/bjs/znab103] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/06/2021] [Accepted: 02/25/2021] [Indexed: 12/29/2022]
Abstract
BACKGROUND Uncertainty exists regarding the clinical relevance of programmed cell death ligand 1 (PD-L1) expression in breast cancer. METHODS A systematic review was performed in accordance with PRISMA guidelines. Observational studies that compared high versus low expression of PD-L1 on breast cancer cells were identified. Log hazard ratios (HRs) for disease-free and overall survival and their standard errors were calculated from Kaplan-Meier curves or Cox regression analyses, and pooled using the inverse-variance method. Dichotomous variables were pooled as odds ratios (ORs) using the Mantel-Haenszel method. RESULTS Sixty-five studies with 19 870 patients were included; 14 404 patients were classified as having low and 4975 high PD-L1 expression. High PD-L1 was associated with achieving a pathological complete response following neoadjuvant chemotherapy (OR 3.30, 95 per cent confidence interval 1.19 to 9.16; P < 0.01; I2 = 85 per cent). Low PD-L1 expression was associated with human epidermal growth factor receptor 2 (OR 3.98, 1.81 to 8.75; P < 0.001; I2 = 96 per cent) and luminal (OR 14.93, 6.46 to 34.51; P < 0.001; I2 = 99 per cent) breast cancer subtypes. Those with low PD-L1 had favourable overall survival rates (HR 1.30, 1.05 to 1.61; P = 0.02; I2 = 85 per cent). CONCLUSION Breast cancers with high PD-L1 expression are associated with aggressive clinicopathological and immunohistochemical characteristics and are more likely to achieve a pathological complete response following neoadjuvant chemotherapy. These breast cancers are, however, associated with worse overall survival outcomes.
Collapse
Affiliation(s)
- M G Davey
- Lambe Institute for Translational Research, National University of Ireland, Galway, Ireland
- Department of Surgery, Galway University Hospitals, Galway, Ireland
| | - É J Ryan
- Department of Surgery, Galway University Hospitals, Galway, Ireland
- Department of Surgery, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - M S Davey
- Department of Surgery, Galway University Hospitals, Galway, Ireland
- Department of Surgery, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - A J Lowery
- Lambe Institute for Translational Research, National University of Ireland, Galway, Ireland
- Department of Surgery, Galway University Hospitals, Galway, Ireland
| | - N Miller
- Lambe Institute for Translational Research, National University of Ireland, Galway, Ireland
- Department of Surgery, Galway University Hospitals, Galway, Ireland
| | - M J Kerin
- Lambe Institute for Translational Research, National University of Ireland, Galway, Ireland
- Department of Surgery, Galway University Hospitals, Galway, Ireland
| |
Collapse
|
19
|
Sarradin V, Lusque A, Filleron T, Dalenc F, Franchet C. Immune microenvironment changes induced by neoadjuvant chemotherapy in triple-negative breast cancers: the MIMOSA-1 study. Breast Cancer Res 2021; 23:61. [PMID: 34039396 PMCID: PMC8157437 DOI: 10.1186/s13058-021-01437-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 05/12/2021] [Indexed: 02/06/2023] Open
Abstract
Background The immune microenvironment (IME) of triple-negative breast cancers (TNBCs) and its modulation by neoadjuvant chemotherapy (NACT) remain to be fully characterized. Our current study aims to evaluate NACT-induced IME changes and assess the prognostic value of specific immune biomarkers. Methods Tumor-infiltrating lymphocytes (TILs) were identified from hematoxylin-eosin-stained sections of paired pre- and post-NACT tumor samples from a TNBC cohort (n = 66) and expression of PD-L1, TIM-3, and LAG-3 evaluated by immunohistochemistry. Results Overall TIL counts and PD-L1 expression did not differ pre- and post-NACT, but there was a response-specific statistically significant difference. TIL counts decreased in 65.5% of patients who achieved a pathological complete response (pCR) and increased in 56.8% of no-pCR patients (p = 0.0092). PD-L1 expression was significantly more frequently lost after NACT in pCR than in no-pCR patients (41.4% vs 16.2%, p = 0.0020). TIM-3 positivity (≥ 1%) was significantly more frequent after NACT (p < 0.0001) with increases in expression levels occurring more frequently in no-pCR than in pCR patients (51.4% vs 31%). LAG-3 expression significantly decreased after NACT, but there was no difference between response groups. Before NACT, a high TIL count (> 10%) was significantly associated with better overall survival (OS), p = 0.0112. After NACT, PD-L1 positivity and strong TIM-3 positivity (≥ 5%) were both associated with significantly worse OS (p = 0.0055 and p = 0.0274, respectively). Patients positive for both PD-L1 and TIM-3 had the worst prognosis (p = 0.0020), even when only considering patients who failed to achieve a pCR, p = 0.0479. Conclusions NACT induces significant IME changes in TNBCs. PD-L1 and TIM-3 expression post-NACT may yield important prognostic information for TNBC patients. Supplementary Information The online version contains supplementary material available at 10.1186/s13058-021-01437-4.
Collapse
Affiliation(s)
- Victor Sarradin
- Department of Medical Oncology, Institut Claudius Regaud, Institut Universitaire du Cancer de Toulouse, IUCT-Oncopole, 1 avenue Irène Joliot-Curie, 31059, Toulouse Cedex 9, France.
| | - Amélie Lusque
- Department of Biostatistics, Institut Claudius Regaud, Institut Universitaire du Cancer de Toulouse, IUCT-Oncopole, Toulouse, France
| | - Thomas Filleron
- Department of Biostatistics, Institut Claudius Regaud, Institut Universitaire du Cancer de Toulouse, IUCT-Oncopole, Toulouse, France
| | - Florence Dalenc
- Department of Medical Oncology, Institut Claudius Regaud, Institut Universitaire du Cancer de Toulouse, IUCT-Oncopole, 1 avenue Irène Joliot-Curie, 31059, Toulouse Cedex 9, France
| | - Camille Franchet
- Department of Pathology, Institut Claudius Regaud, Institut Universitaire du Cancer de Toulouse, IUCT-Oncopole, Toulouse, France
| |
Collapse
|
20
|
Graeser M, Feuerhake F, Gluz O, Volk V, Hauptmann M, Jozwiak K, Christgen M, Kuemmel S, Grischke EM, Forstbauer H, Braun M, Warm M, Hackmann J, Uleer C, Aktas B, Schumacher C, Kolberg-Liedtke C, Kates R, Wuerstlein R, Nitz U, Kreipe HH, Harbeck N. Immune cell composition and functional marker dynamics from multiplexed immunohistochemistry to predict response to neoadjuvant chemotherapy in the WSG-ADAPT-TN trial. J Immunother Cancer 2021; 9:e002198. [PMID: 33963012 PMCID: PMC8108653 DOI: 10.1136/jitc-2020-002198] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/24/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The association of early changes in the immune infiltrate during neoadjuvant chemotherapy (NACT) with pathological complete response (pCR) in triple-negative breast cancer (TNBC) remains unexplored. METHODS Multiplexed immunohistochemistry was performed in matched tumor biopsies obtained at baseline and after 3 weeks of NACT from 66 patients from the West German Study Group Adjuvant Dynamic Marker-Adjusted Personalized Therapy Trial Optimizing Risk Assessment and Therapy Response Prediction in Early Breast Cancer - Triple Negative Breast Cancer (WSG-ADAPT-TN) trial. Association between CD4, CD8, CD73, T cells, PD1-positive CD4 and CD8 cells, and PDL1 levels in stroma and/or tumor at baseline, week 3 and 3-week change with pCR was evaluated with univariable logistic regression. RESULTS Compared with no change in immune cell composition and functional markers, transition from 'cold' to 'hot' (below-median and above-median marker level at baseline, respectively) suggested higher pCR rates for PD1-positive CD4 (tumor: OR=1.55, 95% CI 0.45 to 5.42; stroma: OR=2.65, 95% CI 0.65 to 10.71) and PD1-positive CD8 infiltrates (tumor: OR=1.77, 95% CI 0.60 to 5.20; stroma: OR=1.25, 95% CI 0.41 to 3.84; tumor+stroma: OR=1.62, 95% CI 0.51 to 5.12). No pCR was observed after 'hot-to-cold' transition in PD1-positive CD8 cells. pCR rates appeared lower after hot-to-cold transitions in T cells (tumor: OR=0.26, 95% CI 0.03 to 2.34; stroma: OR=0.35, 95% CI 0.04 to 3.25; tumor+stroma: OR=0.00, 95% CI 0.00 to 1.04) and PD1-positive CD4 cells (tumor: OR=0.60, 95% CI 0.11 to 3.35; stroma: OR=0.22, 95% CI 0.03 to 1.92; tumor+stroma: OR=0.32, 95% CI 0.04 to 2.94). Higher pCR rates collated with 'altered' distribution (levels below-median and above-median in tumor and stroma, respectively) of T cell (OR=3.50, 95% CI 0.84 to 14.56) and PD1-positive CD4 cells (OR=4.50, 95% CI 1.01 to 20.14). CONCLUSION Our exploratory findings indicate that comprehensive analysis of early immune infiltrate dynamics complements currently investigated predictive markers for pCR and may have a potential to improve guidance for individualized de-escalation/escalation strategies in TNBC.
Collapse
Affiliation(s)
- Monika Graeser
- West German Study Group, Moenchengladbach, Germany
- Breast Center Niederrhein, Bethesda Protestant Hospital Monchengladbach, Monchengladbach, Germany
- Department of Gynecology, University Medical Center Hamburg, Hamburg, Germany
| | - Friedrich Feuerhake
- Institute of Pathology, Medical School Hannover, Hannover, Germany
- Institute of Neuropathology, University Clinic Freiburg, Freiburg, Germany
| | - Oleg Gluz
- West German Study Group, Moenchengladbach, Germany
- Breast Center Niederrhein, Bethesda Protestant Hospital Monchengladbach, Monchengladbach, Germany
- University Clinics Cologne, Cologne, Germany
| | - Valery Volk
- Institute of Pathology, Medical School Hannover, Hannover, Germany
| | - Michael Hauptmann
- Institute of Biostatistics and Registry Research, Brandenburg Medical School Theodor Fontane, Neuruppin, Germany
| | - Katarzyna Jozwiak
- Institute of Biostatistics and Registry Research, Brandenburg Medical School Theodor Fontane, Neuruppin, Germany
| | | | - Sherko Kuemmel
- West German Study Group, Moenchengladbach, Germany
- Breast Unit, Kliniken Essen-Mitte, Essen, Germany
- University Hospital Charité, Humboldt University, Berlin, Germany
| | | | | | - Michael Braun
- Breast Center, Rotkreuz Clinics Munich, Munich, Germany
| | - Mathias Warm
- Breast Center, City Hospital Holweide, Cologne, Germany
| | | | | | - Bahriye Aktas
- Women's Clinic, University Clinics Essen, Essen, Germany
- Women's Clinic, University Clinics Leipzig, Leipzig, Germany
| | | | - Cornelia Kolberg-Liedtke
- University Hospital Charité, Humboldt University, Berlin, Germany
- Women's Clinic, University Clinics Essen, Essen, Germany
| | - Ronald Kates
- West German Study Group, Moenchengladbach, Germany
| | - Rachel Wuerstlein
- West German Study Group, Moenchengladbach, Germany
- Breast Center, Department of Gynecology and Obstetrics and CCCLMU, LMU University Hospital, Munich, Germany
| | - Ulrike Nitz
- West German Study Group, Moenchengladbach, Germany
- Breast Center Niederrhein, Bethesda Protestant Hospital Monchengladbach, Monchengladbach, Germany
| | | | - Nadia Harbeck
- West German Study Group, Moenchengladbach, Germany
- Breast Center, Department of Gynecology and Obstetrics and CCCLMU, LMU University Hospital, Munich, Germany
| |
Collapse
|
21
|
Ghosh J, Chatterjee M, Ganguly S, Datta A, Biswas B, Mukherjee G, Agarwal S, Ahmed R, Chatterjee S, Dabkara D. PDL1 expression and its correlation with outcomes in non-metastatic triple-negative breast cancer (TNBC). Ecancermedicalscience 2021; 15:1217. [PMID: 34158821 PMCID: PMC8183644 DOI: 10.3332/ecancer.2021.1217] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Indexed: 12/13/2022] Open
Abstract
Purpose Triple-negative breast cancer (TNBC) has a poor outcome compared to other subtypes, even in those with early disease. Immune checkpoint inhibitors (ICIs) have been approved in metastatic diseases and are being tested as a neoadjuvant strategy also. The response to ICIs is largely determined by the programmed death ligand 1 (PDL1) score, which also acts as a prognostic marker for outcomes. Here, we report the proportion of PDL1 expression in non-metastatic TNBC and its correlation with response to chemotherapy and outcomes. Methods We included all patients who had non-metastatic TNBC treated with neoadjuvant chemotherapy, followed by surgery with/without adjuvant radiotherapy between September 2011 and November 2017. PDL1 testing was carried out on pre-treatment tumour cells with immunohistochemistry (Ventana SP142) and was correlated with pathological response, relapse-free survival (RFS) and overall survival (OS). PDL1 staining was interpreted as negative or positive (more than 1% staining). Results A total of 107 patients were included for analysis with a median age of 47 years (28–65 yrs). The PDL1 expression of more than 1% was seen in 31 (28.97%) patients. After a median follow-up of 55 months (range: 4–93 months), median RFS and OS were not reached. PDL1 expression did not affect the achievement of pathological complete response (pCR). However, PDL1 expression improved OS (p = 0.016) and trend towards RFS (p = 0.05). Patients who achieved pCR had better RFS and OC compared to those who did not. Conclusion Our study shows PDL1 expression in 29% of the cases. PDL1 expression leads to better RFS and OS. Also, pCR improves survival.
Collapse
Affiliation(s)
- Joydeep Ghosh
- Department of Medical Oncology, Tata Medical Center, 14 MAR (E-W), New Town, Rajarhat, Kolkata, West Bengal 700156, India
| | - Meheli Chatterjee
- Department of Medical Oncology, Tata Medical Center, 14 MAR (E-W), New Town, Rajarhat, Kolkata, West Bengal 700156, India
| | - Sandip Ganguly
- Department of Medical Oncology, Tata Medical Center, 14 MAR (E-W), New Town, Rajarhat, Kolkata, West Bengal 700156, India
| | - Anupurva Datta
- Department of Pathology, Tata Medical Center, 14 MAR (E-W), New Town, Rajarhat, Kolkata, West Bengal 700156, India
| | - Bivas Biswas
- Department of Medical Oncology, Tata Medical Center, 14 MAR (E-W), New Town, Rajarhat, Kolkata, West Bengal 700156, India
| | - Geetashree Mukherjee
- Department of Pathology, Tata Medical Center, 14 MAR (E-W), New Town, Rajarhat, Kolkata, West Bengal 700156, India
| | - Sanjit Agarwal
- Department of Breast Oncology, Tata Medical Center, 14 MAR (E-W), New Town, Rajarhat, Kolkata, West Bengal 700156, India
| | - Rosina Ahmed
- Department of Breast Oncology, Tata Medical Center, 14 MAR (E-W), New Town, Rajarhat, Kolkata, West Bengal 700156, India
| | - Sanjoy Chatterjee
- Department of Radiation Oncology, Tata Medical Center, 14 MAR (E-W), New Town, Rajarhat, Kolkata, West Bengal 700156, India
| | - Deepak Dabkara
- Department of Medical Oncology, Tata Medical Center, 14 MAR (E-W), New Town, Rajarhat, Kolkata, West Bengal 700156, India
| |
Collapse
|
22
|
Ehmsen S, Ditzel HJ. Signaling pathways essential for triple-negative breast cancer stem-like cells. Stem Cells 2020; 39:133-143. [PMID: 33211379 DOI: 10.1002/stem.3301] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 10/31/2020] [Indexed: 12/24/2022]
Abstract
Since the discovery of breast cancer stem cells (CSCs), a significant effort has been made to identify and characterize these cells. It is a generally believe that CSCs play an important role in cancer initiation, therapy resistance, and progression of triple-negative breast cancer (TNBC), an aggressive breast cancer subtype with poor prognosis. Thus, therapies targeting these cells would be a valuable addition to standard treatments that primarily target more differentiated, rapidly dividing TNBC cells. Although several cell surface and intracellular proteins have been described as biomarkers for CSCs, none of these are specific to this population of cells. Recent research is moving toward cellular signaling pathways as targets and biomarkers for CSCs. The WNT pathway, the nuclear factor-kappa B (NF-κB) pathway, and the cholesterol biosynthesis pathway have recently been identified to play a key role in proliferation, survival, and differentiation of CSCs, including those of breast cancer. In this review, we assess recent findings related to these three pathways in breast CSC, with particular focus on TNBC CSCs, and discuss how targeting these pathways, in combination with current standard of care, might prove effective and improve the prognosis of TNBC patients.
Collapse
Affiliation(s)
- Sidse Ehmsen
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark.,Department of Oncology, Odense University Hospital, Odense, Denmark.,Research Unit of Oncology, Department of Clinical Research, University of Southern Denmark, Odense, Denmark.,Academy of Geriatric Cancer Research (AgeCare), Odense University Hospital, Odense, Denmark
| | - Henrik J Ditzel
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark.,Department of Oncology, Odense University Hospital, Odense, Denmark.,Research Unit of Oncology, Department of Clinical Research, University of Southern Denmark, Odense, Denmark.,Academy of Geriatric Cancer Research (AgeCare), Odense University Hospital, Odense, Denmark
| |
Collapse
|
23
|
Matikas A, Zerdes I, Lövrot J, Sifakis E, Richard F, Sotiriou C, Rassidakis G, Bergh J, Valachis A, Foukakis T. PD-1 protein and gene expression as prognostic factors in early breast cancer. ESMO Open 2020; 5:e001032. [PMID: 33172959 PMCID: PMC7656908 DOI: 10.1136/esmoopen-2020-001032] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 09/30/2020] [Accepted: 10/03/2020] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND There is a paucity of data on the prognostic value of programmed cell death protein 1 (PD-1) protein and gene expression in early breast cancer (BC) and the present study's aim was to comprehensively investigate it. METHODS The study consisted of three parts: a correlative analysis of PD-1 protein and gene expression from an original patient cohort of 564 patients with early BC; a systematic review and trial-level meta-analysis on the association between PD-1 protein expression and disease-free survival/overall survival (OS) in early BC; and a pooled gene expression analysis from publicly available transcriptomic datasets regarding PDCD1 expression. RESULTS In the study cohort, PD-1 protein, but not gene expression, was associated with improved OS (HRadj=0.73, 95% CI 0.55 to 0.97, p=0.027 and HRadj=0.88, 95% CI 0.68 to 1.13, p=0.312, respectively). In the trial-level meta-analysis, PD-1 protein expression was not found to be statistically significantly associated with outcomes in the overall population. Finally, in the pooled gene expression analysis, higher PDCD1 expression was associated with better OS in multivariable analysis in the entire population (HRadj=0.89, 95% CI 0.80 to 0.99, p=0.025) and in basal-like tumours. CONCLUSIONS PD-1 protein and gene expression seem to be promising prognostic factors in early BC. Standardisation of detection and assessment methods is of utmost importance.
Collapse
Affiliation(s)
- Alexios Matikas
- Breast Center, Theme Cancer, Karolinska University Hospital, Stockholm, Sweden; Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Ioannis Zerdes
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden.
| | - John Lövrot
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Emmanouil Sifakis
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | | | - Christos Sotiriou
- Department of Medical Oncology, Institute Jules Bordet, Brussels, Belgium
| | - Georgios Rassidakis
- Department of Pathology and Cytology, Karolinska University Hospital, Stockholm, Sweden
| | - Jonas Bergh
- Breast Center, Theme Cancer, Karolinska University Hospital, Stockholm, Sweden; Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Antonis Valachis
- Department of Oncology, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Theodoros Foukakis
- Breast Center, Theme Cancer, Karolinska University Hospital, Stockholm, Sweden; Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
24
|
Solinas C, Aiello M, Rozali E, Lambertini M, Willard-Gallo K, Migliori E. Programmed cell death-ligand 2: A neglected but important target in the immune response to cancer? Transl Oncol 2020; 13:100811. [PMID: 32622310 PMCID: PMC7332529 DOI: 10.1016/j.tranon.2020.100811] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/05/2020] [Accepted: 05/11/2020] [Indexed: 12/11/2022] Open
Abstract
Programmed cell death-ligand 2 (PD-L2) is one of the two ligands of the programmed cell death-1 (PD-1) receptor, an inhibitory protein mainly expressed on activated immune cells that is targeted in the clinic, with successful and remarkable results. The PD-1/PD-Ls axis was shown to be one of the most relevant immunosuppressive pathways in the immune microenvironment, and blocking this interaction gave rise to an impressive clinical benefit in a broad variety of solid and hematological malignancies. Although PD-L2 has been historically considered a minor ligand, it binds to PD-1 with a two- to six-fold higher affinity as compared to PD-L1. PD-L2 can be expressed by immune, stromal, or tumor cells. The aims of this narrative review are to summarize PD-L2 biology in the physiological responses of the immune system and its role, expression, and clinical significance in cancer.
Collapse
Affiliation(s)
- Cinzia Solinas
- Azienda USL Valle d'Aosta, Regional Hospital of Valle d'Aosta, Aosta, Italy
| | - Marco Aiello
- Medical Oncology Unit, A.O.U. Policlinico San Marco, Catania, Italy
| | - Esdy Rozali
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore
| | - Matteo Lambertini
- IRCCS Ospedale Policlinico San Martino and University of Genova, Genova, Italy
| | | | - Edoardo Migliori
- Columbia University Medical Center, Columbia Center for Translational Immunology, New York, NY, USA.
| |
Collapse
|
25
|
Gupta GK, Collier AL, Lee D, Hoefer RA, Zheleva V, Siewertsz van Reesema LL, Tang-Tan AM, Guye ML, Chang DZ, Winston JS, Samli B, Jansen RJ, Petricoin EF, Goetz MP, Bear HD, Tang AH. Perspectives on Triple-Negative Breast Cancer: Current Treatment Strategies, Unmet Needs, and Potential Targets for Future Therapies. Cancers (Basel) 2020; 12:E2392. [PMID: 32846967 PMCID: PMC7565566 DOI: 10.3390/cancers12092392] [Citation(s) in RCA: 193] [Impact Index Per Article: 38.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/10/2020] [Accepted: 08/20/2020] [Indexed: 12/12/2022] Open
Abstract
Triple-negative breast cancer (TNBC), characterized by the absence or low expression of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor (HER2), is the most aggressive subtype of breast cancer. TNBC accounts for about 15% of breast cancer cases in the U.S., and is known for high relapse rates and poor overall survival (OS). Chemo-resistant TNBC is a genetically diverse, highly heterogeneous, and rapidly evolving disease that challenges our ability to individualize treatment for incomplete responders and relapsed patients. Currently, the frontline standard chemotherapy, composed of anthracyclines, alkylating agents, and taxanes, is commonly used to treat high-risk and locally advanced TNBC. Several FDA-approved drugs that target programmed cell death protein-1 (Keytruda) and programmed death ligand-1 (Tecentriq), poly ADP-ribose polymerase (PARP), and/or antibody drug conjugates (Trodelvy) have shown promise in improving clinical outcomes for a subset of TNBC. These inhibitors that target key genetic mutations and specific molecular signaling pathways that drive malignant tumor growth have been used as single agents and/or in combination with standard chemotherapy regimens. Here, we review the current TNBC treatment options, unmet clinical needs, and actionable drug targets, including epidermal growth factor (EGFR), vascular endothelial growth factor (VEGF), androgen receptor (AR), estrogen receptor beta (ERβ), phosphoinositide-3 kinase (PI3K), mammalian target of rapamycin (mTOR), and protein kinase B (PKB or AKT) activation in TNBC. Supported by strong evidence in developmental, evolutionary, and cancer biology, we propose that the K-RAS/SIAH pathway activation is a major tumor driver, and SIAH is a new drug target, a therapy-responsive prognostic biomarker, and a major tumor vulnerability in TNBC. Since persistent K-RAS/SIAH/EGFR pathway activation endows TNBC tumor cells with chemo-resistance, aggressive dissemination, and early relapse, we hope to design an anti-SIAH-centered anti-K-RAS/EGFR targeted therapy as a novel therapeutic strategy to control and eradicate incurable TNBC in the future.
Collapse
Affiliation(s)
- Gagan K. Gupta
- Leroy T. Canoles Jr. Cancer Research Center, Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA 23501, USA;
| | - Amber L. Collier
- DeWitt Daughtry Family Department of Surgery, Surgical Oncology, University of Miami/Jackson Memorial Hospital, University of Miami Miller School of Medicine, Miami, FL 33131, USA;
| | - Dasom Lee
- Department of Medicine, Internal Medicine, H. Lee Moffitt Cancer Center and Research Institute, University of South Florida, Tampa, FL 33620, USA;
| | - Richard A. Hoefer
- Dorothy G. Hoefer Foundation, Sentara CarePlex Hospital, Newport News, VA 23666, USA;
- Sentara Cancer Network, Sentara Healthcare, Norfolk, VA 23507, USA;
| | - Vasilena Zheleva
- Surgical Oncology, Cancer Treatment Centers of America—Comprehensive Care and Research Center Phoenix, 14200 W Celebrate Life Way, Goodyear, AZ 85338, USA;
| | | | - Angela M. Tang-Tan
- Department of Molecular and Cell Biology, UC Berkeley, Berkeley, CA 94720, USA;
| | - Mary L. Guye
- Sentara Cancer Network, Sentara Healthcare, Norfolk, VA 23507, USA;
- Sentara Surgery Specialists, Sentara CarePlex Hospital, Newport News, VA 23666, USA
| | - David Z. Chang
- Virginia Oncology Associates, 1051 Loftis Boulevard, Suite 100, Newport News, VA 23606, USA;
| | - Janet S. Winston
- Breast Pathology Services, Pathology Sciences Medical Group, Department of Pathology, Sentara Norfolk General Hospital (SNGH), Norfolk, VA 23507, USA; (J.S.W.); (B.S.)
| | - Billur Samli
- Breast Pathology Services, Pathology Sciences Medical Group, Department of Pathology, Sentara Norfolk General Hospital (SNGH), Norfolk, VA 23507, USA; (J.S.W.); (B.S.)
| | - Rick J. Jansen
- Department of Public Health, North Dakota State University, Fargo, ND 58102, USA;
| | - Emanuel F. Petricoin
- Center for Applied Proteomics and Molecular Medicine, School of Systems Biology, George Mason University, Manassas, VA 20110, USA;
| | - Matthew P. Goetz
- Departments of Oncology and Pharmacology, Mayo Clinic Breast Cancer Specialized Program of Research Excellence (SPORE), Women’s Cancer Program, Mayo Clinic Cancer Center, Mayo Clinic, Rochester, MN 55905, USA;
| | - Harry D. Bear
- Departments of Surgery and Microbiology & Immunology, Division of Surgical Oncology, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA;
| | - Amy H. Tang
- Leroy T. Canoles Jr. Cancer Research Center, Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA 23501, USA;
| |
Collapse
|
26
|
Kooshkaki O, Derakhshani A, Hosseinkhani N, Torabi M, Safaei S, Brunetti O, Racanelli V, Silvestris N, Baradaran B. Combination of Ipilimumab and Nivolumab in Cancers: From Clinical Practice to Ongoing Clinical Trials. Int J Mol Sci 2020; 21:ijms21124427. [PMID: 32580338 PMCID: PMC7352976 DOI: 10.3390/ijms21124427] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/15/2020] [Accepted: 06/18/2020] [Indexed: 12/13/2022] Open
Abstract
Cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) and programmed cell death protein 1 (PD-1) are inhibitory checkpoints that are commonly seen on activated T cells and have been offered as promising targets for the treatment of cancers. Immune checkpoint inhibitors (ICIs)targeting PD-1, including pembrolizumab and nivolumab, and those targeting its ligand PD-L1, including avelumab, atezolizumab, and durvalumab, and two drugs targeting CTLA-4, including ipilimumab and tremelimumab have been approved for the treatment of several cancers and many others are under investigating in advanced trial phases. ICIs increased antitumor T cells’ responses and showed a key role in reducing the acquired immune system tolerance which is overexpressed by cancer and tumor microenvironment. However, 50% of patients could not benefit from ICIs monotherapy. To overcome this, a combination of ipilimumab and nivolumab is frequently investigated as an approach to improve oncological outcomes. Despite promising results for the combination of ipilimumab and nivolumab, safety concerns slowed down the development of such strategies. Herein, we review data concerning the clinical activity and the adverse events of ipilimumab and nivolumab combination therapy, assessing ongoing clinical trials to identify clinical outlines that may support combination therapy as an effective treatment. To the best of our knowledge, this paper is one of the first studies to evaluate the efficacy and safety of ipilimumab and nivolumab combination therapy in several cancers.
Collapse
Affiliation(s)
- Omid Kooshkaki
- Student research committee, Birjand University of Medical Sciences, Birjand 9717853577, Iran;
- Department of Immunology, Birjand University of Medical Sciences, Birjand 9717853577, Iran
| | - Afshin Derakhshani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5165665811, Iran; (A.D.); (S.S.)
| | - Negar Hosseinkhani
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz 5166614766, Iran;
| | - Mitra Torabi
- Student research committee, Tabriz University of medical sciences, Tabriz 5165665811, Iran;
| | - Sahar Safaei
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5165665811, Iran; (A.D.); (S.S.)
| | - Oronzo Brunetti
- Medical Oncology Unit, IRCCS IstitutoTumori “Giovanni Paolo II” of Bari, 70124 Bari, Italy;
| | - Vito Racanelli
- Department of Biomedical Sciences and Human Oncology, University of Bari “Aldo Moro”, 70124 Bari, Italy;
| | - Nicola Silvestris
- Medical Oncology Unit, IRCCS IstitutoTumori “Giovanni Paolo II” of Bari, 70124 Bari, Italy;
- Department of Biomedical Sciences and Human Oncology, University of Bari “Aldo Moro”, 70124 Bari, Italy;
- Correspondence: (N.S.); (B.B.)
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5165665811, Iran; (A.D.); (S.S.)
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz 5166614766, Iran;
- Correspondence: (N.S.); (B.B.)
| |
Collapse
|
27
|
Özgür E, Ferhatoğlu F, Şen F, Saip P, Gezer U. Circulating lncRNA H19 may be a useful marker of response to neoadjuvant chemotherapy in breast cancer. Cancer Biomark 2020; 27:11-17. [PMID: 31640083 DOI: 10.3233/cbm-190085] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Novel biomarkers are needed to predict the effectiveness of the treatment of presurgical neoadjuvant chemotherapy (NAC) in breast cancer (BC). OBJECTIVE This is an exploratory study to assess the impact of 3 cancer-related long non-coding RNAs (lncRNAs) (H19, MALAT1 and GA5) in blood plasma of patients with BC in predicting the response to NAC. METHODS The plasma levels of RNAs were relatively measured by quantitative PCR at baseline, and at the end of the fourth cycle of NAC in patients with locally advanced BC. RESULTS Only H19 was associated with patients' characteristics, and with the response to NAC. Higher plasma expression of H19 was associated with younger age at diagnosis, triple negative tumors, and Ki-67 index. Patients with a pathological complete response (20%) had lower pre-therapeutic levels of H19 compared with the non-complete responders (relative levels 0.1 vs 0.2, respectively, P: 0.04). In addition, the patients with higher degree of downstaging of initial tumors had lower baseline levels of H19 among non-complete responders. CONCLUSION Our study reveals that H19, but not MALAT1 and GAS5, may be a useful marker of response to NAC in BC.
Collapse
Affiliation(s)
- Emre Özgür
- Department of Basic Oncology, Oncology Institute, Istanbul University, Istanbul, Turkey
| | - Ferhat Ferhatoğlu
- Department of Medical Oncology, Oncology Institute, Istanbul University, Istanbul, Turkey
| | | | - Pinar Saip
- Department of Medical Oncology, Oncology Institute, Istanbul University, Istanbul, Turkey
| | - Ugur Gezer
- Department of Basic Oncology, Oncology Institute, Istanbul University, Istanbul, Turkey
| |
Collapse
|
28
|
Li X, Wang M, Wang M, Yu X, Guo J, Sun T, Yao L, Zhang Q, Xu Y. Predictive and Prognostic Roles of Pathological Indicators for Patients with Breast Cancer on Neoadjuvant Chemotherapy. J Breast Cancer 2019; 22:497-521. [PMID: 31897326 PMCID: PMC6933033 DOI: 10.4048/jbc.2019.22.e49] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Accepted: 10/11/2019] [Indexed: 02/06/2023] Open
Abstract
Currently, neoadjuvant chemotherapy is a standard therapeutic strategy for breast cancer, as it can provide timely and individualized chemo-sensitivity information and is beneficial for custom-designing subsequent treatment strategies. To accurately select candidates for neoadjuvant chemotherapy, the association between various immunohistochemical biomarkers of primary disease and tumor response to neoadjuvant chemotherapy has been investigated, and results have shown that certain pathological indicators evaluated after neoadjuvant chemotherapy are associated with long-term prognosis. The Food and Drug Administration (FDA) has recommended that complete pathological response can be used as a surrogate endpoint for neoadjuvant chemotherapy, which is related to better prognosis. Considering that residual tumor persists in the majority of patients after neoadjuvant chemotherapy, the value of various pathological indicators of residual disease in predicting the long-term outcomes is being extensively investigated. This review summarizes and compares various predictive and prognostic indicators for patients who have received neoadjuvant chemotherapy, and analyzes their efficacy in different breast cancer subtypes.
Collapse
Affiliation(s)
- Xinyan Li
- Department of Breast Surgery, the First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Mozhi Wang
- Department of Breast Surgery, the First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Mengshen Wang
- Department of Breast Surgery, the First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Xueting Yu
- Department of Breast Surgery, the First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Jingyi Guo
- Department of Breast Surgery, the First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Tie Sun
- Department of Breast Surgery, the First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Litong Yao
- Department of Breast Surgery, the First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Qiang Zhang
- Department of Breast Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning Province, China
| | - Yingying Xu
- Department of Breast Surgery, the First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| |
Collapse
|
29
|
Miglietta F, Griguolo G, Guarneri V, Dieci MV. Programmed Cell Death Ligand 1 in Breast Cancer: Technical Aspects, Prognostic Implications, and Predictive Value. Oncologist 2019; 24:e1055-e1069. [PMID: 31444294 PMCID: PMC6853089 DOI: 10.1634/theoncologist.2019-0197] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 05/15/2019] [Indexed: 12/22/2022] Open
Abstract
In the light of recent advances in the immunotherapy field for breast cancer (BC) treatment, especially in the triple-negative subtype, the identification of reliable biomarkers capable of improving patient selection is paramount, because only a portion of patients seem to derive benefit from this appealing treatment strategy. In this context, the role of programmed cell death ligand 1 (PD-L1) as a potential prognostic and/or predictive biomarker has been intensively explored, with controversial results. The aim of the present review is to collect available evidence on the biological relevance and clinical utility of PD-L1 expression in BC, with particular emphasis on technical aspects, prognostic implications, and predictive value of this promising biomarker. IMPLICATIONS FOR PRACTICE: In the light of the promising results coming from trials of immune checkpoint inhibitors for breast cancer treatment, the potential predictive and/or prognostic role of programmed cell death ligand 1 (PD-L1) in breast cancer has gained increasing interest. This review provides clinicians with an overview of the available clinical evidence regarding PD-L1 as a biomarker in breast cancer, focusing on both data with a possible direct impact on clinic and methodological pitfalls that need to be addressed in order to optimize PD-L1 implementation as a clinically useful tool for breast cancer management.
Collapse
Affiliation(s)
- Federica Miglietta
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy
- Division of Medical Oncology 2, Istituto Oncologico Veneto IRCCS, Padova, Italy
| | - Gaia Griguolo
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy
- Division of Medical Oncology 2, Istituto Oncologico Veneto IRCCS, Padova, Italy
| | - Valentina Guarneri
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy
- Division of Medical Oncology 2, Istituto Oncologico Veneto IRCCS, Padova, Italy
| | - Maria Vittoria Dieci
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy
- Division of Medical Oncology 2, Istituto Oncologico Veneto IRCCS, Padova, Italy
| |
Collapse
|
30
|
Li Y, Cui X, Yang YJ, Chen QQ, Zhong L, Zhang T, Cai RL, Miao JY, Yu SC, Zhang F. Serum sPD-1 and sPD-L1 as Biomarkers for Evaluating the Efficacy of Neoadjuvant Chemotherapy in Triple-Negative Breast Cancer Patients. Clin Breast Cancer 2019; 19:326-332.e1. [DOI: 10.1016/j.clbc.2019.03.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 03/12/2019] [Accepted: 03/27/2019] [Indexed: 12/31/2022]
|
31
|
Targeting PD-1 in cancer: Biological insights with a focus on breast cancer. Crit Rev Oncol Hematol 2019; 142:35-43. [DOI: 10.1016/j.critrevonc.2019.07.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 07/09/2019] [Accepted: 07/14/2019] [Indexed: 12/25/2022] Open
|
32
|
Du Q, Che J, Jiang X, Li L, Luo X, Li Q. PD-L1 Acts as a Promising Immune Marker to Predict the Response to Neoadjuvant Chemotherapy in Breast Cancer Patients. Clin Breast Cancer 2019; 20:e99-e111. [PMID: 31521537 DOI: 10.1016/j.clbc.2019.06.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 05/23/2019] [Accepted: 06/20/2019] [Indexed: 11/28/2022]
Abstract
BACKGROUND Programmed death ligand 1 (PD-L1) is a negative immune stimulatory molecule that plays a key role in tumor immune escape. We analyzed the clinical value of PD-L1-positive expression in predicting the outcome of breast cancer patients and to establish its role as new biomarker to guide precise treatment. PATIENTS AND METHODS PubMed and Embase were searched for all original English-language articles published before January 30, 2019; all articles reported the predictive and prognostic implications of PD-L1+ in breast cancer. Data were analyzed by Stata SE 12 software. RESULTS The PD-L1+ rate varied from 19.7% to 77.6% in breast cancer patients. Specifically, patients with estrogen receptor-positive, progesterone receptor-positive, luminal A, luminal B, and HER2+ disease subtypes had lower PD-L1 expression, while the PD-L1+ percentages did not follow any trend in patients with Ki-67+, normal-like, HER2 overexpression, and basal-like subtype. In addition, PD-L1+ was observed to be associated with significantly improved pathologic complete response to neoadjuvant chemotherapy (odds ratio = 2.01; 95% confidence interval, 1.35-3.01; P < .05). Using PD-L1+ to predict pathologic response showed obvious accuracy. However, PD-L1+ did not show significant association with risk of higher recurrence or metastasis, or higher death risk (hazard ratio = 0.91, P = .655; hazard ratio = 1.00, P = .995). CONCLUSION PD-L1+ is a promising immune parameter with the potential to predict response to neoadjuvant chemotherapy, but it cannot indicate a higher risk of death, recurrence, or metastasis.
Collapse
Affiliation(s)
- Qi Du
- Department of Oncology, Capital Medical University Affiliated Beijing Friendship Hospital, Beijing, PR China
| | - Juanjuan Che
- Department of Oncology, Capital Medical University Affiliated Beijing Friendship Hospital, Beijing, PR China
| | - Xiaoyue Jiang
- Department of Oncology, Capital Medical University Affiliated Beijing Friendship Hospital, Beijing, PR China
| | - Li Li
- Department of Oncology, Capital Medical University Affiliated Beijing Friendship Hospital, Beijing, PR China
| | - Xinyu Luo
- Department of Oncology, Capital Medical University Affiliated Beijing Friendship Hospital, Beijing, PR China
| | - Qin Li
- Department of Oncology, Capital Medical University Affiliated Beijing Friendship Hospital, Beijing, PR China.
| |
Collapse
|
33
|
Huang W, Ran R, Shao B, Li H. Prognostic and clinicopathological value of PD-L1 expression in primary breast cancer: a meta-analysis. Breast Cancer Res Treat 2019; 178:17-33. [PMID: 31359214 DOI: 10.1007/s10549-019-05371-0] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 07/19/2019] [Indexed: 12/31/2022]
Abstract
PURPOSE To evaluate the association between PD-L1 expression (PD-L1+) and clinicopathological characteristics and effect on prognosis in primary breast cancer (PBC). METHODS A systematic search of the PubMed, Web of Science, and Embase databases was conducted in November 2018. Studies detecting PD-L1 using immunohistochemistry, and concerning its prognostic or clinicopathological significance in PBC were included. The HR with 95% CI for survival, and the events for clinicopathological features were pooled. RESULTS Forty-seven studies were included, with a total of 14,367 PBC patients. PD-L1+ tumor cells (TCs) were associated with ductal carcinomas, large tumor size, histological Grade 3 tumors, high Ki-67, ER and PR negative, and triple-negative breast cancer; and also, related to high tumor-infiltrating lymphocytes (TILs) and PD-1 expression. PD-L1+ TCs were significantly associated with shorter disease-free survival (DFS, HR = 1.43, 95% CI 1.21-1.70, P < 0.0001) and overall survival (OS, HR = 1.58, 95% CI 1.14-2.20, P = 0.006). And the HRs of PD-L1+ TCs on DFS and OS were higher (1.48 and 1.70, respectively) and homogeneous when using whole tissue section, compared with tumor microarrays. However, PD-L1+ TILs related to better DFS (HR = 0.45, 95% CI 0.28-0.73, P = 0.001) and OS (HR = 0.41, 95% CI 0.27-0.63, P < 0.0001). CONCLUSION PD-L1 expression on TCs associates with high-risk clinicopathological parameters and poor prognosis in PBC patients, while PD-L1+ TILs may relate to a better survival. Comprehensive assessment of TCs and TILs is required when evaluating the clinical relevance of PD-L1 expression in future studies.
Collapse
Affiliation(s)
- Wenfa Huang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Breast Oncology, Peking University Cancer Hospital and Institute, No. 52, Fucheng Road, Haidian District, Beijing, 100142, China
| | - Ran Ran
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Breast Oncology, Peking University Cancer Hospital and Institute, No. 52, Fucheng Road, Haidian District, Beijing, 100142, China
| | - Bin Shao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Breast Oncology, Peking University Cancer Hospital and Institute, No. 52, Fucheng Road, Haidian District, Beijing, 100142, China
| | - Huiping Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Breast Oncology, Peking University Cancer Hospital and Institute, No. 52, Fucheng Road, Haidian District, Beijing, 100142, China.
| |
Collapse
|
34
|
Matikas A, Zerdes I, Lövrot J, Richard F, Sotiriou C, Bergh J, Valachis A, Foukakis T. Prognostic Implications of PD-L1 Expression in Breast Cancer: Systematic Review and Meta-analysis of Immunohistochemistry and Pooled Analysis of Transcriptomic Data. Clin Cancer Res 2019; 25:5717-5726. [PMID: 31227501 DOI: 10.1158/1078-0432.ccr-19-1131] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 05/15/2019] [Accepted: 06/19/2019] [Indexed: 11/16/2022]
Abstract
PURPOSE Conflicting data have been reported on the prognostic value of PD-L1 protein and gene expression in breast cancer.Experimental Design: Medline, Embase, Cochrane Library, and Web of Science Core Collection were searched, and data were extracted independently by two researchers. Outcomes included pooled PD-L1 protein positivity in tumor cells, immune cells, or both, per subtype and per antibody used, and its prognostic value for disease-free and overall survival. A pooled gene expression analysis of 39 publicly available transcriptomic datasets was also performed. RESULTS Of the initial 4,184 entries, 38 retrospective studies fulfilled the predefined inclusion criteria. The overall pooled PD-L1 protein positivity rate was 24% (95% CI, 15%-33%) in tumor cells and 33% (95% CI, 14%- 56%) in immune cells. PD-L1 protein expression in tumor cells was prognostic for shorter overall survival (HR, 1.63; 95% CI, 1.07-2.46; P = 0.02); there was significant heterogeneity (I2 = 80%, P heterogeneity < 0.001). In addition, higher PD-L1 gene expression predicted better survival in multivariate analysis in the entire population (HR, 0.82; 95% CI, 0.74-0.90; P < 0.001 for OS) and in basal-like tumors (HR, 0.64; 95% CI, 0.52-0.80; P < 0.001 for OS; P interaction 0.005). CONCLUSIONS The largest to our knowledge meta-analysis on the subject informs on PD-L1 protein positivity rates and its prognostic value in breast cancer. Standardization is needed prior to routine implementation. PD-L1 gene expression is a promising prognostic factor, especially in basal-like breast cancer. Discrepant prognostic information might be related to PD-L1 gene expression in the stroma.
Collapse
Affiliation(s)
- Alexios Matikas
- Breast Center, Theme Cancer, Karolinska University Hospital, Stockholm, Sweden. .,Department of Oncology/Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Ioannis Zerdes
- Department of Oncology/Pathology, Karolinska Institutet, Stockholm, Sweden
| | - John Lövrot
- Department of Oncology/Pathology, Karolinska Institutet, Stockholm, Sweden
| | | | | | - Jonas Bergh
- Breast Center, Theme Cancer, Karolinska University Hospital, Stockholm, Sweden.,Department of Oncology/Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Antonios Valachis
- Department of Oncology, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Theodoros Foukakis
- Breast Center, Theme Cancer, Karolinska University Hospital, Stockholm, Sweden.,Department of Oncology/Pathology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
35
|
Hwang SY, Park S, Kwon Y. Recent therapeutic trends and promising targets in triple negative breast cancer. Pharmacol Ther 2019; 199:30-57. [PMID: 30825473 DOI: 10.1016/j.pharmthera.2019.02.006] [Citation(s) in RCA: 151] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 02/04/2019] [Indexed: 12/14/2022]
Abstract
Breast cancer accounts for 25% of all types of cancer in women, and triple negative breast cancer (TNBC) comprises around 15~20% of breast cancers. Conventional chemotherapy and radiation are the primary systemic therapeutic strategies; no other FDA-approved targeted therapies are yet available as for TNBC. TNBC is generally characterized by a poor prognosis and high rates of proliferation and metastases. Due to these aggressive features and lack of targeted therapies, numerous attempts have been made to discover viable molecular targets for TNBC. Massive cohort studies, clinical trials, and in-depth analyses have revealed diverse molecular alterations in TNBC; however, controversy exists as to whether many of these changes are beneficial or detrimental in caner progression. Here we review the complicated tumorigenic processes and discuss critical findings and therapeutic trends in TNBC with a focus on promising therapeutic approaches, the clinical trials currently underway, and potent experimental compounds under preclinical and evaluation.
Collapse
Affiliation(s)
- Soo-Yeon Hwang
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Seojeong Park
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Youngjoo Kwon
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea.
| |
Collapse
|
36
|
Feng Y, Spezia M, Huang S, Yuan C, Zeng Z, Zhang L, Ji X, Liu W, Huang B, Luo W, Liu B, Lei Y, Du S, Vuppalapati A, Luu HH, Haydon RC, He TC, Ren G. Breast cancer development and progression: Risk factors, cancer stem cells, signaling pathways, genomics, and molecular pathogenesis. Genes Dis 2018; 5:77-106. [PMID: 30258937 PMCID: PMC6147049 DOI: 10.1016/j.gendis.2018.05.001] [Citation(s) in RCA: 739] [Impact Index Per Article: 105.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 05/08/2018] [Indexed: 12/14/2022] Open
Abstract
As the most commonly occurring cancer in women worldwide, breast cancer poses a formidable public health challenge on a global scale. Breast cancer consists of a group of biologically and molecularly heterogeneous diseases originated from the breast. While the risk factors associated with this cancer varies with respect to other cancers, genetic predisposition, most notably mutations in BRCA1 or BRCA2 gene, is an important causative factor for this malignancy. Breast cancers can begin in different areas of the breast, such as the ducts, the lobules, or the tissue in between. Within the large group of diverse breast carcinomas, there are various denoted types of breast cancer based on their invasiveness relative to the primary tumor sites. It is important to distinguish between the various subtypes because they have different prognoses and treatment implications. As there are remarkable parallels between normal development and breast cancer progression at the molecular level, it has been postulated that breast cancer may be derived from mammary cancer stem cells. Normal breast development and mammary stem cells are regulated by several signaling pathways, such as estrogen receptors (ERs), HER2, and Wnt/β-catenin signaling pathways, which control stem cell proliferation, cell death, cell differentiation, and cell motility. Furthermore, emerging evidence indicates that epigenetic regulations and noncoding RNAs may play important roles in breast cancer development and may contribute to the heterogeneity and metastatic aspects of breast cancer, especially for triple-negative breast cancer. This review provides a comprehensive survey of the molecular, cellular and genetic aspects of breast cancer.
Collapse
Affiliation(s)
- Yixiao Feng
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, Departments of General Surgery, Clinical Laboratory Medicine, Orthopaedic Surgery, Plastic Surgery and Burn, and Otolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Mia Spezia
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Shifeng Huang
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, Departments of General Surgery, Clinical Laboratory Medicine, Orthopaedic Surgery, Plastic Surgery and Burn, and Otolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Chengfu Yuan
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Biochemistry and Molecular Biology, China Three Gorges University School of Medicine, Yichang 443002, China
| | - Zongyue Zeng
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine and School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Linghuan Zhang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Stem Cell Biology and Therapy Laboratory, Ministry of Education Key Laboratory of Child Development and Disorders, The Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Xiaojuan Ji
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Stem Cell Biology and Therapy Laboratory, Ministry of Education Key Laboratory of Child Development and Disorders, The Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Wei Liu
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, Departments of General Surgery, Clinical Laboratory Medicine, Orthopaedic Surgery, Plastic Surgery and Burn, and Otolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Bo Huang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine and School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
- Department of Clinical Laboratory Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Wenping Luo
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, The Affiliated Hospital of Stomatology, Chongqing Medical University, Chongqing 401147, China
| | - Bo Liu
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, Departments of General Surgery, Clinical Laboratory Medicine, Orthopaedic Surgery, Plastic Surgery and Burn, and Otolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Yan Lei
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, Departments of General Surgery, Clinical Laboratory Medicine, Orthopaedic Surgery, Plastic Surgery and Burn, and Otolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Scott Du
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Student Inquiry Research Program, Illinois Mathematics and Science Academy (IMSA), Aurora, IL 60506, USA
| | - Akhila Vuppalapati
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Student Inquiry Research Program, Illinois Mathematics and Science Academy (IMSA), Aurora, IL 60506, USA
| | - Hue H. Luu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Rex C. Haydon
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Tong-Chuan He
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Guosheng Ren
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, Departments of General Surgery, Clinical Laboratory Medicine, Orthopaedic Surgery, Plastic Surgery and Burn, and Otolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|