1
|
Lei W, Li X, Li S, Zhou F, Guo Y, Zhang M, Jin X, Zhang H. Targeting neutrophils extracellular traps, a promising anti-thrombotic therapy for natural products from traditional Chinese herbal medicine. Biomed Pharmacother 2024; 179:117310. [PMID: 39226727 DOI: 10.1016/j.biopha.2024.117310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/04/2024] [Accepted: 08/13/2024] [Indexed: 09/05/2024] Open
Abstract
Thrombi are the main cause of vascular occlusion and contribute significantly to cardiovascular events and death. Neutrophils extracellular traps (NETs)-induced thrombosis plays a vital role in thrombotic complications and it takes the main responsibility for the resistance of fibrinolysis. However, the conventional anti-thrombotic therapies are inadequate to treat NETs-induced thrombotic complications but carry a high risk of bleeding. Consequently, increased attention has shifted towards exploring novel anti-thrombotic treatments targeting NETs. Interestingly, accumulating evidences prove that natural products from traditional Chinese herbal medicines have a great potential to mitigate thrombosis through inhibiting generous NETs formation and degrading excessive NETs. In this review, we elaborated the formation and degradation of NETs and highlighted its pivotal role in immunothrombosis through interactions with platelets and coagulation factors. Since available anti-thrombotic drugs targeting NETs are deficient, we further summarized the natural products and compounds from traditional Chinese herbal medicines which exert effective actions on regulating NETs formation and also have anti-thrombotic effects. Our findings underscore the diverse effects of natural products in targeting NETs, including relieving inflammation and oxidative stress of neutrophils, inhibiting neutrophils activation and DNA efflux, suppressing granule proteins release, reducing histones and promoting DNA degradation. This review aims to highlight the significance of natural medicines in anti-thrombotic therapies through targeting NETs and to lay a groundwork for developing novel anti-thrombotic agents from traditional Chinese herbal medicines.
Collapse
Affiliation(s)
- Wei Lei
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine,10 Poyanghu Road, Jinghai District, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xiao Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine,10 Poyanghu Road, Jinghai District, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Shanze Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine,10 Poyanghu Road, Jinghai District, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Fengjie Zhou
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine,10 Poyanghu Road, Jinghai District, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yadi Guo
- School of Management, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Mingyan Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine,10 Poyanghu Road, Jinghai District, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xinyao Jin
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine,10 Poyanghu Road, Jinghai District, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Han Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine,10 Poyanghu Road, Jinghai District, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
2
|
Wen Y, Yan PJ, Fan PX, Lu SS, Li MY, Fu XY, Wei SB. The application of rhubarb concoctions in traditional Chinese medicine and its compounds, processing methods, pharmacology, toxicology and clinical research. Front Pharmacol 2024; 15:1442297. [PMID: 39170703 PMCID: PMC11335691 DOI: 10.3389/fphar.2024.1442297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 07/22/2024] [Indexed: 08/23/2024] Open
Abstract
Objective This study reviews the development of rhubarb processing and the current status of pharmacological research. We summarized the effects of different processing methods on the active compounds, pharmacological effects, and toxicity of rhubarb, as well as the clinical application of different concoctions, providing reference for further pharmacological research and clinical application of rhubarb. Methods A comprehensive literature review was conducted using databases such as Pubmed, Embase, National Science and Technology Library, Web of science, CNKI, China Science and Technology Journal Database, SinoMed, and the Pharmacopoeia of the People's Republic of China. Search terms included "rhubarb", "raw rhubarb", "wine rhubarb", "cooked rhubarb", "rhubarb charcoal", "herbal processing", "compounds", "pharmacological effects", "inflammation", "gastrointestinal bleeding", and "tumor". Results Historical records of rhubarb processing date back to the Han Dynasty, with continual innovations. Currently, the types of rhubarb used in traditional Chinese medicine have stabilized to three species: Rheum palmatum L., Rheum tanguticum Maxim.ex Balf. and Rheum officinale Baill. Common concoctions include raw rhubarb, wine rhubarb, cooked rhubarb and rhubarb charcoal. The active compounds of rhubarb are known to defecation, exhibit antibacterial and anti-inflammatory properties, regulate coagulation, protect the digestive system, and possess anti-tumor activities. Guided by Chinese medicine theory, the use of different rhubarb concoctions can enhance specific effects such as purgation to eliminate accumulation, clearing heat and toxins, cooling blood to stop hemorrhages, activating blood circulation to remove blood stasis, and inducing dampness to descend jaundice, thereby effectively treating various diseases. The therapeutic impact of these concoctions on diseases reflects not only in the changes to the active compounds of rhubarb but also in the formulations of traditional Chinese medicine. Processing has also shown advantages in reducing toxicity. Conclusion Different processing methods alter the active compounds of rhubarb, thereby enhancing its various pharmacological effects and meeting the therapeutic needs of diverse diseases. Selecting an appropriate processing method based on the patient's specific conditions can maximize its pharmacological properties and improve clinical outcomes.
Collapse
Affiliation(s)
- Yi Wen
- Gynecology Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Pei-Jia Yan
- Gynecology Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Pei-Xuan Fan
- Gynecology Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shan-Shan Lu
- Gynecology Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Mao-Ya Li
- Gynecology Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xian-Yun Fu
- College of Medicine and Health Sciences, China Three Gorges University, Yichang, China
| | - Shao-Bin Wei
- Gynecology Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
3
|
King PT, Dousha L. Neutrophil Extracellular Traps and Respiratory Disease. J Clin Med 2024; 13:2390. [PMID: 38673662 PMCID: PMC11051312 DOI: 10.3390/jcm13082390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/26/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Extracellular traps made by neutrophils (NETs) and other leukocytes such as macrophages and eosinophils have a key role in the initial immune response to infection but are highly inflammatory and may contribute to tissue damage. They are particularly relevant to lung disease, with the pulmonary anatomy facilitating their ability to fully extend into the airways/alveolar space. There has been a rapid expansion in the number of published studies demonstrating their role in a variety of important respiratory diseases including chronic obstructive pulmonary disease, cystic fibrosis, bronchiectasis, asthma, pneumonia, COVID-19, rhinosinusitis, interstitial lung disease and lung cancer. The expression of NETs and other traps is a specific process, and diagnostic tests need to differentiate them from other inflammatory pathways/causes of cell death that are also characterised by the presence of extracellular DNA. The specific targeting of this pathway by relevant therapeutics may have significant clinical benefit; however, current clinical trials/evidence are at a very early stage. This review will provide a broad overview of the role of NETs and their possible treatment in respiratory disease.
Collapse
Affiliation(s)
- Paul T. King
- Monash Lung, Sleep, Allergy and Immunology, Monash Medical Centre, 246 Clayton Rd, Clayton, Melbourne, VIC 3168, Australia;
- Department of Medicine, Monash University, Clayton, Melbourne, VIC 3168, Australia
| | - Lovisa Dousha
- Monash Lung, Sleep, Allergy and Immunology, Monash Medical Centre, 246 Clayton Rd, Clayton, Melbourne, VIC 3168, Australia;
- Department of Medicine, Monash University, Clayton, Melbourne, VIC 3168, Australia
| |
Collapse
|
4
|
Guo Z, Xu G, Xu J, Huang Y, Liu C, Cao Y. Role of Lipocalin-2 in N1/N2 Neutrophil Polarization After Stroke. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:525-535. [PMID: 37073144 DOI: 10.2174/1871527322666230417112850] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 02/25/2023] [Accepted: 02/26/2023] [Indexed: 04/20/2023]
Abstract
BACKGROUND Neutrophils and Lipocalin-2 (LCN2) play pivotal roles in cerebral ischemiareperfusion (I/R) injury. However, their contribution is not fully clarified. OBJECTIVE This study aimed to explore the role of LCN2 and its association with neutrophil polarization in I/R injury. METHODS A mouse model of middle cerebral artery occlusion (MCAO) was used to induce cerebral ischemia. LCN2mAb was administered 1 h and Anti-Ly6G was administered for 3d before MCAO. The role of LCN2 in the polarity transition of neutrophils was explored using an in vitro HL-60 cell model. RESULTS LCN2mAb pretreatment had neuroprotective effects in mice. The expression of Ly6G was not significantly different, but the expression of N2 neutrophils was increased. In the in vitro study, LCN2mAb-treated N1-HL-60 cells induced N2-HL-60 polarization. CONCLUSION LCN2 may affect the prognosis of ischemic stroke by mediating neutrophil polarization.
Collapse
Affiliation(s)
- Zhiliang Guo
- Department of Neurology, The Second Affiliated Hospital of Soochow University, Suzhou 215004, Jiangsu, China
| | - Guoli Xu
- Department of Neurology, Suzhou Ninth People's Hospital, Suzhou 215004, Jiangsu, China
| | - Jiaping Xu
- Department of Neurology, The Second Affiliated Hospital of Soochow University, Suzhou 215004, Jiangsu, China
| | - Yaqian Huang
- Department of Neurology, The Second Affiliated Hospital of Soochow University, Suzhou 215004, Jiangsu, China
| | - Chunfeng Liu
- Department of Neurology, The Second Affiliated Hospital of Soochow University, Suzhou 215004, Jiangsu, China
| | - Yongjun Cao
- Department of Neurology, The Second Affiliated Hospital of Soochow University, Suzhou 215004, Jiangsu, China
| |
Collapse
|
5
|
Xu YY, Zhu M, Wu J, Luo LB, Dong SJ, Zhang MG, Liu X, Wang K, Luo H, Jing WH, Wang L, Wang SC. A mannitol-modified emodin nano-drug restores the intestinal barrier function and alleviates inflammation in a mouse model of DSS-induced ulcerative colitis. Chin Med 2023; 18:98. [PMID: 37568235 PMCID: PMC10416390 DOI: 10.1186/s13020-023-00801-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 07/14/2023] [Indexed: 08/13/2023] Open
Abstract
BACKGROUND Ulcerative colitis (UC) is an inflammatory disease of the colon that is characterized by mucosal ulcers. Given its increasing prevalence worldwide, it is imperative to develop safe and effective drugs for treating UC. Emodin, a natural anthraquinone derivative present in various medicinal herbs, has demonstrated therapeutic effects against UC. However, low bioavailability due to poor water solubility limits its clinical applications. METHODS Emodin-borate nanoparticles (EmB) were synthesized to improve drug solubility, and they modified with oligomeric mannitol into microgels (EmB-MO) for targeted delivery to intestinal macrophages that express mannose receptors. UC was induced in a mouse model using dextran sulfate sodium (DSS), and different drug formulations were administered to the mice via drinking water. The levels of inflammation-related factors in the colon tissues and fecal matter were measured using enzyme-linked immunosorbent assay. Intestinal permeability was evaluated using fluorescein isothiocyanate dextran. HE staining, in vivo imaging, real-time PCR, and western blotting were performed to assess intestinal barrier dysfunction. RESULTS Both EmB and EmB-MO markedly alleviated the symptoms of UC, including body weight loss, stool inconsistency, and bloody stools and restored the levels of pro- and anti-inflammatory cytokines. However, the therapeutic effects of EmB-MO on the macroscopic and immunological indices were stronger than those of EmB and similar to those of 5-aminosalicylic acid. Furthermore, EmB-MO selectively accumulated in the inflamed colon epithelium and restored the levels of the gut barrier proteins such as ZO-1 and Occludin. CONCLUSIONS EmB-MO encapsulation significantly improved water solubility, which translated to greater therapeutic effects on the immune balance and gut barrier function in mice with DSS-induced UC. Our findings provide novel insights into developing emodin-derived drugs for the management of UC.
Collapse
Affiliation(s)
- Yin-Yue Xu
- School of Pharmacy, Health Science Center, Xi’an Jiaotong University, Xi’an, 710061 China
- Shaanxi Engineering Research Center of Cardiovascular Drugs Screening and Analysis, Xi’an, 710061 China
| | - Min Zhu
- School of Pharmacy, Health Science Center, Xi’an Jiaotong University, Xi’an, 710061 China
- Shaanxi Engineering Research Center of Cardiovascular Drugs Screening and Analysis, Xi’an, 710061 China
| | - Jiang Wu
- College of Chemistry and Pharmacy, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Long-Biao Luo
- School of Pharmacy, Health Science Center, Xi’an Jiaotong University, Xi’an, 710061 China
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Centre for Research and Development in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Si-jing Dong
- School of Pharmacy, Health Science Center, Xi’an Jiaotong University, Xi’an, 710061 China
- Shaanxi Engineering Research Center of Cardiovascular Drugs Screening and Analysis, Xi’an, 710061 China
| | - Meng-Gai Zhang
- School of Pharmacy, Health Science Center, Xi’an Jiaotong University, Xi’an, 710061 China
- Shaanxi Engineering Research Center of Cardiovascular Drugs Screening and Analysis, Xi’an, 710061 China
| | - Xue Liu
- School of Pharmacy, Health Science Center, Xi’an Jiaotong University, Xi’an, 710061 China
- Shaanxi Engineering Research Center of Cardiovascular Drugs Screening and Analysis, Xi’an, 710061 China
| | - Ke Wang
- School of Pharmacy, Health Science Center, Xi’an Jiaotong University, Xi’an, 710061 China
| | - Hua Luo
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Centre for Research and Development in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Wang-Hui Jing
- School of Pharmacy, Health Science Center, Xi’an Jiaotong University, Xi’an, 710061 China
- Shaanxi Engineering Research Center of Cardiovascular Drugs Screening and Analysis, Xi’an, 710061 China
| | - Lin Wang
- College of Chemistry and Pharmacy, Northwest A&F University, Yangling, 712100 Shaanxi China
- State Key Laboratory of Molecular Engineering of Polymers (Fudan University), Shanghai, 200438 China
| | - Si-Cen Wang
- School of Pharmacy, Health Science Center, Xi’an Jiaotong University, Xi’an, 710061 China
- Shaanxi Engineering Research Center of Cardiovascular Drugs Screening and Analysis, Xi’an, 710061 China
| |
Collapse
|
6
|
Munawwar A, Sajjad A, Rasul A, Sattar M, Jabeen F. Dissecting the Role of SMYD2 and Its Inhibitor (LLY-507) in the Treatment of Chemically Induced Non-Small Cell Lung Cancer (NSCLC) by Using Fe 3O 4 Nanoparticles Drug Delivery System. Pharmaceuticals (Basel) 2023; 16:986. [PMID: 37513898 PMCID: PMC10384399 DOI: 10.3390/ph16070986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 06/15/2023] [Accepted: 06/25/2023] [Indexed: 07/30/2023] Open
Abstract
Cancer therapies based on nanoparticles with a loaded drug can overcome the problem of the drug's toxic effects in the traditional chemotherapeutic approach. In this study, we loaded LLY-507, a potent inhibitor of SMYD2, a methyltransferase enzyme, on iron oxide nanoparticles (IONPs). The prepared nanoparticles were characterized by microscopic analysis, loading efficiency, and drug release studies. Microscopic examination revealed an average grain size of 44 nm. The in vitro effect of LLY-507-IONPs, LLY-507, and IONPs was determined by MTT analysis (A549 cells) and hemolysis studies. IONPs have almost negative hemolytic activity in blood. The cell viability assay revealed IC50 values of both LLY-507 alone and LLY-507-loaded IONPs against A549; the lower value of the drug loaded on NPs (0.71 µg/mL alone and 0.53 µg/mL loaded on NPs) shows strong synergistic anticancer potential. We further tested the role of loaded NPs in a urethane-induced lung cancer mouse model (n = 40 mice in three independent trials, 20 mice in control group) to check the role of SMYD2 at various time points of lung cancer development. The loss of SMYD2 due to LLY-507 suppressed tumor growth, emphysema, hemorrhage, and congestion considerably. Hence, it can be concluded that the SMYD2 inhibitor has an anti-inflammatory effect on the mouse lung and suppresses tumor growth by inhibiting the SMYD2 protein.
Collapse
Affiliation(s)
- Aasma Munawwar
- Department of Zoology, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Amna Sajjad
- Department of Zoology, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Azhar Rasul
- Department of Zoology, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Mehran Sattar
- Department of Zoology, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Farhat Jabeen
- Department of Zoology, Government College University Faisalabad, Faisalabad 38000, Pakistan
| |
Collapse
|
7
|
Wei L, Zhang L, Zhang Y, Yan L, Liu B, Cao Z, Zhao N, He X, Li L, Lu C. Intestinal Escherichia coli and related dysfunction as potential targets of Traditional Chinese Medicine for respiratory infectious diseases. JOURNAL OF ETHNOPHARMACOLOGY 2023; 313:116381. [PMID: 36940735 DOI: 10.1016/j.jep.2023.116381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/24/2023] [Accepted: 03/08/2023] [Indexed: 05/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Traditional Chinese medicine (TCM) has saved countless lives and maintained human health over its long history, especially in respiratory infectious diseases. The relationship between the intestinal flora and the respiratory system has been a popular research topic in recent years. According to the theory of the "gut-lung axis" in modern medicine and the idea that "the lung stands in an interior-exterior relationship with the large intestine" in TCM, gut microbiota dysbiosis is a contributing factor to respiratory infectious diseases, and there is potential means for manipulation of the gut microbiota in the treatment of lung diseases. Emerging studies have indicated intestinal Escherichia coli (E. coli) overgrowth in multiple respiratory infectious diseases, which could exacerbate respiratory infectious diseases by disrupting immune homeostasis, the gut barrier and metabolic balance. TCM is an effective microecological regulator, that can regulate the intestinal flora including E. coli, and restore the balance of the immune system, gut barrier, and metabolism. AIM OF THE REVIEW This review discusses the changes and effects of intestinal E. coli in respiratory infection, as well as the role of TCM in the intestinal flora, E. coli and related immunity, the gut barrier and the metabolism, thereby suggesting the possibility of TCM therapy regulating intestinal E. coli and related immunity, the gut barrier and the metabolism to alleviate respiratory infectious diseases. We aimed to make a modest contribution to the research and development of new therapies for intestinal flora in respiratory infectious diseases and the full utilization of TCM resources. Relevant information about the therapeutic potential of TCM to regulate intestinal E. coli against diseases was collected from PubMed, China National Knowledge Infrastructure (CNKI), and so on. The Plants of the World Online (https://wcsp.science.kew.org) and the Plant List (www.theplantlist.org) databases were used to provide the scientific names and species of plants. RESULTS Intestinal E. coli is a very important bacterium in respiratory infectious diseases that affects the respiratory system through immunity, the gut barrier and the metabolism. Many TCMs can inhibit the abundance of E. coli and regulate related immunity, the gut barrier and the metabolism to promote lung health. CONCLUSION TCM targeting intestinal E. coli and related immune, gut barrier, and metabolic dysfunction could be a potential therapy to promote the treatment and prognosis of respiratory infectious diseases.
Collapse
Affiliation(s)
- Lini Wei
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, PR China
| | - Lulu Zhang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, PR China
| | - Yan Zhang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, PR China
| | - Lan Yan
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, PR China
| | - Bin Liu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, PR China
| | - Zhiwen Cao
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, PR China
| | - Ning Zhao
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, PR China
| | - Xiaojuan He
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, PR China.
| | - Li Li
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, PR China.
| | - Cheng Lu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, PR China.
| |
Collapse
|
8
|
Intratumoral pro-oxidants promote cancer immunotherapy by recruiting and reprogramming neutrophils to eliminate tumors. Cancer Immunol Immunother 2023; 72:527-542. [PMID: 36066649 PMCID: PMC9446783 DOI: 10.1007/s00262-022-03248-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 06/23/2022] [Indexed: 11/06/2022]
Abstract
Neutrophils have recently gained recognition for their potential in the fight against cancer. Neutrophil plasticity between the N1 anti-tumor and N2 pro-tumor subtypes is now apparent, as is the ability to polarize these individual subtypes by interventions such as intratumoral injection of various agents including bacterial products or pro-oxidants. Metabolic responses and the production of reactive oxygen species (ROS) such as hydrogen peroxide act as potent chemoattractants and activators of N1 neutrophils that facilitates their recruitment and ensuing activation of a toxic respiratory burst in tumors. Greater understanding of the precise mechanism of N1 neutrophil activation, recruitment and regulation is now needed to fully exploit their anti-tumor potential against cancers both locally and at distant sites. This systematic review critically analyzes these new developments in cancer immunotherapy.
Collapse
|
9
|
Sounbuli K, Mironova N, Alekseeva L. Diverse Neutrophil Functions in Cancer and Promising Neutrophil-Based Cancer Therapies. Int J Mol Sci 2022; 23:ijms232415827. [PMID: 36555469 PMCID: PMC9779721 DOI: 10.3390/ijms232415827] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/09/2022] [Accepted: 12/11/2022] [Indexed: 12/15/2022] Open
Abstract
Neutrophils represent the most abundant cell type of leukocytes in the human blood and have been considered a vital player in the innate immune system and the first line of defense against invading pathogens. Recently, several studies showed that neutrophils play an active role in the immune response during cancer development. They exhibited both pro-oncogenic and anti-tumor activities under the influence of various mediators in the tumor microenvironment. Neutrophils can be divided into several subpopulations, thus contradicting the traditional concept of neutrophils as a homogeneous population with a specific function in the innate immunity and opening new horizons for cancer therapy. Despite the promising achievements in this field, a full understanding of tumor-neutrophil interplay is currently lacking. In this review, we try to summarize the current view on neutrophil heterogeneity in cancer, discuss the different communication pathways between tumors and neutrophils, and focus on the implementation of these new findings to develop promising neutrophil-based cancer therapies.
Collapse
Affiliation(s)
- Khetam Sounbuli
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrentiev Ave., 8, Novosibirsk 630090, Russia
- Faculty of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Nadezhda Mironova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrentiev Ave., 8, Novosibirsk 630090, Russia
- Correspondence: ; Tel.: +7-383-363-51-61
| | - Ludmila Alekseeva
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrentiev Ave., 8, Novosibirsk 630090, Russia
| |
Collapse
|
10
|
Gao F, Niu Y, Sun L, Li W, Xia H, Zhang Y, Geng S, Guo Z, Lin H, Du G. Integrating network pharmacology and transcriptomic validation to investigate the efficacy and mechanism of Mufangji decoction preventing lung cancer. JOURNAL OF ETHNOPHARMACOLOGY 2022; 298:115573. [PMID: 35917893 DOI: 10.1016/j.jep.2022.115573] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 07/08/2022] [Accepted: 07/18/2022] [Indexed: 06/02/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Mufangji decoction (MFJD), a famous traditional Chinese medicine formula in Synopsis of Golden Chamber (Jingui yaolue), has been utilized to treat cough and asthma and release chest pain over 2000 years in China. Chinese old herbalist doctor use MFJD to treat lung cancer and cancerous pleural fluid, but the preventive effect of MFJD on lung cancer and the underlying mechanism are indefinite. AIM OF THE STUDY The goal of this study is to explore the efficacy and mechanism of Mufangji decoction preventing lung cancer referring to the traditional use. MATERIALS AND METHODS Tumor allograft experiment and host versus tumor experiment were used to observe the direct anti-tumor effect and indirect anti-tumor immune effect, the mouse lung carcinogenic model was used to evaluate the dose-response and the preventive effect of MFJD on lung cancer. The active ingredients of MFJD were obtained by UPLC-MS/MS. The potential targets of MFJD were screened by network pharmacology and transcriptomics. The therapeutic targets and pathways of MFJD on lung cancer were obtained by protein-protein interaction, molecular docking and David database. The predicted results were verified in vitro and in vivo. RESULTS MFJD could significantly prevent tumor growth in host versus tumor experiment but could not in tumor allograft experiment, indicating an anti-tumor immune effect against lung cancer. MFJD could reduce lung nodules with a dose-response in mouse lung carcinogenic model. Myeloperoxidase (MPO) was selected as the core target due to the highest degree value in Protein-Protein interaction network and had potently binding activity to sinomenine and dehydrocostus lactone in molecular docking. In vivo, MPO-expressed neutrophils are negatively correlated with lung cancer progression and MFJD could promote the neutrophil-related immune surveillance. In vitro, sinomenine and dehydrocostus lactone could promote neutrophil phagocytosis, MPO and ROS production in a dose dependent manner. The major compounds from MFJD were identified to regulate 36 targets for lung cancer prevention by UPLC-MS/MS, network pharmacology and transcriptomics. David database exhibited that MFJD plays an important role in immunoregulation by modulating 4 immune-related biological processes and 3 immune-related pathways. CONCLUSIONS MFJD prevents lung cancer by mainly promoting MPO expression to maintain neutrophil immune surveillance, its key compounds are sinomenine and dehydrocostus lactone.
Collapse
Affiliation(s)
- Fan Gao
- Henan Province Engineering Research Center of High Value Utilization to Natural Medical Resource in Yellow River Basin, Pharmaceutical College of Henan University, Jinming District, Kaifeng, Henan Province, 475004, China.
| | - Yuju Niu
- Henan Province Engineering Research Center of High Value Utilization to Natural Medical Resource in Yellow River Basin, Pharmaceutical College of Henan University, Jinming District, Kaifeng, Henan Province, 475004, China.
| | - Luyao Sun
- Henan Province Engineering Research Center of High Value Utilization to Natural Medical Resource in Yellow River Basin, Pharmaceutical College of Henan University, Jinming District, Kaifeng, Henan Province, 475004, China.
| | - Wenwen Li
- Henan Province Engineering Research Center of High Value Utilization to Natural Medical Resource in Yellow River Basin, Pharmaceutical College of Henan University, Jinming District, Kaifeng, Henan Province, 475004, China.
| | - Haojie Xia
- Henan Province Engineering Research Center of High Value Utilization to Natural Medical Resource in Yellow River Basin, Pharmaceutical College of Henan University, Jinming District, Kaifeng, Henan Province, 475004, China.
| | - Yaru Zhang
- Henan Province Engineering Research Center of High Value Utilization to Natural Medical Resource in Yellow River Basin, Pharmaceutical College of Henan University, Jinming District, Kaifeng, Henan Province, 475004, China.
| | - Shengnan Geng
- School of Pharmacy and Chemical Engineering, Zhengzhou University of Industry Technology, Xinzheng, Henan Province, 451150, China.
| | - Zhenzhen Guo
- Henan Province Engineering Research Center of High Value Utilization to Natural Medical Resource in Yellow River Basin, Pharmaceutical College of Henan University, Jinming District, Kaifeng, Henan Province, 475004, China.
| | - Haihong Lin
- Henan Province Engineering Research Center of High Value Utilization to Natural Medical Resource in Yellow River Basin, Pharmaceutical College of Henan University, Jinming District, Kaifeng, Henan Province, 475004, China.
| | - Gangjun Du
- Henan Province Engineering Research Center of High Value Utilization to Natural Medical Resource in Yellow River Basin, Pharmaceutical College of Henan University, Jinming District, Kaifeng, Henan Province, 475004, China; School of Pharmacy and Chemical Engineering, Zhengzhou University of Industry Technology, Xinzheng, Henan Province, 451150, China.
| |
Collapse
|
11
|
Tan YR, Lu Y. Molecular mechanism of Rhubarb in the treatment of non-small cell lung cancer based on network pharmacology and molecular docking technology. Mol Divers 2022:10.1007/s11030-022-10501-w. [PMID: 35933455 DOI: 10.1007/s11030-022-10501-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/15/2022] [Indexed: 12/24/2022]
Abstract
Non-small cell lung cancer (NSCLC) is one of the leading causes of death in the world. Rhubarb, a traditional Chinese medicine, has been widely used in the treatment of inflammatory and autoimmune diseases. This study aimed to investigate the possible mechanism of the rhubarb herb in the treatment of NSCLC by means of network pharmacology and molecular docking and to provide a theoretical basis for experiments and clinical application of traditional Chinese medicine for treating lung cancer. The main active chemical components and targets of rhubarb were screened through Swiss Target Prediction, TargetNet, and Traditional Chinese Medicine Systems Pharmacology (TCMSP) database. The protein-protein interaction (PPI) network was built via an in-depth exploration of the relationships between the proteins. The enrichment analyses of Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) were applied to predict the potential roles in the pathogenesis of NSCLC via the R package cluster Profiler. Potential targets and active ingredients associated with anti-tumor effects of rhubarb were screened by reverse molecular docking. By searching databases and literature, a total of 295 targets were found for the 21 active ingredients in rhubarb. There were 68 common target genes associated with NSCLC, of which 9 are derived from FDA-approved drugs. GO Gene Set Enrichment Analysis (GSEA) explored up to 1103 biological processes, 62 molecular functions, and 18 cellular components. KEGG GSEA explored 65 basic pathways, and 71 disease pathways. Four key targets (JUN, EGFR, BCL2, and JAK2) were screened through the protein-protein interaction network, target-pathway network, and FDA drug-target network. Molecular docking results showed that these key targets had relatively strong binding activities with rhubarb's active ingredients. The present study explored the potential pharmacological mechanisms of rhubarb on NSCLC, promoting the clinical application of rhubarb in treating NSCLC, and providing references for advanced research.
Collapse
Affiliation(s)
- Ye-Ru Tan
- The First Affiliated Hospital, Department of Medical Oncology, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Yu Lu
- The First Affiliated Hospital, Department of General Practice, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| |
Collapse
|
12
|
Jin J, Yuan P, Yu W, Lin J, Xu A, Xu X, Lou J, Yu T, Qian C, Liu B, Song J, Li L, Piao Y, Xie T, Shen Y, Tao H, Tang J. Mitochondria-Targeting Polymer Micelle of Dichloroacetate Induced Pyroptosis to Enhance Osteosarcoma Immunotherapy. ACS NANO 2022; 16:10327-10340. [PMID: 35737477 DOI: 10.1021/acsnano.2c00192] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Pyroptosis has been reported to improve the immunosuppressive tumor microenvironment and may be a strategy to enhance osteosarcoma treatment. The extent to which modulation of mitochondria could induce tumor pyroptosis to enhance immunotherapy has not been characterized. We synthesized a mitochondria-targeting polymer micelle (OPDEA-PDCA), in which poly[2-(N-oxide-N,N-diethylamino)ethyl methacrylate] (OPDEA) was used to target mitochondria and the conjugated dichloroacetate (DCA) was used to inhibit pyruvate dehydrogenase kinase 1 (PDHK1). This conjugate induced pyroptosis through initiation of mitochondrial oxidative stress. We found that OPDEA-PDCA targeted mitochondria and induced mitochondrial oxidative stress through the inhibition of PDHK1, resulting in immunogenic pyroptosis in osteosarcoma cell lines. Moreover, we showed that OPDEA-PDCA could induce secretion of soluble programmed cell death-ligand 1 (PD-L1) molecule. Therefore, combined therapy with OPDEA-PDCA and an anti-PD-L1 monoclonal antibody significantly suppressed proliferation of osteosarcoma with prolonged T cell activation. This study provided a strategy to initiate pyroptosis through targeted modulation of mitochondria, which may promote enhanced antitumor efficacy in combination with immunotherapy.
Collapse
Affiliation(s)
- Jiakang Jin
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, PR China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang 310003, PR China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang 310003, PR China
| | - Pengcheng Yuan
- Key Laboratory of Smart Biomaterials of Zhejiang Province, College of Chemical and Biological Engineering of Zhejiang University, Hangzhou, Zhejiang 310027, PR China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, Zhejiang 311215, PR China
| | - Wei Yu
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, PR China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang 310003, PR China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang 310003, PR China
| | - Jinti Lin
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, PR China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang 310003, PR China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang 310003, PR China
| | - Ankai Xu
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, PR China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang 310003, PR China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang 310003, PR China
| | - Xiaodan Xu
- Key Laboratory of Smart Biomaterials of Zhejiang Province, College of Chemical and Biological Engineering of Zhejiang University, Hangzhou, Zhejiang 310027, PR China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, Zhejiang 311215, PR China
| | - Jianan Lou
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, PR China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang 310003, PR China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang 310003, PR China
| | - Tao Yu
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, PR China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang 310003, PR China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang 310003, PR China
| | - Chao Qian
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, PR China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang 310003, PR China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang 310003, PR China
| | - Bing Liu
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, PR China
| | - Jiashi Song
- Department of Orthopedics, Rongjun Hospital, 589 Zhonghuan Xi Lu, Jiaxing, Zhejiang 314000, PR China
| | - Lijun Li
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, PR China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang 310003, PR China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang 310003, PR China
| | - Ying Piao
- Key Laboratory of Smart Biomaterials of Zhejiang Province, College of Chemical and Biological Engineering of Zhejiang University, Hangzhou, Zhejiang 310027, PR China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, Zhejiang 311215, PR China
| | - Tao Xie
- Key Laboratory of Smart Biomaterials of Zhejiang Province, College of Chemical and Biological Engineering of Zhejiang University, Hangzhou, Zhejiang 310027, PR China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, Zhejiang 311215, PR China
| | - Youqing Shen
- Key Laboratory of Smart Biomaterials of Zhejiang Province, College of Chemical and Biological Engineering of Zhejiang University, Hangzhou, Zhejiang 310027, PR China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, Zhejiang 311215, PR China
| | - Huimin Tao
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, PR China
| | - Jianbin Tang
- Key Laboratory of Smart Biomaterials of Zhejiang Province, College of Chemical and Biological Engineering of Zhejiang University, Hangzhou, Zhejiang 310027, PR China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, Zhejiang 311215, PR China
| |
Collapse
|
13
|
Tumor-associated neutrophils and neutrophil-targeted cancer therapies. Biochim Biophys Acta Rev Cancer 2022; 1877:188762. [PMID: 35853517 DOI: 10.1016/j.bbcan.2022.188762] [Citation(s) in RCA: 124] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 07/10/2022] [Accepted: 07/14/2022] [Indexed: 02/08/2023]
Abstract
Neutrophils are the frontline cells in response to microbial infections and are involved in a range of inflammatory disorders in the body. In recent years, neutrophils have gained considerable attention in their involvement of complex roles in tumor development and progression. Tumor-associated neutrophils (TANs) that accumulate in local region could be triggered by external stimuli from tumor microenvironment (TME) and switch between anti- and pro-tumor phenotypes. The anti-tumor neutrophils kill tumor cells through direct cytotoxic effects as well as indirect effects by activating adaptive immune responses. In contrast, the pro-tumor phenotype of neutrophils might be associated with cell proliferation, angiogenesis, and immunosuppression in TME. More recently, neutrophils have been proposed as a potential target in cancer therapy for their ability to diminish the pro-tumor pathways, such as by immune checkpoint blockade. This review discusses the complex roles of neutrophils in TME and highlights the strategies in neutrophil targeting in cancer treatment with a particular focus on the progresses of ongoing clinical trials involving neutrophil-targeted therapies.
Collapse
|
14
|
Gu W, Zhang M, Gao F, Niu Y, Sun L, Xia H, Li W, Zhang Y, Guo Z, Du G. Berberine regulates PADI4-related macrophage function to prevent lung cancer. Int Immunopharmacol 2022; 110:108965. [PMID: 35764017 DOI: 10.1016/j.intimp.2022.108965] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/11/2022] [Accepted: 06/13/2022] [Indexed: 12/14/2022]
Abstract
Coptis chinensis Franch (CCF) has been widely used by Chinese old herbalist doctor to treat internal and external diseases including malignant sore and cancer. Berberine (BBR) is a major bioactive compound in CCF and may exert anti-tumor and anti-inflammatory effects like CCF. However, the prevention effect of berberine against lung cancer and its relevance of anti-inflammation property to cancer-preventing effect are still obscure. Protein arginine deaminase 4 (PAD4) played an important role in macrophage related inflammatory response, the purpose of this study was to identify whether berberine can prevent lung cancer and explore its effect on PADI4-related macrophage function. In vitro, PADI4 overexpression affects cell-activated state in macrophages. PADI4 overexpressed macrophages promote epithelial-mesenchymal transition (EMT) of A549 lung cancer cells and inhibit cell apoptosis. Berberine at the experiment dose had no effect on cell viability of U937-derived macrophages, but could significantly inhibit PADI4 expression to reverse the macrophage-activated state and the lung cancer -promoting effect of PADI4-overexpressed macrophages. Unlike GSK484, berberine had a little effect on the PADI4 citrullination activity at the experimental doses, its IC50 for PADI4 inhibition is 45.07 μM (44.03-46.12 μM). In the mouse lung carcinogenetic model, PADI4 expression was directly related to the number of lung nodules. Berberine had the similar role to GSK484 in reducing the number of lung tumor nodules with the improved lung pathology in a dose-dependent manner and significantly inhibited PADI4 expression. Further, we found that PADI4 overexpression could inhibit IRF5 expression, up-regulate CD163 and CD206 and down-regulate CD86 in macrophages, which could be reversed by berberine. Our results suggest that berberine may regulate PADI4-related macrophage function to prevent lung cancer.
Collapse
Affiliation(s)
- Wenwen Gu
- Institute of Pharmacy, Pharmaceutical College of Henan University, Kaifeng 475004, Henan, China
| | - Mengdi Zhang
- Institute of Pharmacy, Pharmaceutical College of Henan University, Kaifeng 475004, Henan, China
| | - Fan Gao
- Institute of Pharmacy, Pharmaceutical College of Henan University, Kaifeng 475004, Henan, China
| | - Yuji Niu
- Institute of Pharmacy, Pharmaceutical College of Henan University, Kaifeng 475004, Henan, China
| | - Luyao Sun
- Institute of Pharmacy, Pharmaceutical College of Henan University, Kaifeng 475004, Henan, China
| | - Haojie Xia
- Institute of Pharmacy, Pharmaceutical College of Henan University, Kaifeng 475004, Henan, China
| | - Wenwen Li
- Institute of Pharmacy, Pharmaceutical College of Henan University, Kaifeng 475004, Henan, China
| | - Yaru Zhang
- Institute of Pharmacy, Pharmaceutical College of Henan University, Kaifeng 475004, Henan, China
| | - Zhenzhen Guo
- Institute of Pharmacy, Pharmaceutical College of Henan University, Kaifeng 475004, Henan, China.
| | - Gangjun Du
- Institute of Pharmacy, Pharmaceutical College of Henan University, Kaifeng 475004, Henan, China; School of Pharmacy and Chemical Engineering, Zhengzhou University of Industry Technology, Xinzheng, Henan Province 451150, China.
| |
Collapse
|
15
|
Yang H, Zhang J, Ling J. The Modulatory Effects and Targets Prediction of Herbal Medicines or Phytochemicals on Cancer Immunosurveillance. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2022; 50:1401-1422. [PMID: 35748216 DOI: 10.1142/s0192415x22500604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Cancer is a main life-threatening disease worldwide. Due to the adverse effects of conventional chemotherapies and radiotherapies, immunotherapy has emerged as a potent strategy to treat cancer. In cancer immunotherapy, cancer immune surveillance plays a crucial role in the cancer process, which contains various effector cells from innate and adaptive immunity. This review summarized the functions of innate and adaptive immune cells in cancer immunosurveillance and their main reported targets. Moreover, the potential targets about the modulatory effects of cancer immunosurveillance were predicted using network-based target analysis, with total predicted pathways not only reporting previously reported pathways, but also putative signaling pathways pending for investigation. In addition, the potential use of herbal medicines and their phytochemicals in the modulation of cancer immunosurveillance were also discussed. Taken together, this review paper aims to provide scientific insight into further drug development, particularly herbs, phytochemicals, and TCM formulae, in the modulatory effects of cancer immunosurveillance.
Collapse
Affiliation(s)
- Huihai Yang
- College of Chinese Medicine Material, Jilin Agricultural University, Changchun 136000, P. R. China
- Institute of Chinese Medicine, State Key Laboratory of Research on Bioactivities, Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Jing Zhang
- College of Chinese Medicine Material, Jilin Agricultural University, Changchun 136000, P. R. China
| | - Jiawei Ling
- Institute of Chinese Medicine, State Key Laboratory of Research on Bioactivities, Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| |
Collapse
|
16
|
Wu W, Lu P, Huang Y, Zhu Z, Li C, Liu Y. Emodin regulates the autophagy via the miR-371a-5p/PTEN axis to inhibit hepatic malignancy. Biochem Biophys Res Commun 2022; 619:1-8. [PMID: 35724456 DOI: 10.1016/j.bbrc.2022.06.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 05/27/2022] [Accepted: 06/03/2022] [Indexed: 11/28/2022]
Abstract
Emodin has been reported to fulfill an important function in suppressing the vicious outcome of liver cancer. We aimed to elucidate the partial underlying molecular mechanism of emodin in inhibiting liver cancer, and we applied miRNA-sequence analysis and corresponding molecular functional experiments to find that the inhibitory effect of emodin on liver cancer was partly mediated by cellular autophagy through the miR-371a-5p/PTEN axis. The expression level of miR-371a-5p was down-regulated after emodin treatment in liver cancer cell lines (LCCLs). Restoring the expression level of miR-371a-5p attenuated the suppression of emodin on LCCLs. Additionally, we performed the prediction in relevant online databases and found that PTEN might functioned as a downstream target of miR-371a-5p to participate in the regulation on the above process. What's more, the detection of autophagy-related protein markers showed that LC3II was elevated accompanied by the decreased P62. The above results revealed that PTEN functioned as a key target to regulate the autophagy in the process where emodin inhibited the malignant outcome of LCCLs via miR-371a-5p, which further provided a theoretical basis for the application of traditional Chinese medicine (TCM) on clinical tumors.
Collapse
Affiliation(s)
- Wu Wu
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Peilin Lu
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yujing Huang
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhu Zhu
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Chunming Li
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yiming Liu
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
17
|
Yang H, Wang L, Zhang J. Leukocyte modulation by natural products from herbal medicines and potential as cancer immunotherapy. J Leukoc Biol 2022; 112:185-200. [PMID: 35612275 DOI: 10.1002/jlb.3ru0222-087rrr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/15/2022] [Indexed: 12/13/2022] Open
Abstract
Cancer constitutes a kind of life-threatening disease that is prevalent throughout the world. In light of limitations in conventional chemotherapies or radiotherapies, cancer immunotherapy has emerged as a potent strategy in treating cancer. In cancer immunotherapy, preliminary studies have demonstrated that cancer immune surveillance serves a crucial role in tumor initiation, progression, and metastasis. Herbal medicines and natural products, which serve as alternative medicines, are involved in the modulation of tumor immunosurveillance to enhance antitumor activity. Accordingly, this review aimed to summarize the modulation function of herbal medicines and natural products on tumor immunosurveillance while providing scientific insight into further research on its molecular mechanism and potential clinical applications.
Collapse
Affiliation(s)
- Huihai Yang
- Department of Chinese Medicine, College of Chinese Medicine Material, Jilin Agricultural University, Changchun, China.,Department of Chinese medicine, College of Medicine, Changchun Science-Technology University, Changchun, China.,Institute of Chinese Medicine and State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Lulu Wang
- Department of Chinese medicine, College of Medicine, Changchun Science-Technology University, Changchun, China
| | - Jing Zhang
- Department of Chinese Medicine, College of Chinese Medicine Material, Jilin Agricultural University, Changchun, China
| |
Collapse
|
18
|
Li HM, Liu X, Meng ZY, Wang L, Zhao LM, Chen H, Wang ZX, Cui H, Tang XQ, Li XH, Han WN, Bai X, Lin Y, Liu H, Zhang Y, Yang BF. Kanglexin delays heart aging by promoting mitophagy. Acta Pharmacol Sin 2022; 43:613-623. [PMID: 34035486 PMCID: PMC8888756 DOI: 10.1038/s41401-021-00686-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 04/23/2021] [Indexed: 02/07/2023]
Abstract
Heart aging is characterized by structural and diastolic dysfunction of the heart. However, there is still no effective drug to prevent and treat the abnormal changes in cardiac function caused by aging. Here, we present the preventive effects of emodin and its derivative Kanglexin (KLX) against heart aging. We found that the diastolic dysfunction and cardiac remodeling in mice with D-galactose (D-gal)-induced aging were markedly mitigated by KLX and emodin. In addition, the senescence of neonatal mouse cardiomyocytes induced by D-gal was also reversed by KLX and emodin treatment. However, KLX exhibited better anti-heart aging effects than emodin at the same dose. Dysregulated mitophagy was observed in aging hearts and in senescent neonatal mouse cardiomyocytes, and KLX produced a greater increase in mitophagy than emodin. The mitophagy-promoting effects of KLX and emodin were ascribed to their abilities to enhance the protein stability of Parkin, a key modulator in mitophagy, with different potencies. Molecular docking and SPR analysis demonstrated that KLX has a higher affinity for the ubiquitin-like (UBL) domain of Parkin than emodin. The UBL domain might contribute to the stabilizing effects of KLX on Parkin. In conclusion, this study identifies KLX and emodin as effective anti-heart aging drugs that activate Parkin-mediated mitophagy and outlines their putative therapeutic importance.
Collapse
Affiliation(s)
- Hui-min Li
- grid.410736.70000 0001 2204 9268Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081 China
| | - Xin Liu
- grid.410736.70000 0001 2204 9268Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081 China
| | - Zi-yu Meng
- grid.410736.70000 0001 2204 9268Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081 China
| | - Lei Wang
- grid.410736.70000 0001 2204 9268Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081 China
| | - Li-min Zhao
- grid.410736.70000 0001 2204 9268Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081 China
| | - Hui Chen
- grid.410736.70000 0001 2204 9268Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081 China
| | - Zhi-xia Wang
- grid.410736.70000 0001 2204 9268Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081 China
| | - Hao Cui
- grid.410736.70000 0001 2204 9268Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081 China
| | - Xue-qing Tang
- grid.410736.70000 0001 2204 9268Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081 China
| | - Xiao-han Li
- grid.410736.70000 0001 2204 9268Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081 China
| | - Wei-na Han
- grid.410736.70000 0001 2204 9268Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Harbin, 150081 China
| | - Xue Bai
- grid.410736.70000 0001 2204 9268Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081 China
| | - Yuan Lin
- grid.410736.70000 0001 2204 9268Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081 China
| | - Heng Liu
- grid.410736.70000 0001 2204 9268Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081 China
| | - Yong Zhang
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China. .,Research Unit of Noninfectious Chronic Diseases in Frigid Zone, Chinese Academy of Medical Sciences, Harbin, 150086, China. .,Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Harbin, 150086, China.
| | - Bao-feng Yang
- grid.410736.70000 0001 2204 9268Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081 China ,Research Unit of Noninfectious Chronic Diseases in Frigid Zone, Chinese Academy of Medical Sciences, Harbin, 150086 China ,grid.1008.90000 0001 2179 088XDepartment of Pharmacology and Therapeutics, Melbourne School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences University of Melbourne, Melbourne, Australia
| |
Collapse
|
19
|
Wang C, Li Y, Hou Y, Jin L, Chen M. Effects of Emodin on Alveolar Bone Resorption via the IL-23/Th17 Inflammatory Axis in Rats with Periodontitis. J HARD TISSUE BIOL 2022. [DOI: 10.2485/jhtb.31.71] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Chunfeng Wang
- Department of Stomatology, Hunan University of Medicine
| | - Yuxian Li
- Teaching and Research Office of Diagnostics, Medical College, Hunan University of Medicine
| | - Yepo Hou
- Department of Stomatology, Hunan University of Medicine
| | - Ling Jin
- Teaching and Research Office of Diagnostics, Medical College, Hunan University of Medicine
| | - Minmin Chen
- Department of Endodontics, Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University & Hunan Key Laboratory of Oral Health Research
| |
Collapse
|
20
|
Wang Y, Gu W, Kui F, Gao F, Niu Y, Li W, Zhang Y, Guo Z, Du G. The mechanism and active compounds of semen armeniacae amarum treating coronavirus disease 2019 based on network pharmacology and molecular docking. Food Nutr Res 2021; 65:5623. [PMID: 34908920 PMCID: PMC8634376 DOI: 10.29219/fnr.v65.5623] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 10/15/2020] [Accepted: 12/16/2020] [Indexed: 12/24/2022] Open
Abstract
Background Coronavirus disease 2019 (COVID-19) outbreak is progressing rapidly, and poses significant threats to public health. A number of clinical practice results showed that traditional Chinese medicine (TCM) plays a significant role for COVID-19 treatment. Objective To explore the active components and molecular mechanism of semen armeniacae amarum treating COVID-19 by network pharmacology and molecular docking technology. Methods The active components and potential targets of semen armeniacae amarum were retrieved from traditional Chinese medicine systems pharmacology (TCMSP) database. Coronavirus disease 2019-associated targets were collected in the GeneCards, TTD, OMIM and PubChem database. Compound target, compound-target pathway and medicine-ingredient-target disease networks were constructed by Cytoscape 3.8.0. Protein-protein interaction (PPI) networks were drawn using the STRING database and Cytoscape 3.8.0 software. David database was used for gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. The main active components were verified by AutoDock Vina 1.1.2 software. A lipopolysaccharide (LPS)-induced lung inflammation model in Institute of Cancer Research (ICR) mice was constructed and treated with amygdalin to confirm effects of amygdalin on lung inflammation and its underlying mechanisms by western blot analyses and immunofluorescence. Results The network analysis revealed that nine key, active components regulated eight targets (Proto-oncogene tyrosine-protein kinase SRC (SRC), interleukin 6 (IL6), mitogen-activated protein kinase 1 (MAPK1), mitogen-activated protein kinase 3 (MAPK3), vascular endothelial growth factor A (VEGFA), epidermal growth factor receptor (EGFR), HRAS proto-oncogene (HRAS), caspase-3 (CASP3)). Gene ontology and KEGG enrichment analysis suggested that semen armeniacae amarum plays a role in COVID-19 by modulating 94 biological processes, 13 molecular functions, 15 cellular components and 80 potential pathways. Molecular docking indicated that amygdalin had better binding activity to key targets such as IL6, SRC, MAPK3, SARS coronavirus-2 3C-like protease (SARS-CoV-2 3CLpro) and SARS-CoV-2 angiotensin converting enzyme II (ACE2). Experimental validation revealed that the lung pathological injury and inflammatory injury were significantly increased in the model group and were improved in the amygdalin group. Conclusion Amygdalin is a candidate compound for COVID-19 treatment by regulating IL6, SRC, MAPK1 EGFR and VEGFA to involve in PI3K-Akt signalling pathway, VEGF signalling pathway and MAPK signalling pathway. Meanwhile, amygdalin has a strong affinity for SARS-CoV-2 3CLpro and SARS-CoV-2 ACE2 and therefore prevents the virus transcription and dissemination.
Collapse
Affiliation(s)
- Yuehua Wang
- Institute of Pharmacy, Pharmaceutical College of Henan University, Jinming District, Kaifeng, Henan Province, China
| | - Wenwen Gu
- Institute of Pharmacy, Pharmaceutical College of Henan University, Jinming District, Kaifeng, Henan Province, China
| | - Fuguang Kui
- Institute of Pharmacy, Pharmaceutical College of Henan University, Jinming District, Kaifeng, Henan Province, China
| | - Fan Gao
- Institute of Pharmacy, Pharmaceutical College of Henan University, Jinming District, Kaifeng, Henan Province, China
| | - Yuji Niu
- Institute of Pharmacy, Pharmaceutical College of Henan University, Jinming District, Kaifeng, Henan Province, China
| | - Wenwen Li
- Institute of Pharmacy, Pharmaceutical College of Henan University, Jinming District, Kaifeng, Henan Province, China
| | - Yaru Zhang
- Institute of Pharmacy, Pharmaceutical College of Henan University, Jinming District, Kaifeng, Henan Province, China
| | - Zhenzhen Guo
- Institute of Pharmacy, Pharmaceutical College of Henan University, Jinming District, Kaifeng, Henan Province, China
| | - Gangjun Du
- Institute of Pharmacy, Pharmaceutical College of Henan University, Jinming District, Kaifeng, Henan Province, China.,School of Pharmacy and Chemical Engineering, Zhengzhou University of Industry Technology, Xinzheng, Henan Province, China
| |
Collapse
|
21
|
Zheng Q, Li S, Li X, Liu R. Advances in the study of emodin: an update on pharmacological properties and mechanistic basis. Chin Med 2021; 16:102. [PMID: 34629100 PMCID: PMC8504117 DOI: 10.1186/s13020-021-00509-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/17/2021] [Indexed: 12/21/2022] Open
Abstract
Rhei Radix et Rhizoma, also known as rhubarb or Da Huang, has been widely used as a spice and as traditional herbal medicine for centuries, and is currently marketed in China as the principal herbs in various prescriptions, such as Da-Huang-Zhe-Chong pills and Da-Huang-Qing-Wei pills. Emodin, a major bioactive anthraquinone derivative extracted from rhubarb, represents multiple health benefits in the treatment of a host of diseases, such as immune-inflammatory abnormality, tumor progression, bacterial or viral infections, and metabolic syndrome. Emerging evidence has made great strides in clarifying the multi-targeting therapeutic mechanisms underlying the efficacious therapeutic potential of emodin, including anti-inflammatory, immunomodulatory, anti-fibrosis, anti-tumor, anti-viral, anti-bacterial, and anti-diabetic properties. This comprehensive review aims to provide an updated summary of recent developments on these pharmacological efficacies and molecular mechanisms of emodin, with a focus on the underlying molecular targets and signaling networks. We also reviewed recent attempts to improve the pharmacokinetic properties and biological activities of emodin by structural modification and novel material-based targeted delivery. In conclusion, emodin still has great potential to become promising therapeutic options to immune and inflammation abnormality, organ fibrosis, common malignancy, pathogenic bacteria or virus infections, and endocrine disease or disorder. Scientifically addressing concerns regarding the poor bioavailability and vague molecular targets would significantly contribute to the widespread acceptance of rhubarb not only as a dietary supplement in food flavorings and colorings but also as a health-promoting TCM in the coming years.
Collapse
Affiliation(s)
- Qi Zheng
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing, 100029, China
| | - Shuo Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing, 100029, China
| | - Xiaojiaoyang Li
- School of Life Sciences, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing, 100029, China
| | - Runping Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing, 100029, China.
| |
Collapse
|
22
|
The Health Benefits of Emodin, a Natural Anthraquinone Derived from Rhubarb-A Summary Update. Int J Mol Sci 2021; 22:ijms22179522. [PMID: 34502424 PMCID: PMC8431459 DOI: 10.3390/ijms22179522] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 08/27/2021] [Accepted: 08/30/2021] [Indexed: 02/07/2023] Open
Abstract
Emodin (6-methyl-1,3,8-trihydroxyanthraquinone) is a naturally occurring anthraquinone derivative found in roots and leaves of various plants, fungi and lichens. For a long time it has been used in traditional Chinese medicine as an active ingredient in herbs. Among other sources, it is isolated from the rhubarb Rheum palmatum or tuber fleece-flower Polygonam multiflorum. Emodin has a wide range of biological activities, including diuretic, antibacterial, antiulcer, anti-inflammatory, anticancer and antinociceptive. According to the most recent studies, emodin acts as an antimalarial and antiallergic agent, and can also reverse resistance to chemotherapy. In the present work the potential therapeutic role of emodin in treatment of inflammatory diseases, cancers and microbial infections is analysed.
Collapse
|
23
|
Shao BZ, Yao Y, Li JP, Chai NL, Linghu EQ. The Role of Neutrophil Extracellular Traps in Cancer. Front Oncol 2021; 11:714357. [PMID: 34476216 PMCID: PMC8406742 DOI: 10.3389/fonc.2021.714357] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 07/22/2021] [Indexed: 12/14/2022] Open
Abstract
Neutrophils are vital components of innate and adaptive immunity. It is widely acknowledged that in various pathological conditions, neutrophils are activated and release condensed DNA strands, triggering the formation of neutrophil extracellular traps (NETs). NETs have been shown to be effective in fighting against microbial infections and modulating the pathogenesis and progression of diseases, including malignant tumors. This review describes the current knowledge on the biological characteristics of NETs. Additionally, the mechanisms of NETs in cancer are discussed, including the involvement of signaling pathways and the crosstalk between other cancer-related mechanisms, including inflammasomes and autophagy. Finally, based on previous and current studies, the roles of NET formation and the potential therapeutic targets and strategies related to NETs in several well-studied types of cancers, including breast, lung, colorectal, pancreatic, blood, neurological, and cutaneous cancers, are separately reviewed and discussed.
Collapse
Affiliation(s)
| | | | | | - Ning-Li Chai
- Department of Gastroenterology, General Hospital of the Chinese People’s Liberation Army, Beijing, China
| | - En-Qiang Linghu
- Department of Gastroenterology, General Hospital of the Chinese People’s Liberation Army, Beijing, China
| |
Collapse
|
24
|
The Clinical Efficiency and the Mechanism of Sanzi Yangqin Decoction for Chronic Obstructive Pulmonary Disease. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:5565562. [PMID: 34221077 PMCID: PMC8213503 DOI: 10.1155/2021/5565562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 04/24/2021] [Accepted: 05/27/2021] [Indexed: 11/18/2022]
Abstract
This work is carried out to evaluate the clinical efficacy of Sanzi Yangqin decoction (SZYQD) treating chronic obstructive pulmonary disease (COPD) and to analyze its mechanism. The clinical efficacy of SZYQD treating COPD was evaluated by meta-analysis, and its mechanism was analyzed by network pharmacology. Molecular docking validation of the main active compounds and the core targets was performed by AutoDock vina software. A cigarette smoke (CS) and LPS-induced COPD model in ICR mice was constructed to confirm the effects of luteolin on COPD. Results showed that SZYQD has a greater benefit on the total effect (OR = 3.85, 95% CI [3.07, 4.83], P=1) in the trial group compared with the control group. The percentage of forced expiratory volume in one second (FEV1%) (MD = 0.5, 95% CI [0.41, 0.59], P < 0.00001) and first seconds breathing volume percentage of forced vital capacity (FEV1%/FVC) were improved (MD = 5.97, 95% CI [3.23, 8.71], P < 0.00001). There are 27 compounds in SZYQD targeting 104 disease targets related to COPD. PPI network analysis indicated that EGFR, MMP9, PTGS2, MMP2, APP, and ERBB2 may be the core targets for the treatment of COPD. Molecular docking demonstrated that luteolin in SZYQD showed the strongest binding activity to core targets. Experimental results revealed that the expression of COPD-related targets in lung tissue was significantly increased in the COPD group and was improved in the luteolin group. Our data indicated that SZYQD has a curative effect on COPD and luteolin is a candidate compound for COPD treatment by regulating EGFR, MMP9, PTGS2, MMP2, APP, and ERBB2.
Collapse
|
25
|
Is Emodin with Anticancer Effects Completely Innocent? Two Sides of the Coin. Cancers (Basel) 2021; 13:cancers13112733. [PMID: 34073059 PMCID: PMC8198870 DOI: 10.3390/cancers13112733] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 05/25/2021] [Accepted: 05/28/2021] [Indexed: 12/12/2022] Open
Abstract
Many anticancer active compounds are known to have the capacity to destroy pathologically proliferating cancer cells in the body, as well as to destroy rapidly proliferating normal cells. Despite remarkable advances in cancer research over the past few decades, the inclusion of natural compounds in researches as potential drug candidates is becoming increasingly important. However, the perception that the natural is reliable is an issue that needs to be clarified. Among the various chemical classes of natural products, anthraquinones have many biological activities and have also been proven to exhibit a unique anticancer activity. Emodin, an anthraquinone derivative, is a natural compound found in the roots and rhizomes of many plants. The anticancer property of emodin, a broad-spectrum inhibitory agent of cancer cells, has been detailed in many biological pathways. In cancer cells, these molecular mechanisms consist of suppressing cell growth and proliferation through the attenuation of oncogenic growth signaling, such as protein kinase B (AKT), mitogen-activated protein kinase (MAPK), HER-2 tyrosine kinase, Wnt/-catenin, and phosphatidylinositol 3-kinase (PI3K). However, it is known that emodin, which shows toxicity to cancer cells, may cause kidney toxicity, hepatotoxicity, and reproductive toxicity especially at high doses and long-term use. At the same time, studies of emodin, which has poor oral bioavailability, to transform this disadvantage into an advantage with nano-carrier systems reveal that natural compounds are not always directly usable compounds. Consequently, this review aimed to shed light on the anti-proliferative and anti-carcinogenic properties of emodin, as well as its potential toxicities and the advantages of drug delivery systems on bioavailability.
Collapse
|
26
|
Wen T, Song L, Hua S. Perspectives and controversies regarding the use of natural products for the treatment of lung cancer. Cancer Med 2021; 10:2396-2422. [PMID: 33650320 PMCID: PMC7982634 DOI: 10.1002/cam4.3660] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/19/2020] [Accepted: 11/20/2020] [Indexed: 12/13/2022] Open
Abstract
Lung cancer is the leading cause of cancer‐related mortality both in men and women and accounts for 18.4% of all cancer‐related deaths. Although advanced therapy methods have been developed, the prognosis of lung cancer patients remains extremely poor. Over the past few decades, clinicians and researchers have found that chemical compounds extracted from natural products may be useful for treating lung cancer. Drug formulations derived from natural compounds, such as paclitaxel, doxorubicin, and camptothecin, have been successfully used as chemotherapeutics for lung cancer. In recent years, hundreds of new natural compounds that can be used to treat lung cancer have been found through basic and sub‐clinical research. However, there has not been a corresponding increase in the number of drugs that have been used in a clinical setting. The probable reasons may include low solubility, limited absorption, unfavorable metabolism, and severe side effects. In this review, we present a summary of the natural compounds that have been proven to be effective for the treatment of lung cancer, as well as an understanding of the mechanisms underlying their pharmacological effects. We have also highlighted current controversies and have attempted to provide solutions for the clinical translation of these compounds.
Collapse
Affiliation(s)
- Tingting Wen
- Department of Respiratory Medicine, Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, Jilin, P.R. China
| | - Lei Song
- Department of Respiratory Medicine, Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, Jilin, P.R. China
| | - Shucheng Hua
- Department of Respiratory Medicine, Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, Jilin, P.R. China
| |
Collapse
|
27
|
Li B, Zhao X, Zhang L, Cheng W. Emodin Interferes With AKT1-Mediated DNA Damage and Decreases Resistance of Breast Cancer Cells to Doxorubicin. Front Oncol 2021; 10:588533. [PMID: 33634018 PMCID: PMC7900193 DOI: 10.3389/fonc.2020.588533] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 12/24/2020] [Indexed: 12/14/2022] Open
Abstract
Doxorubicin (DOX) is a cytotoxic drug used for the treatment of breast cancer (BC). However, the rapid emergence of resistance toward doxorubicin threatens its clinical application, thus the need for combination therapy. Here, we interrogate the role of Emodin, a chemical compound with tumor inhibitory properties, in the resistance of BC to Doxorubicin. We first evaluated the efficacy of Emodin in the treatment of BC cells. We then used γH2A to examine doxorubicin-induced DNA damage in BC cells, with or without Emodin. Data from CCK-8, flow cytometry, and tumor xenograft assays showed that Emodin suppresses the growth of BC cells. Further, we demonstrated that Emodin enhances γH2A levels in BC cells. Moreover, bioinformatics analysis and western blot assays indicated that Emodin down-regulates the AKT1 expression, and marginally decreases the levels of DNA damage proteins (XRCC1, PARP1, and RAD51) as well as increased p53 expression in BC cells. Taken together, our data demonstrates that Emodin affects cell proliferation, and DNA damage pathways in BC cells, thus increasing the sensitivity of BC cells to doxorubicin. Besides, we confirmed that Emodin confers sensitization of BC to doxorubicin through AKT1-mediated DNA.
Collapse
Affiliation(s)
- Bo Li
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xin Zhao
- Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Lei Zhang
- Department of Ultrasound, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wen Cheng
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin, China
| |
Collapse
|
28
|
Liu Y, Xiang D, Zhang H, Yao H, Wang Y. Hypoxia-Inducible Factor-1: A Potential Target to Treat Acute Lung Injury. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:8871476. [PMID: 33282113 PMCID: PMC7685819 DOI: 10.1155/2020/8871476] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/29/2020] [Accepted: 11/04/2020] [Indexed: 02/07/2023]
Abstract
Acute lung injury (ALI) is an acute hypoxic respiratory insufficiency caused by various intra- and extrapulmonary injury factors. Presently, excessive inflammation in the lung and the apoptosis of alveolar epithelial cells are considered to be the key factors in the pathogenesis of ALI. Hypoxia-inducible factor-1 (HIF-1) is an oxygen-dependent conversion activator that is closely related to the activity of reactive oxygen species (ROS). HIF-1 has been shown to play an important role in ALI and can be used as a potential therapeutic target for ALI. This manuscript will introduce the progress of HIF-1 in ALI and explore the feasibility of applying inhibitors of HIF-1 to ALI, which brings hope for the treatment of ALI.
Collapse
Affiliation(s)
- Yang Liu
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Wuhan 430071, China
| | - Du Xiang
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Wuhan 430071, China
| | - Hengcheng Zhang
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, 02115 MA, USA
| | - Hanlin Yao
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Wuhan 430071, China
| | - Yanfeng Wang
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Wuhan 430071, China
| |
Collapse
|
29
|
Zhang Q, Liu J, Li R, Zhao R, Zhang M, Wei S, Ran D, Jin W, Wu C. A Network Pharmacology Approach to Investigate the Anticancer Mechanism and Potential Active Ingredients of Rheum palmatum L. Against Lung Cancer via Induction of Apoptosis. Front Pharmacol 2020; 11:528308. [PMID: 33250766 PMCID: PMC7672213 DOI: 10.3389/fphar.2020.528308] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 09/17/2020] [Indexed: 12/26/2022] Open
Abstract
Rheum palmatum L. (RPL) is a known traditional herbal medicine with the functions of “heat-clearing and damp-drying” in traditional Chinese medicine. Its anti-cancer effect against lung cancer has been confirmed previously, but the related mechanisms and active substances for its action has been little studied. This study adopted the network pharmacology, built the network map of drug ingredients and disease targets (DDN), and discussed the effective components of RPL and its possible mechanisms. All constituents of RPL were collected through database search and literature mining, and the potential active constituents were screened. The inverse pharmacophore matching model was used to predict the targets of active ingredients, and the method was supplemented by database retrieval and literature mining. Compounds-target data were inputted into Cytoscape software to build the DDN of RPL, and functional annotation analysis and pathway enrichment analysis were carried out. Finally, 20 active compounds were screened, which acted on 817 targets. A total of 22,418 lung cancer-related targets were collected, and 761 overlapped with drug targets. By bioinformatics annotation of these overlapping genes, a total of 235 gene ontology (GO) functional annotation analyses and 46 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were obtained. It was found that the enrichment of GO and KEGG was associated with apoptosis, suggesting RPL plays an anti-lung cancer role via inducing cell apoptosis. Subsequent cell experiment results showed RPL and its active constituents inhibited the proliferation of A549 cells and reduced clone formation rate of A549 cells via induction of apoptosis. In this study, the pharmacodynamic basis and mechanism of RPL against lung cancer were studied from the perspective of systematic pharmacology, which would be beneficial for further elucidating the anticancer effect of RPL on lung cancer.
Collapse
Affiliation(s)
- Qing Zhang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jia Liu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ruolan Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Rong Zhao
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Mengmeng Zhang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shujun Wei
- Emergency Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Dong Ran
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wei Jin
- Emergency Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chunjie Wu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
30
|
Shen F, Ge C, Yuan P. Aloe-emodin induces autophagy and apoptotic cell death in non-small cell lung cancer cells via Akt/mTOR and MAPK signaling. Eur J Pharmacol 2020; 886:173550. [DOI: 10.1016/j.ejphar.2020.173550] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 08/27/2020] [Accepted: 09/09/2020] [Indexed: 01/03/2023]
|
31
|
Bhatia A, Arora S, Nagpal A, Singh B. Screening of rhizomes of Rheum emodi Wall. Ex. Meissen for antimutagenic potential employing Ames assay. THE NUCLEUS 2020. [DOI: 10.1007/s13237-020-00309-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
|
32
|
Zhang S, Zhou L, Zhang M, Wang Y, Wang M, Du J, Gu W, Kui F, Li J, Geng S, Du G. Berberine Maintains the Neutrophil N1 Phenotype to Reverse Cancer Cell Resistance to Doxorubicin. Front Pharmacol 2020; 10:1658. [PMID: 32063859 PMCID: PMC7000449 DOI: 10.3389/fphar.2019.01658] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 12/17/2019] [Indexed: 02/06/2023] Open
Abstract
This study explores the contributions of neutrophils to chemotherapeutic resistance and berberine-regulated cancer cell sensitivity to doxorubicin (DOX). In vitro experiments, continuous DOX treatment led to the shift of HL-60 cells to N2 neutrophils and thus induced chemotherapeutic resistance. The combination treatment with DOX and 2 µM berberine resulted in the differentiation of HL-60 cells toward N1 and therefore stimulated HL-60 cell immune clearance. Berberine increased reactive oxygen species (ROS) and decreased autophagy and therefore induced apoptosis in HL-60-N2 cells with morphological changes, but had no effect on cell viability in HL-60-N1 cells. The neutrophil-regulating efficacy of berberine was confirmed in the urethane-induced lung carcinogenic model and H22 liver cancer allograft model. Furthermore, we found that DOX-derived neutrophils had high levels of CD133 and CD309 surface expression, which prevented both chemotherapeutic sensitivity and immune rejection by self-expression of PD-L1 and surface expression of PD-1 receptor on T cells, whereas berberine could downregulate CD133 and CD309 surface expression. Finally, berberine-relevant targets and pathways were evaluated. This study first suggests an important role of berberine in regulating neutrophil phenotypes to maintain cancer cell sensitivity to DOX.
Collapse
Affiliation(s)
- Shuhui Zhang
- Institute of Pharmacy, Pharmaceutical College of Henan University, Kaifeng, China
| | - Lin Zhou
- Institute of Pharmacy, Pharmaceutical College of Henan University, Kaifeng, China
| | - Mengdi Zhang
- Institute of Pharmacy, Pharmaceutical College of Henan University, Kaifeng, China
| | - Yuehua Wang
- Institute of Pharmacy, Pharmaceutical College of Henan University, Kaifeng, China
| | - Mengqi Wang
- Institute of Pharmacy, Pharmaceutical College of Henan University, Kaifeng, China
| | - Jincheng Du
- Institute of Pharmacy, Pharmaceutical College of Henan University, Kaifeng, China
- Chinese Medical School, Hunan University of Chinese Medicine, Changsha, China
| | - Wenwen Gu
- Institute of Pharmacy, Pharmaceutical College of Henan University, Kaifeng, China
| | - Fuguang Kui
- Institute of Pharmacy, Pharmaceutical College of Henan University, Kaifeng, China
| | - Jiahuan Li
- Institute of Pharmacy, Pharmaceutical College of Henan University, Kaifeng, China
| | - Shengnan Geng
- School of Pharmacy and Chemical Engineering, Zhengzhou University of Industry Technology, Xinzheng, China
| | - Gangjun Du
- Institute of Pharmacy, Pharmaceutical College of Henan University, Kaifeng, China
- School of Pharmacy and Chemical Engineering, Zhengzhou University of Industry Technology, Xinzheng, China
| |
Collapse
|
33
|
Fu M, Tang W, Liu JJ, Gong XQ, Kong L, Yao XM, Jing M, Cai FY, Li XT, Ju RJ. Combination of targeted daunorubicin liposomes and targeted emodin liposomes for treatment of invasive breast cancer. J Drug Target 2019; 28:245-258. [PMID: 31462111 DOI: 10.1080/1061186x.2019.1656725] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Conventional treatment fails to completely eliminate highly invasive breast cancer cells, and most surviving breast cancer cells tend to reproliferate and metastasize by forming vasculogenic mimicry (VM) channels. Thus, a type of targeted liposomes was developed by modification with arginine8-glycine-aspartic acid (R8GD) to encapsulate daunorubicin and emodin separately. A combination of the two targeted liposomes was then developed to destroy VM channels and inhibit tumour metastasis. MDA-MB-435S cells, a highly invasive breast cancer, were then evaluated in vitro and in mice. The experiments indicated that R8GD modified daunorubicin liposomes plus R8GD modified emodin liposomes had small particle size, uniform particle size distribution and high drug encapsulation rate. The combination of the two targeted liposomes exerted strong toxicity on the MDA-MB-435S cells and effectively inhibited the formation of VM channels and the metastasis of tumour cells. Action mechanism studies showed that the R8GD modified daunorubicin liposomes plus R8GD modified emodin liposomes could downregulate some metastasis-related proteins, including MMP-2, VE-cad, TGF-β1 and HIF-1α. These studies also demonstrated that the targeted liposomes allowed the chemotherapeutic drug to selectively accumulate at tumour site, thus exhibiting a distinct antitumor effect. Therefore, the combination of targeted daunorubicin liposomes and targeted emodin liposomes can provide a potential treatment for invasive breast cancer.
Collapse
Affiliation(s)
- Min Fu
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Wei Tang
- Linyi Food and Drug Testing Center, Linyi, China
| | - Jing-Jing Liu
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Xiao-Qing Gong
- Department of Pharmaceutical Engineering, Beijing Institute of Petrochemical Technology, Beijing, China
| | - Liang Kong
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Xue-Min Yao
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Ming Jing
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Fu-Yi Cai
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Xue-Tao Li
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Rui-Jun Ju
- Department of Pharmaceutical Engineering, Beijing Institute of Petrochemical Technology, Beijing, China
| |
Collapse
|