1
|
Gao Y, Zhang J, Cao M, Zhang Y, Cao M, Gu W, Wang M. MDPAO1 peptide from human milk enhances brown adipose tissue thermogenesis and mitigates obesity. Mol Cell Endocrinol 2025; 597:112443. [PMID: 39710295 DOI: 10.1016/j.mce.2024.112443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 11/19/2024] [Accepted: 12/14/2024] [Indexed: 12/24/2024]
Abstract
The regulatory effect of breastfeeding on offspring metabolism has garnered significant attention as an effective strategy in combating childhood obesity. However, the underlying mechanism remains largely unknown. Through integrated analysis of multiple human milk peptide databases and functional screening, MDPAO1 (milk-derived peptide associated with obesity 1) was identified as having potential activity in promoting the expression of thermogenic genes. In lactating mice, intervention with MDPAO1 enhanced the thermogenic phenotype of brown adipose tissue (BAT) and overall metabolic activity. Moreover, MDPAO1 intervention led to reduced body weight gain, increased brown fat mass, and improved glucose tolerance and insulin sensitivity in a mouse model of high-fat diet (HFD)-induced obesity. RNA-seq analysis of BAT post-MDPAO1 intervention revealed close association with mitochondrial oxidative respiratory chain and mitophagy. Subsequent in vitro experiments conducted on primary brown adipocytes confirmed that MDPAO1 inhibited mitophagy, increased mitochondrial mass, and elevated levels of mitochondrial respiratory chain complexes. In conclusion, this study underscores the potential of MDPAO1, a peptide enriched in breast milk, in activating the thermogenic phenotype of brown adipose tissue and mitigating obesity, thus offering novel insights into the mechanisms underlying breastfeeding's role in preventing childhood obesity.
Collapse
Affiliation(s)
- Yao Gao
- Department of Endocrinology, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, 210008, China
| | - Jiahui Zhang
- Department of Pediatric Laboratory, Affiliated Children's Hospital of Jiangnan University, Wuxi Children's Hospital, Wuxi, 214023, China
| | - Mengda Cao
- Department of Pharmacy, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210044, China
| | - Yiting Zhang
- Department of Pediatric Laboratory, Affiliated Children's Hospital of Jiangnan University, Wuxi Children's Hospital, Wuxi, 214023, China; Department of Neonatology, Affiliated Children's Hospital of Jiangnan University, Wuxi Children's Hospital, Wuxi, 214023, China
| | - Minkai Cao
- Department of Obstetrics and Gynecology, Affiliated Women's Hospital of Jiangnan University ,Wuxi Maternity and Child Health Care Hospital, Wuxi 214002, China.
| | - Wei Gu
- Department of Endocrinology, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, 210008, China.
| | - Mingxin Wang
- Department of Pediatric Laboratory, Affiliated Children's Hospital of Jiangnan University, Wuxi Children's Hospital, Wuxi, 214023, China; Department of Neonatology, Affiliated Children's Hospital of Jiangnan University, Wuxi Children's Hospital, Wuxi, 214023, China.
| |
Collapse
|
2
|
Cemali Ö, Çelik E, Deveci G, Hirfanoğlu İM, Önal EE, Ağagündüz D. Detection and quantification of miRNA 148a expression in infant formulas. J Food Sci 2025; 90:e17648. [PMID: 39828407 DOI: 10.1111/1750-3841.17648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 12/03/2024] [Accepted: 12/19/2024] [Indexed: 01/22/2025]
Abstract
MiRNA 148a, which is associated with various biological processes such as immunity and cell differentiation, is one of the most abundant miRNAs in breast milk. This study aimed to determine the amount of miRNA 148a in different infant formulas, which are used for infants who cannot receive breast milk. The study analyzed 20 formulas, including stage one infant formulas (0-6 months of age), stage two follow-up formulas (6-12 months of age), stage three toddler formulas (above 12 months of age), and premature ones, analyzing miRNA 148a expression and qPCR miRNA gene expression, with significance set at p < 0.05. The expression levels of miRNA 148a in different infant formulas were compared, and no statistically significant difference was observed (p > 0.05). Also, there was no difference in relative miRNA 148a expression across formulas with and without probiotics (p > 0.05). Protein levels in probiotic formulas (0 month-1 year+) were positively correlated with relative miRNA 148a expression (p = 0.022). Although miRNA 148a expression has been shown to be present in formulas, it has been revealed that the amount is low compared to breast milk in line with the literature. In this direction, it is important to increase current data on the mechanisms of action of miRNAs in breast milk and the efforts to ensure that infant formulas reach a composition closest to breast milk in line with their biological effects. PRACTICAL APPLICATION: The miRNAs found in exosomal compounds in human breast milk are very diverse in terms of number and health effects, and can control various biological processes in cells, including immunity, cell differentiation, and apoptosis. One of these is miRNA 148a, which is the most abundant in human breast milk. For this reason, in this study, the miRNA 148a content of infant formulas, which are commonly used in healthy babies who cannot receive enough human breast milk (breastfeeding recommended for at least 6 months and up to 2 years) for a valid reason, was analyzed. In conclusion, miRNA expression has been detected in infant formulas, but it has been shown that this expression is at a low level.
Collapse
Affiliation(s)
- Özge Cemali
- Faculty of Health Sciences, Department of Nutrition and Dietetics, Trakya University, Edirne, Türkiye
| | - Elif Çelik
- Faculty of Health Sciences, Department of Nutrition and Dietetics, Süleyman Demirel University, Isparta, Türkiye
| | - Gülsüm Deveci
- Faculty of Health Sciences, Department of Nutrition and Dietetics, Çankırı Karatekin University, Çankırı, Türkiye
| | | | - Eray Esra Önal
- Faculty of Medicine, Department of Child Health and Diseases, Gazi University, Ankara, Türkiye
| | - Duygu Ağagündüz
- Faculty of Health Sciences, Department of Nutrition and Dietetics, Gazi University, Ankara, Türkiye
| |
Collapse
|
3
|
Di SJ, Cui XW, Liu TJ, Shi YY. Therapeutic potential of human breast milk-derived exosomes in necrotizing enterocolitis. Mol Med 2024; 30:243. [PMID: 39701931 DOI: 10.1186/s10020-024-01010-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 11/23/2024] [Indexed: 12/21/2024] Open
Abstract
Necrotizing enterocolitis (NEC) is a severe inflammatory and necrotizing disease of the intestine that primarily affects the neonates, particularly premature infants. It has a high incidence of approximately 8.9% in extremely preterm infants, with a mortality rate ranging from 20 to 30%. In recent years, exosomes, particularly those derived from breast milk, have emerged as potential candidates for NEC therapy. Human breast milk-derived exosomes (BME) have been shown to enhance intestinal barrier function, protect intestinal epithelial cells from oxidative stress, promote the proliferation and migration of intestinal epithelial cells, and reduce the severity of experimental NEC models. As a subset of extracellular vesicles, BME possess the membrane structure, low immunogenicity, and high permeability, making them ideal vehicles for the treatment of NEC. Additionally, exosomes derived from various sources, including stem cells, intestinal epithelial cells, plants, and bacteria, have been implicated in the development and protection of intestinal diseases. This article summarizes the mechanisms through which exosomes, particularly BME, exert their effects on NEC and discusses the feasibility and obstacles associated with this novel therapeutic strategy.
Collapse
Affiliation(s)
- Si-Jia Di
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Xue-Wei Cui
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Tian-Jing Liu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
| | - Yong-Yan Shi
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
| |
Collapse
|
4
|
Reif S, Birimberg-Schwartz L, Grunewald M, Duran D, Sebbag-Sznajder N, Toledano T, Musseri M, Golan-Gerstl R. The Effect of Milk-Derived Extracellular Vesicles on Intestinal Epithelial Cell Proliferation. Int J Mol Sci 2024; 25:13519. [PMID: 39769282 PMCID: PMC11678886 DOI: 10.3390/ijms252413519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/04/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic, relapsing inflammation disorder of the gastrointestinal tract characterized by disrupted intestinal epithelial barrier function. Despite advances in treatment, including biological agents, achieving sustained remission remains challenging for many patients with IBD. This highlights the urgent need for novel therapeutic strategies. Milk-derived extracellular vesicles (MDEs) have emerged as a promising therapeutic option. In this study, we isolated and characterized MDEs and evaluated their effects on the function of intestinal epithelial cells (IECs). Using a murine model of Dextran Sulfate Sodium (DSS)-induced colitis, we observed that MDEs significantly ameliorated disease symptoms. The upregulation of β-catenin, a crucial mediator of Wnt signaling, in colonic tissues suggests that MDEs may facilitate epithelial regeneration and restore barrier function. In patient-derived colon organoids (PDCOs), MDEs were internalized and modulated the expression of key signaling molecules, such as the upregulation of β-catenin, cyclin D1, and the proliferation marker Ki67, indicating their potential to promote IEC proliferation and intestinal barrier repair. Importantly, MDEs demonstrated selective activity by downregulating β-catenin and cyclin D1 in colon cancer cells, leading to reduced proliferation. This selectivity indicates a dual therapeutic potential of MDEs for promoting healthy IEC proliferation while potentially mitigating malignancy risks.
Collapse
Affiliation(s)
- Shimon Reif
- Department of Pediatrics, Hadassah-Hebrew University Medical Center, Jerusalem 9166100, Israel; (S.R.)
| | - Liron Birimberg-Schwartz
- Hadassah Organoid Center, The Hadassah Medical Organization, Jerusalem 9166100, Israel; (L.B.-S.)
- Department of Pediatric Gastroenterology, Hadassah Medical Organization and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 9166100, Israel
| | - Myriam Grunewald
- Hadassah Organoid Center, The Hadassah Medical Organization, Jerusalem 9166100, Israel; (L.B.-S.)
- Department of Developmental Biology and Cancer Research, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 9166100, Israel
| | - Deborah Duran
- Hadassah Organoid Center, The Hadassah Medical Organization, Jerusalem 9166100, Israel; (L.B.-S.)
| | - Naama Sebbag-Sznajder
- Hadassah Organoid Center, The Hadassah Medical Organization, Jerusalem 9166100, Israel; (L.B.-S.)
| | - Tirtsa Toledano
- Hadassah Organoid Center, The Hadassah Medical Organization, Jerusalem 9166100, Israel; (L.B.-S.)
| | - Mirit Musseri
- Department of Pediatrics, Hadassah-Hebrew University Medical Center, Jerusalem 9166100, Israel; (S.R.)
| | - Regina Golan-Gerstl
- Department of Pediatrics, Hadassah-Hebrew University Medical Center, Jerusalem 9166100, Israel; (S.R.)
| |
Collapse
|
5
|
Wijenayake S, Eisha S, Purohit MK, McGowan PO. Milk derived extracellular vesicle uptake in human microglia regulates the DNA methylation machinery : Short title: milk-derived extracellular vesicles and the epigenetic machinery. Sci Rep 2024; 14:28630. [PMID: 39562680 PMCID: PMC11576889 DOI: 10.1038/s41598-024-79724-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 11/12/2024] [Indexed: 11/21/2024] Open
Abstract
Mammalian milk contains milk-derived extracellular vesicles (MEVs), a group of biological nanovesicles that transport macromolecules. Their ability to cross the blood brain barrier and the presence of cargo capable of modifying gene function have led to the hypothesis that MEVs may play a role in brain function and development. Here, we investigated the uptake of MEVs by human microglia cells in vitro and explored the functional outcomes of MEV uptake. We examined the expression of the miR-148/152 family, highly abundant MEV microRNAs, that directly suppress the translation of DNA methyltransferase (DNMT) enzymes crucial for catalyzing DNA methylation modifications. We also measured phenotypic and inflammatory gene expression in baseline homeostatic and IFN-γ primed microglia to determine if MEVs induce anti-inflammatory effects. We found that MEVs are taken up and localize in baseline and primed microglia. In baseline microglia, MEV supplementation reduced miR-148a-5P levels, increased DNMT1 transcript, protein abundance, and enzymatic activity, compared to cells that did not receive MEVs. In primed microglia, MEV supplementation decreased miR-148a-5P levels and increased DNMT1 protein abundance, but DNMT1 transcript and enzymatic levels remained unchanged. Contrary to predictions, MEV supplementation failed to attenuate pro-inflammatory IL1β expression in primed microglia. This study provides the first evidence of MEV uptake by a brain macrophage, suggesting a potential role in regulating epigenetic machinery and neuroimmune modulation.
Collapse
Affiliation(s)
- Sanoji Wijenayake
- Department of Biology, The University of Winnipeg, Winnipeg, Manitoba, Canada.
- Department of Biological Sciences and Center for Environmental Epigenetics and Development, Scarborough Campus, University of Toronto, Toronto, ON, Canada.
| | - Shafinaz Eisha
- Department of Biological Sciences and Center for Environmental Epigenetics and Development, Scarborough Campus, University of Toronto, Toronto, ON, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Mansi Kamlesh Purohit
- Department of Biological Sciences and Center for Environmental Epigenetics and Development, Scarborough Campus, University of Toronto, Toronto, ON, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Patrick Owen McGowan
- Department of Biological Sciences and Center for Environmental Epigenetics and Development, Scarborough Campus, University of Toronto, Toronto, ON, Canada.
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada.
- Department of Psychology, University of Toronto, Toronto, ON, Canada.
- Department of Physiology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
6
|
Jiang Q, Wang L, Tian J, Zhang W, Cui H, Gui H, Zang Z, Li B, Si X. Food-derived extracellular vesicles: natural nanocarriers for active phytoconstituents in new functional food. Crit Rev Food Sci Nutr 2024; 64:11701-11721. [PMID: 37548408 DOI: 10.1080/10408398.2023.2242947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Extracellular vesicles (EVs) are naturally occurring non-replicating particles released from cells, known for their health-promoting effects and potential as carriers for drug delivery. Extensive research has been conducted on delivery systems based on culture-cell-derived EVs. Nevertheless, they have several limitations including low production yield, high expenses, unsuitability for oral administration, and safety concerns in applications. Conversely, food-derived EVs (FDEVs) offer unique advantages that cannot be easily substituted. This review provides a comprehensive analysis of the biogenesis pathways, composition, and health benefits of FDEVs, as well as the techniques required for constructing oral delivery systems. Furthermore, it explores the advantages and challenges associated with FDEVs as oral nanocarriers, and discusses the current research advancements in delivering active phytoconstituents. FDEVs, functioning as a nanocarrier platform for the oral delivery of active molecules, present numerous benefits such as convenient administration, high biocompatibility, low toxicity, and inherent targeting. Nevertheless, numerous unresolved issues persist in the isolation, characterization, drug loading, and application of FDEVs. Technical innovation and standardization of quality control are the key points to promote the development of FDEVs. The review aimed to provide frontier ideas and basic quality control guidelines for developing new functional food based on FDEVs oral drug delivery system.
Collapse
Affiliation(s)
- Qiao Jiang
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Li Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Jinlong Tian
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Weijia Zhang
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Huijun Cui
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Hailong Gui
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Zhihuan Zang
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Bin Li
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Xu Si
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
7
|
Çelik E, Cemali Ö, Şahin TÖ, Deveci G, Biçer NÇ, Hirfanoğlu İM, Ağagündüz D, Budán F. Human Breast Milk Exosomes: Affecting Factors, Their Possible Health Outcomes, and Future Directions in Dietetics. Nutrients 2024; 16:3519. [PMID: 39458514 PMCID: PMC11510026 DOI: 10.3390/nu16203519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 10/12/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
Background: Human breast milk is a complex biological fluid containing multifaceted biological compounds that boost immune and metabolic system development that support the short- and long-term health of newborns. Recent literature suggests that human breast milk is a substantial source of nutrients, bioactive molecules, and exosomes. Objectives: This review examines the factors influencing exosomes noted in human milk and the impacts of exosomes on infant health. Furthermore, it discusses potential future prospects for exosome research in dietetics. Methods: Through a narrative review of the existing literature, we focused on exosomes in breast milk, exosome components and their potential impact on exosome health. Results: Exosomes are single-membrane extracellular vesicles of endosomal origin, with an approximate radius of 20-200 nm. They are natural messengers that cells secrete to transport a wide range of diverse cargoes, including deoxyribonucleic acid, ribonucleic acid, proteins, and lipids between various cells. Some studies have reported that the components noted in exosomes in human breast milk could be transferred to the infant and cause epigenetic changes. Thus, it can affect gene expression and cellular event regulation in several tissues. Conclusions: In this manner, exosomes are associated with several pathways, including the immune system, oxidative stress, and cell cycle, and they can affect the short- and long-term health of infants. However, there is still much to learn about the functions, effectiveness, and certain impacts on the health of human breast milk exosomes.
Collapse
Affiliation(s)
- Elif Çelik
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Süleyman Demirel University, Isparta 32260, Türkiye;
| | - Özge Cemali
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Trakya University, Edirne 22030, Türkiye;
| | - Teslime Özge Şahin
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Afyonkarahisar Health Sciences University, Afyonkarahisar 03030, Türkiye;
| | - Gülsüm Deveci
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Çankırı Karatekin University, Çankırı 18100, Türkiye;
| | - Nihan Çakır Biçer
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Acıbadem Mehmet Ali Aydınlar University, Istanbul 34752, Türkiye;
| | | | - Duygu Ağagündüz
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Gazi University, Ankara 06490, Türkiye
| | - Ferenc Budán
- Institute of Physiology, Medical School, University of Pécs, H-7624 Pécs, Hungary
| |
Collapse
|
8
|
Abou el qassim L, Golan-Gerstl R, Reif S, Royo LJ. Association Between Dairy Production System and Milk Functionality Based on Analysis of miRNAs in Exosomes from Milk. Animals (Basel) 2024; 14:2960. [PMID: 39457889 PMCID: PMC11503750 DOI: 10.3390/ani14202960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/09/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
Dairy farming practices significantly affect the nutritional and functional properties of milk. This study compares miRNAs in milk exosomes from extensive and intensive dairy systems and explores their potential implications for human consumers. Extensive systems are believed to produce milk of higher quality with better animal welfare compared to intensive systems. Milk samples from eight extensive and nine intensive dairy farms were analysed. Milk-derived extracellular vesicles were isolated through sequential ultracentrifugation and characterised through Dynamic Light Scattering and Nanosight to determine the size and the concentration of the extracellular vesicles, in addition to immunoblotting to ensure the presence of exosome-specific proteins in their membrane. miRNA levels were quantified using RT-qPCR, and metabolic pathways associated with miRNAs showing significant differences between farm groups were analysed. EVs from extensive farms had higher concentrations. Notably, bta-miR-451 levels were significantly higher in milk from extensive farms (p = 0.021). Like human miRNA hsa-miR-451, it is linked to pathways related to Parkinson's disease and cancer. Our research suggests that milk production in extensive systems not only provides socioeconomic and environmental benefits but may also have positive effects on human health. Further research is warranted to explore the bioactive potential of these miRNAs and their implications for human health.
Collapse
Affiliation(s)
- Loubna Abou el qassim
- Department of Animal Nutrition, Servicio Regional de Investigación y Desarrollo Agroalimentario (SERIDA), 33300 Villaviciosa, Spain;
- Dairy Research & Innovation Centre, Scotland’s Rural College (SRUC), Barony, Parkgate, Dumfries DG1 3NE, UK
| | - Regina Golan-Gerstl
- Pediatric Department, Hadassah Medical Center, Jerusalem 91120, Israel; (R.G.-G.); (S.R.)
| | - Shimon Reif
- Pediatric Department, Hadassah Medical Center, Jerusalem 91120, Israel; (R.G.-G.); (S.R.)
| | - Luis J. Royo
- Department of Animal Nutrition, Servicio Regional de Investigación y Desarrollo Agroalimentario (SERIDA), 33300 Villaviciosa, Spain;
- Department of Functional Biology, University of Oviedo, 33006 Oviedo, Spain
| |
Collapse
|
9
|
Sergazy S, Zhetkenev S, Shulgau Z, Chulenbayeva L, Kamyshanskiy Y, Nurgaziyev M, Nurgozhina A, Mukhanbetzhanova Z, Berikkhanova K, Gulyayev A, Aljofan M. Investigating the Suitability of Mare's Milk-Derived Exosomes as Potential Drug Carriers. Biomolecules 2024; 14:1247. [PMID: 39456180 PMCID: PMC11506534 DOI: 10.3390/biom14101247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/19/2024] [Accepted: 09/21/2024] [Indexed: 10/28/2024] Open
Abstract
Exosomes are cell-derived, membrane-surrounded particles that deliver bioactive molecules to various cells. Due to their small size, low immunogenicity, extended blood circulation, and involvement in cellular communication, they hold potential as effective drug carriers. Exosomes are present in various biological fluids, including mare's milk, a traditional drink in Central Asia. This study aims to compare exosome isolation methodologies and determine the stability of mare's milk-derived exosomes as potential therapeutic carriers. Three extraction methods-immunoprecipitation, size exclusion chromatography, and total exosome isolation-were compared in terms of exosome characteristics, purity, and content. The isolated exosomes were then loaded with quercetin, and their ability to increase its bioavailability was tested in vitro and in vivo. Total exosome isolation was identified as the most efficient method for producing high-quality exosomes. These exosomes were loaded with quercetin and compared to free quercetin and exosomes alone. Exosomes loaded with 80 µM quercetin significantly restored β-galactosidase activity and cellular viability in doxorubicin-treated cells, exhibiting similar potency to 160 µM free quercetin. In aged model animals, treatment with quercetin-loaded exosomes resulted in significantly less acute and subacute damage to the myocardium, kidneys, and liver compared to untreated control animals. This study provides a proof-of-concept that mare's milk-derived exosomes can be effectively absorbed by cells and animal tissues, supporting their potential use as drug carriers.
Collapse
Affiliation(s)
- Shynggys Sergazy
- National Laboratory Astana, Private Institution, Nazarbayev University, Astana 010000, Kazakhstan (L.C.); (M.N.); (Z.M.); (A.G.); (M.A.)
| | - Sanzhar Zhetkenev
- National Laboratory Astana, Private Institution, Nazarbayev University, Astana 010000, Kazakhstan (L.C.); (M.N.); (Z.M.); (A.G.); (M.A.)
| | - Zarina Shulgau
- National Laboratory Astana, Private Institution, Nazarbayev University, Astana 010000, Kazakhstan (L.C.); (M.N.); (Z.M.); (A.G.); (M.A.)
| | - Laura Chulenbayeva
- National Laboratory Astana, Private Institution, Nazarbayev University, Astana 010000, Kazakhstan (L.C.); (M.N.); (Z.M.); (A.G.); (M.A.)
| | - Yevgeniy Kamyshanskiy
- Laboratory and Pathological Diagnostic Unit, Karaganda State Medical University, Karaganda 100000, Kazakhstan
| | - Madiyar Nurgaziyev
- National Laboratory Astana, Private Institution, Nazarbayev University, Astana 010000, Kazakhstan (L.C.); (M.N.); (Z.M.); (A.G.); (M.A.)
| | - Ayaulym Nurgozhina
- National Laboratory Astana, Private Institution, Nazarbayev University, Astana 010000, Kazakhstan (L.C.); (M.N.); (Z.M.); (A.G.); (M.A.)
| | - Zhanel Mukhanbetzhanova
- National Laboratory Astana, Private Institution, Nazarbayev University, Astana 010000, Kazakhstan (L.C.); (M.N.); (Z.M.); (A.G.); (M.A.)
| | - Kulzhan Berikkhanova
- National Laboratory Astana, Private Institution, Nazarbayev University, Astana 010000, Kazakhstan (L.C.); (M.N.); (Z.M.); (A.G.); (M.A.)
| | - Alexander Gulyayev
- National Laboratory Astana, Private Institution, Nazarbayev University, Astana 010000, Kazakhstan (L.C.); (M.N.); (Z.M.); (A.G.); (M.A.)
| | - Mohamad Aljofan
- National Laboratory Astana, Private Institution, Nazarbayev University, Astana 010000, Kazakhstan (L.C.); (M.N.); (Z.M.); (A.G.); (M.A.)
- Department of Biomedical Science, Nazarbayev University School of Medicine, Astana 020000, Kazakhstan
| |
Collapse
|
10
|
Lu X, Ren K, Pan L, Liu X. Sheep ( Ovis aries) Milk Exosomal miRNAs Attenuate Dextran Sulfate Sodium-Induced Colitis in Mice via TLR4 and TRAF-1 Inhibition. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:21030-21040. [PMID: 39283309 DOI: 10.1021/acs.jafc.4c05524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Mammalian milk exosomal miRNAs play an important role in maintaining intestinal immune homeostasis and protecting epithelial barrier function, but the specific miRNAs and whether miRNA-mediated mechanisms are responsible for these benefits remain a matter of investigation. This study isolated sheep milk-derived exosomes (sheep MDEs), identifying the enriched miRNAs in sheep MDEs, oar-miR-148a, and oar-let-7b as key components targeting TLR4 and TRAF1, which was validated by a dual-luciferase reporter assay. In dextran sulfate sodium-induced colitis mice, administration of sheep MDEs alleviated colitis symptoms, reduced colonic inflammation, and systemic oxidative stress, as well as significantly increased colonic oar-miR-148a and oar-let-7b while reducing toll-like receptor 4 (TLR4) and TNF-receptor-associated factor 1 (TRAF1) level. Further characterization in TNF-α-challenged Caco-2 cells showed that overexpression of these miRNAs suppressed the TLR4/TRAF1-IκBα-p65 pathway and reduced IL-6 and IL-12 production. These findings indicate that sheep MDEs exert gastrointestinal anti-inflammatory effects through the miRNA-mediated modulation of TLR4 and TRAF1, highlighting their potential in managing colitis.
Collapse
Affiliation(s)
- Xi Lu
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710000, China
| | - Ke Ren
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710000, China
| | - Lei Pan
- Tangdu Hospital, Air Force Military Medical University, Xi'an 710000, China
| | - Xiaocao Liu
- Laboratory of Regenerative Medicine in Sports Science, School of Physical Education and Sports Science, South China Normal University, Guangzhou 510006, China
| |
Collapse
|
11
|
Borowiec BM, Dyszkiewicz-Konwińska M, Bukowska D, Nowicki M, Budna-Tukan J. Small Extracellular Vesicles and Oral Mucosa: The Power Couple in Regenerative Therapies? Cells 2024; 13:1514. [PMID: 39329698 PMCID: PMC11429515 DOI: 10.3390/cells13181514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/23/2024] [Accepted: 08/27/2024] [Indexed: 09/28/2024] Open
Abstract
Although ongoing debates persist over the scope of phenomena classified as regenerative processes, the most up-to-date definition of regeneration is the replacement or restoration of damaged or missing cells, tissues, organs, or body parts to full functionality. Despite extensive research on this topic, new methods in regenerative medicine are continually sought, and existing ones are being improved. Small extracellular vesicles (sEVs) have gained attention for their regenerative potential, as evidenced by existing studies conducted by independent research groups. Of particular interest are sEVs derived from the oral mucosa, a tissue renowned for its rapid regeneration and minimal scarring. While the individual regenerative potential of both sEVs and the oral mucosa is somewhat understood, the combined potential of sEVs derived from the oral mucosa has not been sufficiently explored and highlighted in the existing literature. Serving as a broad compendium, it aims to provide scientists with essential and detailed information on this subject, including the nature of the materials employed, isolation and analysis methodologies, and clinical applications. The content of this survey aims to facilitate the comparison of diverse methods for working with sEVs derived from the oral mucosa, aiding in the planning of research endeavors and identifying potential research gaps.
Collapse
Affiliation(s)
- Blanka Maria Borowiec
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland (M.N.)
- Doctoral School, Poznan University of Medical Sciences, 60-812 Poznan, Poland
| | | | - Dorota Bukowska
- Department of Diagnostics and Clinical Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland;
| | - Michał Nowicki
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland (M.N.)
| | - Joanna Budna-Tukan
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland (M.N.)
- Department of Anatomy and Histology, Collegium Medicum, University of Zielona Gora, 65-046 Zielona Gora, Poland
| |
Collapse
|
12
|
Ma L, Huo Y, Tang Q, Wang X, Wang W, Wu D, Li Y, Chen L, Wang S, Zhu Y, Wang W, Liu Y, Xu N, Chen L, Yu G, Chen J. Human Breast Milk Exosomal miRNAs are Influenced by Premature Delivery and Affect Neurodevelopment. Mol Nutr Food Res 2024; 68:e2300113. [PMID: 38644336 DOI: 10.1002/mnfr.202300113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 02/27/2024] [Indexed: 04/23/2024]
Abstract
SCOPE This study investigates the exosomal microRNA (miRNA) profiles of term and preterm breast milk, including the most abundant and differentially expressed (DE) miRNAs, and their impact on neurodevelopment in infants. METHODS AND RESULTS Mature milk is collected from the mothers of term and preterm infants. Using high-throughput sequencing and subsequent data analysis, exosomal miRNA profiles of term and preterm human breast milk (HBM) are acquired and it is found that the let-7 and miR-148 families are the most abundant miRNAs. Additionally, 23 upregulated and 15 downregulated miRNAs are identified. MiR-3168 is the most upregulated miRNA in preterm HBM exosome, exhibiting targeting activity toward multiple genes involved in the SMAD and MAPK signaling pathways and playing a crucial role in early neurodevelopment. Additionally, the effects of miR-3168 on neurodevelopment is confirmed and it is determined that it is an essential factor in the differentiation of neural stem cells (NSCs). CONCLUSION This study demonstrates that miRNA expression in breast milk exosomes can be influenced by preterm delivery, thereby potentially impacting neurodevelopment in preterm infants.
Collapse
Affiliation(s)
- Ling Ma
- Department of Child Health Care, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200062, China
| | - Yanyan Huo
- Department of Child Health Care, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200062, China
| | - Qingyuan Tang
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Xiulian Wang
- Department of Child Health Care, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200062, China
| | - Weiqin Wang
- Department of Child Health Care, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200062, China
| | - Dan Wu
- Department of Child Health Care, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200062, China
| | - Yicheng Li
- Department of Child Health Care, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200062, China
| | - Lingyan Chen
- Department of Child Health Care, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200062, China
- Department of Occupational Therapy Science, Nagasaki University Graduate School of Biomedical Science, 1-7-1 Sakamoto, Nagasaki, 852-8520, Japan
| | - Shasha Wang
- Department of Child Health Care, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200062, China
| | - Yiwen Zhu
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Wenli Wang
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yuan Liu
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Nanjie Xu
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Li Chen
- Department of Orthodontics, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai, 200001, China
| | - Guangjun Yu
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jinjin Chen
- Department of Child Health Care, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200062, China
| |
Collapse
|
13
|
Liu W, Du C, Nan L, Li C, Wang H, Fan Y, Zhang S. The Difference of Milk-Derived Extracellular Vesicles from Cow Colostrum and Mature Milk on miRNAs Expression and Protecting Intestinal Epithelial Cells against Lipopolysaccharide Damage. Int J Mol Sci 2024; 25:3880. [PMID: 38612689 PMCID: PMC11011493 DOI: 10.3390/ijms25073880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/01/2024] [Accepted: 02/27/2024] [Indexed: 04/14/2024] Open
Abstract
Intestinal epithelial cells (IECs) play crucial roles in forming an essential barrier, providing host defense against pathogens and regulating nutrients absorption. Milk-derived extracellular vesicles (EVs) within its miRNAs are capable of modulating the recipient cell function. However, the differences between colostrum and mature milk EVs and their biological function in attenuating intestinal epithelial cell injury remain poorly understood. Thus, we carried out the present study to characterize the difference between colostrum and mature milk-derived miRNA of EVs and the effect of colostrum and mature milk EVs on the proliferation, apoptosis, proinflammatory cytokines and intestinal epithelial barrier related genes in IEC-6 induced by LPS. Differential expression of 329 miRNAs was identified between colostrum and mature milk EVs, with 185 miRNAs being downregulated and 144 upregulated. In addition, colostrum contains a greater number and protein concentration of EVs than mature milk. Furthermore, compared to control, EVs derived from colostrum significantly inhibited the expression of apoptosis- (Bax, p53, and caspase-3) and proinflammatory-related genes (TNFα, IL6, and IL1β). EVs derived from mature milk did not affect expression of apoptosis-related genes (Bax, p53, bcl2, and caspase-3). The EVs derived from mature milk significantly inhibited the expression of proinflammatory-related genes (TNFα and IL6). Western blot analysis also indicated that colostrum and mature milk EVs significantly decreased the apoptosis of IEC-6 cells. The EdU assay results showed that colostrum and mature milk EVs significantly increased the proliferation of IEC-6 cells. The expression of intestinal barrier-related genes (TJP1, CLDN1, OCLN, CDX2, MUC2, and IGF1R) was significantly promoted in IEC-6 cells after colostrum and mature milk EVs addition. Importantly, colostrum and mature milk EVs significantly relieved the LPS-induced inhibition of proliferation and intestinal barrier-related genes expression and attenuated apoptosis and proinflammatory responses induced by LPS in IEC-6 cells. Flow cytometry and Western blot analysis also indicated that colostrum and mature milk EVs significantly affect the apoptosis of IEC-6 cells induced by LPS. The results also indicated that EVs derived from colostrum had better effects on inhibiting the apoptosis- and proinflammatory cytokines-related genes expression. However, the EVs derived from mature milk exhibited beneficial effects on intestinal epithelial barrier protection. The present study will provide a better understanding of the role of EVs derived from colostrum and milk in dairy cows with different responses in the regulation of intestinal cells function, and also presents new evidence for the change of EVs cargos during various stages of lactation.
Collapse
Affiliation(s)
- Wenju Liu
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; (W.L.); (C.D.); (L.N.); (C.L.); (H.W.); (Y.F.)
- Frontiers Science Center for Animal Breeding and Sustainable Production of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Chao Du
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; (W.L.); (C.D.); (L.N.); (C.L.); (H.W.); (Y.F.)
- Frontiers Science Center for Animal Breeding and Sustainable Production of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Liangkang Nan
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; (W.L.); (C.D.); (L.N.); (C.L.); (H.W.); (Y.F.)
- Frontiers Science Center for Animal Breeding and Sustainable Production of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Chunfang Li
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; (W.L.); (C.D.); (L.N.); (C.L.); (H.W.); (Y.F.)
- Frontiers Science Center for Animal Breeding and Sustainable Production of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Haitong Wang
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; (W.L.); (C.D.); (L.N.); (C.L.); (H.W.); (Y.F.)
- Frontiers Science Center for Animal Breeding and Sustainable Production of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Yikai Fan
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; (W.L.); (C.D.); (L.N.); (C.L.); (H.W.); (Y.F.)
- Frontiers Science Center for Animal Breeding and Sustainable Production of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Shujun Zhang
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; (W.L.); (C.D.); (L.N.); (C.L.); (H.W.); (Y.F.)
- Frontiers Science Center for Animal Breeding and Sustainable Production of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
14
|
Lou K, Luo H, Jiang X, Feng S. Applications of emerging extracellular vesicles technologies in the treatment of inflammatory diseases. Front Immunol 2024; 15:1364401. [PMID: 38545101 PMCID: PMC10965547 DOI: 10.3389/fimmu.2024.1364401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 03/04/2024] [Indexed: 04/17/2024] Open
Abstract
The emerging extracellular vesicles technologies is an advanced therapeutic approach showing promising potential for addressing inflammatory diseases. These techniques have been proven to have positive effects on immune modulation and anti-inflammatory responses. With these advancements, a comprehensive review and update on the role of extracellular vesicles in inflammatory diseases have become timely. This review aims to summarize the research progress of extracellular vesicle technologies such as plant-derived extracellular vesicles, milk-derived extracellular vesicles, mesenchymal stem cell-derived extracellular vesicles, macrophage-derived extracellular vesicles, etc., in the treatment of inflammatory diseases. It elucidates their potential significance in regulating inflammation, promoting tissue repair, and treating diseases. The goal is to provide insights for future research in this field, fostering the application and development of extracellular vesicle technology in the treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Kecheng Lou
- Department of Urology, Lanxi People’s Hospital, Jinhua, Zhejiang, China
| | - Hui Luo
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Xinghua Jiang
- Department of Urology, Jingdezhen Second People’s Hospital, Jingdezhen, Jiangxi, China
| | - Shangzhi Feng
- Department of Urology, Jiujiang University Clinic College/Hospital, Jiujiang, Jiangxi, China
| |
Collapse
|
15
|
Cui Z, Amevor FK, Zhao X, Mou C, Pang J, Peng X, Liu A, Lan X, Liu L. Potential therapeutic effects of milk-derived exosomes on intestinal diseases. J Nanobiotechnology 2023; 21:496. [PMID: 38115131 PMCID: PMC10731872 DOI: 10.1186/s12951-023-02176-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 10/25/2023] [Indexed: 12/21/2023] Open
Abstract
Exosomes are extracellular vesicles with the diameter of 30 ~ 150 nm, and are widely involved in intercellular communication, disease diagnosis and drug delivery carriers for targeted disease therapy. Therapeutic application of exosomes as drug carriers is limited due to the lack of sources and methods for obtaining adequate exosomes. Milk contains abundant exosomes, several studies have shown that milk-derived exosomes play crucial roles in preventing and treating intestinal diseases. In this review, we summarized the biogenesis, secretion and structure, current novel methods used for the extraction and identification of exosomes, as well as discussed the role of milk-derived exosomes in treating intestinal diseases, such as inflammatory bowel disease, necrotizing enterocolitis, colorectal cancer, and intestinal ischemia and reperfusion injury by regulating intestinal immune homeostasis, restoring gut microbiota composition and improving intestinal structure and integrity, alleviating conditions such as oxidative stress, cell apoptosis and inflammation, and reducing mitochondrial reactive oxygen species (ROS) and lysosome accumulation in both humans and animals. In addition, we discussed future prospects for the standardization of milk exosome production platform to obtain higher concentration and purity, and complete exosomes derived from milk. Several in vivo clinical studies are needed to establish milk-derived exosomes as an effective and efficient drug delivery system, and promote its application in the treatment of various diseases in both humans and animals.
Collapse
Affiliation(s)
- Zhifu Cui
- College of Animal Science and Technology, Southwest University, Chongqing, P. R. China
| | - Felix Kwame Amevor
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, P. R. China
| | - Xingtao Zhao
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Sichuan, P. R. China
| | - Chunyan Mou
- College of Animal Science and Technology, Southwest University, Chongqing, P. R. China
| | - Jiaman Pang
- College of Animal Science and Technology, Southwest University, Chongqing, P. R. China
| | - Xie Peng
- College of Animal Science and Technology, Southwest University, Chongqing, P. R. China
| | - Anfang Liu
- College of Animal Science and Technology, Southwest University, Chongqing, P. R. China
| | - Xi Lan
- College of Animal Science and Technology, Southwest University, Chongqing, P. R. China.
| | - Lingbin Liu
- College of Animal Science and Technology, Southwest University, Chongqing, P. R. China.
- College of Animal Science and Technology, Chongqing Key Laboratory of Forage & Herbivore, Chongqing Engineering Research Center for Herbivores Resource Protection and Utilization, Southwest University, Beibei, Chongqing, 400715, P. R. China.
| |
Collapse
|
16
|
Rodríguez-Camejo C, Puyol A, Arbildi P, Sóñora C, Fazio L, Siré G, Hernández A. Effects of human donor milk on gut barrier function and inflammation: in vitro study of the beneficial properties to the newborn. Front Immunol 2023; 14:1282144. [PMID: 38022652 PMCID: PMC10663376 DOI: 10.3389/fimmu.2023.1282144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 10/19/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction The gastrointestinal and immune systems of premature infants are not fully developed, rendering them more vulnerable to severe complications like necrotizing enterocolitis. Human milk offers a rich array of bioactive factors that collectively contribute to reducing the incidence of gut infections and inflammatory conditions. When a mother's milk is unavailable, preterm infants are often provided with donor human milk processed in Human Milk Banks. However, it remains uncertain whether pasteurized milk confers the same level of risk reduction as unprocessed milk. This uncertainty may stem from the well-documented adverse effects of heat treatment on milk composition. Yet, our understanding of the comprehensive impact on protective mechanisms is limited. Methods In this study, we conducted a comparative analysis of the effects of raw versus pasteurized milk and colostrum versus mature milk on cellular functions associated with the gut epithelial barrier and responses to inflammatory stimuli. We utilized THP-1 and HT-29 cell lines, representing monocyte/macrophages and gut epithelial cells, respectively. Results Our observations revealed that all milk types stimulated epithelial cell proliferation. However, only raw colostrum increased cell migration and interfered with the interaction between E. coli and epithelial cells. Furthermore, the response of epithelial and macrophage cells to lipopolysaccharide (LPS) was enhanced solely by raw colostrum, with a milder effect observed with mature milk. In contrast, both raw and pasteurized milk diminished the LPS induced response in monocytes. Lastly, we examined how milk affected the differentiation of monocytes into macrophages, finding that milk reduced the subsequent inflammatory response of macrophages to LPS. Discussion Our study sheds light on the impact of human milk on certain mechanisms that potentially account for its protective effects against necrotizing enterocolitis, highlighting the detrimental influence of pasteurization on some of these mechanisms. Our findings emphasize the urgency of developing alternative pasteurization methods to better preserve milk properties. Moreover, identifying the key components critically affected by these protective mechanisms could enable their inclusion in donor milk or formula, thereby enhancing immunological benefits for vulnerable newborns.
Collapse
Affiliation(s)
- Claudio Rodríguez-Camejo
- Área Inmunología, Departamento de Biociencias (DEPBIO), Facultad de Química, Universidad de la República, Montevideo, Uruguay
- Unidad Asociada de Inmunología, Instituto de Química Biológica (IQB), Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
- Laboratorio de Inmunología, Instituto de Higiene “Prof. Arnoldo Berta”, Universidad de la República, Montevideo, Uruguay
| | - Arturo Puyol
- Banco de Leche “Ruben Panizza”, Centro Hospitalario Pereira Rossell, Administración de los Servicios de Salud del Estado, Montevideo, Uruguay
| | - Paula Arbildi
- Área Inmunología, Departamento de Biociencias (DEPBIO), Facultad de Química, Universidad de la República, Montevideo, Uruguay
- Unidad Asociada de Inmunología, Instituto de Química Biológica (IQB), Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
- Laboratorio de Inmunología, Instituto de Higiene “Prof. Arnoldo Berta”, Universidad de la República, Montevideo, Uruguay
| | - Cecilia Sóñora
- Área Inmunología, Departamento de Biociencias (DEPBIO), Facultad de Química, Universidad de la República, Montevideo, Uruguay
- Unidad Asociada de Inmunología, Instituto de Química Biológica (IQB), Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
- Laboratorio de Inmunología, Instituto de Higiene “Prof. Arnoldo Berta”, Universidad de la República, Montevideo, Uruguay
- Escuela Universitaria de Tecnología Médica (EUTM), Hospital de Clínicas, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Laura Fazio
- Banco de Leche “Ruben Panizza”, Centro Hospitalario Pereira Rossell, Administración de los Servicios de Salud del Estado, Montevideo, Uruguay
| | - Gabriela Siré
- Banco de Leche “Ruben Panizza”, Centro Hospitalario Pereira Rossell, Administración de los Servicios de Salud del Estado, Montevideo, Uruguay
| | - Ana Hernández
- Área Inmunología, Departamento de Biociencias (DEPBIO), Facultad de Química, Universidad de la República, Montevideo, Uruguay
- Unidad Asociada de Inmunología, Instituto de Química Biológica (IQB), Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
- Laboratorio de Inmunología, Instituto de Higiene “Prof. Arnoldo Berta”, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
17
|
Monti P, Solazzo G, Bollati V. Effect of environmental exposures on cancer risk: Emerging role of non-coding RNA shuttled by extracellular vesicles. ENVIRONMENT INTERNATIONAL 2023; 181:108255. [PMID: 37839267 DOI: 10.1016/j.envint.2023.108255] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 09/11/2023] [Accepted: 10/09/2023] [Indexed: 10/17/2023]
Abstract
Environmental and lifestyle exposures have a huge impact on cancer risk; nevertheless, the biological mechanisms underlying this association remain poorly understood. Extracellular vesicles (EVs) are membrane-enclosed particles actively released by all living cells, which play a key role in intercellular communication. EVs transport a variegate cargo of biomolecules, including non-coding RNA (ncRNA), which are well-known regulators of gene expression. Once delivered to recipient cells, EV-borne ncRNAs modulate a plethora of cancer-related biological processes, including cell proliferation, differentiation, and motility. In addition, the ncRNA content of EVs can be altered in response to outer stimuli. Such changes can occur either as an active attempt to adapt to the changing environment or as an uncontrolled consequence of cell homeostasis loss. In either case, such environmentally-driven alterations in EV ncRNA might affect the complex crosstalk between malignant cells and the tumor microenvironment, thus modulating the risk of cancer initiation and progression. In this review, we summarize the current knowledge about EV ncRNAs at the interface between environmental and lifestyle determinants and cancer. In particular, we focus on the effect of smoking, air and water pollution, diet, exercise, and electromagnetic radiation. In addition, we have conducted a bioinformatic analysis to investigate the biological functions of the genes targeted by environmentally-regulated EV microRNAs. Overall, we draw a comprehensive picture of the role of EV ncRNA at the interface between external factors and cancer, which could be of great interest to the development of novel strategies for cancer prevention, diagnosis, and therapy.
Collapse
Affiliation(s)
- Paola Monti
- EPIGET Lab, Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Giulia Solazzo
- EPIGET Lab, Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Valentina Bollati
- EPIGET Lab, Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy; CRC, Center for Environmental Health, University of Milan, Milan, Italy; Occupational Health Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.
| |
Collapse
|
18
|
Zheng Z, Mo J, Lin F, Wang J, Chen J, Luo H, Liu Y, Su C, Gu X, Xiong F, Zha L. Milk Exosomes from Gestational Diabetes Mellitus (GDM) and Healthy Parturient Exhibit Differential miRNAs Profiles and Distinct Regulatory Bioactivity on Hepatocyte Proliferation. Mol Nutr Food Res 2023; 67:e2300005. [PMID: 37357556 DOI: 10.1002/mnfr.202300005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/27/2023] [Indexed: 06/27/2023]
Abstract
SCOPE Exosomes, a novel type of bioactive component in human milk (HM), affect infant development, growth, and health. Recent studies indicate that HM exosomes and miRNAs relate to gestational diabetes mellitus (GDM). However, the miRNAs profiles and functionalities of HM exosomes from GDM parturient remain unclear. This study aims to compare the differential miRNAs in HM exosomes from GDM and healthy parturient, and investigate the HM exosomes bioactivities in regulating hepatocyte proliferation and insulin sensitivity. METHODS AND RESULTS This study extracted HM exosomes from GDM (GDM-EXO) and healthy (NOR-EXO) parturient by ultracentrifugation, high-throughput sequenced and compared the exosomal miRNAs profiles, and explored the regulatory bioactivities on hepatocyte proliferation in HepG2 cells and Balb/c mice. As compared to NOR-EXO, GDM-EXO has similar morphology, size, concentration, and exosome-specific markers (CD9 and TSG101) expression. GDM-EXO and NOR-EXO specifically harbor 1299 and 8 miRNAs, respectively. Moreover, GDM-EXO had 176 upregulated and 47 downregulated miRNAs compared with NOR-EXO. Both GDM-EXO and NOR-EXO were absorbed in cultured HepG2 hepatocytes and mice liver. GDM-EXO inhibited hepatocytes proliferation by downregulating mammalian target of rapamycin (mTOR) possibly via exosomal miR-101-3p delivery. CONCLUSION HM exosomes from GDM and healthy parturient exhibit differential miRNAs profiles and distinct regulatory bioactivity on hepatocyte proliferation.
Collapse
Affiliation(s)
- Zhongdaixi Zheng
- Department of Nutrition and Food Hygiene, School of Public Health, National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Southern Medical University, Guangzhou, Guangdong, 510515, P. R. China
- Department of Environmental Health, School of Public Health, National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Southern Medical University, Guangzhou, Guangdong, 510515, P. R. China
| | - Jiaqi Mo
- Department of Nutrition and Food Hygiene, School of Public Health, National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Southern Medical University, Guangzhou, Guangdong, 510515, P. R. China
| | - Fengjuan Lin
- Department of Nutrition and Food Hygiene, School of Public Health, National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Southern Medical University, Guangzhou, Guangdong, 510515, P. R. China
| | - Jiexian Wang
- Department of Nutrition and Food Hygiene, School of Public Health, National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Southern Medical University, Guangzhou, Guangdong, 510515, P. R. China
| | - Junbin Chen
- Department of Nutrition and Food Hygiene, School of Public Health, National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Southern Medical University, Guangzhou, Guangdong, 510515, P. R. China
| | - Huiyu Luo
- Department of Nutrition and Food Hygiene, School of Public Health, National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Southern Medical University, Guangzhou, Guangdong, 510515, P. R. China
| | - Yuguo Liu
- Department of Nutrition and Food Hygiene, School of Public Health, National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Southern Medical University, Guangzhou, Guangdong, 510515, P. R. China
| | - Chuhong Su
- Department of Nutrition and Food Hygiene, School of Public Health, National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Southern Medical University, Guangzhou, Guangdong, 510515, P. R. China
| | - Xiangfu Gu
- Department of Nutrition and Food Hygiene, School of Public Health, National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Southern Medical University, Guangzhou, Guangdong, 510515, P. R. China
| | - Fei Xiong
- Department of Nutrition and Food Hygiene, School of Public Health, National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Southern Medical University, Guangzhou, Guangdong, 510515, P. R. China
| | - Longying Zha
- Department of Nutrition and Food Hygiene, School of Public Health, National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Southern Medical University, Guangzhou, Guangdong, 510515, P. R. China
| |
Collapse
|
19
|
Wijenayake S, Martz J, Lapp HE, Storm JA, Champagne FA, Kentner AC. The contributions of parental lactation on offspring development: It's not udder nonsense! Horm Behav 2023; 153:105375. [PMID: 37269591 PMCID: PMC10351876 DOI: 10.1016/j.yhbeh.2023.105375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 05/11/2023] [Accepted: 05/13/2023] [Indexed: 06/05/2023]
Abstract
The Developmental Origins of Health and Disease (DOHaD) hypothesis describes how maternal stress exposures experienced during critical periods of perinatal life are linked to altered developmental trajectories in offspring. Perinatal stress also induces changes in lactogenesis, milk volume, maternal care, and the nutritive and non-nutritive components of milk, affecting short and long-term developmental outcomes in offspring. For instance, selective early life stressors shape the contents of milk, including macro/micronutrients, immune components, microbiota, enzymes, hormones, milk-derived extracellular vesicles, and milk microRNAs. In this review, we highlight the contributions of parental lactation to offspring development by examining changes in the composition of breast milk in response to three well-characterized maternal stressors: nutritive stress, immune stress, and psychological stress. We discuss recent findings in human, animal, and in vitro models, their clinical relevance, study limitations, and potential therapeutic significance to improving human health and infant survival. We also discuss the benefits of enrichment methods and support tools that can be used to improve milk quality and volume as well as related developmental outcomes in offspring. Lastly, we use evidence-based primary literature to convey that even though select maternal stressors may modulate lactation biology (by influencing milk composition) depending on the severity and length of exposure, exclusive and/or prolonged milk feeding may attenuate the negative in utero effects of early life stressors and promote healthy developmental trajectories. Overall, scientific evidence supports lactation to be protective against nutritive and immune stressors, but the benefits of lactation in response to psychological stressors need further investigation.
Collapse
Affiliation(s)
- Sanoji Wijenayake
- Department of Biology, The University of Winnipeg, Winnipeg, Manitoba, Canada.
| | - Julia Martz
- School of Arts & Sciences, Health Psychology Program, Massachusetts College of Pharmacy and Health Sciences, Boston, MA, USA
| | - Hannah E Lapp
- Deparment of Psychology, University of Texas at Austin, Austin, TX, USA
| | - Jasmyne A Storm
- Department of Biology, The University of Winnipeg, Winnipeg, Manitoba, Canada
| | | | - Amanda C Kentner
- School of Arts & Sciences, Health Psychology Program, Massachusetts College of Pharmacy and Health Sciences, Boston, MA, USA.
| |
Collapse
|
20
|
Zhong Y, Wang X, Zhao X, Shen J, Wu X, Gao P, Yang P, Chen J, An W. Multifunctional Milk-Derived Small Extracellular Vesicles and Their Biomedical Applications. Pharmaceutics 2023; 15:1418. [PMID: 37242660 PMCID: PMC10223436 DOI: 10.3390/pharmaceutics15051418] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/25/2023] [Accepted: 05/03/2023] [Indexed: 05/28/2023] Open
Abstract
In recent years, small extracellular vesicles (sEVs) have been regarded as the next generation of novel delivery systems after lipid nanoparticles because of their advantages and huge prospects in drug delivery. Studies have shown that sEVs are abundant in milk and therefore can be a large and economical source of sEVs. Natural milk-derived small extracellular vesicles (msEVs) have important functions such as immune regulation, anti-bacterial infection, anti-oxidative, etc., and play a beneficial role in human health at multiple levels, including intestinal health, bone/muscle metabolism, and microbiota regulation. In addition, because they can pass the gastrointestinal barrier and have low immunogenicity, good biocompatibility, and stability, msEVs are considered a crucial oral drug delivery vehicle. Moreover, msEVs can be further engineered for targeted delivery to prolong the circulation time or enhance local drug concentrations. However, msEVs separation and purification, complex contents, and quality control hinder their application in drug delivery. This paper provides a comprehensive review of the biogenesis and characteristics, isolation and purification, composition, loading methods, and function of msEVs, based on which their applications in biomedical fields are further explored.
Collapse
Affiliation(s)
- Youxiu Zhong
- Wenlin An’s Laboratory, National Vaccine & Serum Institute (NVSI), China National Biotech Group (CNBG), Sinopharm Group, No. 38 Jing Hai Second Road, Beijing 101111, China
| | - Xudong Wang
- Wenlin An’s Laboratory, National Vaccine & Serum Institute (NVSI), China National Biotech Group (CNBG), Sinopharm Group, No. 38 Jing Hai Second Road, Beijing 101111, China
| | - Xian Zhao
- Wenlin An’s Laboratory, National Vaccine & Serum Institute (NVSI), China National Biotech Group (CNBG), Sinopharm Group, No. 38 Jing Hai Second Road, Beijing 101111, China
| | - Jiuheng Shen
- Wenlin An’s Laboratory, National Vaccine & Serum Institute (NVSI), China National Biotech Group (CNBG), Sinopharm Group, No. 38 Jing Hai Second Road, Beijing 101111, China
| | - Xue Wu
- Wenlin An’s Laboratory, National Vaccine & Serum Institute (NVSI), China National Biotech Group (CNBG), Sinopharm Group, No. 38 Jing Hai Second Road, Beijing 101111, China
| | - Peifen Gao
- Wenlin An’s Laboratory, National Vaccine & Serum Institute (NVSI), China National Biotech Group (CNBG), Sinopharm Group, No. 38 Jing Hai Second Road, Beijing 101111, China
| | - Peng Yang
- Wenlin An’s Laboratory, National Vaccine & Serum Institute (NVSI), China National Biotech Group (CNBG), Sinopharm Group, No. 38 Jing Hai Second Road, Beijing 101111, China
| | - Junge Chen
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Engineering Medicine & Shenzhen Institute of Beihang University, Beihang University, Beijing 100083, China
| | - Wenlin An
- Wenlin An’s Laboratory, National Vaccine & Serum Institute (NVSI), China National Biotech Group (CNBG), Sinopharm Group, No. 38 Jing Hai Second Road, Beijing 101111, China
| |
Collapse
|
21
|
Chen R, Yang H, Dai J, Zhang M, Lu G, Zhang M, Yu H, Zheng M, He Q. The biological functions of maternal-derived extracellular vesicles during pregnancy and lactation and its impact on offspring health. Clin Nutr 2023; 42:493-504. [PMID: 36857958 DOI: 10.1016/j.clnu.2023.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 01/25/2023] [Accepted: 02/09/2023] [Indexed: 02/18/2023]
Abstract
During pregnancy and lactation, mothers provide not only nutrients, but also many bioactive components for their offspring through placenta and breast milk, which are essential for offspring development. Extracellular vesicles (EVs) are nanovesicles containing a variety of biologically active molecules and participate in the intercellular communication. In the past decade, an increasing number of studies have reported that maternal-derived EVs play a crucial role in offspring growth, development, and immune system establishment. Hereby, we summarized the characteristics of EVs; biological functions of maternal-derived EVs during pregnancy, including implantation, decidualization, placentation, embryo development and birth of offspring; biological function of breast milk-derived EVs (BMEs) on infant oral and intestinal diseases, immune system, neurodevelopment, and metabolism. In summary, emerging studies have revealed that maternal-derived EVs play a pivotal role in offspring health. As such, maternal-derived EVs may be used as promising biomarkers in offspring disease diagnosis and treatment. However, existing research on maternal-derived EVs and offspring health is largely limited to animal and cellular studies. Evidence from human studies is needed.
Collapse
Affiliation(s)
- Rui Chen
- School of Public Health, Wuhan University, Wuhan, China
| | | | - Jie Dai
- School of Public Health, Wuhan University, Wuhan, China
| | - Minzhe Zhang
- School of Public Health, Wuhan University, Wuhan, China
| | - Gaolei Lu
- School of Public Health, Wuhan University, Wuhan, China
| | - Minjie Zhang
- School of Public Health, Wuhan University, Wuhan, China
| | - Hongjie Yu
- School of Public Health, Wuhan University, Wuhan, China
| | - Miaobing Zheng
- School of Nutrition and Exercise, Deakin University, Melbourne, Australia
| | - Qiqiang He
- School of Public Health, Wuhan University, Wuhan, China; Wuhan University Shenzhen Research Institute, Shenzhen, China; Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Wuhan University, Wuhan, China.
| |
Collapse
|
22
|
Melnik BC, Stadler R, Weiskirchen R, Leitzmann C, Schmitz G. Potential Pathogenic Impact of Cow’s Milk Consumption and Bovine Milk-Derived Exosomal MicroRNAs in Diffuse Large B-Cell Lymphoma. Int J Mol Sci 2023; 24:ijms24076102. [PMID: 37047075 PMCID: PMC10094152 DOI: 10.3390/ijms24076102] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/05/2023] [Accepted: 03/16/2023] [Indexed: 03/29/2023] Open
Abstract
Epidemiological evidence supports an association between cow’s milk consumption and the risk of diffuse large B-cell lymphoma (DLBCL), the most common non-Hodgkin lymphoma worldwide. This narrative review intends to elucidate the potential impact of milk-related agents, predominantly milk-derived exosomes (MDEs) and their microRNAs (miRs) in lymphomagenesis. Upregulation of PI3K-AKT-mTORC1 signaling is a common feature of DLBCL. Increased expression of B cell lymphoma 6 (BCL6) and suppression of B lymphocyte-induced maturation protein 1 (BLIMP1)/PR domain-containing protein 1 (PRDM1) are crucial pathological deviations in DLBCL. Translational evidence indicates that during the breastfeeding period, human MDE miRs support B cell proliferation via epigenetic upregulation of BCL6 (via miR-148a-3p-mediated suppression of DNA methyltransferase 1 (DNMT1) and miR-155-5p/miR-29b-5p-mediated suppression of activation-induced cytidine deaminase (AICDA) and suppression of BLIMP1 (via MDE let-7-5p/miR-125b-5p-targeting of PRDM1). After weaning with the physiological termination of MDE miR signaling, the infant’s BCL6 expression and B cell proliferation declines, whereas BLIMP1-mediated B cell maturation for adequate own antibody production rises. Because human and bovine MDE miRs share identical nucleotide sequences, the consumption of pasteurized cow’s milk in adults with the continued transfer of bioactive bovine MDE miRs may de-differentiate B cells back to the neonatal “proliferation-dominated” B cell phenotype maintaining an increased BLC6/BLIMP1 ratio. Persistent milk-induced epigenetic dysregulation of BCL6 and BLIMP1 expression may thus represent a novel driving mechanism in B cell lymphomagenesis. Bovine MDEs and their miR cargo have to be considered potential pathogens that should be removed from the human food chain.
Collapse
|
23
|
Joorabloo A, Liu T. Engineering exosome-based biomimetic nanovehicles for wound healing. J Control Release 2023; 356:463-480. [PMID: 36907562 DOI: 10.1016/j.jconrel.2023.03.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 03/05/2023] [Accepted: 03/07/2023] [Indexed: 03/14/2023]
Abstract
Complexity and difficulties in wound management are pressing concerns that affect patients' quality of life and may result in tissue infection, necrosis, and loss of local and systemic functions. Hence, novel approaches to accelerate wound healing are being actively explored over the last decade. Exosomes as important mediators of intercellular communications are promising natural nanocarriers due to their biocompatibility, low immunogenicity, drug loading and targeting capacities, and innate stability. More importantly, exosomes are developed as a versatile pharmaceutical engineering platform for wound repair. This review provides an overview of the biological and physiological functions of exosomes derived from a variety of biological origins during wound healing phases, strategies for exosomal engineering, and therapeutic applications in skin regeneration.
Collapse
Affiliation(s)
- Alireza Joorabloo
- NICM Health Research Institute, Western Sydney University, Westmead, Australia
| | - Tianqing Liu
- NICM Health Research Institute, Western Sydney University, Westmead, Australia.
| |
Collapse
|
24
|
Sanz-Ros J, Mas-Bargues C, Romero-García N, Huete-Acevedo J, Dromant M, Borrás C. Extracellular Vesicles as Therapeutic Resources in the Clinical Environment. Int J Mol Sci 2023; 24:2344. [PMID: 36768664 PMCID: PMC9917082 DOI: 10.3390/ijms24032344] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/19/2023] [Accepted: 01/21/2023] [Indexed: 01/26/2023] Open
Abstract
The native role of extracellular vesicles (EVs) in mediating the transfer of biomolecules between cells has raised the possibility to use them as therapeutic vehicles. The development of therapies based on EVs is now expanding rapidly; here we will describe the current knowledge on different key points regarding the use of EVs in a clinical setting. These points are related to cell sources of EVs, isolation, storage, and delivery methods, as well as modifications to the releasing cells for improved production of EVs. Finally, we will depict the application of EVs therapies in clinical trials, considering the impact of the COVID-19 pandemic on the development of these therapies, pointing out that although it is a promising therapy for human diseases, we are still in the initial phase of its application to patients.
Collapse
Affiliation(s)
- Jorge Sanz-Ros
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable-Instituto de Salud Carlos III (CIBERFES-ISCIII), INCLIVA, 46010 Valencia, Spain
- Department of Cardiology, Hospital Universitari i Politècnic La Fe, 46026 Valencia, Spain
| | - Cristina Mas-Bargues
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable-Instituto de Salud Carlos III (CIBERFES-ISCIII), INCLIVA, 46010 Valencia, Spain
| | - Nekane Romero-García
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable-Instituto de Salud Carlos III (CIBERFES-ISCIII), INCLIVA, 46010 Valencia, Spain
- Department of Anesthesiology and Surgical Trauma Intensive Care, Hospital Clinic Universitari de Valencia, University of Valencia, 46010 Valencia, Spain
| | - Javier Huete-Acevedo
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable-Instituto de Salud Carlos III (CIBERFES-ISCIII), INCLIVA, 46010 Valencia, Spain
| | - Mar Dromant
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable-Instituto de Salud Carlos III (CIBERFES-ISCIII), INCLIVA, 46010 Valencia, Spain
| | - Consuelo Borrás
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable-Instituto de Salud Carlos III (CIBERFES-ISCIII), INCLIVA, 46010 Valencia, Spain
| |
Collapse
|
25
|
Milk-Derived miR-22-3p Promotes Proliferation of Human Intestinal Epithelial Cells (HIECs) by Regulating Gene Expression. Nutrients 2022; 14:nu14224901. [PMID: 36432587 PMCID: PMC9695551 DOI: 10.3390/nu14224901] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/09/2022] [Accepted: 11/15/2022] [Indexed: 11/22/2022] Open
Abstract
MicroRNA (miRNA) is small non-coding RNA involved in gene silencing and post-transcriptional regulation of gene expression. Milk exosomes are microvesicles containing microRNAs (miRNAs). miR-22-3p (miR-22) is plentiful in human milk exosomes and may contribute to intestinal development since milk exosomes and microRNAs are resistant to gastrointestinal digestion in infants. After miR-22 mimics were transfected to human intestinal crypt-like epithelial cells (HIECs) using Lipofectamine for 24 h, RNA was isolated for microarray assay. Microarray results show that miR-22 markedly regulates gene expression, and the roles of miR-22 include promotion of proliferation, regulation of immune functions, and inhibition of apoptosis. Based on the microarray results and miR-22 predicted target genes, CCAAT/enhancer-binding protein δ (C/EBPδ) may be an important direct target of miR-22. C/EBPδ is a transcription factor that regulates numerous biological processes including cell proliferation. In miR-22 transfected HIECs, expression of the C/EBPδ gene was significantly inhibited. Silencing of the C/EBPδ gene by siRNA resulted in increased proliferation of HIECs. A luciferase assay showed that miR-22 specifically binds to the 3'-untranslated region of C/EBPδ mRNA. In summary, milk-derived miR-22 promotes intestinal proliferation by modifying gene expression, and C/EBPδ may be an important target for miR-22 involved in this effect.
Collapse
|
26
|
Melnik BC, Schmitz G. Milk Exosomal microRNAs: Postnatal Promoters of β Cell Proliferation but Potential Inducers of β Cell De-Differentiation in Adult Life. Int J Mol Sci 2022; 23:ijms231911503. [PMID: 36232796 PMCID: PMC9569743 DOI: 10.3390/ijms231911503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/15/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022] Open
Abstract
Pancreatic β cell expansion and functional maturation during the birth-to-weaning period is driven by epigenetic programs primarily triggered by growth factors, hormones, and nutrients provided by human milk. As shown recently, exosomes derived from various origins interact with β cells. This review elucidates the potential role of milk-derived exosomes (MEX) and their microRNAs (miRs) on pancreatic β cell programming during the postnatal period of lactation as well as during continuous cow milk exposure of adult humans to bovine MEX. Mechanistic evidence suggests that MEX miRs stimulate mTORC1/c-MYC-dependent postnatal β cell proliferation and glycolysis, but attenuate β cell differentiation, mitochondrial function, and insulin synthesis and secretion. MEX miR content is negatively affected by maternal obesity, gestational diabetes, psychological stress, caesarean delivery, and is completely absent in infant formula. Weaning-related disappearance of MEX miRs may be the critical event switching β cells from proliferation to TGF-β/AMPK-mediated cell differentiation, whereas continued exposure of adult humans to bovine MEX miRs via intake of pasteurized cow milk may reverse β cell differentiation, promoting β cell de-differentiation. Whereas MEX miR signaling supports postnatal β cell proliferation (diabetes prevention), persistent bovine MEX exposure after the lactation period may de-differentiate β cells back to the postnatal phenotype (diabetes induction).
Collapse
Affiliation(s)
- Bodo C. Melnik
- Department of Dermatology, Environmental Medicine and Health Theory, University of Osnabrück, D-49076 Osnabrück, Germany
- Correspondence: ; Tel.: +49-52-4198-8060
| | - Gerd Schmitz
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital of Regensburg, University of Regensburg, D-93053 Regensburg, Germany
| |
Collapse
|
27
|
Reif S, Atias A, Musseri M, Koroukhov N, Gerstl RG. Beneficial Effects of Milk-Derived Extracellular Vesicles on Liver Fibrosis Progression by Inhibiting Hepatic Stellate Cell Activation. Nutrients 2022; 14:nu14194049. [PMID: 36235702 PMCID: PMC9571732 DOI: 10.3390/nu14194049] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/21/2022] [Accepted: 09/23/2022] [Indexed: 11/16/2022] Open
Abstract
Liver fibrosis is the consequence of various chronic liver diseases, resulting in accumulation of extracellular matrix, following the activation and proliferation of hepatic stellate cells (HSCs). Based on the milk-derived extracellular vesicles’ (MDEs’) characteristics and biological proprieties, we investigate whether MDEs may regulate fibrotic progression by inhibiting HSCs’ activation via the MDEs’ miRNA content. In order to study this question, we examined the effect of human and cow MDEs on HSCs isolated from murine livers, on activation, proliferation and their proteins’ expression. We have shown that MDEs are able to enter into HSCs in vitro and into the livers in vivo. MDEs inhibited HSCs’ proliferation following stimulation with PDGF. Moreover, in vivo treatment with MDEs resulted in an increase of in miRNA-148 and Let7a expression in HSCs. In contrast, treatment with MDEs reduced the expression of miR-21 in HSCs. In addition, MDEs regulate HSC activation, as was shown by downregulation of collagen I expression and alpha smooth muscle actin, and upregulation of PPARγ. MDEs carrying beneficial miRNAs can be a nontoxic natural target for treatment of liver cirrhosis.
Collapse
|
28
|
Song M, Cui M, Fang Z, Liu K. Advanced research on extracellular vesicles based oral drug delivery systems. J Control Release 2022; 351:560-572. [PMID: 36179765 DOI: 10.1016/j.jconrel.2022.09.043] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 11/19/2022]
Abstract
The oral route is the most convenient and simplest mode of administration. Nevertheless, orally administration of some commonly used therapeutic drugs, such as polypeptides, therapeutic proteins, small-molecule drugs, and nucleic acids, remains a major challenge due to the harsh gastrointestinal environment and the limited oral bioavailability. Extracellular vesicles (EVs) are diverse, nanoscale phospholipid vesicles that are actively released by cells and play crucial roles in intercellular communications. Some EVs have been shown to survive with the gastrointestinal tract (GIT) and can cross biological barriers. The potential of EVs to cross the GIT barrier makes them promising natural delivery carriers for orally administered drugs. Here, we introduce the uniqueness of EVs and their feasibility as oral drug delivery vehicles (ODDVs). Then we provide a general description of the different cellular EVs based oral drug delivery systems (ODDSs) currently under study and emphasize the contribution of endogenous features and multifunctional properties of EVs to the delivery performance. The current obstacles of moving EVs based ODDSs from bench to bedside are also discussed.
Collapse
Affiliation(s)
- Mengdi Song
- Department of Biopharmaceutical Sciences, Shanghai Ocean University, Shanghai 201306, China
| | - Mingxiao Cui
- Department of Biopharmaceutical Sciences, Shanghai Ocean University, Shanghai 201306, China
| | - Zhou Fang
- Department of Biopharmaceutical Sciences, Shanghai Ocean University, Shanghai 201306, China
| | - Kehai Liu
- Department of Biopharmaceutical Sciences, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
29
|
Zhou Y, Xiao Z, Zhu W. The roles of small extracellular vesicles as prognostic biomarkers and treatment approaches in triple-negative breast cancer. Front Oncol 2022; 12:998964. [PMID: 36212432 PMCID: PMC9537600 DOI: 10.3389/fonc.2022.998964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 08/24/2022] [Indexed: 12/03/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is a particularly aggressive and invasive breast cancer subtype and is associated with poor clinical outcomes. Treatment approaches for TNBC remain limited partly due to the lack of expression of well-known molecular targets. Small extracellular vesicles (sEVs) carrying a variety of bioactive contents play an important role in intercellular communications. The biomolecules including nucleic acids, proteins, and metabolites can be transferred locally or systematically to recipient cells and regulate their biological states and are involved in physiological and pathological processes. Recently, despite the extensive attraction to the physiological functions of sEVs, few studies focus on the roles of sEVs in TNBC. In this review, we will summarize the involvement of sEVs in the tumor microenvironment of TNBC. Moreover, we will discuss the potential roles of sEVs as diagnostic markers and treatment therapy in this heterogeneous breast cancer subtype. We finally summarize the clinical application of sEVs in TNBC.
Collapse
Affiliation(s)
- Yueyuan Zhou
- Department of Clinical Medical Engineering, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
- *Correspondence: Yueyuan Zhou,
| | - Zhongdang Xiao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Wei Zhu
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
30
|
Human Milk Extracellular Vesicles: A Biological System with Clinical Implications. Cells 2022; 11:cells11152345. [PMID: 35954189 PMCID: PMC9367292 DOI: 10.3390/cells11152345] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/25/2022] [Accepted: 07/28/2022] [Indexed: 12/10/2022] Open
Abstract
The consumption of human milk by a breastfeeding infant is associated with positive health outcomes, including lower risk of diarrheal disease, respiratory disease, otitis media, and in later life, less risk of chronic disease. These benefits may be mediated by antibodies, glycoproteins, glycolipids, oligosaccharides, and leukocytes. More recently, human milk extracellular vesicles (hMEVs) have been identified. HMEVs contain functional cargos, i.e., miRNAs and proteins, that may transmit information from the mother to promote infant growth and development. Maternal health conditions can influence hMEV composition. This review summarizes hMEV biogenesis and functional contents, reviews the functional evidence of hMEVs in the maternal–infant health relationship, and discusses challenges and opportunities in hMEV research.
Collapse
|
31
|
Extracellular Vesicles—Oral Therapeutics of the Future. Int J Mol Sci 2022; 23:ijms23147554. [PMID: 35886902 PMCID: PMC9315796 DOI: 10.3390/ijms23147554] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/01/2022] [Accepted: 07/06/2022] [Indexed: 02/06/2023] Open
Abstract
Considered an artifact just after discovery, the possibility of oral delivery of extracellular vesicles (EVs) and their functional cargos has recently gained much research attention. EVs from various sources, including edible plants, milk, bacteria and mammalian cells, have emerged as a platform for miRNA and drug delivery that seem to induce the expected immune effects locally and in distant tissues after oral administration. Such a possibility greatly expands the clinical applicability of EVs. The present review summarizes research findings that either support or deny the biological/therapeutical activity of orally administered EVs and their role in cross-species and cross-kingdom signaling.
Collapse
|
32
|
Khan FB, Ansari MA, Uddin S, Palakott AR, Anwar I, Almatroudi A, Alomary MN, Alrumaihi F, Aba Alkhayl FF, Alghamdi S, Muhammad K, Huang CY, Daddam JR, Khan H, Maqsood S, Ayoub MA. Prospective Role of Bioactive Molecules and Exosomes in the Therapeutic Potential of Camel Milk against Human Diseases: An Updated Perspective. Life (Basel) 2022; 12:990. [PMID: 35888080 PMCID: PMC9318805 DOI: 10.3390/life12070990] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/20/2022] [Accepted: 06/22/2022] [Indexed: 05/28/2023] Open
Abstract
Camel milk (CM) constitutes an important dietary source in the hot and arid regions of the world. CM is a colloidal mixture of nutritional components (proteins, carbohydrates, lipids, vitamins, and minerals) and non-nutritional components (hormones, growth factors, cytokines, immunoglobulins, and exosomes). Although the majority of previous research has been focused on the nutritional components of CM; there has been immense interest in the non-nutritional components in the recent past. Reckoning with these, in this review, we have provided a glimpse of the recent trends in CM research endeavors and attempted to provide our perspective on the therapeutic efficacy of the nutritional and non-nutritional components of CM. Interestingly, with concerted efforts from the research fraternities, convincing evidence for the better understanding of the claimed traditional health benefits of CM can be foreseen with great enthusiasm and is indeed eagerly anticipated.
Collapse
Affiliation(s)
- Farheen Badrealam Khan
- Department of Biology, College of Science, The United Arab Emirates University, Al Ain 15551, United Arab Emirates; (A.R.P.); (I.A.); (K.M.)
| | - Mohammad Azam Ansari
- Department of Epidemic Disease Research, Institutes for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar;
- Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar
- Laboratory of Animal Center, Qatar University, Doha 2731, Qatar
| | - Abdul Rasheed Palakott
- Department of Biology, College of Science, The United Arab Emirates University, Al Ain 15551, United Arab Emirates; (A.R.P.); (I.A.); (K.M.)
| | - Irfa Anwar
- Department of Biology, College of Science, The United Arab Emirates University, Al Ain 15551, United Arab Emirates; (A.R.P.); (I.A.); (K.M.)
| | - Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Qassim 51431, Saudi Arabia; (A.A.); (F.A.); (F.F.A.A.)
| | - Mohammad N. Alomary
- National Centre for Biotechnology, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia;
| | - Faris Alrumaihi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Qassim 51431, Saudi Arabia; (A.A.); (F.A.); (F.F.A.A.)
| | - Faris F. Aba Alkhayl
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Qassim 51431, Saudi Arabia; (A.A.); (F.A.); (F.F.A.A.)
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Dentistry and Pharmacy, Buraydah Colleges, Buraydah 52571, Saudi Arabia
| | - Saad Alghamdi
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah 21955, Saudi Arabia;
| | - Khalid Muhammad
- Department of Biology, College of Science, The United Arab Emirates University, Al Ain 15551, United Arab Emirates; (A.R.P.); (I.A.); (K.M.)
| | - Chih-Yang Huang
- Department of Biotechnology, Asia University, Taichung 404, Taiwan;
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404, Taiwan
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan
- Centre of General Education, Buddhist Tzu Chi Medical Foundation, Tzu Chi University of Science and Technology, Hualien 970, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 404, Taiwan
| | - Jayasimha Rayalu Daddam
- Department of Ruminant Science, Institute of Animal Sciences, Agriculture Research Organization, Volcani Center, Rishon Lezion 7505101, Israel;
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan;
| | - Sajid Maqsood
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain 15551, United Arab Emirates;
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain 15551, United Arab Emirates
| | - Mohammed Akli Ayoub
- Department of Biology, College of Science, The United Arab Emirates University, Al Ain 15551, United Arab Emirates; (A.R.P.); (I.A.); (K.M.)
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain 15551, United Arab Emirates
| |
Collapse
|
33
|
Babaker MA, Aljoud FA, Alkhilaiwi F, Algarni A, Ahmed A, Khan MI, Saadeldin IM, Alzahrani FA. The Therapeutic Potential of Milk Extracellular Vesicles on Colorectal Cancer. Int J Mol Sci 2022; 23:ijms23126812. [PMID: 35743255 PMCID: PMC9224713 DOI: 10.3390/ijms23126812] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/16/2022] [Accepted: 06/16/2022] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer remains one of the leading prevalent cancers in the world and is the fourth most common cause of death from cancer. Unfortunately, the currently utilized chemotherapies fail in selectively targeting cancer cells and cause harm to healthy cells, which results in profound side effects. Researchers are focused on developing anti-cancer targeted medications, which is essential to making them safer, more effective, and more selective and to maximizing their therapeutic benefits. Milk-derived extracellular vesicles (EVs) from camels and cows have attracted much attention as a natural substitute product that effectively suppresses a wide range of tumor cells. This review sheds light on the biogenesis, methods of isolation, characterization, and molecular composition of milk EVs as well as the therapeutic potentials of milk EVs on colorectal cancer.
Collapse
Affiliation(s)
- Manal A. Babaker
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Department of Chemistry, Faculty of Science, Majmaah University, Al Majmaah 11952, Saudi Arabia
| | - Fadwa A. Aljoud
- Regenerative Medicine Unit, King Fahd Medical Research Centre, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (F.A.A.); (F.A.)
| | - Faris Alkhilaiwi
- Regenerative Medicine Unit, King Fahd Medical Research Centre, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (F.A.A.); (F.A.)
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Abdulrahman Algarni
- Department of Medical Laboratory Technology, College of Applied Medical Sciences, Northern Border University, Arar 73221, Saudi Arabia;
| | - Asif Ahmed
- MirZyme Therapeutics, Innovation Birmingham Campus, Faraday Wharf, Birmingham B7 4BB, UK;
- School of Health Sciences, University of Southampton, University Road, Southampton SO17 1BJ, UK
| | - Mohammad Imran Khan
- Centre of Artificial Intelligence in Precision Medicines (CAIPM), King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Islam M. Saadeldin
- Research Institute of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea
- Laboratory of Theriogenology, College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea
- Correspondence: (I.M.S.); (F.A.A.)
| | - Faisal A. Alzahrani
- MirZyme Therapeutics, Innovation Birmingham Campus, Faraday Wharf, Birmingham B7 4BB, UK;
- Centre of Artificial Intelligence in Precision Medicines (CAIPM), King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Embryonic Stem Cells Unit, Department of Biochemistry, Faculty of Science, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Correspondence: (I.M.S.); (F.A.A.)
| |
Collapse
|
34
|
Lin Y, Lu Y, Huang Z, Wang Y, Song S, Luo Y, Ren F, Guo H. Milk-Derived Small Extracellular Vesicles Promote Recovery of Intestinal Damage by Accelerating Intestinal Stem Cell-Mediated Epithelial Regeneration. Mol Nutr Food Res 2022; 66:e2100551. [PMID: 35253371 DOI: 10.1002/mnfr.202100551] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 01/20/2022] [Indexed: 11/12/2022]
Abstract
SCOPE Milk-derived small extracellular vesicles (M-sEVs) are critical bioactive components in milk. They are considered to be regulators in milk that may have promising applications. Understanding their biological effects would be important in nutrition. Intestinal organoids and mice are used to explore the effects of M-sEVs on intestinal regeneration. METHODS AND RESULTS M-sEVs could be absorbed by intestinal epithelia and upregulate expression of the microRNAs (miRNAs) expressed in milk: miR-148a, miR-22, miR-30, and miR-29a. Interestingly, M-sEVs promote proliferation of intestinal epithelia and repairs the epithelial damage that is caused by tumor necrosis factor-α in intestinal organoids. M-sEVs ameliorate intestinal mucosa damage in mice caused by treatment with dextran sulfate sodium, as well as increasing expression of the intestinal stem cells (ISC) markers leucine-rich repeat containing G-protein-coupled receptor 5 (Lgr5), olfactomedin 4 (Olfm4), and Achaete-Scute Family BHLH Transcription Factor 2 (Ascl2) and stimulating intestinal epithelial proliferation to repair epithelial damage. Furthermore, miR-29 is more abundant in M-sEVs-treated mice, and miR-29 could upregulate expression of ISC marker genes and accelerates intestinal regeneration to recover damaged intestinal epithelia. CONCLUSIONS We reveal that M-sEVs and miR-29 can accelerate intestinal stem cell-mediated epithelial regeneration and repair epithelial damage.
Collapse
Affiliation(s)
- Yingying Lin
- Key Laboratory of Functional Dairy,College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Yao Lu
- Key Laboratory of Functional Dairy,College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Ziyu Huang
- Key Laboratory of Functional Dairy,College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Yuqi Wang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100089, China
| | - Sijia Song
- Key Laboratory of Functional Dairy,College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Yujia Luo
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100089, China
| | - Fazheng Ren
- Key Laboratory of Functional Dairy,College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China.,Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100089, China
| | - Huiyuan Guo
- Key Laboratory of Functional Dairy,College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China.,Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100089, China
| |
Collapse
|
35
|
Abstract
PURPOSE OF REVIEW Milk-derived extracellular vesicles (MDEVs) are nanovesicles that carry microRNA (miRNA) DNA, RNA, proteins and lipids. MDEVs have a potential of therapeutic targets, based on their properties and cargo profile. The present review summarizes recent studies on MDEVs, their cargo and potential role in mammalian development. RECENT FINDINGS The detailed characterization of their miRNA cargo leads to the conclusion of their potential importance in the regulation of gene expression, immune function, development and infant growth.While their miRNAs are important regulatory elements and their profile expression was characterized in various mammalian milk sources, little is known about their effect on infant health and development. MiRNA activity in breast milk is likely influenced by the overall ecosystem of the early environment, including maternal characteristics, behaviors, and health. SUMMARY MDEVs may have an important role in early child development and infant future health. Understanding benefits of MDEVs characteristics have potential role on gut maturation, immune system development and the prevention of metabolic disorders.
Collapse
Affiliation(s)
- Regina Golan-Gerstl
- Department of Pediatrics, Hadassah Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | | |
Collapse
|
36
|
Vélez-Ixta JM, Benítez-Guerrero T, Aguilera-Hernández A, Martínez-Corona H, Corona-Cervantes K, Juárez-Castelán CJ, Rangel-Calvillo MN, García-Mena J. Detection and Quantification of Immunoregulatory miRNAs in Human Milk and Infant Milk Formula. BIOTECH 2022; 11:11. [PMID: 35822784 PMCID: PMC9264398 DOI: 10.3390/biotech11020011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 03/12/2022] [Accepted: 03/18/2022] [Indexed: 11/17/2022] Open
Abstract
Mammary gland secretory cells produce miRNA-rich milk. In humans, these miRNAs reach infant/neonate bloodstream, playing diverse roles, like neural system development, metabolism, and immune system maturation. Notwithstanding, still few works explore human milk miRNA content, and there are no reports at the population level. Our hypothesis was that miR-146b-5p, miR148a-3p, miR155-5p, mir181a-5p, and mir200a-3p immunoregulatory miRNAs are expressed in human colostrum/milk at a higher level than infant milk formulae. The aim of this work was to evaluate the expression of the five immunoregulatory miRNAs in human milk and compare it with their expression in infant milk formula. For this purpose, miRNA relative expression was measured by qPCR in cDNA prepared from total RNA extracted from sixty human colostrum/milk samples and six different formulae. The comparative Cт method 2-ΔCт using exogenous cel-miR-39 as internal control was employed, followed by statistical analysis. We found the relative expression levels of miRNAs are comparable among colostrum/milk samples, and these miRNAs are present in infant milk formulae but at very low concentrations. We conclude that the relative expression of the immunomodulatory miRNAs is comparable in all the human colostrum/milk samples and is higher than the expression in formulae.
Collapse
Affiliation(s)
- Juan Manuel Vélez-Ixta
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav), Av. Instituto Politécnico Nacional 2508, Ciudad de México 07360, Mexico; (J.M.V.-I.); (T.B.-G.); (A.A.-H.); (H.M.-C.); (K.C.-C.); (C.J.J.-C.)
| | - Tizziani Benítez-Guerrero
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav), Av. Instituto Politécnico Nacional 2508, Ciudad de México 07360, Mexico; (J.M.V.-I.); (T.B.-G.); (A.A.-H.); (H.M.-C.); (K.C.-C.); (C.J.J.-C.)
| | - Arlene Aguilera-Hernández
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav), Av. Instituto Politécnico Nacional 2508, Ciudad de México 07360, Mexico; (J.M.V.-I.); (T.B.-G.); (A.A.-H.); (H.M.-C.); (K.C.-C.); (C.J.J.-C.)
| | - Helga Martínez-Corona
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav), Av. Instituto Politécnico Nacional 2508, Ciudad de México 07360, Mexico; (J.M.V.-I.); (T.B.-G.); (A.A.-H.); (H.M.-C.); (K.C.-C.); (C.J.J.-C.)
| | - Karina Corona-Cervantes
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav), Av. Instituto Politécnico Nacional 2508, Ciudad de México 07360, Mexico; (J.M.V.-I.); (T.B.-G.); (A.A.-H.); (H.M.-C.); (K.C.-C.); (C.J.J.-C.)
| | - Carmen Josefina Juárez-Castelán
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav), Av. Instituto Politécnico Nacional 2508, Ciudad de México 07360, Mexico; (J.M.V.-I.); (T.B.-G.); (A.A.-H.); (H.M.-C.); (K.C.-C.); (C.J.J.-C.)
| | - Martín Noé Rangel-Calvillo
- Hospital General “Dr. José María Rodríguez”, Instituto de Salud del Estado de Mexico, Ecatepec de Morelos 55200, Estado de México, Mexico;
| | - Jaime García-Mena
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav), Av. Instituto Politécnico Nacional 2508, Ciudad de México 07360, Mexico; (J.M.V.-I.); (T.B.-G.); (A.A.-H.); (H.M.-C.); (K.C.-C.); (C.J.J.-C.)
| |
Collapse
|
37
|
Sundaram TS, Giromini C, Rebucci R, Pistl J, Bhide M, Baldi A. Role of omega-3 polyunsaturated fatty acids, citrus pectin, and milk-derived exosomes on intestinal barrier integrity and immunity in animals. J Anim Sci Biotechnol 2022; 13:40. [PMID: 35399093 PMCID: PMC8996583 DOI: 10.1186/s40104-022-00690-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 02/07/2022] [Indexed: 11/10/2022] Open
Abstract
The gastrointestinal tract of livestock and poultry is prone to challenge by feedborne antigens, pathogens, and other stress factors in the farm environment. Excessive physiological inflammation and oxidative stress that arises firstly disrupts the intestinal epithelial barrier followed by other components of the gastrointestinal tract. In the present review, the interrelationship between intestinal barrier inflammation and oxidative stress that contributes to the pathogenesis of inflammatory bowel disease was described. Further, the role of naturally existing immunomodulatory nutrients such as the omega-3 polyunsaturated fatty acids, citrus pectin, and milk-derived exosomes in preventing intestinal barrier inflammation was discussed. Based on the existing evidence, the possible molecular mechanism of these bioactive nutrients in the intestinal barrier was outlined for application in animal diets.
Collapse
Affiliation(s)
- Tamil Selvi Sundaram
- Department of Veterinary Science for Health, Animal Production and Food Safety, University of Milan, Via Trentacoste 2, 20134, Milan, Italy.
- University of Veterinary Medicine and Pharmacy in Košice, Komenského 68/73, 04181, Košice, Slovakia.
| | - Carlotta Giromini
- Department of Veterinary Science for Health, Animal Production and Food Safety, University of Milan, Via Trentacoste 2, 20134, Milan, Italy
| | - Raffaella Rebucci
- Department of Veterinary Science for Health, Animal Production and Food Safety, University of Milan, Via Trentacoste 2, 20134, Milan, Italy
| | - Juraj Pistl
- University of Veterinary Medicine and Pharmacy in Košice, Komenského 68/73, 04181, Košice, Slovakia
| | - Mangesh Bhide
- University of Veterinary Medicine and Pharmacy in Košice, Komenského 68/73, 04181, Košice, Slovakia
| | - Antonella Baldi
- Department of Veterinary Science for Health, Animal Production and Food Safety, University of Milan, Via Trentacoste 2, 20134, Milan, Italy
| |
Collapse
|
38
|
García-Martínez J, Pérez-Castillo ÍM, Salto R, López-Pedrosa JM, Rueda R, Girón MD. Beneficial Effects of Bovine Milk Exosomes in Metabolic Interorgan Cross-Talk. Nutrients 2022; 14:nu14071442. [PMID: 35406056 PMCID: PMC9003525 DOI: 10.3390/nu14071442] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/25/2022] [Accepted: 03/28/2022] [Indexed: 12/12/2022] Open
Abstract
Extracellular vesicles are membrane-enclosed secreted vesicles involved in cell-to-cell communication processes, identified in virtually all body fluids. Among extracellular vesicles, exosomes have gained increasing attention in recent years as they have unique biological origins and deliver different cargos, such as nucleic acids, proteins, and lipids, which might mediate various health processes. In particular, milk-derived exosomes are proposed as bioactive compounds of breast milk, which have been reported to resist gastric digestion and reach systemic circulation, thus being bioavailable after oral intake. In the present manuscript, we critically discuss the available evidence on the health benefits attributed to milk exosomes, and we provide an outlook for the potential future uses of these compounds. The use of milk exosomes as bioactive ingredients represents a novel avenue to explore in the context of human nutrition, and they might exert important beneficial effects at multiple levels, including but not limited to intestinal health, bone and muscle metabolism, immunity, modulation of the microbiota, growth, and development.
Collapse
Affiliation(s)
- Jorge García-Martínez
- Abbott Nutrition R&D, Abbott Laboratories, 18004 Granada, Spain; (J.G.-M.); (Í.M.P.-C.); (J.M.L.-P.); (R.R.)
| | - Íñigo M. Pérez-Castillo
- Abbott Nutrition R&D, Abbott Laboratories, 18004 Granada, Spain; (J.G.-M.); (Í.M.P.-C.); (J.M.L.-P.); (R.R.)
| | - Rafael Salto
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, Campus de Cartuja, 18071 Granada, Spain;
- Correspondence: ; Tel.: +34-958-246363
| | - José M. López-Pedrosa
- Abbott Nutrition R&D, Abbott Laboratories, 18004 Granada, Spain; (J.G.-M.); (Í.M.P.-C.); (J.M.L.-P.); (R.R.)
| | - Ricardo Rueda
- Abbott Nutrition R&D, Abbott Laboratories, 18004 Granada, Spain; (J.G.-M.); (Í.M.P.-C.); (J.M.L.-P.); (R.R.)
| | - María D. Girón
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, Campus de Cartuja, 18071 Granada, Spain;
| |
Collapse
|
39
|
Amiri A, Bagherifar R, Ansari Dezfouli E, Kiaie SH, Jafari R, Ramezani R. Exosomes as bio-inspired nanocarriers for RNA delivery: preparation and applications. J Transl Med 2022; 20:125. [PMID: 35287692 PMCID: PMC8919142 DOI: 10.1186/s12967-022-03325-7] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 03/01/2022] [Indexed: 12/12/2022] Open
Abstract
Nanocarriers as drug/biomolecule delivery systems have been significantly developed during recent decades. Given the stability, reasonable delivery efficiency, and safety of nanocarriers, there are several barriers in the fulfillment of successful clinical application of these delivery systems. These challenges encouraged drug delivery researchers to establish innovative nanocarriers with longer circulation time, high stability, and high compatibility. Exosomes are extracellular nanometer-sized vesicles released through various cells. These vesicles serve as nanocarriers, possessing great potential to overcome some obstacles encountered in gene and drug delivery due to their natural affinity to recipient cells and the inherent capability to shuttle the genes, lipids, proteins, and RNAs between cells. So far, there has been a lot of valuable research on drug delivery by exosomes, but research on RNA delivery, especially mRNA, is very limited. Since mRNA-based vaccines and therapies have recently gained particular prominence in various diseases, it is essential to find a suitable delivery system due to the large size and destructive nature of these nucleic acids. That's why we're going to take a look at the unique features of exosomes and their isolation and loading methods, to embrace this idea that exosome-mediated mRNA-based therapies would be introduced as a very efficient strategy in disease treatment within the near future.
Collapse
Affiliation(s)
- Ala Amiri
- Faculty of Basic Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Rafieh Bagherifar
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ehsan Ansari Dezfouli
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
- Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | - Seyed Hossein Kiaie
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Nano Drug Delivery Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Reza Jafari
- Solid Tumor Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Shafa St, Ershad Blvd., P.O. Box: 1138, 57147, Urmia, Iran.
| | - Reihaneh Ramezani
- Department of Biomedical Sciences, Women Research Center, Alzahra University, 1993893973, Tehran, Iran.
| |
Collapse
|
40
|
Ahmed F, Tamma M, Pathigadapa U, Reddanna P, Yenuganti VR. Drug Loading and Functional Efficacy of Cow, Buffalo, and Goat Milk-Derived Exosomes: A Comparative Study. Mol Pharm 2022; 19:763-774. [PMID: 35195427 DOI: 10.1021/acs.molpharmaceut.1c00182] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Quite recently, milk exosomes have been recognized as efficient drug delivery systems owing to their biocompatibility and easy availability for scale-up technologies. However, there are no reports of comparative studies with regards to drug delivery by milk exosomes derived from different species. In this study, we isolated and characterized milk exosomes of cow, buffalo, and goat by various techniques and tried to understand their drug loading capacity and functional efficiency in HepG2, HCT116, and A549 cells by using doxorubicin. Doxorubicin was loaded to milk exosomes by three methods, that is, incubation, saponin treatment, and sonication. The isolated exosomes were found to be spherical with a size of <200 nm and displayed specific markers, namely, CD81, HSP70, HSC70, and miRNAs. Drug loading studies revealed that goat milk exosomes had the highest loading capacity across all three methods. Doxorubicin-encapsulated goat milk exosomes resulted in the inhibition of cell viability, with low IC50 values in HepG2, HCT-116, and A549 cells. Doxorubicin-encapsulated goat exosomes displayed better IC50 values than cow and buffalo milk-derived counterparts. In line with this, the ability of doxorubicin-encapsulated goat milk exosomes to induce apoptosis in HepG2 and HCT-116 cells was higher than that of cow and buffalo milk exosomes and free doxorubicin. Furthermore, unbound goat milk exosomes significantly reduced cell viability as compared to cow and buffalo milk exosomes. The transepithelial transport assay shows that doxorubicin-loaded milk exosomes transport doxorubicin efficiently as compared to free doxorubicin in vitro. Doxorubicin released from milk exosomes shows a biphasic release pattern, burst release followed by sustained release. These observations are important in light of the emerging importance of milk-derived exosomes as drug carriers to treat cancers.
Collapse
Affiliation(s)
- Farhan Ahmed
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad 500046, Telangana, India
| | - Mounipriya Tamma
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad 500046, Telangana, India
| | - Umamaheswari Pathigadapa
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad 500046, Telangana, India
| | - Pallu Reddanna
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad 500046, Telangana, India
| | - Vengala Rao Yenuganti
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad 500046, Telangana, India
| |
Collapse
|
41
|
Letter to the editor regarding "Dietary bovine milk miRNAs transported in extracellular vesicles are partially stable during GI digestion, are bioavailable and reach target tissues but need a minimum dose to impact on gene expression". Eur J Nutr 2022; 61:1695-1696. [PMID: 35192027 DOI: 10.1007/s00394-022-02817-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/21/2021] [Indexed: 12/17/2022]
|
42
|
Gutman-Ido E, Reif S, Musseri M, Schabes T, Golan-Gerstl R. Oxytocin Regulates the Expression of Selected Colostrum-derived microRNAs. J Pediatr Gastroenterol Nutr 2022; 74:e8-e15. [PMID: 34371509 DOI: 10.1097/mpg.0000000000003277] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
OBJECTIVE The highly expressed microRNAs (miRNAs) in milk are known as beneficial miRNAs, such as mir148a-3p, which is related to immune system development and disease prevention. There is a need to study their expression and secretion regulatory mechanism in breast milk. We hypothesize that oxytocin can be involved in the regulation of expression and secretion of milk-derived miRNAs. METHODS Initially, oxytocin's effect on miRNA expression in human mammary cells was analyzed. Secondly, the expression of selected miRNAs in mothers' colostrum treated or not with oxytocin before, during, or after labor was compared. MiRNA expression was analyzed by quantitative real-time PCR. RESULTS The expression of miR-148a was significantly upregulated, and miR-320 downregulated in oxytocin-treated mammary cells as well as their secreted extracellular vesicles to the media, compared with untreated cells. MiR-148a was found to be upregulated, and miR-320 was downregulated in the human colostrum of exogenous oxytocin-treated mothers. Moreover, miR-320 was highly expressed compared with miR-148a in the colostrum of mothers that did not receive exogenous oxytocin. In contrast, in the milk of mothers who received exogenous oxytocin, the expression of miRNA-148-3p was highly expressed compared with miR-320. CONCLUSIONS This study shows that oxytocin modulates the expression of main milk-derived miRNAs. Our findings provide a novel insight into oxytocin's role in milk composition by regulating miRNA expression. Our results implicate that oxytocin increases miRNA expression in mammary epithelial cells and human milk, affecting human milk composition and may contribute to further infant health.
Collapse
Affiliation(s)
| | - Shimon Reif
- Department of Pediatrics, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Mirit Musseri
- Department of Pediatrics, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Talia Schabes
- Department of Pediatrics, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Regina Golan-Gerstl
- Department of Pediatrics, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| |
Collapse
|
43
|
Du C, Quan S, Nan X, Zhao Y, Shi F, Luo Q, Xiong B. Effects of oral milk extracellular vesicles on the gut microbiome and serum metabolome in mice. Food Funct 2021; 12:10938-10949. [PMID: 34647936 DOI: 10.1039/d1fo02255e] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Milk extracellular vesicles (EVs) are rich in abundant bioactive macromolecules, such as glycoconjugates, proteins, lipids and nucleic acids, and these vesicles might transmit signals to human consumers. However, it remains to be determined whether milk EVs import new pathogens to humans or are beneficial for human health. Here, C57BL/6 female and male mice were randomly divided into 4 EV dose levels (0, 1.5 × 109 p g-1, 1.0 × 1010 p g-1 and 1.5 × 1010 p g-1). Based on the alterations in body weight, the control group (0 p g-1, PBS) and the middle treatment group (1.0 × 1010 p g-1) were chosen for further analysis of the effects of EVs on the gut microbiota and blood metabolites in mice, by 16S rRNA gene sequencing and untargeted metabolomics, respectively. We found that milk EVs increased the abundance of "beneficial" microbes such as Akkermansia, Muribaculum and Turicibacter, while decreased the level of "harmful" bacteria Desulfovibrio. Serum metabolites showed that EVs mainly changed the lipid and amino acid metabolism, and especially increased several serum anti-inflammatory factors, which might be beneficial for inflammation and other metabolic diseases. The results of KEGG analysis suggested that the enriched pathways were the intestinal immune network for IgA production, retinol metabolism, and D-glutamine and D-glutamate metabolism. Taken together, the positive effect of milk EVs on serum nutrient metabolism without promoting "harmful" bacterial colonization in female and male mice may indicate that they are safe bioactive molecules, and some of the changes they induce may provide protection against certain diseases.
Collapse
Affiliation(s)
- Chunmei Du
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Suyu Quan
- College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin 300384, China
| | - Xuemei Nan
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Yiguang Zhao
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Fangquan Shi
- Xihe County Animal Husbandry and Veterinary Station, Xihe, Gansu 742100, China
| | - Qingyao Luo
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Benhai Xiong
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
44
|
Feng X, Chen X, Zheng X, Zhu H, Qi Q, Liu S, Zhang H, Che J. Latest Trend of Milk Derived Exosomes: Cargos, Functions, and Applications. Front Nutr 2021; 8:747294. [PMID: 34778341 PMCID: PMC8589029 DOI: 10.3389/fnut.2021.747294] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 10/04/2021] [Indexed: 12/12/2022] Open
Abstract
Exosomes are nanosized phospholipid bilayer vesicles released to the extracellular environment. Exosomes from various tissues or cells are being studied and there has been a growing interest in milk exosomes research due to their emerging role as messengers between cells and the fact that it can be produced in large quantities with rich source of milk. Milk derived exosomes (MDEs) contain lipids, microRNAs, proteins, mRNAs as well as DNA. Studies of exosome cargo have been conducted widely in many research areas, especially exosomal miRNAs. In this paper, we reviewed the current knowledge in isolation and identification, cargos, functions mainly in intestinal tract and immunity system of MDEs. Its application as drug carriers and diseases biomarker are also discussed. Furthermore, we also consider critical challenges of MDEs application and provide possible directions for future research.
Collapse
Affiliation(s)
- Xin Feng
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Xiaolin Chen
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Xucan Zheng
- Foshan Nanhai Poultry Breeding Co., Ltd., Foshan, China
| | - Hui Zhu
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Qien Qi
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Shen Liu
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Huihua Zhang
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Jianwei Che
- Department of Orthopaedics, Bethune International Peace Hospital, Shijiazhuang, China
| |
Collapse
|
45
|
Milk Exosome-Derived MicroRNA-2478 Suppresses Melanogenesis through the Akt-GSK3β Pathway. Cells 2021; 10:cells10112848. [PMID: 34831071 PMCID: PMC8616206 DOI: 10.3390/cells10112848] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/20/2021] [Accepted: 10/21/2021] [Indexed: 12/12/2022] Open
Abstract
Exosomes participate in intercellular communication by transferring molecules from donor to recipient cells. Exosomes are found in various body fluids, including blood, urine, cerebrospinal fluid and milk. Milk exosomes contain many endogenous microRNA molecules. MicroRNAs are small noncoding RNAs and have important roles in biological processes. The specific biological functions of milk exosomes are not well understood. In this study, we investigated the effects of milk exosomes on melanin production in melanoma cells and melanocytes. We found that milk exosomes decreased melanin contents, tyrosinase activity and the expression of melanogenesis-related genes in melanoma cells and melanocytes. Bovine-specific miR-2478 in exosomes inhibited melanin production. We found that Rap1a is a direct target gene of miR-2478 in melanoma cells and melanocytes. MiR-2478 overexpression decreased Rap1a expression, which led to downregulated melanin production and expression of melanogenesis-related genes. Inhibition of Rap1a expression decreased melanogenesis through the Akt-GSK3β signal pathway. These results support the role of miR-2478 derived from milk exosomes as a regulator of melanogenesis through direct targeting of Rap1a. These results show that milk exosomes could be useful cosmeceutical ingredients to improve whitening.
Collapse
|
46
|
Hu Y, Thaler J, Nieuwland R. Extracellular Vesicles in Human Milk. Pharmaceuticals (Basel) 2021; 14:1050. [PMID: 34681274 PMCID: PMC8539554 DOI: 10.3390/ph14101050] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 10/05/2021] [Accepted: 10/11/2021] [Indexed: 12/13/2022] Open
Abstract
Milk supports the growth and development of infants. An increasing number of mostly recent studies have demonstrated that milk contains a hitherto undescribed component called extracellular vesicles (EVs). This presents questions regarding why milk contains EVs and what their function is. Recently, we showed that EVs in human milk expose tissue factor, the protein that triggers coagulation or blood clotting, and that milk-derived EVs promote coagulation. Because bovine milk, which also contains EVs, completely lacks this coagulant activity, important differences are present in the biological functions of human milk-derived EVs between species. In this review, we will summarize the current knowledge regarding the presence and biochemical composition of milk EVs, their function(s) and potential clinical applications such as in probiotics, and the unique problems that milk EVs encounter in vivo, including survival of the gastrointestinal conditions encountered in the newborn. The main focus of this review will be human milk-derived EVs, but when available, we will also include information regarding non-human milk for comparison.
Collapse
Affiliation(s)
- Yong Hu
- Laboratory of Experimental Clinical Chemistry and Vesicle Observation Center, Amsterdam University Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands;
- Biomedical Engineering & Physics, Amsterdam University Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Johannes Thaler
- Clinical Division of Haematology and Haemostaseology, Department of Medicine I, Medical University of Vienna, Währinger Gürtel 18–20, 1090 Vienna, Austria;
| | - Rienk Nieuwland
- Laboratory of Experimental Clinical Chemistry and Vesicle Observation Center, Amsterdam University Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands;
| |
Collapse
|
47
|
Vizzari G, Morniroli D, Ceroni F, Verduci E, Consales A, Colombo L, Cerasani J, Mosca F, Giannì ML. Human Milk, More Than Simple Nourishment. CHILDREN (BASEL, SWITZERLAND) 2021; 8:863. [PMID: 34682128 PMCID: PMC8535116 DOI: 10.3390/children8100863] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/18/2021] [Accepted: 09/19/2021] [Indexed: 12/24/2022]
Abstract
Human breast milk not only has nutritional properties but also holds a functional role. It contains various bioactive factors (lactoferrin, lysozyme, leukocytes, immunoglobulins, cytokines, hormones, human milk oligosaccharides, microbiome, microRNAs and stem cells) shown to contribute to several short- and long-term health outcomes. Some of these factors appear to be involved in the infant's neuro-cognitive development, anti-oncogenic processes, cellular communication and differentiation. Furthermore, breast milk is increasingly recognized to have dynamic characteristics and to play a fundamental role in the cross-talking mother-neonate. This narrative review aims to provide a summary and an update on these bioactive substances, exploring their functions mainly on immunomodulation, microbiome and virome development. Although the knowledge about breast milk potentiality has significantly improved, leading to discovering unexpected functions, the exact mechanisms with which breast milk exercises its bioactivity have not been completely clarified. This can represent a fertile ground for exploring and understanding the complexity behind these functional elements to develop new therapeutic strategies.
Collapse
Affiliation(s)
- Giulia Vizzari
- Department of Clinical Sciences and Community Health, University of Milan, Via Commenda 19, 20122 Milan, Italy; (G.V.); (D.M.); (F.C.); (A.C.); (J.C.); (F.M.)
| | - Daniela Morniroli
- Department of Clinical Sciences and Community Health, University of Milan, Via Commenda 19, 20122 Milan, Italy; (G.V.); (D.M.); (F.C.); (A.C.); (J.C.); (F.M.)
| | - Federica Ceroni
- Department of Clinical Sciences and Community Health, University of Milan, Via Commenda 19, 20122 Milan, Italy; (G.V.); (D.M.); (F.C.); (A.C.); (J.C.); (F.M.)
| | - Elvira Verduci
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, University of Milan, 20154 Milan, Italy;
- Department of Health Sciences, University of Milan, 20154 Milan, Italy
| | - Alessandra Consales
- Department of Clinical Sciences and Community Health, University of Milan, Via Commenda 19, 20122 Milan, Italy; (G.V.); (D.M.); (F.C.); (A.C.); (J.C.); (F.M.)
| | - Lorenzo Colombo
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico NICU, Via Commenda 12, 20122 Milan, Italy;
| | - Jacopo Cerasani
- Department of Clinical Sciences and Community Health, University of Milan, Via Commenda 19, 20122 Milan, Italy; (G.V.); (D.M.); (F.C.); (A.C.); (J.C.); (F.M.)
| | - Fabio Mosca
- Department of Clinical Sciences and Community Health, University of Milan, Via Commenda 19, 20122 Milan, Italy; (G.V.); (D.M.); (F.C.); (A.C.); (J.C.); (F.M.)
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico NICU, Via Commenda 12, 20122 Milan, Italy;
| | - Maria Lorella Giannì
- Department of Clinical Sciences and Community Health, University of Milan, Via Commenda 19, 20122 Milan, Italy; (G.V.); (D.M.); (F.C.); (A.C.); (J.C.); (F.M.)
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico NICU, Via Commenda 12, 20122 Milan, Italy;
| |
Collapse
|
48
|
High-quality milk exosomes as oral drug delivery system. Biomaterials 2021; 277:121126. [PMID: 34544033 DOI: 10.1016/j.biomaterials.2021.121126] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 08/26/2021] [Accepted: 09/07/2021] [Indexed: 02/07/2023]
Abstract
Many drugs must be administered intravenously instead of oral administration due to their poor oral bioavailability. The cost of repeated infusion treatment for 6 weeks every year is as high as tens of billions of dollars worldwide. Exosomes are nano-sized (30-150 nm) extracellular vesicles secreted by mammalian cells due to environmental stimulation or self-activation. Milk contains abundant exosomes originated from multiple cellular sources. It has been proved that milk exosomes (MEs) could survive with the strongly acidic conditions in the stomach and degradative conditions in the gut. Furthermore, they can cross biological barriers to reach targeted tissues. The ability of MEs to cross the gastrointestinal barrier makes them as a promising drug delivery tool for oral delivery. This review is devoted to the purification of MEs, their biocompatibility and immunogenicity, and prospects for their use as natural drug carriers for oral administration.
Collapse
|
49
|
New insights into exosome mediated tumor-immune escape: Clinical perspectives and therapeutic strategies. Biochim Biophys Acta Rev Cancer 2021; 1876:188624. [PMID: 34487817 DOI: 10.1016/j.bbcan.2021.188624] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 08/30/2021] [Accepted: 09/01/2021] [Indexed: 12/13/2022]
Abstract
Recent advances in extracellular vesicle biology have uncovered a substantial role in maintaining cell homeostasis in health and disease conditions by mediating intercellular communication, thus catching the scientific community's attention worldwide. Extracellular microvesicles, some called exosomes, functionally transfer biomolecules such as proteins and non-coding RNAs from one cell to another, influencing the local environment's biology. Although numerous advancements have been made in treating cancer patients with immune therapy, controlling the disease remains a challenge in the clinic due to tumor-driven interference with the immune response and inability of immune cells to clear cancer cells from the body. The present review article discusses the recent findings and knowledge gaps related to the role of exosomes derived from tumors and the tumor microenvironment cells in tumor escape from immunosurveillance. Further, we highlight examples where exosomal non-coding RNAs influence immune cells' response within the tumor microenvironment and favor tumor growth and progression. Therefore, exosomes can be used as a therapeutic target for the treatment of human cancers.
Collapse
|
50
|
Kučuk N, Primožič M, Knez Ž, Leitgeb M. Exosomes Engineering and Their Roles as Therapy Delivery Tools, Therapeutic Targets, and Biomarkers. Int J Mol Sci 2021; 22:9543. [PMID: 34502452 PMCID: PMC8431173 DOI: 10.3390/ijms22179543] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/27/2021] [Accepted: 08/30/2021] [Indexed: 12/12/2022] Open
Abstract
Exosomes are becoming increasingly important therapeutic biomaterials for use in a variety of therapeutic applications due to their unique characteristics, especially due to the ineffectiveness and cytotoxicity of some existing therapies and synthetic therapeutic nanocarriers. They are highly promising as carriers of drugs, genes, and other therapeutic agents that can be incorporated into their interior or onto their surface through various modification techniques to improve their targeting abilities. In addition, they are biocompatible, safe, and stable. The review focuses on different types of exosomes and methods of their preparation, including the incorporation of different kinds of cargo, especially for drug delivery purposes. In particular, their importance and effectiveness as delivery vehicles of various therapeutic agents for a variety of therapeutic applications, including different diseases and disorders such as cancer treatment, cardiovascular and neurodegenerative diseases, are emphasized. Administration routes of exosomes into the body are also included. A novelty in the article is the emphasis on global companies that are already successfully developing and testing such therapeutic biomaterials, with a focus on the most influential ones. Moreover, a comparison of the advantages and disadvantages of the various methods of exosome production is summarized for the first time.
Collapse
Affiliation(s)
- Nika Kučuk
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova 17, 2000 Maribor, Slovenia; (N.K.); (M.P.); (Ž.K.)
| | - Mateja Primožič
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova 17, 2000 Maribor, Slovenia; (N.K.); (M.P.); (Ž.K.)
| | - Željko Knez
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova 17, 2000 Maribor, Slovenia; (N.K.); (M.P.); (Ž.K.)
- Faculty of Medicine, University of Maribor, Taborska Ulica 8, 2000 Maribor, Slovenia
| | - Maja Leitgeb
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova 17, 2000 Maribor, Slovenia; (N.K.); (M.P.); (Ž.K.)
- Faculty of Medicine, University of Maribor, Taborska Ulica 8, 2000 Maribor, Slovenia
| |
Collapse
|