1
|
Kang Z, Zhang L, Yang Z. Role of non-coding RNAs in the pathogenesis of viral myocarditis. Virulence 2025; 16:2466480. [PMID: 39950847 PMCID: PMC11849450 DOI: 10.1080/21505594.2025.2466480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 01/04/2025] [Accepted: 02/09/2025] [Indexed: 02/21/2025] Open
Abstract
Viral myocarditis (VMC) is a common inflammatory disease of the myocardium that is characterized mainly by inflammatory cell infiltration and cardiomyocyte necrosis. Coxsackievirus B3 (CVB3) is a common cause of VMC, although major progress has been made in the treatment of VMC, the long-term prognosis is still not ideal and further research is needed. Non-coding RNAs (ncRNAs) are RNA molecules without coding functions and include microRNAs (miRNAs), long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs), which play extensive regulatory roles in gene expression; however, their mechanisms of action in CVB3-induced VMC remain incompletely understood. Here, we review the currently known roles of various ncRNAs in CVB3-induced VMC models, with a focus on cell death, inflammation and viral replication, with the aim of providing a reference for their therapeutic or vaccine development for the treatment of VMC.
Collapse
Affiliation(s)
- Zhijuan Kang
- Department of Nephrology, Rheumatology and Immunology, The Affiliated Children’s Hospital of Xiangya School of Medicine, Central South University (Hunan children’s hospital), Changsha, Hunan, China
- Department of Pediatrics, Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Liang Zhang
- Department of Nephrology, Rheumatology and Immunology, The Affiliated Children’s Hospital of Xiangya School of Medicine, Central South University (Hunan children’s hospital), Changsha, Hunan, China
| | - Zuocheng Yang
- Department of Pediatrics, Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| |
Collapse
|
2
|
Poudineh M, Darweesh O, Mokhtari M, Zolfaghari O, Khaledi A, Piroozmand A. Expression of microRNAs in the detection and therapeutic roles of viral infections: Mechanisms and applications. J Virus Erad 2025; 11:100586. [PMID: 40296890 PMCID: PMC12034616 DOI: 10.1016/j.jve.2025.100586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 01/28/2025] [Accepted: 01/29/2025] [Indexed: 04/30/2025] Open
Abstract
In recent years, microRNAs (miRNAs) are potential diagnostic and therapeutic agents for viral infections. Here, we aimed to investigate the expression of microRNAs in the identification and treatment of viral infections. MiRNAs are non-coding molecules that control gene expression and participate in numerous biological processes, including host immunity and pathogen duplication. MiRNAs have played a role in the pathogenesis of various viral infections, such as HIV and HCV. Their presence in the tissues and serum of infected patients has been demonstrated to help predict disease progression, identify disease subtypes, and evaluate treatment responses. Research has shown that miRNAs can detect viral infections by identifying specific miRNAs in serum. For example, miRNA expression profiling was recently used to distinguish between hepatitis C and hepatitis B viral infections precisely. Furthermore, miRNAs can be used to detect the presence of multiple viral infections simultaneously by assessing the expression levels of these miRNAs. Also, miRNAs can differentiate between different genetic variants of the same virus, which is useful for identifying emerging viral strains or drug-resistant ones. MiRNAs have been identified as being a factor in treating viral infections. For example, miRNA mimics have decreased gene expression and halted viral replication in HIV, HCV, and EBV. Moreover, microRNA antagonists have been utilized to inhibit pro-inflammatory cytokines, thereby modulating the immune response and the severity of infections.
Collapse
Affiliation(s)
- Mohsen Poudineh
- Infectious Diseases Research Center, Kashan University of Medical Sciences, Kashan, Iran
- Department of Microbiology and Immunology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Omeed Darweesh
- College of Pharmacy, Al-Kitab University, Kirkuk, 36015, Iraq
| | - Mohsen Mokhtari
- Laboratory Department, Paramedical School, Kashan University of Medical Sciences, Kashan, Iran
| | - Omid Zolfaghari
- Laboratory Department, Paramedical School, Kashan University of Medical Sciences, Kashan, Iran
| | - Azad Khaledi
- Infectious Diseases Research Center, Kashan University of Medical Sciences, Kashan, Iran
- Department of Microbiology and Immunology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Ahmad Piroozmand
- Autoimmune Diseases Research Center, School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
3
|
Zhang Y, Yang L, Mu H, Li N, Wang X, Lei H, Pang M. CVB3 regulates Treg cell pyroptosis through the lncRNA XIST/miR-195-5p/caspase-1 molecular axis. Immunobiology 2025; 230:152882. [PMID: 39987748 DOI: 10.1016/j.imbio.2025.152882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/22/2025] [Accepted: 02/12/2025] [Indexed: 02/25/2025]
Abstract
Viral myocarditis (VMC) is characterized by severe cardiac inflammation and is a major cause of congestive heart failure and sudden cardiac death in healthy young people. The lncRNA XIST plays an important regulatory role in myocardial injury, but its role in VMC caused by coxsackievirus B3 (CVB3) infection is unclear. In this study, we evaluated the effects of the lncRNA XIST on a CVB3-induced VMC mouse model and on pyroptosis in CVB3-exposed Treg cells. The results showed that in CVB3-infected VMC and Treg cells, the expression level of the lncRNA XIST was increased, whereas miR-195-5p expression was decreased. In CVB3-induced VMC mice, inflammation was elevated, whereas the Treg/Th17 ratio was reduced. Knocking down the lncRNA XIST suppressed pyroptosis in Treg cells caused by CVB3 infection and inhibited VMC progression in vivo. Studies on downstream mechanisms have shown that the lncRNA XIST targets miR-195-5p, induces caspase-1 expression through the inhibition of miR-195-5p, promotes the expression of the inflammatory factors IL-1β and IL-18 associated with pyroptosis, inhibits the secretion of the anti-inflammatory factors IL-10 and TGF-β1, and ultimately promotes pyroptosis in Treg cells. In conclusion, knocking down the lncRNA XIST inhibits CVB3-induced pyroptosis of Treg cells and VMC progression in mice induced by CVB3 infection. These findings provide a potential theoretical basis for the treatment of VMC.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Magnetic Resonance Imaging, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming 650032, Yunnan, China
| | - Lei Yang
- Department of Cardiology, The First People's Hospital of Yunnan Province. The Affiliated Hospital of Kunming University of Science and Technology, Kunming 650032, Yunnan, China
| | - Huiting Mu
- Department of Cardiology, The First People's Hospital of Yunnan Province. The Affiliated Hospital of Kunming University of Science and Technology, Kunming 650032, Yunnan, China
| | - Na Li
- Department of Cardiology, The First People's Hospital of Yunnan Province. The Affiliated Hospital of Kunming University of Science and Technology, Kunming 650032, Yunnan, China
| | - Xuejia Wang
- Department of Cardiology, The First People's Hospital of Yunnan Province. The Affiliated Hospital of Kunming University of Science and Technology, Kunming 650032, Yunnan, China
| | - Hualan Lei
- Department of Cardiology, The First People's Hospital of Yunnan Province. The Affiliated Hospital of Kunming University of Science and Technology, Kunming 650032, Yunnan, China
| | - Mingjie Pang
- Department of Cardiology, The First People's Hospital of Yunnan Province. The Affiliated Hospital of Kunming University of Science and Technology, Kunming 650032, Yunnan, China..
| |
Collapse
|
4
|
Su Z, Li Q, Zhang Y, Liu T, Lv K, Feng A, Yang Y, Zhang Y, Wei Z, Sang X, Feng Y, Chen R, Jiang N, Chen Q. Ly6G + Neutrophils and Interleukin-17 Are Essential in Protection against Rodent Malaria Caused by Plasmodium berghei ANKA. RESEARCH (WASHINGTON, D.C.) 2024; 7:0559. [PMID: 39703777 PMCID: PMC11658117 DOI: 10.34133/research.0559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/22/2024] [Accepted: 12/06/2024] [Indexed: 12/21/2024]
Abstract
Neutrophils are essential in combating invading pathogens such as Plasmodium parasites, but the participation of their subpopulations and mechanisms in resistance to parasite infection are not fully understood. Our study identified a marked increase in Ly6G+ neutrophils in response to P. berghei ANKA infection. Depletion of these cells rendered mice more susceptible to infection. Elevated interleukin-17 (IL-17) levels, which increased the Ly6G+ neutrophil population, were also found to contribute to this protective effect. IL-17 depletion led to reduced neutrophil numbers and increased susceptibility. Furthermore, dihydroartemisinin (DHA) treatment enhanced neutrophil-mediated immune responses through up-regulation of CD18 and CXCR4 factors. These findings revealed key mechanisms of neutrophil and IL-17 interactions in malaria protection and highlighted DHA's potential to promote neutrophil function in combating malaria.
Collapse
Affiliation(s)
- Ziwei Su
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, and Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs,
College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
- Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang 110866, China
| | - Qilong Li
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, and Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs,
College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
- Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang 110866, China
| | - Yiwei Zhang
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, and Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs,
College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
- Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang 110866, China
| | - Tong Liu
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, and Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs,
College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
- Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang 110866, China
| | - Kunying Lv
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, and Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs,
College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
- Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang 110866, China
| | - Anni Feng
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, and Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs,
College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
- Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang 110866, China
| | - Yixin Yang
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, and Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs,
College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
- Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang 110866, China
| | - Yanxin Zhang
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, and Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs,
College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
- Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang 110866, China
| | - Zhiming Wei
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, and Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs,
College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
- Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang 110866, China
| | - Xiaoyu Sang
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, and Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs,
College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
- Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang 110866, China
| | - Ying Feng
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, and Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs,
College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
- Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang 110866, China
| | - Ran Chen
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, and Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs,
College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
- Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang 110866, China
| | - Ning Jiang
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, and Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs,
College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
- Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang 110866, China
| | - Qijun Chen
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, and Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs,
College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
- Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang 110866, China
| |
Collapse
|
5
|
Młynarska E, Badura K, Kurciński S, Sinkowska J, Jakubowska P, Rysz J, Franczyk B. The Role of MicroRNA in the Pathophysiology and Diagnosis of Viral Myocarditis. Int J Mol Sci 2024; 25:10933. [PMID: 39456716 PMCID: PMC11507602 DOI: 10.3390/ijms252010933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 10/03/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
Myocarditis is a non-ischemic condition with a heterogeneous etiology, clinical course and prognosis. The most common etiology of myocarditis are viral infections, whereas the most severe complications are acute and chronic heart failure and sudden cardiac death. The heterogeneous clinical course of the disease, as well as the availability and costs of diagnostic tools such as cardiac magnetic resonance and endomyocardial biopsy, hinder the diagnosis of myocarditis and its underlying cause. Non-coding RNAs such as micro-RNAs (miRNAs; miR) have been shown to be involved in the disease's pathophysiology; however, their potential in disease diagnosis and treatment should also be considered. Non-coding RNAs are RNAs that are not translated into proteins, and they have the ability to regulate several intracellular pathways. MiRNAs regulate gene expression by binding with their targets and inhibiting protein synthesis by interfering with the translation of coding genes or causing the degradation of messenger RNA. Several miRNAs, such as miR-1, -133, -21, -15, -98, -126, -155, -148, -203, -208, -221, -222, -203 and -590, have been shown to be involved in the pathophysiology of viral myocarditis (VMC), and some of them have been shown to have diagnostic abilities. This article summarizes the available data on miRNAs and their associations with VMC.
Collapse
Affiliation(s)
- Ewelina Młynarska
- Department of Nephrocardiology, Medical University of Lodz, Ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Krzysztof Badura
- Department of Nephrocardiology, Medical University of Lodz, Ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Szymon Kurciński
- Department of Nephrocardiology, Medical University of Lodz, Ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Julia Sinkowska
- Department of Nephrocardiology, Medical University of Lodz, Ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Paulina Jakubowska
- Department of Nephrocardiology, Medical University of Lodz, Ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Jacek Rysz
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, Ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Beata Franczyk
- Department of Nephrocardiology, Medical University of Lodz, Ul. Zeromskiego 113, 90-549 Lodz, Poland
| |
Collapse
|
6
|
Wang M, Liu Z, Cheng A, Wang M, Wu Y, Yang Q, Tian B, Ou X, Sun D, Zhang S, Zhu D, Jia R, Chen S, Liu M, Zhao XX, Huang J. Host miRNA and mRNA profiles during in DEF and duck after DHAV-1 infection. Sci Rep 2024; 14:22575. [PMID: 39343789 PMCID: PMC11439951 DOI: 10.1038/s41598-024-72992-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 09/12/2024] [Indexed: 10/01/2024] Open
Abstract
DHAV-1 is a highly infectious pathogen that can cause acute hepatitis in ducklings. MicroRNA (miRNA) plays an essential regulatory role in virus response. We characterized and compared miRNA and mRNA expression profiles in duck embryonic fibroblasts (DEF) and the liver of ducklings infected with DHAV-1. DHAV-1 infected DEF was divided into infection group (D group) and blank group (M group), and DHAV-1 infected duckling group was divided into infection group (H group) and blank group (N group). D vs. M have 130 differentially expressed (DE) miRNA (DEM) and 2204 differentially expressed (DE) mRNA (DEG), H vs. N have 72 DEM and 1976 DEG. By the intersection of D vs. M and H vs. N comparisons, 15 upregulated DEM, 5 downregulated DEM, 340 upregulated DEG and 50 downregulated DEG were found with both in vivo and in vitro DHAV-1 infection. In particular, we identified the same DE miRNA target genes and functional annotations of DE mRNA. We enriched with multiple gene ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, which may have important roles in viral virulence, host immunity, and metabolism. We selected miR-155, which is co-upregulated, and found that miR-155 targets SOCS1 to inhibit DHVA-1 replication.
Collapse
Affiliation(s)
- Meng Wang
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, chengdu, China
- International Joint Research Center, Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
| | - Zezheng Liu
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, chengdu, China
- International Joint Research Center, Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
| | - Anchun Cheng
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China.
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, chengdu, China.
- International Joint Research Center, Animal Disease Prevention and Control of Sichuan Province, Chengdu, China.
| | - Mingshu Wang
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, chengdu, China
- International Joint Research Center, Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
| | - Ying Wu
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, chengdu, China
- International Joint Research Center, Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
| | - Qiao Yang
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, chengdu, China
- International Joint Research Center, Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
| | - Bin Tian
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, chengdu, China
- International Joint Research Center, Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
| | - Xuming Ou
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, chengdu, China
- International Joint Research Center, Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
| | - Di Sun
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, chengdu, China
- International Joint Research Center, Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
| | - Shaqiu Zhang
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, chengdu, China
- International Joint Research Center, Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
| | - Dekang Zhu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, chengdu, China
- International Joint Research Center, Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
| | - Renyong Jia
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, chengdu, China
- International Joint Research Center, Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
| | - Shun Chen
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, chengdu, China
- International Joint Research Center, Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
| | - Mafeng Liu
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, chengdu, China
- International Joint Research Center, Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
| | - Xin Xin Zhao
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, chengdu, China
- International Joint Research Center, Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
| | - Juan Huang
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, chengdu, China
- International Joint Research Center, Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
| |
Collapse
|
7
|
Wu Y, Cai J, Pang B, Cao L, He Q, He Q, Zhang A. Bioinformatic Identification of Signaling Pathways and Hub Genes in Vascular Dementia. ACTAS ESPANOLAS DE PSIQUIATRIA 2024; 52:83-98. [PMID: 38622006 PMCID: PMC11015743 DOI: 10.62641/aep.v52i2.1601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
BACKGROUND Vascular dementia (VaD) is a prevalent neurodegenerative disease characterized by cognitive impairment due to cerebrovascular factors, affecting a significant portion of the aging population and highlighting the critical need to understand specific targets and mechanisms for effective prevention and treatment strategies. We aimed to identify pathways and crucial genes involved in the progression of VaD through bioinformatics analysis and subsequently validate these findings. METHODS We conducted differential expression analysis, Weighted Gene Co-expression Network Analysis (WGCNA), Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis, and Protein-Protein Interaction (PPI) analysis. We utilized pheochromocytoma 12 (PC12) cells to create an in vitro oxygen-glucose deprivation (OGD) model. We investigated the impact of overexpression and interference of adrenoceptor alpha 1D (ADRA1D) on OGD PC12 cells using TdT-mediated dUTP nick-end labeling (TUNEL), reverse transcription-quantitative polymerase chain reaction (RT-qPCR), western blot (WB), and Fluo-3-pentaacetoxymethyl ester (Fluo-3 AM) analysis. RESULTS We found 187 differentially expressed genes (DEGs) in the red module that were strongly associated with VaD and were primarily enriched in vasoconstriction, G protein-coupled amine receptor activity, and neuroactive ligand-receptor interaction, mitogen-activated protein kinase (MAPK) signaling pathway, and cell adhesion. Among these pathways, we identified ADRA1D as a gene shared by vasoconstriction, G protein-coupled amine receptor activity, and neuroactive ligand-receptor interaction. The TUNEL assay revealed a significant decrease in PC12 cell apoptosis with ADRA1D overexpression (p < 0.01) and a significant increase in apoptosis upon silencing ADRA1D (p < 0.01). RT-qPCR and WB analysis revealed elevated ADRA1D expression (p < 0.001) and decreased phospholipase C beta (PLCβ) and inositol 1,4,5-trisphosphate receptor (IP3R) expression (p < 0.05) with ADRA1D overexpression. Moreover, the Fluo-3 AM assessment indicated significantly lower intracellular Ca2+ levels with ADRA1D overexpression (p < 0.001). Conversely, interference with ADRA1D yielded opposite results. CONCLUSION Our study provides a new perspective on the pathogenic mechanisms of VaD and potential avenues for therapeutic intervention. The results highlight the role of ADRA1D in modulating cellular responses to OGD and VaD, suggesting its potential as a target for VaD treatment.
Collapse
Affiliation(s)
- Yuanhua Wu
- Department of Neurology, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, 550002 Guiyang, Guizhou, China
| | - Jing Cai
- Department of Neurology, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, 550002 Guiyang, Guizhou, China
| | - Bo Pang
- Department of Neurology, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, 550002 Guiyang, Guizhou, China
| | - Liping Cao
- Department of Neurology, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, 550002 Guiyang, Guizhou, China
| | - Qiankun He
- The First School of Clinical Medicine of Guizhou University of Traditional Chinese Medicine, 550001 Guiyang, Guizhou, China
| | - Qiansong He
- Department of Neurology, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, 550002 Guiyang, Guizhou, China
| | - Anbang Zhang
- Department of Neurology, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, 550002 Guiyang, Guizhou, China
| |
Collapse
|
8
|
Rani P, George B, V S, Biswas S, V M, Pal A, Rajmani RS, Das S. MicroRNA-22-3p displaces critical host factors from the 5' UTR and inhibits the translation of Coxsackievirus B3 RNA. J Virol 2024; 98:e0150423. [PMID: 38289119 PMCID: PMC10883805 DOI: 10.1128/jvi.01504-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 01/02/2024] [Indexed: 02/21/2024] Open
Abstract
Coxsackievirus B3 (CVB3) is known to cause acute myocarditis and pancreatitis in humans. We investigated the microRNAs (miRNAs) that can potentially govern the viral life cycle by binding to the untranslated regions (UTRs) of CVB3 RNA. MicroRNA-22-3p was short-listed, as its potential binding site overlapped with the region crucial for recruiting internal ribosome entry site trans-acting factors (ITAFs) and ribosomes. We demonstrate that miR-22-3p binds CVB3 5' UTR, hinders recruitment of key ITAFs on viral mRNA, disrupts the spatial structure required for ribosome recruitment, and ultimately blocks translation. Likewise, cells lacking miR-22-3p exhibited heightened CVB3 infection compared to wild type, confirming its role in controlling infection. Interestingly, miR-22-3p level was found to be increased at 4 hours post-infection, potentially due to the accumulation of viral 2A protease in the early phase of infection. 2Apro enhances the miR-22-3p level to dislodge the ITAFs from the SD-like sequence, rendering the viral RNA accessible for binding of replication factors to switch to replication. Furthermore, one of the cellular targets of miR-22-3p, protocadherin-1 (PCDH1), was significantly downregulated during CVB3 infection. Partial silencing of PCDH1 reduced viral replication, demonstrating its proviral role. Interestingly, upon CVB3 infection in mice, miR-22-3p level was found to be downregulated only in the small intestine, the primary target organ, indicating its possible role in influencing tissue tropism. It appears miR-22-3p plays a dual role during infection by binding viral RNA to aid its life cycle as a viral strategy and by targeting a proviral protein to restrict viral replication as a host response.IMPORTANCECVB3 infection is associated with the development of end-stage heart diseases. Lack of effective anti-viral treatments and vaccines for CVB3 necessitates comprehensive understanding of the molecular players during CVB3 infection. miRNAs have emerged as promising targets for anti-viral strategies. Here, we demonstrate that miR-22-3p binds to 5' UTR and inhibits viral RNA translation at the later stage of infection to promote viral RNA replication. Conversely, as host response, it targets PCDH1, a proviral factor, to discourage viral propagation. miR-22-3p also influences CVB3 tissue tropism. Deciphering the multifaced role of miR-22-3p during CVB3 infection unravels the necessary molecular insights, which can be exploited for novel intervening strategies to curb infection and restrict viral pathogenesis.
Collapse
Affiliation(s)
- Priya Rani
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Biju George
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Sabarishree V
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Somarghya Biswas
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Madhurya V
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Apala Pal
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Raju S. Rajmani
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| | - Saumitra Das
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
- National Institute of Biomedical Genomics, Kalyani, India
| |
Collapse
|
9
|
Grodzka O, Procyk G, Wrzosek M. A Narrative Review of Preclinical In Vitro Studies Investigating microRNAs in Myocarditis. Curr Issues Mol Biol 2024; 46:1413-1423. [PMID: 38392209 PMCID: PMC10887635 DOI: 10.3390/cimb46020091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/01/2024] [Accepted: 02/05/2024] [Indexed: 02/24/2024] Open
Abstract
According to the World Health Organization's statement, myocarditis is an inflammatory myocardium disease. Although an endometrial biopsy remains the diagnostic gold standard, it is an invasive procedure, and thus, cardiac magnetic resonance imaging has become more widely used and is called a non-invasive diagnostic gold standard. Myocarditis treatment is challenging, with primarily symptomatic therapies. An increasing number of studies are searching for novel diagnostic biomarkers and potential therapeutic targets. Microribonucleic acids (miRNAs) are small, non-coding RNA molecules that decrease gene expression by inhibiting the translation or promoting the degradation of complementary mRNAs. Their role in different fields of medicine has been recently extensively studied. This review discusses all relevant preclinical in vitro studies regarding microRNAs in myocarditis. We searched the PubMed database, and after excluding unsuitable studies and clinical and preclinical in vivo trials, we included and discussed 22 preclinical in vitro studies in this narrative review. Several microRNAs presented altered levels in myocarditis patients in comparison to healthy controls. Moreover, microRNAs influenced inflammation, cell apoptosis, and viral replication. Finally, microRNAs were also found to determine the level of myocardial damage. Further studies may show the vital role of microRNAs as novel therapeutic agents or diagnostic/prognostic biomarkers in myocarditis management.
Collapse
Affiliation(s)
- Olga Grodzka
- Department of Neurology, Faculty of Medicine and Dentistry, Medical University of Warsaw, 80 Ceglowska St., 01-809 Warsaw, Poland
- Doctoral School, Medical University of Warsaw, 81 Żwirki i Wigury St., 02-091 Warsaw, Poland
| | - Grzegorz Procyk
- Doctoral School, Medical University of Warsaw, 81 Żwirki i Wigury St., 02-091 Warsaw, Poland
- 1st Chair and Department of Cardiology, Medical University of Warsaw, 1A Banacha St., 02-097 Warsaw, Poland
| | - Małgorzata Wrzosek
- Department of Biochemistry and Pharmacogenomics, Medical University of Warsaw, 1 Banacha St., 02-097 Warsaw, Poland
- Centre for Preclinical Research, Medical University of Warsaw, 1B Banacha St., 02-097 Warsaw, Poland
| |
Collapse
|
10
|
He F, Liu Z, Feng M, Xiao Z, Yi X, Wu J, Liu Z, Wang G, Li L, Yao H. The lncRNA MEG3/miRNA-21/P38MAPK axis inhibits coxsackievirus 3 replication in acute viral myocarditis. Virus Res 2024; 339:199250. [PMID: 37865350 PMCID: PMC10643532 DOI: 10.1016/j.virusres.2023.199250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/08/2023] [Accepted: 10/18/2023] [Indexed: 10/23/2023]
Abstract
Evidence is emerging on the roles of long noncoding RNAs (lncRNAs) as regulatory factors in a variety of viral infection processes, but the mechanisms underlying their functions in coxsackievirus group B type3 (CVB3)-induced acute viral myocarditis have not been explicitly delineated. We previously demonstrated that CVB3 infection decreases miRNA-21 expression; however, lncRNAs that regulate the miRNA-21-dependent CVB3 disease process have yet to be identified. To evaluate lncRNAs upstream of miRNA-21, differentially expressed lncRNAs in CVB3-infected mouse hearts were identified by microarray analysis and lncRNA/miRNA-21 interactions were predicted bioinformatically. MEG3 was identified as a candidate miRNA-21-interacting lncRNA upregulated in CVB3-infected mouse hearts. MEG3 expression was verified to be upregulated in HeLa cells 48 h post CVB3 infection and to act as a competitive endogenous RNA of miRNA-21. MEG3 knockdown resulted in the upregulation of miRNA-21, which inhibited CVB3 replication by attenuating P38-MAPK signaling in vitro and in vivo. Knockdown of MEG3 expression before CVB3 infection inhibited viral replication in mouse hearts and alleviated cardiac injury, which improved survival. Furthermore, the knockdown of CREB5, which was predicted bioinformatically to function upstream of MEG3, was demonstrated to decrease MEG3 expression and CVB3 viral replication. This study identifies the function of the lncRNA MEG3/miRNA-21/P38 MAPK axis in the process of CVB3 replication, for which CREB5 could serve as an upstream modulator.
Collapse
Affiliation(s)
- Feng He
- Department of Biochemistry and Immunology, Capital Institute of Pediatrics, YaBaoRoad 2, Beijing, China
| | - Zhuo Liu
- Department of Biochemistry and Immunology, Capital Institute of Pediatrics, YaBaoRoad 2, Beijing, China
| | - Miao Feng
- Department of Biochemistry and Immunology, Capital Institute of Pediatrics, YaBaoRoad 2, Beijing, China
| | - Zonghui Xiao
- Department of Biochemistry and Immunology, Capital Institute of Pediatrics, YaBaoRoad 2, Beijing, China
| | - Xiaoyu Yi
- Department of Biochemistry and Immunology, Capital Institute of Pediatrics, YaBaoRoad 2, Beijing, China
| | - Jianxin Wu
- Department of Biochemistry and Immunology, Capital Institute of Pediatrics, YaBaoRoad 2, Beijing, China; Beijing Municipal Key Laboratory of Child Development and Nutriomics, Beijing, China; Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Zhewei Liu
- Department of Biochemistry and Immunology, Capital Institute of Pediatrics, YaBaoRoad 2, Beijing, China
| | - Gaoyu Wang
- NHC Key Laboratory of Tropical Disease Control, Hainan Medical University, Haikou, China
| | - Le Li
- NHC Key Laboratory of Tropical Disease Control, Hainan Medical University, Haikou, China.
| | - Hailan Yao
- Department of Biochemistry and Immunology, Capital Institute of Pediatrics, YaBaoRoad 2, Beijing, China.
| |
Collapse
|
11
|
Bauer AN, Majumdar N, Williams F, Rajput S, Pokhrel LR, Cook PP, Akula SM. MicroRNAs: Small but Key Players in Viral Infections and Immune Responses to Viral Pathogens. BIOLOGY 2023; 12:1334. [PMID: 37887044 PMCID: PMC10604607 DOI: 10.3390/biology12101334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/21/2023] [Accepted: 10/11/2023] [Indexed: 10/28/2023]
Abstract
Since the discovery of microRNAs (miRNAs) in C. elegans in 1993, the field of miRNA research has grown steeply. These single-stranded non-coding RNA molecules canonically work at the post-transcriptional phase to regulate protein expression. miRNAs are known to regulate viral infection and the ensuing host immune response. Evolving research suggests miRNAs are assets in the discovery and investigation of therapeutics and diagnostics. In this review, we succinctly summarize the latest findings in (i) mechanisms underpinning miRNA regulation of viral infection, (ii) miRNA regulation of host immune response to viral pathogens, (iii) miRNA-based diagnostics and therapeutics targeting viral pathogens and challenges, and (iv) miRNA patents and the market landscape. Our findings show the differential expression of miRNA may serve as a prognostic biomarker for viral infections in regard to predicting the severity or adverse health effects associated with viral diseases. While there is huge market potential for miRNA technology, the novel approach of using miRNA mimics to enhance antiviral activity or antagonists to inhibit pro-viral miRNAs has been an ongoing research endeavor. Significant hurdles remain in terms of miRNA delivery, stability, efficacy, safety/tolerability, and specificity. Addressing these challenges may pave a path for harnessing the full potential of miRNAs in modern medicine.
Collapse
Affiliation(s)
- Anais N. Bauer
- Department of Microbiology & Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA; (A.N.B.); (N.M.); (F.W.)
| | - Niska Majumdar
- Department of Microbiology & Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA; (A.N.B.); (N.M.); (F.W.)
| | - Frank Williams
- Department of Microbiology & Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA; (A.N.B.); (N.M.); (F.W.)
| | - Smit Rajput
- Department of Internal Medicine, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA;
| | - Lok R. Pokhrel
- Department of Public Health, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA;
| | - Paul P. Cook
- Department of Internal Medicine, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA;
| | - Shaw M. Akula
- Department of Microbiology & Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA; (A.N.B.); (N.M.); (F.W.)
- Department of Internal Medicine, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA;
| |
Collapse
|
12
|
Procyk G, Grodzka O, Procyk M, Gąsecka A, Głuszek K, Wrzosek M. MicroRNAs in Myocarditis-Review of the Preclinical In Vivo Trials. Biomedicines 2023; 11:2723. [PMID: 37893097 PMCID: PMC10604573 DOI: 10.3390/biomedicines11102723] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/03/2023] [Accepted: 10/06/2023] [Indexed: 10/29/2023] Open
Abstract
Myocarditis is an inflammatory heart disease with viruses as the most common cause. Regardless of multiple studies that have recently been conducted, the diagnostic options still need to be improved. Although endomyocardial biopsy is known as a diagnostic gold standard, it is invasive and, thus, only sometimes performed. Novel techniques of cardiac magnetic resonance are not readily available. Therapy in viral infections is based mainly on symptomatic treatment, while steroids and intravenous immunoglobulins are used in autoimmune myocarditis. The effectiveness of neither of these methods has been explicitly proven to date. Therefore, novel diagnostic and therapeutic strategies are highly needed. MiRNAs are small, non-coding molecules that regulate fundamental cell functions, including differentiation, metabolism, and apoptosis. They present altered levels in different diseases, including myocarditis. Numerous studies investigating the role of miRNAs in myocarditis have already been conducted. In this review, we discussed only the original preclinical in vivo research. We eventually included 30 studies relevant to the discussed area. The altered miRNA levels have been observed, including upregulation and downregulation of different miRNAs in the mice models of myocarditis. Furthermore, the administration of mimics or inhibitors of particular miRNAs was shown to significantly influence inflammation, morphology, and function of the heart and overall survival. Finally, some studies presented prospective advantages in vaccine development.
Collapse
Affiliation(s)
- Grzegorz Procyk
- 1st Chair and Department of Cardiology, Medical University of Warsaw, Banacha 1A, 02-097 Warsaw, Poland
- Doctoral School, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Olga Grodzka
- Department of Neurology, Faculty of Medicine and Dentistry, Medical University of Warsaw, Ceglowska 80, 01-809 Warsaw, Poland
| | - Marcelina Procyk
- Faculty of Biology and Biotechnology, Warsaw University of Life Sciences (WULS-SGGW), 02-787 Warsaw, Poland
| | - Aleksandra Gąsecka
- 1st Chair and Department of Cardiology, Medical University of Warsaw, Banacha 1A, 02-097 Warsaw, Poland
| | - Katarzyna Głuszek
- Collegium Medicum, Jan Kochanowski University of Kielce, 25-406 Kielce, Poland
| | - Małgorzata Wrzosek
- Department of Biochemistry and Pharmacogenomics, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland
| |
Collapse
|
13
|
Xue Y, Ke J, Zhang J, Chen M, Zeng L, Fan Q, Zheng C, Chen F. Analysis of long noncoding RNAs and messenger RNAs expression profiles in the hearts of mice with acute viral myocarditis. J Med Virol 2023; 95:e28473. [PMID: 36606604 DOI: 10.1002/jmv.28473] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/08/2022] [Accepted: 01/03/2023] [Indexed: 01/07/2023]
Abstract
Acute viral myocarditis (AVMC) is a common acute myocardial inflammation caused by viral infections, which can lead to severe cardiac dysfunction. Several long noncoding RNAs (lncRNAs) with aberrant expression have been identified in the pathogenesis of AVMC. However, the expression profiles and functions of lncRNAs in AVMC have not been fully elucidated. In the present study, we constructed AVMC mouse models by intraperitoneal injection of coxsackievirus B3 (CVB3) and performed RNA sequencing (RNA-seq) on heart tissues to investigate the differences in lncRNAs and messenger RNAs (mRNAs) expression profiles. Based on the cutoff criteria of adjusted p-values (padj) <0.05 and |log2FoldChange| >1, a total of 1122 differentially expressed lncRNAs (DElncRNAs) and 3186 differentially expressed mRNAs (DEmRNAs) were screened, including 734 upregulated and 388 downregulated lncRNAs, 1821 upregulated and 1365 downregulated mRNAs. RT-qPCR analysis validated that the expression patterns of 12 randomly selected genes (6 DElncRNAs and 6 DEmRNAs) were highly consistent with those in RNA-seq, proving the reliability of the RNA-seq data. Then, Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses revealed that differentially expressed genes were mainly involved in metabolic and immune-related processes. Furthermore, co-expression networks between DElncRNAs and DEmRNAs in cytokine-cytokine receptor interaction, MAPK signaling pathway, and PI3K-Akt signaling pathway were constructed to study the molecular interactions of these molecules. Our study, for the first time, reveals the expression profiles of lncRNAs and mRNAs associated with AVMC, which may shed light on the roles of lncRNAs in disease pathogenesis and aid in discovering new therapeutic targets.
Collapse
Affiliation(s)
- Yimin Xue
- Fourth Department of Critical Care Medicine, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, Fujian, China
| | - Jun Ke
- Department of Emergency, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, Fujian, China.,Fujian Provincial Key Laboratory of Emergency Medicine, Fujian Provincial Hospital, Fuzhou, Fujian, China
| | - Jiuyun Zhang
- Department of Emergency, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, Fujian, China.,Fujian Provincial Key Laboratory of Emergency Medicine, Fujian Provincial Hospital, Fuzhou, Fujian, China
| | - Mingguang Chen
- Fourth Department of Critical Care Medicine, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, Fujian, China
| | - Lijuan Zeng
- Fourth Department of Critical Care Medicine, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, Fujian, China
| | - Qiaolian Fan
- Fourth Department of Critical Care Medicine, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, Fujian, China
| | - Chunfu Zheng
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Guangzhou, Guangdong, China.,Department of Microbiology, Immunology, and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Feng Chen
- Department of Emergency, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, Fujian, China.,Fujian Provincial Key Laboratory of Emergency Medicine, Fujian Provincial Hospital, Fuzhou, Fujian, China
| |
Collapse
|
14
|
Micro-Players of Great Significance-Host microRNA Signature in Viral Infections in Humans and Animals. Int J Mol Sci 2022; 23:ijms231810536. [PMID: 36142450 PMCID: PMC9504570 DOI: 10.3390/ijms231810536] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/04/2022] [Accepted: 09/08/2022] [Indexed: 11/22/2022] Open
Abstract
Over time, more and more is becoming known about micro-players of great significance. This is particularly the case for microRNAs (miRNAs; miR), which have been found to participate in the regulation of many physiological and pathological processes in both humans and animals. One such process is viral infection in humans and animals, in which the host miRNAs—alone or in conjunction with the virus—interact on two levels: viruses may regulate the host’s miRNAs to evade its immune system, while the host miRNAs can play anti- or pro-viral roles. The purpose of this comprehensive review is to present the key miRNAs involved in viral infections in humans and animals. We summarize the data in the available literature, indicating that the signature miRNAs in human viral infections mainly include 12 miRNAs (i.e., miR-155, miR-223, miR-146a, miR-122, miR-125b, miR-132, miR-34a, miR -21, miR-16, miR-181 family, let-7 family, and miR-10a), while 10 miRNAs are commonly found in animals (i.e., miR-155, miR-223, miR-146a, miR-145, miR-21, miR-15a/miR-16 cluster, miR-181 family, let-7 family, and miR-122) in this context. Knowledge of which miRNAs are involved in different viral infections and the biological functions that they play can help in understanding the pathogenesis of viral diseases, facilitating the future development of therapeutic agents for both humans and animals.
Collapse
|
15
|
Xiao Z, He F, Feng M, Liu Z, Liu Z, Li S, Wang W, Yao H, Wu J. Engineered coxsackievirus B3 containing multiple organ-specific miRNA targets showed attenuated viral tropism and protective immunity. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2022; 103:105316. [PMID: 35718333 DOI: 10.1016/j.meegid.2022.105316] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 05/07/2022] [Accepted: 06/13/2022] [Indexed: 06/15/2023]
Abstract
Coxsackievirus B3 (CVB3) can cause viral myocarditis, pancreatitis, and aseptic meningitis. This study aimed to construct an engineered CVB3 harboring three different tissue-specific miRNA targets (CVB3-miR3*T) to decrease the virulence of CVB3 in muscles, pancreas, and brain. CVB3-miR3*T and CVB3-miR-CON (containing three sequences not found in the human genome) were engineered and replicated in HELA cells. A viral plaque assay was used to determine the titers in HELA cells and TE671 cells (high miRNA-206 expression), MIN-6 cells (high miRNA-29a-3p expression), and mouse astrocytes (high miRNA-124-3p expression). We found that engineered CVB3 showed attenuated replication and reduced cytotoxicity, the variability of each type of cell was also increased in the CVB3-miR3*T group. Male BALB/c mice were infected to determine the LD50 and examine heart, pancreas, and brain titers and injury. Viral replication of the engineered viruses was restricted in infected mouse heart, pancreas, and brain, and viral plaques were about 100 fold lower compared with the control group. Mice immunized using CVB3-miR3*T, UV-inactivated CVB3-WT, and CVB3-miR-CON were infected with 100 × LD50 of CVB3-WT to determine neutralization. CVB3-miRT*3-preimmunized mice exhibited complete protection and remained alive after lethal virus infection, while only 5/15 were alive in the UV-inactivated mice, and all 15 mice were dead in the PBS-immunized group. The results demonstrate that miR-206-, miRNA-29a-3p-, and miRNA-124-3p-mediated CVB3 detargeting from the pancreas, heart, and brain might be a highly effective strategy for viral vaccine development.
Collapse
Affiliation(s)
- Zonghui Xiao
- Department of Biochemistry and Immunology, Capital Institute of Pediatrics, Beijing, China
| | - Feng He
- Department of Biochemistry and Immunology, Capital Institute of Pediatrics, Beijing, China
| | - Miao Feng
- Department of Biochemistry and Immunology, Capital Institute of Pediatrics, Beijing, China
| | - Zhuo Liu
- Department of Biochemistry and Immunology, Capital Institute of Pediatrics, Beijing, China
| | - Zhewei Liu
- Department of Biochemistry and Immunology, Capital Institute of Pediatrics, Beijing, China
| | - Sen Li
- Department of Biochemistry and Immunology, Capital Institute of Pediatrics, Beijing, China
| | - Wei Wang
- Department of Biochemistry and Immunology, Capital Institute of Pediatrics, Beijing, China
| | - Hailan Yao
- Department of Biochemistry and Immunology, Capital Institute of Pediatrics, Beijing, China.
| | - Jianxin Wu
- Department of Biochemistry and Immunology, Capital Institute of Pediatrics, Beijing, China; Beijing Municipal Key Laboratory of Child Development and Nutriomics, Beijing, China; Beijing Tongren Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
16
|
Sothivelr V, Hasan MY, Mohd Saffian S, Zainalabidin S, Ugusman A, Mahadi MK. Revisiting miRNA-21 as a Therapeutic Strategy for Myocardial Infarction: A Systematic Review. J Cardiovasc Pharmacol 2022; 80:393-406. [PMID: 35767710 DOI: 10.1097/fjc.0000000000001305] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/11/2022] [Indexed: 01/31/2023]
Abstract
Several types of cardiovascular cells use microRNA-21 ( miR-21 ), which has been linked to cardioprotection. In this study, we systematically reviewed the results of published papers on the therapeutic effect of miR-21 for myocardial infarction. Studies described the cardioprotective effects of miR-21 to reduce infarct size by improving angiogenesis, antiapoptotic, and anti-inflammatory mechanisms. Results suggest that cardioprotective effects of miR-21 may work synergistically to prevent the deterioration of cardiac function during postischemia. However, there are other results that indicate that miR-21 positively regulates tissue fibrosis, potentially worsening a postischemic injury. The dual functionalities of miR-21 occur through the targeting of genes and signaling pathways, such as PTEN , PDCD4 , KBTBD7 , NOS3 , STRN , and Spry-1 . This review provides insights into the future advancement of safe miR-21 -based genetic therapy in the treatment of myocardial infarction.
Collapse
Affiliation(s)
- Vivisana Sothivelr
- Centre for Drug and Herbal Development, Faculty of Pharmacy, Universiti Kebangsaan, Malaysia
| | - Mohammad Y Hasan
- Centre for Drug and Herbal Development, Faculty of Pharmacy, Universiti Kebangsaan, Malaysia
| | - Shamin Mohd Saffian
- Centre for Quality Management of Medicine, Faculty of Pharmacy, Universiti Kebangsaan, Malaysia
| | - Satirah Zainalabidin
- Centre of Toxicology and Health Risk Study, Faculty of Health Sciences, Universiti Kebangsaan, Malaysia; and
| | - Azizah Ugusman
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan, Malaysia
| | - Mohd K Mahadi
- Centre for Drug and Herbal Development, Faculty of Pharmacy, Universiti Kebangsaan, Malaysia
| |
Collapse
|
17
|
Hao F, Shan C, Zhang Y, Zhang Y, Jia Z. Exosomes Derived from microRNA-21 Overexpressing Neural Progenitor Cells Prevent Hearing Loss from Ischemia-Reperfusion Injury in Mice via Inhibiting the Inflammatory Process in the Cochlea. ACS Chem Neurosci 2022; 13:2464-2472. [PMID: 35939349 DOI: 10.1021/acschemneuro.2c00234] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Both exosomes derived from neural progenitor cells (NPCs) can suppress inflammation. Whether exosomes derived from miR-21-transfected NPCs (miR-21-Exo) could be utilized to alleviate hearing loss is investigated. NPCs were transfected with lentiviral vectors overexpressing miR-21, and miR-21-Exo was purified. Morphology and exosome membrane markers were examined with nanoparticle tracking analysis, transmission electron microscopy, and Western blot. After incubation with different concentrations of miR-21-Exo, the viability of RAW 264.7 cells and the relative expressions of miR-21 and IL-10 were determined. The ischemia and reperfusion (I/R) model of C57BL/6 J mice was constructed, and the treatment benefit of miR-21-Exo was revealed by the auditory brainstem response (ABR) test. Immunofluorescence staining of caspase-3 and parvalbumin was used to detect apoptosis hair cells in the cochlea, and Western blot was utilized to detect the relative expressions of P53 and inflammatory cytokines in the cochlea. Isolated exosomes were confirmed by the size of 96 ± 25 nm, single membrane, and positive expression of CD9 and Tsg101. Upregulated miR-21 expression was detected in miR-21-transfected NPCs and miR-21-Exo. miR-21-Exo incubation demonstrated no cytotoxicity but upregulated miR-21 and IL-10 expressions in RAW 264.7 cells. The administration of miR-21-Exo inhibited the increased ABR threshold under 8, 16, and 32 kHz frequencies in cochlea-I/R injury mice and diminished the mean fluorescent intensity of caspase-3/parvalbumin. Moreover, miR-21-Exo treatment increased the IL-10 expression and prevented the increased TNF-α and IL-1β expressions in the cochlea of I/R mice both in mRNA and protein levels. Inner ear administration of miR-21-Exo effectively improved hearing damage caused by I/R.
Collapse
Affiliation(s)
- Fang Hao
- Department of Otolaryngology, The Second Hospital of Hebei Medical University, Shijiazhuang 050004, Hebei, China
| | - Chunguang Shan
- Department of Otolaryngology, The Second Hospital of Hebei Medical University, Shijiazhuang 050004, Hebei, China
| | - Yubo Zhang
- Department of Otolaryngology, The Second Hospital of Hebei Medical University, Shijiazhuang 050004, Hebei, China
| | - Ying Zhang
- Department of Otolaryngology, The Second Hospital of Hebei Medical University, Shijiazhuang 050004, Hebei, China
| | - Zhanwei Jia
- Department of Otolaryngology, The Second Hospital of Hebei Medical University, Shijiazhuang 050004, Hebei, China
| |
Collapse
|
18
|
Poly(rC) binding protein 1 benefits coxsackievirus B3 infection via suppressing the translation of p62/SQSTM1. Virus Res 2022; 318:198851. [PMID: 35764193 DOI: 10.1016/j.virusres.2022.198851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 06/20/2022] [Accepted: 06/21/2022] [Indexed: 11/21/2022]
Abstract
Coxsackievirus B3 (CVB3) is a positive single-strand RNA virus causing myocarditis, pancreatitis and meningitis. During CVB3 infection, various host cellular components, including proteins and non-coding RNAs, interact with the virus and affect viral infection. Poly(rC) binding protein 1 (PCBP1) is a multifunctional RNA binding protein regulating transcription, translation and mRNA stability of a variety of genes. In this study, we observed a significant reduction of PCBP1 protein during CVB3 infection. By bioinformatic prediction and luciferase-assay verification, we confirmed that the expression of PCBP1 was directly inhibited by miR-21, a microRNA upregulated during CVB3 infection. Furthermore, we found that overexpression of PCBP1 promoted CVB3 infection and knocking down of PCBP1 inhibited it. In the subsequent mechanism study, our results revealed that PCBP1 blocked the translation of p62/SQSTM1 (sequestosome 1), an autophagy-receptor protein suppressing CVB3 replication, by interacting with the cis-element in the 5' untranslational region (5' UTR) of p62/SQSTM1. In summary, our studies have identified PCBP1 as a beneficial factor for CVB3 infection. These findings may deepen the understanding of host-virus interactions and provide a potential target for intervention of CVB3 infection.
Collapse
|
19
|
Jiang FF, Wang RQ, Guo CY, Zheng K, Long-Liu H, Su L, Xie SS, Chen HC, Liu ZF. Phospho-proteomics identifies a critical role of ATF2 in pseudorabies virus replication. Virol Sin 2022; 37:591-600. [PMID: 35688418 PMCID: PMC9437614 DOI: 10.1016/j.virs.2022.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 06/02/2022] [Indexed: 11/02/2022] Open
Abstract
Pseudorabies virus (PRV), an etiological agent of pseudorabies in livestock, has negatively affected the porcine industry all over the world. Epithelial cells are reported as the first site of PRV infection. However, the role of host proteins and its related signaling pathways in PRV replication is largely unclear. In this study, we performed a quantitative phosphoproteomics screening on PRV-infected porcine kidney (PK-15) epithelial cells. Totally 5723 phosphopeptides, corresponding to 2180 proteins, were obtained, and the phosphorylated states of 810 proteins were significantly different in PRV-infected cells compared with mock-infected cells (P < 0.05). GO and KEGG analysis revealed that these differentially expressed phosphorylated proteins were predominantly related to RNA transport and MAPK signaling pathways. Further functional studies of NF-κB, transcription activator factor-2 (ATF2), MAX and SOS genes in MAPK signaling pathway were analyzed using RNA interference (RNAi) knockdown. It showed that only ATF2-knockdown reduces both PRV titer and viral genome copy number. JNK pathway inhibition and CRISPR/Cas9 gene knockout showed that ATF2 was required for the effective replication of PRV, especially during the biogenesis of viral genome DNA. Subsequently, by overexpression of the ATF2 gene and point mutation of the amino acid positions 69/71 of ATF2, it was further demonstrated that the phosphorylation of ATF2 promoted PRV replication. These findings suggest that ATF2 may provide potential therapeutic target for inhibiting PRV infection. Phosphoproteomic profiling of PRV-infected PK-15 cells with iTRAQ-quantification. JNK pathway regulates ATF2 phosphorylation and PRV replication. Phosphorylation of ATF2 promotes PRV replication.
Collapse
|
20
|
Li H, Zhan J, Chen C, Wang D. MicroRNAs in cardiovascular diseases. MEDICAL REVIEW (BERLIN, GERMANY) 2022; 2:140-168. [PMID: 37724243 PMCID: PMC10471109 DOI: 10.1515/mr-2021-0001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 12/29/2021] [Indexed: 09/20/2023]
Abstract
Cardiovascular diseases (CVDs) are the leading causes of death and disability worldwide, despite the wide diversity of molecular targets identified and the development of therapeutic methods. MicroRNAs (miRNAs) are a class of small (about 22 nucleotides) non-coding RNAs (ncRNAs) that negatively regulate gene expression at the post-transcriptional level in the cytoplasm and play complicated roles in different CVDs. While miRNA overexpression in one type of cell protects against heart disease, it promotes cardiac dysfunction in another type of cardiac cell. Moreover, recent studies have shown that, apart from cytosolic miRNAs, subcellular miRNAs such as mitochondria- and nucleus-localized miRNAs are dysregulated in CVDs. However, the functional properties of cellular- and subcellular-localized miRNAs have not been well characterized. In this review article, by carefully revisiting animal-based miRNA studies in CVDs, we will address the regulation and functional properties of miRNAs in various CVDs. Specifically, the cell-cell crosstalk and subcellular perspective of miRNAs are highlighted. We will provide the background for attractive molecular targets that might be useful in preventing the progression of CVDs and heart failure (HF) as well as insights for future studies.
Collapse
Affiliation(s)
- Huaping Li
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Jiabing Zhan
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Chen Chen
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Daowen Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| |
Collapse
|
21
|
Target-Dependent Coordinated Biogenesis of Secondary MicroRNAs by miR-146a Balances Macrophage Activation Processes. Mol Cell Biol 2022; 42:e0045221. [PMID: 35311564 PMCID: PMC9022539 DOI: 10.1128/mcb.00452-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
MicroRNAs (miRNAs) repress protein expression by binding to the target mRNAs. Exploring whether the expression of one miRNA can regulate the abundance and activity of other miRNAs, we noted the coordinated biogenesis of miRNAs in activated macrophages. miRNAs with higher numbers of binding sites (the “primary” miRNAs) induce expression of other miRNAs (“secondary” miRNAs) having binding sites on the 3′ untranslated region (UTR) of common target mRNAs. miR-146a-5p, in activated macrophages, acts as a “primary” miRNA that coordinates biogenesis of “secondary” miR-125b, miR-21, or miR-142-3p to target new sets of mRNAs to balance the immune responses. During coordinated biogenesis, primary miRNA drives the biogenesis of secondary miRNA in a target mRNA- and Dicer1 activity-dependent manner. The coordinated biogenesis of miRNAs was observed across different cell types. The target-dependent coordinated miRNA biogenesis also ensures a cumulative mode of action of primary and secondary miRNAs on the secondary target mRNAs. Interestingly, using the “primary” miR-146a-5p-specific inhibitor, we could inhibit the target-dependent biogenesis of secondary miRNAs that can stop the miRNA-mediated buffering of cytokine expression and inflammatory response occurring in activated macrophages. Computational analysis suggests the prevalence of coordinated biogenesis of miRNAs also in other contexts in human and in mouse.
Collapse
|
22
|
Liao X, Zhang W, Dai H, Jing R, Ye M, Ge W, Pei S, Pan L. Neutrophil-Derived IL-17 Promotes Ventilator-Induced Lung Injury via p38 MAPK/MCP-1 Pathway Activation. Front Immunol 2022; 12:768813. [PMID: 34975857 PMCID: PMC8714799 DOI: 10.3389/fimmu.2021.768813] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 11/29/2021] [Indexed: 12/28/2022] Open
Abstract
Ventilator-induced lung injury (VILI) is one of the most common complications of mechanical ventilation and can severely affect health. VILI appears to involve excessive inflammatory responses, but its pathogenesis has not yet been clarified. Since interleukin-17 (IL-17) plays a critical role in the immune system and the development of infectious and inflammatory diseases, we investigated here whether it plays a role in VILI. In a mouse model of VILI, mechanical ventilation with high tidal volume promoted the accumulation of lung neutrophils, leading to increased IL-17 levels in the lung, which in turn upregulated macrophage chemoattractant protein-1 via p38 mitogen-activated protein kinase. Depletion of neutrophils decreases the production IL-17 in mice and inhibition of IL-17 significantly reduced HTV-induced lung injury and inflammatory response. These results were confirmed in vitro using RAW264.7 macrophage cultures. Our results suggest that IL-17 plays a pro-inflammatory role in VILI and could serve as a new target for its treatment.
Collapse
Affiliation(s)
- Xiaoting Liao
- Department of Anesthesiology, Guangxi Key Laboratory of Basic Research on Perioperative Organ Function Injury & Control, and Guangxi Medical Engineering Research Center of Tissue Injury and Repair, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Weikang Zhang
- Department of Anesthesiology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, China
| | - Huijun Dai
- Department of Anesthesiology, Guangxi Key Laboratory of Basic Research on Perioperative Organ Function Injury & Control, and Guangxi Medical Engineering Research Center of Tissue Injury and Repair, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Ren Jing
- Department of Anesthesiology, Guangxi Key Laboratory of Basic Research on Perioperative Organ Function Injury & Control, and Guangxi Medical Engineering Research Center of Tissue Injury and Repair, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Mengling Ye
- Department of Anesthesiology, Guangxi Key Laboratory of Basic Research on Perioperative Organ Function Injury & Control, and Guangxi Medical Engineering Research Center of Tissue Injury and Repair, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Wanyun Ge
- Department of Anesthesiology, Guangxi Key Laboratory of Basic Research on Perioperative Organ Function Injury & Control, and Guangxi Medical Engineering Research Center of Tissue Injury and Repair, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Shenglin Pei
- Department of Anesthesiology, Guangxi Key Laboratory of Basic Research on Perioperative Organ Function Injury & Control, and Guangxi Medical Engineering Research Center of Tissue Injury and Repair, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Linghui Pan
- Department of Anesthesiology, Guangxi Key Laboratory of Basic Research on Perioperative Organ Function Injury & Control, and Guangxi Medical Engineering Research Center of Tissue Injury and Repair, Guangxi Medical University Cancer Hospital, Nanning, China
| |
Collapse
|
23
|
Yang Q, Li Y, Wang Y, Qiao X, Liu T, Wang H, Shen H. The circRNA circSIAE Inhibits Replication of Coxsackie Virus B3 by Targeting miR-331-3p and Thousand and One Amino-Acid Kinase 2. Front Cell Infect Microbiol 2022; 11:779919. [PMID: 35141166 PMCID: PMC8820919 DOI: 10.3389/fcimb.2021.779919] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 12/21/2021] [Indexed: 01/15/2023] Open
Abstract
Coxsackie virus B3 (CVB3), an enterovirus, is the main pathogen causing viral myocarditis, pericarditis, hepatitis and other inflammation-related diseases. Non-coding RNAs with a closed loop molecular structure, called circular RNAs (circRNAs), have been shown to be involved in multiple virus-related processes, but roles and mechanisms in CVB3 infection have not been systematically studied. In this study, when HeLa cells were infected with CVB3, the expression of hsa_circ_0000367 (circSIAE) was significantly decreased as demonstrated by real-time quantitative PCR assays. We found that circSIAE downregulated the expression of miR-331-3p through direct binding and inhibited the replication of CVB3 in HeLa and 293T cells. The analysis of signals downstream of miR-331-3p suggested that miR-331-3p promotes CVB3 replication, viral plaque formation and fluorescent virus cell production through interactions with the gene coding for thousand and one amino-acid kinase 2 (TAOK2). In conclusion, this study found that circSIAE can target TAOK2 through sponge adsorption of miR-331-3p to inhibit the replication and proliferation of CVB3 virus, providing an early molecular target for the diagnosis of CVB3 infection.
Collapse
Affiliation(s)
- Qingru Yang
- Medical College, Jiangsu University, Zhenjiang, China
- Clinical Laboratory, Jiangyin Municipal Center for Disease Control and Prevention, Jiangyin, China
| | - Yuhan Li
- Medical College, Jiangsu University, Zhenjiang, China
| | - Yan Wang
- Medical College, Jiangsu University, Zhenjiang, China
| | - Xiaorong Qiao
- Medical College, Jiangsu University, Zhenjiang, China
| | - Tingjun Liu
- Medical College, Jiangsu University, Zhenjiang, China
| | - Hua Wang
- Medical College, Jiangsu University, Zhenjiang, China
- *Correspondence: Hua Wang, ; Hongxing Shen,
| | - Hongxing Shen
- Medical College, Jiangsu University, Zhenjiang, China
- *Correspondence: Hua Wang, ; Hongxing Shen,
| |
Collapse
|
24
|
Abstract
Abstract
Viruses completely rely on the energy and metabolic systems of host cells for life activities. Viral infections usually lead to cytopathic effects and host diseases. To date, there are still no specific clinical vaccines or drugs against most viral infections. Therefore, understanding the molecular and cellular mechanisms of viral infections is of great significance to prevent and treat viral diseases. A variety of viral infections are related to the p38 MAPK signalling pathway, and p38 is an important host factor in virus-infected cells. Here, we introduce the different signalling pathways of p38 activation and then summarise how different viruses induce p38 phosphorylation. Finally, we provide a general summary of the effect of p38 activation on virus replication. Our review provides integrated data on p38 activation and viral infections and describes the potential application of targeting p38 as an antiviral strategy.
Collapse
|
25
|
Surina S, Fontanella RA, Scisciola L, Marfella R, Paolisso G, Barbieri M. miR-21 in Human Cardiomyopathies. Front Cardiovasc Med 2021; 8:767064. [PMID: 34778418 PMCID: PMC8578278 DOI: 10.3389/fcvm.2021.767064] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 09/30/2021] [Indexed: 12/19/2022] Open
Abstract
miR-21 is a 22-nucleotide long microRNA that matches target mRNAs in a complementary base pairing fashion and regulates gene expression by repressing or degrading target mRNAs. miR-21 is involved in various cardiomyopathies, including heart failure, dilated cardiomyopathy, myocardial infarction, and diabetic cardiomyopathy. Expression levels of miR-21 notably change in both heart and circulation and provide cardiac protection after heart injury. In the meantime, miR-21 also tightly links to cardiac dysfunctions such as cardiac hypertrophy and fibrosis. This review focuses on the miR-21 expression pattern and its functions in diseased-heart and further discusses the feasibility of miR-21 as a biomarker and therapeutic target in cardiomyopathies.
Collapse
Affiliation(s)
- Surina Surina
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Rosaria Anna Fontanella
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Lucia Scisciola
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Raffaele Marfella
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy.,Mediterrannea Cardiocentro, Napoli, Italy
| | - Giuseppe Paolisso
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy.,Mediterrannea Cardiocentro, Napoli, Italy
| | - Michelangela Barbieri
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| |
Collapse
|
26
|
Comparison and Analysis on the Existing Single-Herbal Strategies against Viral Myocarditis. Genet Res (Camb) 2021; 2021:9952620. [PMID: 34456633 PMCID: PMC8371739 DOI: 10.1155/2021/9952620] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 07/31/2021] [Indexed: 02/08/2023] Open
Abstract
Purpose Herbal medicine is one of crucial symbols of Chinese national medicine. Investigation on molecular responses of different herbal strategies against viral myocarditis is immeasurably conducive to targeting drug development in the current international absence of miracle treatment. Methods Literature retrieval platforms were applied in the collection of existing empirical evidences for viral myocarditis-related single-herbal strategies. SwissTargetPrediction, Metascape, and Discovery Studio coordinating with multidatabases investigated underlying target genes, interactive proteins, and docking molecules in turn. Results Six single-herbal medicines consisting of Huangqi (Hedysarum Multijugum Maxim), Yuganzi (Phyllanthi Fructus), Kushen (Sophorae Flavescentis Radix), Jianghuang (Curcumaelongae Rhizoma), Chaihu (Radix Bupleuri), and Jixueteng (Spatholobus Suberectus Dunn) meet the requirement. There were 11 overlapped and 73 unique natural components detected in these herbs. SLC6A2, SLC6A4, NOS2, PPARA, PPARG, ACHE, CYP2C19, CYP51A1, and CHRM2 were equally targeted by six herbs and identified as viral myocarditis-associated symbols. MCODE algorithm exposed the hub role of SRC and EGFR in strategies without Jianghuang. Subsequently, we learned intermolecular interactions of herbal components and their targeting heart-tissue-specific CHRM2, FABP3, TNNC1, TNNI3, TNNT2, and SCN5A and cardiac-myocytes-specific IL6, MMP1, and PLAT coupled with viral myocarditis. Ten interactive characteristics such as π-alkyl and van der Waals were modeled in which ARG111, LYS253, ILE114, and VAL11 on cardiac troponin (TNNC1-TNNI3-TNNT2) and ARG208, ASN106, and ALA258 on MMP1 fulfilled potential communicating anchor with ellagic acid, 5α, 9α-dihydroxymatrine, and leachianone g via hydrogen bond and hydrophobic interaction, respectively. Conclusions The comprehensive outcomes uncover differences and linkages between six herbs against viral myocarditis through component and target analysis, fostering development of drugs.
Collapse
|
27
|
Knockdown of Mitogen-Activated Protein Kinase Kinase 3 Negatively Regulates Hepatitis A Virus Replication. Int J Mol Sci 2021; 22:ijms22147420. [PMID: 34299039 PMCID: PMC8303476 DOI: 10.3390/ijms22147420] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 07/04/2021] [Accepted: 07/09/2021] [Indexed: 02/06/2023] Open
Abstract
Zinc chloride is known to be effective in combatting hepatitis A virus (HAV) infection, and zinc ions seem to be especially involved in Toll-like receptor (TLR) signaling pathways. In the present study, we examined this involvement in human hepatoma cell lines using a human TLR signaling target RT-PCR array. We also observed that zinc chloride inhibited mitogen-activated protein kinase kinase 3 (MAP2K3) expression, which could downregulate HAV replication in human hepatocytes. It is possible that zinc chloride may inhibit HAV replication in association with its inhibition of MAP2K3. In that regard, this study set out to determine whether MAP2K3 could be considered a modulating factor in the development of the HAV pathogen-associated molecular pattern (PAMP) and its triggering of interferon-β production. Because MAP2K3 seems to play a role in antiviral immunity against HAV infection, it is a promising target for drug development. The inhibition of MAP2K3 may also prevent HAV patients from developing a severe hepatitis A infection.
Collapse
|
28
|
Qin S, Mao Y, Wang H, Duan Y, Zhao L. The interplay between m6A modification and non-coding RNA in cancer stemness modulation: mechanisms, signaling pathways, and clinical implications. Int J Biol Sci 2021; 17:2718-2736. [PMID: 34345203 PMCID: PMC8326131 DOI: 10.7150/ijbs.60641] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 06/13/2021] [Indexed: 12/13/2022] Open
Abstract
Cancer stemness, mainly consisting of chemo-resistance, radio-resistance, tumorigenesis, metastasis, tumor self-renewal, cancer metabolism reprogramming, and tumor immuno-microenvironment remodeling, play crucial roles in the cancer progression process and has become the hotspot of cancer research field in recent years. Nowadays, the exact molecular mechanisms of cancer stemness have not been fully understood. Extensive studies have recently implicated that non-coding RNA (ncRNA) plays vital roles in modulating cancer stemness. Notably, N6-methyladenosine (m6A) modification is of crucial importance for RNAs to exert their biological functions, including RNA splicing, stability, translation, degradation, and export. Emerging evidence has revealed that m6A modification can govern the expressions and functions of ncRNAs, consequently controlling cancer stemness properties. However, the interaction mechanisms between ncRNAs and m6A modification in cancer stemness modulation are rarely investigated. In this review, we elucidate the recent findings on the relationships of m6A modification, ncRNAs, and cancer stemness. We also focus on some key signaling pathways such as Wnt/β-catenin signaling, MAPK signaling, Hippo signaling, and JAK/STAT3 signaling to illustrate the underlying interplay mechanisms between m6A modification and ncRNAs in cancer stemness. In particular, we briefly highlight the clinical potential of ncRNAs and m6A modifiers as promising biomarkers and therapeutic targets for indicating cancer stemness properties and improving the diagnostic precision for a wide variety of cancers.
Collapse
Affiliation(s)
- Sha Qin
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, China; and Department of Pathology, School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Yitao Mao
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Haofan Wang
- Department of Interventional Radiology, The 3rd Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Yingxing Duan
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Luqing Zhao
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, China; and Department of Pathology, School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
29
|
Circular RNA circACSL1 aggravated myocardial inflammation and myocardial injury by sponging miR-8055 and regulating MAPK14 expression. Cell Death Dis 2021; 12:487. [PMID: 33986259 PMCID: PMC8119943 DOI: 10.1038/s41419-021-03777-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 04/26/2021] [Accepted: 04/28/2021] [Indexed: 12/23/2022]
Abstract
Myocarditis (MC) is a common, potentially life-threatening inflammatory disease of the myocardium. A growing body of evidence has shown that mitogen-activated protein kinase 14 (MAPK14) participates in the pathogenesis of MC. However, the upstream regulators of MAPK14 remain enigmatic. Circular RNAs (circRNAs) have been identified to play vital roles in the pathophysiology of cardiovascular diseases. Nevertheless, the clinical significance, biological function, and regulatory mechanisms of circRNAs in MC remain poorly understood. In this study, we determined a novel circRNA, circACSL1 (ID: hsa_circ_0071542), which was significantly upregulated in the acute phase of MC, and its dynamic change in expression was related to the progression of MC. We used lipopolysaccharide (LPS) to induce the inflammatory responses in the human cardiomyocytes (HCM) line for in vitro and in cellulo experiments. The pro-inflammatory factors (IL-1β, IL-6, and TNF-α), myocardial injury markers (cTnT, CKMB, and BNP), cell viability, and cell apoptosis were measured to evaluate the extent of myocardial inflammation and myocardial injury level. Functional experiments, including gain-of-function and loss-of-function, were then performed to investigate the pro-inflammatory roles of circACSL1. The results revealed that circACSL1 could aggravate inflammation, myocardial injury, and apoptosis in HCM. Mechanistically, circACSL1 acted as a sponge for miR-8055-binding sites to regulate the downstream target MAPK14 expression. Furthermore, overexpression of miR-8055 rescued the pro-inflammatory effects of circACSL1 on HCM, and the upregulation of MAPK14 induced by circACSL1 was attenuated by miR-8055 overexpression. Knockdown of circACSL1 or overexpression of miR-8055 reduced myocardial inflammation and myocardial injury level and these effects were rescued by overexpression of MAPK14. In summary, our study demonstrated that circACSL1 could aggravate myocardial inflammation and myocardial injury through competitive absorption of miR-8055, thereby upregulating MAPK14 expression. Moreover, circACSL1 may represent a potential novel biomarker for the precise diagnosis of MC and offer a promising therapeutic target for MC treatment.
Collapse
|
30
|
Xu J, Xiong H, Zhao Z, Luo M, Ju Y, Yang G, Mei Z. Genistein suppresses allergic contact dermatitis through regulating the MAP2K2/ERK pathway. Food Funct 2021; 12:4556-4569. [PMID: 33908440 DOI: 10.1039/d0fo03238g] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Genistein is one of the main components of soybeans and has been reported to be a potential candidate for the treatment of obesity, cancer, osteoporosis and cardiovascular diseases. Recently, genistein has been shown to have therapeutic effects on some chronic skin diseases, but its underlying mechanisms remain unclear. In this study, we evaluated the role of genistein in alleviating squaric acid dibutylester (SADBE)-induced allergic contact dermatitis (ACD) in mice, and elucidated the potential molecular mechanisms in human keratinocyte (HaCaT) cell line. The impacts of genistein on the production of pro-inflammatory chemokines and cytokines including CXCL9, TSLP, TNF-α, IL-1β and IL-6 in the skin and serum of ACD mice were assessed, as well as the phosphorylation of components in the MAPK and JAK-STAT3 signaling pathways in the skin and dorsal root ganglions (DRGs). The results showed that genistein exerted protective effects on skin damage and inflammatory cell infiltration. Moreover, genistein significantly inhibited the increased expressions of pro-inflammatory factors in skin and peripheral blood, and down-regulated the levels of p-ERK, p-p38 and p-STAT3 in skin and DRGs. Furthermore, genistein inhibited the phosphorylation of ERK and STAT3 to downregulate the expression of cytokines and chemokines, and feedback downregulate phospho-p38 in TNF-α/IFN-γ-induced HaCaT cells. The genistein-mediated inhibitory effect on the MAPK pathway can be reversed by siMAP2K2 but not by siMAP2K4. Altogether, our findings demonstrated that genistein exhibits strong antipruritic and anti-inflammatory effects in ACD mice by inhibiting the production of pro-inflammatory cytokines and intracellular MAP2K2/ERK cell signaling, which makes genistein a potentially valuable candidate for the treatment of skin conditions and systemic syndromes in the setting of contact dermatitis.
Collapse
Affiliation(s)
- Jinhong Xu
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, China.
| | | | | | | | | | | | | |
Collapse
|
31
|
Zhu P, Chen S, Zhang W, Duan G, Jin Y. Essential Role of Non-Coding RNAs in Enterovirus Infection: From Basic Mechanisms to Clinical Prospects. Int J Mol Sci 2021; 22:2904. [PMID: 33809362 PMCID: PMC7999384 DOI: 10.3390/ijms22062904] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 03/08/2021] [Accepted: 03/10/2021] [Indexed: 12/31/2022] Open
Abstract
Enteroviruses (EVs) are common RNA viruses that can cause various types of human diseases and conditions such as hand, foot, and mouth disease (HFMD), myocarditis, meningitis, sepsis, and respiratory disorders. Although EV infections in most patients are generally mild and self-limiting, a small number of young children can develop serious complications such as encephalitis, acute flaccid paralysis, myocarditis, and cardiorespiratory failure, resulting in fatalities. Established evidence has suggested that certain non-coding RNAs (ncRNAs) such as microRNAs (miRNAs), long ncRNAs (lncRNAs), and circular RNAs (circRNAs) are involved in the occurrence and progression of many human diseases. Recently, the involvement of ncRNAs in the course of EV infection has been reported. Herein, the authors focus on recent advances in the understanding of ncRNAs in EV infection from basic viral pathogenesis to clinical prospects, providing a reference basis and new ideas for disease prevention and research directions.
Collapse
Affiliation(s)
- Peiyu Zhu
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, China; (P.Z.); (S.C.); (W.Z.); (G.D.)
| | - Shuaiyin Chen
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, China; (P.Z.); (S.C.); (W.Z.); (G.D.)
| | - Weiguo Zhang
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, China; (P.Z.); (S.C.); (W.Z.); (G.D.)
- Department of Immunology, Duke University Medical Center, Durham, NC 27710, USA
| | - Guangcai Duan
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, China; (P.Z.); (S.C.); (W.Z.); (G.D.)
| | - Yuefei Jin
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, China; (P.Z.); (S.C.); (W.Z.); (G.D.)
| |
Collapse
|
32
|
Lenart M, Działo E, Kluczewska A, Węglarczyk K, Szaflarska A, Rutkowska-Zapała M, Surmiak M, Sanak M, Pituch-Noworolska A, Siedlar M. miRNA Regulation of NK Cells Antiviral Response in Children With Severe and/or Recurrent Herpes Simplex Virus Infections. Front Immunol 2021; 11:589866. [PMID: 33679688 PMCID: PMC7931645 DOI: 10.3389/fimmu.2020.589866] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 12/07/2020] [Indexed: 12/21/2022] Open
Abstract
Severe and/or recurrent infection with Herpes simplex virus (HSV) is observed in a large group of patients treated in clinical immunology facilities. Atypical and prolonged HSV infection is the most common clinical manifestation of disturbed NK cell development and functions, yet the molecular basis of these disorders is still largely unknown. Since recent findings indicated the importance of miRNA in regulating NK cell development, maturation and functions, the aim of our study was to investigate miRNA expression pattern in NK cells in patients with severe and/or recurrent infections with HSV and analyze the role of these miRNAs in NK cell antiviral response. As a result, miRNA expression pattern analysis of human best known 754 miRNAs revealed that patients with severe and/or recurrent HSV infection had substantially upregulated expression of four miRNAs: miR-27b, miR-199b, miR-369-3p and miR-491-3p, when compared to healthy controls. Selective inhibition of miR-27b, miR-199b, miR-369-3p and miR-491-3p expression in NK-92 cells resulted in profound upregulation of 4 genes (APOBEC3G, MAP2K3, MAVS and TLR7) and downregulation of 36 genes taking part in antiviral response or associated with signaling pathways of Toll-like receptors (TLR), NOD-like receptors, the retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs) and type I IFN-related response. Additionally, flow cytometry analysis revealed that miR-369-3p and miR-491-3p inhibitors downregulated NK cell intracellular perforin expression, while the expression of granzyme B and IFNγ remained unchanged. Taken together, our study suggests a novel mechanism which may promote recurrence and severity of HSV infection, based on miRNAs-dependent posttranscriptional regulation of genes taking part in antiviral response of human NK cells.
Collapse
Affiliation(s)
- Marzena Lenart
- Department of Clinical Immunology, Institute of Pediatrics, Jagiellonian University Medical College, Krakow, Poland
| | - Edyta Działo
- Department of Clinical Immunology, Institute of Pediatrics, Jagiellonian University Medical College, Krakow, Poland
| | - Anna Kluczewska
- Department of Clinical Immunology, Institute of Pediatrics, Jagiellonian University Medical College, Krakow, Poland
| | - Kazimierz Węglarczyk
- Department of Clinical Immunology, Institute of Pediatrics, Jagiellonian University Medical College, Krakow, Poland
| | - Anna Szaflarska
- Department of Clinical Immunology, Institute of Pediatrics, Jagiellonian University Medical College, Krakow, Poland
| | - Magdalena Rutkowska-Zapała
- Department of Clinical Immunology, Institute of Pediatrics, Jagiellonian University Medical College, Krakow, Poland
| | - Marcin Surmiak
- II Department of Internal Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Marek Sanak
- II Department of Internal Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Anna Pituch-Noworolska
- Department of Clinical Immunology, Institute of Pediatrics, Jagiellonian University Medical College, Krakow, Poland
| | - Maciej Siedlar
- Department of Clinical Immunology, Institute of Pediatrics, Jagiellonian University Medical College, Krakow, Poland
| |
Collapse
|
33
|
Li J, Xie Y, Li L, Li X, Shen L, Gong J, Zhang R. MicroRNA-30a Modulates Type I Interferon Responses to Facilitate Coxsackievirus B3 Replication Via Targeting Tripartite Motif Protein 25. Front Immunol 2021; 11:603437. [PMID: 33519812 PMCID: PMC7840606 DOI: 10.3389/fimmu.2020.603437] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 11/23/2020] [Indexed: 11/24/2022] Open
Abstract
Viral myocarditis is caused by a viral infection and characterized by the inflammation of the myocardium. Coxsackievirus B3 (CVB3) infection is one of the most common among the infections caused by this virus. The host's early innate immune response to CVB3 infection particularly depends on the functions of type I interferons (IFNs). In this study, we report that a host microRNA, miR-30a, was upregulated by CVB3 to facilitate its replication. We demonstrated that miR-30a was a potent negative regulator of IFN-I signaling by targeting tripartite motif protein 25 (TRIM25). In addition, we found that TRIM25 overexpression significantly suppressed CVB3 replication, whereas TRIM25 knockdown increased viral titer and VP1 protein expression. MiR-30a inhibits the expression of TRIM25 and TRIM25-mediated retinoic acid-inducible gene (RIG)-I ubiquitination to suppress IFN-β activation and production, thereby resulting in the enhancement of CVB3 replication. These results indicate the proviral role of miR-30a in modulating CVB3 infection for the first time. This not only provides a new strategy followed by CVB3 in order to modulate IFN-I-mediated antiviral immune responses by engaging host miR-30a but also improves our understanding of its pathogenesis.
Collapse
Affiliation(s)
- Jia Li
- Department of Cardiothoracic Surgery, Shanghai Children’s Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Yewei Xie
- Department of Cardiothoracic Surgery, Shanghai Children’s Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Liwei Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou, China
| | - Xiaobing Li
- Department of Cardiothoracic Surgery, Shanghai Children’s Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Li Shen
- Department of Cardiothoracic Surgery, Shanghai Children’s Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Jin Gong
- Department of Cardiothoracic Surgery, Shanghai Children’s Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Rufang Zhang
- Department of Cardiothoracic Surgery, Shanghai Children’s Hospital, Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
34
|
Liu Z, Fan P, Chen M, Xu Y, Zhao D. miRNAs and Leukotrienes in Respiratory Syncytial Virus Infection. Front Pediatr 2021; 9:602195. [PMID: 33996675 PMCID: PMC8116547 DOI: 10.3389/fped.2021.602195] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 03/17/2021] [Indexed: 01/03/2023] Open
Abstract
MicroRNAs (miRNAs) are small, non-coding RNAs that regulate posttranscription by binding to 3'-untranslated regions of target mRNAs. Recent functional studies have elucidated mechanisms that miRNAs regulate leukotriene synthesis by perturbing arachidonic acid metabolism. Both microarrays and high-throughput sequencing revealed distinct differential expression of miRNAs in children with respiratory syncytial virus (RSV) infection compared with healthy controls. Abnormal miRNA expression may contribute to higher leukotriene levels, which is associated with airway hyperreactivity. Targeting miRNAs may benefit to restore the homeostasis of inflammatory reaction and provide new strategies to alleviate airway hyperreactivity induced by RSV. In this article, we provide an overview of the current knowledge about miRNAs modulating leukotrienes through regulation of arachidonic acid metabolism with a special focus on miRNAs aberrantly expressed in children with RSV infection.
Collapse
Affiliation(s)
- Zhi Liu
- Department of Pediatrics, Children's Digital Health and Data Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Panpan Fan
- Department of Pediatrics, Children's Digital Health and Data Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Ming Chen
- Department of Pediatrics, Children's Digital Health and Data Center, Zhongnan Hospital of Wuhan University, Wuhan, China.,Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| | - Yueshi Xu
- Department of Pediatrics, Children's Digital Health and Data Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Dongchi Zhao
- Department of Pediatrics, Children's Digital Health and Data Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
35
|
Zhang C, Xiong Y, Zeng L, Peng Z, Liu Z, Zhan H, Yang Z. The Role of Non-coding RNAs in Viral Myocarditis. Front Cell Infect Microbiol 2020; 10:312. [PMID: 32754448 PMCID: PMC7343704 DOI: 10.3389/fcimb.2020.00312] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 05/22/2020] [Indexed: 12/13/2022] Open
Abstract
Viral myocarditis (VMC) is a disease characterized as myocardial parenchyma or interstitium inflammation caused by virus infection, especially Coxsackievirus B3 (CVB3) infection, which has no accurate non-invasive examination for diagnosis and specific drugs for treatment. The mechanism of CVB3-induced VMC may be related to direct myocardial damage of virus infection and extensive damage of abnormal immune response after infection. Non-coding RNA (ncRNA) refers to RNA that is not translated into protein and plays a vital role in many biological processes. There is expanding evidence to reveal that ncRNAs regulate the occurrence and development of VMC, which may provide new treatment or diagnosis targets. In this review, we mainly demonstrate an overview of the potential role of ncRNAs in the pathogenesis, diagnosis and treatment of CVB3-induced VMC.
Collapse
Affiliation(s)
- Cong Zhang
- Division of Emergency Medicine, Department of Emergency Intensive Care Unit, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Cardiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- NHC Key Laboratory on Assisted Circulation (Sun Yat-sen University), Guangzhou, China
| | - Yan Xiong
- Division of Emergency Medicine, Department of Emergency Intensive Care Unit, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Lijin Zeng
- Division of Emergency Medicine, Department of Emergency Intensive Care Unit, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Cardiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- NHC Key Laboratory on Assisted Circulation (Sun Yat-sen University), Guangzhou, China
| | - Zhihua Peng
- Division of Emergency Medicine, Department of Emergency Intensive Care Unit, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Cardiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- NHC Key Laboratory on Assisted Circulation (Sun Yat-sen University), Guangzhou, China
| | - Zhihao Liu
- Division of Emergency Medicine, Department of Emergency Intensive Care Unit, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hong Zhan
- Division of Emergency Medicine, Department of Emergency Intensive Care Unit, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhen Yang
- Division of Emergency Medicine, Department of Emergency Intensive Care Unit, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Cardiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- NHC Key Laboratory on Assisted Circulation (Sun Yat-sen University), Guangzhou, China
| |
Collapse
|
36
|
Menikdiwela KR, Ramalingam L, Abbas MM, Bensmail H, Scoggin S, Kalupahana NS, Palat A, Gunaratne P, Moustaid-Moussa N. Role of microRNA 690 in Mediating Angiotensin II Effects on Inflammation and Endoplasmic Reticulum Stress. Cells 2020; 9:cells9061327. [PMID: 32466437 PMCID: PMC7348980 DOI: 10.3390/cells9061327] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/15/2020] [Accepted: 05/22/2020] [Indexed: 12/27/2022] Open
Abstract
Overactivation of the renin–angiotensin system (RAS) during obesity disrupts adipocyte metabolic homeostasis and induces endoplasmic reticulum (ER) stress and inflammation; however, underlying mechanisms are not well known. We propose that overexpression of angiotensinogen (Agt), the precursor protein of RAS in adipose tissue or treatment of adipocytes with Angiotensin II (Ang II), RAS bioactive hormone, alters specific microRNAs (miRNA), that target ER stress and inflammation leading to adipocyte dysfunction. Epididymal white adipose tissue (WAT) from B6 wild type (Wt) and transgenic male mice overexpressing Agt (Agt-Tg) in adipose tissue and adipocytes treated with Ang II were used. Small RNA sequencing and microarray in WAT identified differentially expressed miRNAs and genes, out of which miR-690 and mitogen-activated protein kinase kinase 3 (MAP2K3) were validated as significantly up- and down-regulated, respectively, in Agt-Tg, and in Ang II-treated adipocytes compared to respective controls. Additionally, the direct regulatory role of miR-690 on MAP2K3 was confirmed using mimic, inhibitors and dual-luciferase reporter assay. Downstream protein targets of MAP2K3 which include p38, NF-κB, IL-6 and CHOP were all reduced. These results indicate a critical post-transcriptional role for miR-690 in inflammation and ER stress. In conclusion, miR-690 plays a protective function and could be a useful target to reduce obesity.
Collapse
Affiliation(s)
- Kalhara R. Menikdiwela
- Department of Nutritional Sciences, Obesity Research Institute, Texas Tech University, Lubbock, TX 79409, USA; (K.R.M.); (L.R.); (S.S.); (N.S.K.)
| | - Latha Ramalingam
- Department of Nutritional Sciences, Obesity Research Institute, Texas Tech University, Lubbock, TX 79409, USA; (K.R.M.); (L.R.); (S.S.); (N.S.K.)
| | - Mostafa M. Abbas
- Qatar Computing Research Institute, Hamad Bin Khalifa University, Doha 34110, Qatar; (M.M.A.); (H.B.)
- Department of Imaging Science and Innovation, Geisinger Health System, Danville, PA 17822, USA
| | - Halima Bensmail
- Qatar Computing Research Institute, Hamad Bin Khalifa University, Doha 34110, Qatar; (M.M.A.); (H.B.)
| | - Shane Scoggin
- Department of Nutritional Sciences, Obesity Research Institute, Texas Tech University, Lubbock, TX 79409, USA; (K.R.M.); (L.R.); (S.S.); (N.S.K.)
| | - Nishan S. Kalupahana
- Department of Nutritional Sciences, Obesity Research Institute, Texas Tech University, Lubbock, TX 79409, USA; (K.R.M.); (L.R.); (S.S.); (N.S.K.)
- Department of Physiology, University of Peradeniya, Peradeniya 20400, Sri Lanka
| | - Asha Palat
- Biology and Biochemistry, University of Houston, Houston, TX 77204, USA; (A.P.); (P.G.)
| | - Preethi Gunaratne
- Biology and Biochemistry, University of Houston, Houston, TX 77204, USA; (A.P.); (P.G.)
| | - Naima Moustaid-Moussa
- Department of Nutritional Sciences, Obesity Research Institute, Texas Tech University, Lubbock, TX 79409, USA; (K.R.M.); (L.R.); (S.S.); (N.S.K.)
- Correspondence: ; Tel.: +806-834-7946
| |
Collapse
|
37
|
Barbu MG, Condrat CE, Thompson DC, Bugnar OL, Cretoiu D, Toader OD, Suciu N, Voinea SC. MicroRNA Involvement in Signaling Pathways During Viral Infection. Front Cell Dev Biol 2020; 8:143. [PMID: 32211411 PMCID: PMC7075948 DOI: 10.3389/fcell.2020.00143] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 02/20/2020] [Indexed: 12/15/2022] Open
Abstract
The study of miRNAs started in 1993, when Lee et al. observed their involvement in the downregulation of a crucial protein known as LIN-14 in the nematode Caenorhabditis elegans. Since then, great progress has been made regarding research on microRNAs, which are now known to be involved in the regulation of various physiological and pathological processes in both animals and humans. One such example is represented by their interaction with various signaling pathways during viral infections. It has been observed that these pathogens can induce the up-/downregulation of various host miRNAs in order to elude the host's immune system. In contrast, some miRNAs studied could have an antiviral effect, enabling the defense mechanisms to fight the infection or, at the very least, they could induce the pathogen to enter a latent state. At the same time, some viruses encode their own miRNAs, which could further modulate the host's signaling pathways, thus favoring the survival and replication of the virus. The goal of this extensive literature review was to present how miRNAs are involved in the regulation of various signaling pathways in some of the most important and well-studied human viral infections. Further on, knowing which miRNAs are involved in various viral infections and what role they play could aid in the development of antiviral therapeutic agents for certain diseases that do not have a definitive cure in the present. The clinical applications of miRNAs are extremely important, as miRNAs targeted inhibition may have substantial therapeutic impact. Inhibition of miRNAs can be achieved through many different methods, but chemically modified antisense oligonucleotides have shown the most prominent effects. Though scientists are far from completely understanding all the molecular mechanisms behind the complex cross-talks between miRNA pathways and viral infections, the general knowledge is increasing on the different roles played by miRNAs during viral infections.
Collapse
Affiliation(s)
- Madalina Gabriela Barbu
- Alessandrescu-Rusescu National Institute for Mother and Child Health, Fetal Medicine Excellence Research Center, Bucharest, Romania
| | - Carmen Elena Condrat
- Alessandrescu-Rusescu National Institute for Mother and Child Health, Fetal Medicine Excellence Research Center, Bucharest, Romania
| | - Dana Claudia Thompson
- Alessandrescu-Rusescu National Institute for Mother and Child Health, Fetal Medicine Excellence Research Center, Bucharest, Romania
| | - Oana Larisa Bugnar
- Alessandrescu-Rusescu National Institute for Mother and Child Health, Fetal Medicine Excellence Research Center, Bucharest, Romania
| | - Dragos Cretoiu
- Alessandrescu-Rusescu National Institute for Mother and Child Health, Fetal Medicine Excellence Research Center, Bucharest, Romania
- Department of Cell and Molecular Biology and Histology, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Oana Daniela Toader
- Division of Obstetrics, Gynecology and Neonatology, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
- Department of Obstetrics and Gynecology, Alessandrescu-Rusescu National Institute for Mother and Child Health, Polizu Clinical Hospital, Bucharest, Romania
| | - Nicolae Suciu
- Alessandrescu-Rusescu National Institute for Mother and Child Health, Fetal Medicine Excellence Research Center, Bucharest, Romania
- Division of Obstetrics, Gynecology and Neonatology, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
- Department of Obstetrics and Gynecology, Alessandrescu-Rusescu National Institute for Mother and Child Health, Polizu Clinical Hospital, Bucharest, Romania
| | - Silviu Cristian Voinea
- Department of Surgical Oncology, Institute of Oncology Prof. Dr. Alexandru Trestioreanu, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| |
Collapse
|
38
|
Fan Y, Cheng Y, Li Y, Chen B, Wang Z, Wei T, Zhang H, Guo Y, Wang Q, Wei Y, Chen F, Sha J, Guo X, Wang L. Phosphoproteomic Analysis of Neonatal Regenerative Myocardium Revealed Important Roles of Checkpoint Kinase 1 via Activating Mammalian Target of Rapamycin C1/Ribosomal Protein S6 Kinase b-1 Pathway. Circulation 2020; 141:1554-1569. [PMID: 32098494 DOI: 10.1161/circulationaha.119.040747] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND In mammals, regenerative therapy after myocardial infarction is hampered by the limited regenerative capacity of adult heart, whereas a transient regenerative capacity is maintained in the neonatal heart. Systemic phosphorylation signaling analysis on ischemic neonatal myocardium might be helpful to identify key pathways involved in heart regeneration. Our aim was to define the kinase-substrate network in ischemic neonatal myocardium and to identify key pathways involved in heart regeneration after ischemic insult. METHODS Quantitative phosphoproteomics profiling was performed on infarct border zone of neonatal myocardium, and kinase-substrate network analysis revealed 11 kinases with enriched substrates and upregulated phosphorylation levels, including checkpoint kinase 1 (CHK1) kinase. The effect of CHK1 on cardiac regeneration was tested on Institute of Cancer Research CD1 neonatal and adult mice that underwent apical resection or myocardial infarction. RESULTS In vitro, CHK1 overexpression promoted whereas CHK1 knockdown blunted cardiomyocyte proliferation. In vivo, inhibition of CHK1 hindered myocardial regeneration on resection border zone in neonatal mice. In adult myocardial infarction mice, CHK1 overexpression on infarct border zone upregulated mammalian target of rapamycin C1/ribosomal protein S6 kinase b-1 pathway, promoted cardiomyocyte proliferation, and improved cardiac function. Inhibiting mammalian target of rapamycin activity by rapamycin blunted the neonatal cardiomyocyte proliferation induced by CHK1 overexpression in vitro. CONCLUSIONS Our study indicates that phosphoproteome of neonatal regenerative myocardium could help identify important signaling pathways involved in myocardial regeneration. CHK1 is found to be a key signaling responsible for neonatal regeneration. Myocardial overexpression of CHK1 could improve cardiac regeneration in adult hearts by activating the mammalian target of rapamycin C1/ribosomal protein S6 kinase b-1 pathway. Thus, CHK1 might serve as a potential novel target in myocardial repair after myocardial infarction.
Collapse
Affiliation(s)
- Yi Fan
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University (Y.F., Y.L., B.C., Z.W., T.W., Q.W., L.W.), Nanjing Medical University, China
| | - Yiwei Cheng
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University (Y.F., Y.L., B.C., Z.W., T.W., Q.W., L.W.), Nanjing Medical University, China.,State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology (Y.C., H.Z., Y.G., J.S., X.G.), Nanjing Medical University, China
| | | | - Bingrui Chen
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University (Y.F., Y.L., B.C., Z.W., T.W., Q.W., L.W.), Nanjing Medical University, China
| | - Zimu Wang
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University (Y.F., Y.L., B.C., Z.W., T.W., Q.W., L.W.), Nanjing Medical University, China
| | - Tianwen Wei
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University (Y.F., Y.L., B.C., Z.W., T.W., Q.W., L.W.), Nanjing Medical University, China
| | - Hao Zhang
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology (Y.C., H.Z., Y.G., J.S., X.G.), Nanjing Medical University, China
| | - Yueshuai Guo
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology (Y.C., H.Z., Y.G., J.S., X.G.), Nanjing Medical University, China
| | - Qiming Wang
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University (Y.F., Y.L., B.C., Z.W., T.W., Q.W., L.W.), Nanjing Medical University, China
| | - Yongyue Wei
- Department of Biostatistics, School of Public Health, China International Cooperation Center for Environment and Human Health (Y.W., F.C.), Nanjing Medical University, China
| | - Feng Chen
- Department of Biostatistics, School of Public Health, China International Cooperation Center for Environment and Human Health (Y.W., F.C.), Nanjing Medical University, China
| | - Jiahao Sha
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology (Y.C., H.Z., Y.G., J.S., X.G.), Nanjing Medical University, China
| | - Xuejiang Guo
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology (Y.C., H.Z., Y.G., J.S., X.G.), Nanjing Medical University, China
| | - Liansheng Wang
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University (Y.F., Y.L., B.C., Z.W., T.W., Q.W., L.W.), Nanjing Medical University, China
| |
Collapse
|
39
|
Kura B, Kalocayova B, Devaux Y, Bartekova M. Potential Clinical Implications of miR-1 and miR-21 in Heart Disease and Cardioprotection. Int J Mol Sci 2020; 21:ijms21030700. [PMID: 31973111 PMCID: PMC7037063 DOI: 10.3390/ijms21030700] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 01/10/2020] [Accepted: 01/17/2020] [Indexed: 02/07/2023] Open
Abstract
The interest in non-coding RNAs, which started more than a decade ago, has still not weakened. A wealth of experimental and clinical studies has suggested the potential of non-coding RNAs, especially the short-sized microRNAs (miRs), to be used as the new generation of therapeutic targets and biomarkers of cardiovascular disease, an ever-growing public health issue in the modern world. Among the hundreds of miRs characterized so far, microRNA-1 (miR-1) and microRNA-21 (miR-21) have received some attention and have been associated with cardiac injury and cardioprotection. In this review article, we summarize the current knowledge of the function of these two miRs in the heart, their association with cardiac injury, and their potential cardioprotective roles and biomarker value. While this field has already been extensively studied, much remains to be done before research findings can be translated into clinical application for patient’s benefit.
Collapse
Affiliation(s)
- Branislav Kura
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, 84104 Bratislava, Slovakia; (B.K.); (B.K.)
- Institute of Physiology, Faculty of Medicine, Comenius University in Bratislava, 81372 Bratislava, Slovakia
| | - Barbora Kalocayova
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, 84104 Bratislava, Slovakia; (B.K.); (B.K.)
| | - Yvan Devaux
- Cardiovascular Research Unit, Department of Population Health, Luxembourg Institute of Health, L-1445 Strassen, Luxembourg;
| | - Monika Bartekova
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, 84104 Bratislava, Slovakia; (B.K.); (B.K.)
- Institute of Physiology, Faculty of Medicine, Comenius University in Bratislava, 81372 Bratislava, Slovakia
- Correspondence: ; Tel.: +421-2-3229-5427
| |
Collapse
|
40
|
Wang J, Zhao Q. Linc02381 Exacerbates Rheumatoid Arthritis Through Adsorbing miR-590-5p and Activating the Mitogen-Activated Protein Kinase Signaling Pathway in Rheumatoid arthritis-fibroblast-like synoviocytes. Cell Transplant 2020; 29:963689720938023. [PMID: 32608996 PMCID: PMC7563894 DOI: 10.1177/0963689720938023] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 05/17/2020] [Accepted: 06/01/2020] [Indexed: 12/29/2022] Open
Abstract
Rheumatoid arthritis (RA) is a chronic systemic autoimmune disease. New evidence suggested that linc02381 suppressed colorectal cancer progression by regulating PI3 K signaling pathway, but the role of linc02381 in other diseases, such as RA, remains unclear. This study aimed to reveal the mechanism of linc02381 in RA progression. In vivo and in vitro, we found that linc02381 was upregulated in RA synovial tissues or RA fibroblast-like synoviocytes (RA-FLSs, P < 0.01), which were detected by quantitative real-time polymerase chain reaction. Cell Counting Kit-8, EDU, and Transwell assays revealed that linc02381 overexpression enhanced cell proliferation and invasion, and linc02381 knockdown inhibited cell proliferation and invasion in FLSs. Moreover, the results of bioinformatics analysis, luciferase reporter gene assay, and pull-down assay verified that linc02381 could directly bind with miR-590-5p. MiR-590-5p was downregulated in RA-FLSs, and overexpression of linc02381 suppressed expression of miR-590-5p that post-transcriptionally suppressed the expression of mitogen-activated protein kinase kinase 3 (MAP2K3), and overexpression of miR-590-5p reversed the effect of linc02381 overexpression on MAP2K3 expression. MiR-590-5p inhibitor reversed the inhibition effect of linc02381 knockdown on proliferation and invasion of FLSs, which enhanced expression of MAP2K3, and activation of p38 and AP-1 in the MAPK signaling pathway. In summary, linc02381 was upregulated in RA synovial tissues and RA-FLSs, and it exacerbated RA by adsorbing miR-590-5p to activate the MAPK signaling pathway.
Collapse
Affiliation(s)
- Jing Wang
- Department of Rheumatology and Immunology, Huaihe Hospital of Henan University, Kaifeng, People’s Republic of China
| | - Qing Zhao
- Department of Rheumatology and Immunology, Huaihe Hospital of Henan University, Kaifeng, People’s Republic of China
| |
Collapse
|