1
|
Chang Y, Chen Y, Yang C, Ho H, Yang JF, Chou Y, Lin C, Yang P. Pharmacokinetics and Safety Profile of SNS812, a First in Human Fully Modified siRNA Targeting Wide-Spectrum SARS-CoV-2, in Healthy Subjects. Clin Transl Sci 2025; 18:e70202. [PMID: 40116355 PMCID: PMC11926758 DOI: 10.1111/cts.70202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 03/05/2025] [Accepted: 03/11/2025] [Indexed: 03/23/2025] Open
Abstract
Severe acute respiratory syndrome caused by the coronavirus (SARS-CoV-2) in the COVID-19 pandemic has highlighted the need for effective treatments, as rapid viral mutations complicate therapeutic development. SNS812, a fully modified inhaled siRNA that targets the conserved RNA-dependent RNA polymerase (RdRP) gene of SARS-CoV-2, has been shown to possess its suppression ability against wide-spectrum SARS-COV-2 variants preclinically. To evaluate the safety and tolerability of inhaled SNS812 in healthy participants, a randomized, double-blind, placebo-controlled phase 1 trial was conducted. To justify the first-in-human inhalation study, this research was divided into two parts: single ascending doses (0.3, 0.6, and 1.2 mg/kg) and multiple doses (0.6 and 1.2 mg/kg) of daily inhalation for seven consecutive days to assess the safety, tolerability, immunogenicity, and pharmacokinetics of SNS812. Of the 44 participants, 3 in the 0.3 mg/kg single-dose group, 2 in the 1.2 mg/kg multiple ascending doses group, and 1 in the placebo group reported treatment-emergent adverse events (TEAEs). No serious adverse events (SAEs), treatment-related adverse events (TRAEs), or TEAEs caused discontinuation or deaths were observed. PK showed rapid absorption of SNS812, with peak concentrations (median Tmax) reached at 1.5-2 h, and an elimination half-life (t 1/2) between 4.96 and 7.08 h. No antidrug antibodies (ADAs) were detected in either group. The results demonstrated that the first-in-human, fully modified with wide-spectrum anti-SARS-COV2 siRNA by inhalation following a single dose and multiple doses was safe and well tolerated in healthy participants. Trial Registration: NCT05677893.
Collapse
Affiliation(s)
| | | | - Chi‐Fan Yang
- Microbio (Shanghai) Biotech CompanyShanghaiChina
| | - Hui‐Ju Ho
- Oneness Biotech Company LimitedTaipeiTaiwan
| | | | | | | | - Pan‐Chyr Yang
- Department of Internal MedicineNational Taiwan University Hospital and National Taiwan University College of MedicineTaipeiTaiwan
- Genomics Research CenterAcademia SinicaTaipeiTaiwan
- Institute of Biomedical SciencesAcademia SinicaTaipeiTaiwan
| |
Collapse
|
2
|
Kumawat P, Agarwal LK, Sharma K. An Overview of SARS-CoV-2 Potential Targets, Inhibitors, and Computational Insights to Enrich the Promising Treatment Strategies. Curr Microbiol 2024; 81:169. [PMID: 38733424 DOI: 10.1007/s00284-024-03671-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 03/18/2024] [Indexed: 05/13/2024]
Abstract
The rapid spread of the SARS-CoV-2 virus has emphasized the urgent need for effective therapies to combat COVID-19. Investigating the potential targets, inhibitors, and in silico approaches pertinent to COVID-19 are of utmost need to develop novel therapeutic agents and reprofiling of existing FDA-approved drugs. This article reviews the viral enzymes and their counter receptors involved in the entry of SARS-CoV-2 into host cells, replication of genomic RNA, and controlling the host cell physiology. In addition, the study provides an overview of the computational techniques such as docking simulations, molecular dynamics, QSAR modeling, and homology modeling that have been used to find the FDA-approved drugs and other inhibitors against SARS-CoV-2. Furthermore, a comprehensive overview of virus-based and host-based druggable targets from a structural point of view, together with the reported therapeutic compounds against SARS-CoV-2 have also been presented. The current study offers future perspectives for research in the field of network pharmacology investigating the large unexplored molecular libraries. Overall, the present in-depth review aims to expedite the process of identifying and repurposing drugs for researchers involved in the field of COVID-19 drug discovery.
Collapse
Affiliation(s)
- Pooja Kumawat
- Department of Chemistry, Mohanlal Sukhadia University, Udaipur, Rajasthan, 313001, India
| | - Lokesh Kumar Agarwal
- Department of Chemistry, Mohanlal Sukhadia University, Udaipur, Rajasthan, 313001, India.
| | - Kuldeep Sharma
- Department of Botany, Mohanlal Sukhadia University, Udaipur, Rajasthan, 313001, India
| |
Collapse
|
3
|
Babalola BA, Akinsuyi OS, Folajimi EO, Olujimi F, Otunba AA, Chikere B, Adewumagun IA, Adetobi TE. Exploring the future of SARS-CoV-2 treatment after the first two years of the pandemic: A comparative study of alternative therapeutics. Biomed Pharmacother 2023; 165:115099. [PMID: 37406505 DOI: 10.1016/j.biopha.2023.115099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/27/2023] [Accepted: 06/27/2023] [Indexed: 07/07/2023] Open
Abstract
One of the most pressing challenges associated with SARS-CoV-2 treatment is the emergence of new variants that may be more transmissible, cause more severe disease, or be resistant to current treatments and vaccines. The emergence of SARS-CoV-2 has led to a global pandemic, resulting in millions of deaths worldwide. Various strategies have been employed to combat the virus, including neutralizing monoclonal antibodies (mAbs), CRISPR/Cas13, and antisense oligonucleotides (ASOs). While vaccines and small molecules have proven to be an effective means of preventing severe COVID-19 and reducing transmission rates, the emergence of new virus variants poses a challenge to their effectiveness. Monoclonal antibodies have shown promise in treating early-stage COVID-19, but their effectiveness is limited in severe cases and the emergence of new variants may reduce their binding affinity. CRISPR/Cas13 has shown potential in targeting essential viral genes, but its efficiency, specificity, and delivery to the site of infection are major limitations. ASOs have also been shown to be effective in targeting viral RNA, but they face similar challenges to CRISPR/Cas13 in terms of delivery and potential off-target effects. In conclusion, a combination of these strategies may provide a more effective means of combating SARS-CoV-2, and future research should focus on improving their efficiency, specificity, and delivery to the site of infection. It is evident that the continued research and development of these alternative therapies will be essential in the ongoing fight against SARS-CoV-2 and its potential future variants.
Collapse
Affiliation(s)
| | | | | | - Folakemi Olujimi
- Department of Biochemistry, Mountain Top University, Prayer-City, Ogun State, Nigeria
| | | | - Bruno Chikere
- Department of Biochemistry, Covenant University, Ogun State, Nigeria
| | | | | |
Collapse
|
4
|
Bekheit MS, Panda SS, Kariuki BM, Mahmoud SH, Mostafa A, Girgis AS. Spiroindole-containing compounds bearing phosphonate group of potential M pro-SARS-CoV-2 inhibitory properties. Eur J Med Chem 2023; 258:115563. [PMID: 37329713 DOI: 10.1016/j.ejmech.2023.115563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/23/2023] [Accepted: 06/09/2023] [Indexed: 06/19/2023]
Abstract
Microwave-assisted reaction of 3,5-bis((E)-ylidene)-1-phosphonate-4-piperidones 3a‒g with azomethine ylide (produced through interaction of isatins 4 and sarcosine 5) cycloaddition afforded the corresponding (dispiro[indoline-3,2'-pyrrolidine-3',3″-piperidin]-1″-yl)phosphonates 6a‒l in excellent yields (80-95%). Structure of the synthesized agents was evidenced by single crystal X-ray studies of 6d, 6i and 6l. Some of the synthesized agents revealed promising anti-SARS-CoV-2 properties in the viral infected Vero-E6 cell technique with noticeable selectivity indices. Compounds 6g and 6b are the most promising agents synthesized (R = 4-BrC6H4, Ph; R' = H, Cl, respectively) with considerable selectivity index values. Mpro-SARS-CoV-2 inhibitory properties supported the anti-SARS-CoV-2 observations of the potent analogs synthesized. Molecular docking studies (PDB ID: 7C8U) are consistent with the Mpro inhibitory properties. The presumed mode of action was supported by both experimentally investigated Mpro-SARS-CoV-2 inhibitory properties and explained by docking observations.
Collapse
Affiliation(s)
- Mohamed S Bekheit
- Department of Pesticide Chemistry, National Research Centre, Dokki, Giza, 12622, Egypt
| | - Siva S Panda
- Department of Chemistry and Physics, Augusta University, Augusta, GA, 30912, USA
| | - Benson M Kariuki
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, UK
| | - Sara H Mahmoud
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza, 12622, Egypt
| | - Ahmed Mostafa
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza, 12622, Egypt
| | - Adel S Girgis
- Department of Pesticide Chemistry, National Research Centre, Dokki, Giza, 12622, Egypt.
| |
Collapse
|
5
|
Abas AH, Tallei TE, Fatimawali F, Celik I, Alhumaydhi FA, Emran TB, Dhama K, Rabaan AA, Garout MA, Halwani MA, Al Mutair A, Alhumaid S, Harapan H. 4’-fluorouridine as a potential COVID-19 oral drug?: a review. F1000Res 2023; 11:410. [DOI: 10.12688/f1000research.109701.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/01/2023] Open
Abstract
The available antiviral drugs against coronavirus disease 2019 (COVID-19) are limited. Oral drugs that can be prescribed to non-hospitalized patients are required. The 4′-fluoruridine, a nucleoside analog similar to remdesivir, is one of the promising candidates for COVID-19 oral therapy due to its ability to stall viral RdRp. Available data suggested that 4'-fluorouridine has antiviral activity against the respiratory syncytial virus, hepatitis C virus, lymphocytic choriomeningitis virus, and other RNA viruses, including SARS-CoV-2. In vivo study revealed that SARS-CoV-2 is highly susceptible to 4'-fluorouridine and was effective with a single daily dose versus molnupiravir administered twice daily. Although 4'-fluorouridine is considered as strong candidates, further studies are required to determine its efficacy in the patients and it’s genetic effects on humans. In this review, we the antiviral activity of 4′-fluorouridine is reviewed and compared it to other drugs currently in development. The current literature on 4′-fluorouridine's antiviral activity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is compiled and discussed.
Collapse
|
6
|
Chakraborty C, Bhattacharya M, Saha A, Alshammari A, Alharbi M, Saikumar G, Pal S, Dhama K, Lee SS. Revealing the structural and molecular interaction landscape of the favipiravir-RTP and SARS-CoV-2 RdRp complex through integrative bioinformatics: Insights for developing potent drugs targeting SARS-CoV-2 and other viruses. J Infect Public Health 2023; 16:1048-1056. [PMID: 37196368 DOI: 10.1016/j.jiph.2023.05.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 05/04/2023] [Accepted: 05/08/2023] [Indexed: 05/19/2023] Open
Abstract
BACKGROUND The global research community has made considerable progress in therapeutic and vaccine research during the COVID-19 pandemic. Several therapeutics have been repurposed for the treatment of COVID-19. One such compound is, favipiravir, which was approved for the treatment of influenza viruses, including drug-resistant influenza. Despite the limited information on its molecular activity, clinical trials have attempted to determine the effectiveness of favipiravir in patients with mild to moderate COVID-19. Here, we report the structural and molecular interaction landscape of the macromolecular complex of favipiravir-RTP and SARS-CoV-2 RdRp with the RNA chain. METHODS Integrative bioinformatics was used to reveal the structural and molecular interaction landscapes of two macromolecular complexes retrieved from RCSB PDB. RESULTS We analyzed the interactive residues, H-bonds, and interaction interfaces to evaluate the structural and molecular interaction landscapes of the two macromolecular complexes. We found seven and six H-bonds in the first and second interaction landscapes, respectively. The maximum bond length is 3.79 Å. In the hydrophobic interactions, five residues (Asp618, Asp760, Thr687, Asp623, and Val557) were associated with the first complex and two residues (Lys73 and Tyr217) were associated with the second complex. The mobilities, collective motion, and B-factor of the two macromolecular complexes were analyzed. Finally, we developed different models, including trees, clusters, and heat maps of antiviral molecules, to evaluate the therapeutic status of favipiravir as an antiviral drug. CONCLUSIONS The results revealed the structural and molecular interaction landscape of the binding mode of favipiravir with the nsp7-nsp8-nsp12-RNA SARS-CoV-2 RdRp complex. Our findings can help future researchers in understanding the mechanism underlying viral action and guide the design of nucleotide analogs that mimic favipiravir and exhibit greater potency as antiviral drugs against SARS-CoV-2 and other infectious viruses. Thus, our work can help in preparing for future epidemics and pandemics.
Collapse
Affiliation(s)
- Chiranjib Chakraborty
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Kolkata, West Bengal 700126, India.
| | - Manojit Bhattacharya
- Department of Zoology, Fakir Mohan University, Vyasa Vihar, Balasore 756020, Odisha, India
| | - Abinit Saha
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Kolkata, West Bengal 700126, India
| | - Abdulrahman Alshammari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Post Box 2455, Riyadh 11451, Saudi Arabia
| | - Metab Alharbi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Post Box 2455, Riyadh 11451, Saudi Arabia
| | - G Saikumar
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, Uttar Pradesh, India
| | - Soumen Pal
- School of Mechanical Engineering, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, Uttar Pradesh, India
| | - Sang-Soo Lee
- Institute for Skeletal Aging & Orthopaedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon-si 24252, Gangwon-do, Republic of Korea
| |
Collapse
|
7
|
Bekheit MS, Panda SS, Girgis AS. Potential RNA-dependent RNA polymerase (RdRp) inhibitors as prospective drug candidates for SARS-CoV-2. Eur J Med Chem 2023; 252:115292. [PMID: 36965227 PMCID: PMC10023213 DOI: 10.1016/j.ejmech.2023.115292] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 03/19/2023]
Abstract
The SARS-CoV-2 pandemic is considered as one of the most disastrous pandemics for human health and the world economy. RNA-dependent RNA polymerase (RdRp) is one of the key enzymes that control viral replication. RdRp is an attractive and promising therapeutic target for the treatment of SARS-CoV-2 disease. It has attracted much interest of medicinal chemists, especially after the approval of Remdesivir. This study highlights the most promising SARS-CoV-2 RdRp repurposed drugs in addition to natural and synthetic agents. Although many in silico predicted agents have been developed, the lack of in vitro and in vivo experimental data has hindered their application in drug discovery programs.
Collapse
Affiliation(s)
- Mohamed S Bekheit
- Department of Pesticide Chemistry, National Research Centre, Dokki, Giza, 12622, Egypt
| | - Siva S Panda
- Department of Chemistry and Physics, Augusta University, Augusta, GA, 30912, USA.
| | - Adel S Girgis
- Department of Pesticide Chemistry, National Research Centre, Dokki, Giza, 12622, Egypt.
| |
Collapse
|
8
|
Mahnam K, Rajaee SM. A theoretical survey to find potential natural compound for inhibition of binding the RBD domain to ACE2 receptor based on plant antivirals. J Biomol Struct Dyn 2023; 41:14540-14565. [PMID: 36974837 DOI: 10.1080/07391102.2023.2183033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 02/16/2023] [Indexed: 03/29/2023]
Abstract
The spike protein of coronavirus is crucial in binding and arrival of the virus to the human cell via binding to the human ACE2 receptor. In this study, at first 25 antiviral phytochemicals were docked into the RBD domain of spike protein, and then all complexes and free RBD domains were separately subjected to molecular dynamics simulation for 100 ns and MM/PBSA binding free energy calculation. In this phase, four ligands were chosen as hit compounds and a natural compound database (NPASS) was screened based on high similarity with these ligands, and 367 ligands were found. Then the same previous procedure was repeated for these ligands and ADME properties were investigated. Finally, virtual screening and 4400 ns MD simulation and MM/PBSA calculation revealed that new ligands including NPC67959, NPC157855, NPC248793, and NPC216361 can inhibit the RBD domain of spike protein and we propose them as potential drugs for experimental studies.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Karim Mahnam
- Department of Biology, Faculty of Sciences, Shahrekord University, Shahrekord, Iran
- Nanotechnology Research Center, Shahrekord University, Shahrekord, Iran
| | | |
Collapse
|
9
|
Figueiredo-Nunes I, Trigueiro-Louro J, Rebelo-de-Andrade H. Exploring new antiviral targets for influenza and COVID-19: Mapping promising hot spots in viral RNA polymerases. Virology 2023; 578:45-60. [PMID: 36463618 PMCID: PMC9674405 DOI: 10.1016/j.virol.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 10/27/2022] [Accepted: 11/03/2022] [Indexed: 11/19/2022]
Abstract
Influenza and COVID-19 are infectious respiratory diseases that represent a major concern to public health with social and economic impact worldwide, for which the available therapeutic options are not satisfactory. The RdRp has a central role in viral replication and thus represents a major target for the development of antiviral approaches. In this study, we focused on Influenza A virus PB1 polymerase protein and the betacoronaviruses nsp12 polymerase protein, considering their functional and structural similarities. We have performed conservation and druggability analysis to map conserved druggable regions, that may have functional or structural importance in these proteins. We disclosed the most promising and new targeting regions for the discovery of new potential polymerase inhibitors. Conserved druggable regions of putative interaction with favipiravir and molnupiravir were also mapped. We have also compared and integrated the current findings with previous research.
Collapse
Affiliation(s)
- Inês Figueiredo-Nunes
- Host-Pathogen Interaction Unit, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003, Lisbon, Portugal
| | - João Trigueiro-Louro
- Host-Pathogen Interaction Unit, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003, Lisbon, Portugal; Antiviral Resistance Lab, Research & Development Unit, Infectious Diseases Department, Instituto Nacional de Saúde Doutor Ricardo Jorge, IP, Av. Padre Cruz, 1649-016, Lisbon, Portugal.
| | - Helena Rebelo-de-Andrade
- Host-Pathogen Interaction Unit, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003, Lisbon, Portugal; Antiviral Resistance Lab, Research & Development Unit, Infectious Diseases Department, Instituto Nacional de Saúde Doutor Ricardo Jorge, IP, Av. Padre Cruz, 1649-016, Lisbon, Portugal.
| |
Collapse
|
10
|
Mahnam K, Ghobadi Z. Finding a prospective dual-target drug for the treatment of coronavirus disease by theoretical study. J Biomol Struct Dyn 2022; 40:12621-12641. [PMID: 34514953 DOI: 10.1080/07391102.2021.1973910] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Spike protein of coronavirus is a key protein in binding and entrance of virus to the human cell via binding to the receptor-binding domain (RBD) domain of S1 subunit to peptidase domain region of ACE2 receptor. In this study, the possible effect of 24 antiviral drugs on the RBD domain of spike protein was investigated via docking and molecular dynamics simulation for finding a dual-target drug. At first, all drugs were docked to the RBD domain of spike protein, and then all complexes and free RBD domains were separately used for molecular dynamics simulation for 50 ns via amber18 software. The simulation results showed that 10 ligands from 28 ligands were separated from the RBD domain, and among 18 remained ligands, baloxavir marboxil, and danoprevir drugs, besides endonuclease activity and protease inhibitory, can bind to key residues of the RBD domain. Then these drugs have a dual target and should be more effective than current drugs, and experimental studies should be done on baloxavir marboxil and danoprevir as more potential drugs for coronavirus disease Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Karim Mahnam
- Department of Biology, Faculty of Sciences, Shahrekord University, Shahrekord, Iran.,Nanotechnology Research Center, Shahrekord University, Shahrekord, Iran
| | - Zahra Ghobadi
- Department of Biology, Faculty of Sciences, Shahrekord University, Shahrekord, Iran
| |
Collapse
|
11
|
Jana ID, Bhattacharya P, Mayilsamy K, Banerjee S, Bhattacharje G, Das S, Aditya S, Ghosh A, McGill AR, Srikrishnan S, Das AK, Basak A, Mohapatra SS, Chandran B, Bhimsaria D, Mohapatra S, Roy A, Mondal A. Targeting an evolutionarily conserved "E-L-L" motif in spike protein to identify a small molecule fusion inhibitor against SARS-CoV-2. PNAS NEXUS 2022; 1:pgac198. [PMID: 36712339 PMCID: PMC9802491 DOI: 10.1093/pnasnexus/pgac198] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 10/18/2022] [Indexed: 11/06/2022]
Abstract
As newer variants of SARS-CoV-2 continue to pose major threats to global human health and economy, identifying novel druggable antiviral targets is the key toward sustenance. Here, we identify an evolutionarily conserved "Ex3Lx6L" ("E-L-L") motif present within the HR2 domain of all human and nonhuman coronavirus spike (S) proteins that play a crucial role in stabilizing its postfusion six-helix bundle (6-HB) structure and thus, fusion-mediated viral entry. Mutations within this motif reduce the fusogenicity of the S protein without affecting its stability or membrane localization. We found that posaconazole, an FDA-approved drug, binds to this "E-L-L" motif and impedes the formation of 6-HB, thus effectively inhibiting SARS-CoV-2 infection in cells. While posaconazole exhibits high efficacy in blocking S protein-mediated viral entry, mutations within the "E-L-L" motif rendered the protein completely resistant to the drug, establishing its specificity toward this motif. Our data demonstrate that posaconazole restricts early stages of infection through specific inhibition of membrane fusion and viral genome release into the host cell and is equally effective toward all major variants of concerns of SARS-CoV-2, including Beta, Kappa, Delta, and Omicron. Together, we show that this conserved essential "E-L-L" motif is an ideal target for the development of prophylactic and therapeutic interventions against SARS-CoV-2.
Collapse
Affiliation(s)
- Indrani Das Jana
- School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | | | - Karthick Mayilsamy
- Department of Molecular Medicine, University of South Florida, Tampa, FL 33620, USA
- Department of Veterans Affairs, James A Haley Veterans Hospital, Tampa, FL 33612, USA
| | - Saptarshi Banerjee
- School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Gourab Bhattacharje
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Sayan Das
- School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Seemanti Aditya
- School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Anandita Ghosh
- Department of Molecular Medicine, University of South Florida, Tampa, FL 33620, USA
| | - Andrew R McGill
- Department of Molecular Medicine, University of South Florida, Tampa, FL 33620, USA
- Department of Veterans Affairs, James A Haley Veterans Hospital, Tampa, FL 33612, USA
- Department of Internal Medicine, University of South Florida, Tampa, FL 33620, USA
| | - Syamanthak Srikrishnan
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Amit Kumar Das
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Amit Basak
- Division of Chemical Science, Indian Institute of Science Education and Research, Kolkata, Mohanpur 741246, India
| | - Shyam S Mohapatra
- Department of Veterans Affairs, James A Haley Veterans Hospital, Tampa, FL 33612, USA
- Department of Internal Medicine, University of South Florida, Tampa, FL 33620, USA
| | - Bala Chandran
- Department of Molecular Medicine, University of South Florida, Tampa, FL 33620, USA
| | - Devesh Bhimsaria
- Department of Bioscience and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Subhra Mohapatra
- Department of Molecular Medicine, University of South Florida, Tampa, FL 33620, USA
- Department of Veterans Affairs, James A Haley Veterans Hospital, Tampa, FL 33612, USA
| | - Arunava Roy
- Department of Molecular Medicine, University of South Florida, Tampa, FL 33620, USA
| | - Arindam Mondal
- School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| |
Collapse
|
12
|
Pourfarjam Y, Ma Z, Kim IK. ATP enhances the error-prone ribonucleotide incorporation by the SARS-CoV-2 RNA polymerase. Biochem Biophys Res Commun 2022; 625:53-59. [PMID: 35947915 PMCID: PMC9344795 DOI: 10.1016/j.bbrc.2022.07.087] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 07/22/2022] [Accepted: 07/22/2022] [Indexed: 01/18/2023]
Abstract
The novel Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2 or COVID-19) has caused a global pandemic. The SARS-CoV-2 RNA genome is replicated by a conserved "core" replication-transcription complex (RTC) containing an error-prone RNA-dependent RNA polymerase holoenzyme (holo-RdRp, nsp12-nsp7-nsp8) and a RNA proofreading nuclease (nsp14-nsp10). Although structures and functions of SARS-CoV-2 holo-RdRp have been extensively studied and ribonucleotide-analog inhibitors, such as Remdesivir, have been treated for COVID-19 patients, the substrate and nucleotide specificity of SARS-CoV-2 holo-RdRp remain unknown. Here, our biochemical analysis of SARS-CoV-2 holo-RdRp reveals that it has a robust DNA-dependent RNA polymerase activity, in addition to its intrinsic RNA-dependent RNA polymerase activity. Strikingly, SARS-CoV-2 holo-RdRp fully extends RNAs with a low-fidelity even when only ATP and pyrimidine nucleotides, in particular CTP, are provided. This ATP-dependent error-prone ribonucleotide incorporation by SARS-CoV-2 holo-RdRp resists excision by the RNA proofreading nuclease in vitro. Our collective results suggest that a physiological concentration of ATP likely contributes to promoting the error-prone incorporation of ribonucleotides and ribonucleotide-analogs by SARS-CoV-2 holo-RdRp and provide a useful foundation to develop ribonucleotide analogs as an effective therapeutic strategy to combat coronavirus-mediated outbreak.
Collapse
Affiliation(s)
- Yasin Pourfarjam
- Department of Chemistry, University of Cincinnati, 301 Clifton Ct, Cincinnati, OH, 45221, USA
| | - Zhijun Ma
- Department of Chemistry, University of Cincinnati, 301 Clifton Ct, Cincinnati, OH, 45221, USA
| | - In-Kwon Kim
- Department of Chemistry, University of Cincinnati, 301 Clifton Ct, Cincinnati, OH, 45221, USA.
| |
Collapse
|
13
|
Verma MK, Roychowdhury S, Sahu BD, Mishra A, Sethi KK. CRISPR-based point-of-care diagnostics incorporating Cas9, Cas12, and Cas13 enzymes advanced for SARS-CoV-2 detection. J Biochem Mol Toxicol 2022; 36:e23113. [PMID: 35642647 PMCID: PMC9347549 DOI: 10.1002/jbt.23113] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 04/16/2022] [Accepted: 05/18/2022] [Indexed: 11/24/2022]
Abstract
An outbreak of the novel beta coronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) first came to light in December 2019, which has unfolded rapidly and turned out to be a global pandemic. Early prognosis of viral contamination involves speedy intervention, disorder control, and good-sized management of the spread of disease. Reverse transcription-polymerase chain reaction, considered the gold standard test for detecting nucleic acids and pathogen diagnosis, provides high sensitivity and specificity. However, reliance on high-priced equipped kits, associated reagents, and skilled personnel slow down sickness detection. Lately, the improvement of clustered regularly interspaced short palindromic repeat (CRISPR)-Cas (CRISPR-associated protein)-based diagnostic systems has reshaped molecular diagnosis due to their low cost, simplicity, speed, efficiency, high sensitivity, specificity, and versatility, which is vital for accomplishing point-of-care diagnostics. We reviewed and summarized CRISPR-Cas-based point-of-care diagnostic strategies and research in these paintings while highlighting their characteristics and challenges for identifying SARS-CoV-2.
Collapse
Affiliation(s)
- Monika K. Verma
- Department of Medicinal ChemistryNational Institute of Pharmaceutical Education and Research (NIPER)—Guwahati, Changsari, KamrupGuwahatiAssamIndia
| | - Sanjana Roychowdhury
- Department of Medicinal ChemistryNational Institute of Pharmaceutical Education and Research (NIPER)—Guwahati, Changsari, KamrupGuwahatiAssamIndia
| | - Bidya Dhar Sahu
- Department of Pharmacology and ToxicologyNational Institute of Pharmaceutical Education and Research (NIPER)—Guwahati, Changsari, KamrupGuwahatiAssamIndia
| | - Awanish Mishra
- Department of Pharmacology and ToxicologyNational Institute of Pharmaceutical Education and Research (NIPER)—Guwahati, Changsari, KamrupGuwahatiAssamIndia
| | - Kalyan K. Sethi
- Department of Medicinal ChemistryNational Institute of Pharmaceutical Education and Research (NIPER)—Guwahati, Changsari, KamrupGuwahatiAssamIndia
| |
Collapse
|
14
|
Vatandaslar H. A Systematic Study on the Optimal Nucleotide Analogue Concentration and Rate Limiting Nucleotide of the SARS-CoV-2 RNA-Dependent RNA Polymerase. Int J Mol Sci 2022; 23:ijms23158302. [PMID: 35955442 PMCID: PMC9369030 DOI: 10.3390/ijms23158302] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/23/2022] [Accepted: 07/24/2022] [Indexed: 02/01/2023] Open
Abstract
The current COVID-19 pandemic has highlighted the necessity of more efficient antiviral compounds. The antiviral efficacy of adenosine-based analogs, the main repurposed drugs for SARS-CoV-2 RNA-dependent RNA polymerase (RdRp) inhibition, is mainly assessed through in vitro or cell-free polymerization assays, under arbitrary conditions that do not reflect the physiological environment. We show that SARS-CoV-2 RdRp inhibition efficiency of remdesivir and cordycepin, two common adenosine analogs, is influenced by endogenous adenosine level, and that the current clinically approved concentrations for COVID-19 treatment are suboptimal for effective RdRp inhibition. Furthermore, we identified GTP as the rate-limiting nucleotide of SARS-CoV-2 replication. Our results demonstrate that nucleotide sensitivity of the RdRp complex and competition of nucleoside analog drugs against endogenous concentrations of nucleotides are crucial elements to be considered when designing new SARS-CoV-2 antiviral compounds.
Collapse
Affiliation(s)
- Hasan Vatandaslar
- Institute of Molecular Health Sciences, Department of Biology, ETH Zurich, 8093 Zurich, Switzerland
| |
Collapse
|
15
|
Gonzalez BL, de Oliveira NC, Ritter MR, Tonin FS, Melo EB, Sanches ACC, Fernandez‐Llimos F, Petruco MV, de Mello JCP, Chierrito D, de Medeiros Araújo DC. The naturally-derived alkaloids as a potential treatment for COVID-19: A scoping review. Phytother Res 2022; 36:2686-2709. [PMID: 35355337 PMCID: PMC9111026 DOI: 10.1002/ptr.7442] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 02/22/2022] [Accepted: 03/04/2022] [Indexed: 12/13/2022]
Abstract
Coronavirus disease 2019 (COVID-19) is caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), which has a high mortality rate and transmissibility. In this context, medicinal plants have attracted attention due to the wide availability and variety of therapeutic compounds, such as alkaloids, a vast class with several proven pharmacological effects, like the antiviral and anti-inflammatory activities. Therefore, this scoping review aimed to summarize the current knowledge of the potential applicability of alkaloids for treating COVID-19. A systematic search was performed on PubMed and Scopus, from database inception to August 2021. Among the 63 eligible studies, 65.07% were in silico model, 20.63% in vitro and 14.28% clinical trials and observational studies. According to the in silico assessments, the alkaloids 10-hydroxyusambarensine, cryptospirolepine, crambescidin 826, deoxynortryptoquivaline, ergotamine, michellamine B, nigellidine, norboldine and quinadoline B showed higher binding energy with more than two target proteins. The remaining studies showed potential use of berberine, cephaeline, emetine, homoharringtonine, lycorine, narciclasine, quinine, papaverine and colchicine. The possible ability of alkaloids to inhibit protein targets and to reduce inflammatory markers show the potential for development of new treatment strategies against COVID-19. However, more high quality analyses/reviews in this field are necessary to firmly establish the effectiveness/safety of the alkaloids here described.
Collapse
Affiliation(s)
| | | | | | - Fernanda Stumpf Tonin
- Programa de Pós‐graduação em Ciências FarmacêuticasUniversidade Federal do Paraná—UFPRCuritibaParanáBrazil
| | - Eduardo Borges Melo
- Centro de Ciências Médicas e FarmacêuticasUniversidade Estadual do Oeste do Paraná—UNIOESTECascavelParanáBrazil
| | | | | | | | | | - Danielly Chierrito
- Departamento de FarmáciaUniversidade Estadual de Maringá—UEMMaringáParanáBrazil
| | | |
Collapse
|
16
|
Maslova AA, Matyugina EC, Shustova EY, Volok VP, Kozlovskaya LI, Kochetkov SN, Khandazhinskaya AL. New Analogues of Uridine as Possible Anti-Viral Agents Specific to SARS-CoV-2. Mol Biol 2022; 56:469-473. [PMID: 35693979 PMCID: PMC9165921 DOI: 10.1134/s0026893322030098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/06/2021] [Accepted: 12/07/2021] [Indexed: 11/23/2022]
Affiliation(s)
- A. A. Maslova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - E. C. Matyugina
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - E. Yu. Shustova
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products, Russian Academy of Sciences, 108819 Moscow, Russia
| | - V. P. Volok
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products, Russian Academy of Sciences, 108819 Moscow, Russia
| | - L. I. Kozlovskaya
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products, Russian Academy of Sciences, 108819 Moscow, Russia
- Sechenov First Moscow State Medical University, 119435 Moscow, Russia
| | - S. N. Kochetkov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - A. L. Khandazhinskaya
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
17
|
Yuan H, Liu L, Zhou J, Zhang T, Daily JW, Park S. Bioactive Components of Houttuynia cordata Thunb and Their Potential Mechanisms Against COVID-19 Using Network Pharmacology and Molecular Docking Approaches. J Med Food 2022; 25:355-366. [PMID: 35438554 DOI: 10.1089/jmf.2021.k.0144] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
We investigated the molecular mechanism by which Houttuynia cordata Thunb (HCT) may intervene in coronavirus disease 2019 (COVID-19) and COVID-19-induced cytokine storms using network pharmacology and molecular docking approaches. Using the Traditional Chinese medicine Systems Pharmacology Database and Analysis Platform (TCMSP), a "component-target-pathway" topology map of HCT for COVID-19 treatment was constructed using Cytoscape. Core target genes were analyzed using the STRING database, and the signal pathway map and biological mechanism of COVID-19 therapy were obtained using cluster profilers. Active components of HCT were docked with severe respiratory syndrome coronavirus 2 (SARS-CoV-2) 3C-like protease (3CLpro) and RNA-dependent RNA polymerase (RdRp) using AutoDockTools. Data visualization and statistical analysis were conducted using the R program. A molecular dynamic simulation was carried out with the Groningen Machine for Chemical Simulation program. HCT had six active anti-COVID-19 ingredients and 45 molecular targets. Their crucial target proteins for COVID-19 treatment were the RELA (nuclear factor kappa B [NF-κB] p65 subunit), interleukin 6, and mitogen-activated protein kinase 1. In functional enrichment analysis, the potential molecular targets of active components of HCT for COVID-19 treatment belonged to 18 signaling pathways (adjusted P = 2.12E-11). Gene ontology obtained by Kyoto Encyclopedia of Genes and Genome enrichment screening showed that the primary mechanism of COVID-19 treatment was upregulation of protein kinase C followed by downregulations of T cell differentiation and proliferation and NF-κB signaling. Molecular docking showed that the active components of HCT (quercetin and kaempferol) had similar binding affinities for SARS-CoV-2 3CLpro and SARS-CoV-2 RdRp, primary COVID-19 target proteins as did clinically used drugs. These results were confirmed with molecular dynamics simulation. In conclusion, multiple components of HCT, especially quercetin and kaempferol, have the potential to treat COVID-19 infection and COVID-19-induced cytokine storm by targeting multiple proteins.
Collapse
Affiliation(s)
- Heng Yuan
- Department of Bio-Convergence System, Hoseo University, Asan, South Korea
| | - Liping Liu
- College of Biological & Environmental Sciences, Zhejiang Wanli University, Ningbo, China
| | - Junyu Zhou
- Department of Bio-Convergence System, Hoseo University, Asan, South Korea
| | - Ting Zhang
- Department of Bio-Convergence System, Hoseo University, Asan, South Korea
| | - James W Daily
- Daily Manufacturing, Inc., Rockwell, North Carolina, USA
| | - Sunmin Park
- Department of Bio-Convergence System, Hoseo University, Asan, South Korea.,Department of Food and Nutrition, Obesity/Diabetes Research Center, Hoseo University, Asan, South Korea
| |
Collapse
|
18
|
Abas AH, Tallei TE, Fatimawali F, Celik I, Alhumaydhi FA, Emran TB, Dhama K, Rabaan AA, Garout MA, Halwani MA, Al Mutair A, Alhumaid S, Harapan H. 4’-fluorouridine and its derivatives as potential COVID-19 oral drugs: a review. F1000Res 2022; 11:410. [DOI: 10.12688/f1000research.109701.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/01/2023] Open
Abstract
Background: Although vaccination is underway, antiviral drugs against coronavirus disease 2019 (COVID-19) are lacking. Remdesivir, a nucleoside analog that works by inhibiting the viral RNA-dependent RNA polymerase (RdRp), is the only fully approved antiviral for the treatment of COVID-19. However, it is limited to intravenous use and is usually recommended only for hospitalized patients with severe COVID-19; therefore, oral drugs that can be prescribed even to non-hospitalized patients are required. According to a recent study, 4′-fluoruridine, a nucleoside analog similar to remdesivir, is a promising candidate for COVID-19 oral therapy due to its ability to stall viral RdRp. Methods: We examined the antiviral activity of 4′-fluorouridine and compared it to other drugs currently in development. The current literature on 4′-fluorouridine's antiviral activity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been compiled and discussed in this review. Results: The 4'-fluorouridine has antiviral activity against the respiratory syncytial virus, hepatitis C virus, lymphocytic choriomeningitis virus, and other RNA viruses, including SARS-CoV-2. In vitro studies have shown that SARS-CoV-2 is susceptible to 4'-fluorouridine, with the half-maximal effective concentration (EC50) of 0.2 to 0.6 M, and that the 4′-fluorouridine derivative, 4′-fluorouridine-5′-triphosphate, inhibited RdRp via a mechanism distinct from that of the already approved COVID-19 oral drug, molnupiravir. In addition, an in vivo study revealed that SARS-CoV-2 is highly susceptible to 4'-fluorouridine and was effective with a single daily dose versus molnupiravir administered twice daily. Conclusions: Concerns about the genetic effects of molnupiravir may be resolved by the use of 4′-fluorouridine and its derivative, which, unlike molnupiravir, do not alter genetics, but inhibit RdRp instead. Although they are currently considered as strong candidates, further studies are required to determine the antiviral activity of 4′-fluorouridine and its derivative against SARS-CoV-2 and their genetic effects on humans.
Collapse
|
19
|
Figueiredo DLA, Ximenez JPB, Seiva FRF, Panis C, Bezerra RDS, Ferrasa A, Cecchini AL, de Medeiros AI, Almeida AMF, Ramão A, Boldt ABW, Moya CF, Chin CM, de Paula D, Rech D, Gradia DF, Malheiros D, Venturini D, Tavares ER, Carraro E, Ribeiro EMDSF, Pereira EM, Tuon FF, Follador FAC, Fernandes GSA, Volpato H, Cólus IMDS, de Oliveira JC, Rodrigues JHDS, dos Santos JL, Visentainer JEL, Brandi JC, Serpeloni JM, Bonini JS, de Oliveira KB, Fiorentin K, Lucio LC, Faccin-Galhardi LC, Ferreto LED, Lioni LMY, Consolaro MEL, Vicari MR, Arbex MA, Pileggi M, Watanabe MAE, Costa MAR, Giannini MJSM, Amarante MK, Khalil NM, de Lima QA, Herai RH, Guembarovski RL, Shinsato RN, Mainardes RM, Giuliatti S, Yamada-Ogatta SF, Gerber VKDQ, Pavanelli WR, da Silva WC, Petzl-Erler ML, Valente V, Soares CP, Cavalli LR, Silva WA. COVID-19: The question of genetic diversity and therapeutic intervention approaches. Genet Mol Biol 2022; 44:e20200452. [PMID: 35421211 PMCID: PMC9075701 DOI: 10.1590/1678-4685-gmb-2020-0452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 12/24/2021] [Indexed: 12/15/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19), caused by the Severe Acute Respiratory Syndrome Coronavirus type 2 (SARS-CoV-2), is the largest pandemic in modern history with very high infection rates and considerable mortality. The disease, which emerged in China's Wuhan province, had its first reported case on December 29, 2019, and spread rapidly worldwide. On March 11, 2020, the World Health Organization (WHO) declared the COVID-19 outbreak a pandemic and global health emergency. Since the outbreak, efforts to develop COVID-19 vaccines, engineer new drugs, and evaluate existing ones for drug repurposing have been intensively undertaken to find ways to control this pandemic. COVID-19 therapeutic strategies aim to impair molecular pathways involved in the virus entrance and replication or interfere in the patients' overreaction and immunopathology. Moreover, nanotechnology could be an approach to boost the activity of new drugs. Several COVID-19 vaccine candidates have received emergency-use or full authorization in one or more countries, and others are being developed and tested. This review assesses the different strategies currently proposed to control COVID-19 and the issues or limitations imposed on some approaches by the human and viral genetic variability.
Collapse
Affiliation(s)
- David Livingstone Alves Figueiredo
- Universidade Estadual do Centro-Oeste do Paraná (UNICENTRO), Departamento de Medicina, Guarapuava, PR, Brazil
- Instituto para Pesquisa do Câncer (IPEC), Guarapuava, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - João Paulo Bianchi Ximenez
- Universidade de São Paulo, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Departamento de Análises Clínicas, Toxicologia e Ciência de Alimentos, Ribeirão Preto, SP, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Fábio Rodrigues Ferreira Seiva
- Universidade Estadual do Norte do Paraná (UENP), Centro de Ciências Biológicas, Bandeirantes, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Carolina Panis
- Universidade Estadual do Oeste do Paraná, Francisco Beltrão, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Rafael dos Santos Bezerra
- Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Hemocentro Regional de Ribeirão Preto, Ribeirão Preto, SP, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Adriano Ferrasa
- Universidade Estadual de Ponta Grossa, Ponta Grossa, Programa de Pós Graduação em Computação Aplicada, Ponta Grossa, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Alessandra Lourenço Cecchini
- Universidade Estadual de Londrina, Departamento de Patologia Geral, Londrina, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Alexandra Ivo de Medeiros
- Universidade Federal do Paraná, Programa de Pós-Graduação em Genética, Departamento de Genética, Curitiba, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Ana Marisa Fusco Almeida
- Universidade Federal do Paraná, Programa de Pós-Graduação em Genética, Departamento de Genética, Curitiba, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Anelisa Ramão
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
- Universidade Estadual do Centro-Oeste do Paraná (UNICENTRO), Departamento de Ciências Biológicas, Guarapuava, PR, Brazil
| | - Angelica Beate Winter Boldt
- Universidade Federal do Paraná, Programa de Pós-Graduação em Genética, Departamento de Genética, Curitiba, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Carla Fredrichsen Moya
- Universidade Estadual do Centro-Oeste do Paraná (UNICENTRO), Departamento de Medicina Veterinária, Guarapuava, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Chung Man Chin
- Universidade Estadual Paulista (UNESP), Faculdade de Ciências Farmacêuticas, Departamento de Fármacos e Medicamentos, Araraquara, SP, Brazil
- União das Faculdades dos Grandes Lagos (UNILAGO), Centro de Pesquisa Avançada em Medicina, São José do Rio Preto, SP, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Daniel de Paula
- Universidade Estadual do Centro-Oeste do Paraná (UNICENTRO), Departamento de Farmácia, Guarapuava, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Daniel Rech
- Universidade Estadual do Oeste do Paraná (UNIOESTE), Hospital do Câncer Francisco Beltrão, Laboratório de Biologia de Tumores, Francisco Beltrão, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Daniela Fiori Gradia
- Universidade Federal do Paraná, Programa de Pós-Graduação em Genética, Departamento de Genética, Curitiba, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Danielle Malheiros
- Universidade Federal do Paraná, Programa de Pós-Graduação em Genética, Departamento de Genética, Curitiba, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Danielle Venturini
- Universidade Estadual de Londrina, Centro de Ciências da Saúde, Departamento de patologia, clínica e toxicologia, Laboratório de bioquímica clínica, Londrina, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Eliandro Reis Tavares
- Universidade Estadual de Londrina, Departamento de Microbiologia, Centro de Ciências Biológicas, Londrina, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Emerson Carraro
- Universidade Estadual do Centro-Oeste do Paraná (UNICENTRO), Laboratório de Virologia Clínica, Guarapuava, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Enilze Maria de Souza Fonseca Ribeiro
- Universidade Federal do Paraná, Programa de Pós-Graduação em Genética, Departamento de Genética, Curitiba, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Evani Marques Pereira
- Universidade Estadual do Centro-Oeste do Paraná (UNICENTRO), Departamento de Enfermagem, Guarapuava, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Felipe Francisco Tuon
- Universidade Católica do Paraná, Laboratório de Doenças Infecciosas Emergentes, Pontifícia Curitiba, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Franciele Aní Caovilla Follador
- Universidade Estadual do Oeste do Paraná, Departamento de Ciências da Vida, Programa de Pós-Graduação em Ciências Aplicadas à Saúde, Francisco Beltrão, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Glaura Scantamburlo Alves Fernandes
- Universidade Estadual de Londrina, Departamento de Biologia Geral, Londrina, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Hélito Volpato
- Universidade Estadual do Paraná (UNESPAR), Faculdade de Ciências Biológicas, Centro de Ciências Humanas e Educação, Paranavaí, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Ilce Mara de Syllos Cólus
- Universidade Estadual de Londrina, Departamento de Biologia Geral, Londrina, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Jaqueline Carvalho de Oliveira
- Universidade Federal do Paraná, Programa de Pós-Graduação em Genética, Departamento de Genética, Curitiba, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Jean Henrique da Silva Rodrigues
- Universidade do Estado de São Paulo (UNESP), Faculdade de Ciências Farmacêuticas, Departamento de Fármacos e Medicamentos, Araraquara, SP, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Jean Leandro dos Santos
- Universidade Estadual Paulista (UNESP), Faculdade de Ciências Farmacêuticas, Departamento de Fármacos e Medicamentos, Araraquara, SP, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Jeane Eliete Laguila Visentainer
- Universidade Estadual de Maringá, Laboratório de Imunogenética, Maringá, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Juliana Cristina Brandi
- Universidade Estadual Paulista (UNESP), Faculdade de Ciências Farmacêuticas, Departamento de Análises Clínicas, Araraquara, SP, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Juliana Mara Serpeloni
- Universidade Estadual de Londrina, Departamento de Biologia Geral, Londrina, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Juliana Sartori Bonini
- Universidade Estadual do Centro-Oeste do Paraná (UNICENTRO), Laboratório de Neuropsicofarmacologia, Guarapuava, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Karen Brajão de Oliveira
- Universidade Estadual de Londrina, Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Laboratório de Genética Molecular e Imunologia, Londrina, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Karine Fiorentin
- Faculdades Pequeno Príncipe, Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Léia Carolina Lucio
- Universidade Estadual do Oeste do Paraná, Programa de Pós-Graduação em Ciências Aplicadas à Saúde, Centro de Ciências da Saúde, Francisco Beltrão, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Ligia Carla Faccin-Galhardi
- Universidade Estadual de Londrina, Departamento de Microbiologia, Centro de Ciências Biológicas, Londrina, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Lirane Elize Defante Ferreto
- Universidade Estadual do Oeste do Paraná, Programa de Pós-Graduação em Ciências Aplicadas à Saúde, Centro de Ciências da Saúde, Francisco Beltrão, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Lucy Megumi Yamauchi Lioni
- Universidade Estadual do Norte do Paraná (UENP), Centro de Ciências Biológicas, Bandeirantes, PR, Brazil
- Universidade Estadual de Londrina, Departamento de Microbiologia, Centro de Ciências Biológicas, Londrina, PR, Brazil
| | - Marcia Edilaine Lopes Consolaro
- Universidade Estadual de Maringá, Departamento de Análises Clínicas e Biomedicina, Maringá, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Marcelo Ricardo Vicari
- Universidade Estadual de Ponta Grossa, Departamento de Biologia e Genética Estrutural e Molecular, Ponta Grossa, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Marcos Abdo Arbex
- Universidade de Araraquara, Faculdade de Medicina, Área temática de Pneumologia, Araraquara, SP, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Marcos Pileggi
- Universidade Estadual de Ponta Grossa, Departamento de Biologia e Genética Estrutural e Molecular, Ponta Grossa, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Maria Angelica Ehara Watanabe
- Universidade Estadual de Londrina, Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Laboratório de Imunologia, Londrina, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Maria Antônia Ramos Costa
- Universidade do Estado do Paraná, Colegiada de Enfermagem, Curitiba, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Maria José S. Mendes Giannini
- Universidade Estadual Paulista (UNESP), Faculdade de Ciências Farmacêuticas, Departamento de Análises Clínicas, Araraquara, SP, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Marla Karine Amarante
- Universidade Estadual de Londrina, Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Laboratório de Imunologia, Londrina, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Najeh Maissar Khalil
- Universidade Estadual do Centro-Oeste do Paraná (UNICENTRO), Departamento de Farmácia, Guarapuava, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Quirino Alves de Lima
- Universidade Estadual de Maringá, Laboratório de Imunogenética, Maringá, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Roberto H. Herai
- Universidade Católica do Paraná (PUCPR), Faculdade de Medicina, Programa de Pós-Graduação em Ciências da Saúde, Laboratório Experimental Multiusuário, Curitiba, PR, Brazil
- Universitário Católico Salesiano Auxilium (UNISALESIANO), Faculdade de Medicina, Centro Araçatuba, SP, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Roberta Losi Guembarovski
- Universidade Estadual de Londrina, Departamento de Biologia Geral, Londrina, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Rogério N. Shinsato
- Universidade Católica do Paraná (PUCPR), Faculdade de Medicina, Programa de Pós-Graduação em Ciências da Saúde, Laboratório Experimental Multiusuário, Curitiba, PR, Brazil
- Universitário Católico Salesiano Auxilium (UNISALESIANO), Faculdade de Medicina, Centro Araçatuba, SP, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Rubiana Mara Mainardes
- Universidade Estadual do Centro-Oeste do Paraná (UNICENTRO), Departamento de Farmácia, Guarapuava, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Silvana Giuliatti
- Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Hemocentro Regional de Ribeirão Preto, Ribeirão Preto, SP, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Sueli Fumie Yamada-Ogatta
- Universidade Estadual de Londrina, Departamento de Microbiologia, Centro de Ciências Biológicas, Londrina, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Viviane Knuppel de Quadros Gerber
- Universidade Estadual do Centro-Oeste do Paraná (UNICENTRO), Departamento de Enfermagem, Guarapuava, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Wander Rogério Pavanelli
- Universidade Estadual de Londrina, Laboratório de Imunoparasitologia de Doenças Negligenciadas e Câncer, Londrina, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Weber Claudio da Silva
- Universidade Estadual do Centro-Oeste do Paraná (UNICENTRO), Departamento de Farmácia, Guarapuava, PR, Brazil
- Universidade Estadual do Centro-Oeste do Paraná (UNICENTRO), Laboratório de Neuropsicofarmacologia, Guarapuava, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Maria Luiza Petzl-Erler
- Universidade Federal do Paraná, Programa de Pós-Graduação em Genética, Departamento de Genética, Curitiba, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Valeria Valente
- Universidade Estadual Paulista (UNESP), Faculdade de Ciências Farmacêuticas, Departamento de Análises Clínicas, Araraquara, SP, Brazil
- Faculdade de Medicina de Ribeirão Preto, Centro de Terapia Celular (CEPID/FAPESP), Ribeirão Preto, SP, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Christiane Pienna Soares
- Universidade Estadual Paulista (UNESP), Faculdade de Ciências Farmacêuticas, Departamento de Análises Clínicas, Araraquara, SP, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Luciane Regina Cavalli
- Faculdades Pequeno Príncipe, Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba, PR, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| | - Wilson Araujo Silva
- Instituto para Pesquisa do Câncer (IPEC), Guarapuava, PR, Brazil
- Faculdade de Medicina de Ribeirão Preto, Centro de Terapia Celular (CEPID/FAPESP), Ribeirão Preto, SP, Brazil
- Instituto Nacional de Ciência e Tecnologia em Células-Tronco e Terapia Celular (INCT/CNPq), Ribeirão Preto, SP, Brazil
- Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Departamento de Genética, Ribeirão Preto, SP, Brazil
- Novos Arranjos de Pesquisa e Inovação - Genômica (NAPI-Genômica), Fundação Araucária, PR, Brazil
| |
Collapse
|
20
|
Rudrapal M, Gogoi N, Chetia D, Khan J, Banwas S, Alshehri B, Alaidarous MA, Laddha UD, Khairnar SJ, Walode SG. Repurposing of phytomedicine-derived bioactive compounds with promising anti-SARS-CoV-2 potential: Molecular docking, MD simulation and drug-likeness/ADMET studies. Saudi J Biol Sci 2022; 29:2432-2446. [PMID: 34924801 PMCID: PMC8667520 DOI: 10.1016/j.sjbs.2021.12.018] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 11/28/2021] [Accepted: 12/08/2021] [Indexed: 12/14/2022] Open
Abstract
In view of the potential of traditional plant-based remedies (or phytomedicines) in the management of COVID-19, the present investigation was aimed at finding novel anti-SARS-CoV-2 molecules by in silico screening of bioactive phytochemicals (database) using computational methods and drug repurposing approach. A total of 160 compounds belonging to various phytochemical classes (flavonoids, limonoids, saponins, triterpenoids, steroids etc.) were selected (as initial hits) and screened against three specific therapeutic targets (Mpro/3CLpro, PLpro and RdRp) of SARS-CoV-2 by docking, molecular dynamics simulation and drug-likeness/ADMET studies. From our studies, six phytochemicals were identified as notable ant-SARS-CoV-2 agents (best hit molecules) with promising inhibitory effects effective against protease (Mpro and PLpro) and polymerase (RdRp) enzymes. These compounds are namely, ginsenoside Rg2, saikosaponin A, somniferine, betulinic acid, soyasapogenol C and azadirachtin A. On the basis of binding modes and dynamics studies of protein-ligand intercations, ginsenoside Rg2, saikosaponin A, somniferine were found to be the most potent (in silico) inhibitors potentially active against Mpro, PLpro and RdRp, respectively. The present investigation can be directed towards further experimental studies in order to confirm the anti-SARS-CoV-2 efficacy along with toxicities of identified phytomolecules.
Collapse
Affiliation(s)
- Mithun Rudrapal
- Department of Pharmaceutical Chemistry, Rasiklal M. Dhariwal Institute of Pharmaceutical Education and Research, Chinchwad, Pune 411019, Maharashtra, India
| | - Neelutpal Gogoi
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh 786004, Assam, India
| | - Dipak Chetia
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh 786004, Assam, India
| | - Johra Khan
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al Majmaah 11952, Saudi Arabia
- Health and Basic Sciences Research Center, Majmaah University, Al Majmaah 11952, Saudi Arabia
| | - Saeed Banwas
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al Majmaah 11952, Saudi Arabia
- Health and Basic Sciences Research Center, Majmaah University, Al Majmaah 11952, Saudi Arabia
- Department of Biomedical Sciences, Oregon State University, Corvallis, OR 97331, USA
| | - Bader Alshehri
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al Majmaah 11952, Saudi Arabia
- Health and Basic Sciences Research Center, Majmaah University, Al Majmaah 11952, Saudi Arabia
| | - Mohammed A. Alaidarous
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al Majmaah 11952, Saudi Arabia
- Health and Basic Sciences Research Center, Majmaah University, Al Majmaah 11952, Saudi Arabia
| | - Umesh D. Laddha
- MET Institute of Pharmacy, Bhujbal Knowledge City, Adgaon, Nasik 422003, Maharashtra, India
| | - Shubham J. Khairnar
- MET Institute of Pharmacy, Bhujbal Knowledge City, Adgaon, Nasik 422003, Maharashtra, India
| | - Sanjay G. Walode
- Department of Pharmaceutical Chemistry, Rasiklal M. Dhariwal Institute of Pharmaceutical Education and Research, Chinchwad, Pune 411019, Maharashtra, India
| |
Collapse
|
21
|
Bosaeed M, Alharbi A, Mahmoud E, Alrehily S, Bahlaq M, Gaifer Z, Alturkistani H, Alhagan K, Alshahrani S, Tolbah A, Musattat A, Alanazi M, Jaha R, Sultana K, Alqahtani H, Al Aamer K, Jaser S, Alsaedy A, Ahmad A, Abalkhail M, AlJohani S, Al Jeraisy M, Almaziad S, Albaalharith N, Alabdulkareem K, Alshowair A, Alharbi NK, Alrabiah F, Alshamrani M, Aldibasi O, Alaskar A. Efficacy of favipiravir in adults with mild COVID-19: a randomized, double-blind, multicentre, placebo-controlled clinical trial. Clin Microbiol Infect 2022; 28:602-608. [PMID: 35026375 PMCID: PMC8747778 DOI: 10.1016/j.cmi.2021.12.026] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/29/2021] [Accepted: 12/30/2021] [Indexed: 12/15/2022]
Abstract
OBJECTIVE To evaluate whether favipiravir reduces the time to viral clearance as documented by negative RT-PCR results for severe acute respiratory syndrome coronavirus 2 in mild cases of coronavirus disease 2019 (COVID-19) compared to placebo. METHODS In this randomized, double-blinded, multicentre, and placebo-controlled trial, adults with PCR-confirmed mild COVID-19 were recruited in an outpatient setting at seven medical facilities across Saudi Arabia. Participants were randomized in a 1:1 ratio to receive either favipiravir 1800 mg by mouth twice daily on day 1 followed by 800 mg twice daily (n = 112) or a matching placebo (n = 119) for a total of 5 to 7 days. The primary outcome was the effect of favipiravir on reducing the time to viral clearance (by PCR test) within 15 days of starting the treatment compared to the placebo group. The trial included the following secondary outcomes: symptom resolution, hospitalization, intensive care unit admissions, adverse events, and 28-day mortality. RESULTS Two hundred thirty-one patients were randomized and began the study (median age, 37 years; interquartile range (IQR): 32-44 years; 155 [67%] male), and 112 (48.5%) were assigned to the treatment group and 119 (51.5%) into the placebo group. The data and safety monitoring board recommended stopping enrolment because of futility at the interim analysis. The median time to viral clearance was 10 days (IQR: 6-12 days) in the favipiravir group and 8 days (IQR: 6-12 days) in the placebo group, with a hazard ratio of 0.87 for the favipiravir group (95% CI 0.571-1.326; p = 0.51). The median time to clinical recovery was 7 days (IQR: 4-11 days) in the favipiravir group and 7 days (IQR: 5-10 days) in the placebo group. There was no difference between the two groups in the secondary outcome of hospital admission. There were no drug-related severe adverse events. CONCLUSION In this clinical trial, favipiravir therapy in mild COVID-19 patients did not reduce the time to viral clearance within 15 days of starting the treatment.
Collapse
Affiliation(s)
- Mohammad Bosaeed
- Department of Medicine, King Abdulaziz Medical City-Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia; College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia; King Abdullah International Medical Research Center, Riyadh, Saudi Arabia.
| | - Ahmad Alharbi
- Department of Medicine, King Abdulaziz Medical City-Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia; College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia; King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - Ebrahim Mahmoud
- Department of Medicine, King Abdulaziz Medical City-Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia; College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia; King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - Sanaa Alrehily
- King Fahad Hospital-Almadinah, Ministry of Health, Saudi Arabia
| | - Mohannad Bahlaq
- Deputyship for Primary Health Care, Ministry of Health, Riyadh, Saudi Arabia
| | - Zied Gaifer
- Department of Medicine, Prince Mohammed Bin Abdul Aziz Hospital-Almadinah, Ministry of National Guard Health Affairs, Saudi Arabia
| | | | - Khaled Alhagan
- King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - Saad Alshahrani
- Deputyship for Primary Health Care, Ministry of Health, Riyadh, Saudi Arabia
| | - Ali Tolbah
- Deputyship for Primary Health Care, Ministry of Health, Riyadh, Saudi Arabia
| | - Abrar Musattat
- King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - Maha Alanazi
- King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - Raniah Jaha
- King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - Khizra Sultana
- King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - Hajar Alqahtani
- Pharmaceutical Care Department, King Abdulaziz Medical City, Riyadh, Saudi Arabia
| | - Kholoud Al Aamer
- Pharmaceutical Care Department, King Abdulaziz Medical City, Riyadh, Saudi Arabia
| | - Saud Jaser
- Pharmaceutical Care Department, King Abdulaziz Medical City, Riyadh, Saudi Arabia
| | - Abdulrahman Alsaedy
- Department of Medicine, King Abdulaziz Medical City-Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia; College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia; King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - Ayoub Ahmad
- Department of Medicine, King Abdulaziz Medical City-Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Mohammed Abalkhail
- Infection Prevention and Control Program, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Sameera AlJohani
- King Abdullah International Medical Research Center, Riyadh, Saudi Arabia; Department of Pathology & Laboratory Medicine, King Abdulaziz Medical City, Riyadh, Saudi Arabia; College of Science and Health Professions, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Majed Al Jeraisy
- King Abdullah International Medical Research Center, Riyadh, Saudi Arabia; Pharmaceutical Care Department, King Abdulaziz Medical City, Riyadh, Saudi Arabia; College of Pharmacy, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Sultan Almaziad
- Infection Prevention and Control Program, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Nahlah Albaalharith
- Department of Nursing, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| | | | | | - Naif Khalaf Alharbi
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia; King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - Fahad Alrabiah
- King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Majid Alshamrani
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia; King Abdullah International Medical Research Center, Riyadh, Saudi Arabia; Infection Prevention and Control Program, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Omar Aldibasi
- King Abdullah International Medical Research Center, Riyadh, Saudi Arabia; College of Dentistry, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Ahmed Alaskar
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia; King Abdullah International Medical Research Center, Riyadh, Saudi Arabia; Department of Oncology, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| |
Collapse
|
22
|
Deng W, Yang C, Yang S, Chen H, Qiu Z, Chen J. Evaluation of favipiravir in the treatment of COVID-19 based on the real-world. Expert Rev Anti Infect Ther 2022; 20:555-565. [PMID: 34846960 PMCID: PMC8787837 DOI: 10.1080/14787210.2022.2012155] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 11/16/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND The role of favipiravir (FVP) as a COVID-19 treatment is recognized but not fully elucidated. We aimed to evaluate whether FVP has definite clinical efficacy and safety in the treatment of COVID-19. METHODS International and Chinese databases were searched for randomized controlled clinical trials evaluating FVP for the treatment of COVID-19. A meta-analysis was performed and published literature was synthesized to evaluate the corresponding therapeutic effects. RESULTS We included 13 studies (1430 patients in total). Meta-analysis showed that patients with mild-to-moderate disease treated with FVP had a significantly higher viral clearance rate than those in the control group 10 and 14 days after initiation of treatment [RR: 1.13 (95% CI: 1.00, 1.28), P = 0.04; I2 = 39% for day 10 and RR: 1.16 (95% CI: 1.04, 1.30), P = 0.008; I2 = 38% for day 14] and a significantly shorter hospital stay [MD: -1.52 (95% CI: -2.82, -0.23), P = 0.02; I2 = 0%]. CONCLUSIONS FVP significantly promotes viral clearance and reduces the hospitalization duration in mild-to-moderate COVID-19 patients, which can reduce the risk of severe disease outcomes in patients. However, more importantly, the results showed no benefit of FVP in severe patients, and caution should be taken regarding the treatment options of FVP in severe patients.
Collapse
Affiliation(s)
- Weishang Deng
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
| | - Changyuan Yang
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
| | - Sensen Yang
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
| | - Haitao Chen
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
| | - Zhikun Qiu
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
| | - Jisheng Chen
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
- CONTACT Jisheng Chen The First Affiliated Hospital of Guangdong Pharmaceutical University, No. 19 Nonglinxia Road, Yuexiu District, Guangzhou City, Guangdong Province510080, China
| |
Collapse
|
23
|
Drummondin E and Flinderole B are potential inhibitors of RNA-dependent RNA polymerase of SARS-CoV-2: an in silico study. BIOTECHNOLOGIA 2022; 103:53-70. [PMID: 36605381 PMCID: PMC9642944 DOI: 10.5114/bta.2022.113915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 10/03/2021] [Accepted: 01/03/2022] [Indexed: 01/09/2023] Open
Abstract
Coronavirus disease 2019 caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has affected 235.6 million people worldwide. In the present study, RNA-dependent RNA polymerase (RdRp) (PDB Id: 6M71) of SARS-CoV-2, an essential enzyme needed for subgenomic replication and amplification of RNA, was selected. Similar to other RdRps, it is a conserved protein and a popular target for antiviral drug therapy. Based on a computational approach, potential RdRp inhibitors were identified. The absorption, distribution, metabolism, excretion, and toxicity (ADMET) of selected molecules were determined using computation tools. The potential inhibitors were docked to the RdRp and later confirmed by Molecular Dynamics (MD) using the "Flare" module of Cresset software. Drummondin E and Flinderole B had higher drug similarity scores among the compounds selected in this study. Both these compounds are noncarcinogenic, nonirritant, nontumorigenic, and nonmutagenic. Molecular docking studies showed that both compounds can bind to RdRp. The best ligand interaction patterns were validated by MD using the "Flare" module. MD was performed for the period of 100 ns with the time step of 1 fs. The simulation results suggest that Thr-680, Arg-624, Lys-676, and Val-557 are key interacting partners in the Drummondin E-RdRp complex, while Asp-618, Asp-760, Asp-623, Arg-624, and Asp-761 are the interacting partners in the Flinderole B-RdRp complex. Based on the in silico drug-likeness score; ADMET properties; and molecular simulation result, we surmise that Flinderole B and Drummondin E could impede SARS-CoV-2 genome replication and transcription by targeting the RdRp protein.
Collapse
|
24
|
Celik I, Tallei TE. A computational comparative analysis of the binding mechanism of molnupiravir's active metabolite to RNA-dependent RNA polymerase of wild-type and Delta subvariant AY.4 of SARS-CoV-2. J Cell Biochem 2022; 123:807-818. [PMID: 35132671 DOI: 10.1002/jcb.30226] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/27/2022] [Accepted: 01/31/2022] [Indexed: 01/18/2023]
Abstract
The antiviral drug molnupiravir targets the SARS-CoV-2 RNA-dependent RNA polymerase (RdRP) enzyme. Early treatment with molnupiravir reduced the risk of hospitalization or death in at-risk, unvaccinated adults with COVID-19, according to phase 3 clinical trials. Many mutations have occurred within this virus as a result of its widespread distribution. The current study sought to determine whether mutations in the RdRP of Delta subvariant AY.4 (D-AY.4 RdRP) influence the interaction of the enzyme with molnupiravir triphosphate (MTP), the active metabolite of molnupiravir. The interactions between the wild-type (WT) RdRP and D-AY.4 RdRP with MTP were evaluated based on molecular docking and dynamic simulation (MD) studies. The results show that the MTP interaction is stronger and more stable with D-AY.4 RdRP than with WT RdRP. This study provides insight into the potential significance of administering MTP to patients infected with D-AY.4 RdRP, which may have a more favorable chance of alleviating the illness. According to the findings of this study, MTP has a high likelihood of becoming widely used as an anti-SARS-CoV-2 agent. The fact that MTP is not only cytotoxic but also mutagenic to mammalian cells, as well as the possibility that it may cause DNA damage in the host, have all been raised as potential concerns.
Collapse
Affiliation(s)
- Ismail Celik
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Erciyes University, Kayseri, Turkey
| | - Trina E Tallei
- Department of Biology, Faculty of Mathematics and Natural Sciences, Sam Ratulangi University, Manado, North Sulawesi, Indonesia
| |
Collapse
|
25
|
El-Bendary M, Abd-Elsalam S, Elbaz T, El-Akel W, Cordie A, Elhadidy T, Elalfy H, Farid K, Elegezy M, El-Badrawy A, Neamatallah M, Abd Elghafar M, Salama M, AbdAllah M, Essam M, El-Shazly M, Esmat G. Efficacy of combined Sofosbuvir and Daclatasvir in the treatment of COVID-19 patients with pneumonia: a multicenter Egyptian study. Expert Rev Anti Infect Ther 2022; 20:291-295. [PMID: 34225541 DOI: 10.1080/14787210.2021.1950532] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 06/29/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND Limited experimental and clinical evidence suggests a potential role for sofosbuvir/daclatasvir in treating COVID19. We aim to evaluate the efficacy of generic sofosbuvir/daclatasvir in treating COVID-19 patients with pneumonia. RESEARCH DESIGN AND METHODS This multicenter prospective study involved 174 patients with COVID-19. Patients were randomized into two groups. Group A (96 patients) received sofosbuvir (400 mg)/daclatasvir (60 mg) for 14 days in combination with conventional therapy. Group B (78 patients) received conventional therapy alone. Clinical, laboratory, and radiological data were collected at baseline, after 7, 14, and 28 days of therapy. Primary endpoint was rate of clinical/virological cure. RESULTS A lower mortality rate was observed in group (A) (14% vs 21%, P = 0.07). After 1 month of therapy, no differences were found in rates of ICU admission, oxygen therapy, or ventilation. Additionally, a statistically significant shorter duration of hospital stay (9% vs 12%, P < 0.01) and a faster achievement of PCR negativity at day 14 (84% versus 47%, P < 0.01) were noticed in group (A). CONCLUSION Adding sofosbuvir/daclatasvir to conventional therapy of COVID-19 is promising. Their use is associated with shorter hospital stay, faster PCR negativity and may be reduced mortality.
Collapse
Affiliation(s)
- Mahmoud El-Bendary
- Tropical medicine and Hepatogastroenterology department, Mansoura University, Mansoura, Egypt
| | - Sherief Abd-Elsalam
- Tropical Medicine and Infectious diseases department, Tanta University, Tanta, Egypt
| | - Tamer Elbaz
- Endemic medicine department, Cairo University Hospitals, Cairo, Egypt
| | - Wafaa El-Akel
- Endemic medicine department, Cairo University Hospitals, Cairo, Egypt
| | - Ahmed Cordie
- Endemic medicine department, Cairo University Hospitals, Cairo, Egypt
| | | | - Hatem Elalfy
- Tropical medicine and Hepatogastroenterology department, Mansoura University, Mansoura, Egypt
| | - Khaled Farid
- Tropical medicine and Hepatogastroenterology department, Mansoura University, Mansoura, Egypt
| | - Mohamed Elegezy
- Tropical medicine and Hepatogastroenterology department, Mansoura University, Mansoura, Egypt
| | | | | | - Mohamed Abd Elghafar
- Anesthesia, Surgical Intensive Care and Pain Medicine Department, Tanta University, Tanta, Egypt
| | - Marwa Salama
- Tropical Medicine and Infectious diseases department, Tanta University, Tanta, Egypt
| | - Mohamed AbdAllah
- Medical Research Division, National Research Center, Giza, Egypt
| | - Mahmoud Essam
- Endemic medicine department, Cairo University Hospitals, Cairo, Egypt
| | | | - Gamal Esmat
- Endemic medicine department, Cairo University Hospitals, Cairo, Egypt
| |
Collapse
|
26
|
Tan S, Banwell MG, Ye WC, Lan P, White LV. The Inhibition of RNA Viruses by Amaryllidaceae Alkaloids: Opportunities for the Development of Broad-Spectrum Anti-Coronavirus Drugs. Chem Asian J 2022; 17:e202101215. [PMID: 35032358 DOI: 10.1002/asia.202101215] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 12/06/2021] [Indexed: 12/16/2022]
Abstract
The global COVID-19 pandemic has claimed the lives of millions and disrupted nearly every aspect of human society. Currently, vaccines remain the only widely available medical means to address the cause of the pandemic, the SARS-CoV-2 virus. Unfortunately, current scientific consensus deems the emergence of vaccine-resistant SARS-CoV-2 variants highly likely. In this context, the design and development of broad-spectrum, small-molecule based antiviral drugs has been described as a potentially effective, alternative medical strategy to address circulating and re-emerging CoVs. Small molecules are well-suited to target the least-rapidly evolving structures within CoVs such as highly conserved RNA replication enzymes, and this renders them less vulnerable to evolved drug resistance. Examination of the vast literature describing the inhibition of RNA viruses by Amaryllidaceae alkaloids suggests that future, broad-spectrum anti-CoV drugs may be derived from this family of natural products.
Collapse
Affiliation(s)
- Shen Tan
- The Institute for Advanced and Applied Chemical Synthesis, Jinan University, Guangzhou, 510632, P. R. China
| | - Martin G Banwell
- The Institute for Advanced and Applied Chemical Synthesis, Jinan University, Guangzhou, 510632, P. R. China
| | - Wen-Cai Ye
- College of Pharmacy, Jinan University, Guangzhou, 510632, P. R. China
| | - Ping Lan
- The Institute for Advanced and Applied Chemical Synthesis, Jinan University, Guangzhou, 510632, P. R. China
| | - Lorenzo V White
- The Institute for Advanced and Applied Chemical Synthesis, Jinan University, Guangzhou, 510632, P. R. China
| |
Collapse
|
27
|
A step toward better sample management of COVID-19: On-spot detection by biometric technology and artificial intelligence. COVID-19 AND THE SUSTAINABLE DEVELOPMENT GOALS 2022. [PMCID: PMC9334987 DOI: 10.1016/b978-0-323-91307-2.00017-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
28
|
Rosati G, Idili A, Parolo C, Fuentes-Chust C, Calucho E, Hu L, Castro e Silva CDC, Rivas L, Nguyen EP, Bergua JF, Alvárez-Diduk R, Muñoz J, Junot C, Penon O, Monferrer D, Delamarche E, Merkoçi A. Nanodiagnostics to Face SARS-CoV-2 and Future Pandemics: From an Idea to the Market and Beyond. ACS NANO 2021; 15:17137-17149. [PMID: 34705433 PMCID: PMC8565461 DOI: 10.1021/acsnano.1c06839] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 10/20/2021] [Indexed: 05/24/2023]
Abstract
The COVID-19 pandemic made clear how our society requires quickly available tools to address emerging healthcare issues. Diagnostic assays and devices are used every day to screen for COVID-19 positive patients, with the aim to decide the appropriate treatment and containment measures. In this context, we would have expected to see the use of the most recent diagnostic technologies worldwide, including the advanced ones such as nano-biosensors capable to provide faster, more sensitive, cheaper, and high-throughput results than the standard polymerase chain reaction and lateral flow assays. Here we discuss why that has not been the case and why all the exciting diagnostic strategies published on a daily basis in peer-reviewed journals are not yet successful in reaching the market and being implemented in the clinical practice.
Collapse
Affiliation(s)
- Giulio Rosati
- Institut
Català de Nanociència i Nanotecnologia, Edifici ICN2 Campus UAB, 08193 Bellaterra, Barcelona, Spain
| | - Andrea Idili
- Institut
Català de Nanociència i Nanotecnologia, Edifici ICN2 Campus UAB, 08193 Bellaterra, Barcelona, Spain
| | - Claudio Parolo
- Institut
Català de Nanociència i Nanotecnologia, Edifici ICN2 Campus UAB, 08193 Bellaterra, Barcelona, Spain
| | - Celia Fuentes-Chust
- Institut
Català de Nanociència i Nanotecnologia, Edifici ICN2 Campus UAB, 08193 Bellaterra, Barcelona, Spain
| | - Enric Calucho
- Institut
Català de Nanociència i Nanotecnologia, Edifici ICN2 Campus UAB, 08193 Bellaterra, Barcelona, Spain
| | - Liming Hu
- Institut
Català de Nanociència i Nanotecnologia, Edifici ICN2 Campus UAB, 08193 Bellaterra, Barcelona, Spain
| | - Cecilia de Carvalho Castro e Silva
- Institut
Català de Nanociència i Nanotecnologia, Edifici ICN2 Campus UAB, 08193 Bellaterra, Barcelona, Spain
- MackGraphe-Mackenzie
Institute for Research in Graphene and Nanotechnologies, Mackenzie Presbyterian University, Consolação street 930, 01302-907 São Paulo, Brazil
| | - Lourdes Rivas
- Institut
Català de Nanociència i Nanotecnologia, Edifici ICN2 Campus UAB, 08193 Bellaterra, Barcelona, Spain
| | - Emily P. Nguyen
- Institut
Català de Nanociència i Nanotecnologia, Edifici ICN2 Campus UAB, 08193 Bellaterra, Barcelona, Spain
| | - José F. Bergua
- Institut
Català de Nanociència i Nanotecnologia, Edifici ICN2 Campus UAB, 08193 Bellaterra, Barcelona, Spain
| | - Ruslan Alvárez-Diduk
- Institut
Català de Nanociència i Nanotecnologia, Edifici ICN2 Campus UAB, 08193 Bellaterra, Barcelona, Spain
| | - José Muñoz
- Institut
Català de Nanociència i Nanotecnologia, Edifici ICN2 Campus UAB, 08193 Bellaterra, Barcelona, Spain
- ISGlobal-Barcelona
Institute for Global Health, Carrer del Rosselló, 132, 08036 Barcelona, Spain
| | - Christophe Junot
- Université
Paris-Saclay, CEA, INRAE Departement Médicaments
et Technologies pour la Santé SPI, 91191 Gif-sur-Yvette cedex, France
| | - Oriol Penon
- Asphalion, Carrer de Tarragona 151-157, 08014 Barcelona, Spain
| | | | | | - Arben Merkoçi
- Institut
Català de Nanociència i Nanotecnologia, Edifici ICN2 Campus UAB, 08193 Bellaterra, Barcelona, Spain
| |
Collapse
|
29
|
Luthra R, Kaur S, Bhandari K. Applications of CRISPR as a potential therapeutic. Life Sci 2021; 284:119908. [PMID: 34453943 DOI: 10.1016/j.lfs.2021.119908] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 08/10/2021] [Accepted: 08/12/2021] [Indexed: 02/06/2023]
Abstract
Genetic disorders and congenital abnormalities are present in 2-5% of births all over the world and can cause up to 50% of all early childhood deaths. The establishment of sophisticated and controlled techniques for customizing DNA manipulation is significant for the therapeutic role in such disorders and further research on them. One such technique is CRISPR that is significant towards optimizing genome editing and therapies, metabolic fluxes as well as artificial genetic systems. CRISPR-Cas9 is a molecular appliance that is applied in the areas of genetic and protein engineering. The CRISPR-CAS system is an integral element of prokaryotic adaptive immunity that allows prokaryotic cells to identify and kill any foreign DNA. The Gene editing property of CRISPR finds various applications like diagnostics and therapeutics in cancer, neurodegenerative disorders, genetic diseases, blindness, etc. This review discusses applications of CRISPR as a therapeutic in various disorders including several genetic diseases (including sickle cell anemia, blindness, thalassemia, cystic fibrosis, hereditary tyrosinemia type I, duchenne muscular dystrophy, mitochondrial disorders), Cancer, Huntington's disease and viral infections (like HIV, COVID, etc.) along with the prospects concerning them. CRISPR-based therapy is also being researched and defined for COVID-19. The related mechanism of CRISPR has been discussed alongside highlighting challenges involved in therapeutic applications of CRISPR.
Collapse
Affiliation(s)
- Ritika Luthra
- Department of Biotechnology, Delhi Technological University, Delhi, India
| | - Simran Kaur
- Department of Biotechnology, Delhi Technological University, Delhi, India
| | - Kriti Bhandari
- Department of Biotechnology, Delhi Technological University, Delhi, India.
| |
Collapse
|
30
|
Virtual Alanine Scan of the Main Protease Active Site in Severe Acute Respiratory Syndrome Coronavirus 2. Int J Mol Sci 2021; 22:ijms22189837. [PMID: 34576002 PMCID: PMC8466562 DOI: 10.3390/ijms22189837] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 08/29/2021] [Accepted: 09/08/2021] [Indexed: 11/17/2022] Open
Abstract
Recently, inhibitors of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) main protease (Mpro) have been proposed as potential therapeutic agents for COVID-19. Studying effects of amino acid mutations in the conformation of drug targets is necessary for anticipating drug resistance. In this study, with the structure of the SARS-CoV-2 Mpro complexed with a non-covalent inhibitor, we performed molecular dynamics (MD) simulations to determine the conformation of the complex when single amino acid residue in the active site is mutated. As a model of amino acid mutation, we constructed mutant proteins with one residue in the active site mutated to alanine. This method is called virtual alanine scan. The results of the MD simulations showed that the conformation and configuration of the ligand was changed for mutants H163A and E166A, although the structure of the whole protein and of the catalytic dyad did not change significantly, suggesting that mutations in His163 and Glu166 may be linked to drug resistance.
Collapse
|
31
|
Dowarah J, Marak BN, Yadav UCS, Singh VP. Potential drug development and therapeutic approaches for clinical intervention in COVID-19. Bioorg Chem 2021; 114:105016. [PMID: 34144277 PMCID: PMC8143914 DOI: 10.1016/j.bioorg.2021.105016] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 05/20/2021] [Indexed: 01/25/2023]
Abstract
While the vaccination is now available to many countries and will slowly dissipate to others, effective therapeutics for COVID-19 is still illusive. The SARS-CoV-2 pandemic has posed an unprecedented challenge to researchers, scientists, and clinicians and affected the wellbeing of millions of people worldwide. Since the beginning of the pandemic, a multitude of existing anti-viral, antibiotic, antimalarial, and anticancer drugs have been tested, and some have shown potency in the treatment and management of COVID-19, albeit others failed to leave any positive impact and a few also became controversial as they showed mixed clinical outcomes. In the present article, we have brought together some of the candidate therapeutic drugs being repurposed or used in the clinical trials and discussed their clinical efficacy and safety for COVID-19.
Collapse
Affiliation(s)
- Jayanta Dowarah
- Department of Chemistry, School of Physical Sciences, Mizoram University, Aizawl 796004, Mizoram, India
| | - Brilliant N Marak
- Department of Chemistry, School of Physical Sciences, Mizoram University, Aizawl 796004, Mizoram, India
| | | | - Ved Prakash Singh
- Department of Chemistry, School of Physical Sciences, Mizoram University, Aizawl 796004, Mizoram, India; Department of Industrial Chemistry, School of Physical Sciences, Mizoram University, Aizawl 796004, Mizoram, India.
| |
Collapse
|
32
|
Migliorini F, Torsiello E, Spiezia F, Oliva F, Tingart M, Maffulli N. Association between HLA genotypes and COVID-19 susceptibility, severity and progression: a comprehensive review of the literature. Eur J Med Res 2021; 26:84. [PMID: 34344463 PMCID: PMC8329616 DOI: 10.1186/s40001-021-00563-1] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 07/27/2021] [Indexed: 01/08/2023] Open
Abstract
The COVID-19 pandemic has markedly impacted on cultural, political, and economic structures all over the world. Several aspects of its pathogenesis and related clinical consequences have not yet been elucidated. Infection rates, as well morbidity and mortality differed within countries. It is intriguing for scientists to understand how patient genetics may influence the outcome of the condition, to clarify which aspects could be related the clinical variability of SARS-CoV-2 disease. We reviewed the studies exploring the role of human leukocyte antigens (HLA) genotypes on individual responses to SARS-CoV-2 infection and/or progression, discussing also the contribution of the immunological patterns MHC-related. In March 2021, the main online databases were accessed. All the articles that investigated the possible association between the HLA genotypes and related polymorphisms with susceptibility, severity and progression of COVID-19 were considered. Although both genetic and environmental factors are certainly expected to influence the susceptibility to or protection of individuals, the HLA and related polymorphisms can influence susceptibility, progression and severity of SARS-CoV-2 infection. The crucial role played by HLA molecules in the immune response, especially through pathogen-derived peptide presentation, and the huge molecular variability of HLA alleles in the human populations could be responsible for the different rates of infection and the different patients following COVID-19 infection.
Collapse
Affiliation(s)
- Filippo Migliorini
- Department of Orthopaedic and Trauma Surgery, RWTH University Hospital, Pauwelsstraße 30, 52074, Aachen, Germany.
| | - Ernesto Torsiello
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081, Baronissi, SA, Italy
| | - Filippo Spiezia
- Ospedale San Carlo Potenza, Via Potito Petrone, 85100, Potenza, Italy
| | - Francesco Oliva
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081, Baronissi, SA, Italy
| | - Markus Tingart
- Department of Orthopaedic and Trauma Surgery, RWTH University Hospital, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Nicola Maffulli
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081, Baronissi, SA, Italy
- Faculty of Medicine, School of Pharmacy and Bioengineering, Keele University, Thornburrow Drive, Stoke on Trent, England
- Barts and the London School of Medicine and Dentistry, Centre for Sports and Exercise Medicine, Mile End Hospital, Queen Mary University of London, 275 Bancroft Road, London, E1 4DG, England
| |
Collapse
|
33
|
Ragone C, Meola S, Fiorillo PC, Penta R, Auriemma L, Tornesello ML, Miscio L, Cavalcanti E, Botti G, Buonaguro FM, Bianchi A, Buonaguro L, Tagliamonte M. HLA Does Not Impact on Short-Medium-Term Antibody Response to Preventive Anti-SARS-Cov-2 Vaccine. Front Immunol 2021; 12:734689. [PMID: 34386018 PMCID: PMC8353253 DOI: 10.3389/fimmu.2021.734689] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 07/12/2021] [Indexed: 11/13/2022] Open
Abstract
The response to anti-SARS-Cov-2 preventive vaccine shows high interpersonal variability at short and medium term. One of the explanations might be the individual HLA allelic variants. Indeed, B cell response is stimulated and sustained by CD4+ T helper cells activated by antigens presented by HLA-class II alleles on antigen-presenting cells (APCs). The impact of the number of antigens binding to HLA class-II alleles on the antibody response to the COVID vaccine has been assessed in a cohort of 56 healthcare workers who received the full schedule of the Pfizer-BioNTech BNT162b2 vaccine. Such vaccine is based on the entire spike protein of the SARS-CoV-2. Ab titers have been evaluated 2 weeks after the first dose as well as 2 weeks and 4 months after the boosting dose. HLA-DRB1 and DBQ1 for each of the vaccinees have been assessed, and strong binders have been predicted. The analysis showed no significant correlation between the short-medium-term Ab titers and the number of strong binders (SB) for each individual. These results indicate that levels of Ab response to the spike glycoprotein is not dependent on HLA class II allele, suggesting an equivalent efficacy at global level of the currently used vaccines. Furthermore, the pattern of persistence in Ab titer does not correlate with specific alleles or with the number of SBs.
Collapse
Affiliation(s)
- Concetta Ragone
- Innovative Immunological Models Unit, Istituto Nazionale per lo Studio e la Cura dei Tumori, “Fondazione Pascale”—IRCCS, Naples, Italy
| | - Serena Meola
- Laboratory Medicine Unit, Istituto Nazionale per lo Studio e la Cura dei Tumori, “Fondazione Pascale”—IRCCS, Naples, Italy
| | - Pasqualina C. Fiorillo
- Laboratory Medicine Unit, Istituto Nazionale per lo Studio e la Cura dei Tumori, “Fondazione Pascale”—IRCCS, Naples, Italy
| | - Roberta Penta
- Ba.S.C.O. Unit, Cellular Manipulation and Immunogenetics, Oncology Department, AORN Santobono-Pausilipon, Naples, Italy
| | - Laura Auriemma
- Ba.S.C.O. Unit, Cellular Manipulation and Immunogenetics, Oncology Department, AORN Santobono-Pausilipon, Naples, Italy
| | - Maria Lina Tornesello
- Molecular Biology and Viral Oncogenesis Unit, Istituto Nazionale per lo Studio e la Cura dei Tumori, “Fondazione Pascale”—IRCCS, Naples, Italy
| | - Leonardo Miscio
- Medical Direction, Istituto Nazionale per lo Studio e la Cura dei Tumori, “Fondazione Pascale”—IRCCS, Naples, Italy
| | - Ernesta Cavalcanti
- Laboratory Medicine Unit, Istituto Nazionale per lo Studio e la Cura dei Tumori, “Fondazione Pascale”—IRCCS, Naples, Italy
| | - Gerardo Botti
- Scientific Direction, Istituto Nazionale per lo Studio e la Cura dei Tumori, “Fondazione Pascale”—IRCCS, Naples, Italy
| | - Franco M. Buonaguro
- Molecular Biology and Viral Oncogenesis Unit, Istituto Nazionale per lo Studio e la Cura dei Tumori, “Fondazione Pascale”—IRCCS, Naples, Italy
| | - Attilio Bianchi
- General Direction, Istituto Nazionale per lo Studio e la Cura dei Tumori, “Fondazione Pascale”—IRCCS, Naples, Italy
| | - Luigi Buonaguro
- Innovative Immunological Models Unit, Istituto Nazionale per lo Studio e la Cura dei Tumori, “Fondazione Pascale”—IRCCS, Naples, Italy
| | - Maria Tagliamonte
- Innovative Immunological Models Unit, Istituto Nazionale per lo Studio e la Cura dei Tumori, “Fondazione Pascale”—IRCCS, Naples, Italy
| |
Collapse
|
34
|
Bestetti RB, Furlan-Daniel R, Silva VMR. Pharmacological Treatment of Patients with Mild to Moderate COVID-19: A Comprehensive Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:7212. [PMID: 34281149 PMCID: PMC8297311 DOI: 10.3390/ijerph18137212] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/27/2021] [Accepted: 06/30/2021] [Indexed: 01/10/2023]
Abstract
Mild to moderate COVID-19 can be found in about 80% of patients. Although mortality is low, mild to moderate COVID-19 may progress to severe or even critical stages in about one week. This poses a substantial burden on the health care system, and ultimately culminates in death or incapacitation and hospitalization. Therefore, pharmacological treatment is paramount for patients with this condition, especially those with recognized risk factors to disease progression. We conducted a comprehensive review in the medical literature searching for randomized studies carried out in patients with mild to moderate COVID-19. A total of 14 randomized studies were identified, enrolling a total of 6848 patients. Nine studies (64%) were randomized, placebo-controlled trials, whereas five were open-label randomized trials (35%). We observed that Bamlanivimab and nitazoxanide reduced viral load, whereas ivermectin may have shortened time to viral clearance; Interferon Beta-1 reduced time to viral clearance and vitamin D reduced viral load; Favirapir, peginterferon, and levamisole improved clinical symptoms, whereas fluvoxamine halted disease progression; inhaled budesonide reduced the number of hospitalizations and visits to emergency departments; colchicine reduced the number of deaths and hospitalizations. Collectively, therefore, these findings show that treatment of early COVID-19 may be associated with reduced viral load, thus potentially decreasing disease spread in the community. Moreover, treatment of patients with mild to moderate COVID-19 may also be associated with improved clinical symptoms, hospitalization, and disease progression. We suggest that colchicine, inhaled budesonide, and nitazoxanide, along with nonpharmacological measures, based on efficacy and costs, may be used to mitigate the effects of the COVID-19 pandemic in middle-income countries.
Collapse
Affiliation(s)
- Reinaldo B. Bestetti
- Department of Medicine, University of Ribeirão Preto, 2201 Costabile Romano, Ribeirão Preto 14096-385, Brazil; (R.F.-D.); (V.M.R.S.)
| | | | | |
Collapse
|
35
|
Ahsan R, Tahsili MR, Ebrahimi F, Ebrahimie E, Ebrahimi M. Image processing unravels the evolutionary pattern of SARS-CoV-2 against SARS and MERS through position-based pattern recognition. Comput Biol Med 2021; 134:104471. [PMID: 34004573 PMCID: PMC8106241 DOI: 10.1016/j.compbiomed.2021.104471] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/27/2021] [Accepted: 05/02/2021] [Indexed: 12/16/2022]
Abstract
SARS-COV-2, Severe Acute Respiratory Syndrome (SARS), and the Middle East respiratory syndrome-related coronavirus (MERS) viruses are from the coronaviridae family; the former became a global pandemic (with low mortality rate) while the latter were confined to a limited region (with high mortality rates). To investigate the possible structural differences at basic levels for the three viruses, genomic and proteomic sequences were downloaded and converted to polynomial datasets. Seven attribute weighting (feature selection) models were employed to find the key differences in their genome's nucleotide sequence. Most attribute weighting models selected the final nucleotide sequences (from 29,000th nucleotide positions to the end of the genome) as significantly different among the three virus classes. The genome and proteome sequences of this hot zone area (which corresponds to the 3'UTR region and encodes for nucleoprotein (N)) and Spike (S) protein sequences (as the most important viral protein) were converted into binary images and were analyzed by image processing techniques and Convolutional deep Neural Network (CNN). Although the predictive accuracy of CNN for Spike (S) proteins was low (0.48%), the machine-based learning algorithms were able to classify the three members of coronaviridae viruses with 100% accuracy based on 3'UTR region. For the first time ever, the relationship between the possible structural differences of coronaviruses at the sequential levels and their pathogenesis are being reported, which paves the road to deciphering the high pathogenicity of the SARS-COV-2 virus.
Collapse
Affiliation(s)
- Reza Ahsan
- Department of Computer Engineering, Qom Branch, Islamic Azad University, Qom, Iran
| | | | - Faezeh Ebrahimi
- Faculty of Life Sciences and Biotechnology, Department of Microbiology and Microbial Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Esmaeil Ebrahimie
- Genomics Research Platform, School of Life Sciences, College of Science, Health and Engineering, La Trobe University, Melbourne, Victoria, 3086, Australia,School of Animal and Veterinary Sciences, The University of Adelaide, South Australia, 5371, Australia
| | - Mansour Ebrahimi
- Department of Biology, School of Basic Sciences, University of Qom, Qom, Iran,School of Animal and Veterinary Sciences, The University of Adelaide, South Australia, 5371, Australia,Corresponding author. Department of Biology, School of Basic Sciences, University of Qom, Qom, Iran
| |
Collapse
|
36
|
Elghoneimy LK, Ismail MI, Boeckler FM, Azzazy HME, Ibrahim TM. Facilitating SARS CoV-2 RNA-Dependent RNA polymerase (RdRp) drug discovery by the aid of HCV NS5B palm subdomain binders: In silico approaches and benchmarking. Comput Biol Med 2021; 134:104468. [PMID: 34015671 PMCID: PMC8111889 DOI: 10.1016/j.compbiomed.2021.104468] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 04/25/2021] [Accepted: 04/30/2021] [Indexed: 01/18/2023]
Abstract
Corona Virus 2019 Disease (COVID-19) is a rapidly emerging pandemic caused by a newly discovered beta coronavirus, called Sever Acute Respiratory Syndrome Coronavirus 2 (SARS CoV-2). SARS CoV-2 is an enveloped, single stranded RNA virus that depends on RNA-dependent RNA polymerase (RdRp) to replicate. Therefore, SARS CoV-2 RdRp is considered as a promising target to cease virus replication. SARS CoV-2 polymerase shows high structural similarity to Hepatitis C Virus-1b genotype (HCV-1b) polymerase. Arising from the high similarity between SARS CoV-2 RdRp and HCV NS5B, we utilized the reported small-molecule binders to the palm subdomain of HCV NS5B (genotype 1b) to generate a high-quality DEKOIS 2.0 benchmark set and conducted a benchmarking analysis against HCV NS5B. The three highly cited and publicly available docking tools AutoDock Vina, FRED and PLANTS were benchmarked. Based on the benchmarking results and analysis via pROC-Chemotype plot, PLANTS showed the best screening performance and can recognize potent binders at the early enrichment. Accordingly, we used PLANTS in a prospective virtual screening to repurpose both the FDA-approved drugs (DrugBank) and the HCV-NS5B palm subdomain binders (BindingDB) for SARS CoV-2 RdRp palm subdomain. Further assessment by molecular dynamics simulations for 50 ns recommended diosmin (from DrugBank) and compound 3 (from BindingDB) to be the best potential binders to SARS CoV-2 RdRp palm subdomain. The best predicted compounds are recommended to be biologically investigated against COVID-19. In conclusion, this work provides in-silico analysis to propose possible SARS CoV-2 RdRp palm subdomain binders recommended as a remedy for COVID-19. Up-to-our knowledge, this study is the first to propose binders at the palm subdomain of SARS CoV2 RdRp. Furthermore, this study delivers an example of how to make use of a high quality custom-made DEKOIS 2.0 benchmark set as a procedure to elevate the virtual screening success rate against a vital target of the rapidly emerging pandemic.
Collapse
Affiliation(s)
- Laila K Elghoneimy
- Department of Chemistry, School of Sciences and Engineering, American University in Cairo, AUC Avenue, SSE # 1184, P.O. Box 74, New Cairo, 11835, Egypt
| | - Muhammad I Ismail
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The British University in Egypt, Al-Sherouk City, Cairo-Suez Desert Road, 11837, Cairo, Egypt
| | - Frank M Boeckler
- Department of Pharmacy, Eberhard-Karls University, Auf der Morgenstelle 8, 72076, Tuebingen, Germany
| | - Hassan M E Azzazy
- Department of Chemistry, School of Sciences and Engineering, American University in Cairo, AUC Avenue, SSE # 1184, P.O. Box 74, New Cairo, 11835, Egypt
| | - Tamer M Ibrahim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt.
| |
Collapse
|
37
|
Madru C, Tekpinar AD, Rosario S, Czernecki D, Brûlé S, Sauguet L, Delarue M. Fast and efficient purification of SARS-CoV-2 RNA dependent RNA polymerase complex expressed in Escherichia coli. PLoS One 2021; 16:e0250610. [PMID: 33914787 PMCID: PMC8084133 DOI: 10.1371/journal.pone.0250610] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 04/09/2021] [Indexed: 01/18/2023] Open
Abstract
To stop the COVID-19 pandemic due to the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), which caused more than 2.5 million deaths to date, new antiviral molecules are urgently needed. The replication of SARS-CoV-2 requires the RNA-dependent RNA polymerase (RdRp), making RdRp an excellent target for antiviral agents. RdRp is a multi-subunit complex composed of 3 viral proteins named nsp7, nsp8 and nsp12 that ensure the ~30 kb RNA genome’s transcription and replication. The main strategies employed so far for the overproduction of RdRp consist of expressing and purifying the three subunits separately before assembling the complex in vitro. However, nsp12 shows limited solubility in bacterial expression systems and is often produced in insect cells. Here, we describe an alternative strategy to co-express the full SARS-CoV-2 RdRp in E. coli, using a single plasmid. Characterization of the purified recombinant SARS-CoV-2 RdRp shows that it forms a complex with the expected (nsp7)(nsp8)2(nsp12) stoichiometry. RNA polymerization activity was measured using primer-extension assays showing that the purified enzyme is functional. The purification protocol can be achieved in one single day, surpassing in speed all other published protocols. Our construct is ideally suited for screening RdRp and its variants against very large chemical compounds libraries and has been made available to the scientific community through the Addgene plasmid depository (Addgene ID: 165451).
Collapse
Affiliation(s)
- Clément Madru
- Unit of Structural Dynamics of Macromolecules, Institut Pasteur & CNRS UMR, Paris, France
| | - Ayten Dizkirici Tekpinar
- Unit of Structural Dynamics of Macromolecules, Institut Pasteur & CNRS UMR, Paris, France
- Department of Molecular Biology and Genetics, Faculty of Science, Van Yüzüncü Yıl University, Van, Turkey
| | - Sandrine Rosario
- Unit of Structural Dynamics of Macromolecules, Institut Pasteur & CNRS UMR, Paris, France
| | - Dariusz Czernecki
- Unit of Structural Dynamics of Macromolecules, Institut Pasteur & CNRS UMR, Paris, France
- École Doctorale Complexité du Vivant, Sorbonne Université, Paris, France
| | - Sébastien Brûlé
- Molecular Biophysics Platform, C2RT, Institut Pasteur, CNRS UMR, Paris, France
| | - Ludovic Sauguet
- Unit of Structural Dynamics of Macromolecules, Institut Pasteur & CNRS UMR, Paris, France
- * E-mail: (LS); (MD)
| | - Marc Delarue
- Unit of Structural Dynamics of Macromolecules, Institut Pasteur & CNRS UMR, Paris, France
- * E-mail: (LS); (MD)
| |
Collapse
|
38
|
Rapid and unamplified identification of COVID-19 with morpholino-modified graphene field-effect transistor nanosensor. Biosens Bioelectron 2021; 183:113206. [PMID: 33823464 PMCID: PMC8008786 DOI: 10.1016/j.bios.2021.113206] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/16/2021] [Accepted: 03/26/2021] [Indexed: 12/23/2022]
Abstract
SARS-CoV-2 RNA is identified as a pivotal player to bolster energizing zones of COVID-19 detection. Herein, we develop a rapid and unamplified nanosensing platform for detection of SARS-CoV-2 RNA in human throat swab specimens. A gold nanoparticle (AuNP)-decorated graphene field-effect transistor (G-FET) sensor was fabricated, after which complementary phosphorodiamidate morpholino oligos (PMO) probe was immobilized on the AuNP surface. This sensor allowed for highly sensitive testing of SARS-CoV-2 RdRp as PMO does not have charges, leading to low background signal. Not only did the method present a low limit of detection in PBS (0.37 fM), throat swab (2.29 fM), and serum (3.99 fM), but also it achieved a rapid response to COVID-19 patients’ samples within 2 min. The developed nanosensor was capable of analyzing RNA extracts from 30 real clinical samples. The results show that the sensor could differentiate the healthy people from infected people, which are in high agreement with RT-PCR results (Kappa index = 0.92). Furthermore, a well-defined distinction between SARS-CoV-2 RdRp and SARS-CoV RdRp was also made. Therefore, we believe that this work provides a satisfactory, attractive option for COVID-19 diagnosis.
Collapse
|
39
|
Tian L, Qiang T, Liang C, Ren X, Jia M, Zhang J, Li J, Wan M, YuWen X, Li H, Cao W, Liu H. RNA-dependent RNA polymerase (RdRp) inhibitors: The current landscape and repurposing for the COVID-19 pandemic. Eur J Med Chem 2021; 213:113201. [PMID: 33524687 PMCID: PMC7826122 DOI: 10.1016/j.ejmech.2021.113201] [Citation(s) in RCA: 133] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/14/2020] [Accepted: 01/12/2021] [Indexed: 02/06/2023]
Abstract
The widespread nature of several viruses is greatly credited to their rapidly altering RNA genomes that enable the infection to persist despite challenges presented by host cells. Within the RNA genome of infections is RNA-dependent RNA polymerase (RdRp), which is an essential enzyme that helps in RNA synthesis by catalysing the RNA template-dependent development of phosphodiester bonds. Therefore, RdRp is an important therapeutic target in RNA virus-caused diseases, including SARS-CoV-2. In this review, we describe the promising RdRp inhibitors that have been launched or are currently in clinical studies for the treatment of RNA virus infections. Structurally, nucleoside inhibitors (NIs) bind to the RdRp protein at the enzyme active site, and nonnucleoside inhibitors (NNIs) bind to the RdRp protein at allosteric sites. By reviewing these inhibitors, more precise guidelines for the development of more promising anti-RNA virus drugs should be set, and due to the current health emergency, they will eventually be used for COVID-19 treatment.
Collapse
Affiliation(s)
- Lei Tian
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, PR China; Faculty of Pharmacy, Shaanxi University of Science & Technology, Xi'an, 710021, PR China
| | - Taotao Qiang
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, PR China
| | - Chengyuan Liang
- Faculty of Pharmacy, Shaanxi University of Science & Technology, Xi'an, 710021, PR China.
| | - Xiaodong Ren
- Medical College, Guizhou University, Guiyang, 550025, PR China.
| | - Minyi Jia
- Faculty of Pharmacy, Shaanxi University of Science & Technology, Xi'an, 710021, PR China
| | - Jiayun Zhang
- Faculty of Pharmacy, Shaanxi University of Science & Technology, Xi'an, 710021, PR China
| | - Jingyi Li
- Faculty of Pharmacy, Shaanxi University of Science & Technology, Xi'an, 710021, PR China
| | - Minge Wan
- School of Medicine and Pharmacy, Shaanxi University of Business & Commerce, Xi'an, 712046, PR China
| | - Xin YuWen
- Faculty of Pharmacy, Shaanxi University of Science & Technology, Xi'an, 710021, PR China
| | - Han Li
- Faculty of Pharmacy, Shaanxi University of Science & Technology, Xi'an, 710021, PR China
| | - Wenqiang Cao
- Zhuhai Jinan Selenium Source Nanotechnology Co., Ltd., Hengqin New Area, Zhuhai, 519030, PR China.
| | - Hong Liu
- Zhuhai Jinan Selenium Source Nanotechnology Co., Ltd., Hengqin New Area, Zhuhai, 519030, PR China.
| |
Collapse
|
40
|
M RK, Gideon DA, Mariadasse R, Nirusimhan V, A SR, Edward JC, Jeyaraman J, Dhayabaran V. In silico evaluation of isatin-based derivatives with RNA-dependent RNA polymerase of the novel coronavirus SARS-CoV-2. J Biomol Struct Dyn 2021; 40:6710-6724. [PMID: 33615998 DOI: 10.1080/07391102.2021.1890223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Isatin (1H-indole-2,3-dione)-containing compounds have been shown to possess several remarkable biological activities. We had previously explored a few isatin-based imidazole derivatives for their predicted dual activity against both inflammation and cancer. We explored 47 different isatin-based derivatives (IBDs) for other potential biological activities using in silico tools and found them to possess anti-viral activity. Using AutoDock tools, the binding site, binding energy, inhibitory constant/Ki and receptor-ligand interactions for each of the compounds were analyzed against SARS-CoV-2 RNA-dependent RNA polymerase (RdRp). The partition coefficient (logP) values were predicted using MedChem Designer tool. Based on the best Ki, binding energy and the ideal range of logP (between 1.0 and 3.0), 10 out of total 47 compounds were deemed to be prospective RdRp inhibitors. Some of these compounds gave better Ki, binding energy and logP values when compared to standard RdRp inhibitors, such as remdesivir (REM) (Ki = 15.61 μM, logP = 2.2; binding energy = -6.95), a clinically approved RdRp inhibitor and nine other RdRp inhibitors. The results showed that the 10 selected IBDs could be further explored. Molecular dynamics simulations (MDSs) showed that the selected RdRp-IBD complexes were highly stable compared to the native RdRp and RdRp-REM complex during 100 ns time periods. DFT studies were performed for the compounds 16a, 24a, 28a, 38a and 40a, to evaluate the charge transfer mechanism for the interactions between the IBDs and the RdRp residues. Among these, ADME profiling revealed that 28a is a possible lead compound which can be explored further for anti-RdRp activity in vitro. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Rajesh Kumar M
- Department of Chemistry, Bishop Heber College (Autonomous), Tiruchirappalli, India
| | - Daniel A Gideon
- Department of Biotechnology & Bioinformatics, Bishop Heber College (Autonomous), Tiruchirappalli, India
| | | | - Vijay Nirusimhan
- Department of Biotechnology & Bioinformatics, Bishop Heber College (Autonomous), Tiruchirappalli, India
| | - Sherlin Rosita A
- Department of Biotechnology & Bioinformatics, Bishop Heber College (Autonomous), Tiruchirappalli, India
| | - Jesu Castin Edward
- Department of Biotechnology & Bioinformatics, Bishop Heber College (Autonomous), Tiruchirappalli, India
| | | | - Violet Dhayabaran
- Department of Chemistry, Bishop Heber College (Autonomous), Tiruchirappalli, India
| |
Collapse
|
41
|
Naydenova K, Muir KW, Wu LF, Zhang Z, Coscia F, Peet MJ, Castro-Hartmann P, Qian P, Sader K, Dent K, Kimanius D, Sutherland JD, Löwe J, Barford D, Russo CJ. Structure of the SARS-CoV-2 RNA-dependent RNA polymerase in the presence of favipiravir-RTP. Proc Natl Acad Sci U S A 2021; 118:e2021946118. [PMID: 33526596 PMCID: PMC7896311 DOI: 10.1073/pnas.2021946118] [Citation(s) in RCA: 133] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The RNA polymerase inhibitor favipiravir is currently in clinical trials as a treatment for infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), despite limited information about the molecular basis for its activity. Here we report the structure of favipiravir ribonucleoside triphosphate (favipiravir-RTP) in complex with the SARS-CoV-2 RNA-dependent RNA polymerase (RdRp) bound to a template:primer RNA duplex, determined by electron cryomicroscopy (cryoEM) to a resolution of 2.5 Å. The structure shows clear evidence for the inhibitor at the catalytic site of the enzyme, and resolves the conformation of key side chains and ions surrounding the binding pocket. Polymerase activity assays indicate that the inhibitor is weakly incorporated into the RNA primer strand, and suppresses RNA replication in the presence of natural nucleotides. The structure reveals an unusual, nonproductive binding mode of favipiravir-RTP at the catalytic site of SARS-CoV-2 RdRp, which explains its low rate of incorporation into the RNA primer strand. Together, these findings inform current and future efforts to develop polymerase inhibitors for SARS coronaviruses.
Collapse
Affiliation(s)
- Katerina Naydenova
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| | - Kyle W Muir
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| | - Long-Fei Wu
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| | - Ziguo Zhang
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| | - Francesca Coscia
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| | - Mathew J Peet
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| | - Pablo Castro-Hartmann
- Materials and Structural Analysis, Thermo Fisher Scientific, 5651 GG Eindhoven, The Netherlands
| | - Pu Qian
- Materials and Structural Analysis, Thermo Fisher Scientific, 5651 GG Eindhoven, The Netherlands
| | - Kasim Sader
- Materials and Structural Analysis, Thermo Fisher Scientific, 5651 GG Eindhoven, The Netherlands
| | - Kyle Dent
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| | - Dari Kimanius
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| | - John D Sutherland
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom;
| | - Jan Löwe
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom;
| | - David Barford
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom;
| | - Christopher J Russo
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom;
| |
Collapse
|
42
|
Borbone N, Piccialli G, Roviello GN, Oliviero G. Nucleoside Analogs and Nucleoside Precursors as Drugs in the Fight against SARS-CoV-2 and Other Coronaviruses. Molecules 2021; 26:986. [PMID: 33668428 PMCID: PMC7918729 DOI: 10.3390/molecules26040986] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/08/2021] [Accepted: 02/10/2021] [Indexed: 01/18/2023] Open
Abstract
Coronaviruses (CoVs) are positive-sense RNA enveloped viruses, members of the family Coronaviridae, that cause infections in a broad range of mammals including humans. Several CoV species lead to mild upper respiratory infections typically associated with common colds. However, three human CoV (HCoV) species: Severe Acute Respiratory Syndrome (SARS)-CoV-1, Middle East Respiratory Syndrome (MERS)-CoV, and SARS-CoV-2, are responsible for severe respiratory diseases at the origin of two recent epidemics (SARS and MERS), and of the current COronaVIrus Disease 19 (COVID-19), respectively. The easily transmissible SARS-CoV-2, emerging at the end of 2019 in China, spread rapidly worldwide, leading the World Health Organization (WHO) to declare COVID-19 a pandemic. While the world waits for mass vaccination, there is an urgent need for effective drugs as short-term weapons to combat the SARS-CoV-2 infection. In this context, the drug repurposing approach is a strategy able to guarantee positive results rapidly. In this regard, it is well known that several nucleoside-mimicking analogs and nucleoside precursors may inhibit the growth of viruses providing effective therapies for several viral diseases, including HCoV infections. Therefore, this review will focus on synthetic nucleosides and nucleoside precursors active against different HCoV species, paying great attention to SARS-CoV-2. This work covers progress made in anti-CoV therapy with nucleoside derivatives and provides insight into their main mechanisms of action.
Collapse
Affiliation(s)
- Nicola Borbone
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy; (N.B.); (G.P.)
| | - Gennaro Piccialli
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy; (N.B.); (G.P.)
| | | | - Giorgia Oliviero
- Department of Molecular Medicine and Medical Biotechnologies, University of Napoli Federico II, Via Sergio Pansini 5, 80131 Naples, Italy;
| |
Collapse
|
43
|
Junior NN, Santos IA, Meireles BA, Nicolau MSP, Lapa IR, Aguiar RS, Jardim ACG, José DP. In silico evaluation of lapachol derivatives binding to the Nsp9 of SARS-CoV-2. J Biomol Struct Dyn 2021; 40:5917-5931. [PMID: 33478342 PMCID: PMC7832454 DOI: 10.1080/07391102.2021.1875050] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
SARS-CoV-2 is the etiological agent of COVID-19, which represents a global health emergency that was rapidly declared a pandemic by the World Health Organization. Currently, there is a dearth of effective targeted therapies against viruses. Natural products isolated from traditional herbal plants have had a huge impact on drug development aimed at various diseases. Lapachol is a 1,4- naphthoquinone compound that has been demonstrated to have therapeutic effects against several diseases. SARS-CoV-2 non-structural proteins (nsps) play an important role in the viral replication cycle. Nsp9 seems to play a key role in transcription of the RNA genome of SARS-CoV-2. Virtual screening by docking and molecular dynamics suggests that lapachol derivatives can interact with Nsp9 from SARS-CoV-2. Complexes of lapachol derivatives V, VI, VIII, IX, and XI with the Nsp9 RNA binding site were subjected to molecular dynamics assays, to assess the stability of the complexes via RMSD. All complexes were stable over the course of 100 ns dynamics assays. Analyses of the hydrogen bonds in the complexes showed that lapachol derivatives VI and IX demonstrated strongest binding, with a stable or increasing number of hydrogen bonds over time. Our results demonstrate that Nsp9 from SARS-CoV-2 could be an important target in prospecting for ligands with antiviral potential. In addition, we showed that lapachol derivatives are potential ligands for SARS-CoV-2 Nsp9. Communicated by Ramaswamy H. Sarma
Collapse
Affiliation(s)
- Nilson Nicolau Junior
- Laboratory of Molecular Modeling, Institute of Biotechnology, Federal University of Uberlândia, Uberlândia, Brazil
| | - Igor Andrade Santos
- Laboratory of Virology, Institute of Biomedical Science, ICBIM, Federal University of Uberlândia, Uberlândia, Brazil
| | - Bruno Amaral Meireles
- Campus Universitário de Iturama, Federal University of Triângulo Mineiro, Iturama, MG, Brazil
| | | | - Igor Rodrigues Lapa
- Campus Universitário de Iturama, Federal University of Triângulo Mineiro, Iturama, MG, Brazil
| | - Renato Santana Aguiar
- Laboratory of Integrative Biology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Ana Carolina Gomes Jardim
- Laboratory of Virology, Institute of Biomedical Science, ICBIM, Federal University of Uberlândia, Uberlândia, Brazil
| | - Diego Pandeló José
- Campus Universitário de Iturama, Federal University of Triângulo Mineiro, Iturama, MG, Brazil
| |
Collapse
|
44
|
Abstract
Nucleotide analogs are the cornerstone of direct acting antivirals used to control infection by RNA viruses. Here we review what is known about existing nucleotide/nucleoside analogs and the kinetics and mechanisms of RNA and DNA replication, with emphasis on the SARS-CoV-2 RNA dependent RNA polymerase (RdRp) in comparison to HIV reverse transcriptase and Hepatitis C RdRp. We demonstrate how accurate kinetic analysis reveals surprising results to explain the effectiveness of antiviral nucleoside analogs providing guidelines for the design of new inhibitors.
Collapse
|
45
|
Updated insight into COVID-19 disease and health management to combat the pandemic. ENVIRONMENTAL AND HEALTH MANAGEMENT OF NOVEL CORONAVIRUS DISEASE (COVID-19 ) 2021. [PMCID: PMC8237642 DOI: 10.1016/b978-0-323-85780-2.00017-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes COVID-19 disease in humans and is the responsible viral agent for the currently ongoing pandemic. Early cases of COVID-19 were reported from Wuhan, Hubei province of China, the likely birthplace of this outbreak. Currently, over 92 million people in the globe are actively battling this virus, and over 2 million individuals have already succumbed to the disease. The high human-to-human transmission capacity of the virus is among the primary causes for such a rapid global spread of COVID-19. In humans, it causes acute to severe respiratory distress in the form of pneumonia. The presentation of clinical features of the disease ranges from mild in healthy adults to severe among individuals with weakened or immunocompromised immune systems and the elderly. Thus, increasing patient cases of COVID-19 warrants a growing demand for medical attention that is eventually overburdening our health care systems. Rapid detection of COVID-19 in suspected individuals and isolation are among the crucial intervention norms in health management strategies to control the COVID-19 pandemic, in addition to strict observance of public hygienic practices such as reduced public gathering, use of facial masks, and practicing of social distancing. This chapter provides an overview of the epidemiology of COVID-19 and the current classical health management strategies and issues to tackle this pandemic. It particularly highlights the role of standard as well as novel biomolecular diagnostic techniques as a tool for successful implementation of such public safety measures issued by medical policy makers and the governing bodies.
Collapse
|
46
|
Sampath Kumar NS, Chintagunta AD, Jeevan Kumar SP, Roy S, Kumar M. Immunotherapeutics for Covid-19 and post vaccination surveillance. 3 Biotech 2020; 10:527. [PMID: 33200061 PMCID: PMC7656197 DOI: 10.1007/s13205-020-02522-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 10/28/2020] [Indexed: 01/11/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus (SARS-CoV-2) has emerged as a pandemic and named as novel coronavirus disease (nCOVID-19). SARS-CoV-2 is different from other known viruses due to multiple mutations on the sites of nonstructural proteins (NSP) 2 and 3, and the varying nature of virulence between different persons. Immunotherapies such as vaccines and monoclonal antibodies have a protective effect on the patients bringing them to the front of the line of potential treatments. The present review intends to cover the development of 20 different vaccine candidates categorized under live attenuated vaccines, inactivated vaccines, subunit vaccines, viral vector-based vaccines, and nucleic acid vaccines. Formulation of these vaccine candidates by various companies in collaboration with global organizations and their status of clinical trials were addressed. On the other hand, various approaches for post-vaccination surveillance using nucleic acid and protein biomarkers imbued on suitable platforms were also highlighted to sum up the immune therapeutics for Covid-19.
Collapse
Affiliation(s)
- N. S. Sampath Kumar
- Department of Biotechnology, Vignan’s Foundation for Science, Technology and Research, Vadlamudi, Andhra Pradesh 522213 India
| | - Anjani Devi Chintagunta
- Department of Biotechnology, Vignan’s Foundation for Science, Technology and Research, Vadlamudi, Andhra Pradesh 522213 India
| | - S. P. Jeevan Kumar
- Department of Seed Biotechnology, ICAR-Indian Institute of Seed Science, Mau, Uttar Pradesh 275103 India
| | - Sharmili Roy
- Department of Medicine (Oncology), Stanford University, Stanford, CA 94305 USA
| | - Mahesh Kumar
- Department of Biochemistry, College of Agriculture, Central Agricultural University, Pasighat, Arunachal Pradesh 791102 India
| |
Collapse
|
47
|
Yung YL, Cheng CK, Chan HY, Xia JT, Lau KM, Wong RSM, Wu AKL, Chu RW, Wong ACC, Chow EYD, Yip SF, Leung JNS, Lee CK, Ng MHL. Association of HLA-B22 serotype with SARS-CoV-2 susceptibility in Hong Kong Chinese patients. HLA 2020; 97:127-132. [PMID: 33179437 PMCID: PMC7898481 DOI: 10.1111/tan.14135] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/14/2020] [Accepted: 11/04/2020] [Indexed: 12/11/2022]
Abstract
The coronavirus disease 2019 (COVID‐19) is a highly infectious disease caused by SARS‐CoV‐2. Since its first report in December 2019, COVID‐19 has evolved into a global pandemic causing massive healthcare and socioeconomic challenges. HLA system is critical in mediating anti‐viral immunity and recent studies have suggested preferential involvement of HLA‐B in COVID‐19 susceptibility. Here, by investigating the HLA‐B genotypes in 190 unrelated Chinese patients with confirmed COVID‐19, we identified a significant positive association between the B22 serotype and SARS‐CoV‐2 infection (p = 0.002, Bonferroni‐corrected p = 0.032). Notably, the B22 serotype has been consistently linked to susceptibility to other viral infections. These data not only shed new insights into SARS‐CoV‐2 pathogenesis and vaccine development but also guide better infection prevention/control.
Collapse
Affiliation(s)
- Yuk-Lin Yung
- Blood Cancer Cytogenetics and Genomics Laboratory, Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Chi-Keung Cheng
- Blood Cancer Cytogenetics and Genomics Laboratory, Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Hoi-Yun Chan
- Blood Cancer Cytogenetics and Genomics Laboratory, Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Jenny T Xia
- Blood Cancer Cytogenetics and Genomics Laboratory, Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Kin-Mang Lau
- Blood Cancer Cytogenetics and Genomics Laboratory, Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Raymond S M Wong
- Department of Medicine and Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China.,Sir Y. K. Pao Centre for Cancer, Prince of Wales Hospital, Hong Kong, China
| | - Alan K L Wu
- Department of Clinical Pathology, Pamela Youde Nethersole Eastern Hospital, Hong Kong, China
| | - Raymond W Chu
- Department of Clinical Pathology, Pamela Youde Nethersole Eastern Hospital, Hong Kong, China
| | - Alice C C Wong
- Department of Pathology, United Christian Hospital, Hong Kong, China
| | - Eudora Y D Chow
- Department of Pathology, United Christian Hospital, Hong Kong, China
| | - Sze-Fai Yip
- Department of Medicine, Tuen Mun Hospital, Hong Kong, China
| | | | - Cheuk-Kwong Lee
- Hong Kong Red Cross Blood Transfusion Service, Hong Kong, China
| | - Margaret H L Ng
- Blood Cancer Cytogenetics and Genomics Laboratory, Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China.,State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
48
|
Ju J, Li X, Kumar S, Jockusch S, Chien M, Tao C, Morozova I, Kalachikov S, Kirchdoerfer RN, Russo JJ. Nucleotide analogues as inhibitors of SARS-CoV Polymerase. Pharmacol Res Perspect 2020; 8:e00674. [PMID: 33124786 PMCID: PMC7596664 DOI: 10.1002/prp2.674] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/14/2020] [Accepted: 09/21/2020] [Indexed: 01/18/2023] Open
Abstract
SARS-CoV-2, a member of the coronavirus family, has caused a global public health emergency. Based on our analysis of hepatitis C virus and coronavirus replication, and the molecular structures and activities of viral inhibitors, we previously reasoned that the FDA-approved hepatitis C drug EPCLUSA (Sofosbuvir/Velpatasvir) should inhibit coronaviruses, including SARS-CoV-2. Here, using model polymerase extension experiments, we demonstrate that the active triphosphate form of Sofosbuvir is incorporated by low-fidelity polymerases and SARS-CoV RNA-dependent RNA polymerase (RdRp), and blocks further incorporation by these polymerases; the active triphosphate form of Sofosbuvir is not incorporated by a host-like high-fidelity DNA polymerase. Using the same molecular insight, we selected 3'-fluoro-3'-deoxythymidine triphosphate and 3'-azido-3'-deoxythymidine triphosphate, which are the active forms of two other anti-viral agents, Alovudine and AZT (an FDA-approved HIV/AIDS drug) for evaluation as inhibitors of SARS-CoV RdRp. We demonstrate the ability of two of these HIV reverse transcriptase inhibitors to be incorporated by SARS-CoV RdRp where they also terminate further polymerase extension. Given the 98% amino acid similarity of the SARS-CoV and SARS-CoV-2 RdRps, we expect these nucleotide analogues would also inhibit the SARS-CoV-2 polymerase. These results offer guidance to further modify these nucleotide analogues to generate more potent broad-spectrum anti-coronavirus agents.
Collapse
Affiliation(s)
- Jingyue Ju
- Center for Genome Technology and Biomolecular EngineeringColumbia UniversityNew YorkNew YorkUSA
- Department of Chemical EngineeringColumbia UniversityNew YorkNYUSA
- Department of Molecular Pharmacology and TherapeuticsColumbia UniversityNew YorkNYUSA
| | - Xiaoxu Li
- Center for Genome Technology and Biomolecular EngineeringColumbia UniversityNew YorkNew YorkUSA
- Department of Chemical EngineeringColumbia UniversityNew YorkNYUSA
| | - Shiv Kumar
- Center for Genome Technology and Biomolecular EngineeringColumbia UniversityNew YorkNew YorkUSA
- Department of Chemical EngineeringColumbia UniversityNew YorkNYUSA
| | - Steffen Jockusch
- Center for Genome Technology and Biomolecular EngineeringColumbia UniversityNew YorkNew YorkUSA
- Department of ChemistryColumbia UniversityNew YorkNYUSA
| | - Minchen Chien
- Center for Genome Technology and Biomolecular EngineeringColumbia UniversityNew YorkNew YorkUSA
- Department of Chemical EngineeringColumbia UniversityNew YorkNYUSA
| | - Chuanjuan Tao
- Center for Genome Technology and Biomolecular EngineeringColumbia UniversityNew YorkNew YorkUSA
- Department of Chemical EngineeringColumbia UniversityNew YorkNYUSA
| | - Irina Morozova
- Center for Genome Technology and Biomolecular EngineeringColumbia UniversityNew YorkNew YorkUSA
- Department of Chemical EngineeringColumbia UniversityNew YorkNYUSA
| | - Sergey Kalachikov
- Center for Genome Technology and Biomolecular EngineeringColumbia UniversityNew YorkNew YorkUSA
- Department of Chemical EngineeringColumbia UniversityNew YorkNYUSA
| | - Robert N. Kirchdoerfer
- Department of BiochemistryUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
- Institute of Molecular VirologyUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - James J. Russo
- Center for Genome Technology and Biomolecular EngineeringColumbia UniversityNew YorkNew YorkUSA
- Department of Chemical EngineeringColumbia UniversityNew YorkNYUSA
| |
Collapse
|
49
|
Buonaguro FM, Botti G, Ascierto PA, Pignata S, Ionna F, Delrio P, Petrillo A, Cavalcanti E, Di Bonito M, Perdonà S, De Laurentiis M, Fiore F, Palaia R, Izzo F, D'Auria S, Rossi V, Menegozzo S, Piccirillo M, Celentano E, Cuomo A, Normanno N, Tornesello ML, Saviano R, Barberio D, Buonaguro L, Giannoni G, Muto P, Miscio L, Bianchi AAM. The clinical and translational research activities at the INT - IRCCS "Fondazione Pascale" cancer center (Naples, Italy) during the COVID-19 pandemic. Infect Agent Cancer 2020; 15:69. [PMID: 33292365 PMCID: PMC7681193 DOI: 10.1186/s13027-020-00330-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 10/01/2020] [Indexed: 01/19/2023] Open
Abstract
COVID-19 pandemic following the outbreak in China and Western Europe, where it finally lost the momentum, is now devastating North and South America. It has not been identified the reason and the molecular mechanisms of the two different patterns of the pulmonary host responses to the virus from a minimal disease in young subjects to a severe distress syndrome (ARDS) in older subjects, particularly those with previous chronic diseases (including diabetes) and cancer. The Management of the Istituto Nazionale Tumori - IRCCS "Fondazione Pascale" in Naples (INT-Pascale), along with all Health professionals decided not to interrupt the treatment of those hospitalized and to continue, even if after a careful triage in order not to allow SARS-CoV-2 positive subjects to access, to take care of cancer patients with serious conditions. Although very few (n = 3) patients developed a symptomatic COVID-19 and required the transfer to a COVID-19 area of the Institute, no patients died during the hospitalization and completed their oncology treatment. Besides monitoring of the patients, all employees of the Institute (physicians, nurses, researchers, lawyers, accountants, gatekeepers, guardians, janitors) have been tested for a possible exposure. Personnel identified as positive, has been promptly subjected to home quarantine and subdued to health surveillance. One severe case of respiratory distress has been reported in a positive employees and one death of a family member. Further steps to home monitoring of COVID-19 clinical course have been taken with the development of remote Wi-Fi connected digital devices for the detection of early signs of respiratory distress, including heart rate and oxygen saturation.In conclusion cancer care has been performed and continued safely also during COVID-19 pandemic and further remote home strategies are in progress to ensure the appropriate monitoring of cancer patients.
Collapse
Affiliation(s)
| | - Gerardo Botti
- Istituto Nazionale Tumori IRCCS Fondazione Pascale, Naples, Italy
| | | | - Sandro Pignata
- Istituto Nazionale Tumori IRCCS Fondazione Pascale, Naples, Italy
| | - Franco Ionna
- Istituto Nazionale Tumori IRCCS Fondazione Pascale, Naples, Italy
| | - Paolo Delrio
- Istituto Nazionale Tumori IRCCS Fondazione Pascale, Naples, Italy
| | | | | | | | - Sisto Perdonà
- Istituto Nazionale Tumori IRCCS Fondazione Pascale, Naples, Italy
| | | | - Francesco Fiore
- Istituto Nazionale Tumori IRCCS Fondazione Pascale, Naples, Italy
| | - Raffaele Palaia
- Istituto Nazionale Tumori IRCCS Fondazione Pascale, Naples, Italy
| | - Francesco Izzo
- Istituto Nazionale Tumori IRCCS Fondazione Pascale, Naples, Italy
| | - Stefania D'Auria
- Istituto Nazionale Tumori IRCCS Fondazione Pascale, Naples, Italy
| | - Virginia Rossi
- Istituto Nazionale Tumori IRCCS Fondazione Pascale, Naples, Italy
| | - Simona Menegozzo
- Istituto Nazionale Tumori IRCCS Fondazione Pascale, Naples, Italy
| | - Mauro Piccirillo
- Istituto Nazionale Tumori IRCCS Fondazione Pascale, Naples, Italy
| | - Egidio Celentano
- Istituto Nazionale Tumori IRCCS Fondazione Pascale, Naples, Italy
| | - Arturo Cuomo
- Istituto Nazionale Tumori IRCCS Fondazione Pascale, Naples, Italy
| | - Nicola Normanno
- Istituto Nazionale Tumori IRCCS Fondazione Pascale, Naples, Italy
| | | | - Rocco Saviano
- Istituto Nazionale Tumori IRCCS Fondazione Pascale, Naples, Italy
| | - Daniela Barberio
- Istituto Nazionale Tumori IRCCS Fondazione Pascale, Naples, Italy
| | - Luigi Buonaguro
- Istituto Nazionale Tumori IRCCS Fondazione Pascale, Naples, Italy
| | | | - Paolo Muto
- Istituto Nazionale Tumori IRCCS Fondazione Pascale, Naples, Italy
| | - Leonardo Miscio
- Istituto Nazionale Tumori IRCCS Fondazione Pascale, Naples, Italy
| | | |
Collapse
|
50
|
Efficacy and safety of favipiravir, an oral RNA-dependent RNA polymerase inhibitor, in mild-to-moderate COVID-19: A randomized, comparative, open-label, multicenter, phase 3 clinical trial. Int J Infect Dis 2020; 103:62-71. [PMID: 33212256 PMCID: PMC7668212 DOI: 10.1016/j.ijid.2020.11.142] [Citation(s) in RCA: 181] [Impact Index Per Article: 36.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 10/28/2020] [Accepted: 11/08/2020] [Indexed: 12/20/2022] Open
Abstract
Objective To assess the efficacy and safety of favipiravir in adults with mild-to-moderate coronavirus disease 2019 (COVID-19). Methods In this randomized, open-label, parallel-arm, multicenter, phase 3 trial, adults (18–75 years) with RT-PCR confirmed COVID-19 and mild-to-moderate symptoms (including asymptomatic) were randomized 1:1 to oral favipiravir (day 1: 1800 mg BID and days 2−14: 800 mg BID) plus standard supportive care versus supportive care alone. The primary endpoint was time to the cessation of viral shedding; time to clinical cure was also measured. Results From May 14 to July 3, 2020, 150 patients were randomized to favipiravir (n = 75) or control (n = 75). Median time to the cessation of viral shedding was 5 days (95% CI: 4 days, 7 days) versus 7 days (95% CI: 5 days, 8 days), P = 0.129, and median time to clinical cure was 3 days (95% CI: 3 days, 4 days) versus 5 days (95% CI: 4 days, 6 days), P = 0.030, for favipiravir and control, respectively. Adverse events were observed in 36% of favipiravir and 8% of control patients. One control patient died due to worsening disease. Conclusion The lack of statistical significance on the primary endpoint was confounded by limitations of the RT-PCR assay. Significant improvement in time to clinical cure suggests favipiravir may be beneficial in mild-to-moderate COVID-19.
Collapse
|