1
|
Franco-Fuquen P, Figueroa-Aguirre J, Martínez DA, Moreno-Cortes EF, Garcia-Robledo JE, Vargas-Cely F, Castro-Martínez DA, Almaini M, Castro JE. Cellular therapies in rheumatic and musculoskeletal diseases. J Transl Autoimmun 2025; 10:100264. [PMID: 39931050 PMCID: PMC11808717 DOI: 10.1016/j.jtauto.2024.100264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/12/2024] [Accepted: 12/13/2024] [Indexed: 02/13/2025] Open
Abstract
A substantial proportion of patients diagnosed with rheumatologic and musculoskeletal diseases (RMDs) exhibit resistance to conventional therapies or experience recurrent symptoms. These diseases, which include autoimmune disorders such as multiple sclerosis, rheumatoid arthritis, and systemic lupus erythematosus, are marked by the presence of autoreactive B cells that play a critical role in their pathogenesis. The persistence of these autoreactive B cells within lymphatic organs and inflamed tissues impairs the effectiveness of B-cell-depleting monoclonal antibodies like rituximab. A promising therapeutic approach involves using T cells genetically engineered to express chimeric antigen receptors (CARs) that target specific antigens. This strategy has demonstrated efficacy in treating B-cell malignancies by achieving long-term depletion of malignant and normal B cells. Preliminary data from patients with RMDs, particularly those with lupus erythematosus and dermatomyositis, suggest that CAR T-cells targeting CD19 can induce rapid and sustained depletion of circulating B cells, leading to complete clinical and serological responses in cases that were previously unresponsive to conventional therapies. This review will provide an overview of the current state of preclinical and clinical studies on the use of CAR T-cells and other cellular therapies for RMDs. Additionally, it will explore potential future applications of these innovative treatment modalities for managing patients with refractory and recurrent manifestations of these diseases.
Collapse
Affiliation(s)
- Pedro Franco-Fuquen
- Division of Hematology and Medical Oncology, Mayo Clinic, Phoenix, AZ, USA
- Cancer Research and Cellular Therapies Laboratory, Mayo Clinic, Phoenix, AZ, USA
| | - Juana Figueroa-Aguirre
- Division of Hematology and Medical Oncology, Mayo Clinic, Phoenix, AZ, USA
- Cancer Research and Cellular Therapies Laboratory, Mayo Clinic, Phoenix, AZ, USA
| | - David A. Martínez
- Division of Hematology and Medical Oncology, Mayo Clinic, Phoenix, AZ, USA
- Cancer Research and Cellular Therapies Laboratory, Mayo Clinic, Phoenix, AZ, USA
| | - Eider F. Moreno-Cortes
- Division of Hematology and Medical Oncology, Mayo Clinic, Phoenix, AZ, USA
- Cancer Research and Cellular Therapies Laboratory, Mayo Clinic, Phoenix, AZ, USA
| | - Juan E. Garcia-Robledo
- Division of Hematology and Medical Oncology, Mayo Clinic, Phoenix, AZ, USA
- Cancer Research and Cellular Therapies Laboratory, Mayo Clinic, Phoenix, AZ, USA
| | - Fabio Vargas-Cely
- Division of Hematology and Medical Oncology, Mayo Clinic, Phoenix, AZ, USA
- Cancer Research and Cellular Therapies Laboratory, Mayo Clinic, Phoenix, AZ, USA
| | | | - Mustafa Almaini
- Rheumatology, Allergy & Clinical Immunology Division, Mafraq Hospital, United Arab Emirates
| | - Januario E. Castro
- Division of Hematology and Medical Oncology, Mayo Clinic, Phoenix, AZ, USA
- Cancer Research and Cellular Therapies Laboratory, Mayo Clinic, Phoenix, AZ, USA
| |
Collapse
|
2
|
Cheng Y, Gong Y, Li X, Zeng F, Liu B, Chen W, Zhang F, Chen H, Zhu W, Li H, Zhou L, Wu T, Zhou W. A spreadable self-gelling hemostatic powder sensitizes CAR-NK cell therapy to prevent hepatocellular carcinoma recurrence postresection. J Nanobiotechnology 2025; 23:353. [PMID: 40380326 PMCID: PMC12082949 DOI: 10.1186/s12951-025-03424-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Accepted: 04/30/2025] [Indexed: 05/19/2025] Open
Abstract
Adoptive natural killer cell therapy (ANKCT) harbors great potential for combating postsurgical hepatocellular carcinoma (HCC) recurrence, but its efficacy is limited by tumor microenvironment (TME)-meditated repression on NK cell function and insufficient NK cell homing to tumor sites. Therefore, herein we develop a nanocomposite sprayable self-gelling powder enabling liver-localized codelivery of three FDA-approved drugs including calcitriol (Cal), gemcitabine (Gem), and tazemetostat (Taz) to address these challenges. This powder can be laparoscopically spread to liver wound sites, where it rapidly absorbs interfacial liquid to form a bulk adhesive pressure-resistant hydrogel in situ, implying its application potential in minimally surgery. Moreover, its application to liver resection bed significantly sensitizes allogenic NK and EpCAM chimeric antigen receptor modified-NK-92 (EpCAM-CAR-NK) cell infusion to prevent HCC recurrence in orthotopic Heap1-6 tumor-bearing and patient-derived tumor xenograft (PDX) HCC murine models. Additionally, this powder can allow for an effective hemostatic effect in rat and porcine models due to its powerful tissue adhesion-seal and erythrocyte-aggregating effects. Altogether, our newly developed hemostatic self-gelling powder can significantly sensitize ANKCT to combat HCC recurrence in a manner compatible with surgical treatment of HCC.
Collapse
Affiliation(s)
- Yusheng Cheng
- The Second Clinical Medical School of Lanzhou University, Lanzhou, 730000, China
- Department of General Surgery, Department of Biotherapy, Lanzhou University Second Hospital, Lanzhou, 730000, China
- Gansu Province Precision Diagnosis and Treatment Engineering Research Center of Hepatobiliary Pancreatic Diseases, Gansu Province Key Laboratory of Environmental Oncology, Lanzhou, 730000, China
| | - Yihang Gong
- Department of Hepatic Surgery and Liver Transplantation Center, Organ Transplantation Institute, Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, 510630, China
- Guangdong Key Laboratory of Liver Disease Research, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Xin Li
- The Second Clinical Medical School of Lanzhou University, Lanzhou, 730000, China
- Department of General Surgery, Department of Biotherapy, Lanzhou University Second Hospital, Lanzhou, 730000, China
- Gansu Province Precision Diagnosis and Treatment Engineering Research Center of Hepatobiliary Pancreatic Diseases, Gansu Province Key Laboratory of Environmental Oncology, Lanzhou, 730000, China
| | - Fanxin Zeng
- Department of Hepatic Surgery and Liver Transplantation Center, Organ Transplantation Institute, Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, 510630, China
- Guangdong Key Laboratory of Liver Disease Research, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Bo Liu
- The Second Clinical Medical School of Lanzhou University, Lanzhou, 730000, China
- Department of General Surgery, Department of Biotherapy, Lanzhou University Second Hospital, Lanzhou, 730000, China
- Gansu Province Precision Diagnosis and Treatment Engineering Research Center of Hepatobiliary Pancreatic Diseases, Gansu Province Key Laboratory of Environmental Oncology, Lanzhou, 730000, China
| | - Wenjie Chen
- Biotherapy Centre & Cell-gene Therapy Translational Medicine Research Centre, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Feng Zhang
- Biotherapy Centre & Cell-gene Therapy Translational Medicine Research Centre, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Haofei Chen
- Gansu Province Precision Diagnosis and Treatment Engineering Research Center of Hepatobiliary Pancreatic Diseases, Gansu Province Key Laboratory of Environmental Oncology, Lanzhou, 730000, China
| | - Weixiong Zhu
- The Second Clinical Medical School of Lanzhou University, Lanzhou, 730000, China
| | - Hui Li
- Department of Hepatobiliary Pancreatic Tumor Center, Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, 400030, China.
| | - Lei Zhou
- Guangzhou Key Laboratory of Spine Disease Prevention and Treatment, Department of Orthopaedic Surgery, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China.
| | - Tiangen Wu
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, PR China.
- Hubei Provincial Clinical Research Center for Minimally Invasive Diagnosis and Treatment of Hepatobiliary and Pancreatic Diseases, Wuhan, Hubei, 430071, PR China.
| | - Wence Zhou
- The Second Clinical Medical School of Lanzhou University, Lanzhou, 730000, China.
- Department of General Surgery, Department of Biotherapy, Lanzhou University Second Hospital, Lanzhou, 730000, China.
- Gansu Province Precision Diagnosis and Treatment Engineering Research Center of Hepatobiliary Pancreatic Diseases, Gansu Province Key Laboratory of Environmental Oncology, Lanzhou, 730000, China.
| |
Collapse
|
3
|
Peng L, Renauer PA, Sferruzza G, Yang L, Zou Y, Fang Z, Park JJ, Chow RD, Zhang Y, Lin Q, Bai M, Sanchez A, Zhang Y, Lam SZ, Ye L, Chen S. In vivo AAV-SB-CRISPR screens of tumor-infiltrating primary NK cells identify genetic checkpoints of CAR-NK therapy. Nat Biotechnol 2025; 43:752-761. [PMID: 38918616 PMCID: PMC11668911 DOI: 10.1038/s41587-024-02282-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 05/10/2024] [Indexed: 06/27/2024]
Abstract
Natural killer (NK) cells have clinical potential against cancer; however, multiple limitations hinder the success of NK cell therapy. Here, we performed unbiased functional mapping of tumor-infiltrating NK (TINK) cells using in vivo adeno-associated virus (AAV)-SB (Sleeping Beauty)-CRISPR (clustered regularly interspaced short palindromic repeats) screens in four solid tumor mouse models. In parallel, we characterized single-cell transcriptomic landscapes of TINK cells, which identified previously unexplored subpopulations of NK cells and differentially expressed TINK genes. As a convergent hit, CALHM2-knockout (KO) NK cells showed enhanced cytotoxicity and tumor infiltration in mouse primary NK cells and human chimeric antigen receptor (CAR)-NK cells. CALHM2 mRNA reversed the CALHM2-KO phenotype. CALHM2 KO in human primary NK cells enhanced their cytotoxicity, degranulation and cytokine production. Transcriptomics profiling revealed CALHM2-KO-altered genes and pathways in both baseline and stimulated conditions. In a solid tumor model resistant to unmodified CAR-NK cells, CALHM2-KO CAR-NK cells showed potent in vivo antitumor efficacy. These data identify endogenous genetic checkpoints that naturally limit NK cell function and demonstrate the use of CALHM2 KO for engineering enhanced NK cell-based immunotherapies.
Collapse
Affiliation(s)
- Lei Peng
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- System Biology Institute, Yale University, West Haven, CT, USA
- Center for Cancer Systems Biology, Yale University, West Haven, CT, USA
| | - Paul A Renauer
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- System Biology Institute, Yale University, West Haven, CT, USA
- Center for Cancer Systems Biology, Yale University, West Haven, CT, USA
- Combined Program in the Biological and Biomedical Sciences, Yale University, New Haven, CT, USA
- Molecular Cell Biology, Genetics, and Development Program, Yale University, New Haven, CT, USA
| | - Giacomo Sferruzza
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- System Biology Institute, Yale University, West Haven, CT, USA
- Center for Cancer Systems Biology, Yale University, West Haven, CT, USA
| | - Luojia Yang
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- System Biology Institute, Yale University, West Haven, CT, USA
- Center for Cancer Systems Biology, Yale University, West Haven, CT, USA
- Combined Program in the Biological and Biomedical Sciences, Yale University, New Haven, CT, USA
- Molecular Cell Biology, Genetics, and Development Program, Yale University, New Haven, CT, USA
| | - Yongji Zou
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- System Biology Institute, Yale University, West Haven, CT, USA
- Center for Cancer Systems Biology, Yale University, West Haven, CT, USA
| | - Zhenghao Fang
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- System Biology Institute, Yale University, West Haven, CT, USA
- Center for Cancer Systems Biology, Yale University, West Haven, CT, USA
| | - Jonathan J Park
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- System Biology Institute, Yale University, West Haven, CT, USA
- Center for Cancer Systems Biology, Yale University, West Haven, CT, USA
- Combined Program in the Biological and Biomedical Sciences, Yale University, New Haven, CT, USA
- Molecular Cell Biology, Genetics, and Development Program, Yale University, New Haven, CT, USA
- M.D.-Ph.D. Program, Yale University, West Haven, CT, USA
| | - Ryan D Chow
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- System Biology Institute, Yale University, West Haven, CT, USA
- Center for Cancer Systems Biology, Yale University, West Haven, CT, USA
- Combined Program in the Biological and Biomedical Sciences, Yale University, New Haven, CT, USA
- Molecular Cell Biology, Genetics, and Development Program, Yale University, New Haven, CT, USA
- M.D.-Ph.D. Program, Yale University, West Haven, CT, USA
| | - Yueqi Zhang
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- System Biology Institute, Yale University, West Haven, CT, USA
- Center for Cancer Systems Biology, Yale University, West Haven, CT, USA
| | - Qianqian Lin
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- System Biology Institute, Yale University, West Haven, CT, USA
- Center for Cancer Systems Biology, Yale University, West Haven, CT, USA
| | - Meizhu Bai
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- System Biology Institute, Yale University, West Haven, CT, USA
- Center for Cancer Systems Biology, Yale University, West Haven, CT, USA
| | - Angelica Sanchez
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- System Biology Institute, Yale University, West Haven, CT, USA
- Center for Cancer Systems Biology, Yale University, West Haven, CT, USA
- Yale College, Yale University, New Haven, CT, USA
| | - Yongzhan Zhang
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- System Biology Institute, Yale University, West Haven, CT, USA
- Center for Cancer Systems Biology, Yale University, West Haven, CT, USA
| | - Stanley Z Lam
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- System Biology Institute, Yale University, West Haven, CT, USA
- Center for Cancer Systems Biology, Yale University, West Haven, CT, USA
| | - Lupeng Ye
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA.
- System Biology Institute, Yale University, West Haven, CT, USA.
- Center for Cancer Systems Biology, Yale University, West Haven, CT, USA.
- Nanjing University, Nanjing, China.
| | - Sidi Chen
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA.
- System Biology Institute, Yale University, West Haven, CT, USA.
- Center for Cancer Systems Biology, Yale University, West Haven, CT, USA.
- Combined Program in the Biological and Biomedical Sciences, Yale University, New Haven, CT, USA.
- Molecular Cell Biology, Genetics, and Development Program, Yale University, New Haven, CT, USA.
- M.D.-Ph.D. Program, Yale University, West Haven, CT, USA.
- Immunobiology Program, Yale University, New Haven, CT, USA.
- Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, CT, USA.
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT, USA.
- Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT, USA.
- Yale Liver Center, Yale University School of Medicine, New Haven, CT, USA.
- Yale Center for Biomedical Data Science, Yale University School of Medicine, New Haven, CT, USA.
- Yale Center for RNA Science and Medicine, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
4
|
Fan X, Brunetti TM, Jackson K, Roop DR. Single-Cell Profiling Reveals Global Immune Responses During the Progression of Murine Epidermal Neoplasms. Cancers (Basel) 2025; 17:1379. [PMID: 40282557 PMCID: PMC12025564 DOI: 10.3390/cancers17081379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 04/01/2025] [Accepted: 04/11/2025] [Indexed: 04/29/2025] Open
Abstract
BACKGROUND/OBJECTIVES Immune cells determine the role of the tumor microenvironment during tumor progression, either suppressing tumor formation or promoting tumorigenesis. This study aimed to fully characterize immune cell responses during skin tumor progression. METHODS Using single-cell RNA sequencing, we analyzed the profile of immune cells in the tumor microenvironment of control mouse skins and skin tumors at the single-cell level. RESULTS We identified 15 CD45+ immune cell clusters, which broadly represent the most functionally characterized immune cell types including macrophages, Langerhans cells (LC), conventional type 1 dendritic cells (cDC1), conventional type 2 dendritic cells (cDC2), migratory/mature dendritic cells (mDC), dendritic epidermal T cells (DETC), dermal γδ T cells (γδT), T cells, regulatory T cells (Tregs), natural killer cells (NK), type 2 innate lymphoid cells (ILC2), neutrophils (Neu), mast cells (Mast), and two proliferating populations (Prolif.1 and Prolif.2). Skin tumor progression reprogramed immune cells and led to a marked increase in the relative percentages of macrophages, cDC2, mDC, Tregs, and Neu. Macrophages, the largest cell cluster of immune cells in skin tumors. In addition, macrophages emerged as the predominant communication 'hub' in skin tumors, highlighting the importance of macrophages during skin tumor progression. In contrast, other immune cell clusters decreased during skin tumor progression, including DETC, γδT, ILC2, and LC. In addition, skin tumor progression dramatically upregulated Jak2/Stat3 expression and the interferon response across various immune cell clusters. Further, skin tumor progression activated T cells and NK cells indicated by elevated expression of IFN-γ and Granzyme B in skin tumors. Meanwhile, a pronounced infiltration of M2-macrophages and Tregs in skin tumors created an immunosuppressive microenvironment, consistent with the elevated expression of the Stat3 pathway in skin tumors. CONCLUSIONS Our study elucidates the immune cell landscape of epidermal neoplasms, offering a comprehensive understanding of the immune response during skin tumor progression and providing new insights into cancer immune evasion mechanisms.
Collapse
Affiliation(s)
- Xiying Fan
- Department of Dermatology, University of Colorado Anschutz Medical Campus, 12700 E. 19th Ave., Room 4007, Aurora, CO 80045, USA;
- Gates Institute, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Tonya M. Brunetti
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA;
| | - Kelsey Jackson
- Department of Dermatology, University of Colorado Anschutz Medical Campus, 12700 E. 19th Ave., Room 4007, Aurora, CO 80045, USA;
- Gates Institute, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Dennis R. Roop
- Department of Dermatology, University of Colorado Anschutz Medical Campus, 12700 E. 19th Ave., Room 4007, Aurora, CO 80045, USA;
- Gates Institute, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
5
|
Moazzeni A, Kheirandish M, Khamisipour G, Rahbarizadeh F, Pourfathollah AA. Leukoreduction filter derived NK cells offer a promising source for off the shelf CAR NK cell immunotherapy. Sci Rep 2025; 15:12755. [PMID: 40223011 PMCID: PMC11994799 DOI: 10.1038/s41598-025-97584-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 04/07/2025] [Indexed: 04/15/2025] Open
Abstract
Immunotherapy employing natural killer (NK) cells has emerged as a transformative approach to treating hematological malignancies. The reprogramming of NK cells by incorporating a chimeric antigen receptor (CAR) equipped with potent signaling domains has demonstrated efficacy in enhancing NK cell responses and improving specificity in recognizing cancerous cells. Despite these advancements, the primary challenge in implementing allogeneic NK cell therapy requiring a viable donor source for clinically relevant doses remains unresolved. This study tested NK cells obtained from leukoreduction filters (LRF) post-blood donation to address the need for an efficient and scalable supply of NK cells for generating anti-BCMA CAR NK cells. LRF-NK cells were isolated under sterile conditions and compared with peripheral blood (PB)-derived NK cells in terms of immunophenotype, proliferation capacity, and functional characteristics. Notably, no significant differences in inherent characteristics were observed between LRF-NK and PB-NK cells. Subsequently, both NK cell populations were employed to generate anti-BCMA CAR-NK cells. The data revealed a high specific cytotoxicity of Anti-BCMA CAR LRF-NK cells during co-culture with U266-B1 cells (70.3 ± 4.78%), surpassing that observed with CCRF-CEM cells (31.3 ± 2.35%) and similar to Anti-BCMA CAR PB-NK cells. Furthermore, the expression of IFN-γ and Granzyme B, following the co-culture of Anti-BCMA CAR LRF-NK cells with target cells, mirrored that observed in Anti-BCMA CAR PB-NK cells. This study provides the rationale and feasibility of utilizing LRF-NK cells as a safe, high-yield, accessible, and optimal cost-effective source for cancer immunotherapy.
Collapse
Affiliation(s)
- Ali Moazzeni
- Immunology Department, Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine (IBTO), Hemmat Highway Next to Milad Tower, P.O. Box: 14665-1157, Tehran, Iran
- Department of Hematology, Faculty of Allied Medicine, Bushehr University of Medical Sciences, P.O. Box: 7518759577, Bushehr, Iran
| | - Maryam Kheirandish
- Immunology Department, Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine (IBTO), Hemmat Highway Next to Milad Tower, P.O. Box: 14665-1157, Tehran, Iran.
| | - Gholamreza Khamisipour
- Department of Hematology, Faculty of Allied Medicine, Bushehr University of Medical Sciences, P.O. Box: 7518759577, Bushehr, Iran.
| | - Fatemeh Rahbarizadeh
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ali Akbar Pourfathollah
- Immunology Department, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
- Iranian Blood Transfusion Organization, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| |
Collapse
|
6
|
Aghaee F, Abedinpour M, Anvari S, Saberi A, Fallah A, Bakhshi A. Natural killer cells in multiple sclerosis: foe or friends? Front Cell Neurosci 2025; 19:1500770. [PMID: 40255388 PMCID: PMC12006147 DOI: 10.3389/fncel.2025.1500770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 03/20/2025] [Indexed: 04/22/2025] Open
Abstract
Multiple sclerosis (MS) is an immune-mediated disorder involving the central nervous system (CNS), in which demyelination is caused. The initiation and progression of MS is thought to depend largely on CD4+ T lymphocytes, yet new data has emphasized the involvement of the innate immune system in the MS disease responses. Generally, several types of immune cells play a part, with natural killer (NK) cells being essential. Different subsets of natural killer cells function differently within the course of an autoimmune disease, such as MS. There are mainly two types of natural killers in humans: immature CD56 bright CD16- and mature CD56 dim CD16+ natural killers, together with their respective subtypes. Factors from natural killers expand the T cell population and control the process by which native CD4+ T cells differentiate into Th1 or Th2 lymphocytes, which affect autoimmune responses. Natural killer subsets CD56 bright and CD56 dim may have differing roles in MS development. The impact of these NK cell subsets is influenced by factors such as Granzymes, genetics, infections, TLR, and HSP. We reviewed and evaluated the relationship between natural killer cells and MS.
Collapse
Affiliation(s)
- Fatemeh Aghaee
- Member Research Committee, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Mohammadreza Abedinpour
- Member Research Committee, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Saeid Anvari
- Department of Neurology, Neurosciences Research Center, Poursina Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Alia Saberi
- Department of Internal Medicine, Regenerative Medicine Research Center, Razi Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Amir Fallah
- Member Research Committee, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Arash Bakhshi
- Member Research Committee, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
7
|
Zhang A, Yang X, Zhang Y, Yu X, Mu W, Wei J. Unlocking the Potential of CAR-NK Cell Therapy: Overcoming Barriers and Challenges in the Treatment of Myeloid Malignancies. Mol Cancer Ther 2025; 24:536-549. [PMID: 39834301 DOI: 10.1158/1535-7163.mct-24-0721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 11/07/2024] [Accepted: 01/16/2025] [Indexed: 01/22/2025]
Abstract
Myeloid malignancies include various types of cancers that arise from the abnormal development or proliferation of myeloid cells within the bone marrow. Chimeric antigen receptor (CAR) T cell treatments, which show great potential for B cell and plasma cell cancers, face major challenges when used for myeloid malignancies. CAR natural killer (NK) cell-based immunotherapy encounters several challenges in treating myeloid cancers, including (i) poor gene transfer efficiency and expansion platforms in vitro, (ii) limited proliferation and persistence in vivo, (iii) antigenic heterogeneity, and (iv) an immunosuppressive tumor microenvironment. Despite these hurdles, "off-the-shelf" CAR-NK treatments showed encouraging results, marked by enhanced proliferation, prolonged persistence, enhanced tumor infiltration, and improved adaptability. This review offers a summary of the biological traits and cellular sources of NK cells along with a discussion of contemporary CAR designs. Furthermore, it addresses the challenges observed in preclinical research and clinical trials related to CAR-NK cell therapy for myeloid cancers, suggesting enhancement strategies.
Collapse
Affiliation(s)
- Anqi Zhang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan, China
| | - Xingcheng Yang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan, China
| | - Yicheng Zhang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan, China
- Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Xiaoxuan Yu
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, P. R. China
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, P. R. China
| | - Wei Mu
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan, China
| | - Jia Wei
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan, China
- Department of Hematology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
- Sino-German Joint Oncological Research Laboratory, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, China
| |
Collapse
|
8
|
Yuzhakova D, Sachkova D, Shirmanova M, Shcheslavskiy V, Mozherov A, Dashinimaev E, Baklaushev V, Yusubalieva G. Efficacy Evaluation of "Enhanced" Natural Killers with CISH and B2M Knockouts on Viability and Metabolic Status of 3D Glioblastoma Spheroid Cells in Patients. Sovrem Tekhnologii Med 2025; 17:109-118. [PMID: 40071076 PMCID: PMC11892565 DOI: 10.17691/stm2025.17.1.10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Indexed: 03/14/2025] Open
Abstract
One of the alternative approaches to glioblastoma treatment is cellular immunotherapy based on natural killer cells (NK cells). To enhance their cytotoxic effect on tumor cells, new NK cell lines are being created using genetic engineering techniques. The aim of the study was to evaluate the impact efficacy of "enhanced" NK cells on early metabolic rearrangements and the viability of glioblastoma cells in a patient using a tumor spheroid model. Materials and Methods The study used a primary culture of GBM7-Luc2-mKate2 human glioblastoma, a line of YT (YTwt) wildtype human NK cells, as well as lines created by us with overexpression of VAV1 protein with either CISH (YT-Vav1+CISH-/-) or B2M (YT-Vav1+B2M-/-) knockouts. Tumor spheroids were produced in round-bottomed, low-adhesive plates. 100 thousand immune cells were added to each spheroid, and spheroids viability was evaluated at several time points applying fluorescence staining using a live/dead cell viability assay kit; autofluorescence of metabolic coenzyme nicotinamide adenine dinucleotide (phosphate), or NAD(P)H, was visualized in spheroids using an LSM 880 laser scanning microscope (Carl Zeiss, Germany) with a FLIM module (Becker & Hickl GmbH, Germany). Results It was found that autofluorescence attenuation parameters of NAD(P)H coenzyme in human glioblastoma cells change significantly when exposed to both YT-Vav1+CISH-/- and YT-Vav1+B2M-/-, indicating occurrence of an early metabolic shift in tumor cells towards a less aggressive oxidative phenotype, and this is consistent with dead cells fraction increase and living cells fraction decrease in spheroid composition. Conclusion The data obtained on enhanced cytotoxic activity of new modified NK cell lines against human glioblastoma spheroids are important to understand interaction mechanisms between tumor and immune cells and the development of glioblastoma adoptive cell therapy.
Collapse
Affiliation(s)
- D.V. Yuzhakova
- PhD, Senior Researcher, Laboratory of Genomics of Adaptive Antitumor Immunity, Research Institute of Experimental Oncology and Biomedical Technologies; Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod, 603005, Russia; Senior Researcher, Laboratory of Cellular Technologies; Federal Scientific and Clinical Center of the Federal Medical Biological Agency of Russia, 28 Orekhovy Blvd., Moscow, 115682, Russia
| | - D.A. Sachkova
- Laboratory Assistant, Laboratory of Fluorescent Bioimaging, Research Institute of Experimental Oncology and Biomedical Technologies; Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod, 603005, Russia; PhD Student, Department of Biophysics, Institute of Biology and Biomedicine; National Research Lobachevsky State University of Nizhny Novgorod, 23 Prospekt Gagarina, Nizhny Novgorod, 603022, Russia
| | - M.V. Shirmanova
- PhD, Deputy Director for Science, Research Institute of Experimental Oncology and Biomedical Technologies; Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod, 603005, Russia
| | - V.I. Shcheslavskiy
- DSc, Head of the Laboratory of Optical Spectroscopy and Microscopy, Research Institute of Experimental Oncology and Biomedical Technologies; Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod, 603005, Russia
| | - A.M. Mozherov
- Junior Researcher, Laboratory of Optical Spectroscopy and Microscopy, Research Institute of Experimental Oncology and Biomedical Technologies; Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod, 603005, Russia
| | - E.B. Dashinimaev
- PhD, Acting Head of the Laboratory of Cellular Reprogramming, Research Institute of Translational Medicine; Pirogov Russian National Research Medical University, 1, Bldg. 6, Ostrovityanova St., Moscow, 117513, Russia; Head of the Laboratory of Bioengineering, Research Institute of Molecular and Cellular Medicine; Peoples’ Friendship University of Russia named after Patrice Lumumba, 6 Miklukho-Maklaya St., Moscow, 117198, Russia
| | - V.P. Baklaushev
- MD, DSc, Head of the Biomedical Research Center; Federal Scientific and Clinical Center of the Federal Medical Biological Agency of Russia, 28 Orekhovy Blvd., Moscow, 115682, Russia; Head of the Cell Therapy Development Department; Federal Center of Brain Research and Neurotechnologies of the Federal Medical Biological Agency of Russia, 1, Bldg. 10, Ostrovityanova St., Moscow, 117513, Russia; Head of the Laboratory of Molecular Regeneration Mechanisms; Engelhardt Institute of Molecular Biology of the Russian Academy of Sciences, 32 Vavilov St., Moscow, 119991, Russia
| | - G.M. Yusubalieva
- MD, PhD, Senior Researcher, Laboratory of Cell Technologies; Federal Scientific and Clinical Center of the Federal Medical Biological Agency of Russia, 28 Orekhovy Blvd., Moscow, 115682, Russia; Head of the Laboratory of Solid Tumor Immunotherapy; Federal Center of Brain Research and Neurotechnologies of the Federal Medical Biological Agency of Russia, 1, Bldg. 10, Ostrovityanova St., Moscow, 117513, Russia; Senior Researcher, Laboratory of Molecular Regeneration Mechanisms; Engelhardt Institute of Molecular Biology of the Russian Academy of Sciences, 32 Vavilov St., Moscow, 119991, Russia
| |
Collapse
|
9
|
Wang Y, Casarin S, Daher M, Mohanty V, Dede M, Shanley M, Başar R, Rezvani K, Chen K. Agent-based modeling of cellular dynamics in adoptive cell therapy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.17.638701. [PMID: 40027823 PMCID: PMC11870559 DOI: 10.1101/2025.02.17.638701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Adoptive cell therapies (ACT) leverage tumor-immune interactions to cure cancer. Despite promising phase I/II clinical trials of chimeric-antigen-receptor natural killer (CAR-NK) cell therapies, molecular mechanisms and cellular properties required to achieve clinical benefits in broad cancer spectra remain underexplored. While in vitro and in vivo experiments are required in this endeavor, they are typically expensive, laborious, and limited to targeted investigations. Here, we present ABMACT (Agent-Based Model for Adoptive Cell Therapy), an in silico approach employing agent-based models (ABM) to simulate the continuous course and dynamics of an evolving tumor-immune ecosystem, consisting of heterogeneous "virtual cells" created based on knowledge and omics data observed in experiments and patients. Applying ABMACT in multiple therapeutic context indicates that to achieve optimal ACT efficacy, it is key to enhance immune cellular proliferation, cytotoxicity, and serial killing capacity. With ABMACT, in silico trials can be performed systematically to inform ACT product development and predict optimal treatment strategies.
Collapse
|
10
|
Ghasempour A, Mohseni R, Sharif PM, Hamidieh AA. Natural killer cell-based therapies in neuroblastoma. Cell Immunol 2025; 407:104898. [PMID: 39631142 DOI: 10.1016/j.cellimm.2024.104898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 11/21/2024] [Accepted: 11/23/2024] [Indexed: 12/07/2024]
Abstract
Neuroblastoma (NB) is the most common extracranial solid tumor of childhood forming around 15 % of all pediatric tumors. Despite advances in the treatment of NB, high-risk patients still face a grave prognosis. Adoptive cell therapies based on NK cells are becoming an assistive treatment for such cases. Moreover, there is also evidence that NKT-based therapies have promising results in the management of NB. Lower complications in comparison with adoptive T cell therapies, various cell sources, and miscellaneous tumor recognition mechanisms are some of the advantages of NK- and NKT-based therapies. This review is dedicated to searching for recent advances in this field.
Collapse
Affiliation(s)
- Abtin Ghasempour
- Pediatric Cell and Gene Therapy Research Center, Gene, Cell & Tissue Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Rashin Mohseni
- Pediatric Cell and Gene Therapy Research Center, Gene, Cell & Tissue Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Pouya Mahdavi Sharif
- Pediatric Cell and Gene Therapy Research Center, Gene, Cell & Tissue Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Ali Hamidieh
- Pediatric Cell and Gene Therapy Research Center, Gene, Cell & Tissue Research Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
11
|
Qu Y, Zeng A, Cheng Y, Li S. Natural killer cell memory: challenges and opportunities for cancer immunotherapy. Cancer Biol Ther 2024; 25:2376410. [PMID: 38987282 PMCID: PMC11238922 DOI: 10.1080/15384047.2024.2376410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 07/01/2024] [Indexed: 07/12/2024] Open
Abstract
Substantial advancements have been made in recent years in comprehending immune memory, which enhances the secondary response through prior infections. The ability of vertebrate T and B lymphocytes to exhibit classic recall responses has long been regarded as a distinguishing characteristic. However, natural killer (NK) cells have been found to acquire immunological memory in a manner akin to T and B cells. The fundamental principles derived from the investigation of NK cell memory offer novel insights into innate immunity and have the potential to pave the way for innovative strategies to enhance therapeutic interventions against multiple diseases including cancer. Here, we reviewed the fundamental characteristics, memory development and regulatory mechanism of NK cell memory. Moreover, we will conduct a comprehensive evaluation of the accomplishments, obstacles, and future direction pertaining to the utilization of NK cell memory in the field of cancer immunotherapy.
Collapse
Affiliation(s)
- Yuhua Qu
- Department of Anorectal Surgery, Hospital of Chengdu University of Traditional Chinese Medicine and Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Anhui Zeng
- Department of Anorectal Surgery, Hospital of Chengdu University of Traditional Chinese Medicine and Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yulu Cheng
- Department of Disinfection Supply Center, Hospital of Chengdu University of Traditional Chinese Medicine and Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shengchun Li
- Department of Anorectal Surgery, Hospital of Chengdu University of Traditional Chinese Medicine and Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
12
|
Badran O, Cohen I, Bar-Sela G. The Impact of Iron on Cancer-Related Immune Functions in Oncology: Molecular Mechanisms and Clinical Evidence. Cancers (Basel) 2024; 16:4156. [PMID: 39766056 PMCID: PMC11674619 DOI: 10.3390/cancers16244156] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 12/08/2024] [Accepted: 12/10/2024] [Indexed: 01/11/2025] Open
Abstract
Iron metabolism plays a dual role in cancer, serving as an essential nutrient for cellular functions and a potential catalyst for tumor growth and immune evasion. Here, we cover the complex interplay between iron levels within the serum or in the microenvironment and cancer therapy, focusing on how iron deficiency and overload can impact immune function, tumor progression, and treatment efficacy. On the one hand, we highlight iron deficiency as a factor of primary immune responses and its adverse effects on anti-cancer immunotherapy efficacy. On the other hand, we also stress the impact of iron overload as an essential factor contributing to tumor growth, creating a suppressive tumor microenvironment that hinders immune checkpoint inhibitor immunotherapy. Overall, we emphasize the necessity of the personalized management of iron levels in oncology patients as a critical element in treatment optimization to achieve favorable outcomes. Based on these considerations, we believe that close and careful monitoring and the tailored balancing of iron supplementation strategies should be the subject of further clinical studies, and routine iron management should be implemented in oncology clinical practice and integrated into cancer therapy protocols.
Collapse
Affiliation(s)
- Omar Badran
- Department of Oncology, Emek Medical Center, Afula 1834111, Israel; (O.B.); (I.C.)
- Technion Integrated Cancer Center, Faculty of Medicine, Technion, Haifa 3525422, Israel
| | - Idan Cohen
- Department of Oncology, Emek Medical Center, Afula 1834111, Israel; (O.B.); (I.C.)
| | - Gil Bar-Sela
- Department of Oncology, Emek Medical Center, Afula 1834111, Israel; (O.B.); (I.C.)
- Technion Integrated Cancer Center, Faculty of Medicine, Technion, Haifa 3525422, Israel
| |
Collapse
|
13
|
Pan W, Jia Z, Zhao X, Chang K, Liu W, Tan W. Identification of immunogenic cell death gene-related subtypes and risk model predicts prognosis and response to immunotherapy in ovarian cancer. PeerJ 2024; 12:e18690. [PMID: 39686988 PMCID: PMC11648682 DOI: 10.7717/peerj.18690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024] Open
Abstract
Background Immunogenic cell death (ICD) has been associated with enhanced anti-tumor immunotherapy by stimulating adaptive immune responses and remodeling the immune microenvironment in tumors. Nevertheless, the role of ICD-related genes in ovarian cancer (OC) and tumor microenvironment remains unexplored. Methods In this study, high-throughput transcriptomic data from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases as training and validation sets separately were obtained and proceeded to explore ICD-related clusters, and an ICD-related risk signature was conducted based on the least absolute shrinkage and selection operator (LASSO) Cox regression model by iteration. Multiple tools including CIBERSORT, ESTIMATE, GSEA, TIDE, and immunohistochemistry were further applied to illustrate the biological roles of ICD-related genes as well as the prognostic capacity of ICD risk signature in OC. Results Two ICD-related subtypes were identified, with the ICD-high subtype showing more intense immune cell infiltration and higher activities of immune response signaling, along with a favorable prognosis. Additionally, four candidate ICD genes (IFNG, NLRP3, FOXP3, and IL1B) were determined to potentially impact OC prognosis, with an upregulated expression of NLRP3 in OC and metastatic omental tissues. A prognostic model based on these genes was established, which could predict overall survival (OS) and response to immunotherapy for OC patients, with lower-risk patients benefiting more from immunotherapy. Conclusion Our research conducted a prognostic and prediction of immunotherapy response model based on ICD genes, which could be instrumental in assessing prognosis and assigning immunotherapeutic strategies for OC patients. NLRP3 is a promising target for prognosis in OC.
Collapse
Affiliation(s)
- Wenjing Pan
- Department of Gynecology, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Zhaoyang Jia
- Department of Gynecology, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Xibo Zhao
- Department of Gynecological Oncology, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Sun Yat-Sen University of Medical Sciences, Guangzhou, China
| | - Kexin Chang
- Department of Gynecology Oncology, Harbin Medical University Cancer Hospital, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Wei Liu
- Department of Gynecology, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Wenhua Tan
- Department of Gynecology, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| |
Collapse
|
14
|
Liu Y, Zhang M, Shen X, Xia C, Hu F, Huang D, Weng Q, Zhang Q, Liu L, Zhu Y, Wang L, Hao J, Zhang M, Wang T, Wang J. Mesothelin CAR-engineered NK cells derived from human embryonic stem cells suppress the progression of human ovarian cancer in animals. Cell Prolif 2024; 57:e13727. [PMID: 39136096 PMCID: PMC11628735 DOI: 10.1111/cpr.13727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/10/2024] [Accepted: 07/23/2024] [Indexed: 12/11/2024] Open
Abstract
CAR-NK cell therapy does not require HLA matching and has minimal side effects. However, traditional methods of engineering CARs into human tissue-derived NK cells exhibit heterogeneity, low transduction efficiency, and high manufacturing costs. Here, we provide a reliable approach for generating large-scale and cryopreserved mesothelin (MSLN) CAR-NK cells from human embryonic stem cells (hESCs) as an alternative cell source. We first constructed MSLN CAR-expressing hESCs to reduce CAR engineering costs and subsequently differentiated these stem cells into MSLN CAR-NK cells via an efficient organoid induction system. The MSLN CAR-NK cells exhibit the typical expression patterns of activating receptors, inhibitory receptors, and effector molecules of NK cells. In the presence of tumour cells, the MSLN CAR-NK cells show increased secretion of IFN-γ and TNF-α, as well as elevated CD107a expression level compared with induced NK cells. We cryopreserved the MSLN CAR-NK cells in liquid nitrogen using a clinical-grade freezing medium (CS10) for more than 6 months to mimic an off-the-shelf CAR-NK cell product. The thawed MSLN CAR-NK cells immediately recovered after 48-72-h culture and effectively eliminated ovarian tumour cells, including human primary ovarian tumour cells from patients. The thawed MSLN CAR-NK cells efficiently suppressed ovarian tumour development in vivo and prolonged the survival of tumour-bearing mice. Our study provides insights into the clinical translation of hESC-derived MSLN CAR-NK cells as a promising off-the-shelf cell product.
Collapse
Affiliation(s)
- Yanhong Liu
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of Zoology, Chinese Academy of SciencesBeijingChina
- Beijing Institute for Stem Cell and Regenerative MedicineBeijingChina
| | - Min Zhang
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of Zoology, Chinese Academy of SciencesBeijingChina
- Beijing Institute for Stem Cell and Regenerative MedicineBeijingChina
| | - Xiaoyan Shen
- Department of Obstetrics and GynecologyPeking University People's HospitalBeijingChina
| | - Chengxiang Xia
- Beijing Institute for Stem Cell and Regenerative MedicineBeijingChina
| | - Fangxiao Hu
- Beijing Institute for Stem Cell and Regenerative MedicineBeijingChina
| | - Dehao Huang
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of Zoology, Chinese Academy of SciencesBeijingChina
| | - Qitong Weng
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of Zoology, Chinese Academy of SciencesBeijingChina
| | - Qi Zhang
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of Zoology, Chinese Academy of SciencesBeijingChina
| | - Lijuan Liu
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of Zoology, Chinese Academy of SciencesBeijingChina
- Beijing Institute for Stem Cell and Regenerative MedicineBeijingChina
| | - Yanping Zhu
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of Zoology, Chinese Academy of SciencesBeijingChina
- Beijing Institute for Stem Cell and Regenerative MedicineBeijingChina
| | - Lei Wang
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of Zoology, Chinese Academy of SciencesBeijingChina
- National Stem Cell Resource Center, Chinese Academy of SciencesBeijingChina
| | - Jie Hao
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of Zoology, Chinese Academy of SciencesBeijingChina
- National Stem Cell Resource Center, Chinese Academy of SciencesBeijingChina
| | - Mengyun Zhang
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of Zoology, Chinese Academy of SciencesBeijingChina
- Beijing Institute for Stem Cell and Regenerative MedicineBeijingChina
| | - Tongjie Wang
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of Zoology, Chinese Academy of SciencesBeijingChina
- Beijing Institute for Stem Cell and Regenerative MedicineBeijingChina
| | - Jinyong Wang
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of Zoology, Chinese Academy of SciencesBeijingChina
- Beijing Institute for Stem Cell and Regenerative MedicineBeijingChina
- Lead contact
| |
Collapse
|
15
|
Xu C, Lu Z, Hou G, Zhu M. Exploring the function and prognostic value of RPLP0, RPLP1 and RPLP2 expression in lung adenocarcinoma. J Mol Histol 2024; 55:1079-1091. [PMID: 39207634 PMCID: PMC11567986 DOI: 10.1007/s10735-024-10251-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
Lung adenocarcinoma (LUAD) is the most common subtype of non-small cell lung cancer (NSCLC) and is characterized by its heterogeneity and poor prognosis. The role of ribosomal proteins RPLP0, RPLP1 and RPLP2 in multiple cancers has been implicated. However, their function in LUAD and their correlation with the poor prognosis of LUAD remains elusive. In this study, we performed a comprehensive bioinformatic analysis of the impact of these ribosomal proteins on LUAD. Our findings reveal that RPLP0, RPLP1 and RPLP2 are overexpressed in LUAD, which are likely attributed to abnormal copy number variations and decreased methylation levels of their promoters. LUAD patients with high expression of RPLP0, RPLP1 or RPLP2 have worse clinical outcomes in terms of overall survival (OS), first progression (FP) and post-progression survival (PPS), indicating poor prognosis. Moreover, the expression of RPLP0, RPLP1 and RPLP2 affects immune cell infiltration in LUAD tissues. Finally, we identified multiple existing drugs that may inhibit the expression of RPLP1 and RPLP2. Collectively, our data implicate the oncogenic role of RPLP0, RPLP1 and RPLP2 in LUAD and underscore their prognostic value in LUAD patients.
Collapse
Affiliation(s)
- Chunyan Xu
- Department of Pulmonary and Critical Care Medicine, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, 2800 Gongwei Road, Pudong, Shanghai, China
| | - Zhimin Lu
- Department of Outpatient, The Affiliated Hospital of Jiaxing University, The First Hospital of Jiaxing, Jiaxing, Zhejiang, China
| | - Guoxin Hou
- Department of Oncology, The Affiliated Hospital of Jiaxing University, The First Hospital of Jiaxing, Jiaxing, Zhejiang, China.
| | - Moran Zhu
- Department of Pulmonary and Critical Care Medicine, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, 2800 Gongwei Road, Pudong, Shanghai, China.
| |
Collapse
|
16
|
Kim EH, Teerdhala SV, Padilla MS, Joseph RA, Li JJ, Haley RM, Mitchell MJ. Lipid nanoparticle-mediated RNA delivery for immune cell modulation. Eur J Immunol 2024; 54:e2451008. [PMID: 39279550 PMCID: PMC11628889 DOI: 10.1002/eji.202451008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 08/30/2024] [Accepted: 08/30/2024] [Indexed: 09/18/2024]
Abstract
Lipid nanoparticles (LNPs) have emerged as the preeminent nonviral drug delivery vehicles for nucleic acid therapeutics, as exemplified by their usage in the mRNA COVID-19 vaccines. As a safe and highly modular delivery platform, LNPs are attractive for a wide range of applications. In addition to vaccines, LNPs are being utilized as platforms for other immunoengineering efforts, especially as cancer immunotherapies by modulating immune cells and their functionality via nucleic acid delivery. In this review, we focus on the methods and applications of LNP-based immunotherapy in five cell types: T cells, NK cells, macrophages, stem cells, and dendritic cells. Each of these cell types has wide-reaching applications in immunotherapy but comes with unique challenges and delivery barriers. By combining knowledge of immunology and nanotechnology, LNPs can be developed for improved immune cell targeting and transfection, ultimately working toward novel clinical therapeutics.
Collapse
Affiliation(s)
- Emily H. Kim
- Department of BioengineeringSchool of Engineering and Applied ScienceUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Sridatta V. Teerdhala
- Department of BioengineeringSchool of Engineering and Applied ScienceUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Marshall S. Padilla
- Department of BioengineeringSchool of Engineering and Applied ScienceUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Ryann A. Joseph
- Department of BioengineeringSchool of Engineering and Applied ScienceUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Jacqueline J. Li
- Department of BioengineeringSchool of Engineering and Applied ScienceUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Rebecca M. Haley
- Department of BioengineeringSchool of Engineering and Applied ScienceUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Michael J. Mitchell
- Department of BioengineeringSchool of Engineering and Applied ScienceUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Abramson Cancer CenterPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Center for Cellular ImmunotherapiesPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Penn Institute for RNA InnovationPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Institute for ImmunologyPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Cardiovascular InstitutePerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Institute for Regenerative MedicinePerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| |
Collapse
|
17
|
Dao Nyesiga G, Haslund-Vinding JL, Budde J, Lange JF, Blum N, Dukstaite K, Ohlsson L, Mathiesen T, Woetmann A, Vilhardt F. Flow Cytometry Analyses of Meningioma Immune Cell Composition Using a Short, Optimized Digestion Protocol. Cancers (Basel) 2024; 16:3942. [PMID: 39682129 DOI: 10.3390/cancers16233942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 11/19/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND Current challenges in meningioma treatment, including post-surgical complications and cognitive impairments, highlight the need for new treatment alternatives. Immunological interventions have shown promise. However, there is a knowledge gap in characterizing infiltrating immune cells in meningioma and their interplay. Further studies on immune cells in single-cell suspensions from digested meningioma tissues could identify targetable mechanisms for non-surgical treatment options with fewer side effects. This study aimed to optimize a protocol for faster digestion of meningioma tissues into viable single-cell suspensions and to identify infiltrating immune cell populations. METHODS We modified a commercial kit intended for whole skin dissociation to digest resected meningioma tissues into viable single-cell suspensions. Tumor-infiltrating immune cell populations were characterized using flow cytometry. RESULTS Flow cytometry analyses revealed that the digested tissue was composed of viable immune cells, including predominantly CD14+ macrophages and CD3+ T cells, with minor populations of CD56+ NK cells and CD19+ B cells. In both of the two patient samples tested, half of the tumor-associated macrophages were TIM-3+, with a small proportion co-expressing CD83. Women were more likely to have a lower proportion of immune cells, B cells, and NK cells. Female patients with a high proportion of immune cells had a higher proportion of macrophages. CONCLUSION We successfully optimized a protocol for generating single-cell suspensions with viable immune cells from meningioma tissues, revealing infiltrating antigen-presenting cells with an immunosuppressive phenotype, and lymphocytes. This short protocol allows advanced analyses of tumor-infiltrating cells using techniques such as single-cell RNA sequencing and flow cytometry, which require live, dissociated cells.
Collapse
Affiliation(s)
- Gillian Dao Nyesiga
- Department of Biomedical Sciences, Faculty of Health and Society, Malmö University, 205 06 Malmo, Sweden
- Department of Neurosurgery, Copenhagen University Hospital-Rigshospitalet, 2100 Copenhagen, Denmark
| | | | - Josephine Budde
- Department of Neurosurgery, Copenhagen University Hospital-Rigshospitalet, 2100 Copenhagen, Denmark
| | - Josefine Føns Lange
- Department of Neurosurgery, Copenhagen University Hospital-Rigshospitalet, 2100 Copenhagen, Denmark
| | - Nadja Blum
- Department of Neurosurgery, Copenhagen University Hospital-Rigshospitalet, 2100 Copenhagen, Denmark
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Kotryna Dukstaite
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Lars Ohlsson
- Department of Biomedical Sciences, Faculty of Health and Society, Malmö University, 205 06 Malmo, Sweden
| | - Tiit Mathiesen
- Department of Neurosurgery, Copenhagen University Hospital-Rigshospitalet, 2100 Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences SUND, University of Copenhagen, 2200 Copenhagen, Denmark
- Department of Clinical Neuroscience, Karolinska Institutet, 171 76 Stockholm, Sweden
| | - Anders Woetmann
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Frederik Vilhardt
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| |
Collapse
|
18
|
Hamdy NM, Basalious EB, El-Sisi MG, Nasr M, Kabel AM, Nossier ES, Abadi AH. Advancements in current one-size-fits-all therapies compared to future treatment innovations for better improved chemotherapeutic outcomes: a step-toward personalized medicine. Curr Med Res Opin 2024; 40:1943-1961. [PMID: 39412377 DOI: 10.1080/03007995.2024.2416985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 10/07/2024] [Accepted: 10/10/2024] [Indexed: 10/22/2024]
Abstract
The development of therapies followed a generalized approach for a long time, assuming that a single treatment could effectively address various patient populations. However, recent breakthroughs have revealed the limitations of this one-size-fits-all paradigm. More recently, the field of therapeutics has witnessed a shift toward other modules, including cell therapies, high molecular weight remedies, personalized medicines, and gene therapies. Such advancements in therapeutic modules have the potential to revolutionize healthcare and pave the way for medicines that are more efficient and with minimal side effects. Cell therapies have gained considerable attention in regenerative medicine. Stem cell-based therapies, for instance, hold promise for tissue repair and regeneration, with ongoing research focusing on enhancing their efficacy and safety. High molecular weight drugs like peptides and proteins emerged as promising therapeutics because of their high specificity and diverse biological functions. Engineered peptides and proteins are developed for targeted drug delivery, immunotherapy, and disease-modulation. In personalized medicine, tailored treatments to individuals based on specific genetic profiling, lifestyle, biomarkers, and disease characteristics are all implemented. Clinicians have tailored treatments to optimize outcomes and minimize adverse effects, using targeted therapies based on specific mutations, yielding remarkable results. Gene therapies have revolutionized the treatment of genetic disorders by directly targeting the underlying genetic abnormalities. Innovative techniques, such as CRISPR-Cas9 have allowed precise gene editing, opening up possibilities for curing previously incurable conditions. In conclusion, advancements in therapeutic modules have the potential to revolutionize healthcare and pave the way for medicines that are more efficient and with minimal side effects.
Collapse
Affiliation(s)
- Nadia M Hamdy
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Abassia, Cairo, Egypt
- The National Committee of Drugs & Medicines by Academy of Scientific Research and Technology (ASRT), Ministry of Higher Education, Cairo, Egypt
| | - Emad B Basalious
- The National Committee of Drugs & Medicines by Academy of Scientific Research and Technology (ASRT), Ministry of Higher Education, Cairo, Egypt
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Mona G El-Sisi
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Abassia, Cairo, Egypt
| | - Maha Nasr
- The National Committee of Drugs & Medicines by Academy of Scientific Research and Technology (ASRT), Ministry of Higher Education, Cairo, Egypt
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Ahmed M Kabel
- The National Committee of Drugs & Medicines by Academy of Scientific Research and Technology (ASRT), Ministry of Higher Education, Cairo, Egypt
- Department of Pharmacology, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Eman S Nossier
- The National Committee of Drugs & Medicines by Academy of Scientific Research and Technology (ASRT), Ministry of Higher Education, Cairo, Egypt
- Department of Pharmaceutical Medicinal Chemistry and Drug Design, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| | - Ashraf H Abadi
- The National Committee of Drugs & Medicines by Academy of Scientific Research and Technology (ASRT), Ministry of Higher Education, Cairo, Egypt
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo (GUC), New Cairo, Egypt
| |
Collapse
|
19
|
Lv R, Guo Y, Liu W, Dong G, Liu X, Li C, Ren Y, Zhang Z, Neo SY, Mao W, Wu J. Revolutionizing cancer treatment: the emerging potential and potential challenges of in vivo self-processed CAR cell therapy. Theranostics 2024; 14:7424-7447. [PMID: 39659573 PMCID: PMC11626932 DOI: 10.7150/thno.101941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 10/23/2024] [Indexed: 12/12/2024] Open
Abstract
Chimeric antigen receptor (CAR) cell immunotherapies, including CAR-T, CAR-Macrophages, CAR-Natural Killer, CAR-γδ T, etc., have demonstrated significant advancements in the treatment of both hematologic malignancies and solid tumors. Despite the notable successes of traditional CAR cell manufacturing, its application remains constrained by the complicated production process and expensive costs. Consequently, efforts are focused on streamlining CAR cell production to enhance efficacy and accessibility. Among numerous proposed strategies, direct in vivo generation of CAR cells represents the most substantial technical challenge, yet holding great promise for achieving clinical efficacy. Herein, we outlined the current state-of-the-art in vivo CAR therapy, including CAR technology development, transfection vectors, and influence factors of construction of CAR in vivo. We also reviewed the types and characteristics of different delivery systems and summarized the advantages of in vivo CAR cell therapy, such as rapid preparation and cost-effectiveness. Finally, we discussed the limitations, including technical issues, challenges in target and signal design, and cell-related constraints. Meanwhile, strategies have correspondingly been proposed to advance the development of CAR cell therapy, in order to open the new horizons on cancer treatment.
Collapse
Affiliation(s)
- Ruijie Lv
- Department of Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital; Jinan 250014, China; School of Pharmacy, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Yanting Guo
- Department of Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital; Jinan 250014, China; School of Pharmacy, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Weici Liu
- Department of Thoracic Surgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, Jiangsu 214023, China
| | - Guangjian Dong
- Department of Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital; Jinan 250014, China; School of Pharmacy, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Xiangyin Liu
- Department of Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital; Jinan 250014, China; School of Pharmacy, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Caihui Li
- Department of Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital; Jinan 250014, China; School of Pharmacy, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Yi Ren
- Department of Clinical Pharmacy, School of Pharmacy, Shandong Second Medical University, Weifang, Shandong 261042, China
| | - Zipeng Zhang
- Medical Science and Technology Innovation Center Shandong First Medical University & Shandong Academy of Medical Sciences Jinan 250117, China
| | - Shi-Yong Neo
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore 138648, Republic of Singapore
| | - Wenjun Mao
- Department of Thoracic Surgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, Jiangsu 214023, China
| | - Jing Wu
- Department of Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital; Jinan 250014, China; School of Pharmacy, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| |
Collapse
|
20
|
Wang S, Gao S, Lin S, Fang X, Zhang H, Qiu M, Zheng K, Ji Y, Xiao B, Zhang X. Integrated analysis of bulk and single-cell RNA sequencing reveals the impact of nicotinamide and tryptophan metabolism on glioma prognosis and immunotherapy sensitivity. BMC Neurol 2024; 24:419. [PMID: 39468708 PMCID: PMC11514892 DOI: 10.1186/s12883-024-03924-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 10/18/2024] [Indexed: 10/30/2024] Open
Abstract
BACKGROUND Nicotinamide and tryptophan metabolism play important roles in regulating tumor synthesis metabolism and signal transduction functions. However, their comprehensive impact on the prognosis and the tumor immune microenvironment of glioma is still unclear. The purpose of this study was to investigate the association of nicotinamide and tryptophan metabolism with prognosis and immune status of gliomas and to develop relevant models for predicting prognosis and sensitivity to immunotherapy in gliomas. METHODS Bulk and single-cell transcriptome data from TCGA, CGGA and GSE159416 were obtained for this study. Gliomas were classified based on nicotinamide and tryptophan metabolism, and PPI network associated with differentially expressed genes was established. The core genes were identified and the risk model was established by machine learning techniques, including univariate Cox regression and LASSO regression. Then the risk model was validated with data from the CGGA. Finally, the effects of genes in the risk model on the biological behavior of gliomas were verified by in vitro experiments. RESULTS The high nicotinamide and tryptophan metabolism is associated with poor prognosis and high levels of immune cell infiltration in glioma. Seven of the core genes related to nicotinamide and tryptophan metabolism were used to construct a risk model, and the model has good predictive ability for prognosis, immune microenvironment, and response to immune checkpoint therapy of glioma. We also confirmed that high expression of TGFBI can lead to an increased level of migration, invasion, and EMT of glioma cells, and the aforementioned effect of TGFBI can be reduced by FAK inhibitor PF-573,228. CONCLUSIONS Our study evaluated the effects of nicotinamide and tryptophan metabolism on the prognosis and tumor immune microenvironment of glioma, which can help predict the prognosis and sensitivity to immunotherapy of glioma.
Collapse
Affiliation(s)
- Sen Wang
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Shen Gao
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Shaochong Lin
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Xiaofeng Fang
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Haopeng Zhang
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Man Qiu
- Department of Neurosurgery, Xinyang Central Hospital, Xinyang, 464000, China
| | - Kai Zheng
- Department of Neurosurgery, Xianyang First People's Hospital, Xianyang, 712000, China
| | - Yupeng Ji
- Department of Cardiovascular Surgery, First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Baijun Xiao
- Department of Neurosurgery, Pingshan People's Hospital, Shenzhen, 518118, China
| | - Xiangtong Zhang
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China.
| |
Collapse
|
21
|
Wang Q, Yin X, Huang X, Zhang L, Lu H. Impact of mitochondrial dysfunction on the antitumor effects of immune cells. Front Immunol 2024; 15:1428596. [PMID: 39464876 PMCID: PMC11502362 DOI: 10.3389/fimmu.2024.1428596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 09/24/2024] [Indexed: 10/29/2024] Open
Abstract
Mitochondrial dysfunction, a hallmark of immune cell failure, affects the antitumor effects of immune cells through metabolic reprogramming, fission, fusion, biogenesis, and immune checkpoint signal transduction of mitochondria. According to researchers, restoring damaged mitochondrial function can enhance the efficacy of immune cells. Nevertheless, the mechanism of mitochondrial dysfunction in immune cells in patients with cancer is unclear. In this review, we recapitulate the impact of mitochondrial dysfunction on the antitumor effects of T cells, natural killer cells, dendritic cells, and tumor-associated macrophage and propose that targeting mitochondria can provide new strategies for antitumor therapy.
Collapse
Affiliation(s)
- Quan Wang
- Department of Radiation Oncology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiangzhi Yin
- Department of Orthopaedics, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiaotong Huang
- Department of Radiation Oncology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Lu Zhang
- Department of Radiation Oncology, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Haijun Lu
- Department of Radiation Oncology, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
22
|
Tang C, Zhang Y. Potential alternatives to αβ-T cells to prevent graft-versus-host disease (GvHD) in allogeneic chimeric antigen receptor (CAR)-based cancer immunotherapy: A comprehensive review. Pathol Res Pract 2024; 262:155518. [PMID: 39146830 DOI: 10.1016/j.prp.2024.155518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/28/2024] [Accepted: 08/06/2024] [Indexed: 08/17/2024]
Abstract
Currently, CAR-T cell therapy relies on an individualized manufacturing process in which patient's own T cells are infused back into patients after being engineered and expanded ex vivo. Despite the astonishing outcomes of autologous CAR-T cell therapy, this approach is endowed with several limitations and drawbacks, such as high cost and time-consuming manufacturing process. Switching the armature of CAR-T cell therapy from autologous settings to allogeneic can overcome several bottlenecks of the current approach. Nevertheless, the use of allogeneic CAR-T cells is limited by the risk of life-threatening GvHD. Thus, in recent years, developing a method to move CAR-T cell therapy to allogeneic settings without the risk of GvHD has become a hot research topic in this field. Since the alloreactivity of αβ T-cell receptor (TCR) accounts for developing GvHD, several efforts have been made to disrupt endogenous TCR of allogeneic CAR-T cells using gene editing tools to prevent GvHD. Nonetheless, the off-target activity of gene editing tools and their associated genotoxicities, as well as the negative consequences of endogenous TCR disruption, are the main concerns of using this approach. As an alternative, CAR αβ-T cells can be replaced with other types of CAR-engineered cells that are capable of recognizing and killing malignant cells through CAR while avoiding the induction of GvHD. These alternatives include T cell subsets with restricted TCR repertoire (γδ-T, iNKT, virus-specific T, double negative T cells, and MAIT cells), killer cells (NK and CIK cells), non-lymphocytic cells (neutrophils and macrophages), stem/progenitor cells, and cell-free extracellular vesicles. In this review, we discuss how these alternatives can move CAR-based immunotherapy to allogeneic settings to overcome the bottlenecks of autologous manner without the risk of GvHD. We comprehensively discuss the pros and cons of these alternatives over the traditional CAR αβ-T cells in light of their preclinical studies and clinical trials.
Collapse
MESH Headings
- Humans
- Graft vs Host Disease/immunology
- Graft vs Host Disease/prevention & control
- Graft vs Host Disease/therapy
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/genetics
- Immunotherapy, Adoptive/methods
- Neoplasms/therapy
- Neoplasms/immunology
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- T-Lymphocytes/immunology
- Animals
- Gene Editing/methods
- Transplantation, Homologous/methods
Collapse
Affiliation(s)
- Chaozhi Tang
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, China; Department of Neurology, Xinxiang First Peoples Hospital, Xinxiang 453100, China
| | - Yuling Zhang
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, China.
| |
Collapse
|
23
|
Douka S, Papamoschou V, Raimo M, Mastrobattista E, Caiazzo M. Harnessing the Power of NK Cell Receptor Engineering as a New Prospect in Cancer Immunotherapy. Pharmaceutics 2024; 16:1143. [PMID: 39339180 PMCID: PMC11434712 DOI: 10.3390/pharmaceutics16091143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/26/2024] [Accepted: 08/27/2024] [Indexed: 09/30/2024] Open
Abstract
Natural killer (NK) cells have recently gained popularity as an alternative for cancer immunotherapy. Adoptive cell transfer employing NK cells offers a safer therapeutic option compared to T-cell-based therapies, due to their significantly lower toxicity and the availability of diverse autologous and allogeneic NK cell sources. However, several challenges are associated with NK cell therapies, including limited in vivo persistence, the immunosuppressive and hostile tumor microenvironment (TME), and the lack of effective treatments for solid tumors. To address these limitations, the modification of NK cells to stably produce cytokines has been proposed as a strategy to enhance their persistence and proliferation. Additionally, the overexpression of activating receptors and the blockade of inhibitory receptors can restore the NK cell functions hindered by the TME. To further improve tumor infiltration and the elimination of solid tumors, innovative approaches focusing on the enhancement of NK cell chemotaxis through the overexpression of chemotactic receptors have been introduced. This review highlights the latest advancements in preclinical and clinical studies investigating the engineering of activating, inhibitory, and chemotactic NK cell receptors; discusses recent progress in cytokine manipulation; and explores the potential of combining the chimeric antigen receptor (CAR) technology with NK cell receptors engineering.
Collapse
Affiliation(s)
- Stefania Douka
- Pharmaceutics Division, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Vasilis Papamoschou
- Pharmaceutics Division, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Monica Raimo
- Glycostem Therapeutics B.V., Kloosterstraat 9, 5349 AB Oss, The Netherlands;
| | - Enrico Mastrobattista
- Pharmaceutics Division, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Massimiliano Caiazzo
- Pharmaceutics Division, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, Via Pansini 5, 80131 Naples, Italy
| |
Collapse
|
24
|
Jiang P, Jing S, Sheng G, Jia F. The basic biology of NK cells and its application in tumor immunotherapy. Front Immunol 2024; 15:1420205. [PMID: 39221244 PMCID: PMC11361984 DOI: 10.3389/fimmu.2024.1420205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024] Open
Abstract
Natural Killer (NK) cells play a crucial role as effector cells within the tumor immune microenvironment, capable of identifying and eliminating tumor cells through the expression of diverse activating and inhibitory receptors that recognize tumor-related ligands. Therefore, harnessing NK cells for therapeutic purposes represents a significant adjunct to T cell-based tumor immunotherapy strategies. Presently, NK cell-based tumor immunotherapy strategies encompass various approaches, including adoptive NK cell therapy, cytokine therapy, antibody-based NK cell therapy (enhancing ADCC mediated by NK cells, NK cell engagers, immune checkpoint blockade therapy) and the utilization of nanoparticles and small molecules to modulate NK cell anti-tumor functionality. This article presents a comprehensive overview of the latest advances in NK cell-based anti-tumor immunotherapy, with the aim of offering insights and methodologies for the clinical treatment of cancer patients.
Collapse
Affiliation(s)
- Pan Jiang
- Department of General Medicine, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
- Department of Infectious Diseases, Jingzhou First People’s Hospital, Jingzhou, China
| | - Shaoze Jing
- Department of Orthopedics, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Gaohong Sheng
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fajing Jia
- Department of General Medicine, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| |
Collapse
|
25
|
Flender D, Vilenne F, Adams C, Boonen K, Valkenborg D, Baggerman G. Exploring the dynamic landscape of immunopeptidomics: Unravelling posttranslational modifications and navigating bioinformatics terrain. MASS SPECTROMETRY REVIEWS 2024. [PMID: 39152539 DOI: 10.1002/mas.21905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/30/2024] [Accepted: 08/01/2024] [Indexed: 08/19/2024]
Abstract
Immunopeptidomics is becoming an increasingly important field of study. The capability to identify immunopeptides with pivotal roles in the human immune system is essential to shift the current curative medicine towards personalized medicine. Throughout the years, the field has matured, giving insight into the current pitfalls. Nowadays, it is commonly accepted that generalizing shotgun proteomics workflows is malpractice because immunopeptidomics faces numerous challenges. While many of these difficulties have been addressed, the road towards the ideal workflow remains complicated. Although the presence of Posttranslational modifications (PTMs) in the immunopeptidome has been demonstrated, their identification remains highly challenging despite their significance for immunotherapies. The large number of unpredictable modifications in the immunopeptidome plays a pivotal role in the functionality and these challenges. This review provides a comprehensive overview of the current advancements in immunopeptidomics. We delve into the challenges associated with identifying PTMs within the immunopeptidome, aiming to address the current state of the field.
Collapse
Affiliation(s)
- Daniel Flender
- Centre for Proteomics, University of Antwerp, Antwerpen, Belgium
- Health Unit, VITO, Mol, Belgium
| | - Frédérique Vilenne
- Health Unit, VITO, Mol, Belgium
- Data Science Institute, University of Hasselt, Hasselt, Belgium
| | - Charlotte Adams
- Department of Computer Science, University of Antwerp, Antwerp, Belgium
| | - Kurt Boonen
- Centre for Proteomics, University of Antwerp, Antwerpen, Belgium
- ImmuneSpec, Niel, Belgium
| | - Dirk Valkenborg
- Data Science Institute, University of Hasselt, Hasselt, Belgium
| | - Geert Baggerman
- Department of Computer Science, University of Antwerp, Antwerp, Belgium
- ImmuneSpec, Niel, Belgium
| |
Collapse
|
26
|
Shiffer EM, Oyer JL, Copik AJ, Parks GD. Parainfluenza Virus 5 V Protein Blocks Interferon Gamma-Mediated Upregulation of NK Cell Inhibitory Ligands and Improves NK Cell Killing of Neuroblastoma Cells. Viruses 2024; 16:1270. [PMID: 39205244 PMCID: PMC11359056 DOI: 10.3390/v16081270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/03/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
Natural killer (NK) cells can be effective immunotherapeutic anti-cancer agents due to their ability to selectively target and kill tumor cells. This activity is modulated by the interaction of NK cell receptors with inhibitory ligands on the surface of target cells. NK cell inhibitory ligands can be upregulated on tumor cell surfaces in response to interferon-gamma (IFN-γ), a cytokine which is produced by activated NK cells. We hypothesized that the resistance of tumor cells to NK cell killing could be overcome by expression of the parainfluenza virus 5 (PIV5) V protein, which has known roles in blocking IFN-γ signaling. This was tested with human PM21-NK cells produced through a previously developed particle-based method which yields superior NK cells for immunotherapeutic applications. Infection of human SK-N-SH neuroblastoma cells with PIV5 blocked IFN-γ-mediated upregulation of three NK cell inhibitory ligands and enhanced in vitro killing of these tumor cells by PM21-NK cells. SK-N-SH cells transduced to constitutively express the V protein alone were resistant to IFN-γ-mediated increases in cell surface expression of NK cell inhibitory ligands. Real-time in vitro cell viability assays demonstrated that V protein expression in SK-N-SH cells was sufficient to increase PM21-NK cell-mediated killing. Toward a potential therapeutic application, transient lentiviral delivery of the V gene also enhanced PM21-NK cell killing in vitro. Our results provide the foundation for novel therapeutic applications of V protein expression in combination with ex vivo NK cell therapy to effectively increase the killing of tumor cells.
Collapse
Affiliation(s)
| | | | | | - Griffith D. Parks
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA; (E.M.S.); (J.L.O.); (A.J.C.)
| |
Collapse
|
27
|
Pérez M, Buey B, Corral P, Giraldos D, Latorre E. Microbiota-Derived Short-Chain Fatty Acids Boost Antitumoral Natural Killer Cell Activity. J Clin Med 2024; 13:3885. [PMID: 38999461 PMCID: PMC11242436 DOI: 10.3390/jcm13133885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/21/2024] [Accepted: 06/30/2024] [Indexed: 07/14/2024] Open
Abstract
Background: The intestinal microbiota can regulate numerous host functions, including the immune response. Through fermentation, the microbiota produces and releases microbial metabolites such as short-chain fatty acids (SCFAs), which can affect host homeostasis. There is growing evidence that the gut microbiome can have a major impact on cancer. Specific gut microbial composition and metabolites are associated with tumor status in the host. However, their effects on the antitumor response have scarcely been investigated. Natural killer (NK) cells play an important role in antitumor immunity due to their ability to directly identify and eliminate tumor cells. Methods: The aim of this study was to investigate the effects of SCFAs on antitumoral NK cell activity, using NK-92 cell line. Results: Here, we describe how SCFAs can boost antitumoral NK cell activity. The SCFAs induced the release of NK extracellular vesicles and reduced the secretion of the anti-inflammatory cytokine IL-10. The SCFAs also increased the cytotoxicity of the NK cells against multiple myeloma cells. Conclusions: Our results indicate, for the first time, the enormous potential of SCFAs in regulating antitumoral NK cell defense, where modulation of the SCFAs' production could play a fundamental role in cancer immunotherapy.
Collapse
Affiliation(s)
- Marina Pérez
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Berta Buey
- Departamento de Farmacología, Fisiología y Medicina Legal y Forense, Facultad de Veterinaria, Universidad de Zaragoza, 50013 Zaragoza, Spain
| | - Pilar Corral
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - David Giraldos
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Eva Latorre
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, 50009 Zaragoza, Spain
- Instituto de Investigación Sanitaria de Aragón (IIS Aragón), 50009 Zaragoza, Spain
- Instituto Agroalimentario de Aragón (IA2), 50013 Zaragoza, Spain
| |
Collapse
|
28
|
Lim SA, Ho N, Chen S, Chung EJ. Natural Killer Cell‐Derived Extracellular Vesicles as Potential Anti‐Viral Nanomaterials. Adv Healthc Mater 2024; 13:e2304186. [PMID: 38676697 DOI: 10.1002/adhm.202304186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 04/19/2024] [Indexed: 04/29/2024]
Abstract
In viral infections, natural killer (NK) cells exhibit anti-viral activity by inducing apoptosis in infected host cells and impeding viral replication through heightened cytokine release. Extracellular vesicles derived from NK cells (NK-EVs) also contain the membrane composition, homing capabilities, and cargo that enable anti-viral activity. These characteristics, and their biocompatibility and low immunogenicity, give NK-EVs the potential to be a viable therapeutic platform. This study characterizes the size, EV-specific protein expression, cell internalization, biocompatibility, and anti-viral miRNA cargo to evaluate the anti-viral properties of NK-EVs. After 48 h of NK-EV incubation in inflamed A549 lung epithelial cells, or conditions that mimic lung viral infections such as during COVID-19, cells treated with NK-EVs exhibit upregulated anti-viral miRNA cargo (miR-27a, miR-27b, miR-369-3p, miR-491-5p) compared to the non-treated controls and cells treated with control EVs derived from lung epithelial cells. Additionally, NK-EVs effectively reduce expression of viral RNA and pro-inflammatory cytokine (TNF-α, IL-8) levels in SARS-CoV-2 infected Vero E6 kidney epithelial cells and in infected mice without causing tissue damage while significantly decreasing pro-inflammatory cytokine compared to non-treated controls. Herein, this work elucidates the potential of NK-EVs as safe, anti-viral nanomaterials, offering a promising alternative to conventional NK cell and anti-viral therapies.
Collapse
Affiliation(s)
- Siyoung A Lim
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, 90089, USA
| | - Nathan Ho
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, 90089, USA
| | - Sophia Chen
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, 90089, USA
| | - Eun Ji Chung
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, 90089, USA
- Department of Medicine, Division of Nephrology and Hypertension, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90089, USA
- Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA, 90089, USA
- Department of Surgery, Division of Vascular Surgery and Endovascular Therapy, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90089, USA
- Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, CA, 90089, USA
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, 90089, USA
- Bridge Institute, University of Southern California, Los Angeles, CA, 90089, USA
- Michelson Center for Convergent Bioscience, 1002 Childs Way, MCB 377, Los Angeles, CA, 90089, USA
| |
Collapse
|
29
|
Emens LA, Romero PJ, Anderson AC, Bruno TC, Capitini CM, Collyar D, Gulley JL, Hwu P, Posey AD, Silk AW, Wargo JA. Challenges and opportunities in cancer immunotherapy: a Society for Immunotherapy of Cancer (SITC) strategic vision. J Immunother Cancer 2024; 12:e009063. [PMID: 38901879 PMCID: PMC11191773 DOI: 10.1136/jitc-2024-009063] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/24/2024] [Indexed: 06/22/2024] Open
Abstract
Cancer immunotherapy has flourished over the last 10-15 years, transforming the practice of oncology and providing long-term clinical benefit to some patients. During this time, three distinct classes of immune checkpoint inhibitors, chimeric antigen receptor-T cell therapies specific for two targets, and two distinct classes of bispecific T cell engagers, a vaccine, and an oncolytic virus have joined cytokines as a standard of cancer care. At the same time, scientific progress has delivered vast amounts of new knowledge. For example, advances in technologies such as single-cell sequencing and spatial transcriptomics have provided deep insights into the immunobiology of the tumor microenvironment. With this rapid clinical and scientific progress, the field of cancer immunotherapy is currently at a critical inflection point, with potential for exponential growth over the next decade. Recognizing this, the Society for Immunotherapy of Cancer convened a diverse group of experts in cancer immunotherapy representing academia, the pharmaceutical and biotechnology industries, patient advocacy, and the regulatory community to identify current opportunities and challenges with the goal of prioritizing areas with the highest potential for clinical impact. The consensus group identified seven high-priority areas of current opportunity for the field: mechanisms of antitumor activity and toxicity; mechanisms of drug resistance; biomarkers and biospecimens; unique aspects of novel therapeutics; host and environmental interactions; premalignant immunity, immune interception, and immunoprevention; and clinical trial design, endpoints, and conduct. Additionally, potential roadblocks to progress were discussed, and several topics were identified as cross-cutting tools for optimization, each with potential to impact multiple scientific priority areas. These cross-cutting tools include preclinical models, data curation and sharing, biopsies and biospecimens, diversification of funding sources, definitions and standards, and patient engagement. Finally, three key guiding principles were identified that will both optimize and maximize progress in the field. These include engaging the patient community; cultivating diversity, equity, inclusion, and accessibility; and leveraging the power of artificial intelligence to accelerate progress. Here, we present the outcomes of these discussions as a strategic vision to galvanize the field for the next decade of exponential progress in cancer immunotherapy.
Collapse
Affiliation(s)
| | | | - Ana Carrizosa Anderson
- The Gene Lay Institute of Immunology and Inflammation, Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Tullia C Bruno
- Department of Immunology, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Christian M Capitini
- Department of Pediatrics and Carbone Cancer Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Deborah Collyar
- Patient Advocates in Research (PAIR), Danville, California, USA
| | - James L Gulley
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | | | - Avery D Posey
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Ann W Silk
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Jennifer A Wargo
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
30
|
Kaur K, Sanghu J, Memarzadeh S, Jewett A. Exploring the Potential of Natural Killer Cell-Based Immunotherapy in Targeting High-Grade Serous Ovarian Carcinomas. Vaccines (Basel) 2024; 12:677. [PMID: 38932405 PMCID: PMC11209217 DOI: 10.3390/vaccines12060677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/05/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
High-grade serous ovarian cancers (HGSOCs) likely consist of poorly differentiated stem-like cells (PDSLCs) and differentiated tumor cells. Conventional therapeutics are incapable of completely eradicating PDSLCs, contributing to disease progression and tumor relapse. Primary NK cells are known to effectively lyse PDSLCs, but they exhibit low or minimal cytotoxic potential against well-differentiated tumors. We have introduced and discussed the characteristics of super-charged NK (sNK) cells in this review. sNK cells, in comparison to primary NK cells, exhibit a significantly higher capability for the direct killing of both PDSLCs and well-differentiated tumors. In addition, sNK cells secrete significantly higher levels of cytokines, especially those known to induce the differentiation of tumors. In addition, we propose that a combination of sNK and chemotherapy could be one of the most effective strategies to eliminate the heterogeneous population of ovarian tumors; sNK cells can lyse both PDSLCs and well-differentiated tumors, induce the differentiation of PDSLCs, and could be used in combination with chemotherapy to target both well-differentiated and NK-induced differentiated tumors.
Collapse
Affiliation(s)
- Kawaljit Kaur
- Division of Oral Biology and Medicine, The Jane and Jerry Weintraub Center for Reconstructive Biotechnology, University of California School of Dentistry, 10833 Le Conte Ave, Los Angeles, CA 90095, USA;
| | - Jashan Sanghu
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA; (J.S.); (S.M.)
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Sanaz Memarzadeh
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA; (J.S.); (S.M.)
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California Los Angeles, Los Angeles, CA 90095, USA
- The Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, CA 90095, USA
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA 90095, USA
- The VA Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA
| | - Anahid Jewett
- Division of Oral Biology and Medicine, The Jane and Jerry Weintraub Center for Reconstructive Biotechnology, University of California School of Dentistry, 10833 Le Conte Ave, Los Angeles, CA 90095, USA;
- The Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
31
|
Kiran S, Xue Y, Sarker DB, Li Y, Sang QXA. Feeder-free differentiation of human iPSCs into natural killer cells with cytotoxic potential against malignant brain rhabdoid tumor cells. Bioact Mater 2024; 36:301-316. [PMID: 38496035 PMCID: PMC10940949 DOI: 10.1016/j.bioactmat.2024.02.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/21/2024] [Accepted: 02/23/2024] [Indexed: 03/19/2024] Open
Abstract
Natural killer (NK) cells are cytotoxic immune cells that can eliminate target cells without prior stimulation. Human induced pluripotent stem cells (iPSCs) provide a robust source of NK cells for safe and effective cell-based immunotherapy against aggressive cancers. In this in vitro study, a feeder-free iPSC differentiation was performed to obtain iPSC-NK cells, and distinct maturational stages of iPSC-NK were characterized. Mature cells of CD56bright CD16bright phenotype showed upregulation of CD56, CD16, and NK cell activation markers NKG2D and NKp46 upon IL-15 exposure, while exposure to aggressive atypical teratoid/rhabdoid tumor (ATRT) cell lines enhanced NKG2D and NKp46 expression. Malignant cell exposure also increased CD107a degranulation markers and stimulated IFN-γ secretion in activated NK cells. CD56bright CD16bright iPSC-NK cells showed a ratio-dependent killing of ATRT cells, and the percentage lysis of CHLA-05-ATRT was higher than that of CHLA-02-ATRT. The iPSC-NK cells were also cytotoxic against other brain, kidney, and lung cancer cell lines. Further NK maturation yielded CD56-ve CD16bright cells, which lacked activation markers even after exposure to interleukins or ATRT cells - indicating diminished cytotoxicity. Generation and characterization of different NK phenotypes from iPSCs, coupled with their promising anti-tumor activity against ATRT in vitro, offer valuable insights into potential immunotherapeutic strategies for brain tumors.
Collapse
Affiliation(s)
- Sonia Kiran
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306-4390, USA
| | - Yu Xue
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306-4390, USA
| | - Drishty B. Sarker
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306-4390, USA
| | - Yan Li
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL, 32310-6046, USA
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL, 32306-4380, USA
| | - Qing-Xiang Amy Sang
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306-4390, USA
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL, 32306-4380, USA
| |
Collapse
|
32
|
Xu D, Wang W, Wang D, Ding J, Zhou Y, Zhang W. Long noncoding RNA MALAT-1: A versatile regulator in cancer progression, metastasis, immunity, and therapeutic resistance. Noncoding RNA Res 2024; 9:388-406. [PMID: 38511067 PMCID: PMC10950606 DOI: 10.1016/j.ncrna.2024.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/24/2024] [Accepted: 01/24/2024] [Indexed: 03/22/2024] Open
Abstract
Long noncoding RNAs (lncRNAs) are RNA transcripts longer than 200 nucleotides that do not code for proteins but have been linked to cancer development and metastasis. Metastasis-associated lung adenocarcinoma transcript 1 (MALAT-1) influences crucial cancer hallmarks through intricate molecular mechanisms, including proliferation, invasion, angiogenesis, apoptosis, and the epithelial-mesenchymal transition (EMT). The current article highlights the involvement of MALAT-1 in drug resistance, making it a potential target to overcome chemotherapy refractoriness. It discusses the impact of MALAT-1 on immunomodulatory molecules, such as major histocompatibility complex (MHC) proteins and PD-L1, leading to immune evasion and hindering anti-tumor immune responses. MALAT-1 also plays a significant role in cancer immunology by regulating diverse immune cell populations. In summary, MALAT-1 is a versatile cancer regulator, influencing tumorigenesis, chemoresistance, and immunotherapy responses. Understanding its precise molecular mechanisms is crucial for developing targeted therapies, and therapeutic strategies targeting MALAT-1 show promise for improving cancer treatment outcomes. However, further research is needed to fully uncover the role of MALAT-1 in cancer biology and translate these findings into clinical applications.
Collapse
Affiliation(s)
- Dexin Xu
- Department of Orthopedics, Jilin Province FAW General Hospital, Changchun, 130000, China
| | - Wenhai Wang
- Department of Cardiology, Jilin Province FAW General Hospital, Changchun, 130000, China
| | - Duo Wang
- Department of Geriatrics, Jilin Province FAW General Hospital, Changchun, 130000, China
| | - Jian Ding
- Department of Electrodiagnosis, Jilin Province FAW General Hospital, Changchun, 130000, China
| | - Yunan Zhou
- Department of Orthopedics, Jilin Province FAW General Hospital, Changchun, 130000, China
| | - Wenbin Zhang
- Department of Cardiology, Jilin Province FAW General Hospital, Changchun, 130000, China
| |
Collapse
|
33
|
Vahidi S, Zabeti Touchaei A, Samadani AA. IL-15 as a key regulator in NK cell-mediated immunotherapy for cancer: From bench to bedside. Int Immunopharmacol 2024; 133:112156. [PMID: 38669950 DOI: 10.1016/j.intimp.2024.112156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/04/2024] [Accepted: 04/23/2024] [Indexed: 04/28/2024]
Abstract
Interleukin 15 (IL-15) has emerged as a crucial factor in the relationship between natural killer (NK) cells and immunotherapy for cancer. This review article aims to provide a comprehensive understanding of the role of IL-15 in NK cell-mediated immunotherapy. First, the key role of IL-15 signaling in NK cell immunity is discussed, highlighting its regulation of NK cell functions and antitumor properties. Furthermore, the use of IL-15 or its analogs in clinical trials as a therapeutic strategy for various cancers, including the genetic modification of NK cells to produce IL-15, has been explored. The potential of IL-15-based therapies, such as chimeric antigen receptor (CAR) T and NK cell infusion along with IL-15 in combination with checkpoint inhibitors and other treatments, has been examined. This review also addresses the challenges and advantages of incorporating IL-15 in cell-based immunotherapy. Additionally, unresolved questions regarding the detection and biological significance of the soluble IL-15/IL-15Rα complex, as well as the potential role of IL-15/IL-15Rα in human cancer and the immunological consequences of prolonged exposure to soluble IL-15 for NK cells, are discussed.
Collapse
Affiliation(s)
- Sogand Vahidi
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | | | - Ali Akbar Samadani
- Guilan Road Trauma Research Center, Trauma Institute, Guilan University of Medical Sciences, Rasht, Iran.
| |
Collapse
|
34
|
Trask L, Ward NA, Tarpey R, Beatty R, Wallace E, O'Dwyer J, Ronan W, Duffy GP, Dolan EB. Exploring therapy transport from implantable medical devices using experimentally informed computational methods. Biomater Sci 2024; 12:2899-2913. [PMID: 38683198 DOI: 10.1039/d4bm00107a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
Implantable medical devices that can facilitate therapy transport to localized sites are being developed for a number of diverse applications, including the treatment of diseases such as diabetes and cancer, and tissue regeneration after myocardial infraction. These implants can take the form of an encapsulation device which encases therapy in the form of drugs, proteins, cells, and bioactive agents, in semi-permeable membranes. Such implants have shown some success but the nature of these devices pose a barrier to the diffusion of vital factors, which is further exacerbated upon implantation due to the foreign body response (FBR). The FBR results in the formation of a dense hypo-permeable fibrous capsule around devices and is a leading cause of failure in many implantable technologies. One potential method for overcoming this diffusion barrier and enhancing therapy transport from the device is to incorporate local fluid flow. In this work, we used experimentally informed inputs to characterize the change in the fibrous capsule over time and quantified how this impacts therapy release from a device using computational methods. Insulin was used as a representative therapy as encapsulation devices for Type 1 diabetes are among the most-well characterised. We then explored how local fluid flow may be used to counteract these diffusion barriers, as well as how a more practical pulsatile flow regimen could be implemented to achieve similar results to continuous fluid flow. The generated model is a versatile tool toward informing future device design through its ability to capture the expected decrease in insulin release over time resulting from the FBR and investigate potential methods to overcome these effects.
Collapse
Affiliation(s)
- Lesley Trask
- Biomedical Engineering, School of Engineering, University of Galway, Galway, Ireland
- Biomechanics Research Centre (BMEC), Biomedical Engineering, School of Engineering, University of Galway, Galway, Ireland
| | - Niamh A Ward
- Biomedical Engineering, School of Engineering, University of Galway, Galway, Ireland
- Biomechanics Research Centre (BMEC), Biomedical Engineering, School of Engineering, University of Galway, Galway, Ireland
| | - Ruth Tarpey
- Biomedical Engineering, School of Engineering, University of Galway, Galway, Ireland
- Anatomy and Regenerative Medicine Institute (REMEDI), School of Medicine, University of Galway, Galway, Ireland
- CÚRAM, Centre for Research in Medical Devices, University of Galway, Galway, Ireland
| | - Rachel Beatty
- Anatomy and Regenerative Medicine Institute (REMEDI), School of Medicine, University of Galway, Galway, Ireland
- SFI Centre for Advanced Materials and BioEngineering Research Centre (AMBER), Trinity College Dublin, Dublin, Ireland
| | - Eimear Wallace
- Anatomy and Regenerative Medicine Institute (REMEDI), School of Medicine, University of Galway, Galway, Ireland
| | - Joanne O'Dwyer
- Anatomy and Regenerative Medicine Institute (REMEDI), School of Medicine, University of Galway, Galway, Ireland
| | - William Ronan
- Biomedical Engineering, School of Engineering, University of Galway, Galway, Ireland
- Biomechanics Research Centre (BMEC), Biomedical Engineering, School of Engineering, University of Galway, Galway, Ireland
| | - Garry P Duffy
- Anatomy and Regenerative Medicine Institute (REMEDI), School of Medicine, University of Galway, Galway, Ireland
- SFI Centre for Advanced Materials and BioEngineering Research Centre (AMBER), Trinity College Dublin, Dublin, Ireland
- CÚRAM, Centre for Research in Medical Devices, University of Galway, Galway, Ireland
| | - Eimear B Dolan
- Biomedical Engineering, School of Engineering, University of Galway, Galway, Ireland
- Biomechanics Research Centre (BMEC), Biomedical Engineering, School of Engineering, University of Galway, Galway, Ireland
- CÚRAM, Centre for Research in Medical Devices, University of Galway, Galway, Ireland
| |
Collapse
|
35
|
Santiso A, Heinemann A, Kargl J. Prostaglandin E2 in the Tumor Microenvironment, a Convoluted Affair Mediated by EP Receptors 2 and 4. Pharmacol Rev 2024; 76:388-413. [PMID: 38697857 DOI: 10.1124/pharmrev.123.000901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 11/15/2023] [Accepted: 11/20/2023] [Indexed: 05/05/2024] Open
Abstract
The involvement of the prostaglandin E2 (PGE2) system in cancer progression has long been recognized. PGE2 functions as an autocrine and paracrine signaling molecule with pleiotropic effects in the human body. High levels of intratumoral PGE2 and overexpression of the key metabolic enzymes of PGE2 have been observed and suggested to contribute to tumor progression. This has been claimed for different types of solid tumors, including, but not limited to, lung, breast, and colon cancer. PGE2 has direct effects on tumor cells and angiogenesis that are known to promote tumor development. However, one of the main mechanisms behind PGE2 driving cancerogenesis is currently thought to be anchored in suppressed antitumor immunity, thus providing possible therapeutic targets to be used in cancer immunotherapies. EP2 and EP4, two receptors for PGE2, are emerging as being the most relevant for this purpose. This review aims to summarize the known roles of PGE2 in the immune system and its functions within the tumor microenvironment. SIGNIFICANCE STATEMENT: Prostaglandin E2 (PGE2) has long been known to be a signaling molecule in cancer. Its presence in tumors has been repeatedly associated with disease progression. Elucidation of its effects on immunological components of the tumor microenvironment has highlighted the potential of PGE2 receptor antagonists in cancer treatment, particularly in combination with immune checkpoint inhibitor therapeutics. Adjuvant treatment could increase the response rates and the efficacy of immune-based therapies.
Collapse
Affiliation(s)
- Ana Santiso
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Akos Heinemann
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Julia Kargl
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| |
Collapse
|
36
|
Kong JC, Sa’ad MA, Vijayan HM, Ravichandran M, Balakrishnan V, Tham SK, Tye GJ. Chimeric antigen receptor-natural killer cell therapy: current advancements and strategies to overcome challenges. Front Immunol 2024; 15:1384039. [PMID: 38726000 PMCID: PMC11079817 DOI: 10.3389/fimmu.2024.1384039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 04/15/2024] [Indexed: 05/12/2024] Open
Abstract
Chimeric antigen receptor-natural killer (CAR-NK) cell therapy is a novel immunotherapy targeting cancer cells via the generation of chimeric antigen receptors on NK cells which recognize specific cancer antigens. CAR-NK cell therapy is gaining attention nowadays owing to the ability of CAR-NK cells to release potent cytotoxicity against cancer cells without side effects such as cytokine release syndrome (CRS), neurotoxicity and graft-versus-host disease (GvHD). CAR-NK cells do not require antigen priming, thus enabling them to be used as "off-the-shelf" therapy. Nonetheless, CAR-NK cell therapy still possesses several challenges in eliminating cancer cells which reside in hypoxic and immunosuppressive tumor microenvironment. Therefore, this review is envisioned to explore the current advancements and limitations of CAR-NK cell therapy as well as discuss strategies to overcome the challenges faced by CAR-NK cell therapy. This review also aims to dissect the current status of clinical trials on CAR-NK cells and future recommendations for improving the effectiveness and safety of CAR-NK cell therapy.
Collapse
Affiliation(s)
- Jun Chang Kong
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Minden, Penang, Malaysia
| | - Mohammad Auwal Sa’ad
- Celestialab Sdn Bhd, Kuala Lumpur, Malaysia
- Department of Biotechnology, Faculty of Applied Sciences, AIMST University, Bedong, Kedah, Malaysia
| | | | - Manickam Ravichandran
- Department of Biotechnology, Faculty of Applied Sciences, AIMST University, Bedong, Kedah, Malaysia
- MyGenome, ALPS Global Holding, Kuala Lumpur, Malaysia
| | - Venugopal Balakrishnan
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Minden, Penang, Malaysia
| | - Seng Kong Tham
- ALPS Medical Centre, ALPS Global Holding, Kuala Lumpur, Malaysia
| | - Gee Jun Tye
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Minden, Penang, Malaysia
| |
Collapse
|
37
|
Zhang W, Liu M, Li W, Song Y. Immune cells in the B-cell lymphoma microenvironment: From basic research to clinical applications. Chin Med J (Engl) 2024; 137:776-790. [PMID: 38269619 PMCID: PMC10997228 DOI: 10.1097/cm9.0000000000002919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Indexed: 01/26/2024] Open
Abstract
ABSTRACT B-cell lymphoma is a group of hematological malignancies characterized by variable genetic and biological features and clinical behaviors. The tumor microenvironment (TME) is a complex network in tumors, which consists of surrounding blood vessels, extracellular matrix, immune and non-immune cells, and signaling molecules. Increasing evidence has shown that the TME, especially immune cells within, is a double-edged sword, acting either as a tumor killer or as a promoter of tumor progression. These pro-tumor activities are driven by subpopulations of immune cells that express typical markers but have unique transcriptional characteristics, making tumor-associated immune cells good targets for human anti-cancer therapy by ablating immunosuppressive cells or enhancing immune-activated cells. Thus, exploring the role of immune cells in the TME provides distinct insights for immunotherapy in B-cell lymphoma. In this review, we elucidated the interaction between immune cells and tumor cells and their function in the initiation, progression, and prognosis of B-cell lymphoma, from preclinical experiments to clinical trials. Furthermore, we outlined potential therapeutic approaches and discussed the potential clinical value and future perspectives of targeting immune cells in patients with B-cell lymphoma.
Collapse
Affiliation(s)
- Wenli Zhang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
- Department of Hematology, Henan Provincial Hematology Hospital, Zhengzhou, Henan 450000, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Mengmeng Liu
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450052, China
- Department of Research and Foreign Affairs, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, Henan 450008, China
| | - Wei Li
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
- Department of Hematology, Henan Provincial Hematology Hospital, Zhengzhou, Henan 450000, China
| | - Yongping Song
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
- Department of Hematology, Henan Provincial Hematology Hospital, Zhengzhou, Henan 450000, China
| |
Collapse
|
38
|
Nagy S, Demory Beckler M, Hussein A, Kesselman MM. The Development of Diabetes and Diabetic Ketoacidosis Following Immunotherapy Treatment: A Systematic Review of Case Reports. Cureus 2024; 16:e57894. [PMID: 38606021 PMCID: PMC11007471 DOI: 10.7759/cureus.57894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 04/09/2024] [Indexed: 04/13/2024] Open
Abstract
As cancer continues to be the leading cause of death worldwide, additional therapeutic options other than traditional platinum-based chemotherapy have become available that target tumor cells in innovative ways. Immunotherapies (e.g., immune checkpoint inhibitors (ICI)) ramp up the immune system to target cancer cells, providing patients with more personalized and tumor cell-specific treatment options. This new age oncological treatment option has been found to provide a more meaningful and stronger alternative to traditional chemotherapy, resulting in longer periods of remission and milder side effects. However, because ICI heightens the immune system, resultant autoimmune conditions can occur. One of the most recently shown adverse effects of ICI are extreme hyperglycemia (i.e., type 1 diabetes) and diabetic ketoacidosis (DKA). To determine the incidence of immunotherapy-induced diabetes, a systematic literature review was performed using CINHAL, EBSCO, MEDLINE, and Web of Science. A total of 403 articles were initially screened, with a final 28 case reports included. The results show that checkpoint inhibitors were found to be most commonly associated with new-onset diabetes as opposed to traditional chemotherapy. Additionally, 41% of patients developed autoimmune diabetes and DKA after being placed on a single therapy of pembrolizumab (targets PD-1: programmed cell death protein 1). However, the pathological process underlying the development of endocrinopathies after treatment with ICI continues to be under investigation.
Collapse
Affiliation(s)
- Stephanie Nagy
- Rheumatology, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, USA
| | - Michelle Demory Beckler
- Microbiology and Immunology, Dr. Kiran C. Patel College of Allopathic Medicine, Nova Southeastern University, Fort Lauderdale, USA
| | - Atif Hussein
- Hematology and Oncology, Memorial Cancer Institute, Pembroke Pines, USA
| | - Marc M Kesselman
- Rheumatology, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, USA
| |
Collapse
|
39
|
Li GS, He RQ, Huang ZG, Huang H, Yang Z, Liu J, Fu ZW, Huang WY, Zhou HF, Kong JL, Chen G. A novel prognostic signature of coagulation-related genes leveraged by machine learning algorithms for lung squamous cell carcinoma. Heliyon 2024; 10:e27595. [PMID: 38496840 PMCID: PMC10944263 DOI: 10.1016/j.heliyon.2024.e27595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 12/26/2023] [Accepted: 03/04/2024] [Indexed: 03/19/2024] Open
Abstract
Coagulation-related genes (CRGs) have been demonstrated to be essential for the development of certain tumors; however, little is known about CRGs in lung squamous cell carcinoma (LUSC). In this study, we adopted CRGs to construct a coagulation-related gene prognostic signature (CRGPS) using machine learning algorithms. Using a set of 92 machine learning integrated algorithms, the CRGPS was determined to be the optimal prognostic signature (median C-index = 0.600) for predicting the prognosis of an LUSC patient. The CRGPS was not only superior to traditional clinical parameters (e.g., T stage, age, and gender) and its commutative genes but also outperformed 19 preexisting prognostic signatures for LUSC on predictive accuracy. The CRGPS score was positively correlated with poor prognoses in patients with LUSC (hazard ratio > 1, p < 0.05), indicating its suitability as a prognostic marker for this disease. The CRGPS was observed to be inversely correlated with the degree of infiltration of natural killer cells. For some tumors, patients with lower CRGPS scores are more likely to experience enhanced immunotherapy effects (area under the curve = 0.70), which implies that the CRGPS can potentially predict immunotherapy efficacy. A high CRGPS score is predictive of an LUSC patient being sensitive to several drugs. Collectively, these findings indicate that the CRGPS may be a reliable indicator of the prognoses of patients with LUSC and may be useful for the clinical management of such patients.
Collapse
Affiliation(s)
- Guo-Sheng Li
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, PR China
| | - Rong-Quan He
- Department of Medical Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, PR China
| | - Zhi-Guang Huang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, PR China
| | - Hong Huang
- Division of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, PR China
| | - Zhen Yang
- Division of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, PR China
| | - Jun Liu
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, PR China
| | - Zong-Wang Fu
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, PR China
| | - Wan-Ying Huang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, PR China
| | - Hua-Fu Zhou
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, PR China
| | - Jin-Liang Kong
- Division of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, PR China
| | - Gang Chen
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, PR China
| |
Collapse
|
40
|
Yin KL, Chu KJ, Li M, Duan YX, Yu YX, Kang MQ, Fu D, Liao R. Immune Regulatory Networks and Therapy of γδ T Cells in Liver Cancer: Recent Trends and Advancements. J Clin Transl Hepatol 2024; 12:287-297. [PMID: 38426194 PMCID: PMC10899867 DOI: 10.14218/jcth.2023.00355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 11/20/2023] [Accepted: 12/19/2023] [Indexed: 03/02/2024] Open
Abstract
The roles of γδ T cells in liver cancer, especially in the potential function of immunotherapy due to their direct cytotoxic effects on tumor cells and secretion of important cytokines and chemokines, have aroused research interest. This review briefly describes the basic characteristics of γδ T cells, focusing on their diverse effects on liver cancer. In particular, different subtypes of γδ T cells have diverse or even opposite effects on liver cancer. We provide a detailed description of the immune regulatory network of γδ T cells in liver cancer from two aspects: immune components and nonimmune components. The interactions between various components in this immune regulatory network are dynamic and pluralistic, ultimately determining the biological effects of γδ T cells in liver cancer. We also integrate the current knowledge of γδ T-cell immunotherapy for liver cancer treatment, emphasizing the potential of these cells in liver cancer immunotherapy.
Collapse
Affiliation(s)
- Kun-Li Yin
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Kai-Jian Chu
- Biliary Surgical Department I, the Eastern Hepatobiliary Surgical Hospital, Naval Medical University, Shanghai, China
| | - Ming Li
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yu-Xin Duan
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yan-Xi Yu
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Mei-Qing Kang
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Da Fu
- General Surgery, Institute of Pancreatic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Rui Liao
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
41
|
Forbes C, Nierkens S, Cornel AM. Thymic NK-Cells and Their Potential in Cancer Immunotherapy. Immunotargets Ther 2024; 13:183-194. [PMID: 38558927 PMCID: PMC10979679 DOI: 10.2147/itt.s441639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 01/20/2024] [Indexed: 04/04/2024] Open
Abstract
Natural killer (NK)-cells are innate immune cells with potent anti-tumor capacity, capable of recognizing target cells without prior exposure. For this reason, NK-cells are recognized as a useful source of cell therapy. Although most NK-cells are derived from the bone marrow (BM), a separate developmental pathway in the thymus also exists, producing so-called thymic NK-cells. Unlike conventional NK-cells, thymic NK (tNK)-cells have a combined capacity for cytokine production and a natural ability to kill tumor cells in the presence of NK-cell receptor stimulatory ligands. Furthermore, tNK-cells are reported to express CD3 subunits intracellularly, without the presence of a rearranged T-cell receptor (TCR). This unique feature may enable harnessing of these cells with a TCR to combine NK- and T-cell effector properties in one cell type. The development, phenotype, and function of tNK-cells, and potential as a cell therapy is, however, poorly explored. In this review, we provide an overview of current literature on both murine and human tNK-cells in comparison to conventional BM-derived NK-cells, and discuss the potential applications of this cellular subset in the context of cancer immunotherapy.
Collapse
Affiliation(s)
- Caitlyn Forbes
- Princess Máxima Center for Pediatric Oncology, Utrecht University, Utrecht, the Netherlands
| | - Stefan Nierkens
- Princess Máxima Center for Pediatric Oncology, Utrecht University, Utrecht, the Netherlands
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Annelisa M Cornel
- Princess Máxima Center for Pediatric Oncology, Utrecht University, Utrecht, the Netherlands
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
42
|
Ma H, Yan QZ, Ma JR, Li DF, Yang JL. Overview of the immunological mechanisms in hepatitis B virus reactivation: Implications for disease progression and management strategies. World J Gastroenterol 2024; 30:1295-1312. [PMID: 38596493 PMCID: PMC11000084 DOI: 10.3748/wjg.v30.i10.1295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/25/2023] [Accepted: 01/24/2024] [Indexed: 03/14/2024] Open
Abstract
Hepatitis B virus (HBV) reactivation is a clinically significant challenge in disease management. This review explores the immunological mechanisms underlying HBV reactivation, emphasizing disease progression and management. It delves into host immune responses and reactivation's delicate balance, spanning innate and adaptive immunity. Viral factors' disruption of this balance, as are interactions between viral antigens, immune cells, cytokine networks, and immune checkpoint pathways, are examined. Notably, the roles of T cells, natural killer cells, and antigen-presenting cells are discussed, highlighting their influence on disease progression. HBV reactivation's impact on disease severity, hepatic flares, liver fibrosis progression, and hepatocellular carcinoma is detailed. Management strategies, including anti-viral and immunomodulatory approaches, are critically analyzed. The role of prophylactic anti-viral therapy during immunosuppressive treatments is explored alongside novel immunotherapeutic interventions to restore immune control and prevent reactivation. In conclusion, this comprehensive review furnishes a holistic view of the immunological mechanisms that propel HBV reactivation. With a dedicated focus on understanding its implications for disease progression and the prospects of efficient management strategies, this article contributes significantly to the knowledge base. The more profound insights into the intricate interactions between viral elements and the immune system will inform evidence-based approaches, ultimately enhancing disease management and elevating patient outcomes. The dynamic landscape of management strategies is critically scrutinized, spanning anti-viral and immunomodulatory approaches. The role of prophylactic anti-viral therapy in preventing reactivation during immunosuppressive treatments and the potential of innovative immunotherapeutic interventions to restore immune control and proactively deter reactivation.
Collapse
Affiliation(s)
- Hui Ma
- Department of Clinical Laboratory, The Second Hospital of Jilin University, Changchun 130000, Jilin Province, China
| | - Qing-Zhu Yan
- Department of Ultrasound Medicine, The Second Hospital of Jilin University, Changchun 130000, Jilin Province, China
| | - Jing-Ru Ma
- Department of Clinical Laboratory, The Second Hospital of Jilin University, Changchun 130000, Jilin Province, China
| | - Dong-Fu Li
- Digestive Diseases Center, Department of Hepatopancreatobiliary Medicine, The Second Hospital of Jilin University, Changchun 130000, Jilin Province, China
| | - Jun-Ling Yang
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Jilin University, Changchun 130000, Jilin Province, China
| |
Collapse
|
43
|
Stenger TD, Miller JS. Therapeutic approaches to enhance natural killer cell cytotoxicity. Front Immunol 2024; 15:1356666. [PMID: 38545115 PMCID: PMC10966407 DOI: 10.3389/fimmu.2024.1356666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 02/05/2024] [Indexed: 04/14/2024] Open
Abstract
Enhancing the cytotoxicity of natural killer (NK) cells has emerged as a promising strategy in cancer immunotherapy, due to their pivotal role in immune surveillance and tumor clearance. This literature review provides a comprehensive overview of therapeutic approaches designed to augment NK cell cytotoxicity. We analyze a wide range of strategies, including cytokine-based treatment, monoclonal antibodies, and NK cell engagers, and discuss criteria that must be considered when selecting an NK cell product to combine with these strategies. Furthermore, we discuss the challenges and limitations associated with each therapeutic strategy, as well as the potential for combination therapies to maximize NK cell cytotoxicity while minimizing adverse effects. By exploring the wealth of research on this topic, this literature review aims to provide a comprehensive resource for researchers and clinicians seeking to develop and implement novel therapeutic strategies that harness the full potential of NK cells in the fight against cancer. Enhancing NK cell cytotoxicity holds great promise in the evolving landscape of immunotherapy, and this review serves as a roadmap for understanding the current state of the field and the future directions in NK cell-based therapies.
Collapse
Affiliation(s)
- Terran D. Stenger
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States
| | | |
Collapse
|
44
|
Maia A, Tarannum M, Lérias JR, Piccinelli S, Borrego LM, Maeurer M, Romee R, Castillo-Martin M. Building a Better Defense: Expanding and Improving Natural Killer Cells for Adoptive Cell Therapy. Cells 2024; 13:451. [PMID: 38474415 PMCID: PMC10930942 DOI: 10.3390/cells13050451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 03/01/2024] [Accepted: 03/01/2024] [Indexed: 03/14/2024] Open
Abstract
Natural killer (NK) cells have gained attention as a promising adoptive cell therapy platform for their potential to improve cancer treatments. NK cells offer distinct advantages over T-cells, including major histocompatibility complex class I (MHC-I)-independent tumor recognition and low risk of toxicity, even in an allogeneic setting. Despite this tremendous potential, challenges persist, such as limited in vivo persistence, reduced tumor infiltration, and low absolute NK cell numbers. This review outlines several strategies aiming to overcome these challenges. The developed strategies include optimizing NK cell expansion methods and improving NK cell antitumor responses by cytokine stimulation and genetic manipulations. Using K562 cells expressing membrane IL-15 or IL-21 with or without additional activating ligands like 4-1BBL allows "massive" NK cell expansion and makes multiple cell dosing and "off-the-shelf" efforts feasible. Further improvements in NK cell function can be reached by inducing memory-like NK cells, developing chimeric antigen receptor (CAR)-NK cells, or isolating NK-cell-based tumor-infiltrating lymphocytes (TILs). Memory-like NK cells demonstrate higher in vivo persistence and cytotoxicity, with early clinical trials demonstrating safety and promising efficacy. Recent trials using CAR-NK cells have also demonstrated a lack of any major toxicity, including cytokine release syndrome, and, yet, promising clinical activity. Recent data support that the presence of TIL-NK cells is associated with improved overall patient survival in different types of solid tumors such as head and neck, colorectal, breast, and gastric carcinomas, among the most significant. In conclusion, this review presents insights into the diverse strategies available for NK cell expansion, including the roles played by various cytokines, feeder cells, and culture material in influencing the activation phenotype, telomere length, and cytotoxic potential of expanded NK cells. Notably, genetically modified K562 cells have demonstrated significant efficacy in promoting NK cell expansion. Furthermore, culturing NK cells with IL-2 and IL-15 has been shown to improve expansion rates, while the presence of IL-12 and IL-21 has been linked to enhanced cytotoxic function. Overall, this review provides an overview of NK cell expansion methodologies, highlighting the current landscape of clinical trials and the key advancements to enhance NK-cell-based adoptive cell therapy.
Collapse
Affiliation(s)
- Andreia Maia
- Molecular and Experimental Pathology Laboratory, Champalimaud Centre for the Unknown, Champalimaud Foundation, 1400-038 Lisbon, Portugal;
- NK Cell Gene Manipulation and Therapy Laboratory, Division of Cellular Therapy and Stem Cell Transplant, Dana–Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; (M.T.); (S.P.); (R.R.)
- NOVA Medical School, NOVA University of Lisbon, 1099-085 Lisbon, Portugal
| | - Mubin Tarannum
- NK Cell Gene Manipulation and Therapy Laboratory, Division of Cellular Therapy and Stem Cell Transplant, Dana–Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; (M.T.); (S.P.); (R.R.)
| | - Joana R. Lérias
- ImmunoTherapy/ImmunoSurgery, Champalimaud Centre for the Unknown, Champalimaud Foundation, 1400-038 Lisbon, Portugal; (J.R.L.); (M.M.)
| | - Sara Piccinelli
- NK Cell Gene Manipulation and Therapy Laboratory, Division of Cellular Therapy and Stem Cell Transplant, Dana–Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; (M.T.); (S.P.); (R.R.)
| | - Luis Miguel Borrego
- Comprehensive Health Research Centre (CHRC), NOVA Medical School, Faculdade de Ciências Médicas (FCM), NOVA University of Lisbon, 1099-085 Lisbon, Portugal;
- Immunoallergy Department, Hospital da Luz, 1600-209 Lisbon, Portugal
| | - Markus Maeurer
- ImmunoTherapy/ImmunoSurgery, Champalimaud Centre for the Unknown, Champalimaud Foundation, 1400-038 Lisbon, Portugal; (J.R.L.); (M.M.)
- I Medical Clinic, University of Mainz, 55131 Mainz, Germany
| | - Rizwan Romee
- NK Cell Gene Manipulation and Therapy Laboratory, Division of Cellular Therapy and Stem Cell Transplant, Dana–Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; (M.T.); (S.P.); (R.R.)
| | - Mireia Castillo-Martin
- Molecular and Experimental Pathology Laboratory, Champalimaud Centre for the Unknown, Champalimaud Foundation, 1400-038 Lisbon, Portugal;
- Pathology Service, Champalimaud Clinical Center, Champalimaud Foundation, 1400-038 Lisbon, Portugal
| |
Collapse
|
45
|
Adhikary S, Pathak S, Palani V, Acar A, Banerjee A, Al-Dewik NI, Essa MM, Mohammed SGAA, Qoronfleh MW. Current Technologies and Future Perspectives in Immunotherapy towards a Clinical Oncology Approach. Biomedicines 2024; 12:217. [PMID: 38255322 PMCID: PMC10813720 DOI: 10.3390/biomedicines12010217] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/08/2024] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
Immunotherapy is now established as a potent therapeutic paradigm engendering antitumor immune response against a wide range of malignancies and other diseases by modulating the immune system either through the stimulation or suppression of immune components such as CD4+ T cells, CD8+ T cells, B cells, monocytes, macrophages, dendritic cells, and natural killer cells. By targeting several immune checkpoint inhibitors or blockers (e.g., PD-1, PD-L1, PD-L2, CTLA-4, LAG3, and TIM-3) expressed on the surface of immune cells, several monoclonal antibodies and polyclonal antibodies have been developed and already translated clinically. In addition, natural killer cell-based, dendritic cell-based, and CAR T cell therapies have been also shown to be promising and effective immunotherapeutic approaches. In particular, CAR T cell therapy has benefited from advancements in CRISPR-Cas9 genome editing technology, allowing the generation of several modified CAR T cells with enhanced antitumor immunity. However, the emerging SARS-CoV-2 infection could hijack a patient's immune system by releasing pro-inflammatory interleukins and cytokines such as IL-1β, IL-2, IL-6, and IL-10, and IFN-γ and TNF-α, respectively, which can further promote neutrophil extravasation and the vasodilation of blood vessels. Despite the significant development of advanced immunotherapeutic technologies, after a certain period of treatment, cancer relapses due to the development of resistance to immunotherapy. Resistance may be primary (where tumor cells do not respond to the treatment), or secondary or acquired immune resistance (where tumor cells develop resistance gradually to ICIs therapy). In this context, this review aims to address the existing immunotherapeutic technologies against cancer and the resistance mechanisms against immunotherapeutic drugs, and explain the impact of COVID-19 on cancer treatment. In addition, we will discuss what will be the future implementation of these strategies against cancer drug resistance. Finally, we will emphasize the practical steps to lay the groundwork for enlightened policy for intervention and resource allocation to care for cancer patients.
Collapse
Affiliation(s)
- Subhamay Adhikary
- Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai 603103, India
| | - Surajit Pathak
- Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai 603103, India
| | - Vignesh Palani
- Faculty of Medicine, Chettinad Hospital and Research Institute (CHRI), Chennai 603103, India
| | - Ahmet Acar
- Department of Biological Sciences, Middle East Technical University, 06800 Ankara, Türkiye;
| | - Antara Banerjee
- Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai 603103, India
| | - Nader I. Al-Dewik
- Department of Pediatrics, Women’s Wellness and Research Center, Hamad Medical Corporation, Doha 00974, Qatar;
| | - Musthafa Mohamed Essa
- College of Agricultural and Marine Sciences, Sultan Qaboos University, Muscat 123, Oman
| | | | - M. Walid Qoronfleh
- Research & Policy Division, Q3 Research Institute (QRI), Ypsilanti, MI 48917, USA
| |
Collapse
|
46
|
Liu X, Yi J, Li T, Wen J, Huang K, Liu J, Wang G, Kim P, Song Q, Zhou X. DRMref: comprehensive reference map of drug resistance mechanisms in human cancer. Nucleic Acids Res 2024; 52:D1253-D1264. [PMID: 37986230 PMCID: PMC10767840 DOI: 10.1093/nar/gkad1087] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/18/2023] [Accepted: 10/30/2023] [Indexed: 11/22/2023] Open
Abstract
Drug resistance poses a significant challenge in cancer treatment. Despite the initial effectiveness of therapies such as chemotherapy, targeted therapy and immunotherapy, many patients eventually develop resistance. To gain deep insights into the underlying mechanisms, single-cell profiling has been performed to interrogate drug resistance at cell level. Herein, we have built the DRMref database (https://ccsm.uth.edu/DRMref/) to provide comprehensive characterization of drug resistance using single-cell data from drug treatment settings. The current version of DRMref includes 42 single-cell datasets from 30 studies, covering 382 samples, 13 major cancer types, 26 cancer subtypes, 35 treatment regimens and 42 drugs. All datasets in DRMref are browsable and searchable, with detailed annotations provided. Meanwhile, DRMref includes analyses of cellular composition, intratumoral heterogeneity, epithelial-mesenchymal transition, cell-cell interaction and differentially expressed genes in resistant cells. Notably, DRMref investigates the drug resistance mechanisms (e.g. Aberration of Drug's Therapeutic Target, Drug Inactivation by Structure Modification, etc.) in resistant cells. Additional enrichment analysis of hallmark/KEGG (Kyoto Encyclopedia of Genes and Genomes)/GO (Gene Ontology) pathways, as well as the identification of microRNA, motif and transcription factors involved in resistant cells, is provided in DRMref for user's exploration. Overall, DRMref serves as a unique single-cell-based resource for studying drug resistance, drug combination therapy and discovering novel drug targets.
Collapse
Affiliation(s)
- Xiaona Liu
- Center for Computational Systems Medicine, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Jiahao Yi
- Bioinformatics and Biomedical Big Data Mining Laboratory, Department of Medical Informatics, School of Big Health, Guizhou Medical University, Guiyang 550025, China
| | - Tina Li
- Center for Computational Systems Medicine, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Jianguo Wen
- Center for Computational Systems Medicine, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Kexin Huang
- West China Biomedical Big Data Centre, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jiajia Liu
- Center for Computational Systems Medicine, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Grant Wang
- Department of Bioengineering, Rice University, Houston, TX 77005, USA
| | - Pora Kim
- Center for Computational Systems Medicine, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Qianqian Song
- Department of Health Outcomes and Biomedical Informatics, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Xiaobo Zhou
- Center for Computational Systems Medicine, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| |
Collapse
|
47
|
Dang BTN, Kwon TK, Lee S, Jeong JH, Yook S. Nanoparticle-based immunoengineering strategies for enhancing cancer immunotherapy. J Control Release 2024; 365:773-800. [PMID: 38081328 DOI: 10.1016/j.jconrel.2023.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/27/2023] [Accepted: 12/03/2023] [Indexed: 12/17/2023]
Abstract
Cancer immunotherapy is a groundbreaking strategy that has revolutionized the field of oncology compared to other therapeutic strategies, such as surgery, chemotherapy, or radiotherapy. However, cancer complexity, tumor heterogeneity, and immune escape have become the main hurdles to the clinical application of immunotherapy. Moreover, conventional immunotherapies cause many harmful side effects owing to hyperreactivity in patients, long treatment durations and expensive cost. Nanotechnology is considered a transformative approach that enhances the potency of immunotherapy by capitalizing on the superior physicochemical properties of nanocarriers, creating highly targeted tissue delivery systems. These advantageous features include a substantial specific surface area, which enhances the interaction with the immune system. In addition, the capability to finely modify surface chemistry enables the achievement of controlled and sustained release properties. These advances have significantly increased the potential of immunotherapy, making it more powerful than ever before. In this review, we introduce recent nanocarriers for application in cancer immunotherapy based on strategies that target different main immune cells, including T cells, dendritic cells, natural killer cells, and tumor-associated macrophages. We also provide an overview of the role and significance of nanotechnology in cancer immunotherapy.
Collapse
Affiliation(s)
| | - Taeg Kyu Kwon
- Department of Immunology, School of Medicine, Keimyung University, Daegu 42601, Republic of Korea
| | - Sooyeun Lee
- College of Pharmacy, Keimyung University, Daegu 42601, Republic of Korea
| | - Jee-Heon Jeong
- Department of Precision Medicine, School of Medicine, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| | - Simmyung Yook
- Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea; School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| |
Collapse
|
48
|
Li J, Zeng H, Li L, Yang Q, He L, Dong M. Advanced Generation Therapeutics: Biomimetic Nanodelivery System for Tumor Immunotherapy. ACS NANO 2023; 17:24593-24618. [PMID: 38055350 DOI: 10.1021/acsnano.3c10212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
Tumor immunotherapy is a safe and effective strategy for precision medicine. However, immunotherapy for most cancer cases still ends in failure, with the root causes of the immunosuppressive and extraordinary heterogeneity of the solid tumors microenvironment. The emerging biomimetic nanodelivery system provides a promising tactic to improve the immunotherapy effect while reducing the adverse reactions on nontarget cells. Herein, we summarize the relationship between tumor occurrence and tumor immune microenvironment, mechanism of tumor immune escape, immunotherapy classification (including adoptive cellular therapy, cytokines, cancer vaccines, and immune checkpoint inhibitors) and recommend target cells for immunotherapy first, and then emphatically introduce the recent advances and applications of the latest biomimetic nanodelivery systems (e.g., immune cells, erythrocytes, tumor cells, platelets, bacteria) in tumor immunotherapy. Meanwhile, we separately summarize the application of tumor vaccines. Finally, the predictable challenges and perspectives in a forward exploration of biomimetic nanodelivery systems for tumor immunotherapy are also discussed.
Collapse
Affiliation(s)
- Jie Li
- Center for Medicine Research and Translation, Chengdu Fifth People's Hospital (The Second Clinical Medical College, Affiliated Fifth People's Hospital of Chengdu University of Traditional Chinese Medicine), Chengdu 611135, Sichuan, China
- Cancer Prevention and Institute of Chengdu, Department of Oncology, Chengdu Fifth People's Hospital (The Second Clinical Medical College, Affiliated Fifth People's Hospital of Chengdu University of Traditional Chinese Medicine), Chengdu 611130, Sichuan, China
| | - Huamin Zeng
- Department of Pathology, Chengdu Fifth People's Hospital (The Second Clinical Medical Colloge, Affiliated Fifth People's Hospital of Chengdu University of Traditional Chinese Medicine), Chengdu 611130, Sichuan, China
| | - Luwei Li
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China
| | - Qiu Yang
- Center for Medicine Research and Translation, Chengdu Fifth People's Hospital (The Second Clinical Medical College, Affiliated Fifth People's Hospital of Chengdu University of Traditional Chinese Medicine), Chengdu 611135, Sichuan, China
| | - Lang He
- Cancer Prevention and Institute of Chengdu, Department of Oncology, Chengdu Fifth People's Hospital (The Second Clinical Medical College, Affiliated Fifth People's Hospital of Chengdu University of Traditional Chinese Medicine), Chengdu 611130, Sichuan, China
| | - Mingqing Dong
- Center for Medicine Research and Translation, Chengdu Fifth People's Hospital (The Second Clinical Medical College, Affiliated Fifth People's Hospital of Chengdu University of Traditional Chinese Medicine), Chengdu 611135, Sichuan, China
| |
Collapse
|
49
|
Rahimi A, Malakoutikhah Z, Rahimmanesh I, Ferns GA, Nedaeinia R, Ishaghi SMM, Dana N, Haghjooy Javanmard S. The nexus of natural killer cells and melanoma tumor microenvironment: crosstalk, chemotherapeutic potential, and innovative NK cell-based therapeutic strategies. Cancer Cell Int 2023; 23:312. [PMID: 38057843 DOI: 10.1186/s12935-023-03134-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 11/09/2023] [Indexed: 12/08/2023] Open
Abstract
The metastasis of melanoma cells to regional lymph nodes and distant sites is an important contributor to cancer-related morbidity and mortality among patients with melanoma. This intricate process entails dynamic interactions involving tumor cells, cellular constituents, and non-cellular elements within the microenvironment. Moreover, both microenvironmental and systemic factors regulate the metastatic progression. Central to immunosurveillance for tumor cells are natural killer (NK) cells, prominent effectors of the innate immune system with potent antitumor and antimetastatic capabilities. Recognizing their pivotal role, contemporary immunotherapeutic strategies are actively integrating NK cells to combat metastatic tumors. Thus, a meticulous exploration of the interplay between metastatic melanoma and NK cells along the metastatic cascade is important. Given the critical involvement of NK cells within the melanoma tumor microenvironment, this comprehensive review illuminates the intricate relationship between components of the melanoma tumor microenvironment and NK cells, delineating their multifaceted roles. By shedding light on these critical aspects, this review advocates for a deeper understanding of NK cell dynamics within the melanoma context, driving forward transformative strategies to combat this cancer.
Collapse
Affiliation(s)
- Azadeh Rahimi
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Zahra Malakoutikhah
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ilnaz Rahimmanesh
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Gordon A Ferns
- Division of Medical Education, Brighton and Sussex Medical School, Falmer, Brighton, Sussex, BN1 9PH, UK
| | - Reza Nedaeinia
- Pediatric Inherited Diseases Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Nasim Dana
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Shaghayegh Haghjooy Javanmard
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
50
|
Hossenipour Khodaei S, Sabetnam S, Nozad Charoudeh H, Dizaji Asl K, Rafat A, Mazloumi Z. The effect of mitochondria inhibition on natural killer cells cytotoxicity in triple-negative breast cancer cells. Eur J Pharmacol 2023; 960:176106. [PMID: 37839666 DOI: 10.1016/j.ejphar.2023.176106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 09/29/2023] [Accepted: 10/04/2023] [Indexed: 10/17/2023]
Abstract
Triple-Negative Breast Cancer (TNBC), the most common invasive breast cancer, depicts cancer poor response to conventional therapies. The clinical management of TNBC is a challenging issue. Natural killer (NK) cell therapy in the field of cancer treatment is rapidly growing however, regarding the immunogenicity of breast cancer cells, this type of therapy has shown limited efficacy. Recently, targeting tumor biomarkers has revolutionized the field of cancer therapy. Mitochondria affects apoptosis and innate immunity. Therefore, in this study, mitochondria were inhibited with Tigecycline in stimulating the cytotoxicity of NK cells against TNBC cell lines. MDA-MB-468 and MDA-MB-231 were cultured and treated with IC50 (the half-maximal inhibitory concentration) level of Tigecycline for 48 h and afterward co-cultured with peripheral blood NK cells for 5 h. Lastly, the inhibitory effects of mitochondria on the cytotoxicity of NK cells and apoptosis of TNBC cells were evaluated. Moreover, the expression of apoptotic-related genes was studied. The results showed that mitochondria inhibition increased NK cells cytotoxicity against TNBC cells. Moreover, NK cell/mitochondria inhibition in a combinative form improved apoptosis in TNBC cells by the upregulation of Bad and Bid expression. In conclusion, Tigecycline inhibited mitochondria and sensitized TNBC cells to NK cell therapy. Therefore, mitochondria inhibition could help NK cells function properly.
Collapse
Affiliation(s)
- Sepide Hossenipour Khodaei
- Department of Dentistry, Eastern Mediterranean University (EMU) Famagusta, North Cyprus Mersin 10, Turkey
| | - Shahbaz Sabetnam
- Department of Anatomy, Faculty of Medicine, University of Kyrenia, Mersin 10, Kyrenia, Turkey; Department of Histopathology and Anatomy, Faculty of Medicine Sciences, Tabriz Medical Sciences, Islamic Azad Tabriz University, Tabriz, Iran
| | | | - Khadijeh Dizaji Asl
- Department of Histopathology and Anatomy, Faculty of Medicine Sciences, Tabriz Medical Sciences, Islamic Azad Tabriz University, Tabriz, Iran
| | - Ali Rafat
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Zeinab Mazloumi
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|