1
|
Yu X, Hu Y, Jiang W. Integrative analysis of mitochondrial and immune pathways in diabetic kidney disease: identification of AASS and CASP3 as key predictors and therapeutic targets. Ren Fail 2025; 47:2465811. [PMID: 39988817 PMCID: PMC11852243 DOI: 10.1080/0886022x.2025.2465811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 02/04/2025] [Accepted: 02/05/2025] [Indexed: 02/25/2025] Open
Abstract
OBJECTIVES Diabetic kidney disease (DKD) is driven by mitochondrial dysfunction and immune dysregulation, yet the mechanistic interplay remains poorly defined. This study aimed to identify key molecular networks linking mitochondrial and immune pathways to DKD progression, with a focus on uncovering biomarkers and therapeutic targets. METHODS We conducted an integrative analysis of human DKD cohorts (GSE30122, GSE96804) using weighted gene co-expression network analysis (WGCNA) to identify gene modules enriched for immune response genes and mitochondrial pathways (from MitoCarta3.0). Machine learning algorithms were employed to prioritize key biomarkers for further investigation. Experimental validation was performed using a DKD rat model. RESULTS WGCNA revealed significant gene modules associated with immune responses and mitochondrial functions. Machine learning analysis highlighted two central biomarkers: aminoadipate-semialdehyde synthase (AASS) and caspase-3 (CASP3). In the DKD rat model, elevated levels of AASS and CASP3 were found to correlate with increased oxidative stress. Mechanistically, AASS was shown to drive mitochondrial damage via lysine metabolism, while CASP3 amplified inflammatory apoptosis pathways. CONCLUSIONS Our findings establish AASS and CASP3 as dual biomarkers and therapeutic targets, bridging mitochondrial-immune crosstalk to DKD pathogenesis. This multi-omics framework provides actionable insights for targeting kidney damage in diabetes.
Collapse
Affiliation(s)
- Xinxin Yu
- Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
- Department of Nephrology, Qingdao Eighth People’s Hospital, Qingdao, Shandong, China
| | - Yongzheng Hu
- Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Wei Jiang
- Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
2
|
Li F, Zhou H, Zhu J, Wei X, Wang Y. Hypoglycemic Effect of Black Tea and Its Mechanism: Regulation of Glycometabolism and Intestinal Flora. J Med Food 2025; 28:435-447. [PMID: 40052193 DOI: 10.1089/jmf.2024.k.0251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2025] Open
Abstract
This study aimed to investigate the hypoglycemic effects of different concentrations of black tea (BT) extracts and their underlying mechanisms in type 2 diabetic (T2DM) mice. Results indicated that BT extracts significantly mitigated weight loss, improved glucose and insulin tolerance, and modulated cytokine levels related to glucose and lipid metabolism in T2DM mice. Moreover, BT extracts ameliorated liver and pancreas damage resulting from high-sugar/high-fat diets and insulin resistance. Among the tested concentrations, low-concentration BT (BT-L) extract exhibited the most potent hypoglycemic ability. Furthermore, BT-L restored pancreatic function in hyperglycemic mice via activating the glucagon-like peptide-1 receptor-protein kinase A-pancreatic and duodenal homeobox-1-glucokinase cascade pathway. In terms of intestinal homeostasis, all BT-treated groups adjusted the gut microbiota structure by regulating the distribution and diversity of gut microbiota in T2DM mice. Among them, BT-L intervention specifically and significantly increased the levels of probiotic Bifidobacterium in the intestine of T2DM mice. Furthermore, BT-L intervention effectively promoted the synthesis of streptomycin by gut microbiota, thereby exerting anti-inflammatory effect. Comprehensively, the hypoglycemic effect of BT cannot show an absolute concentration-dependent relationship. Our findings highlight the potential of BT as an effective blood glucose regulator and provide valuable insights for BT-based functional food development.
Collapse
Affiliation(s)
- Fanglan Li
- Institute of Engineering Food, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Hui Zhou
- Institute of Engineering Food, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Jiangxiong Zhu
- Institute of Engineering Food, College of Life Sciences, Shanghai Normal University, Shanghai, China
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Xinlin Wei
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Yuanfeng Wang
- Institute of Engineering Food, College of Life Sciences, Shanghai Normal University, Shanghai, China
| |
Collapse
|
3
|
Tian Q, Cao H, Chu L, Gao H, Gao Q. Proteomic and Metabolomic Analysis of the Neuroprotective Effects of Lycium Ruthenicum Polyphenols in Diabetic Peripheral Neuropathy Mice. Food Sci Nutr 2025; 13:e70209. [PMID: 40321612 PMCID: PMC12045932 DOI: 10.1002/fsn3.70209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 03/15/2025] [Accepted: 04/11/2025] [Indexed: 05/08/2025] Open
Abstract
Lycium ruthenicum polyphenols (LRP) have been proven to be anti-inflammatory, antioxidant, and neuroprotective phytochemicals. This study applies proteomics and metabolomics to LRP-treated db/db mice to explore its potential effects mechanism. The experiments were divided into three groups: normal control db/m group, diabetic peripheral neuropathy (DPN) db/db group, and LRP-treated db/db group. We examined physiological and biochemical indicators, behavioral indicators, and histopathology. As for the mechanism, we used TMT-based quantification proteomics and LC-MS/MS-based metabolomics for sciatic nerve and serum. After 8 weeks of treatment, the fasting blood glucose level, mechanical withdrawal threshold, and thermal hyperalgesia were significantly improved. Pathological examination showed a significant alleviation in sciatic nerve histomorphology in the LRP group. Proteomics and metabolomics showed that the interventional effects of LRP were enriched mainly in oxidative phosphorylation, cardiac muscle contraction, and serum metabolites were enriched mainly in amino acid metabolism. LRP improves neurological function by improving mitochondrial functions, promoting neuronal development, and ameliorating dysregulation of amino acid metabolism. These results provide theoretical evidence for LRP as a potential functional food ingredient for the prevention and treatment of DPN.
Collapse
Affiliation(s)
- Qi Tian
- School of Public HealthNingxia Medical UniversityYinchuanNingxiaChina
- Key Laboratory of Environmental Factors and Chronic Disease ControlNingxia Medical UniversityYinchuanNingxiaChina
| | - Hongdou Cao
- School of Public HealthNingxia Medical UniversityYinchuanNingxiaChina
- Key Laboratory of Environmental Factors and Chronic Disease ControlNingxia Medical UniversityYinchuanNingxiaChina
| | - Liwen Chu
- School of Public HealthNingxia Medical UniversityYinchuanNingxiaChina
- Key Laboratory of Environmental Factors and Chronic Disease ControlNingxia Medical UniversityYinchuanNingxiaChina
| | - Hua Gao
- Department of PharmacyGeneral Hospital of Ningxia Medical UniversityYinchuanNingxiaChina
| | - Qinghan Gao
- School of Public HealthNingxia Medical UniversityYinchuanNingxiaChina
- Key Laboratory of Environmental Factors and Chronic Disease ControlNingxia Medical UniversityYinchuanNingxiaChina
| |
Collapse
|
4
|
Zhao Q, Jin M, Zhao Q, Wang Z, Zhao C, Xue X, Qiao X, Qu P, Han D, Tao R. Natural products in traditional Chinese medicine for renal fibrosis: a comprehensive review. Front Pharmacol 2025; 16:1560567. [PMID: 40308781 PMCID: PMC12041090 DOI: 10.3389/fphar.2025.1560567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 03/28/2025] [Indexed: 05/02/2025] Open
Abstract
Renal fibrosis represents the terminal pathological manifestation of most chronic kidney diseases, driving progressive loss of renal function. Natural products have emerged as promising therapeutic agents for preventing and ameliorating renal fibrosis due to their multi-target efficacy and favorable safety profiles. In this review, we conducted a comprehensive literature search on PubMed using the keywords "natural product" and "renal fibrosis" from 2004 to 2025, identifying 704 relevant articles. We systematically categorize and discuss the biological effects of key natural products and formulations with antifibrotic potential, focusing on five major classes: glycosides, flavonoids, phenolic compounds, anthraquinones, and terpenoids. Representative compounds from each category are highlighted for their mechanisms of action, including modulation of oxidative stress, inflammation, autophagy, and fibrosis signaling pathways. This review aims to provide a theoretical foundation for the development of natural product-based therapies to combat renal fibrosis, offering insights into their therapeutic potential and future research directions.
Collapse
Affiliation(s)
- Qianqian Zhao
- Department of Anatomy, Medical College, Dalian University, Dalian, Liaoning, China
| | - Meihua Jin
- Department of Immunology, Medical College, Dalian University, Dalian, Liaoning, China
| | - Qiang Zhao
- Department of Anatomy, Medical College, Dalian University, Dalian, Liaoning, China
| | - Zhimei Wang
- Department of Immunology, Medical College, Dalian University, Dalian, Liaoning, China
| | - Chun Zhao
- Department of Immunology, Medical College, Dalian University, Dalian, Liaoning, China
| | - Xiaocong Xue
- Department of Anatomy, Medical College, Dalian University, Dalian, Liaoning, China
| | - Xikai Qiao
- Department of Immunology, Medical College, Dalian University, Dalian, Liaoning, China
| | - Peng Qu
- Department of Anatomy, Medical College, Dalian University, Dalian, Liaoning, China
| | - Donghe Han
- Department of Anatomy, Medical College, Dalian University, Dalian, Liaoning, China
| | - Ran Tao
- Department of Anatomy, Medical College, Dalian University, Dalian, Liaoning, China
| |
Collapse
|
5
|
Tiscornia C, Tapia V, Águila D, Lorca-Ponce E, Aicardi V, Vásquez F. Maqui and Chronic Kidney Disease: A Narrative Review on the Potential Nephroprotective Role of Anthocyanins. Nutrients 2025; 17:1058. [PMID: 40292440 PMCID: PMC11944665 DOI: 10.3390/nu17061058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 02/17/2025] [Accepted: 02/20/2025] [Indexed: 04/30/2025] Open
Abstract
Background/Objectives: Chronic kidney disease (CKD) is a progressive pathology, with high global prevalence, associated with inflammation and oxidative stress. Given the limited capacity of conventional treatments to reverse renal damage, complementary alternatives have emerged such as supplementation with anthocyanins from maqui (Aristotelia chilensis), known for their antioxidant and anti-inflammatory properties. This review analyzes the evidence for their impact on CKD progression. Methods: A narrative review of the experimental literature regarding maqui anthocyanins, their bioavailability, and their effects on oxidative stress, inflammation, and CKD to January 2025 was conducted. Articles without peer review or without a focus on Aristotelia chilensis were excluded, guaranteeing an updated compilation on its nephroprotective potential. Results: Anthocyanins have shown benefits in reducing oxidative stress, inflammation, and glycemia regulation. Preclinical studies suggest improvements in renal function as well as less fibrosis. Human trials indicate positive effects on metabolism, although evidence in CKD patients is limited. Bioavailability remains a challenge to optimizing efficacy. Conclusions: Maqui is a promising source of anthocyanins, with nephroprotective potential. However, robust clinical studies are required to determine its safety, optimal dose, and long-term impact in CKD. Its incorporation into evidence-based therapeutic strategies could offer an innovative approach in the management of this disease. More clinical studies are needed to validate the preclinical findings and optimize the therapeutic use of maqui in CKD.
Collapse
Affiliation(s)
- Caterina Tiscornia
- Escuela de Nutrición y Dietética, Universidad Finis Terrae, Santiago 7501014, Chile; (C.T.); (V.T.); (D.Á.)
| | - Violeta Tapia
- Escuela de Nutrición y Dietética, Universidad Finis Terrae, Santiago 7501014, Chile; (C.T.); (V.T.); (D.Á.)
| | - Daniela Águila
- Escuela de Nutrición y Dietética, Universidad Finis Terrae, Santiago 7501014, Chile; (C.T.); (V.T.); (D.Á.)
| | - Enrique Lorca-Ponce
- Escuela de Enfermería, Universidad Finis Terrae, Santiago 7501014, Chile;
- Escuela de Kinesiología, Facultad de Arte y Educación Física, Universidad Metropolitana en Ciencias de la Santiago, Santiago 7760197, Chile
| | - Valeria Aicardi
- Unidad de Diálisis, Clínica Indisa, Santiago 7501014, Chile;
| | - Fabián Vásquez
- Escuela de Nutrición y Dietética, Universidad Finis Terrae, Santiago 7501014, Chile; (C.T.); (V.T.); (D.Á.)
| |
Collapse
|
6
|
Gao G, Su X, Liu S, Wang P, Chen JJ, Liu T, Xu J, Zhang Z, Zhang X, Xie Z. Cornuside as a promising therapeutic agent for diabetic kidney disease: Targeting regulation of Ca 2+ disorder-mediated renal tubular epithelial cells apoptosis. Int Immunopharmacol 2025; 149:114190. [PMID: 39904045 DOI: 10.1016/j.intimp.2025.114190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 01/20/2025] [Accepted: 01/27/2025] [Indexed: 02/06/2025]
Abstract
Renal tubular epithelial cells (RTECs) apoptosis is the key factor in the development of diabetic kidney disease (DKD). Endoplasmic reticulum stress (ERS) leading to mitochondrial Ca2+ overload is one of the causes of apoptosis in RTECs. Corni Fructus (CF) is an herbal medicine, developed and applied as a functional food, and it is commonly used to treat DKD. Cornuside (Cor) is one of the main chemical components in CF. This research seeks to investigate the function of Cor in DKD and delve into its possible mechanisms. Cor significantly improved renal function and ameliorated renal pathological changes of db/db mice. Bioinformatics analyses suggested that the modulation of endoplasmic reticulum-induced intrinsic apoptosis pathway was a primary mechanism by which Cor ameliorated DKD. TUNEL assays and flow cytometry assays indicated that Cor effectively inhibited RTECs apoptosis in db/db mice and AGE-induced HK-2 cells. Further experimental studies showed that Cor mitigated ERS by inhibiting the activation of PERK/ATF4/CHOP signal pathway and down-regulation of VDAC1 protein expression, thus alleviating mitochondrial Ca2+ overload. More importantly, Cor directly targeted NEDD4 to facilitate VDAC1 degradation. Notably, the silencing of NEDD4 nearly abolished Cor's inhibitory effects on mitochondrial Ca2+ overload and apoptosis. In conclusion, Cor modulated Ca2+ homeostasis by alleviating ERS and targeting NEDD4, thus mitigating apoptosis of RTECs in DKD. These findings indicate that Cor has the potential for the treatment and drug development of DKD.
Collapse
Affiliation(s)
- Gai Gao
- School of Pharmacy, Minzu University of China, Beijing, 100081, China; Collaborative Innovation Center of Prevention and Treatment of Major Diseases by Chinese and Western Medicine, Henan Province, Henan University of Chinese Medicine, 450046, China; Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan University of Chinese Medicine, 450046, China
| | - Xuan Su
- Collaborative Innovation Center of Prevention and Treatment of Major Diseases by Chinese and Western Medicine, Henan Province, Henan University of Chinese Medicine, 450046, China; Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan University of Chinese Medicine, 450046, China
| | - Shuyan Liu
- Collaborative Innovation Center of Prevention and Treatment of Major Diseases by Chinese and Western Medicine, Henan Province, Henan University of Chinese Medicine, 450046, China; Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan University of Chinese Medicine, 450046, China
| | - Pan Wang
- Collaborative Innovation Center of Prevention and Treatment of Major Diseases by Chinese and Western Medicine, Henan Province, Henan University of Chinese Medicine, 450046, China; Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan University of Chinese Medicine, 450046, China
| | - Jenny Jie Chen
- International Academic Affairs Department, Management and Science University, University Drive, Off Persiaran Olahraga, Section 13, 40100, Shah Alam, Selangor Darul Ehsan, Malaysia
| | - Tongxiang Liu
- School of Pharmacy, Minzu University of China, Beijing, 100081, China
| | - Jiangyan Xu
- Collaborative Innovation Center of Prevention and Treatment of Major Diseases by Chinese and Western Medicine, Henan Province, Henan University of Chinese Medicine, 450046, China; Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan University of Chinese Medicine, 450046, China
| | - Zhenqiang Zhang
- Collaborative Innovation Center of Prevention and Treatment of Major Diseases by Chinese and Western Medicine, Henan Province, Henan University of Chinese Medicine, 450046, China; Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan University of Chinese Medicine, 450046, China.
| | - Xiaowei Zhang
- Collaborative Innovation Center of Prevention and Treatment of Major Diseases by Chinese and Western Medicine, Henan Province, Henan University of Chinese Medicine, 450046, China; Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan University of Chinese Medicine, 450046, China.
| | - Zhishen Xie
- Collaborative Innovation Center of Prevention and Treatment of Major Diseases by Chinese and Western Medicine, Henan Province, Henan University of Chinese Medicine, 450046, China; Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan University of Chinese Medicine, 450046, China.
| |
Collapse
|
7
|
Yang Q, Chang S, Tian Y, Zhang H, Zhu Y, Li W, Ren J. Simulated digestion and gut microbiota fermentation of polysaccharides from Lactarius hatsudake Tanaka mushroom. Food Chem 2025; 466:142146. [PMID: 39591778 DOI: 10.1016/j.foodchem.2024.142146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 10/13/2024] [Accepted: 11/17/2024] [Indexed: 11/28/2024]
Abstract
Lactarius hatsudake Tanaka is a popular edible mushroom known for its delicious flavor and health benefits. Its polysaccharides (LHP) exhibit significant bioactivity, but their application is limited due to uncertainties in digestion. This study used in vitro simulated models to explore the dynamic changes of LHP during the digestive and fermentation process and validated them through mouse models. Results revealed that LHP cannot be digested by the simulated digestive system, but is primarily degraded into fatty acids by gut microbes, accompanied by reductions in molecular weight, carbohydrate content, and pH. Additionally, LHP promotes the proliferation of beneficial bacteria (Faecalibacterium, Bifidobacterium, Lactobacillus, etc.), while inhibiting harmful bacteria (Escherichia and Shigella). Metabolite analysis in serum indicated that LHP can regulate amino acid and lipid metabolism, enhancing overall health. These findings provide a theoretical foundation for developing LHP as a potential prebiotic, highlighting its considerable promise for disease prevention through improved intestinal health.
Collapse
Affiliation(s)
- Qiao Yang
- Hunan Key Laboratory of Forestry Edible Sources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, PR China
| | - Songlin Chang
- Hunan Key Laboratory of Forestry Edible Sources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, PR China
| | - Yiming Tian
- Hunan Key Laboratory of Forestry Edible Sources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, PR China
| | - Hui Zhang
- Hunan Key Laboratory of Forestry Edible Sources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, PR China
| | - Yuxing Zhu
- Department of Oncology, Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Wang Li
- Hunan Key Laboratory of Forestry Edible Sources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, PR China.
| | - Jiali Ren
- Hunan Key Laboratory of Forestry Edible Sources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, PR China.
| |
Collapse
|
8
|
Wang X, Zhong ZJ, Chen PF, Deng CF, Chen XM, Xin GZ, Tang D. Integrating metabolomics and network pharmacology to investigate Da-Chai-Hu Decoction prevents kidney injury in diabetic mice. JOURNAL OF ETHNOPHARMACOLOGY 2025; 340:119158. [PMID: 39613006 DOI: 10.1016/j.jep.2024.119158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 11/10/2024] [Accepted: 11/23/2024] [Indexed: 12/01/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The current treatment for diabetic nephropathy (DN) is inadequate, and there is an urgent need for an effective and minimally adverse alternative therapy. Da-Chai-Hu Decoction (DCHD) is a time-honored herbal remedy from Chinese medicine, boasting a legacy spanning more than 1800 years. Clinical observations suggest that it may provide therapeutic benefits for individuals with type 2 diabetes mellitus (T2DM). Nonetheless, the specific advantages of DCHD in relation to DN and the mechanisms through which it operates are still not well understood. AIM OF THE STUDY This research aims to investigate whether DCHD can avert renal damage in mice with T2DM and to elucidate the mechanisms by which DCHD combats DN through the integration of metabolomics and network pharmacology. MATERIALS AND METHODS The beneficial effects of DCHD on DN was initially evaluated using a renal injury model in T2DM mice. Subsequently, untargeted metabolomics analysis was utilized to investigate the potential mechanisms of DCHD against DN. Additionally, UPLC-HR MS/MS was employed to identify the chemical components in DCHD and the absorption components in DCHD-treated plasma. Network pharmacology and our newly proposed function-guided and network-based complementary methodology (FNICM) was utilized to predict the potential pathway of DCHD intervention in DN. Finally, the core pathway was validated through Western blotting analysis and ELISA. RESULTS A total of 260 chemical components were detected in DCHD, and 41 absorption components were found in DCHD-treated plasma by UPLC-HR MS/MS for the first time. Additionally, In vivo experiments revealed that DCHD exerts the ability to regulate the disorder in glucose/lipid metabolism and improves kidney dysfunction. Furthermore, a comprehensive analysis utilizing non-targeted urine metabolomics and the FNICM method identified a total of 33 differential metabolites, which were categorized as core metabolites. Lastly, combined FNICM, network pharmacology and experimental pharmacology studies suggest that DCHD may regulate the AGEs/RAGE/AKT pathways in combating DN. CONCLUSIONS The results indicate that DCHD treats DN through the inhibition of the AGEs/RAGE/AKT pathway and by regulating metabolic profiles.
Collapse
Affiliation(s)
- Xue Wang
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM and Engineering & Technology Research Center for Chinese Materia Medica Quality of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - Zhu-Jun Zhong
- State Key Laboratory of Natural Medicines, Department of Chinese Medicines Analysis, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 2100011, China
| | - Peng-Fei Chen
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM and Engineering & Technology Research Center for Chinese Materia Medica Quality of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Chao-Fan Deng
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM and Engineering & Technology Research Center for Chinese Materia Medica Quality of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Xiao-Mei Chen
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM and Engineering & Technology Research Center for Chinese Materia Medica Quality of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Gui-Zhong Xin
- State Key Laboratory of Natural Medicines, Department of Chinese Medicines Analysis, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 2100011, China.
| | - Dan Tang
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM and Engineering & Technology Research Center for Chinese Materia Medica Quality of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| |
Collapse
|
9
|
Das S, Ramanathan G. Assessing the Inhibitory Potential of Pregnenolone Sulfate on Pentraxin 3 in Diabetic Kidney Disease: A Molecular Docking and Simulation Study. J Cell Biochem 2025; 126:e30661. [PMID: 39344977 DOI: 10.1002/jcb.30661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/07/2024] [Accepted: 09/11/2024] [Indexed: 10/01/2024]
Abstract
Diabetic Kidney Disease (DKD), a frequent consequence of diabetes, has substantial implications for both morbidity and mortality rates, prompting the exploration of new metabolic biomarkers due to limitations in current methods like creatinine and albumin measurements. Pentraxin 3 (PTX3) shows promise for assessing renal inflammation in DKD. This study investigates how DKD metabolites could influence PTX3 expression through molecular docking, ADMET profiling, and dynamic simulation. Network and pathway analyses were conducted to explore metabolite interactions with DKD genes and their contributions to DKD pathogenesis. Thirty-three DKD-associated metabolites were screened, using pentoxifylline (PEN) as a reference. The pharmacokinetic properties of these compounds were evaluated through molecular docking and ADMET profiling. Molecular dynamics simulations over 200 ns assessed the stability of PTX3 (apo), the PRE-PTX3 complex, and PEN-PTX3 across multiple parameters. Cytoscape identified 1082 nodes and 1381 edges linking metabolites with DKD genes. KEGG pathway analysis underscored PTX3's role in inflammation. Molecular docking revealed pregnenolone sulfate (PRE) with the highest binding affinity (-6.25 kcal/mol), followed by hydrocortisone (-6.03 kcal/mol) and 2-arachidonoylglycerol (-5.92 kcal/mol), compared to PEN (-5.35 kcal/mol). ADMET profiling selected PRE for dynamic simulation alongside PEN. Analysis of RMSD, RMSF, RG, SASA, H-bond, PCA, FEL, and MM-PBSA indicated stable complex behavior over time. Our findings suggest that increasing PRE levels could be beneficial in managing DKD, potentially through isolating PRE from fungal sources, synthesizing it as dietary supplements, or enhancing endogenous PRE synthesis within the body.
Collapse
Affiliation(s)
- Soumik Das
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - Gnanasambandan Ramanathan
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| |
Collapse
|
10
|
Lu YP, Wang XH, Xia B, Wu HW, Lei Y, Cai KW, Deng ZY, Tang C, Bai WB, Zhu T, Zheng ZH. C3G improves lipid droplet accumulation in the proximal tubules of high-fat diet-induced ORG mice. Pharmacol Res 2025; 211:107550. [PMID: 39675540 DOI: 10.1016/j.phrs.2024.107550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 12/10/2024] [Accepted: 12/12/2024] [Indexed: 12/17/2024]
Abstract
Obesity-related glomerulopathy (ORG) represents an escalating public health with no effective treatments currently available. Abnormal lipid metabolism and lipid droplet deposition in the kidneys are key contributors to ORG. Cyanidin-3-glucoside (C3G) has shown potential in regulating lipid metabolism and may offer reno-protective effects; however, its therapeutic efficacy and underlying mechanisms in ORG remain unclear. An ORG mouse model was established, followed by an 8-week C3G intervention. The mice were divided into three groups: normal control (CT) group, ORG group, and C3G treatment group. Fecal 16S rRNA sequencing, metabolomics of feces-serum-kidney, and kidney single-cell RNA sequencing (scRNA-seq) were performed to investigate the effects and mechanisms of C3G. Compared to CT mice, ORG mice exhibited elevated serum CHO, TG, Cys-C, UACR, urinary Kim-1, and NAG levels, along with glomerular hypertrophy and tubular injury. These biochemical and pathological indicators improved following C3G treatment. Fecal 16S analysis revealed reduced gut microbiota diversity in ORG mice compared to CT mice, while C3G intervention increased gut microbiota diversity. Metabolic profiling of feces, serum, and kidney indicated reprogramming of glycerophospholipid metabolism in ORG mice, ameliorated by C3G treatment. Further analysis demonstrated that abnormal glycerophospholipid metabolites correlated with blood lipids, urinary protein, urinary tubular injury markers, and gut microbiota, specifically Lachnospiraceae and Blautia. Additionally, scRNA-seq analysis identified activation of the PPARγ/CD36 pathway in proximal tubule cells (PTCs) of ORG mice. C3G improved abnormal glycerophospholipid metabolism and alleviated injury in PTCs by inhibiting the PPARγ/CD36 pathway. C3G reduces lipid droplet accumulation in the PTCs of ORG mice by modulating the gut microbiota and inhibiting the PPARγ/CD36 pathway. These findings offer new insights and therapeutic targets for ORG.
Collapse
Affiliation(s)
- Yong-Ping Lu
- Department of Nephrology, Center of Kidney and Urology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China; Department of Nephrology, the First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| | - Xiao-Hua Wang
- Department of Nephrology, Center of Kidney and Urology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Bin Xia
- Clinical Big Data Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China; Chinese Health Risk Management Collaboration (CHRIMAC), Shenzhen, Guangdong, China
| | - Hong-Wei Wu
- Department of Nephrology, Center of Kidney and Urology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Yan Lei
- Department of Nephrology, Center of Kidney and Urology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Kai-Wen Cai
- Department of Nephrology, Center of Kidney and Urology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Zi-Yan Deng
- Department of Nephrology, Center of Kidney and Urology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Chun Tang
- Department of Nephrology, Center of Kidney and Urology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Wei-Bin Bai
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou 510632, China.
| | - Ting Zhu
- Department of Nephrology, Center of Kidney and Urology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China.
| | - Zhi-Hua Zheng
- Department of Nephrology, Center of Kidney and Urology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China.
| |
Collapse
|
11
|
Li Q, Zheng Y, Zhao J, Wei X, Shi Z, Fan H, Ge C, Xu M, Tan J. Radish red attenuates chronic kidney disease in obese mice through repressing oxidative stress and ferroptosis via Nrf2 signaling improvement. Int Immunopharmacol 2024; 143:113385. [PMID: 39549542 DOI: 10.1016/j.intimp.2024.113385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/03/2024] [Accepted: 10/08/2024] [Indexed: 11/18/2024]
Abstract
Chronic kidney disease (CKD) presents a significant public health concern, with obesity being a prominent contributing factor to kidney disorders by inducing oxidative stress, lipotoxicity, and tubular cell injury. Natural anthocyanins extracted from red radishes (Raphanus sativus L.) exert antioxidant and anti-apoptotic functions. This study aims to employ a novel natural pigment anthocyanin, referred to as radish red (RR) isolated from red radishes, to alleviate obesity-related metabolic disturbances and kidney impairment in a CKD mouse model induced by high-fat and high-fructose diets (HFFD). The in vitro study initially demonstrated that RR treatment significantly mitigated the palmitate acid (PA)-induced injury and cytotoxicity in human tubular epithelial HK2 cells. Subsequently, RR supplementation notably improved obesity and associated metabolic dysfunctions in mice caused by HFFD. Abnormal renal function indices including serum creatinine, blood urea nitrogen (BUN), uric acid (UA), urine protein, albuminuria and urine albumin-to-creatinine ratio (UACR) were detected in HFFD-fed mice, which were effectively alleviated by RR treatment. Histologically, renal tubular cell injury, lipid deposition, tubular dilatation, and renal fibrosis induced by HFFD were markedly improved after RR administration in mice. Furthermore, RR treatment significantly alleviated oxidative stress in HFFD-fed mice, as evidenced by the decreased renal reactive oxygen species (ROS) production, 4-HNE, and NOX4 expression levels. Anti-oxidants such as superoxide dismutase-1 (SOD1), NAD (P) H: quinone oxidoreductase (NQO1), heme oxygenase-1 (HO-1) and glutamate cysteine ligase (GCLC) were highly upregulated in kidney of HFFD-fed mice with RR consumption through improving NFE2-related factor 2 (Nrf2) signaling activation. Furthermore, ferroptosis was identified in the kidneys of HFFD-fed mice, evidenced by the elevated levels of malondialdehyde (MDA), iron content, and lipid peroxidation, along with the decreased expression of glutathione peroxidase 4 (GPX4) and solute carrier family 7 member 11 (SLC7A11). These occurrences were significantly mitigated following RR treatment. Mechanistically, we further discovered that the suppressive effects of RR in restricting oxidative stress, ferroptosis, lipid accumulation, and injury of tubular epithelial cells induced by PA were significantly counteracted by Nrf2 knockdown. Collectively, our results demonstrated that dietary supplementation with RR could potentially serve as an efficacious therapeutic modality for the management of obesity-related CKD progression by enhancing Nrf2 activation to impede oxidative stress and ferroptosis.
Collapse
Affiliation(s)
- Qiang Li
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China; College of Modern Health Industry, Chongqing University of Education, Chongqing 400067, PR China
| | - Yanbin Zheng
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China; College of Modern Health Industry, Chongqing University of Education, Chongqing 400067, PR China
| | - Jianyu Zhao
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China; College of Modern Health Industry, Chongqing University of Education, Chongqing 400067, PR China
| | - Xinyi Wei
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China; College of Modern Health Industry, Chongqing University of Education, Chongqing 400067, PR China
| | - Zongxin Shi
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China; College of Modern Health Industry, Chongqing University of Education, Chongqing 400067, PR China
| | - Haonan Fan
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China; College of Modern Health Industry, Chongqing University of Education, Chongqing 400067, PR China
| | - Chenxu Ge
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China; College of Modern Health Industry, Chongqing University of Education, Chongqing 400067, PR China; Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, PR China.
| | - Minxuan Xu
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China; College of Modern Health Industry, Chongqing University of Education, Chongqing 400067, PR China; Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, PR China.
| | - Jun Tan
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China; College of Modern Health Industry, Chongqing University of Education, Chongqing 400067, PR China; Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, PR China.
| |
Collapse
|
12
|
Wang Q, Deng W, Yang J, Li Y, Huang H, Luo Y, Li Z, Dong Z. Association of Dietary Flavonoids Intake With All-Cause and Cardiovascular Disease Mortality in Diabetic Kidney Disease: A Cohort Study From the NHANES Database. J Diabetes Res 2024; 2024:8359294. [PMID: 39529845 PMCID: PMC11554414 DOI: 10.1155/2024/8359294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 08/19/2024] [Accepted: 10/01/2024] [Indexed: 11/16/2024] Open
Abstract
The relationship between dietary flavonoid intake and mortality in the diabetic kidney disease (DKD) population is unknown. So this study is aimed at investigating the association of total dietary flavonoid intake and their subclasses with all-cause and cardiovascular disease (CVD) mortality. Data of this cohort study were extracted from the NHANES (2007-2010 and 2017-2018). The survival status of participants was determined by linking to the National Death Index through the end of 2019. Flavonoid intake was measured using two 24-h dietary recall interviews. The Kaplan-Meier curves and weighted Cox proportional hazard regression models were used to assess the effect of dietary flavonoid intake on CVD and all-cause mortality, with adjustments for multiple covariates. A total of 1155 participants were included for analysis. After a median follow-up of 76.36 (S.E: 3.24) months, 409 participants died of all-cause mortality, of which 138 died of CVD. In the fully adjusted model, higher total dietary flavonoids intake (HR = 0.69, 95% CI: 0.52-0.92) was associated with lower all-cause mortality and subclasses of higher flavones (HR = 0.60, 95% CI: 0.35-0.85) was also with lower all-cause mortality. In subclasses of flavonoids, higher intake of both anthocyanidins (HR = 0.54, 95% CI: 0.28 to 0.87) and flavones (HR = 0.50, 95% CI: 0.28-0.87) were associated with lower odds of CVD mortality. Higher flavonoid intake was associated with a reduced risk of CVD and all-cause mortality in DKD. Higher flavonoid intake provides a potential opportunity to improve the prognosis of DKD. And future research into the mechanisms between flavonoids and mortality is needed.
Collapse
Affiliation(s)
- Qian Wang
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing 100853, China
| | - Weizhu Deng
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing 100853, China
| | - Jian Yang
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing 100853, China
| | - Yaqing Li
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing 100853, China
| | - Hui Huang
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing 100853, China
| | - Yayong Luo
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing 100853, China
- Shenzhen Traditional Chinese Medicine Hospital, Shenzhen District, Guangdong 518033, China
| | - Zhongxia Li
- BYHEALTH Institute of Nutrition & Health, Guangzhou District 510663, China
| | - Zheyi Dong
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing 100853, China
| |
Collapse
|
13
|
Lin K, Xiong L, Zhang W, Chen X, Zhu J, Li X, Zhang J. Exploring the pharmacological mechanism of fermented Eucommia ulmoides leaf extract in the treatment of cisplatin-induced kidney injury in mice: Integrated traditional pharmacology, metabolomics and network pharmacology. J Chromatogr B Analyt Technol Biomed Life Sci 2024; 1248:124358. [PMID: 39527890 DOI: 10.1016/j.jchromb.2024.124358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 09/19/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024]
Abstract
Cisplatin (CP) is a widely utilized anticancer drug, which also produces significant side effects, notably acute kidney injury (AKI). Fermented Eucommia ulmoides leaf (FEUL), a medicinal and edible Chinese herbal remedy, is known for its renoprotective properties. However, the effect and underlying mechanism of FEUL extract in AKI therapy have remained largely unexplored. This research aimed to elucidate the protective roles of FEUL extract in an AKI mouse model through biochemical assays, histopathological examinations, and investigating the underlying mechanisms based on metabolomics and network pharmacology. The findings demonstrated that pretreatment with orally administered FEUL extract significantly reduced blood urea nitrogen (BUN), and serum creatinine (SCr) levels, and ameliorated CP-induced kidney histopathological injuries. Moreover, FEUL extract attenuated CP-induced endoplasmic reticulum (ER) stress by reducing the protein expressions of PERK, IRE 1α, GRP78, ATF6, ATF4, and CHOP. The metabolomics results indicated that a total of 31 metabolites, involved in taurine and hypotaurine metabolism, lysine degradation, and steroid hormone biosynthesis, were altered after FEUL extract administration. Furthermore, metabolomics integrated with network pharmacology revealed that 8 targets, 4 metabolites, and 3 key pathways including steroid hormone biosynthesis, purine metabolism, and tryptophan metabolism were the main mechanisms of FEUL extract in treating CP-induced AKI. These findings suggested that FEUL extract could offer valuable insights for potential CP-induced AKI treatment strategies.
Collapse
Affiliation(s)
- Kexin Lin
- School of Basic Medicine, Zunyi Medical University, Zunyi 563000, China
| | - Lijuan Xiong
- School of Pharmacy and Key Laboratory of Basic Pharmacology Ministry Education, Joint International Research Laboratory of Ethnomedicine Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| | - Wen Zhang
- School of Basic Medicine, Zunyi Medical University, Zunyi 563000, China
| | - Xuan Chen
- School of Pharmacy and Key Laboratory of Basic Pharmacology Ministry Education, Joint International Research Laboratory of Ethnomedicine Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| | - Jieqi Zhu
- School of Basic Medicine, Zunyi Medical University, Zunyi 563000, China
| | - Xiaofei Li
- School of Basic Medicine, Zunyi Medical University, Zunyi 563000, China.
| | - Jianyong Zhang
- School of Pharmacy and Key Laboratory of Basic Pharmacology Ministry Education, Joint International Research Laboratory of Ethnomedicine Ministry of Education, Zunyi Medical University, Zunyi 563000, China.
| |
Collapse
|
14
|
Oumeddour DZ, Al-Dalali S, Zhao L, Zhao L, Wang C. Recent advances on cyanidin-3-O-glucoside in preventing obesity-related metabolic disorders: A comprehensive review. Biochem Biophys Res Commun 2024; 729:150344. [PMID: 38976946 DOI: 10.1016/j.bbrc.2024.150344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/25/2024] [Accepted: 07/02/2024] [Indexed: 07/10/2024]
Abstract
Anthocyanins, found in various pigmented plants as secondary metabolites, represent a class of dietary polyphenols known for their bioactive properties, demonstrating health-promoting effects against several chronic diseases. Among these, cyanidin-3-O-glucoside (C3G) is one of the most prevalent types of anthocyanins. Upon consumption, C3G undergoes phases I and II metabolism by oral epithelial cells, absorption in the gastric epithelium, and gut transformation (phase II & microbial metabolism), with limited amounts reaching the bloodstream. Obesity, characterized by excessive body fat accumulation, is a global health concern associated with heightened risks of disability, illness, and mortality. This comprehensive review delves into the biodegradation and absorption dynamics of C3G within the gastrointestinal tract. It meticulously examines the latest research findings, drawn from in vitro and in vivo models, presenting evidence underlining C3G's bioactivity. Notably, C3G has demonstrated significant efficacy in combating obesity, by regulating lipid metabolism, specifically decreasing lipid synthesis, increasing fatty acid oxidation, and reducing lipid accumulation. Additionally, C3G enhances energy homeostasis by boosting energy expenditure, promoting the activity of brown adipose tissue, and stimulating mitochondrial biogenesis. Furthermore, C3G shows potential in managing various prevalent obesity-related conditions. These include cardiovascular diseases (CVD) and hypertension through the suppression of reactive oxygen species (ROS) production, enhancement of endogenous antioxidant enzyme levels, and inhibition of the nuclear factor-kappa B (NF-κB) signaling pathway and by exercising its cardioprotective and vascular effects by decreasing pulmonary artery thickness and systolic pressure which enhances vascular relaxation and angiogenesis. Type 2 diabetes mellitus (T2DM) and insulin resistance (IR) are also managed by reducing gluconeogenesis via AMPK pathway activation, promoting autophagy, protecting pancreatic β-cells from oxidative stress and enhancing glucose-stimulated insulin secretion. Additionally, C3G improves insulin sensitivity by upregulating GLUT-1 and GLUT-4 expression and regulating the PI3K/Akt pathway. C3G exhibits anti-inflammatory properties by inhibiting the NF-κB pathway, reducing pro-inflammatory cytokines, and shifting macrophage polarization from the pro-inflammatory M1 phenotype to the anti-inflammatory M2 phenotype. C3G demonstrates antioxidative effects by enhancing the expression of antioxidant enzymes, reducing ROS production, and activating the Nrf2/AMPK signaling pathway. Moreover, these mechanisms also contribute to attenuating inflammatory bowel disease and regulating gut microbiota by decreasing Firmicutes and increasing Bacteroidetes abundance, restoring colon length, and reducing levels of inflammatory cytokines. The therapeutic potential of C3G extends beyond metabolic disorders; it has also been found effective in managing specific cancer types and neurodegenerative disorders. The findings of this research can provide an important reference for future investigations that seek to improve human health through the use of naturally occurring bioactive compounds.
Collapse
Affiliation(s)
- Dounya Zad Oumeddour
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, Beijing, 100048, China; Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, 100048, China.
| | - Sam Al-Dalali
- School of Food and Health, Guilin Tourism University, Guilin, 541006, China; Department of Food Science and Technology, Faculty of Agriculture and Food Science, Ibb University, Ibb, 70270, Yemen.
| | - Liang Zhao
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, Beijing, 100048, China; Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, 100048, China.
| | - Lei Zhao
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, Beijing, 100048, China; Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, 100048, China.
| | - Chengtao Wang
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, Beijing, 100048, China; Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, 100048, China.
| |
Collapse
|
15
|
Li Z, Zhang T, Liu Y, Huang Y, Liu J, Wang S, Sun P, Nie Y, Han Y, Li F, Xu H. A review in two classes of hypoglycemic compounds (prebiotics and flavonoids) intervening in type 2 diabetes mellitus: Unveiling their structural characteristics and gut microbiome as key mediator. FOOD BIOSCI 2024; 61:105010. [DOI: 10.1016/j.fbio.2024.105010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
16
|
Ghosh A, Muley A, Bhat S, Ainapure A. Exploring the Renoprotective Potential of Bioactive Nutraceuticals in Chronic Kidney Disease Progression: A Narrative Review. Cureus 2024; 16:e68730. [PMID: 39371767 PMCID: PMC11454842 DOI: 10.7759/cureus.68730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/05/2024] [Indexed: 10/08/2024] Open
Abstract
Chronic kidney disease (CKD) is a condition that is characterized by progressive loss of kidney function over time. A substantial increase in the burden of CKD is evident globally, attributed to multifactorial conditions like an expanding aging population, rising diabetes and hypertension rates, and more significant exposures to risk factors associated with the environment and lifestyle. Nutraceuticals are substances that are usually considered a food or an active part of a food that provides medical or health benefits, including the prevention and treatment of a disease. The aim is to review the positive role of nutraceuticals in managing CKD. A narrative review is generated, extracting the papers from databases like Web of Science, Scopus, ScienceDirect, ResearchGate, and PubMed. Animal and human trials focusing on the effect of different nutraceuticals on the initial stage of kidney disease, i.e., stages 1, 2, and 3 of CKD, were included. The review's outcome is understanding the effectiveness of nutraceuticals that have shown positive results in CKD conditions. Active compounds include ubiquinone, curcumin, nitrates, nitrites, lycopene, and resveratrol. These bioactive components are also beneficial for other comorbid conditions like diabetes, hypertension, and cardiovascular conditions that have an eminent adverse effect on CKD. Lycopene, coenzyme Q10 (CoQ10), resveratrol, curcumin, and flavonoids have positively impacted CKD complications. Nutraceuticals hold great promise for individuals with CKD in the coming years, offering diverse potential benefits. These include delivering vital antioxidant and anti-inflammatory support to alleviate oxidative stress and inflammation, helping to regulate blood pressure and lipid levels for improved cardiovascular health, promoting optimal renal function to sustain kidney health, assisting in maintaining electrolyte balance, warding off complications, influencing gut microbiota for enhanced digestive well-being, and ultimately elevating the overall quality of life, for those managing CKD.
Collapse
Affiliation(s)
- Anindita Ghosh
- Nutritional Sciences and Dietetics, Symbiosis Skills and Professional University, Pune, IND
| | - Arti Muley
- Nutrition and Dietetics, Symbiosis School of Culinary Arts, Pune, IND
| | - Sakshi Bhat
- Nutrition and Dietetics, Symbiosis International (Deemed University), Pune, IND
| | | |
Collapse
|
17
|
Zhu J, Cao J, Zhao S. Association between dietary anthocyanin intake and chronic obstructive pulmonary disease in US adults: A public database survey. Heart Lung 2024; 67:108-113. [PMID: 38749346 DOI: 10.1016/j.hrtlng.2024.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/07/2024] [Accepted: 05/08/2024] [Indexed: 07/02/2024]
Abstract
BACKGROUND Anthocyanins have anti-inflammatory and antioxidant properties. Several studies have demonstrated that anthocyanins are associated with many chronic diseases, but few studies have focused on the relationship between anthocyanins and chronic obstructive pulmonary disease (COPD). OBJECTIVES This survey aimed to explore the relationship between dietary anthocyanin intake and COPD in US adults over the age of 40. METHODS A cross-sectional study from the National Health and Nutrition Examination Survey (NHANES) 2017-2018 was conducted. We used univariate and multivariate logistic regression and restricted cubic spline (RCS) to analyze the relationship between dietary anthocyanins and COPD. Subgroup and interaction analyses were adopted to assess whether there were differences in the relationship between dietary anthocyanin intake and COPD in different groups. RESULTS A total of 2862 participants aged ≥ 40 years were analyzed, of whom 213 were diagnosed with COPD. The highest tertile of dietary anthocyanin intake was negatively correlated with COPD compared to the lowest after adjusting potential confounders (Model 1, OR = 0.414; 95% CI: (0.245, 0.699), P-trend = 0.002; Model 2, OR = 0.363; 95% CI: (0.210, 0.627), P-trend = 0.002; Model 3, OR = 0.614; 95% CI: (0.383, 0.985), P-trend = 0.040). The RCS curve showed a significant inverse linear relationship between dietary anthocyanin intake and COPD (P non-linear = 0.734). In subgroup analyses, the negative correlation between dietary anthocyanin intake and COPD existed across different subgroups. CONCLUSION Our study indicated that higher dietary anthocyanins are a protective factor against the presence of COPD in the US aged over 40.
Collapse
Affiliation(s)
- Jinqi Zhu
- Department of Respiratory and Critical Care Medicine, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, PR China
| | - Jing Cao
- Medical Department, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, PR China
| | - Sue Zhao
- Department of Respiratory and Critical Care Medicine, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, PR China.
| |
Collapse
|
18
|
Peride I, Anastasiu M, Serban SA, Tiglis M, Ene R, Nechita AM, Neagu TP, Checherita IA, Niculae A. The Key Role of Nutritional Intervention in Delaying Disease Progression and the Therapeutic Management of Diabetic Kidney Disease-A Challenge for Physicians and Patients. J Pers Med 2024; 14:778. [PMID: 39201970 PMCID: PMC11355100 DOI: 10.3390/jpm14080778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/13/2024] [Accepted: 07/20/2024] [Indexed: 09/03/2024] Open
Abstract
Chronic kidney disease (CKD) represents an increasingly common pathology that affects patients' quality of life, and it is frequently associated with a high mortality rate, especially in the final stages of the disease. At the same time, diabetes mellitus is a chronic disease that contributes to the increased number of patients with CKD through diabetic kidney disease (DKD). The alternation of hypoglycemia with hyperglycemia is a condition in the occurrence of microvascular complications of diabetes, including DKD, which involves structural and functional changes in the kidneys. The therapeutic management of diabetic nephropathy is a much-discussed topic, both from nutritional medical recommendations and a pharmacotherapy perspective. The diet starting point for patients with DKD is represented by a personalized and correct adjustment of macro- and micronutrients. The importance of nutritional status in DKD patients is given by the fact that it represents a modifiable factor, which contributes to the evolution and prognosis of the disease. Since, in most cases, it is necessary to restrict many types of food, malnutrition must be considered and avoided as much as possible.
Collapse
Affiliation(s)
- Ileana Peride
- Clinical Department No. 3, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania;
| | - Miruna Anastasiu
- “Marie Skłodowska Curie” Children Emergency Clinical Hospital, 077120 Bucharest, Romania
| | | | - Mirela Tiglis
- Department of Anesthesia and Intensive Care, Emergency Clinical Hospital of Bucharest, 014461 Bucharest, Romania
| | - Razvan Ene
- Clinical Department No. 14, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Ana-Maria Nechita
- Department of Nephrology and Dialysis, “St. John” Emergency Clinical Hospital, 042122 Bucharest, Romania
| | - Tiberiu Paul Neagu
- Clinical Department No. 11, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | | | - Andrei Niculae
- Clinical Department No. 3, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania;
| |
Collapse
|
19
|
Sha Y, Zhang D, Tu J, Zhang R, Shao Y, Chen J, Lu S, Liu X. Chronic exposure to tris(1,3-dichloro-2-propyl) phosphate: Effects on intestinal microbiota and serum metabolism in rats. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 279:116469. [PMID: 38772141 DOI: 10.1016/j.ecoenv.2024.116469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/08/2024] [Accepted: 05/14/2024] [Indexed: 05/23/2024]
Abstract
Tris(1,3-dichloro-2-propyl) phosphate (TDCIPP) is a widely used organophosphate ester that can adversely affect animal or human health. The intestinal microbiota is critical to human health. High-dose exposure to TDCIPP can markedly affect the intestinal ecosystem of mice, but the effects of long-term exposure to lower concentrations of TDCIPP on the intestinal flora and body metabolism remain unclear. In this study, TDCIPP was administered to Sprague-Dawley rats by gavage at a dose of 13.3 mg/kg bw/day for 90 days. TDCIPP increased the relative weight of the kidneys (P = 0.017), but had no effect on the relative weight of the heart, liver, spleen, lungs, testes, and ovaries (P > 0.05). 16 S rRNA gene sequencing revealed that long-term TDCIPP exposure affected the diversity, relative abundance, and functions of rat gut microbes. The serum metabolomics of the rats showed that TDCIPP can disrupt the serum metabolic profiles, result in the up-regulation of 26 metabolites and down-regulation of 3 metabolites, and affect multiple metabolic pathways in rat sera. In addition, the disturbed genera and metabolites were correlated. The functions of some disturbed gut microbes were consistent with the affected metabolic pathways in the sera, and these metabolic pathways were all associated with kidney disease, suggesting that TDCIPP may cause kidney injury in rats by affecting the intestinal flora and serum metabolism.
Collapse
Affiliation(s)
- Yujie Sha
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Duo Zhang
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Jiazichao Tu
- Department of Cardiac Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China; Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangzhou 510080, China
| | - Ruyue Zhang
- Department of Cardiac Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China; Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangzhou 510080, China
| | - Yijia Shao
- Department of Geriatrics, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Jimei Chen
- Department of Cardiac Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China; Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangzhou 510080, China
| | - Shaoyou Lu
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Xiang Liu
- Department of Cardiac Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China; Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangzhou 510080, China.
| |
Collapse
|
20
|
Zhang T, Zhang Y, Tao J, Rong X, Yang Y. Intestinal Trefoil Factor 3: a new biological factor mediating gut-kidney crosstalk in diabetic kidney disease. Endocrine 2024; 84:109-118. [PMID: 38148440 DOI: 10.1007/s12020-023-03559-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 09/29/2023] [Indexed: 12/28/2023]
Abstract
PURPOSE To investigate the effect of TFF3 in the pathogenesis of Diabetic Kidney Disease (DKD), and explore the dynamic changes of TFF3 expression pattern in renal injury process. METHODS DKD animal model was established by streptozotocin (STZ) (40 mg/kg/d, ip, for 5 days, consecutively) combined with the high fat diet (HFD) for 12 weeks. While animals were sacrificed at different time stages in DKD process (4 weeks, 8 weeks and 12 weeks, respectively). RESULTS STZ combined with high-fat diet induced weight gain, increased blood glucose and decreased glucose tolerance in DKD mice. Compared to the control group, the DKD group exhibits extracellular matrix (ECM) accumulation and the renal injury was aggravated in a time-dependent manner. The TFF3 expression level was decreased in kidney, and increased in colon tissue. CONCLUSION TFF3 is not only expressed in colon, but also expressed in renal medulla and cortex. TFF3 might be play a pivotal role in renal mucosal repair by gut-kidney crosstalk, and protect renal from high glucose microenvironment damage.
Collapse
Affiliation(s)
- Tao Zhang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou Higher Education Mega Center, Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Yinghui Zhang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou Higher Education Mega Center, Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Jie Tao
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou Higher Education Mega Center, Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Xianglu Rong
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou Higher Education Mega Center, Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Yiqi Yang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou Higher Education Mega Center, Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| |
Collapse
|
21
|
Torcasio R, Gallo Cantafio ME, Veneziano C, De Marco C, Ganino L, Valentino I, Occhiuzzi MA, Perrotta ID, Mancuso T, Conforti F, Rizzuti B, Martino EA, Gentile M, Neri A, Viglietto G, Grande F, Amodio N. Targeting of mitochondrial fission through natural flavanones elicits anti-myeloma activity. J Transl Med 2024; 22:208. [PMID: 38413989 PMCID: PMC10898065 DOI: 10.1186/s12967-024-05013-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 02/21/2024] [Indexed: 02/29/2024] Open
Abstract
BACKGROUND Mitochondrial alterations, often dependent on unbalanced mitochondrial dynamics, feature in the pathobiology of human cancers, including multiple myeloma (MM). Flavanones are natural flavonoids endowed with mitochondrial targeting activities. Herein, we investigated the capability of Hesperetin (Hes) and Naringenin (Nar), two aglycones of Hesperidin and Naringin flavanone glycosides, to selectively target Drp1, a pivotal regulator of mitochondrial dynamics, prompting anti-MM activity. METHODS Molecular docking analyses were performed on the crystallographic structure of Dynamin-1-like protein (Drp1), using Hes and Nar molecular structures. Cell viability and apoptosis were assessed in MM cell lines, or in co-culture systems with primary bone marrow stromal cells, using Cell Titer Glo and Annexin V-7AAD staining, respectively; clonogenicity was determined using methylcellulose colony assays. Transcriptomic analyses were carried out using the Ion AmpliSeq™ platform; mRNA and protein expression levels were determined by quantitative RT-PCR and western blotting, respectively. Mitochondrial architecture was assessed by transmission electron microscopy. Real time measurement of oxygen consumption was performed by high resolution respirometry in living cells. In vivo anti-tumor activity was evaluated in NOD-SCID mice subcutaneously engrafted with MM cells. RESULTS Hes and Nar were found to accommodate within the GTPase binding site of Drp1, and to inhibit Drp1 expression and activity, leading to hyperfused mitochondria with reduced OXPHOS. In vitro, Hes and Nar reduced MM clonogenicity and viability, even in the presence of patient-derived bone marrow stromal cells, triggering ER stress and apoptosis. Interestingly, Hes and Nar rewired MM cell metabolism through the down-regulation of master transcriptional activators (SREBF-1, c-MYC) of lipogenesis genes. An extract of Tacle, a Citrus variety rich in Hesperidin and Naringin, was capable to recapitulate the phenotypic and molecular perturbations of each flavanone, triggering anti-MM activity in vivo. CONCLUSION Hes and Nar inhibit proliferation, rewire the metabolism and induce apoptosis of MM cells via antagonism of the mitochondrial fission driver Drp1. These results provide a framework for the development of natural anti-MM therapeutics targeting aberrant mitochondrial dependencies.
Collapse
Affiliation(s)
- Roberta Torcasio
- Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, Viale Europa, Campus Germaneto, 88100, Catanzaro, Italy
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Cosenza, Italy
| | | | - Claudia Veneziano
- Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, Viale Europa, Campus Germaneto, 88100, Catanzaro, Italy
| | - Carmela De Marco
- Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, Viale Europa, Campus Germaneto, 88100, Catanzaro, Italy
| | - Ludovica Ganino
- Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, Viale Europa, Campus Germaneto, 88100, Catanzaro, Italy
| | - Ilenia Valentino
- Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, Viale Europa, Campus Germaneto, 88100, Catanzaro, Italy
| | - Maria Antonietta Occhiuzzi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, CS, Italy
| | - Ida Daniela Perrotta
- Department of Biology, Ecology and Earth Sciences, Centre for Microscopy and Microanalysis, University of Calabria, Cosenza, Italy
| | - Teresa Mancuso
- Annunziata" Regional Hospital Cosenza, 87100, Cosenza, Italy
| | - Filomena Conforti
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, CS, Italy
| | - Bruno Rizzuti
- SS Rende (CS), Department of Physics, CNR-NANOTEC, University of Calabria, Via Pietro Bucci, 87036, Rende, CS, Italy
- Institute for Biocomputation and Physics of Complex Systems (BIFI), Joint Unit GBsC-CSIC-BIFI, University of Zaragoza, 50018, Saragossa, Spain
| | | | - Massimo Gentile
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, CS, Italy
- Annunziata" Regional Hospital Cosenza, 87100, Cosenza, Italy
| | - Antonino Neri
- Scientific Directorate, IRCCS Di Reggio Emilia, Emilia Romagna, Reggio Emilia, Italy
| | - Giuseppe Viglietto
- Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, Viale Europa, Campus Germaneto, 88100, Catanzaro, Italy
| | - Fedora Grande
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, CS, Italy
| | - Nicola Amodio
- Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, Viale Europa, Campus Germaneto, 88100, Catanzaro, Italy.
| |
Collapse
|
22
|
Macedo C, Costa PC, Rodrigues F. Bioactive compounds from Actinidia arguta fruit as a new strategy to fight glioblastoma. Food Res Int 2024; 175:113770. [PMID: 38129059 DOI: 10.1016/j.foodres.2023.113770] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/10/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023]
Abstract
In recent years, there has been a significant demand for natural products as a mean of disease prevention or as an alternative to conventional medications. The driving force for this change is the growing recognition of the abundant presence of valuable bioactive compounds in natural products. On recent years Actinia arguta fruit, also known as kiwiberry, has attracted a lot of attention from scientific community due to its richness in bioactive compounds, including phenolic compounds, organic acids, vitamins, carotenoids and fiber. These bioactive compounds contribute to the fruit's diverse outstanding biological activities such as antioxidant, anti-inflammatory, neuroprotective, immunomodulatory, and anti-cancer properties. Due to these properties, the fruit may have the potential to be used in the treatment/prevention of various types of cancer, including glioblastoma. Glioblastoma is the most aggressive form of brain cancer, displaying 90 % of recurrence rate within a span of 2 years. Despite the employment of an aggressive approach, the prognosis remains unfavorable, emphasizing the urgent requirement for the development of new effective treatments. The preclinical evidence suggests that kiwiberry has potential impact on glioblastoma by reducing the cancer self-renewal, modulating the signaling pathways involved in the regulation of the cell phenotype and metabolism, and influencing the consolidation of the tumor microenvironment. Even though, challenges such as the imprecise composition and concentration of bioactive compounds, and its low bioavailability after oral administration may be drawbacks to the development of kiwiberry-based treatments, being urgent to ensure the safety and efficacy of kiwiberry for the prevention and treatment of glioblastoma. This review aims to highlight the potential impact of A. arguta bioactive compounds on glioblastoma, providing novel insights into their applicability as complementary or alternative therapies.
Collapse
Affiliation(s)
- Catarina Macedo
- REQUIMTE/LAQV, ISEP, Polytechnic of Porto, Rua Dr. António Bernardino de Almeida, 4249-015 Porto, Portugal; REQUIMTE/UCIBIO, MedTech-Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; Associate Laboratory i4HB-Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Paulo C Costa
- REQUIMTE/UCIBIO, MedTech-Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; Associate Laboratory i4HB-Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal.
| | - Francisca Rodrigues
- REQUIMTE/LAQV, ISEP, Polytechnic of Porto, Rua Dr. António Bernardino de Almeida, 4249-015 Porto, Portugal.
| |
Collapse
|
23
|
Zhou X, Liu Z, Yang X, Feng J, Gins MS, Yan T, Han L, Zhang H. The Mechanism Underlying the Hypoglycemic Effect of Epimedin C on Mice with Type 2 Diabetes Mellitus Based on Proteomic Analysis. Nutrients 2023; 16:25. [PMID: 38201855 PMCID: PMC10780735 DOI: 10.3390/nu16010025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 01/12/2024] Open
Abstract
Type 2 diabetes mellitus (T2DM) has become a worldwide public health problem. Epimedin C is considered one of the most important flavonoids in Epimedium, a famous edible herb in China and Southeast Asia that is traditionally used in herbal medicine to treat diabetes. In the present study, the therapeutic potential of epimedin C against T2DM was ascertained using a mouse model, and the mechanism underlying the hypoglycemic activity of epimedin C was explored using a label-free proteomic technique for the first time. Levels of fasting blood glucose (FBG), homeostasis model assessment of insulin resistance (HOMA-IR), and oral glucose tolerance, as well as contents of malondialdehyde (MDA) and low-density lipoprotein cholesterol (LDL-C) in the 30 mg·kg-1 epimedin C group (EC30 group), were significantly lower than those in the model control group (MC group) (p < 0.05), while the contents of hepatic glycogen, insulin, and high-density lipoprotein cholesterol (HDL-C), as well as activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) in the EC30 group were notably higher than those in the MC group (p < 0.05). The structures of liver cells and tissues were greatly destroyed in the MC group, whereas the structures of cells and tissues were basically complete in the EC30 group, which were similar to those in the normal control group (NC group). A total of 92 differentially expressed proteins (DEPs) were enriched in the gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. In the EC30 vs. MC groups, the expression level of cytosolic phosphoenolpyruvate carboxykinase (Pck1) was down-regulated, while the expression levels of group XIIB secretory phospholipase A2-like protein (Pla2g12b), apolipoprotein B-100 (Apob), and cytochrome P450 4A14 (Cyp4a14) were up-regulated. According to the KEGG pathway assay, Pck1 participated in the gluconeogenesis and insulin signaling pathways, and Pla2g12b, Apob, and Cyp4a14 were the key proteins in the fat digestion and fatty acid degradation pathways. Pck1, Pla2g12b, Apob, and Cyp4a14 seemed to play important roles in the prevention and treatment of T2DM. In summary, epimedin C inhibited Pck1 expression to maintain FBG at a relatively stable level, promoted Pla2g12b, Apob, and Cyp4a14 expressions to alleviate liver lipotoxicity, and protected liver tissues and cells from oxidant stress possibly by its phenolic hydroxyl groups.
Collapse
Affiliation(s)
- Xuexue Zhou
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Academician and Expert Workstations in Puer City of Yunnan Province, College of Food Engineering and Nutritional Science, Provincial Research Station of Se-Enriched Foods in Hanyin County of Shaanxi Province, International Joint Research Center of Shaanxi Province for Food and Health Sciences, Shaanxi Normal University, Xi’an 710119, China (Z.L.); (T.Y.); (L.H.)
| | - Ziqi Liu
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Academician and Expert Workstations in Puer City of Yunnan Province, College of Food Engineering and Nutritional Science, Provincial Research Station of Se-Enriched Foods in Hanyin County of Shaanxi Province, International Joint Research Center of Shaanxi Province for Food and Health Sciences, Shaanxi Normal University, Xi’an 710119, China (Z.L.); (T.Y.); (L.H.)
| | - Xiaohua Yang
- Research Station of Selenium-Enriched Tea of Shaanxi Province, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China
| | - Jing Feng
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Academician and Expert Workstations in Puer City of Yunnan Province, College of Food Engineering and Nutritional Science, Provincial Research Station of Se-Enriched Foods in Hanyin County of Shaanxi Province, International Joint Research Center of Shaanxi Province for Food and Health Sciences, Shaanxi Normal University, Xi’an 710119, China (Z.L.); (T.Y.); (L.H.)
- Agrarian and Technological Institute, Peoples’ Friendship University of Russia, Moscow 119991, Russia;
| | - Murat Sabirovich Gins
- Agrarian and Technological Institute, Peoples’ Friendship University of Russia, Moscow 119991, Russia;
| | - Tingyu Yan
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Academician and Expert Workstations in Puer City of Yunnan Province, College of Food Engineering and Nutritional Science, Provincial Research Station of Se-Enriched Foods in Hanyin County of Shaanxi Province, International Joint Research Center of Shaanxi Province for Food and Health Sciences, Shaanxi Normal University, Xi’an 710119, China (Z.L.); (T.Y.); (L.H.)
| | - Lei Han
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Academician and Expert Workstations in Puer City of Yunnan Province, College of Food Engineering and Nutritional Science, Provincial Research Station of Se-Enriched Foods in Hanyin County of Shaanxi Province, International Joint Research Center of Shaanxi Province for Food and Health Sciences, Shaanxi Normal University, Xi’an 710119, China (Z.L.); (T.Y.); (L.H.)
| | - Huafeng Zhang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Academician and Expert Workstations in Puer City of Yunnan Province, College of Food Engineering and Nutritional Science, Provincial Research Station of Se-Enriched Foods in Hanyin County of Shaanxi Province, International Joint Research Center of Shaanxi Province for Food and Health Sciences, Shaanxi Normal University, Xi’an 710119, China (Z.L.); (T.Y.); (L.H.)
| |
Collapse
|
24
|
Wang J, Zhou C, Zhang Q, Liu Z. Metabolomic profiling of amino acids study reveals a distinct diagnostic model for diabetic kidney disease. Amino Acids 2023; 55:1563-1572. [PMID: 37736814 PMCID: PMC10689543 DOI: 10.1007/s00726-023-03330-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 08/30/2023] [Indexed: 09/23/2023]
Abstract
Diabetic kidney disease (DKD), a highly prevalent complication of diabetes mellitus, is a major cause of mortality in patients. However, identifying circulatory markers to diagnose DKD requires a thorough understanding of the metabolic mechanisms of DKD. In this study, we performed ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) to reveal altered metabolic profiles of amino acids (AAs) in patients with DKD. We found decreased plasma levels of histidine and valine, increased urine levels of proline, decreased urine levels of histidine and valine, and increased saliva levels of arginine in patients with DKD compared with the levels in patients with type 2 diabetes mellitus (T2DM) and in healthy controls. Our analyses of the key metabolites and metabolic enzymes involved in histidine and valine metabolism indicated that the AAs level alterations may be due to enhanced carnosine hydrolysis, decreased degradation of homocarnosine and anserine, enhanced histidine methylation, and systemic enhancement of valine metabolism in patients with DKD. Notably, we generated a distinct diagnostic model with an AUC of 0.957 and an accuracy up to 92.2% on the basis of the AA profiles in plasma, urine and saliva differing in patients with DKD using logistic regression and receiver operating characteristic analyses. In conclusion, our results suggest that altered AA metabolic profiles are associated with the progression of DKD. Our DKD diagnostic model on the basis of AA levels in plasma, urine, and saliva may provide a theoretical basis for innovative strategies to diagnose DKD that may replace cumbersome kidney biopsies.
Collapse
Affiliation(s)
- Jiao Wang
- Department of Geriatric Endocrinology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, 450000, China
- Henan Province Research Center For Kidney Disease, Zhengzhou, 450000, China
| | - Chunyu Zhou
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, 450000, China
- Henan Province Research Center For Kidney Disease, Zhengzhou, 450000, China
- Blood Purification Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
| | - Qing Zhang
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, 450000, China.
- Henan Province Research Center For Kidney Disease, Zhengzhou, 450000, China.
| | - Zhangsuo Liu
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, 450000, China.
- Henan Province Research Center For Kidney Disease, Zhengzhou, 450000, China.
- Blood Purification Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China.
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China.
| |
Collapse
|
25
|
Gao J, Yang T, Song B, Ma X, Ma Y, Lin X, Wang H. Abnormal tryptophan catabolism in diabetes mellitus and its complications: Opportunities and challenges. Biomed Pharmacother 2023; 166:115395. [PMID: 37657259 DOI: 10.1016/j.biopha.2023.115395] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 08/20/2023] [Accepted: 08/26/2023] [Indexed: 09/03/2023] Open
Abstract
In recent years, the incidence rate of diabetes mellitus (DM), including type 1 diabetes mellitus(T1DM), type 2 diabetes mellitus(T2DM), and gestational diabetes mellitus (GDM), has increased year by year and has become a major global health problem. DM can lead to serious complications of macrovascular and microvascular. Tryptophan (Trp) is an essential amino acid for the human body. Trp is metabolized in the body through the indole pathway, kynurenine (Kyn) pathway and serotonin (5-HT) pathway, and is regulated by intestinal microorganisms to varying degrees. These three metabolic pathways have extensive regulatory effects on the immune, endocrine, neural, and energy metabolism systems of the body, and are related to the physiological and pathological processes of various diseases. The key enzymes and metabolites in the Trp metabolic pathway are also deeply involved in the pathogenesis of DM, playing an important role in pancreatic function, insulin resistance (IR), intestinal barrier, and angiogenesis. In DM and its complications, there is a disruption of Trp metabolic balance. Several therapy approaches for DM and complications have been proven to modify tryptophan metabolism. The metabolism of Trp is becoming a new area of focus for DM prevention and care. This paper reviews the impact of the three metabolic pathways of Trp on the pathogenesis of DM and the alterations in Trp metabolism in these diseases, expecting to provide entry points for the treatment of DM and its complications.
Collapse
Affiliation(s)
- Jialiang Gao
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Ting Yang
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Bohan Song
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xiaojie Ma
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yichen Ma
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xiaowei Lin
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Hongwu Wang
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
26
|
Li C, Gao L, Lv C, Li Z, Fan S, Liu X, Rong X, Huang Y, Liu J. Active role of amino acid metabolism in early diagnosis and treatment of diabetic kidney disease. Front Nutr 2023; 10:1239838. [PMID: 37781128 PMCID: PMC10539689 DOI: 10.3389/fnut.2023.1239838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 08/23/2023] [Indexed: 10/03/2023] Open
Abstract
Diabetic Kidney Disease (DKD) is one of the significant microvascular consequences of type 2 diabetes mellitus with a complex etiology and protracted course. In the early stages of DKD, the majority of patients experience an insidious onset and few overt clinical symptoms and indicators, but they are prone to develop end-stage renal disease in the later stage, which is life-threatening. The abnormal amino acid metabolism is tightly associated with the development of DKD, which involves several pathological processes such as oxidative stress, inflammatory response, and immune response and is also closely related to autophagy, mitochondrial dysfunction, and iron death. With a focus on taurine, branched-chain amino acids (BCAAs) and glutamine, we explored the biological effects of various amino acid mechanisms linked to DKD, the impact of amino acid metabolism in the early diagnosis of DKD, and the role of amino acid metabolism in treating DKD, to offer fresh objectives and guidelines for later early detection and DKD therapy.
Collapse
Affiliation(s)
- Chenming Li
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Clinical Pharmacology Department, Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lidong Gao
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Key Laboratory of Modern Chinese Medicine Theory of Innovation and Application, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Chunxiao Lv
- Clinical Pharmacology Department, Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Ziqiang Li
- Clinical Pharmacology Department, Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Shanshan Fan
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Clinical Pharmacology Department, Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xinyue Liu
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Clinical Pharmacology Department, Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xinyi Rong
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Clinical Pharmacology Department, Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yuhong Huang
- Clinical Pharmacology Department, Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jia Liu
- Clinical Pharmacology Department, Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
27
|
Wang H, Zhao T, Liu Z, Danzengquzhen, Cisangzhuoma, Ma J, Li X, Huang X, Li B. The neuromodulatory effects of flavonoids and gut Microbiota through the gut-brain axis. Front Cell Infect Microbiol 2023; 13:1197646. [PMID: 37424784 PMCID: PMC10327292 DOI: 10.3389/fcimb.2023.1197646] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 06/09/2023] [Indexed: 09/10/2023] Open
Abstract
Recent investigations show that dietary consumption of flavonoids could potentially confer neuroprotective effects through a variety of direct and indirect mechanisms. Numerous flavonoids have been shown to cross the BBB and accumulate within the central nervous system (CNS). Some of these compounds purportedly counteract the accumulation and deleterious effects of reactive oxygen species, fostering neuronal survival and proliferation by inhibiting neuroinflammatory and oxidative stress responses. Moreover, several studies suggest that gut microbiota may participate in regulating brain function and host behavior through the production and modulation of bioactive metabolites. Flavonoids may shape gut microbiota composition by acting as carbon substrates to promote the growth of beneficial bacteria that produce these neuroprotective metabolites, consequently antagonizing or suppressing potential pathogens. By influencing the microbiota-gut-brain axis through this selection process, flavonoids may indirectly improve brain health. This review examines the current state of research into the relationship between bioactive flavonoids, gut microbiota, and the gut-brain axis.
Collapse
Affiliation(s)
- Haoran Wang
- Institute of Animal Husbandry and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lhasa, China
- School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| | - Tingting Zhao
- Institute of Animal Husbandry and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lhasa, China
- School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| | - Zhenjiang Liu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Danzengquzhen
- Institute of Animal Husbandry and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lhasa, China
| | - Cisangzhuoma
- Institute of Animal Husbandry and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lhasa, China
| | - Jinying Ma
- Institute of Animal Husbandry and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lhasa, China
| | - Xin Li
- School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| | - Xiaodan Huang
- School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| | - Bin Li
- Institute of Animal Husbandry and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lhasa, China
| |
Collapse
|
28
|
Huang H, Luo Y, Wang Q, Zhang Y, Li Z, He R, Chen X, Dong Z. Vaccinium as Potential Therapy for Diabetes and Microvascular Complications. Nutrients 2023; 15:2031. [PMID: 37432140 DOI: 10.3390/nu15092031] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/15/2023] [Accepted: 04/20/2023] [Indexed: 07/12/2023] Open
Abstract
Diabetes mellitus is one of the most critical global health concerns, with a fast-growing prevalence. The incidence of diabetic vascular complications is also rapidly increasing, exacerbating the burden on individuals with diabetes and the consumption of public medical resources. Despite the overall improvements in the prevention, diagnosis, and treatment of diabetic microvascular complications in recent years, safe and effective alternative or adjunctive therapies are urgently needed. The mechanisms underlying diabetic vascular complications are complex, with hyperglycemia-induced oxidative stress and inflammation being the leading causes. Therefore, glycemic control, antioxidation, and anti-inflammation are considered the main targets for the treatment of diabetes and its vascular comorbidities. Vaccinium L. (Ericaceae) is a genus of plants enriched with polyphenolic compounds in their leaves and fruits. Vaccinium and its extracts have demonstrated good bioactivity in reducing blood glucose, oxidative stress, and inflammation, making them excellent candidates for the management of diabetes and diabetic vascular complications. Here, we review recent preclinical and clinical studies on the potential effect of Vaccinium on ameliorating diabetes and diabetic complications, particularly diabetic kidney disease and diabetic retinopathy.
Collapse
Affiliation(s)
- Hui Huang
- National Clinical Research Center for Kidney Diseases, State Key Laboratory of Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, Beijing 100853, China
- School of Clinical Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yayong Luo
- National Clinical Research Center for Kidney Diseases, State Key Laboratory of Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, Beijing 100853, China
- School of Clinical Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Qian Wang
- National Clinical Research Center for Kidney Diseases, State Key Laboratory of Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, Beijing 100853, China
| | - Yihan Zhang
- BYHEALTH Institute of Nutrition & Health, No. 3 Kehui 3rd Street, No. 99 Kexue Avenue Central, Huangpu District, Guangzhou 510663, China
| | - Zhongxia Li
- BYHEALTH Institute of Nutrition & Health, No. 3 Kehui 3rd Street, No. 99 Kexue Avenue Central, Huangpu District, Guangzhou 510663, China
| | - Ruikun He
- BYHEALTH Institute of Nutrition & Health, No. 3 Kehui 3rd Street, No. 99 Kexue Avenue Central, Huangpu District, Guangzhou 510663, China
| | - Xiangmei Chen
- National Clinical Research Center for Kidney Diseases, State Key Laboratory of Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, Beijing 100853, China
- School of Clinical Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Zheyi Dong
- National Clinical Research Center for Kidney Diseases, State Key Laboratory of Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, Beijing 100853, China
| |
Collapse
|
29
|
Tao Z, Zhang R, Zuo W, Ji Z, Fan Z, Chen X, Huang R, Li X, Ma G. Association between dietary intake of anthocyanidins and heart failure among American adults: NHANES (2007–2010 and 2017–2018). Front Nutr 2023; 10:1107637. [PMID: 37090778 PMCID: PMC10113463 DOI: 10.3389/fnut.2023.1107637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 03/14/2023] [Indexed: 04/08/2023] Open
Abstract
BackgroundDespite anthocyanidins have anti-inflammatory and antioxidant properties, no studies have researched association between dietary intake of anthocyanidins and heart failure.MethodsWe enrolled 15,869 participants from the National Health and Nutrition Examination Survey (NHANES) (2007–2010 and 2017–2018) in this cross-sectional study. We examined baseline data and prevalence of heart failure in different quartile groups of anthocyanin intake (Q1-4). Three models were established through logistic regression to evaluate the protective effect of Q4 (highest anthocyanidins intake) on heart failure. The protective effect of high anthocyanidins intake on heart failure was further evaluated in different subgroups.ResultsParticipants with the highest anthocyanidins intake (Q4) had the lowest prevalence of heart failure (Q1:2.54%, Q2:2.33%, Q3:2.43%, Q4:1.57%, p = 0.02). After adjusting for possible confounding factors, compared with the Q1 group, the highest anthocyanidins intake (Q4) was independently related to lower presence of heart failure (Q4: OR 0.469, 95%CI [0.289, 0.732], p = 0.003). And this association was still stable in subgroups of female, ≥45 years, smoker, non-Hispanic White or without diabetes, stroke and renal failure.ConclusionDietary intake of anthocyanidins had negative association with the presence of heart failure.
Collapse
Affiliation(s)
- Zaixiao Tao
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
- School of Medicine, Southeast University, Nanjing, China
| | - Rui Zhang
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
- School of Medicine, Southeast University, Nanjing, China
| | - Wenjie Zuo
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
- School of Medicine, Southeast University, Nanjing, China
| | - Zhenjun Ji
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
- School of Medicine, Southeast University, Nanjing, China
| | - Zhongguo Fan
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
- School of Medicine, Southeast University, Nanjing, China
| | - Xi Chen
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
- School of Medicine, Southeast University, Nanjing, China
| | - Rong Huang
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
- School of Medicine, Southeast University, Nanjing, China
| | - Xinxin Li
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
- School of Medicine, Southeast University, Nanjing, China
| | - Genshan Ma
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
- School of Medicine, Southeast University, Nanjing, China
- *Correspondence: Genshan Ma,
| |
Collapse
|
30
|
Untargeted serum metabolomics analysis of Trichinella spiralis-infected mouse. PLoS Negl Trop Dis 2023; 17:e0011119. [PMID: 36809241 PMCID: PMC9943014 DOI: 10.1371/journal.pntd.0011119] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 01/23/2023] [Indexed: 02/23/2023] Open
Abstract
BACKGROUND Trichinellosis, caused by a parasitic nematode of the genus Trichinella, is a zoonosis that affects people worldwide. After ingesting raw meat containing Trichinella spp. larvae, patients show signs of myalgia, headaches, and facial and periorbital edema, and severe cases may die from myocarditis and heart failure. The molecular mechanisms of trichinellosis are unclear, and the sensitivity of the diagnostic methods used for this disease are unsatisfactory. Metabolomics is an excellent tool for studying disease progression and biomarkers; however, it has never been applied to trichinellosis. We aimed to elucidate the impacts of Trichinella infection on the host body and identify potential biomarkers using metabolomics. METHODOLOGY/PRINCIPAL FINDINGS Mice were infected with T. spiralis larvae, and sera were collected before and 2, 4, and 8 weeks after infection. Metabolites in the sera were extracted and identified using untargeted mass spectrometry. Metabolomic data were annotated via the XCMS online platform and analyzed with Metaboanalyst version 5.0. A total of 10,221 metabolomic features were identified, and the levels of 566, 330, and 418 features were significantly changed at 2-, 4-, and 8-weeks post-infection, respectively. The altered metabolites were used for further pathway analysis and biomarker selection. A major pathway affected by Trichinella infection was glycerophospholipid metabolism, and glycerophospholipids comprised the main metabolite class identified. Receiver operating characteristic revealed 244 molecules with diagnostic power for trichinellosis, with phosphatidylserines (PS) being the primary lipid class. Some lipid molecules, e.g., PS (18:0/19:0)[U] and PA (O-16:0/21:0), were not present in metabolome databases of humans and mice, thus they may have been secreted by the parasites. CONCLUSIONS/SIGNIFICANCE Our study highlighted glycerophospholipid metabolism as the major pathway affected by trichinellosis, hence glycerophospholipid species are potential markers of trichinellosis. The findings of this study represent the initial steps in biomarker discovery that may benefit future trichinellosis diagnosis.
Collapse
|
31
|
Song C, Zhu Z, Liu M, Yang W, Bai X, Nan Z. Clinical efficacy and safety of Xuefu Zhuyu decoction in the treatment of diabetic kidney disease: A protocol for systematic review and meta-analysis. Medicine (Baltimore) 2022; 101:e32359. [PMID: 36595809 PMCID: PMC9794306 DOI: 10.1097/md.0000000000032359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 11/30/2022] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Diabetic kidney disease (DKD) is one of the common complications of diabetes, the most crucial cause of end-stage renal disease, and a significant cause of death in diabetes patients. In recent years, Xuefu Zhuyu decoction has also been widely used in treating diabetic nephropathy. However, there need to be more systematic reviews that comprehensively describe the effectiveness and safety of Xuefu Zhuyu decoction in treating DKD. Therefore, we will conduct a systematic review and meta-analysis to evaluate the indicators of Xuefu Zhuyu decoction in the treatment of DKD to provide evidence-based support. METHODS Eligible published randomized controlled trials from January 2005 to October 2022 will be obtained by searching PubMed, Cochrane Library, EMBASE, Web of Science, CNKI, Wanfang, and VIP in Chinese and English. The Cochrane Collaboration Risk of bias tool will be used for methodological quality assessment and risk of bias. The meta-analysis will be performed using Cochrane RevMan 5.4 software. RESULTS This study will compare the following indicators: the primary outcomes: urinary albumin excretion rate and urea nitrogen. Secondary outcomes: blood creatinine; 24 hours urine protein quantification; glycosylated hemoglobin; fasting blood glucose; 2-hour postprandial blood glucose; total cholesterol; triglycerides; total effective rate; incidence of adverse events. CONCLUSION The results of this systematic review will provide an objective, evidence-based basis for judging the efficacy and safety of Xuefu Zhuyu decoction in treating DKD.
Collapse
Affiliation(s)
- Chaoqun Song
- College of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Zhiyue Zhu
- College of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Miao Liu
- College of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Wenbo Yang
- Department of Pediatrics, Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang, China
| | - Xiaotian Bai
- Zhangjiakou Institute of Traditional Chinese Medicine, Zhangjiakou, China
| | - Zheng Nan
- College of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|