1
|
Lu Y, Zhou L, Zhang CY, Qi Y, Zhang XM, Pan Z, Zhang HJ, Ling YP, Liu Q, Zhang CQ, Wang L. Investigating the fine structures of ginkgo starch during kernel development and their correlations with thermal properties. Food Chem 2025; 479:143730. [PMID: 40088656 DOI: 10.1016/j.foodchem.2025.143730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 02/27/2025] [Accepted: 03/02/2025] [Indexed: 03/17/2025]
Abstract
Ginkgo seeds are abundant in starch, known for their significant edible and medicinal values. This study explores the structural and thermal properties of ginkgo starch during kernel development. Starch granules evolved from irregular to regular shapes with increasing size ranging from 2 to 24 μm, exhibiting a Maltese cross pattern and A-type crystal structure. The amylopectin intermediate chains (DP 13-24 and DP 25-36), and amylose increased, while the amylopectin long chains (AP2, and DP ≥37 chains), and gelatinization temperatures decreased during the kernel development. Pearson correlation analysis revealed that AM, AP2, DP 6-12, and DP ≥37 positively correlated with Amo, SH, D, and thermal properties. Conversely, AP1, DP 13-24 and DP 25-36 positively correlated with DH, RCNMR, RCXRD, IR, and Imax. This study provides novel insights into the structural changes of starch during ginkgo kernel development, offering a theoretical foundation for the industrial applications of starch.
Collapse
Affiliation(s)
- Yan Lu
- Jiangsu Key Laboratory for Crop Genetics and Physiology / Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China; Instrumental Analysis Center, Yangzhou University, Yangzhou 225009, China
| | - Lian Zhou
- Jiangsu Key Laboratory for Crop Genetics and Physiology / Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China; Instrumental Analysis Center, Yangzhou University, Yangzhou 225009, China
| | - Cai-Yun Zhang
- Jiangsu Key Laboratory for Crop Genetics and Physiology / Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China; Instrumental Analysis Center, Yangzhou University, Yangzhou 225009, China
| | - Yan Qi
- Instrumental Analysis Center, Yangzhou University, Yangzhou 225009, China; College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Xiao-Min Zhang
- Instrumental Analysis Center, Yangzhou University, Yangzhou 225009, China; Center of Analysis and Measurement, Zhejiang University, Hangzhou 310058, China
| | - Zhang Pan
- Jiangsu Key Laboratory for Crop Genetics and Physiology / Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China; Instrumental Analysis Center, Yangzhou University, Yangzhou 225009, China
| | - Hong-Jia Zhang
- Jiangsu Key Laboratory for Crop Genetics and Physiology / Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Yu-Ping Ling
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Qing Liu
- Jiangsu Key Laboratory for Crop Genetics and Physiology / Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Chang-Quan Zhang
- Jiangsu Key Laboratory for Crop Genetics and Physiology / Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China.
| | - Li Wang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
2
|
Julián-Flores A, Aguilar-Zárate P, Michel MR, Sepúlveda-Torre L, Torres-León C, Aguilar CN, Chávez-González ML. Exploring the Therapeutic Potential of Medicinal Plants in the Context of Gastrointestinal Health: A Review. PLANTS (BASEL, SWITZERLAND) 2025; 14:642. [PMID: 40094542 PMCID: PMC11901797 DOI: 10.3390/plants14050642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/03/2025] [Accepted: 02/17/2025] [Indexed: 03/19/2025]
Abstract
Medicinal plants represent promising sources for the treatment of gastrointestinal disorders because of their abundance in bioactive compounds with therapeutic properties. Throughout history, various plant species have been used to alleviate digestive ailments, and studies have revealed the presence of metabolites with anti-inflammatory, antibacterial, antiviral, antiparasitic, antidiarrheal, antioxidant, and anticancer activities. The secondary metabolites responsible for these properties include alkaloids, terpenoids, and phenolic compounds, with the latter, particularly flavonoids, being the most associated with their bioactivities. Gastrointestinal diseases, such as gastritis, peptic ulcers, gastroesophageal reflux disease, inflammatory bowel disease, irritable bowel syndrome, and gastrointestinal cancer, are caused primarily by bacteria, parasites, viruses, and the consumption of raw or undercooked foods. These conditions significantly impact human health, necessitating the development of safer and more effective therapeutic alternatives. After an extensive literature review, several plant species with widespread use in the treatment of these disorders were identified, including Matricaria chamomilla, Mentha spicata, Melissa officinalis, Artemisia ludoviciana, Flourensia cernua, Phoradendron californicum, and Turnera difusa. This study revealed that the analyzed plants are rich in bioactive compounds, which confer their medicinal properties. However, many other plants commonly used to treat digestive disorders have been scarcely studied, highlighting the need for further research.
Collapse
Affiliation(s)
- Antonio Julián-Flores
- Bioprocesses & Bioproducts Group, Food Research Department, School of Chemistry, Autonomous University of Coahuila, Saltillo 25280, Coahuila, Mexico; (A.J.-F.); (L.S.-T.); (C.N.A.)
| | - Pedro Aguilar-Zárate
- Laboratorio Nacional CONAHCYT de Apoyo a la Evaluación de Productos Bióticos (LaNAEPBi), Unidad de Servicio, Tecnológico Nacional de México/I.T. de Ciudad Valles, Ciudad Valles 79010, San Luis Potosí, Mexico;
| | - Mariela R. Michel
- Laboratorio Nacional CONAHCYT de Apoyo a la Evaluación de Productos Bióticos (LaNAEPBi), Unidad de Servicio, Tecnológico Nacional de México/I.T. de Ciudad Valles, Ciudad Valles 79010, San Luis Potosí, Mexico;
| | - Leonardo Sepúlveda-Torre
- Bioprocesses & Bioproducts Group, Food Research Department, School of Chemistry, Autonomous University of Coahuila, Saltillo 25280, Coahuila, Mexico; (A.J.-F.); (L.S.-T.); (C.N.A.)
| | - Cristian Torres-León
- Research Center and Ethnobiological Garden, Autonomous University of Coahuila, Viesca 27480, Coahuila, Mexico;
| | - Cristóbal N. Aguilar
- Bioprocesses & Bioproducts Group, Food Research Department, School of Chemistry, Autonomous University of Coahuila, Saltillo 25280, Coahuila, Mexico; (A.J.-F.); (L.S.-T.); (C.N.A.)
| | - Mónica L. Chávez-González
- Bioprocesses & Bioproducts Group, Food Research Department, School of Chemistry, Autonomous University of Coahuila, Saltillo 25280, Coahuila, Mexico; (A.J.-F.); (L.S.-T.); (C.N.A.)
| |
Collapse
|
3
|
Feng X, Chen S, Li J, Dai X, Chen Y, Xie B, Zhang Z, Ren L, Yan L. Evaluation of acute and 28-day repeated dose toxicity of Tolypocladium sinense soft capsule in Sprague-Dawley rats. Drug Chem Toxicol 2024:1-12. [PMID: 39603833 DOI: 10.1080/01480545.2024.2427766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 09/06/2024] [Accepted: 11/05/2024] [Indexed: 11/29/2024]
Abstract
Tolypocladium sinense is a new asexual strain isolated from natural Cordyceps sinensis. The mycelium produced by its fermentation culture has similar chemical components and pharmacological effects to C. sinensis. T. sinense soft capsule is primarily prepared from T. sinense mycelium, which is mainly used for the treatment of body damage induced by low-dose ionizing radiation. However, its potential toxicity remains unclear. This study was designed to assess the toxicological characteristics of T. sinense soft capsules through acute and 28-day repeated dose toxicity studies. In the acute toxicity study, no toxic symptoms or mortality were observed in rats following a single oral administration of 10 000 mg/kg of T. sinense soft capsules. The maximum tolerated dose for a single oral dose of T. sinense soft capsules in rats was over 10 000 mg/kg. During the repeated dose toxicity test, oral administration of 90, 360, and 1440 mg/kg/day of T. sinense soft capsules for 28 consecutive days did not lead to significant toxic effects in rats. The no observed adverse effect level in rats surpassed 1440 mg/kg/day. These results provide preliminary evidence that T. sinense soft capsules are relatively safe.
Collapse
Affiliation(s)
- Xu Feng
- Naval Medicine Center of PLA, Naval Medical University, Shanghai, China
| | - Song Chen
- Naval Medicine Center of PLA, Naval Medical University, Shanghai, China
| | - Jinfeng Li
- Department of Health Toxicology, Faculty of Naval Medicine, Naval Medical University, Shanghai, China
| | - Xiaoyu Dai
- Department of Health Toxicology, Faculty of Naval Medicine, Naval Medical University, Shanghai, China
| | - Yun Chen
- Department of Health Toxicology, Faculty of Naval Medicine, Naval Medical University, Shanghai, China
| | - Bin Xie
- School of Basic Medicine, Anhui Medical University, Hefei, China
| | - Zhenzhen Zhang
- Naval Medicine Center of PLA, Naval Medical University, Shanghai, China
| | - Lijun Ren
- Department of Health Toxicology, Faculty of Naval Medicine, Naval Medical University, Shanghai, China
| | - Lang Yan
- Department of Health Toxicology, Faculty of Naval Medicine, Naval Medical University, Shanghai, China
- Key Laboratory of Biosafety Defense (Naval Medical University), Shanghai, China
| |
Collapse
|
4
|
Galman A, Chikhaoui M, Bouhrim M, Eto B, Shahat AA, Herqash RN, Lotfi R, Belamgharia H, Daoudi D, Kaddouri M, Dlimi C, Alahyane H, Liba H, Reda Kachmar M, Boutoial K. Fitness and Dietary Supplements: A Cross-Sectional Study on Food Practices and Nutrivigilance. Nutrients 2024; 16:3928. [PMID: 39599714 PMCID: PMC11597613 DOI: 10.3390/nu16223928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/07/2024] [Accepted: 11/12/2024] [Indexed: 11/29/2024] Open
Abstract
Background/Objectives: The use of dietary supplements (DSs) has become common among fitness enthusiasts, aiming to enhance performance, recovery, and overall well-being. Methods: A cross-sectional study was conducted in the city of Beni Mellal from April to July 2024, assessed dietary practices, motivations for supplement use, and associated adverse effects among 420 survey participants. Results: The majority of dietary supplement users were aged 25-64 and had higher education levels. Colopathy (67.38%) was the most common eating disorder, followed by digestive (59.46%), inflammatory, and rheumatic diseases (53.50%). Dietary supplementation prevalence was 88.1%, with proteins (60.81%), medicinal plants (45.13%), and vitamins (42.70%) being the most consumed. Key motivations included supporting muscle, bone, and joint strength (musculoskeletal) (83.78%) and enhancing heart and lung function for cardiorespiratory health (82.43%). However, 28% of protein users experienced adverse effects, such as myalgia, gastralgia, palpitations, and insomnia. Multivariate linear regression indicated a significant negative association of creatine with effectiveness (β = -0.485, p = 0.001). Conclusions: Overall, while the benefits of dietary and sports practices are evident, the adverse effects associated with protein supplements highlight the necessity for enhanced nutrivigilance and nutritional education to ensure safe supplements.
Collapse
Affiliation(s)
- Aziz Galman
- Laboratory of the Engineering and Applied Technologies, Higher School of Technology, Sultan Moulay Slimane University, Beni Mellal 23000, Morocco; (M.K.); (C.D.); (K.B.)
- High Institute of Nursing Professions and Health Techniques, Beni Mellal 23000, Morocco; (M.C.); (R.L.); (H.B.); (H.A.); (M.R.K.)
| | - Mourad Chikhaoui
- High Institute of Nursing Professions and Health Techniques, Beni Mellal 23000, Morocco; (M.C.); (R.L.); (H.B.); (H.A.); (M.R.K.)
- Laboratory of Ecology and Environment, Faculty of Sciences Ben M’Sik, Hassan II University, Casablanca 20023, Morocco
| | - Mohamed Bouhrim
- Biological Engineering Laboratory, Faculty of Sciences and Techniques, Sultan Moulay Slimane University, Beni Mellal 23000, Morocco;
- Laboratories TBC, Laboratory of Pharmacology, Pharmacokinetics, and Clinical Pharmacy, Faculty of Pharmaceutical and Biological Sciences, B.P. 83, 59000 Lille, France
| | - Bruno Eto
- Laboratories TBC, Laboratory of Pharmacology, Pharmacokinetics, and Clinical Pharmacy, Faculty of Pharmaceutical and Biological Sciences, B.P. 83, 59000 Lille, France
| | - Abdelaaty A. Shahat
- Department of Pharmacognosy, College of Pharmacy, King Saudi University, Riyadh 11451, Saudi Arabia; (A.A.S.); (R.N.H.)
| | - Rashed N. Herqash
- Department of Pharmacognosy, College of Pharmacy, King Saudi University, Riyadh 11451, Saudi Arabia; (A.A.S.); (R.N.H.)
| | - Rachid Lotfi
- High Institute of Nursing Professions and Health Techniques, Beni Mellal 23000, Morocco; (M.C.); (R.L.); (H.B.); (H.A.); (M.R.K.)
- Biological Engineering Laboratory, Faculty of Sciences and Techniques, Sultan Moulay Slimane University, Beni Mellal 23000, Morocco;
| | - Hind Belamgharia
- High Institute of Nursing Professions and Health Techniques, Beni Mellal 23000, Morocco; (M.C.); (R.L.); (H.B.); (H.A.); (M.R.K.)
- Biological Engineering Laboratory, Faculty of Sciences and Techniques, Sultan Moulay Slimane University, Beni Mellal 23000, Morocco;
| | - Daoud Daoudi
- Physiology and Pathophysiology Team, Center for Human Pathologies Genomics, Faculty of Sciences, Mohammed V University, Rabat 10050, Morocco;
| | - Morad Kaddouri
- Laboratory of the Engineering and Applied Technologies, Higher School of Technology, Sultan Moulay Slimane University, Beni Mellal 23000, Morocco; (M.K.); (C.D.); (K.B.)
| | - Charaf Dlimi
- Laboratory of the Engineering and Applied Technologies, Higher School of Technology, Sultan Moulay Slimane University, Beni Mellal 23000, Morocco; (M.K.); (C.D.); (K.B.)
| | - Hassan Alahyane
- High Institute of Nursing Professions and Health Techniques, Beni Mellal 23000, Morocco; (M.C.); (R.L.); (H.B.); (H.A.); (M.R.K.)
| | - Habiba Liba
- Higher Institute of Nursing Professions and Health Techniques of Marrakesh, Marrakech 40000, Morocco;
| | - Mohamed Reda Kachmar
- High Institute of Nursing Professions and Health Techniques, Beni Mellal 23000, Morocco; (M.C.); (R.L.); (H.B.); (H.A.); (M.R.K.)
- Valorization of Medicinal and Aromatic Plants and Environment Team, Faculty of Sciences, Moulay Ismail University, Meknes 50000, Morocco
| | - Khalid Boutoial
- Laboratory of the Engineering and Applied Technologies, Higher School of Technology, Sultan Moulay Slimane University, Beni Mellal 23000, Morocco; (M.K.); (C.D.); (K.B.)
| |
Collapse
|
5
|
Ziroldo JC, Torres LMB, Gamberini MT. Sugarcane (Saccharum officinarum L.) induces psychostimulant, anxiolytic-like effects and improvement of motor performance in rats. JOURNAL OF ETHNOPHARMACOLOGY 2024; 333:118476. [PMID: 38908491 DOI: 10.1016/j.jep.2024.118476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/03/2024] [Accepted: 06/19/2024] [Indexed: 06/24/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Sugarcane (Saccharum officinarum L.) is reported by traditional medicine as tonic, stimulating and beneficial in increasing resistance to fatigue. Previous preclinical studies in rats using aqueous extract of sugarcane leaves (AE) revealed pharmacological effects on the central nervous and cardiovascular systems involving the participation of dopaminergic pathways. This neurotransmission system is also related to motor, emotional and cognitive activities, which could, in part, justify the ethnopharmacological information. AIM OF STUDY The present study aimed to investigate the motor, emotional and cognitive activities of rats submitted to AE treatment using behavioral tests in order to correlate the pharmacological effects with the therapeutic benefits postulated by traditional medicine. Additionally, the chemical profile of AE was evaluated by HPLC-UV/Vis, and the presence of shikimic acid, vitexin, and ferulic acid, as possible chemical markers, was investigated through comparisons of chemical parameters with the authentic patterns, and a UV-Vis scan of known spectra. MATERIAL AND METHODS Rats received water (1.5 mL/kg, p.o.) and AE (0.5, 10 and 500 mg/kg, p.o.) in the absence and presence of haloperidol (0.5 mg/kg, i.p.), 90 min before open field; rotarod; elevated plus maze and inhibitory avoidance tests for investigation of motor; emotional and cognitive responses. As a positive control was used apomorphine (0.25 mg/kg, s.c.). The chemical profile of AE was evaluated by HPLC-UV/Vis and the presence of shikimic acid, vitexin and ferulic acid, as possible chemical markers, was investigated through comparisons with the retention times, an increase of the integral of the peak area determined by co-injection of AE with the authentic patterns, and a UV-Vis scan of known spectra. RESULTS In open field, it revealed that AE increased locomotion; reduced rearing but did not change freezing and grooming. Besides, AE increased motor performance in rotarod and reduced anxiety in elevated plus maze. A relation dose-response was observed in these tests where the lowest dose of AE was more effective in developing pharmacological responses. Previous administration of haloperidol inhibited the responses of AE. Inhibitory avoidance test revealed that AE did not modify fast-learning and associative memory. CONCLUSIONS Sugarcane induced psychostimulant, anxiolytic-like effects, and improvement of motor performance in rats, with the involvement of dopaminergic pathways. The present study points to AE as a potential adaptogen but, in addition to behavioral assessments, metabolic and molecular aspects, that involve the participation of a variety of regulatory systems, will be investigated in futures studies. Phytochemical analyses showed that AE is a complex matrix and revealed shikimic acid, vitexin, and ferulic acid as potential chemical markers.
Collapse
Affiliation(s)
- Juliana Corsini Ziroldo
- Department of Physiological Sciences, Santa Casa de Sao Paulo School of Medical Sciences - School of Medicine, São Paulo, SP, Brazil.
| | | | - Maria Thereza Gamberini
- Department of Physiological Sciences, Santa Casa de Sao Paulo School of Medical Sciences - School of Medicine, São Paulo, SP, Brazil.
| |
Collapse
|
6
|
Kang YG, Kwon J, Kwon S, Kim AR. Synergistic Effects of Korean Mistletoe and Apple Peel Extracts on Muscle Strength and Endurance. Nutrients 2024; 16:3255. [PMID: 39408221 PMCID: PMC11478607 DOI: 10.3390/nu16193255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 09/20/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
Muscular strength and endurance are vital for physical fitness. While mistletoe extract has shown efficacy in significantly increasing muscle strength and endurance, its accessibility is limited. This study explores combining mistletoe and apple peel extracts as an effective muscle health supplement. Analyses of histology, RNA, and protein in the combined extract-treated mouse group demonstrated significant enhancements in muscle strength and endurance, evidenced by larger muscle fibers, improved mitochondrial function, and a higher ratio of type I and IIa muscle fibers. Combining half doses of each extract resulted in greater improvements than using each extract separately, indicating a synergistic effect. Pathway analysis suggests that the observed synergy arises from complementary mechanisms, with a mistletoe extract-induced decrease in myostatin (MSTN) and an apple peel extract-induced increase in IGF1, leading to a sharp rise in AKT, S6K, and MuRF1, which promote myogenesis, along with a significant increase in PGC-1α, TFAM, and MEF2C, which are critical for mitochondrial biogenesis. This research provides practical insights into developing cost-effective, natural supplements to enhance muscle performance and endurance, with potential applications in athletic performance, improving muscle growth and endurance in children, and addressing age-related muscle decline.
Collapse
Affiliation(s)
- Youn-Goo Kang
- Department of Advanced Convergence, Handong Global University, Pohang 37554, Republic of Korea;
| | - Joonhyuk Kwon
- School of Life Science, Handong Global University, Pohang 37554, Republic of Korea
| | - Soonjun Kwon
- School of Life Science, Handong Global University, Pohang 37554, Republic of Korea
| | - Ah-Ram Kim
- Department of Advanced Convergence, Handong Global University, Pohang 37554, Republic of Korea;
- School of Life Science, Handong Global University, Pohang 37554, Republic of Korea
| |
Collapse
|
7
|
Wang J, Zhang G, Wang D, Yan Y, Yang Q. Effects of nano- Rhodiola rosea combined with treadmill exercise on anti-exercise fatigue in rats. Front Nutr 2024; 11:1446944. [PMID: 39296497 PMCID: PMC11408302 DOI: 10.3389/fnut.2024.1446944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 08/26/2024] [Indexed: 09/21/2024] Open
Abstract
Objective To explore the potential strategies and mechanisms for enhancing the bioavailability of Rhodiola rosea. Methods 36 Sprague-Dawley rats (8-weeks-old) were randomly assigned to six groups (n = 6 per group). Groups I and II received nano-dose forms of R. rosea, groups III and IV received normal dose form of R. rosea, and groups V and VI served as distilled water control groups. Groups II, IV, and VI were combined with moderate -intensity treadmill exercise. Each group received a daily gavage with 0.5 mL of nano -R. rosea solution (0.01 mg/mL), normal R. rosea solution, and distilled water. All rats were subjected to exhaustive swimming after 4 weeks. Outcome measures include GSH-px activity, T-AOC activity, MDA content, hepatic glycogen content, and T-SOD activity. Results For plasma MDA content, group I was lower than group III (p < 0.01) and group V (p < 0.01), group II was lower than group III (p < 0.01), group VI was higher than group II (p < 0.05) and group IV (p < 0.05). For plasma T-AOC activity, group II was higher than group VI (p < 0.01). For plasma GSH-px activity, group I was lower than group IV (p < 0.05), groups II, III, and IV were higher than group V (p < 0.05), and group V was lower than that of group VI (p < 0.05). For T-SOD activity of quadriceps muscle, groups I and III were higher than that in group V (p < 0.05). Conclusion R. rosea has a positive effect on anti-exercise fatigue in rats, with the nano-dosage form of R. rosea showing more significant efficacy than the normal form especially combined with aerobic exercise.
Collapse
Affiliation(s)
- Jibing Wang
- International College of Football, Tongji University, Shanghai, China
| | - Guoyan Zhang
- International College of Football, Tongji University, Shanghai, China
| | - Duona Wang
- International College of Football, Tongji University, Shanghai, China
| | - Yuanyuan Yan
- International College of Football, Tongji University, Shanghai, China
| | - Qin Yang
- International College of Football, Tongji University, Shanghai, China
| |
Collapse
|
8
|
Ouerghi N, Abassi W, Jebabli N, Feki M, Bouassida A, Weiss K, Rosemann T, Knechtle B. Crocus Sativus Linnaeus (Saffron) intake does not affect physiological and perceptual responses during a repeated sprint test in healthy active young males. BMC Res Notes 2024; 17:246. [PMID: 39227898 PMCID: PMC11373116 DOI: 10.1186/s13104-024-06918-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 08/28/2024] [Indexed: 09/05/2024] Open
Abstract
The study aimed to investigate the effects of acute ingestion of saffron (SAF) on physiological (i.e., heart rate and blood lactate) and perceptual (i.e., ratings of perceived exertion [RPE] and feeling scale) measures in response to a repeated-sprint ability test (RSS) in healthy young males (N = 22; mean ± SD: age, 21.7 ± 1.24 yrs.). All participants completed two experimental trials with a one-week washout period using a double-blind, placebo-controlled, crossover design. In each session, the participants were randomly chosen to receive either a capsule of saffron (300 mg) (SAF session) or a capsule of lactose (PLB session) two hours before performing the RSS.No significant differences (p > 0.05) were found for heart rate, RPE, and feeling scale between the SAF or PLB sessions at pre- and post-RSS. There were no significant changes (p > 0.05) in peak time, total time, fatigue index, and blood lactate in either the SAF or PLB sessions. Acute SAF ingestion did not significantly improve RSS performance nor physiological and perceptual measures in active young males. Future trials should address the topic by using shortened/prolonged higher doses of SAF on biological, physical, physiological, and perceptual responses to acute and chronic exercise.
Collapse
Affiliation(s)
- Nejmeddine Ouerghi
- Research Unit "Sport Sciences, Health and Movement" (UR22JS01) High Institute of Sport and Physical Education of Kef, University of Jendouba, Kef, 7100, Tunisia
- Faculty of Medicine of Tunis, University of Tunis El Manar, Rabta Hospital, Tunis, LR99ES11, 1007, Tunisia
- University of Gafsa, High Institute of Sport and Physical Education of Gafsa, Gafsa, 2100, Tunisia
| | - Wissal Abassi
- Research Unit "Sport Sciences, Health and Movement" (UR22JS01) High Institute of Sport and Physical Education of Kef, University of Jendouba, Kef, 7100, Tunisia
| | - Nidhal Jebabli
- Research Unit "Sport Sciences, Health and Movement" (UR22JS01) High Institute of Sport and Physical Education of Kef, University of Jendouba, Kef, 7100, Tunisia
| | - Moncef Feki
- Faculty of Medicine of Tunis, University of Tunis El Manar, Rabta Hospital, Tunis, LR99ES11, 1007, Tunisia
| | - Anissa Bouassida
- Research Unit "Sport Sciences, Health and Movement" (UR22JS01) High Institute of Sport and Physical Education of Kef, University of Jendouba, Kef, 7100, Tunisia
| | - Katja Weiss
- Institute of Primary Care, University of Zurich, Zurich, 8000, Switzerland
| | - Thomas Rosemann
- Institute of Primary Care, University of Zurich, Zurich, 8000, Switzerland
| | - Beat Knechtle
- Institute of Primary Care, University of Zurich, Zurich, 8000, Switzerland.
- Medbase St. Gallen Am Vadianplatz, Vadianstrasse 26, St. Gallen, 9000, Switzerland.
| |
Collapse
|
9
|
Bolat E, Sarıtaş S, Duman H, Eker F, Akdaşçi E, Karav S, Witkowska AM. Polyphenols: Secondary Metabolites with a Biological Impression. Nutrients 2024; 16:2550. [PMID: 39125431 PMCID: PMC11314462 DOI: 10.3390/nu16152550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 07/29/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024] Open
Abstract
Polyphenols are natural compounds which are plant-based bioactive molecules, and have been the subject of growing interest in recent years. Characterized by multiple varieties, polyphenols are mostly found in fruits and vegetables. Currently, many diseases are waiting for a cure or a solution to reduce their symptoms. However, drug or other chemical strategies have limitations for using a treatment agent or still detection tool of many diseases, and thus researchers still need to investigate preventive or improving treatment. Therefore, it is of interest to elucidate polyphenols, their bioactivity effects, supplementation, and consumption. The disadvantage of polyphenols is that they have a limited bioavailability, although they have multiple beneficial outcomes with their bioactive roles. In this context, several different strategies have been developed to improve bioavailability, particularly liposomal and nanoparticles. As nutrition is one of the most important factors in improving health, the inclusion of plant-based molecules in the daily diet is significant and continues to be enthusiastically researched. Nutrition, which is important for individuals of all ages, is the key to the bioactivity of polyphenols.
Collapse
Affiliation(s)
- Ecem Bolat
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Canakkale 17000, Türkiye; (E.B.); (S.S.); (H.D.); (F.E.); (E.A.)
| | - Sümeyye Sarıtaş
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Canakkale 17000, Türkiye; (E.B.); (S.S.); (H.D.); (F.E.); (E.A.)
| | - Hatice Duman
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Canakkale 17000, Türkiye; (E.B.); (S.S.); (H.D.); (F.E.); (E.A.)
| | - Furkan Eker
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Canakkale 17000, Türkiye; (E.B.); (S.S.); (H.D.); (F.E.); (E.A.)
| | - Emir Akdaşçi
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Canakkale 17000, Türkiye; (E.B.); (S.S.); (H.D.); (F.E.); (E.A.)
| | - Sercan Karav
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Canakkale 17000, Türkiye; (E.B.); (S.S.); (H.D.); (F.E.); (E.A.)
| | - Anna Maria Witkowska
- Department of Food Biotechnology, Bialystok Medical University, 15-089 Bialystok, Poland
| |
Collapse
|
10
|
Chauhan D, Yadav PK, Sultana N, Agarwal A, Verma S, Chourasia MK, Gayen JR. Advancements in nanotechnology for the delivery of phytochemicals. JOURNAL OF INTEGRATIVE MEDICINE 2024; 22:385-398. [PMID: 38693014 DOI: 10.1016/j.joim.2024.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 04/08/2024] [Indexed: 05/03/2024]
Abstract
Phytosomes (phytophospholipid complex) are dosage forms that have recently been introduced to increase the stability and therapeutic effect of herbal medicine. Currently, bioactive herbs and the phytochemicals they contain are considered to be the best remedies for chronic diseases. One promising approach to increase the efficacy of plant-based therapies is to improve the stability and bioavailability of their bio-active ingredients. Phytosomes employ phospholipids as their active ingredients, and use their amphiphilic properties to solubilize and protect herbal extracts. The unique properties of phospholipids in drug delivery and their use in herbal medicines to improve bioavailability results in significantly enhanced health benefits. The introduction of phytosome nanotechnology can alter and revolutionize the current state of drug delivery. The goal of this review is to explain the application of phytosomes, their future prospects in drug delivery, and their advantages over conventional formulations. Please cite this article as: Chauhan D, Yadav PK, Sultana N, Agarwal A, Verma S, Chourasia MK, Gayen JR. Advancements in nanotechnology for the delivery of phytochemicals. J Integr Med. 2024; 22(4): 385-398.
Collapse
Affiliation(s)
- Divya Chauhan
- Division of Pharmaceutics and Pharmacokinetics, Central Drug Research Institute, Council of Scientific and Industrial Research, Lucknow 226031, Uttar Pradesh, India; Academy of Scientific and Innovative Research, Ghaziabad 201002, Uttar Pradesh, India
| | - Pavan K Yadav
- Division of Pharmaceutics and Pharmacokinetics, Central Drug Research Institute, Council of Scientific and Industrial Research, Lucknow 226031, Uttar Pradesh, India; Academy of Scientific and Innovative Research, Ghaziabad 201002, Uttar Pradesh, India
| | - Nazneen Sultana
- Division of Pharmaceutics and Pharmacokinetics, Central Drug Research Institute, Council of Scientific and Industrial Research, Lucknow 226031, Uttar Pradesh, India
| | - Arun Agarwal
- Division of Pharmaceutics and Pharmacokinetics, Central Drug Research Institute, Council of Scientific and Industrial Research, Lucknow 226031, Uttar Pradesh, India; Academy of Scientific and Innovative Research, Ghaziabad 201002, Uttar Pradesh, India
| | - Saurabh Verma
- Division of Pharmaceutics and Pharmacokinetics, Central Drug Research Institute, Council of Scientific and Industrial Research, Lucknow 226031, Uttar Pradesh, India; Academy of Scientific and Innovative Research, Ghaziabad 201002, Uttar Pradesh, India
| | - Manish K Chourasia
- Division of Pharmaceutics and Pharmacokinetics, Central Drug Research Institute, Council of Scientific and Industrial Research, Lucknow 226031, Uttar Pradesh, India; Academy of Scientific and Innovative Research, Ghaziabad 201002, Uttar Pradesh, India
| | - Jiaur R Gayen
- Division of Pharmaceutics and Pharmacokinetics, Central Drug Research Institute, Council of Scientific and Industrial Research, Lucknow 226031, Uttar Pradesh, India; Academy of Scientific and Innovative Research, Ghaziabad 201002, Uttar Pradesh, India.
| |
Collapse
|
11
|
He Z, Liu X, Qin S, Yang Q, Na J, Xue Z, Zhong L. Anticancer Mechanism of Astragalus Polysaccharide and Its Application in Cancer Immunotherapy. Pharmaceuticals (Basel) 2024; 17:636. [PMID: 38794206 PMCID: PMC11124422 DOI: 10.3390/ph17050636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/06/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
Astragalus polysaccharide (APS) derived from A. membranaceus plays a crucial role in traditional Chinese medicine. These polysaccharides have shown antitumor effects and are considered safe. Thus, they have become increasingly important in cancer immunotherapy. APS can limit the spread of cancer by influencing immune cells, promoting cell death, triggering cancer cell autophagy, and impacting the tumor microenvironment. When used in combination with other therapies, APS can enhance treatment outcomes and reduce toxicity and side effects. APS combined with immune checkpoint inhibitors, relay cellular immunotherapy, and cancer vaccines have broadened the application of cancer immunotherapy and enhanced treatment effectiveness. By summarizing the research on APS in cancer immunotherapy over the past two decades, this review elaborates on the anticancer mechanism of APS and its use in cancer immunotherapy and clinical trials. Considering the multiple roles of APS, this review emphasizes the importance of using APS as an adjunct to cancer immunotherapy and compares other polysaccharides with APS. This discussion provides insights into the specific mechanism of action of APS, reveals the molecular targets of APS for developing effective clinical strategies, and highlights the wide application of APS in clinical cancer therapy in the future.
Collapse
Affiliation(s)
- Ziqing He
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China; (Z.H.); (X.L.); (S.Q.); (Q.Y.); (J.N.)
| | - Xiyu Liu
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China; (Z.H.); (X.L.); (S.Q.); (Q.Y.); (J.N.)
| | - Simin Qin
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China; (Z.H.); (X.L.); (S.Q.); (Q.Y.); (J.N.)
| | - Qun Yang
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China; (Z.H.); (X.L.); (S.Q.); (Q.Y.); (J.N.)
| | - Jintong Na
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China; (Z.H.); (X.L.); (S.Q.); (Q.Y.); (J.N.)
| | - Zhigang Xue
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China; (Z.H.); (X.L.); (S.Q.); (Q.Y.); (J.N.)
| | - Liping Zhong
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China; (Z.H.); (X.L.); (S.Q.); (Q.Y.); (J.N.)
- School of Pharmacy, Guangxi Medical University, Nanning 530021, China
| |
Collapse
|
12
|
Garcia JF, Seco-Calvo J, Arribalzaga S, Díez R, Lopez C, Fernandez MN, Garcia JJ, Diez MJ, de la Puente R, Sierra M, Sahagún AM. Tribulus terrestris and Sport Performance: A Quantitative and Qualitative Evaluation of Its Advertisement and Availability via Online Shopping in Six Different Countries. Nutrients 2024; 16:1320. [PMID: 38732566 PMCID: PMC11085339 DOI: 10.3390/nu16091320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/23/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
Dietary supplements are commonly used among athletes, and the Internet may be an easy source of these products. Tribulus terrestris is an herbal supplement with multiple properties. Of interest to athletes are reports that its consumption can lead to muscle mass gain and a faster recovery process. The objective of this cross-sectional study was to determine the availability of Tribulus terrestris via the Internet in six countries (Canada, Puerto Rico, Russia, Spain, Ukraine, and the United States of America) via a specifically designed computer program. The characteristics of the websites selling this substance, the country from which it can be purchased, the route of administration, and recommendations for its use were analyzed. The results of the study show that this supplement is marketed mainly in Russia, Ukraine, and Spain on many websites that are mostly dedicated to sports products. Just over half of the webpages (59.14%) identified only distribute this supplement within the same country. The main claims for its consumption refer to sports performance benefits, but there are also claims that it may improve male hormone levels and sexual function. Athletes should be encouraged to seek professional advice prior to ingesting this supplement to ensure that it is suitable for their specific training and sports objectives.
Collapse
Affiliation(s)
- Juan F. Garcia
- Department of Mechanical, Informatics and Aerospatiale Engineering, University of Leon, 24071 Leon, Spain;
| | - Jesús Seco-Calvo
- Department of Physiotherapy, Institute of Biomedicine (IBIOMED), University of Leon, 24071 Leon, Spain;
- Department of Psychology, Faculty of Medicine, Basque Country University, 48940 Leioa, Spain
| | - Soledad Arribalzaga
- Department of Physiotherapy, Institute of Biomedicine (IBIOMED), University of Leon, 24071 Leon, Spain;
| | - Raquel Díez
- Department of Biomedical Sciences, Institute of Biomedicine (IBIOMED), Veterinary Faculty, University of Leon, 24071 Leon, Spain; (R.D.); (C.L.); (M.N.F.); (J.J.G.); (M.J.D.); (R.d.l.P.); (M.S.); (A.M.S.)
| | - Cristina Lopez
- Department of Biomedical Sciences, Institute of Biomedicine (IBIOMED), Veterinary Faculty, University of Leon, 24071 Leon, Spain; (R.D.); (C.L.); (M.N.F.); (J.J.G.); (M.J.D.); (R.d.l.P.); (M.S.); (A.M.S.)
| | - M. Nelida Fernandez
- Department of Biomedical Sciences, Institute of Biomedicine (IBIOMED), Veterinary Faculty, University of Leon, 24071 Leon, Spain; (R.D.); (C.L.); (M.N.F.); (J.J.G.); (M.J.D.); (R.d.l.P.); (M.S.); (A.M.S.)
| | - Juan J. Garcia
- Department of Biomedical Sciences, Institute of Biomedicine (IBIOMED), Veterinary Faculty, University of Leon, 24071 Leon, Spain; (R.D.); (C.L.); (M.N.F.); (J.J.G.); (M.J.D.); (R.d.l.P.); (M.S.); (A.M.S.)
| | - M. Jose Diez
- Department of Biomedical Sciences, Institute of Biomedicine (IBIOMED), Veterinary Faculty, University of Leon, 24071 Leon, Spain; (R.D.); (C.L.); (M.N.F.); (J.J.G.); (M.J.D.); (R.d.l.P.); (M.S.); (A.M.S.)
| | - Raul de la Puente
- Department of Biomedical Sciences, Institute of Biomedicine (IBIOMED), Veterinary Faculty, University of Leon, 24071 Leon, Spain; (R.D.); (C.L.); (M.N.F.); (J.J.G.); (M.J.D.); (R.d.l.P.); (M.S.); (A.M.S.)
| | - Matilde Sierra
- Department of Biomedical Sciences, Institute of Biomedicine (IBIOMED), Veterinary Faculty, University of Leon, 24071 Leon, Spain; (R.D.); (C.L.); (M.N.F.); (J.J.G.); (M.J.D.); (R.d.l.P.); (M.S.); (A.M.S.)
| | - Ana M. Sahagún
- Department of Biomedical Sciences, Institute of Biomedicine (IBIOMED), Veterinary Faculty, University of Leon, 24071 Leon, Spain; (R.D.); (C.L.); (M.N.F.); (J.J.G.); (M.J.D.); (R.d.l.P.); (M.S.); (A.M.S.)
| |
Collapse
|
13
|
Panossian A, Lemerond T, Efferth T. State-of-the-Art Review on Botanical Hybrid Preparations in Phytomedicine and Phytotherapy Research: Background and Perspectives. Pharmaceuticals (Basel) 2024; 17:483. [PMID: 38675443 PMCID: PMC11053582 DOI: 10.3390/ph17040483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 03/28/2024] [Accepted: 04/04/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Despite some evidence supporting the synergy concept, the commonly known assumption that combinations of several herbs in one formulation can have better efficacy due to additive or synergistic effects has yet to be unambiguously and explicitly studied. STUDY AIM The study aimed to reveal the molecular interactions in situ of host cells in response to botanical hybrid preparations (BHP) intervention and justify the benefits of implementing BHP in clinical practice. RESULTS This prospective literature review provides the results of recent clinical and network pharmacology studies of BHP of Rhodiola rosea L. (Arctic root) with other plants, including Withania somnifera (L.) Dunal (ashwagandha), (Camellia sinensis (L.) Kuntze (green tea), Eleutherococcus senticosus (Rupr. and Maxim.) Maxim. (eleuthero), Schisandra chinensis (Turcz.) Baill. (schisandra), Leuzea carthamoides (Willd.) DC., caffeine, Cordyceps militaris L., Ginkgo biloba L.(ginkgo), Actaea racemosa L. (black cohosh), Crocus sativus L. (saffron), and L-carnosine. CONCLUSIONS The most important finding from network pharmacology studies of BHP was the evidence supporting the synergistic interaction of BHP ingredients, revealing unexpected new pharmacological activities unique and specific to the new BHP. Some studies show the superior efficacy of BHP compared to mono-drugs. At the same time, some a priori-designed combinations can fail, presumably due to antagonistic interactions and crosstalk between molecular targets within the molecular networks involved in the cellular and overall response of organisms to the intervention. Network pharmacology studies help predict the results of studies aimed at discovering new indications and unpredicted adverse events.
Collapse
Affiliation(s)
| | | | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, 55099 Mainz, Germany
| |
Collapse
|
14
|
Ayaz A, Zaman W, Radák Z, Gu Y. Harmony in Motion: Unraveling the Nexus of Sports, Plant-Based Nutrition, and Antioxidants for Peak Performance. Antioxidants (Basel) 2024; 13:437. [PMID: 38671884 PMCID: PMC11047508 DOI: 10.3390/antiox13040437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/03/2024] [Accepted: 04/03/2024] [Indexed: 04/28/2024] Open
Abstract
The intricate interplay between plant-based nutrition, antioxidants, and their impact on athletic performance forms the cornerstone of this comprehensive review. Emphasizing the pivotal importance of dietary choices in the realm of sports, this paper sets the stage for an in-depth exploration of how stress and physical performance are interconnected through the lens of nutrition. The increasing interest among athletes in plant-based diets presents an opportunity with benefits for health, performance, and recovery. It is essential to investigate the connection between sports, plants, and antioxidants. Highlighting the impact of nutrition on recovery and well-being, this review emphasizes how antioxidants can help mitigate oxidative stress. Furthermore, it discusses the growing popularity of plant-based diets among athletes. It elaborates on the importance of antioxidants in combating radicals addressing stress levels while promoting cellular health. By identifying rich foods, it emphasizes the role of a balanced diet in ensuring sufficient intake of these beneficial compounds. Examining stress within the context of sports activities, this review provides insights into its mechanisms and its impact on athletic performance as well as recovery processes. This study explores the impact of plant-based diets on athletes including their types, potential advantages and challenges. It also addresses the drawbacks of relying on plant-based diets, concerns related to antioxidant supplementation and identifies areas where further research is needed. Furthermore, the review suggests directions for research and potential innovations in sports nutrition. Ultimately it brings together the aspects of sports, plant-based nutrition, and antioxidants to provide a perspective for athletes, researchers and practitioners. By consolidating existing knowledge, it offers insights that can pave the way for advancements in the ever-evolving field of sports nutrition.
Collapse
Affiliation(s)
- Asma Ayaz
- Faculty of Sports Science, Ningbo University, Ningbo 315211, China;
| | - Wajid Zaman
- Department of Life Sciences, Yeungnam University, Gyeongsan 38541, Republic of Korea;
| | - Zsolt Radák
- Research Institute of Sport Science, University of Physical Education, 1123 Budapest, Hungary;
- Faculty of Sport Sciences, Waseda University, Tokorozawa 359-1192, Japan
| | - Yaodong Gu
- Faculty of Sports Science, Ningbo University, Ningbo 315211, China;
| |
Collapse
|
15
|
Candra A, Fahrimal Y, Yusni Y, Azwar A, Santi TD. Phytochemistry and antifatigue activities of Carica papaya leaf from geothermal, coastal and urban areas, Indonesia. NARRA J 2024; 4:e321. [PMID: 38798837 PMCID: PMC11125400 DOI: 10.52225/narra.v4i1.321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 03/06/2024] [Indexed: 05/29/2024]
Abstract
Fatigue, a condition of lack of energy and motivation resulting in the feeling of extreme tiredness or exhaustion, is usually prevented and treated with ergogenic aids, such as in the form of nutritional supplements. Papaya (Carica papaya) may be a potential candidate for ergogenic aids, considering its healthy secondary metabolite properties and number of metabolite compounds that could be affected by the location where the plant growing. The aim of this study was to identify the phytochemicals of papaya leaves from three different locations: geothermal, coastal, and urban areas in Aceh province, Indonesia. Concentrations of papaya leaf with the highest number of secondary metabolite compounds were tested in rats to measure blood lactate acid concentrations after strenuous exercise. The number of chemical compounds identified from the three locations was 24 compounds; 23 compounds and 17 compounds, respectively. The highest concentration of chemical compounds that have antifatigue activity contained in all papaya leaf samples were neophytadiene, linolenic acid, gamma tocopherol, hexadecanoic acid, vitamin E, carpaine, octadecatrienoic acid, nor lean-12-ene, squalene, and phytol. Furthermore, most of the compounds' highest concentrations were found in papaya leaves from the coastal area and, therefore, tested on the animal model. Treatment was provided in 12 male rats with different doses of papaya powder supplements for 15 days. The results showed that lactic acid levels of rats received a dose of 400 mg/kg of papaya leaf extract reduced the lactic acid concentration (p=0.014) compared with the control group. This study highlights that papaya leaves from the coastal area have the most potential activities as ergogenic herbal aid and were able to reduce lactic acid levels in rats after strenuous exercise.
Collapse
Affiliation(s)
- Aditya Candra
- Graduate School of Mathematics and Applied Sciences, Universitas Syiah Kuala, Banda Aceh, Indonesia
- Department of Physiology, Faculty of Medicine, Universitas Abulyatama, Aceh Besar, Indonesia
| | - Yudha Fahrimal
- Faculty of Veterinary Medicine, Universitas Syiah Kuala, Banda Aceh, Indonesia
| | - Yusni Yusni
- Department of Physiology, Faculty of Medicine, Universitas Syiah Kuala, Banda Aceh, Indonesia
| | - Azwar Azwar
- Department of Chemical Engineering, Faculty of Engineering, Universitas Syiah Kuala, Banda Aceh, Indonesia
| | - Tahara D. Santi
- Faculty of Public Health, Universitas Muhammadiyah Aceh, Banda Aceh, Indonesia
| |
Collapse
|
16
|
Ji X, Li Q, Liu Z, Wu W, Zhang C, Sui H, Chen M. Identification of Active Components for Sports Supplements: Machine Learning-Driven Classification and Cell-Based Validation. ACS OMEGA 2024; 9:11347-11355. [PMID: 38496927 PMCID: PMC10938306 DOI: 10.1021/acsomega.3c07395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/25/2024] [Accepted: 02/05/2024] [Indexed: 03/19/2024]
Abstract
The identification of active components is critical for the development of sports supplements. However, high-throughput screening of active components remains a challenge. This study sought to construct prediction models to screen active components from herbal medicines via machine learning and validate the screening by using cell-based assays. The six constructed models had an accuracy of >0.88. Twelve randomly selected active components from the screening were tested for their active potency on C2C12 cells, and 11 components induced a significant increase in myotube diameters and protein synthesis. The effect and mechanism of luteolin among the 11 active components as potential sports supplements were then investigated by using immunofluorescence staining and high-content imaging analysis. It showed that luteolin increased the skeletal muscle performance via the activation of PGC-1α and MAPK signaling pathways. Thus, high-throughput prediction models can be effectively used to screen active components as sports supplements.
Collapse
Affiliation(s)
- Xiaoning Ji
- State
Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di
Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
- NHC
key laboratory of food safety risk assessment, China National Center for Food Safety Risk Assessment, Beijing 100022, China
| | - Qiuyun Li
- NMPA
Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial
Key Laboratory of Tropical Disease Research, Food Safety and Health
Research Center, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Zhaoping Liu
- NHC
key laboratory of food safety risk assessment, China National Center for Food Safety Risk Assessment, Beijing 100022, China
| | - Weiliang Wu
- NMPA
Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial
Key Laboratory of Tropical Disease Research, Food Safety and Health
Research Center, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Chaozheng Zhang
- NHC
key laboratory of food safety risk assessment, China National Center for Food Safety Risk Assessment, Beijing 100022, China
| | - Haixia Sui
- NHC
key laboratory of food safety risk assessment, China National Center for Food Safety Risk Assessment, Beijing 100022, China
| | - Min Chen
- State
Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di
Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| |
Collapse
|
17
|
Titova M, Popova E, Nosov A. Bioreactor Systems for Plant Cell Cultivation at the Institute of Plant Physiology of the Russian Academy of Sciences: 50 Years of Technology Evolution from Laboratory to Industrial Implications. PLANTS (BASEL, SWITZERLAND) 2024; 13:430. [PMID: 38337964 PMCID: PMC10857215 DOI: 10.3390/plants13030430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/29/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024]
Abstract
The cultivation of plant cells in large-scale bioreactor systems has long been considered a promising alternative for the overexploitation of wild plants as a source of bioactive phytochemicals. This idea, however, faced multiple constraints upon realization, resulting in very few examples of technologically feasible and economically effective biotechnological companies. The bioreactor cultivation of plant cells is challenging. Even well-growing and highly biosynthetically potent cell lines require a thorough optimization of cultivation parameters when upscaling the cultivation process from laboratory to industrial volumes. The optimization includes, but is not limited to, the bioreactor's shape and design, cultivation regime (batch, fed-batch, continuous, semi-continuous), aeration, homogenization, anti-foaming measures, etc., while maintaining a high biomass and metabolite production. Based on the literature data and our experience, the cell cultures often demonstrate cell line- or species-specific responses to parameter changes, with the dissolved oxygen concentration (pO2) and shear stress caused by stirring being frequent growth-limiting factors. The mass transfer coefficient also plays a vital role in upscaling the cultivation process from smaller to larger volumes. The Experimental Biotechnological Facility at the K.A. Timiryazev Institute of Plant Physiology has operated since the 1970s and currently hosts a cascade of bioreactors from the laboratory (20 L) to the pilot (75 L) and a semi-industrial volume (630 L) adapted for the cultivation of plant cells. In this review, we discuss the most appealing cases of the cell cultivation process's adaptation to bioreactor conditions featuring the cell cultures of medicinal plants Dioscorea deltoidea Wall. ex Griseb., Taxus wallichiana Zucc., Stephania glabra (Roxb.) Miers, Panax japonicus (T. Nees) C.A.Mey., Polyscias filicifolia (C. Moore ex E. Fourn.) L.H. Bailey, and P. fruticosa L. Harms. The results of cell cultivation in bioreactors of different types and designs using various cultivation regimes are covered and compared with the literature data. We also discuss the role of the critical factors affecting cell behavior in bioreactors with large volumes.
Collapse
Affiliation(s)
- Maria Titova
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127276 Moscow, Russia; (E.P.); (A.N.)
| | - Elena Popova
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127276 Moscow, Russia; (E.P.); (A.N.)
| | - Alexander Nosov
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127276 Moscow, Russia; (E.P.); (A.N.)
- Department of Biology, M.V. Lomonosov Moscow State University, 119234 Moscow, Russia
| |
Collapse
|
18
|
Muñoz-Castellanos B, Martínez-López P, Bailón-Moreno R, Esquius L. Effect of Ginseng Intake on Muscle Damage Induced by Exercise in Healthy Adults. Nutrients 2023; 16:90. [PMID: 38201920 PMCID: PMC10780807 DOI: 10.3390/nu16010090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/13/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
One of the most popular herbal supplements in the world is ginseng. Several studies have evaluated the capacity of ginseng as a protective element in the physiological response to exercise. The result produced by the exercise causes an increase in cellular biomarkers of damage in the skeletal muscle, mainly in the pro-inflammatory types. The different types of ginseng are composed of ginsenosides, which are active ingredients that act on the central nervous system and have antioxidant and anti-inflammatory properties, as well as effects on cortisol modulation. The use of ginseng as a nutritional supplement can help muscle regeneration and renewal. The objective of this review is to enrich the knowledge regarding the consumption of ginseng for a specific situation, such as exercise, which would cause an improvement in the tolerance to chronic load stimuli in sport, thus helping the subjects to recover between training sessions. Due to these benefits, it could also be an ideal food supplement for regenerative processes in muscle injuries in which inflammatory markers increase significantly. This review aims to summarise that biological factors can be attenuated after exercise due to the consumption of ginseng in healthy subjects, accelerating and improving muscle regeneration and, therefore, improving the ability to adapt to the stimuli generated by said exercise.
Collapse
Affiliation(s)
- Borja Muñoz-Castellanos
- Faculty of Health Sciences, Universitat Oberta de Catalunya, 08018 Barcelona, Spain; (B.M.-C.); (L.E.)
| | - Patricia Martínez-López
- “Techné” Knowledge and Product Engineering Research Group, Faculty of Science, Universidad de Granada, 18071 Granada, Spain;
| | - Rafael Bailón-Moreno
- “Techné” Knowledge and Product Engineering Research Group, Faculty of Science, Universidad de Granada, 18071 Granada, Spain;
| | - Laura Esquius
- Faculty of Health Sciences, Universitat Oberta de Catalunya, 08018 Barcelona, Spain; (B.M.-C.); (L.E.)
| |
Collapse
|
19
|
Garcia JF, Seco-Calvo J, Arribalzaga S, Díez R, Lopez C, Fernandez MN, Garcia JJ, Diez MJ, de la Puente R, Sierra M, Sahagún AM. Online information and availability of three doping substances (anabolic agents) in sports: role of pharmacies. Front Pharmacol 2023; 14:1305080. [PMID: 38111382 PMCID: PMC10725911 DOI: 10.3389/fphar.2023.1305080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 11/22/2023] [Indexed: 12/20/2023] Open
Abstract
Background: The Internet has become an important source for easy access to doping substances, where people and athletes may acquire, outside pharmacies and without a (medical) prescription. These online websites do not always offer quality-assured products, and are outside the regular distribution channels of medicines. The aim of this study was to estimate the availability and accessible information on the Internet about the sale of three doping substances (oxandrolone, DHEA, androstenedione). Methods: Cross-sectional exploratory study, being an observation at a point in time of the online availability of these three doping substances (WADA S1 category: anabolic agents), purchased from Spain, Puerto Rico, Canada, United States, Ukraine and Russia. The characteristics of the websites, the countries the webs sold to, the pharmaceutical forms offered and the recommendations for its use were analyzed by using a computer tool designed ad hoc. Results: There were significant differences between countries in the number of webpages that sold the products (Chi-square test, p < 0.05). Oxandrolone was available for purchase mainly when buying from Spain (27.12%) and Ukraine (26.58%), in websites dedicated to sports (77.26%). For DHEA, most of the pages offered it if the search was done from Canada (23.34%) and Russia (21.44%). Products containing androstenedione or DHEA are claimed to enhance sports performance or for sports use without providing details. Compared to the total number of websites checked, the proportion of pharmacies offering these products was low, ranging from 4.86% for DHEA to 15.79% for androstenedione. Conclusion: The three substances selected are easily available without control through the Internet. Only a small number of websites offering them were online pharmacies, and requested a prescription. Most of the doping substances are purchased from the country where they are requested. Product information described benefits for sports performance, but did not do the same with their side effects. It would be advisable for these products to be sold through pharmacies, to guarantee their quality and provide evidence-based information on their safe use, benefits and risks, and only with a prescription. Athletes should be encouraged to consult health professionals about those supplements suitable for their type of training and sports objectives.
Collapse
Affiliation(s)
- Juan F. Garcia
- Department of Mechanical, Informatics, and Aerospatiale Engineering, University of Leon, Leon, Spain
| | - Jesús Seco-Calvo
- Physiotherapy Department, Institute of Biomedicine (IBIOMED), University of Leon, Leon, Spain
- Psychology Department, Faculty of Medicine, Basque Country University, Leioa, Spain
| | - Soledad Arribalzaga
- Physiotherapy Department, Institute of Biomedicine (IBIOMED), University of Leon, Leon, Spain
| | - Raquel Díez
- Department of Biomedical Sciences, Institute of Biomedicine (IBIOMED), University of Leon, Leon, Spain
| | - Cristina Lopez
- Department of Biomedical Sciences, Institute of Biomedicine (IBIOMED), University of Leon, Leon, Spain
| | - M. Nelida Fernandez
- Department of Biomedical Sciences, Institute of Biomedicine (IBIOMED), University of Leon, Leon, Spain
| | - Juan J. Garcia
- Department of Biomedical Sciences, Institute of Biomedicine (IBIOMED), University of Leon, Leon, Spain
| | - M. Jose Diez
- Department of Biomedical Sciences, Institute of Biomedicine (IBIOMED), University of Leon, Leon, Spain
| | - Raul de la Puente
- Department of Biomedical Sciences, Institute of Biomedicine (IBIOMED), University of Leon, Leon, Spain
| | - Matilde Sierra
- Department of Biomedical Sciences, Institute of Biomedicine (IBIOMED), University of Leon, Leon, Spain
| | - Ana M. Sahagún
- Department of Biomedical Sciences, Institute of Biomedicine (IBIOMED), University of Leon, Leon, Spain
| |
Collapse
|
20
|
Lu Z, Mao T, Chen K, Chai L, Dai Y, Liu K. Ginsenoside Rc: A potential intervention agent for metabolic syndrome. J Pharm Anal 2023; 13:1375-1387. [PMID: 38223453 PMCID: PMC10785250 DOI: 10.1016/j.jpha.2023.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/26/2023] [Accepted: 08/16/2023] [Indexed: 01/16/2024] Open
Abstract
Ginsenoside Rc, a dammarane-type tetracyclic triterpenoid saponin primarily derived from Panax ginseng, has garnered significant attention due to its diverse pharmacological properties. This review outlined the sources, putative biosynthetic pathways, extraction, and quantification techniques, as well as the pharmacokinetic properties of ginsenoside Rc. Furthermore, this study explored the pharmacological effects of ginsenoside Rc against metabolic syndrome (MetS) across various phenotypes including obesity, diabetes, atherosclerosis, non-alcoholic fatty liver disease, and osteoarthritis. It also highlighted the impact of ginsenoside Rc on multiple associated signaling molecules. In conclusion, the anti-MetS effect of ginsenoside Rc is characterized by its influence on multiple organs, multiple targets, and multiple ways. Although clinical investigations regarding the effects of ginsenoside Rc on MetS are limited, its proven safety and tolerability suggest its potential as an effective treatment option.
Collapse
Affiliation(s)
- Zhengjie Lu
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, Wuhan, 430072, China
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430072, China
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China
| | - Tongyun Mao
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China
| | - Kaiqi Chen
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China
| | - Longxin Chai
- School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Yongguo Dai
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China
| | - Kexin Liu
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, Wuhan, 430072, China
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China
| |
Collapse
|
21
|
Guo W, Yang J, Wang J, Xu X, Huang J, Liu Y, Xie S, Xu Y. Dietary Supplement with Tribulus terrestris L. Extract Exhibits Protective Effects on Ischemic Stroke Rats. Mol Nutr Food Res 2023; 67:e2300447. [PMID: 37876150 DOI: 10.1002/mnfr.202300447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/13/2023] [Indexed: 10/26/2023]
Abstract
SCOPE Among herbal dietary supplements, the extract of Tribulus terrestris L. (TT) has been used as a commercially registered product in multiple studies. The previous studies demonstrate the protective effect of gross saponins of TT (GSTTF) on ischemic stroke. However, the mechanism by which GSTTF protects against ischemic stroke is still unclear. METHODS AND RESULTS The study applies molecular biology and unbiased transcriptomics to explore the pathways and targets underlying the therapeutic impact of GSTTF in treating ischemic stroke. The mRNA of brain tissues from different groups is analyzed using a transcriptomics method. The data reveal that treatment with GSTTF significantly reduces elevated CRP, IL-6, and Ca2+ levels induced by middle cerebral artery occlusion (MCAO). A total of 61 differentially expressed genes (DEGs) are identified, GSTTF is found to effectively reverse the abnormal mRNA expression levels in rat brain tissues affected by ischemic stroke models. These positive effects of GSTTF are likely achieved through the suppression of calcium ion and the MyD88/IKK/NF-κB signaling pathway. CONCLUSIONS This study uncovers the mechanisms behind the efficacy of GSTTF in treating ischemic stroke, which not only expands its potential medicinal applications but also confirmed its potential as a dietary supplement.
Collapse
Affiliation(s)
- Wenjun Guo
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, Jilin, 130117, China
- Key Laboratory of Medicinal Materials, Jilin Academy of Chinese Medicine Sciences, Changchun, Jilin, 130021, China
| | - Jingxuan Yang
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, Jilin, 130117, China
| | - Jifeng Wang
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, Jilin, 130117, China
| | - Xiaohang Xu
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, Jilin, 130117, China
| | - Jinghan Huang
- Key Laboratory of Medicinal Materials, Jilin Academy of Chinese Medicine Sciences, Changchun, Jilin, 130021, China
| | - Yue Liu
- Key Laboratory of Medicinal Materials, Jilin Academy of Chinese Medicine Sciences, Changchun, Jilin, 130021, China
| | - Shengxu Xie
- Key Laboratory for Analysis Methods of Active Ingredients in Traditional Chinese Medicine, Jilin Academy of Chinese Medicine Sciences, Changchun, Jilin, 130021, China
| | - Yajuan Xu
- Key Laboratory of Medicinal Materials, Jilin Academy of Chinese Medicine Sciences, Changchun, Jilin, 130021, China
| |
Collapse
|
22
|
Sinha S, Alluri KV, Somepalli V, Golakoti T, Sengupta K. A synergistic blend of Garcinia mangostana fruit rind and Cinnamomum tamala leaf extracts enhances myogenic differentiation and mitochondrial biogenesis in vitro and muscle growth and strength in mice. Food Nutr Res 2023; 67:9750. [PMID: 37920678 PMCID: PMC10619412 DOI: 10.29219/fnr.v67.9750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/11/2023] [Accepted: 07/19/2023] [Indexed: 11/04/2023] Open
Abstract
Background A proprietary combination of Garcinia mangostana fruit rind and Cinnamomum tamala leaf extracts (LI80020F4, CinDura®) improved the physical performance and muscle strength of resistance-trained adult males. Objective This study assessed the underlying mechanisms of the ergogenic potential of LI80020F4 in in vitro and in vivo models. Methods The individual extracts and their combination (LI80020F4) were assessed for nitrite production in EAhy926 human endothelial cells. Subsequent experiments evaluated the effect of LI80020F4 in myotube formation in C2C12 mouse myoblasts, expression of mammalian target of rapamycin (mTOR) signaling proteins, myogenic factors, and mitochondrial functions in L6 rat myoblasts.Moreover, adult male ICR mice were randomly assigned (n = 15) into vehicle control (G1), exercise alone (G2), oxymetholone-16 mg/kg body weight (bw) (G3), and 75 (G4)-, 150 (G5)-, or 300 (G6) mg/kg bw of LI80020F4, orally gavaged for 28 days. G1 and G2 mice received 0.5% carboxymethylcellulose sodium. Following completion, muscle strength and physical performance were assessed on forelimb grip strength and forced swimming test (FST), respectively. Gastrocnemius (GA), tibialis anterior (TA) muscle weights, muscle fiber cross-sectional area (CSA), levels of muscle, and serum protein markers were also determined. Results LI80020F4 increased nitrite production in EAhy926 cells in a dose-dependent manner. LI80020F4 induced C2C12 myotube formation, increased mitochondrial biogenesis, upregulated the expressions of activated mTOR and other mitochondria and myogenic proteins, and mitigated H2O2-induced mitochondrial membrane depolarization in the myoblast cells. In the animal study, 75, 150, and 300 mg/kg bw LI80020F4 doses significantly (P < 0.05) increased the animals' forelimb grip strength. Mid- and high-dose groups showed increased swimming time, increased muscle weight, CSA, muscle growth-related, and mitochondrial protein expressions in the GA muscles. Conclusion LI80020F4 increases nitric oxide production in the endothelial cells, mitochondrial biogenesis and function, upregulates skeletal muscle growth-related protein expressions and reduces oxidative stress; together, it explains the basis of the ergogenic potential of LI80020F4.
Collapse
Affiliation(s)
- Swaraj Sinha
- Department of Cell and Molecular Biology, Laila Nutraceuticals R&D Center, Vijayawada, Andhra Pradesh, India
| | - Krishnaraju Venkata Alluri
- Department of Pharmacology and Clinical Research, Laila Nutraceuticals R&D Center, Vijayawada, Andhra Pradesh, India
| | - Venkateswarlu Somepalli
- Department of Phytochemistry, Laila Nutraceuticals R&D Center, Vijayawada, Andhra Pradesh, India
| | - Trimurtulu Golakoti
- Department of Phytochemistry, Laila Nutraceuticals R&D Center, Vijayawada, Andhra Pradesh, India
| | - Krishanu Sengupta
- Department of Cell and Molecular Biology, Laila Nutraceuticals R&D Center, Vijayawada, Andhra Pradesh, India
| |
Collapse
|
23
|
Sanz-Barrio PM, Noreen EE, Gilsanz-Estebaranz L, Lorenzo-Calvo J, Martínez-Ferrán M, Pareja-Galeano H. Rhodiola rosea supplementation on sports performance: A systematic review of randomized controlled trials. Phytother Res 2023; 37:4414-4428. [PMID: 37495266 DOI: 10.1002/ptr.7950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/05/2023] [Accepted: 06/30/2023] [Indexed: 07/28/2023]
Abstract
The aim of this systematic review was to determine whether the supplementation with Rhodiola rosea (RR), an herb that has been used for centuries for its various properties, can have an effect on muscle damage and physical performance. The databases PubMed, Web of Science, and Cochrane Library were used to find studies published until March 2023. Randomized controlled trials, healthy participants, and no use of other supplements. The search strategy was conducted by two independent reviewers, and specific information was extracted from the selected studies. Thirteen studies were included with 263 participants (198 men and 65 women between 18 and 65 years old). Two studies followed acute supplementation, 5 chronic, and 6 combined both. The results were heterogenous, having 11 studies with some positive effects, while 2 studies show no effect in variables such as rating of perceive exertion, heart rate, antioxidant capacity, blood lactate, creatine kinase, or C-reactive protein. Two limitations were found, firstly, the difference between supplementation and exercise protocols, and secondly, the existence of unclear or high risk of bias in most of the studies included. Acute supplementation with RR has a positive effect on endurance performance and rating of perceived exertion (RPE). Chronic supplementation has a positive effect on anaerobic exercise performance, but not endurance exercise performance. Chronic supplementation may positively impact muscle damage during exercise. However, more high-quality studies are needed to firmly establish the clinical efficacy of RR.
Collapse
Affiliation(s)
| | - Eric E Noreen
- Department of Health Sciences, Gettysburg College, Gettysburg, Pennsylvania, USA
| | - Laura Gilsanz-Estebaranz
- Department of Physical Education, Sport and Human Movement, Universidad Autónoma de Madrid, Madrid, Spain
| | - Jorge Lorenzo-Calvo
- Department of Sports, Facultad de Ciencias de la Actividad Física y del Deporte, Universidad Politécnica de Madrid, Madrid, Spain
| | | | - Helios Pareja-Galeano
- Department of Physical Education, Sport and Human Movement, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
24
|
da Silva Cordeiro ML, de Queiroz Aquino-Martins VG, da Silva AP, Naliato GFS, Silveira ER, Theodoro RC, da Santos DYAC, Rocha HAO, Scortecci KC. Exploring the Antioxidant Potential of Talisia esculenta Using In Vitro and In Vivo Approaches. Nutrients 2023; 15:3855. [PMID: 37686887 PMCID: PMC10490396 DOI: 10.3390/nu15173855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
Medicinal plants, such as Talisia esculenta, are rich in antioxidant biomolecules, which are used in the treatment and prevention of many diseases. The antioxidant potential of T. esculenta extracts obtained from leaves and fruit peels was investigated using biochemical and 3T3 cell line assays as well as in vivo assays using an organism model Tenebrio molitor. Four extracts were tested: hydroethanolic extracts from leaves (HF) and from fruit peels (HC), and infusion extracts from leaves (IF) and from fruit peels (IC). The biochemical assays demonstrated an antioxidant capacity verified by TAC, reducing power, DPPH, and copper chelating assays. None of the extracts exhibited cytotoxicity against 3T3 cells, instead offering a protection against CuSO4-induced oxidative stress. The antioxidant activity observed in the extracts, including their role as free radical scavengers, copper chelators, and stress protectors, was further confirmed by T. molitor assays. The CLAE-DAD analysis detected phenolic compounds, including gallic acid, rutin, and quercitrin, as the main constituents of the samples. This study highlights that leaf and fruit peels extracts of T. esculenta could be effective protectors against ROS and copper-induced stress in cellular and invertebrate models, and they should be considered as coadjutants in the treatment and prevention of diseases related to oxidative stress and for the development of natural nutraceutical products.
Collapse
Affiliation(s)
- Maria Lúcia da Silva Cordeiro
- Laboratório de Transformação de Plantas e Análise em Microscopia (LTPAM), Departamento de Biologia Celular e Genética, Universidade Federal do Rio Grande do Norte (UFRN), Natal 59078-970, RN, Brazil; (M.L.d.S.C.); (V.G.d.Q.A.-M.); (A.P.d.S.)
- Programa de Pós-graduação em Bioquímica e Biologia Molecular, Centro de Biociências, Universidade Federal do Rio Grande do Norte (UFRN), Natal 59078-970, RN, Brazil; (G.F.S.N.); (R.C.T.); (H.A.O.R.)
| | - Verônica Giuliani de Queiroz Aquino-Martins
- Laboratório de Transformação de Plantas e Análise em Microscopia (LTPAM), Departamento de Biologia Celular e Genética, Universidade Federal do Rio Grande do Norte (UFRN), Natal 59078-970, RN, Brazil; (M.L.d.S.C.); (V.G.d.Q.A.-M.); (A.P.d.S.)
- Programa de Pós-graduação em Bioquímica e Biologia Molecular, Centro de Biociências, Universidade Federal do Rio Grande do Norte (UFRN), Natal 59078-970, RN, Brazil; (G.F.S.N.); (R.C.T.); (H.A.O.R.)
| | - Ariana Pereira da Silva
- Laboratório de Transformação de Plantas e Análise em Microscopia (LTPAM), Departamento de Biologia Celular e Genética, Universidade Federal do Rio Grande do Norte (UFRN), Natal 59078-970, RN, Brazil; (M.L.d.S.C.); (V.G.d.Q.A.-M.); (A.P.d.S.)
- Programa de Pós-graduação em Bioquímica e Biologia Molecular, Centro de Biociências, Universidade Federal do Rio Grande do Norte (UFRN), Natal 59078-970, RN, Brazil; (G.F.S.N.); (R.C.T.); (H.A.O.R.)
| | - Georggia Fatima Silva Naliato
- Programa de Pós-graduação em Bioquímica e Biologia Molecular, Centro de Biociências, Universidade Federal do Rio Grande do Norte (UFRN), Natal 59078-970, RN, Brazil; (G.F.S.N.); (R.C.T.); (H.A.O.R.)
- Instituto de Medicina Tropical, Universidade Federal do Rio Grande do Norte (UFRN), Natal 59077-080, RN, Brazil
| | - Elielson Rodrigo Silveira
- Laboratório de Fitoquímica, Departamento de Botânica, Universidade de São Paulo (USP), São Paulo 05508-090, SP, Brazil; (E.R.S.); (D.Y.A.C.d.S.)
| | - Raquel Cordeiro Theodoro
- Programa de Pós-graduação em Bioquímica e Biologia Molecular, Centro de Biociências, Universidade Federal do Rio Grande do Norte (UFRN), Natal 59078-970, RN, Brazil; (G.F.S.N.); (R.C.T.); (H.A.O.R.)
- Instituto de Medicina Tropical, Universidade Federal do Rio Grande do Norte (UFRN), Natal 59077-080, RN, Brazil
| | - Deborah Yara Alves Cursino da Santos
- Laboratório de Fitoquímica, Departamento de Botânica, Universidade de São Paulo (USP), São Paulo 05508-090, SP, Brazil; (E.R.S.); (D.Y.A.C.d.S.)
| | - Hugo Alexandre Oliveira Rocha
- Programa de Pós-graduação em Bioquímica e Biologia Molecular, Centro de Biociências, Universidade Federal do Rio Grande do Norte (UFRN), Natal 59078-970, RN, Brazil; (G.F.S.N.); (R.C.T.); (H.A.O.R.)
- Laboratório de Biotecnologia de Polímeros Naturais (BIOPOL), Departamento de Bioquímica, Universidade Federal do Rio Grande do Norte (UFRN), Natal 59078-970, RN, Brazil
| | - Katia Castanho Scortecci
- Laboratório de Transformação de Plantas e Análise em Microscopia (LTPAM), Departamento de Biologia Celular e Genética, Universidade Federal do Rio Grande do Norte (UFRN), Natal 59078-970, RN, Brazil; (M.L.d.S.C.); (V.G.d.Q.A.-M.); (A.P.d.S.)
- Programa de Pós-graduação em Bioquímica e Biologia Molecular, Centro de Biociências, Universidade Federal do Rio Grande do Norte (UFRN), Natal 59078-970, RN, Brazil; (G.F.S.N.); (R.C.T.); (H.A.O.R.)
| |
Collapse
|
25
|
McDaid B, Wardenaar FC, Woodside JV, Neville CE, Tobin D, Madigan S, Nugent AP. Athletes Perceived Level of Risk Associated with Botanical Food Supplement Use and Their Sources of Information. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:6244. [PMID: 37444092 PMCID: PMC10341873 DOI: 10.3390/ijerph20136244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/09/2023] [Accepted: 06/24/2023] [Indexed: 07/15/2023]
Abstract
Athletes should carefully consider the use of botanical food supplements (BFSs) given the current lack of substantiation for botanical nutrition and health claims under EU and UK food laws. In addition, athletes may be at an increased risk of doping violations and other adverse outcomes potentially associated with BFS use; however, little is known about athletes' intake, knowledge, or perceptions in relation to BFS use. An online cross-sectional survey of n = 217 elite and amateur athletes living on the island of Ireland was conducted using Qualtrics XM to assess intake, knowledge, attitudes, and perceptions. General food supplements (FSs) were reported by approximately 60% of the study cohort, and 16% of the supplements reported were categorized as BFS. The most frequently consumed BFSs were turmeric/curcumin (14%), Ashwagandha (10%), and Beetroot extract (8%). A higher proportion of amateur athletes would source information about BFSs from less credible sources, such as fellow athletes, or from internet sources or their coach, compared to elite athletes. Those who sourced information about botanicals from fellow athletes (p = 0.03) or the internet (p = 0.02) reported a lower perceived level of risks associated with BFS use. This study therefore suggests that amateur athletes may be more likely to source information from less credible sources compared to elite athletes who may have more access to nutrition professionals and their knowledge/advice. This may have potential adverse implications for amateur athletes, e.g., Gaelic games players, who are included within the doping testing pool but who may not have access to evidence-based nutrition advice.
Collapse
Affiliation(s)
- Bridin McDaid
- School of Biological Sciences, Institute for Global Food Security, Queen’s University Belfast, Belfast BT9 5DL, UK
| | - Floris C. Wardenaar
- College of Health Solutions, Arizona State University, Phoenix, AZ 85004, USA;
| | - Jayne V. Woodside
- Centre for Public Health, Institute for Global Food Security, Queen’s University Belfast, Belfast BT9 7BL, UK
| | - Charlotte E. Neville
- Centre for Public Health, Institute for Global Food Security, Queen’s University Belfast, Belfast BT9 7BL, UK
| | - David Tobin
- Sport Ireland Institute, National Sport Campus, Abbottstown, D15 Y52H Dublin, Ireland (S.M.)
| | - Sharon Madigan
- Sport Ireland Institute, National Sport Campus, Abbottstown, D15 Y52H Dublin, Ireland (S.M.)
- Department of Physical Education & Sport Sciences, Faculty of Education and Health Sciences, University of Limerick, V94 T9PX Limerick, Ireland
- Health Research Institute, University of Limerick, V94 T9PX Limerick, Ireland
| | - Anne P. Nugent
- School of Biological Sciences, Institute for Global Food Security, Queen’s University Belfast, Belfast BT9 5DL, UK
- Institute of Food and Health, School of Agriculture and Food Science, University College Dublin, D04 V1W8 Dublin, Ireland
| |
Collapse
|
26
|
Khalikova D, An'kov S, Zhukova N, Tolstikova T, Popov S, Saiko A. Effect of the Composition of Leuzea and Cranberry Meal Extracts on Metabolic Processes in Norm and Pathology. Pharmaceuticals (Basel) 2023; 16:ph16050768. [PMID: 37242551 DOI: 10.3390/ph16050768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
This study was conducted to evaluate the effects of long-term administration of a new herbal composition of leuzea and cranberry meal extracts at a dose of 70:500 mg/kg in healthy and pathological mice. After 4 weeks of daily composition administration to healthy CD-1 mice and C57BL/6 mice with diet-induced metabolic syndrome, oral glucose tolerance test (OGTT), serum biochemical examination and histology of internal organs were performed. Additionally, histological examination of white and brown adipose tissue was performed to evaluate the ability of the composition to prevent abdominal obesity in C57BL/6Ay (agouti yellow) mice. The results showed that the composition increased tissue sensitivity to glucose in healthy CD-1 mice; at the same time, it did not worsen the course of pathological processes in pathological mice. In both cases, the application of the developed composition was safe and contributed to the restoration of metabolic parameters.
Collapse
Affiliation(s)
- Daria Khalikova
- Vorozhtzov Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Science, 9 Akademika Lavrentieva Ave., Novosibirsk 630090, Russia
| | - Sergey An'kov
- Vorozhtzov Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Science, 9 Akademika Lavrentieva Ave., Novosibirsk 630090, Russia
| | - Nataliya Zhukova
- Vorozhtzov Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Science, 9 Akademika Lavrentieva Ave., Novosibirsk 630090, Russia
| | - Tatyana Tolstikova
- Vorozhtzov Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Science, 9 Akademika Lavrentieva Ave., Novosibirsk 630090, Russia
| | - Sergey Popov
- Vorozhtzov Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Science, 9 Akademika Lavrentieva Ave., Novosibirsk 630090, Russia
| | - Anastasia Saiko
- Vorozhtzov Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Science, 9 Akademika Lavrentieva Ave., Novosibirsk 630090, Russia
| |
Collapse
|
27
|
Changes in the reactivity of the vertebrobasilar arteries when using glucose-electrolyte drink with antioxidant plant extracts during submaximal exercise test. ACTA BIOMEDICA SCIENTIFICA 2023. [DOI: 10.29413/abs.2023-8.1.10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023] Open
Abstract
The aim. To assess the effect of glucose-electrolyte composition with plant extracts having antioxidant activity on the hemodynamic parameters of vertebrobasilar system during the incrementally increasing submaximal exercise test.Materials and methods. The study included 12 athletes (6 candidates for master of sports and 6 masters of sports) aged 18–22, who have been engaged in orienteering for 10 years and more. Time of aerobic exercise – 2 hours a day, five days a week. The study subjects performed an incrementally increasing submaximal exercise test and also submaximal exercise test with the preventive intake of a glucose-electrolyte composition with plant extracts having antioxidant properties. To assess the hemodynamic parameters in all study subjects we used Doppler ultrasound of the cerebral vessels, evaluating vertebrobasilar system blood flow, exercise gas test in the modification of hypo- and hyperventilation, and also positional test.Results. A single intake of glucose-electrolyte drink under conditions of incrementally increasing exercise test contributed to the manifestation of a homeostatic effect in hemodynamic parameters of the vertebrobasilar arteries. It is evidenced by the approximation to the pre-exercise level of maximum systolic velocity and average blood velocity in the breath-holding test, of the diastolic blood velocity in the hyperventilation test, and of the pulsatility index in the torsion test, as compared to the isolated submaximal exercise test which caused the change in both velocity indicators and calculated indices during the functional tests.The article considers the main mechanisms underlying the change in arterial hemodynamic parameters caused by incrementally increasing load, as well as describes the proposed mechanisms arising from the combined effect of an incrementally increasing load and the intake of a glucose-electrolyte composition with plant extracts having antioxidant activity.Conclusion. It was shown that using glucose-electrolyte drink contributed to the restoration of hemodynamic parameters of the vertebrobasilar arteries after an incrementally increasing submaximal exercise test.
Collapse
|
28
|
Albaker WI. Fenugreek and Its Effects on Muscle Performance: A Systematic Review. J Pers Med 2023; 13:jpm13030427. [PMID: 36983608 PMCID: PMC10054907 DOI: 10.3390/jpm13030427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/23/2023] [Accepted: 02/25/2023] [Indexed: 03/03/2023] Open
Abstract
Fenugreek extracts possess promising physiological and pharmacological properties in human and animal models. This review aims to provide a scientific and comprehensive analysis of the literature on the effects of fenugreek extracts on muscle performance. An extensive online search was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement guidelines. The main medical and scientific engines were searched for articles from May 1981 to May 2021 to capture all scientific studies focused on the effect of fenugreek on muscle and exercise or sport. Out of 81 studies acquired, six eligible randomized controlled trials (RCTs) were included in the qualitative analysis. Four RCTs observed that fenugreek supplementation had significantly improved muscle strength, repetitions to failure (muscle endurance), submaximal performance index, lean body mass, and reduced body fat. Among the remaining two trials, one reported the significant effect of fenugreek extracts on the rate of muscle glycogen resynthesis during post-exercise recovery; however, the other failed to do so. Those two trials were weak, with a minimal sample size (<10). Further, fenugreek glycoside supplementation with sapogenins and saponins reported substantial anabolic and androgenic activity, influencing testosterone levels and muscle performance. It was useful during eight weeks of resistance training without any clinical side effects. Fenugreek with creatine supplementation improved creatine uptake without the necessity of high carbohydrate intake. Hence, fenugreek extracts can be a helpful natural supplement and ergogenic aid for athletes. However, it is better to be aware of doping and liver and kidney damage before using the fenugreek supplement.
Collapse
Affiliation(s)
- Waleed I Albaker
- Department of Internal Medicine and Endocrinology, College of Medicine, Imam Abdulrahman Bin Faisal University, Alkhobar 34224, Saudi Arabia
| |
Collapse
|
29
|
Volpe-Fix AR, de França E, Silvestre JC, Thomatieli-Santos RV. The Use of Some Polyphenols in the Modulation of Muscle Damage and Inflammation Induced by Physical Exercise: A Review. Foods 2023; 12:foods12050916. [PMID: 36900433 PMCID: PMC10001084 DOI: 10.3390/foods12050916] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/11/2023] [Accepted: 02/16/2023] [Indexed: 02/24/2023] Open
Abstract
Food bioactive compounds (FBC) comprise a vast class of substances, including polyphenols, with different chemical structures, and they exert physiological effects on individuals who consume them, such as antioxidant and anti-inflammatory action. The primary food sources of the compounds are fruits, vegetables, wines, teas, seasonings, and spices, and there are still no daily recommendations for their intake. Depending on the intensity and volume, physical exercise can stimulate oxidative stress and muscle inflammation to generate muscle recovery. However, little is known about the role that polyphenols may have in the process of injury, inflammation, and muscle regeneration. This review aimed to relate the effects of supplementation with mentation with some polyphenols in oxidative stress and post-exercise inflammatory markers. The consulted papers suggest that supplementation with 74 to 900 mg of cocoa, 250 to 1000 mg of green tea extract for around 4 weeks, and 90 mg for up to 5 days of curcumin can attenuate cell damage and inflammation of stress markers of oxidative stress during and after exercise. However, regarding anthocyanins, quercetins, and resveratrol, the results are conflicting. Based on these findings, the new reflection that was made is the possible impact of supplementation associating several FBCs simultaneously. Finally, the benefits discussed here do not consider the existing divergences in the literature. Some contradictions are inherent in the few studies carried out so far. Methodological limitations, such as supplementation time, doses used, forms of supplementation, different exercise protocols, and collection times, create barriers to knowledge consolidation and must be overcome.
Collapse
Affiliation(s)
| | - Elias de França
- Interdisciplinary Postgraduate Program in Health Sciences, Universidade Federal de São Paulo, Sao Paulo 05508-070, Brazil
| | - Jean Carlos Silvestre
- Interdisciplinary Postgraduate Program in Health Sciences, Universidade Federal de São Paulo, Sao Paulo 05508-070, Brazil
- Campus Rosinha Viegas, Universidade Metropolitana de Santos, Santos 11045-002, Brazil
- Center for Applied Social Sciences, Universidade Católica de Santos, Santos 11015-002, Brazil
| | - Ronaldo Vagner Thomatieli-Santos
- Postgraduate Program in Psychobiology, Universidade Federal de São Paulo, Sao Paulo 05508-070, Brazil
- Interdisciplinary Postgraduate Program in Health Sciences, Universidade Federal de São Paulo, Sao Paulo 05508-070, Brazil
- Correspondence:
| |
Collapse
|
30
|
López P, Chamorro-Viña C, Gómez-García M, Fernandez-del-Valle M. Exercise and Immunity: Beliefs and Facts. THE ACTIVE FEMALE 2023:503-526. [DOI: 10.1007/978-3-031-15485-0_28] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
31
|
Wang J, Liu W, Fu H. Effects of traditional Chinese herb hot compress combined with therapeutic exercise on pain, proprioception, and functional performance among older adults with knee osteoarthritis: A randomized controlled trial. Front Physiol 2022; 13:1070754. [PMID: 36589446 PMCID: PMC9794567 DOI: 10.3389/fphys.2022.1070754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 11/28/2022] [Indexed: 12/15/2022] Open
Abstract
Background: Knee osteoarthritis (KOA) is one of the most common chronic progressive diseases with degenerative destruction of articular cartilage and bone, leading to knee pain, impaired proprioception, and reduced functional performance. This study was to investigate the effects of an 8-week Traditional Chinese herb hot compress (TCHHC) combined with therapeutic exercise (TE) on pain, proprioception, and functional performance among older adults with KOA. Methods: Twenty-seven older adults with KOA were recruited and randomly assigned to the TCHHC + TE or TE groups. Thirteen participants received TCHHC + TE, and fourteen received TE. At pre- (week 0) and post-intervention (week 9), their pain, joint proprioception, and functional performance were measured. Two-way ANOVA with repeated measures was adopted to analyze the data. Results: Compared with week 0, the pain score, proprioception thresholds of knee extension and ankle plantarflexion, and the times of TUG and 20-m walk tests decreased more significantly in the TCHHC + TE group than in the TE group at week 9. Conclusion: Compared with TE, the 8-week TCHHC + TE was superior in relieving pain, recovering proprioception, and improving functional performance among older adults with KOA. It is recommended that TCHHC should be adopted prior to TE to enhance the effects of KOA rehabilitation.
Collapse
Affiliation(s)
- Jingwen Wang
- College of Sports and Health, Shandong Sport University, Jinan, China
| | - Wei Liu
- Department of Rehabilitation, Neck Shoulder Back and Leg Pain Hospital, Shandong First Medical University, Jinan, China
| | - Haitao Fu
- Athletic Training Division, Shandong Sport University, Jinan, China,*Correspondence: Haitao Fu,
| |
Collapse
|
32
|
Steg A, Oczkowicz M, Smołucha G. Omics as a Tool to Help Determine the Effectiveness of Supplements. Nutrients 2022; 14:nu14245305. [PMID: 36558464 PMCID: PMC9784029 DOI: 10.3390/nu14245305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/07/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022] Open
Abstract
There has been considerable interest in dietary supplements in the last two decades. Companies are releasing new specifics at an alarming pace, while dietary supplements are one of the less-studied substances released for public consumption. However, access to state-of-the-art and high-throughput techniques, such as the ones used in omics, make it possible to check the impact of a substance on human transcriptome or proteome and provide answers to whether its use is reasonable and beneficial. In this review, the main domains of omics are briefly introduced. The review focuses on the three most widely used omics techniques: NGS, LC-MS, NMR, and their usefulness in studying dietary supplements. Examples of studies are described for some of the most commonly supplemented substances, such as vitamins: D, E, A, and plant extracts: resveratrol, green tea, ginseng, and curcumin extract. Techniques used in omics have proven to be useful in studying dietary supplements. NGS techniques are helpful in identifying pathways that change upon supplementation and determining polymorphisms or conditions that qualify for the necessity of a given supplementation. LC-MS techniques are used to establish the serum content of supplemented a compound and its effects on metabolites. Both LC-MS and NMR help establish the actual composition of a compound, its primary and secondary metabolites, and its potential toxicity. Moreover, NMR techniques determine what conditions affect the effectiveness of supplementation.
Collapse
|
33
|
Fernández-Lázaro D, Seco-Calvo J, Pascual-Fernández J, Domínguez-Ortega C, Del Valle Soto M, Mielgo-Ayuso J. 6-Week Supplementation with Tribulus terrestris L. to Trained Male CrossFit ® Athletes on Muscle, Inflammation, and Antioxidant Biomarkers: A Randomized, Single-Blind, Placebo-Controlled Trial. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:16158. [PMID: 36498228 PMCID: PMC9736311 DOI: 10.3390/ijerph192316158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/24/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
Tribulus terrestris L. (TT) ingredients have anti-inflammatory and antioxidant activities, but their effects on exercise-induced muscle damage (EIMD) in trained athletes are uncertain. The purpose of this single-blind placebo-controlled trial, in accordance with CONSORT guidelines, was to examine the effect of 6 weeks of TT supplementation on muscle metabolism, inflammation biomarkers, and oxidant status. Thirty trained male CrossFit® athletes were randomly assigned to be supplemented with 770 mg/day of TT (intervention group (IG)) or receive a placebo daily (control group (CG)) for 6 weeks. Muscle damage enzymes, inflammation biomarkers, and Total Antioxidant Status (TAS) were assessed at baseline (T1), 21 days after baseline (T2), and after 42 days (T3). Grace, a Workout of the Day, was measured in T1 and T3. Statistical significance (p < 0.05) was found between IG and CG in Lactate Dehydrogenase (LDH), C-reactive protein (CRP), and TAS levels at the end of the follow-up. Furthermore, TAS levels were significantly (p < 0.05) lower at T2 and T3 relative to baseline in the IG, also LDH and CRP increased significantly (p < 0.05) at T2 and T3 relative to baseline in the CG. No significant (p > 0.05) decreases in muscle damage or inflammation biomarkers were observed, although a slight downward trend was observed after 6 weeks for supplemented athletes. TT supplementation could attenuate the CrossFit® training program-induced oxidative stress, muscle damage, and inflammation which could be due to the natural antioxidant and anti-inflammatory properties of TT.
Collapse
Affiliation(s)
- Diego Fernández-Lázaro
- Department of Cellular Biology, Genetics, Histology and Pharmacology, Faculty of Health Sciences, University of Valladolid, Campus of Soria, 42003 Soria, Spain
- Neurobiology Research Group, Faculty of Medicine, University of Valladolid, 47005 Valladolid, Spain
| | - Jesús Seco-Calvo
- Physiotherapy Department, Institute of Biomedicine (IBIOMED), Campus of Vegazana, University of Leon, 24071 Leon, Spain
- Psychology Department, Faculty of Medicine, Basque Country University, 48900 Leioa, Spain
| | - Jorge Pascual-Fernández
- Medical Hospital Emergency Service of Hospital San Pedro, Rioja Health, 26006 Logroño, Spain
| | - Carlos Domínguez-Ortega
- Department of Cellular Biology, Genetics, Histology and Pharmacology, Faculty of Health Sciences, University of Valladolid, Campus of Soria, 42003 Soria, Spain
- Hematology Service of Santa Bárbara Hospital, Castile and Leon Health (SACyL), 42003 Soria, Spain
| | - Miguel Del Valle Soto
- Department of Cellular Morphology and Biology, Universidad de Oviedo, 33006 Oviedo, Spain
| | - Juan Mielgo-Ayuso
- Department of Health Sciences, Faculty of Health Sciences, University of Burgos, 09001 Burgos, Spain
| |
Collapse
|
34
|
Rodrigues Oliveira SM, Dias E, Girol AP, Silva H, Pereira MDL. Exercise Training and Verbena officinalis L. Affect Pre-Clinical and Histological Parameters. PLANTS (BASEL, SWITZERLAND) 2022; 11:3115. [PMID: 36432843 PMCID: PMC9699298 DOI: 10.3390/plants11223115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/30/2022] [Accepted: 11/07/2022] [Indexed: 06/16/2023]
Abstract
Verbena officinalis L. or vervain is an herbal medicine and dietary supplement used worldwide. It is used for antidepressant and anticonvulsant purposes, as well as to treat inflammatory disorders, skin burns, abrasions, and gastric diseases, among others. Here, we investigated the biochemical, antioxidant, and histopathological effects of vervain against chronic physical stress. Male Wistar rats were submitted to chronic physical training and oral administration of 200 mg/kg of extract for 7 weeks. Control animals were not treated with either stress or vervain. Body weight was monitored during the study. Liver, kidney, spleen, testis, epididymis, heart, skeletal muscle, and brain samples were collected. Blood cholesterol, lactate dehydrogenase (LDH), bilirubin, and creatinine kinase (CREA), among others, were studied. Glutathione peroxidase (GPox) and superoxide dismutase (SOD) antioxidant activity was analyzed in the blood, liver, and kidney. Testosterone measurements were also performed on whole testis extracts. We found significant weight ratios differences in the epididymis, brain, and heart. Animals submitted to training showed hemorrhagic livers. Kidney histology was affected by both stress and vervain. Cell disruption and vacuolization were observed in the testes and epididymis of animals submitted to stress. Hematological and biochemical markers as CREA, LDH, TP, CKI, URCA, γGT, and glucose revealed statistically significantly differences. Additionally, the activity of glutathione peroxide (GPox) and superoxide dismutase (SOD) in the blood was also impacted. Both stress and vervain have significant in vivo effects. Infusions of vervain include phenylpropanoids, iridoids, verbenalin, hastatoside, and flavonoids, amongst others, which interact synergistically to produce the preclinical effects reported here.
Collapse
Affiliation(s)
- Sonia M. Rodrigues Oliveira
- CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
- Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - Elsa Dias
- CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
- Hospital Center of Baixo Vouga, 3810-193 Aveiro, Portugal
| | - Ana Paula Girol
- Padre Albino University Centre, Catanduva 15806-310, São Paulo, Brazil
- Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (Unesp), São José do Rio Preto 15054-000, São Paulo, Brazil
| | - Helena Silva
- Department of Biology & CESAM, Centre for Environmental and Marine Studies, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Maria de Lourdes Pereira
- CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
- Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
35
|
Domínguez-Balmaseda D, Bressa C, Fernández-Romero A, de Lucas B, Pérez-Ruiz M, San Juan AF, Roller M, Issaly N, Larrosa M. Evaluation of a Zingiber officinale and Bixa orellana Supplement on the Gut Microbiota of Male Athletes: A Randomized Placebo-Controlled Trial. PLANTA MEDICA 2022; 88:1245-1255. [PMID: 35226949 DOI: 10.1055/a-1671-5766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The gut microbiota has emerged as a factor that influences exercise performance and recovery. The present study aimed to test the effect of a polyherbal supplement containing ginger and annatto called "ReWin(d)" on the gut microbiota of recreational athletes in a pilot, randomized, triple-blind, placebo-controlled trial. Thirty-four participants who practice physical activity at least three times weekly were randomly allocated to two groups, a ReWin(d) group or a maltodextrin (placebo) group. We evaluated the gut microbiota, the production of short-chain fatty acids, and the serum levels of interleukin-6 and lipopolysaccharide at baseline and after 4 weeks. Results showed that ReWin(d) supplementation slightly increased gut microbiota diversity. Pairwise analysis revealed an increase in the relative abundance of Lachnospira (β-coefficient = 0.013; p = 0.001), Subdoligranulum (β-coefficient = 0.016; p = 0.016), Roseburia (β-coefficient = 0.019; p = 0.001), and Butyricicoccus (β-coefficient = 0.005; p = 0.035) genera in the ReWin(d) group, and a decrease in Lachnoclostridium (β-coefficient = - 0.008; p = 0.009) and the Christensenellaceae R7 group (β-coefficient = - 0.010; p < 0.001). Moreover, the Christensenellaceae R-7 group correlated positively with serum interleukin-6 (ρ = 0.4122; p = 0.032), whereas the Lachnospira genus correlated negatively with interleukin-6 (ρ = - 0.399; p = 0.032). ReWin(d) supplementation had no effect on short-chain fatty acid production or on interleukin-6 or lipopolysaccharide levels.
Collapse
Affiliation(s)
- Diego Domínguez-Balmaseda
- Masmicrobiota Group, Faculty of Health Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, Madrid, Spain
| | - Carlo Bressa
- Masmicrobiota Group, Faculty of Health Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, Madrid, Spain
- Biomedicine Department, Universidad Francisco de Vitoria, Pozuelo de Alarcón, Madrid, Spain
| | - Arantxa Fernández-Romero
- Masmicrobiota Group, Faculty of Health Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, Madrid, Spain
| | - Beatriz de Lucas
- Masmicrobiota Group, Faculty of Health Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, Madrid, Spain
| | - Margarita Pérez-Ruiz
- Research Group on Exercise, health and biomarkers applied, Faculty of Sport Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, Madrid, Spain
| | - Alejandro F San Juan
- Department of Health and Human Performance, Sport Biomechanics Laboratory, Faculty of Physical Activity and Sport Sciences, INEF, Universidad Politécnica de Madrid, Madrid, Spain
| | | | | | - Mar Larrosa
- Masmicrobiota Group, Faculty of Health Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, Madrid, Spain
- Department of Nutrition and Food Science, School of Pharmacy, Complutense University of Madrid (UCM), Madrid, Spain
| |
Collapse
|
36
|
Fernández-Lázaro D, Fernandez-Lazaro CI, Seco-Calvo J, Garrosa E, Adams DP, Mielgo-Ayuso J. Effects of Tribulus terrestris L. on Sport and Health Biomarkers in Physically Active Adult Males: A Systematic Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19159533. [PMID: 35954909 PMCID: PMC9368143 DOI: 10.3390/ijerph19159533] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/18/2022] [Accepted: 07/26/2022] [Indexed: 11/16/2022]
Abstract
Tribulus terrestris L. (TT) is a plant used in traditional Chinese medicine, Ayurvedic medicine, and sports nutrition to improve health and performance. However, no conclusive evidence exists about the potential beneficial effects of TT on sport and health biomarkers in physically active adults. Based on the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, and the modified McMaster Critical Review Form for methodological quality assessment, we systematically reviewed studies indexed in Web of Science, Scopus, and PubMed, to assess the effects of TT on immunological, hematological, biochemical, renal, lipidic, hormonal behavior, and anti-inflammatory response in physically active adult males. Among 340 records identified in the search, a total of 7 studies met the inclusion and exclusion criteria. Overall, participants supplemented with TT displayed significant improvements in lipid profile. Inflammatory and hematological biomarkers showed moderate beneficial effects with no significant changes on renal biomarkers. No positive effects were observed on the immune system response. Additionally, no TT-induced toxicity was reported. In conclusion, there was no clear evidence of the beneficial effects of TT supplementation on muscle damage markers and hormonal behavior. More studies are needed to confirm the benefits of TT due to the limited number of studies available in the current literature.
Collapse
Affiliation(s)
- Diego Fernández-Lázaro
- Department of Cellular Biology, Genetics, Histology and Pharmacology, Faculty of Health Sciences, University of Valladolid, Campus of Soria, 42003 Soria, Spain
- Neurobiology Research Group, Faculty of Medicine, University of Valladolid, 47005 Valladolid, Spain
- Correspondence: (D.F.-L.); (C.I.F.-L.)
| | - Cesar I. Fernandez-Lazaro
- Department of Preventive Medicine and Public Health, School of Medicine, University of Navarra, Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain
- Correspondence: (D.F.-L.); (C.I.F.-L.)
| | - Jesús Seco-Calvo
- Institute of Biomedicine (IBIOMED), Physiotherapy Department, University of Leon, Campus de Vegazana, 24071 Leon, Spain;
- Psychology Department, Faculty of Medicine, Basque Country University, 48900 Leioa, Spain
| | - Evelina Garrosa
- Department of Cellular Biology, Genetics, Histology and Pharmacology, Faculty of Medicine, and Institute of Neurosciences of Castile and Leon (INCYL), University of Valladolid, 47005 Valladolid, Spain;
| | - David P. Adams
- Dual Credit Enrollment Program, Point University, Savannah, GA 31419, USA;
| | - Juan Mielgo-Ayuso
- Department of Health Sciences, Faculty of Health Sciences, University of Burgos, 09001 Burgos, Spain;
| |
Collapse
|
37
|
Volino-Souza M, de Oliveira GV, de Carvalho IH, Conte-Junior CA, da Silveira Alvares T. Capsaicin supplementation did not increase skeletal muscle oxygen saturation and muscular endurance during resistance exercise: a randomized and crossover study. SPORT SCIENCES FOR HEALTH 2022. [DOI: 10.1007/s11332-022-00982-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
38
|
Bailey RL, Dog TL, Smith-Ryan AE, Das SK, Baker FC, Madak-Erdogan Z, Hammond BR, Sesso HD, Eapen A, Mitmesser SH, Wong A, Nguyen H. Sex Differences Across the Life Course: A Focus On Unique Nutritional and Health Considerations among Women. J Nutr 2022; 152:1597-1610. [PMID: 35294009 PMCID: PMC9258555 DOI: 10.1093/jn/nxac059] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/02/2022] [Accepted: 03/04/2022] [Indexed: 11/24/2022] Open
Abstract
In the United States, women, while having a longer life expectancy than men, experience a differential risk for chronic diseases and have unique nutritional needs based on physiological and hormonal changes across the life span. However, much of what is known about health is based on research conducted in men. Additional complexity in assessing nutritional needs within gender include the variations in genetics, body compositions, hormonal milieus, underlying chronic diseases, and medication usage, with this list expanding as we consider these variables across the life course. It is clear women experience nutrient shortfalls during key periods of their lives, which may differentially impact their health. Consequently, as we move into the era of precision nutrition, understanding these sex- and gender-based differences may help optimize recommendations and interventions chosen to support health and weight management. Recently, a scientific conference was convened with content experts to explore these topics from a life-course perspective at biological, physiological, and behavioral levels. This publication summarizes the presentations and discussions from the workshop and provides an overview of important nutrition and related lifestyle considerations across the life course. The landscape of addressing female-specific nutritional needs continues to grow; now more than ever, it is essential to increase our understanding of the physiological differences between men and women, and determine how these physiological considerations may aid in optimizing nutritional strategies to support certain personal goals related to health, quality of life, sleep, and exercise performance among women.
Collapse
Affiliation(s)
- Regan L Bailey
- Institute for Advancing Health Through Agriculture, Texas A&M, College Station, TX, USA
| | | | - Abbie E Smith-Ryan
- Department of Exercise and Sport Science, University of North Carolina, Chapel Hill, NC, USA
| | - Sai Krupa Das
- Jean-Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, USA
| | - Fiona C Baker
- Center for Health Sciences, SRI International, Menlo Park, CA, USA
| | - Zeynep Madak-Erdogan
- Department of Food Science and Human Nutrition, University of Illinois, Urbana-Champaign, Urbana, IL, USA
| | - Billy R Hammond
- Behavioral and Brain Sciences Program, Department of Psychology, University of Georgia, Athens, GA, USA
| | - Howard D Sesso
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Alex Eapen
- R&D Scientific & Regulatory Affairs–North America, Cargill, Wayzata, MN, USA
| | | | - Andrea Wong
- Scientific & Regulatory Affairs, Council for Responsible Nutrition, Washington, DC, USA
| | - Haiuyen Nguyen
- Scientific & Regulatory Affairs, Council for Responsible Nutrition, Washington, DC, USA
| |
Collapse
|
39
|
Garcia JF, Arribalzaga S, Díez R, Lopez C, Fernandez MN, Garcia JJ, Diez MJ, Seco-Calvo J, Sierra M, Sahagún AM. Herbs as an Active Ingredient in Sport: Availability and Information on the Internet. Nutrients 2022; 14:nu14132764. [PMID: 35807943 PMCID: PMC9268717 DOI: 10.3390/nu14132764] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 06/30/2022] [Accepted: 07/01/2022] [Indexed: 01/23/2023] Open
Abstract
The use of supplements containing herbal active ingredients in sport has increased in recent years. Their consumption is explained by the benefits they may provide and because their natural origin do not involve health complications, from the point of view of the consumers. The aim of this study is to analyze the availability of four supplements (caffeine, turmeric, ginseng, cannabidiol) on the internet and understand the nature of these websites. A descriptive, observational, and cross-sectional study design was used. A detailed search was carried out with specifically developed software. The searches and data evaluation took 10 days. The websites consulted correspond to those that sell supplements, or some sport websites in the case of the Spanish ones, whereas those in English belong to pharmacies, parapharmacies, or herbalists. It is concluded that the websites do not provide adequate information to ensure proper consumption and lack advice on the choices of supplements and their administration guidelines.
Collapse
Affiliation(s)
- Juan F. Garcia
- Department of Mechanical, Informatics and Aerospatiale Engineering, University of Leon, 24071 Leon, Spain;
| | - Soledad Arribalzaga
- Physiotherapy Department, Institute of Biomedicine (IBIOMED), Campus de Vegazana, University of Leon, 24071 Leon, Spain;
| | - Raquel Díez
- Department of Biomedical Sciences, Institute of Biomedicine (IBIOMED), Veterinary Faculty, University of Leon, 24071 Leon, Spain; (R.D.); (C.L.); (M.N.F.); (J.J.G.); (M.J.D.); (M.S.); (A.M.S.)
| | - Cristina Lopez
- Department of Biomedical Sciences, Institute of Biomedicine (IBIOMED), Veterinary Faculty, University of Leon, 24071 Leon, Spain; (R.D.); (C.L.); (M.N.F.); (J.J.G.); (M.J.D.); (M.S.); (A.M.S.)
| | - M. Nelida Fernandez
- Department of Biomedical Sciences, Institute of Biomedicine (IBIOMED), Veterinary Faculty, University of Leon, 24071 Leon, Spain; (R.D.); (C.L.); (M.N.F.); (J.J.G.); (M.J.D.); (M.S.); (A.M.S.)
| | - Juan J. Garcia
- Department of Biomedical Sciences, Institute of Biomedicine (IBIOMED), Veterinary Faculty, University of Leon, 24071 Leon, Spain; (R.D.); (C.L.); (M.N.F.); (J.J.G.); (M.J.D.); (M.S.); (A.M.S.)
| | - M. Jose Diez
- Department of Biomedical Sciences, Institute of Biomedicine (IBIOMED), Veterinary Faculty, University of Leon, 24071 Leon, Spain; (R.D.); (C.L.); (M.N.F.); (J.J.G.); (M.J.D.); (M.S.); (A.M.S.)
| | - Jesús Seco-Calvo
- Physiotherapy Department, Institute of Biomedicine (IBIOMED), Campus de Vegazana, University of Leon, 24071 Leon, Spain;
- Psychology Department, Faculty of Medicine, Visiting Researcher of Basque Country University, 48900 Leioa, Spain
- Correspondence:
| | - Matilde Sierra
- Department of Biomedical Sciences, Institute of Biomedicine (IBIOMED), Veterinary Faculty, University of Leon, 24071 Leon, Spain; (R.D.); (C.L.); (M.N.F.); (J.J.G.); (M.J.D.); (M.S.); (A.M.S.)
| | - Ana M. Sahagún
- Department of Biomedical Sciences, Institute of Biomedicine (IBIOMED), Veterinary Faculty, University of Leon, 24071 Leon, Spain; (R.D.); (C.L.); (M.N.F.); (J.J.G.); (M.J.D.); (M.S.); (A.M.S.)
| |
Collapse
|
40
|
Acute Supplementation of Yerba Mate Extract Did Not Change Muscle Strength in Physically Active Men Following the Strength Muscle Test: A Pilot Clinical Trial. Nutrients 2022; 14:nu14132619. [PMID: 35807800 PMCID: PMC9268497 DOI: 10.3390/nu14132619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/10/2022] [Accepted: 05/16/2022] [Indexed: 11/17/2022] Open
Abstract
Polyphenol supplementation may be useful during exercise. However, there is no evidence indicating yerba mate (YM) increases muscle strength. Thus, this study sought to evaluate the effect of acute YM supplementation on muscle strength following the strength test. In a crossover and pilot clinical trial, ten men were divided into two groups, receiving either supplementation with YM or a placebo. One hour after consumption of beverages, the participants were submitted to tests of one-repetition maximum (1 RM) on the bench press and leg press. The average age of the participants was 25.5 ± 4.1 years, and the average body mass index was 24.4 ± 2.9 kg/m². YM was not able to increase muscle strength when compared to the placebo in either the 1RM leg press exercise (YM: 225 ± 56.2 kg, vs. placebo: 223 ± 64.3 kg, p = 0.743, Cohen’s d = 0.03) or in the 1 RM bench press exercise (YM: 59.5 ± 20.7 kg vs. placebo: 59.5 ± 21.5 kg, p = 1.000, Cohen’s d = 0.) In conclusion, acute intake of YM did not change muscle strength in physically active men.
Collapse
|
41
|
Does Tribulus terrestris L. affect hormonal responses following high-intensity resistance exercise? BIOMEDICAL HUMAN KINETICS 2022. [DOI: 10.2478/bhk-2022-0018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Study aim: To investigate the effect of a 2-week supplementation with Tribulus terrestris L. (TT) on the responses of testosterone, cortisol, and thyroid hormones including triiodothyronine (T3) and thyroxine (T4) following an intensive session of resistance exercise (RE).
Materials and methods: Twenty-two healthy non-athlete men (23.8 ± 3.1 years) participated in this study were divided into two groups and were randomly assigned to receive either TT supplementation (n = 11) or a placebo (n = 11). They consumed two 250-mg capsules with TT or placebo (maltodextrin) per day and performed six REs with the intensity 80-90% of 1RM on the fifteen day of the experiment. Venous blood samples were drawn before supplementation, and before and after the RE session.
Results: The mean values of post-exercise testosterone and cortisol in both groups were significantly higher than pre-exercise and baseline (p < 0.01); however, there were no significant differences between the groups (p > 0.05). Likewise, despite a trend toward different levels of the responses of thyroid hormones with TT supplementation, there were no significant differences either in different time points or the groups (p > 0.05).
Conclusions: Short-term supplementation with TT appears to be ineffective in changing the hormonal responses measured in this study following a session of high-intensity RE.
Collapse
|
42
|
Savioli FP, Zogaib P, Franco E, Alves de Salles FC, Giorelli GV, Andreoli CV. Effects of Cordyceps Sinensis Supplementation during 12 weeks in amateur marathoners: a randomized, double-blind placebo-controlled trial. J Herb Med 2022. [DOI: 10.1016/j.hermed.2022.100570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
43
|
Healthcare Professionals' Knowledge and Behaviors Regarding Drug-Dietary Supplement and Drug-Herbal Product Interactions. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19074290. [PMID: 35409970 PMCID: PMC8998985 DOI: 10.3390/ijerph19074290] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/29/2022] [Accepted: 04/01/2022] [Indexed: 12/07/2022]
Abstract
Given the widespread use of dietary supplements (DS) and herbal products (HP), healthcare professionals (HCPs) will increasingly encounter patients who use these preparations with conventional drugs and who need their services to reduce the consequences of adverse therapeutic outcomes. The aim of our survey was to assess the knowledge and behaviors of HCPs regarding the risk of potential drug−dietary supplement (DDSIs) and drug−herbal product (DHPIs) interactions. This cross-sectional survey collected data via on paper-based questionnaire among general practitioners (GPs) (n = 105), specialty doctors (n = 87) and nurses (n = 154). The HCPs were mostly familiar with the interaction of doxycycline with magnesium (83%) and were least familiar with interaction of warfarin with glucosamine (14%). The results on DDSIs and DHPIs knowledge showed that GPs scored significantly higher than nurses (p < 0.001 and p = 0.003, respectively), while specialty doctors scored significantly higher than nurses only on DDSIs knowledge (p < 0.001). Only 28% of respondents reported that they often or always ask patients on drug therapy about the use of DS or HP, and 25% of respondents record such data in the medical documentation of patients. Our results showed that HCPs have sufficient knowledge about most major DDSIs and DHPIs, but insufficient knowledge about most moderate interactions. However, their overall knowledge and behavior regarding the risk of these interactions indicate the need for further continuing education and training.
Collapse
|
44
|
Yang J, Shin KM, Abu Dabrh AM, Bierle DM, Zhou X, Bauer BA, Mohabbat AB. Ginseng for the Treatment of Chronic Fatigue Syndrome: A Systematic Review of Clinical Studies. Glob Adv Health Med 2022; 11:2164957X221079790. [PMID: 35186446 PMCID: PMC8848096 DOI: 10.1177/2164957x221079790] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 01/25/2022] [Indexed: 11/17/2022] Open
Abstract
Background Chronic fatigue syndrome (CFS) is a complex and often disabling chronic condition emerging worldwide, with no curative or definitive therapy yet identified. Ginseng has been widely used to treat fatigue in other patient groups and conditions; however, a systematic review focusing solely on the impact of ginseng on fatigue in patients with CFS has not been performed. Objective This study aimed to assess the current state of evidence regarding ginseng for CFS. Methods Multiple databases were searched from inception to October 2020. All data was extracted independently and in duplicates. Outcomes of interest included the effectiveness and safety of ginseng in patients with CFS. Results 2 studies enrolling 68 patients were deemed eligible, including one randomized clinical trial and one prospective observational study. The certainty of evidence in the effectiveness outcome was low and moderate from both studies, while the safety evidence was very low as reported from one study. Conclusion Study findings highlight a potential benefit of ginseng therapy in the treatment of CFS. However, we are not able to draw firm conclusions due to limited clinical studies. The paucity of data warrants limited confidence. There is a need for future rigorous studies to provide further evidence.
Collapse
Affiliation(s)
- Juan Yang
- Division of General Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Kyung-Min Shin
- Division of General Internal Medicine, Mayo Clinic, Rochester, MN, USA
- Clinical Medicine Division, Korea Institute of Oriental Medicine, Daejeon, South Korea
| | | | - Dennis M Bierle
- Division of General Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Xuan Zhou
- Formula-pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Brent A. Bauer
- Division of General Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Arya B Mohabbat
- Division of General Internal Medicine, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
45
|
Plants, Algae, Cyanobacteria and Fungi in Diet of Vegan and Vegetarian Sportsmen-a Systematic Review. CENTRAL EUROPEAN JOURNAL OF SPORT SCIENCES AND MEDICINE 2022. [DOI: 10.18276/cej.2022.1-03] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
46
|
Active Women Across the Lifespan: Nutritional Ingredients to Support Health and Wellness. Sports Med 2022; 52:101-117. [PMID: 36173598 PMCID: PMC9521557 DOI: 10.1007/s40279-022-01755-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/17/2022] [Indexed: 12/15/2022]
Abstract
Women are the largest consumers of dietary supplements. Dietary supplements can play a role in health and performance, particularly for women. Growing evidence and innovations support the unique physiological and nutrient timing needs for women. Despite the need for more nutrition and exercise-specific research in women, initial data and known physiological differences between sexes related to the brain, respiration, bone, and muscle support new product development and evidence-based education for active women regarding the use of dietary supplements. In this narrative review, we discuss hormonal and metabolic considerations with the potential to impact nutritional recommendations for active women. We propose four potential areas of opportunity for ingredients to help support the health and well-being of active women, including: (1) body composition, (2) energy/fatigue, (3) mental health, and (4) physical health.
Collapse
|
47
|
Sirotkin AV, Kolesárová A. Puncture vine (Tribulus Terrestris L.) in control of health and reproduction. Physiol Res 2021; 70:S657-S667. [PMID: 35199550 DOI: 10.33549/physiolres.934711] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Tribulus terrestris, L. (puncture vine) have been used as a folk medicine for five thousands of years, but its targets, effects, their mechanisms and application requires further studies. This paper reviews the provenance, constituents and properties of Tribulus terrestris, L., its general physiological and health effects, as well as the currently available knowledge concerning its influence on male and female reproductive processes and their dysfunctions. Analysis of the available publications demonstrated the influence of Tribulus terrestris on a wide spectrum of targets and physiological processe and disorders. In particular, Tribulus terrestris can be a stimulator of male and female reproductive processes at the level of central nervous system, sexual behaviour, pituitary and gonadal hormones and their receptors, gonadal functions (including ovarian follicullogenesis and spermatogenesis), improvement of the quality and quantity of gametes (at least of sperm) and fecundity. This ability of puncture vine is applicable for the improvement of man's sexual desire and sperm quality in vivo and in vitro, as well as of women's libido, activation of women's reproductive organs, fecundity, and treatment of infertility, especially that related to the polycystic ovarian syndrome.
Collapse
Affiliation(s)
- A V Sirotkin
- Constantine the Philosopher University in Nitra, Nitra, Slovak Republic, 2Slovak University of Agriculture in Nitra, Nitra, Slovak Republic.
| | | |
Collapse
|
48
|
Sirotkin AV, Kolesarova A. Puncture vine (Tribulus Terrestris L.) in control of health and reproduction. Physiol Res 2021. [DOI: 10.33549//physiolres.934711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Tribulus terrestris, L. (puncture vine) have been used as a folk medicine for five thousands of years, but its targets, effects, their mechanisms and application requires further studies. This paper reviews the provenance, constituents and properties of Tribulus terrestris, L., its general physiological and health effects, as well as the currently available knowledge concerning its influence on male and female reproductive processes and their dysfunctions. Analysis of the available publications demonstrated the influence of Tribulus terrestris on a wide spectrum of targets and physiological processe and disorders. In particular, Tribulus terrestris can be a stimulator of male and female reproductive processes at the level of central nervous system, sexual behaviour, pituitary and gonadal hormones and their receptors, gonadal functions (including ovarian follicullogenesis and spermatogenesis), improvement of the quality and quantity of gametes (at least of sperm) and fecundity. This ability of puncture vine is applicable for the improvement of man’s sexual desire and sperm quality in vivo and in vitro, as well as of women’s libido, activation of women’s reproductive organs, fecundity, and treatment of infertility, especially that related to the polycystic ovarian syndrome.
Collapse
Affiliation(s)
- AV Sirotkin
- Constantine the Philosopher University in Nitra, Nitra, Slovak Republic.
| | | |
Collapse
|
49
|
Fernández-Lázaro D, Mielgo-Ayuso J, del Valle Soto M, Adams DP, González-Bernal JJ, Seco-Calvo J. The Effects of 6 Weeks of Tribulus terrestris L. Supplementation on Body Composition, Hormonal Response, Perceived Exertion, and CrossFit ® Performance: A Randomized, Single-Blind, Placebo-Controlled Study. Nutrients 2021; 13:3969. [PMID: 34836225 PMCID: PMC8623187 DOI: 10.3390/nu13113969] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/04/2021] [Accepted: 11/05/2021] [Indexed: 12/11/2022] Open
Abstract
Tribulus terrestris L. (TT) supplementation have been shown to enhance sports performance in many but not all studies. Moreover, data regarding the potential impact of TT supplementation on CrossFit® endurance is limited. This study aimed to determine whether TT supplementation improve body composition, hormonal response, and performance among CrossFit® athletes. In a randomized, single-blind, placebo-controlled trial, a total of 30 healthy CrossFit®-trained males were randomly allocated to receive either 770 mg of TT supplementation or a placebo daily for 6 weeks. Body mass, fat mass, fat composition, testosterone and cortisol levels, and CrossFit® performance (5 common Workouts of the Day: back squat, bench press, dead lift, Grace, and CrossFit® Total) were assessed before and after intervention. There were no significant group x time interactions for the outcomes of the study except for testosterone levels and bench press performance (p < 0.05). TT supplementation did not impact enhance performance or body composition in CrossFit® male athletes. However, TT supplementation may act as a testosterone booster helping the recovery after physical loads and mitigating fatigue.
Collapse
Affiliation(s)
- Diego Fernández-Lázaro
- Department of Cellular Biology, Histology and Pharmacology, Faculty of Health Sciences, Campus of Soria, University of Valladolid, 42003 Soria, Spain
- Neurobiology Research Group, Faculty of Medicine, University of Valladolid, 47005 Valladolid, Spain
| | - Juan Mielgo-Ayuso
- Department of Health Sciences, Faculty of Health Sciences, University of Burgos, 09001 Burgos, Spain;
| | - Miguel del Valle Soto
- Department of Morphology and Cell Biology, University of Oviedo, 33003 Oviedo, Spain;
- Health Research Institute of the Principality of Asturias (ISPA), 33011 Oviedo, Spain
| | - David P. Adams
- Dual Enrollment Program, Point University, Savannah, GA 31419, USA;
| | | | - Jesús Seco-Calvo
- Physiotherapy Department, Institute of Biomedicine (IBIOMED), Campus de Vegazana, University of Leon, 24071 Leon, Spain;
- Visiting Researcher of Basque Country University, Psychology Department, Faculty of Medicine, 48900 Leioa, Spain
| |
Collapse
|
50
|
Kim J, Lee KP, Kim MR, Kim BS, Moon BS, Shin CH, Baek S, Hong BS. A network pharmacology approach to explore the potential role of Panax ginseng on exercise performance. Phys Act Nutr 2021; 25:28-35. [PMID: 34727686 PMCID: PMC8580580 DOI: 10.20463/pan.2021.0018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 09/29/2021] [Indexed: 02/08/2023] Open
Abstract
[Purpose] As Panax ginseng C. A. Meyer (ginseng) exhibits various physiological activities and is associated with exercise, we investigated the potential active components of ginseng and related target genes through network pharmacological analysis. Additionally, we analyzed the association between ginseng-related genes, such as the G-protein-coupled receptors (GPCRs), and improved exercise capacity. [Methods] Active compounds in ginseng and the related target genes were searched in the Traditional Chinese Medicine Database and Analysis Platform (TCMSP). Gene ontology functional analysis was performed to identify biological processes related to the collected genes, and a compound-target network was visualized using Cytoscape 3.7.2. [Results] A total of 21 ginseng active compounds were detected, and 110 targets regulated by 17 active substances were identified. We found that the active compound protein was involved in the biological process of adrenergic receptor activity in 80%, G-protein-coupled neurotransmitter in 10%, and leucocyte adhesion to arteries in 10%. Additionally, the biological response centered on adrenergic receptor activity showed a close relationship with G protein through the beta-1 adrenergic receptor gene reactivity. [Conclusion] According to bioavailability analysis, ginseng comprises 21 active compounds. Furthermore, we investigated the ginseng-stimulated gene activation using ontology analysis. GPCR, a gene upregulated by ginseng, is positively correlated to exercise. Therefore, if a study on this factor is conducted, it will provide useful basic data for improving exercise performance and health.
Collapse
Affiliation(s)
- Jisu Kim
- Physical Activity & Performance Institute, Konkuk University, Seoul 05029, Republic of Korea
| | - Kang Pa Lee
- Research & Development Center, UMUST R&D Corporation, 84, Madeul-ro 13-gil, Dobong-gu, Seoul 01411, Republic of Korea.,Department of Nuclear Medicine, Ewha Womans University Seoul Hospital, Ewha Womans University College of Medicine, Seoul 07804, Republic of Korea
| | - Myoung-Ryu Kim
- Department of Nursing, Cheju Halla University, Jeju 63092, Republic of Korea
| | - Bom Sahn Kim
- Department of Nuclear Medicine, Ewha Womans University Seoul Hospital, Ewha Womans University College of Medicine, Seoul 07804, Republic of Korea
| | - Byung Seok Moon
- Department of Nuclear Medicine, Ewha Womans University Seoul Hospital, Ewha Womans University College of Medicine, Seoul 07804, Republic of Korea
| | - Chul Ho Shin
- Department of Sports Healthcare Management, Namseoul University, Cheonan 31020, Republic of Korea
| | - Suji Baek
- Research & Development Center, UMUST R&D Corporation, 84, Madeul-ro 13-gil, Dobong-gu, Seoul 01411, Republic of Korea
| | - Bok Sil Hong
- Department of Nursing, Cheju Halla University, Jeju 63092, Republic of Korea.,Life Science Research Center, Cheju Halla University, Jeju 63092, Republic of Korea
| |
Collapse
|