1
|
Hushmandi K, Reiter RJ, Farahani N, Cho WC, Alimohammadi M, Khoshnazar SM. Pyroptosis; igniting neuropsychiatric disorders from mild depression to aging-related neurodegeneration. Prog Neuropsychopharmacol Biol Psychiatry 2025; 138:111325. [PMID: 40081561 DOI: 10.1016/j.pnpbp.2025.111325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 03/03/2025] [Accepted: 03/05/2025] [Indexed: 03/16/2025]
Abstract
Neuropsychiatric disorders significantly impact global health and socioeconomic well-being, highlighting the urgent need for effective treatments. Chronic inflammation, often driven by the innate immune system, is a key feature of many neuropsychiatric conditions. NOD-like receptors (NLRs), which are intracellular sensors, detect danger signals and trigger inflammation. Among these, NLR protein (NLRP) inflammasomes play a crucial role by releasing pro-inflammatory cytokines and inducing a particular cell death process known as pyroptosis. Pyroptosis is defined as a proinflammatory form of programmed cell death executed by cysteine-aspartic proteases, also known as caspases. Currently, the role of pyroptotic flux has emerged as a critical factor in innate immunity and the pathogenesis of multiple diseases. Emerging evidence suggests that the induction of pyroptosis, primarily due to NLRP inflammasome activation, is involved in the pathophysiology of various neuropsychiatric disorders, including depression, stress-related issues, schizophrenia, autism spectrum disorders, and neurodegenerative diseases. Within this framework, the current review explores the complex relationship between pyroptosis and neuropsychiatric diseases, aiming to identify potential therapeutic targets for these challenging conditions.
Collapse
Affiliation(s)
- Kiavash Hushmandi
- Nephrology and Urology Research Center, Clinical Sciences Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health San Antonio, Long School of Medicine, San Antonio, TX, USA
| | - Najma Farahani
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong
| | - Mina Alimohammadi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyedeh Mahdieh Khoshnazar
- Gastroenterology and Hepatology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
2
|
Li J, Li S, Sun Q, Li L, Zhang Y, Hua Z. H3K18 lactylation-mediated nucleotide-binding oligomerization domain-2 (NOD2) expression promotes bilirubin-induced pyroptosis of astrocytes. J Neuroinflammation 2025; 22:76. [PMID: 40075479 PMCID: PMC11905654 DOI: 10.1186/s12974-025-03399-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 02/24/2025] [Indexed: 03/14/2025] Open
Abstract
Histone lactylation, a newly glycosis-related histone modification, plays a crucial role in the regulation of gene expression in various immune cells. However, the role of histone lactylation in astrocytes remains unclear. Here, this study showed that the H3K18 lactylation (H3K18la) levels were upregulated in primary astrocytes under unconjugated bilirubin (UCB) stimulation and hippocampus of bilirubin encephalopathy (BE) rats. Inhibition of glycolysis decreased H3K18la and attenuated pyroptosis both in vitro and in vivo. CUT& Tag and RNA-seq results revealed that H3K18la was enriched at the promoter of nucleotide-binding oligomerization domain 2 (NOD2) and promoted its transcription. Moreover, NOD2 boosted the activation of downstream mitogen-activated protein kinase (MAPK) and nuclear factor-kappa B (NF-κB) signaling pathways, which exacerbated the neuroinflammation of BE. Collectively, this study provides a novel understanding of epigenetic regulation in astrocytes, and interruption of the H3K18la/NOD2 axis may represent a novel therapeutic strategy for treating bilirubin encephalopathy.
Collapse
Affiliation(s)
- Jing Li
- Department of Neonatology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- Chongqing Key Laboratory of Child Rare Diseases in Infection and Immunity, Chongqing, China
| | - Siyu Li
- Department of Neonatology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- Chongqing Key Laboratory of Child Rare Diseases in Infection and Immunity, Chongqing, China
| | - Qian Sun
- Department of Neonatology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- Chongqing Key Laboratory of Child Rare Diseases in Infection and Immunity, Chongqing, China
| | - Ling Li
- Department of Neonatology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- Chongqing Key Laboratory of Child Rare Diseases in Infection and Immunity, Chongqing, China
| | - Yan Zhang
- Chongqing Key Laboratory of Child Rare Diseases in Infection and Immunity, Chongqing, China
| | - Ziyu Hua
- Department of Neonatology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China.
- Chongqing Key Laboratory of Child Rare Diseases in Infection and Immunity, Chongqing, China.
| |
Collapse
|
3
|
Yu M, Zheng C, Wang X, Peng R, Lu G, Zhang J. Phosphatidylserine induce thrombotic tendency and liver damage in obstructive jaundice. BMC Gastroenterol 2025; 25:146. [PMID: 40050731 PMCID: PMC11884107 DOI: 10.1186/s12876-025-03739-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 02/27/2025] [Indexed: 03/10/2025] Open
Abstract
INTRODUCTION Hypercoagulability contributes to the majority of deaths and organ failure associated with obstructive jaundice (OJ). However, the exact mechanism of the coagulopathy in OJ remains elusive. Our objectives were to demonstrate whether phosphatidylserine (PS) exposure on blood cells (BCs), microparticles (MPs), and endothelial cells (ECs) can account for the hypercoagulability and liver damage in OJ patients. METHODS We evaluated OJ patients at two time point, which before (Day 0) and 7 days (Day 7) after the endoscopic retrograde cholangiopancreatography procedure (ERCP), and compared with healthy controls. Lactadherin was used to quantify PS exposure on BCs, MPs and ECs. Human umbilical vein endothelial cells (HUVECs) were incubated with serum of OJ patients and the expression of PS were evaluated. Meanwhile, healthy BCs and HUVECs were treated with 0, 25, 50 or 100µM unconjugated bilirubin (UCB) and PS exposure on cells were evaluated. Procoagulant activity was evaluated by purified coagulation complex assays, clotting time, and fibrin turbidity. In addition, we established a cholestatic mouse model by bile duct ligation to determine the potential role of PS in intrahepatic coagulation and liver damage. RESULTS Using flow cytometry, we found that OJ patients exhibited elevated levels of PS + BCs and associated MPs compared to the controls. Furthermore, the number of PS + BCs and MPs in patients at Day 0 were significantly higher than in patients at Day 7. Similarly, we observed markedly elevated PS exposure on HUVECs cultured with serum from patients at Day 0 versus serum from patients at Day 7. In vitro assays, PS exposure on BCs and HUVECs progressively increased with the concentration of UCB. Moreover, PS + BCs and MPs contributed to greatly shortened coagulation time and markedly enhanced coagulation factor Xa, thrombin, and fibrin generation. This procoagulant activity could be blocked approximately 80%, by the addition of lactadherin. Moreover, cholestatic mice exhibited significantly increased levels of liver tissue necrosis, fibrin deposition, and thrombophilia compared to sham mice. The enhanced intrahepatic coagulation and liver injury could be reversed by inhibiting PS with lactadherin. CONCLUSIONS These results highlight the pathogenic activity of PS + cells and MPs in promoting a prothrombotic environment and liver damage in OJ. As such, lactadherin, a PS blockade, may be a viable therapeutic strategy for treating such patients.
Collapse
Affiliation(s)
- Muxin Yu
- Department of Medicine, Jiaxing University, Jiaxing, 314001, China
| | - Chuwei Zheng
- Department of Gastroenterology, The Second Affiliated Hospital of Jiaxing University, Jiaxing, 314001, China
| | - Xiaoguang Wang
- Department of Hepatic Surgery, The Second Affiliated Hospital of Jiaxing University, Jiaxing, 314001, China
| | - Rong Peng
- Department of Medicine, Jiaxing University, Jiaxing, 314001, China
| | - Guoming Lu
- Department of Medicine, Jiaxing University, Jiaxing, 314001, China
| | - Jinming Zhang
- Department of Gastroenterology, The Second Affiliated Hospital of Jiaxing University, Jiaxing, 314001, China.
| |
Collapse
|
4
|
Gong LN, Liu HW, Lai K, Zhang Z, Mao LF, Liu ZQ, Li MX, Yin XL, Liang M, Shi HB, Wang LY, Yin SK. Selective Vulnerability of GABAergic Inhibitory Interneurons to Bilirubin Neurotoxicity in the Neonatal Brain. J Neurosci 2024; 44:e0442242024. [PMID: 39313321 PMCID: PMC11551895 DOI: 10.1523/jneurosci.0442-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 08/16/2024] [Accepted: 09/16/2024] [Indexed: 09/25/2024] Open
Abstract
Hyperbilirubinemia (HB) is a key risk factor for hearing loss in neonates, particularly premature infants. Here, we report that bilirubin (BIL)-dependent cell death in the auditory brainstem of neonatal mice of both sexes is significantly attenuated by ZD7288, a blocker for hyperpolarization-activated cyclic nucleotide-gated (HCN) channel-mediated current (I h), or by genetic deletion of HCN1. GABAergic inhibitory interneurons predominantly express HCN1, on which BIL selectively acts to increase their intrinsic excitability and mortality by enhancing HCN1 activity and Ca2+-dependent membrane targeting. Chronic BIL elevation in neonatal mice in vivo increases the fraction of spontaneously active interneurons and their firing frequency, I h, and death, compromising audition at the young adult stage in HCN1+/+, but not in HCN1-/- genotype. We conclude that HB preferentially targets HCN1 to injure inhibitory interneurons, fueling a feedforward loop in which lessening inhibition cascades hyperexcitability, Ca2+ overload, neuronal death, and auditory impairments. These findings rationalize HCN1 as a potential target for managing HB encephalopathy.
Collapse
Affiliation(s)
- Li-Na Gong
- Department of Otorhinolaryngology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Han-Wei Liu
- Department of Otorhinolaryngology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Ke Lai
- Department of Otorhinolaryngology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
- Programs in Neurosciences & Mental Health, SickKids Research Institute and Department of Physiology, University of Toronto, Toronto, Ontario M5G 1X8, Canada
| | - Zhen Zhang
- Department of Otorhinolaryngology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Lin-Fei Mao
- Department of Otorhinolaryngology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Zhen-Qi Liu
- Department of Otorhinolaryngology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
- Programs in Neurosciences & Mental Health, SickKids Research Institute and Department of Physiology, University of Toronto, Toronto, Ontario M5G 1X8, Canada
| | - Ming-Xian Li
- Department of Otorhinolaryngology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
- Department of Head & Neck Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450003, China
| | - Xin-Lu Yin
- Department of Otorhinolaryngology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
- Department of Head & Neck Surgery, Renji Hospital and Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Min Liang
- Department of Otorhinolaryngology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
- Department of Otorhinolaryngology Head & Neck Surgery, Xinhua Hospital and Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Hai-Bo Shi
- Department of Otorhinolaryngology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Lu-Yang Wang
- Programs in Neurosciences & Mental Health, SickKids Research Institute and Department of Physiology, University of Toronto, Toronto, Ontario M5G 1X8, Canada
| | - Shan-Kai Yin
- Department of Otorhinolaryngology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| |
Collapse
|
5
|
Su R, Liu W, Shi G, Chen D, Yan L, Li Q, Ni H, Yu M, Xu L. A superior material with antithrombotic properties serves as a secure adsorbent for the elimination of bilirubin in vitro and in pig models. CHEMICAL ENGINEERING JOURNAL 2024; 499:156533. [DOI: 10.1016/j.cej.2024.156533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
|
6
|
Gao Y, Ling Y, Li J, Xu Y, Ge J, Xia Q. Neuropathological implication of high blood bilirubin in patients and model rats with depression. Brain Res Bull 2024; 215:111028. [PMID: 38992775 DOI: 10.1016/j.brainresbull.2024.111028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/02/2024] [Accepted: 07/04/2024] [Indexed: 07/13/2024]
Abstract
PURPOSE Elevated bilirubin levels have been associated with major depressive disorder (MDD); however, the exact impact of bilirubin on MDD and the underlying molecular mechanisms remain unclear. Here, we explored the influence of bilirubin on MDD and sought to identify the mechanisms via which bilirubin induces depressive-like behavior. PATIENTS AND METHODS Forty patients who were diagnosed with MDD and received treatment with selective serotonin reuptake inhibitors (SSRIs) were included, with 43 healthy volunteers serving as controls. Clinical symptoms were evaluated using Hamilton depression rating scale-24 (HAMD-24) and the Hamilton anxiety rating scale. Serum concentrations of total bilirubin (TBIL) and indirect bilirubin (IBIL) were measured at baseline and after treatment using an automated biochemical analyzer. The connection between clinical symptoms and TBIL or IBIL was examined using Pearson correlation. Chronic restraint stress (CRS) was employed to generate a rat model of depression. TBIL, IBIL in rat serum were measured by ELISA. Reactive oxygen species (ROS) contents in rat hippocampal tissues were quantified by flow cytometry. The levels of microglial markers and the extent of neuronal damage in the rat hippocampus were assessed by immunofluorescence and transmission electron microscopy, respectively. RESULTS Serum TBIL and IBIL levels were higher in patients with MDD than in the healthy controls. After treatment with SSRIs, the serum levels of TBIL and IBIL in MDD patients were significantly reduced. The levels of TBIL and IBIL were associated with HAMD-24 in MDD patients. Compared with the controls, the serum levels of TBIL, IBIL and the hippocampal ROS contents were elevated in CRS-exposed rats. Fluoxetine lowered inflammatory factor levels, mitigated oxidative stress. CONCLUSION Our findings indicate a possible correlation between elevated serum bilirubin and depressive symptoms. Increases in ROS levels, along with neuronal damage, may represent pathological mechanisms underlying MDD.
Collapse
Affiliation(s)
- Yejun Gao
- School of Pharmacy, Anhui Medical University, Hefei, China; Affiliated Psychological Hospital of Anhui Medical University, Hefei, China; Hefei Fourth People's Hospital, Hefei, China; Psychopharmacology Research Laboratory, Anhui Mental Health Center, Hefei, China; Anhui Clinical Research Center for Mental Disorders, Hefei, China; Anhui Mental Health Center, Hefei, China.
| | - Yian Ling
- Affiliated Psychological Hospital of Anhui Medical University, Hefei, China; Hefei Fourth People's Hospital, Hefei, China; Anhui Mental Health Center, Hefei, China.
| | - Jing Li
- School of Pharmacy, Anhui Medical University, Hefei, China; Affiliated Psychological Hospital of Anhui Medical University, Hefei, China; Hefei Fourth People's Hospital, Hefei, China; Psychopharmacology Research Laboratory, Anhui Mental Health Center, Hefei, China; Anhui Clinical Research Center for Mental Disorders, Hefei, China; Anhui Mental Health Center, Hefei, China.
| | - Yayun Xu
- School of Pharmacy, Anhui Medical University, Hefei, China; Affiliated Psychological Hospital of Anhui Medical University, Hefei, China; Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, Hefei, China; The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China.
| | - Jinfang Ge
- School of Pharmacy, Anhui Medical University, Hefei, China; Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, Hefei, China; The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China.
| | - Qingrong Xia
- School of Pharmacy, Anhui Medical University, Hefei, China; Affiliated Psychological Hospital of Anhui Medical University, Hefei, China; Hefei Fourth People's Hospital, Hefei, China; Psychopharmacology Research Laboratory, Anhui Mental Health Center, Hefei, China; Anhui Clinical Research Center for Mental Disorders, Hefei, China; Anhui Mental Health Center, Hefei, China.
| |
Collapse
|
7
|
Tian Y, Yang C, Liu L, Zhao X, Fan H, Xia L, Liu H. The associations of psychopathology and metabolic parameters with serum bilirubin levels in patients with acute-episode and drug-free schizophrenia: a 5-year retrospective study using an electronic medical record system. BMC Psychiatry 2024; 24:403. [PMID: 38811905 PMCID: PMC11138041 DOI: 10.1186/s12888-024-05862-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 05/23/2024] [Indexed: 05/31/2024] Open
Abstract
BACKGROUND The oxidative system plays an important role in the pathogenesis of schizophrenia. Inconsistent associations were found between hyperbilirubinemia and psychopathology as well as glycolipid metabolism in patients with schizophrenia at different episodes. This current study aimed to examine these associations in patients with acute-episode and drug-free (AEDF) schizophrenia. METHODS This is a retrospective study using 5 years of data from May 2017 to May 2022 extracted from the electronic medical record system of Chaohu Hospital of Anhui Medical University. Healthy controls (HCs) from the local medical screening center during the same period were also included. Participants' data of the bilirubin levels [total bilirubin (TB), conjugated bilirubin (CB), unconjugated bilirubin (UCB)], glycolipid metabolic parameters and the score of the Brief Psychiatric Rating Scale (BPRS) were collected. RESULTS A total of 1468 case records were identified through the initial search. After screening, 89 AEDF patients and 100 HCs were included. Compared with HCs, patients had a higher CB level, and lower levels of glycolipid metabolic parameters excluding high density lipoprotein-cholesterol (HDL-C) (all P < 0.001). Binary logistic regression analyses revealed that high bilirubin levels in the patients were independently associated with higher total and resistance subscale scores of BPRS, a higher HDL-C level, and lower total cholesterol and triglyceride levels (all P < 0.05). CONCLUSION Bilirubin levels are elevated in patients with AEDF schizophrenia. Patients with high bilirubin levels have more severe psychopathology and relatively optimized glycolipid metabolism. In clinical practice, regular monitoring of bilirubin levels in this patient population should be carried out.
Collapse
Affiliation(s)
- Yinghan Tian
- Department of Psychiatry, Chaohu Hospital of Anhui Medical University, 64 Chaohu North Road, Hefei, 238000, Anhui Province, P. R. China
- Anhui Psychiatric Center, Anhui Medical University, Hefei, Anhui Province, P. R. China
- Department of Psychiatry, School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, Anhui Province, P. R. China
| | - Cheng Yang
- Department of Psychiatry, Chaohu Hospital of Anhui Medical University, 64 Chaohu North Road, Hefei, 238000, Anhui Province, P. R. China
- Anhui Psychiatric Center, Anhui Medical University, Hefei, Anhui Province, P. R. China
- Department of Psychiatry, School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, Anhui Province, P. R. China
| | - Lewei Liu
- Department of Psychiatry, Chaohu Hospital of Anhui Medical University, 64 Chaohu North Road, Hefei, 238000, Anhui Province, P. R. China
- Anhui Psychiatric Center, Anhui Medical University, Hefei, Anhui Province, P. R. China
- Department of Psychiatry, School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, Anhui Province, P. R. China
| | - Xin Zhao
- Department of Psychiatry, School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, Anhui Province, P. R. China
| | - Haojie Fan
- Department of Psychiatry, Chaohu Hospital of Anhui Medical University, 64 Chaohu North Road, Hefei, 238000, Anhui Province, P. R. China
- Anhui Psychiatric Center, Anhui Medical University, Hefei, Anhui Province, P. R. China
- Department of Psychiatry, School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, Anhui Province, P. R. China
| | - Lei Xia
- Department of Psychiatry, Chaohu Hospital of Anhui Medical University, 64 Chaohu North Road, Hefei, 238000, Anhui Province, P. R. China.
- Anhui Psychiatric Center, Anhui Medical University, Hefei, Anhui Province, P. R. China.
- Department of Psychiatry, School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, Anhui Province, P. R. China.
| | - Huanzhong Liu
- Department of Psychiatry, Chaohu Hospital of Anhui Medical University, 64 Chaohu North Road, Hefei, 238000, Anhui Province, P. R. China.
- Anhui Psychiatric Center, Anhui Medical University, Hefei, Anhui Province, P. R. China.
- Anhui Provincial Key Laboratory for Brain Bank Construction and Resource Utilization, Anhui Medical University, Hefei, Anhui Province, P. R. China.
| |
Collapse
|
8
|
Shan W, Wang J, Cheng R, Xuan Y, Yin Z. Erythropoietin alleviates astrocyte pyroptosis by targeting the miR-325-3p/Gsdmd axis in rat spinal cord injury. Inflammopharmacology 2024; 32:523-536. [PMID: 37578618 DOI: 10.1007/s10787-023-01311-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 07/27/2023] [Indexed: 08/15/2023]
Abstract
BACKGROUND Neuroinflammation plays an important role in spinal cord injury (SCI), and an increasing number of studies have focused on the role of astrocytes in neuroinflammation. Pyroptosis is an inflammation-related form of programmed cell death, and neuroinflammation induced by astrocytes in the form of pyroptosis has been widely reported in many central nervous system diseases. Recent studies have found that erythropoietin has significant anti-inflammatory and neuroprotective effects in SCI; however, it has not been reported whether erythropoietin can reduce neuroinflammation by inhibiting neural cell pyroptosis in SCI. METHODS A GEO dataset (GSE153720) was used to analyse the expression of pyroptosis-related genes in sham astrocytes and astrocytes 7 days, 1 month and 3 months after SCI. TargetScan and miRDB databases were used to predict the miRNA that could bind to the 3'UTR of rat Gsdmd. Primary rat spinal astrocytes were used for in vitro experiments, and the modified version of Allen's method was used to establish the rat SCI model. Western blotting, quantitative real-time polymerase chain reaction, flow cytometry, immunofluorescence, lactate dehydrogenase release assay and propidium iodide staining were used to detect the pyroptosis phenotype. A dual luciferase reporter gene assay was used to verify that miR-325-3p can bind to the 3'UTR of Gsdmd. RESULTS We found that pyroptosis-related genes mediated by the canonical NLRP3 inflammasome were highly expressed in astrocytes in an SCI animal model by bioinformatic analysis. We also observed that erythropoietin could reduce astrocyte pyroptosis in vivo and in vitro. In addition, we predicted miRNAs that regulate Gsdmd, the pyroptosis executor, and verified that erythropoietin inhibits astrocyte pyroptosis in SCI through the miR-325-3p/Gsdmd axis. CONCLUSIONS We demonstrated that erythropoietin can inhibit astrocyte pyroptosis through the miR-325-3p/Gsdmd axis. This study is expected to provide a new mechanism for erythropoietin in the treatment of SCI and a more reliable theoretical basis for clinical research.
Collapse
Affiliation(s)
- Wenshan Shan
- Department of Orthopaedics, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Jiawei Wang
- Department of Orthopaedics, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Rui Cheng
- Department of Orthopaedics, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yong Xuan
- Department of Orthopaedics, The Second People's Hospital of Hefei, Hefei, Anhui, China.
- Department of Orthopaedics, Hefei Hospital Affiliated to Anhui Medical University, Hefei, Anhui, China.
| | - Zongsheng Yin
- Department of Orthopaedics, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China.
| |
Collapse
|
9
|
Guo H, Chen R, Li P, Yang Q, He Y. ZBP1 mediates the progression of Alzheimer's disease via pyroptosis by regulating IRF3. Mol Cell Biochem 2023; 478:2849-2860. [PMID: 36964897 DOI: 10.1007/s11010-023-04702-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 03/06/2023] [Indexed: 03/26/2023]
Abstract
Alzheimer's disease (AD) is one of the leading causes of death throughout the world. Z-DNA binding protein 1 (ZBP1), a DNA-related gene, is associated with inflammation, and its expression is altered in AD brain. We aimed to elucidate the exact role of ZBP1 in AD development and its potential regulatory mechanism. First, we constructed both in vivo and in vitro models of AD and investigated the ZBP1 expression profile. A loss-of-function assay was performed by transfecting lentivirus carrying ZBP1 short hairpin RNA (shRNA). By evaluating cell death, oxidative stress, inflammation response and pyroptosis, the function of ZBP1 was validated. Finally, the correlation between ZBP1 and interferon regulatory factor 3 (IRF3) was verified. We also performed rescue experiments to validate the crucial role of IRF3 in ZBP1-mediated AD progression. According to our results, ZBP1 was upregulated in AD rat tissue and AD neurons. Silencing ZBP1 dramatically decreased cell injury, oxidative stress and inflammation in AD neurons and improved the cognitive function of AD rats. Additionally, IRF3 expression and phosphorylation were significantly elevated during AD development and positively correlated with ZBP1. Taken together, silencing ZBP1 suppressed cell injury and pyroptosis of AD neurons and improved cognitive function of AD rats via inhibiting IRF3. These findings might provide a novel insight for AD target diagnosis and therapy.
Collapse
Affiliation(s)
- Hena Guo
- Department of Neurology, Shaanxi Provincial People's Hospital, No. 256, Youyi West Road, Xi'an, 710068, Shaanxi, China
| | - Ruili Chen
- Department of Neurology, Shaanxi Provincial People's Hospital, No. 256, Youyi West Road, Xi'an, 710068, Shaanxi, China
| | - Peng Li
- Department of Neurology, Shaanxi Provincial People's Hospital, No. 256, Youyi West Road, Xi'an, 710068, Shaanxi, China.
| | - Qian Yang
- Department of Neurology, Shaanxi Provincial People's Hospital, No. 256, Youyi West Road, Xi'an, 710068, Shaanxi, China
| | - Yifan He
- Graduate School, Xi'an Medical University, Xi'an, China
| |
Collapse
|
10
|
Li L, Li S, Pan Z, Zhang Y, Hua Z. Bilirubin impacts microglial autophagy via the Akt-mTOR signaling pathway. J Neurochem 2023; 167:582-599. [PMID: 37858960 DOI: 10.1111/jnc.15984] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 09/03/2023] [Accepted: 09/26/2023] [Indexed: 10/21/2023]
Abstract
Bilirubin encephalopathy is a severe complication of neonatal hyperbilirubinemia. With elevation of serum unconjugated bilirubin (UCB) levels, UCB crosses the blood-brain barrier and possibly leads to neurological dysfunction. Neuroinflammation is recognized as a prominent pathological feature in bilirubin encephalopathy. Recent studies have suggested that autophagy plays a crucial role in the inflammatory response. However, the potential effect of microglial autophagy in the pathogenesis of bilirubin encephalopathy remains uncertain. The in vitro findings verified that in primary cultured microglia, UCB significantly reduced the ratio of LC3B-II to LC3B-I and downregulated the expression of ATG5, Beclin-1, and ATG7, while increasing the expression of p62/SQSTM1. The results showed that UCB could decrease the number of mCherry-EGFP-LC3 positive puncta, even when chloroquine (CQ) was applied to block the microglial autophagy flux. Mechanistically, UCB was found to upregulate the expression of TLR4 and increase the phosphorylation levels of Akt and mammalian target of rapamycin (mTOR). Promoting microglial autophagy by treatment with Rapamycin (RAPA), an mTOR inhibitor, decreased the levels of NOD-like receptor protein 3 (NLRP3) inflammasome components and IL-1β, rescued microglial overactivation, and improved neurological functions. These data indicated that UCB could impact microglial autophagy via the Akt-mTOR signaling pathway and synergistically promote neuroinflammatory responses. Enhancing autophagy might disrupt the assembly of NLRP3 inflammasome, attenuate UCB-induced neuroinflammation, and improve the prognosis of model rats with bilirubin encephalopathy. In conclusion, this study implies that regulating microglial autophagy might be a promising therapeutic strategy for bilirubin encephalopathy.
Collapse
Affiliation(s)
- Ling Li
- Department of Neonatology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China
- Chongqing Key Laboratory of Child Infection and Immunity, Chongqing, China
| | - Siyu Li
- Department of Neonatology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China
- Chongqing Key Laboratory of Child Infection and Immunity, Chongqing, China
| | - Zhifan Pan
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China
- Chongqing Key Laboratory of Child Infection and Immunity, Chongqing, China
| | - Yan Zhang
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China
- Chongqing Key Laboratory of Child Infection and Immunity, Chongqing, China
| | - Ziyu Hua
- Department of Neonatology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China
| |
Collapse
|
11
|
Hao W, Feng C. Research progress on pyroptosis and its effect on the central nervous system. Neurobiol Dis 2023; 188:106333. [PMID: 39491175 DOI: 10.1016/j.nbd.2023.106333] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 10/18/2023] [Accepted: 10/23/2023] [Indexed: 11/05/2024] Open
Abstract
Pyroptosis is an inflammatory and lysis type of programmed cell death. In the canonical pyroptosis signaling pathway, the NLRP3 inflammasome activates inflammatory caspase-1, which then shears cut the executor protein GSDMD. The N domains of GSDMD move to heterogeneous membranes, form pores, and release inflammatory cytokines IL-1β and IL-18, causing cell membrane swelling and rupture. Pyroptosis is mainly regulated by the key proteins in the signaling pathway, including inflammasome, caspase-1, GSDMD, IL-1β, and IL-18, as well as their agonists and inhibitors. Appropriate pyroptosis can improve host defense mechanisms, while excessive pyroptosis would derive pathological effects on central nervous system, leding to neuroinflammatory response, blood-brain barrier damage, and cognitive disfunction.
Collapse
Affiliation(s)
- Wudi Hao
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, No.36 Sanhao Street, Heping District, Shenyang 110004, China
| | - Cong Feng
- Laboratory of Research in Parkinson's Disease and Related Disorders, Health Science Institute, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang 110122, China.
| |
Collapse
|
12
|
Li Z, Shi Y, Wang Y, Qi H, Chen H, Li J, Li L. Cadmium-induced pyroptosis is mediated by PERK/TXNIP/NLRP3 signaling in SH-SY5Y cells. ENVIRONMENTAL TOXICOLOGY 2023; 38:2219-2227. [PMID: 37300869 DOI: 10.1002/tox.23861] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/10/2023] [Accepted: 05/28/2023] [Indexed: 06/12/2023]
Abstract
Cadmium (Cd) is a hypertoxic heavy metal that may be exposed to environmental pollutants by humans and animals. It can lead to cognitive disfunction, and is linked to neurodegenerative diseases. Cadmium reportedly can induce endoplasmic reticulum (ER) stress, but few studies have concentrated on it in nerve cells, and the connection between ER stress and neuroinflammation. In this study, in vitro experiments on SH-SY5Y neuroblastoma cells were carried out. We aimed at exploring whether Cd attributed to the cell pyroptosis and the role of PERK in promoting this form of cell damage which can induce strong inflammatory responses. Our results demonstrated that CdCl2 treatment induced excess reactive oxygen species (ROS) production, caused significant modifications in the expression of PERK and increased TXNIP, NLRP3, IL-1β, IL-18, and caspase1 in SH-SY5Y cells. In addition, scavenging ROS with N-acetylcysteine or inhibiting the expression of PERK by using GSK2606414, rescued the SH-SY5Y cells from cadmium-induced pyroptosis. In conclusion, the results suggest that Cd induces pyroptotic death of SH-SY5Y cells through ER stress, and this may be the potential mechanism of Cd incurring neurological diseases.
Collapse
Affiliation(s)
- Zhihui Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, Hubei Province Key Laboratory of Biotechnology of Chinese Traditional Medicine, School of Life Science, Hubei University, Wuhan, China
- Brain Science and Advanced Technology Institute, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, China
| | - Yan Shi
- Brain Science and Advanced Technology Institute, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, China
| | - Yougang Wang
- Brain Science and Advanced Technology Institute, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, China
| | - Haomin Qi
- Brain Science and Advanced Technology Institute, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, China
| | - Haiyu Chen
- Brain Science and Advanced Technology Institute, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, China
| | - Jinquan Li
- Brain Science and Advanced Technology Institute, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, China
| | - Li Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, Hubei Province Key Laboratory of Biotechnology of Chinese Traditional Medicine, School of Life Science, Hubei University, Wuhan, China
| |
Collapse
|
13
|
Sun S, Yu S, Yu H, Yao G, Guo X, Zhao F, Li J, Wang P. The pyroptosis mechanism of ototoxicity caused by unconjugated bilirubin in neonatal hyperbilirubinemia. Biomed Pharmacother 2023; 165:115162. [PMID: 37467648 DOI: 10.1016/j.biopha.2023.115162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 07/02/2023] [Accepted: 07/11/2023] [Indexed: 07/21/2023] Open
Abstract
When activated by unconjugated bilirubin (UCB), inflammatory mediators such as IL - 18 and TNF contribute to the neurotoxicity and ototoxicity observed in severe neonatal hyperbilirubinemia. However, in cell and molecular level, the regulation and mechanism of UCB-induced ototoxicity are remained unclear. In this study, 7-day-old mammary rats were exposed to various concentrations of UCB to imitate the infant auditory damage. The auditory brainstem response result (ABR) indicated severe hearing loss, which occurred with increasing concentration. Morphological analysis of organotypic cochlear cultures treated with different concentrations of UCB indicated that auditory nerve fibers (ANF) were demyelinated and the density of spiral ganglion neurons (SGN) were decreased. In addition, HEI-OC1 cells treated with different concentrations of UCB showed severe necrosis by Flow Cytometry. The morphologic feature of pyroptosis has been observed by scanning electronic microscope. Cleaved Caspase-1, GSDMD and NLRP3 expression were significantly increased in cochlear explants with UCB-induced. To further clarify the molecular mechanism of UCB-induced inner ear cell pyroptosis, specific inhibitors of pyroptosis were applied, the protein associated with pyrotosis such as Cleaved Caspase-1, GSDMD, ASC, IL-18 and NLRP3 were significantly lower than the group with UCB alone. All the data above indicated that ERK /NLRP3/GSDMD signaling pathway involved in UCB-induced ototoxicity.
Collapse
Affiliation(s)
- Shihan Sun
- Department of Otolaryngology-Head and Neck Surgery, First Hospital of Jilin University, Changchun 130021, China; Bethune First Clinical Medical College, Jilin University, Changchun, Jilin, China
| | - Shuyuan Yu
- Department of Otolaryngology-Head and Neck Surgery, First Hospital of Jilin University, Changchun 130021, China
| | - Hong Yu
- Department of Otolaryngology-Head and Neck Surgery, First Hospital of Jilin University, Changchun 130021, China
| | - Gang Yao
- Department of Neurology, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Xinyi Guo
- Department of Otolaryngology-Head and Neck Surgery, First Hospital of Jilin University, Changchun 130021, China
| | - Fengyang Zhao
- Bethune First Clinical Medical College, Jilin University, Changchun, Jilin, China
| | - Jiannan Li
- Bethune First Clinical Medical College, Jilin University, Changchun, Jilin, China
| | - Ping Wang
- Department of Otolaryngology-Head and Neck Surgery, First Hospital of Jilin University, Changchun 130021, China.
| |
Collapse
|
14
|
Zhou J, Liao S, Zhang C, Luo J, Li G, Li H. Expression profiling of N6-methyladenosine-modified mRNA in PC12 cells in response to unconjugated bilirubin. Mol Biol Rep 2023; 50:6703-6715. [PMID: 37378749 PMCID: PMC10374823 DOI: 10.1007/s11033-023-08576-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023]
Abstract
BACKGROUND Abnormal methylation of N6-methyladenosine (m6A) is reportedly associated with central nervous system disorders. However, the role of m6A mRNA methylation in unconjugated bilirubin (UCB) neurotoxicity requires further research. METHODS Rat pheochromocytoma PC12 cells treated with UCB were used as in vitro models. After the PC12 cells were treated with UCB (0, 12, 18, and 24 µM) for 24 h, the total RNA m6A levels were measured using an m6A RNA methylation quantification kit. The expression of m6A demethylases and methyltransferases was detected through western blotting. We determined the m6A mRNA methylation profile in PC12 cells exposed to UCB (0 and 18 µM) for 24 h using methylated RNA immunoprecipitation sequencing (MeRIP-seq). RESULTS Compared with the control group, UCB (18 and 24 µM) treatment decreased the expression of the m6A demethylase ALKBH5 and increased the expression of the methyltransferases METTL3 and METTL14, which resulted in an increase in the total m6A levels in PC12 cells. Furthermore, 1533 m6A peaks were significantly elevated and 1331 peaks were reduced in the UCB (18 µM)-treated groups compared with those in the control group. Genes with differential m6A peaks were mainly enriched in protein processing in the endoplasmic reticulum, ubiquitin-mediated proteolysis, cell cycle, and endocytosis. Through combined analysis of the MeRIP-seq and RNA sequencing data, 129 genes with differentially methylated m6A peaks and differentially expressed mRNA levels were identified. CONCLUSION Our study suggests that the modulation of m6A methylation modifications plays a significant role in UCB neurotoxicity.
Collapse
Affiliation(s)
- Jinfu Zhou
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, 350122, Fujian Province, China
- Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, 350001, Fujian Province, China
| | - Sining Liao
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, 350122, Fujian Province, China
- Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, 350122, Fujian Province, China
| | - Chenran Zhang
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, 350122, Fujian Province, China
- Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, 350122, Fujian Province, China
| | - Jinying Luo
- Obstetrics and Gynecology Department, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, 350001, Fujian Province, China
| | - Guilin Li
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, 350122, Fujian Province, China
- Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, 350122, Fujian Province, China
| | - Huangyuan Li
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, 350122, Fujian Province, China.
- Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, 350122, Fujian Province, China.
- Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, 350122, Fujian Province, China.
| |
Collapse
|
15
|
Ercan I, Micili SC, Soy S, Engur D, Tufekci KU, Kumral A, Genc S. Bilirubin induces microglial NLRP3 inflammasome activation in vitro and in vivo. Mol Cell Neurosci 2023; 125:103850. [PMID: 36965549 DOI: 10.1016/j.mcn.2023.103850] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 03/19/2023] [Accepted: 03/20/2023] [Indexed: 03/27/2023] Open
Abstract
Despite current advancements in neonatal care, hyperbilirubinemia resulting in bilirubin-induced neurological dysfunction (BIND) continues to be one of the major reasons of mortality or lifelong disability. Although the exact mechanisms underlying brain injury upon bilirubin exposure remains unelucidated, inflammation is considered to be one of the major contributors to BIND. This study investigates the role of the NLRP3 inflammasome in bilirubin-induced injury using in vitro and in vivo models. We successfully demonstrated that the upregulation of NLRP3 expression is significantly associated with the release of active caspase-1 and IL-1β in N9 microglial cells exposed to bilirubin. Functional in vitro experiments with NLRP3 siRNA confirms that bilirubin-induced inflammasome activation and cell death are mediated by the NLRP3 inflammasome. Following injection of bilirubin into the cisterna magna of a neonatal mouse, activation of the NLRP3 inflammasome and microglia were determined by double staining with Iba1-NLRP3 and Iba1-Caspase-1. Upon injection of bilirubin into the cisterna magna, neuronal loss was significantly higher in the wild-type mouse compared to Nlrp3-/- and Caspase-1-/- strains. Collectively, these data indicate that NLRP3 inflammasome has a crucial role in microglial activation and bilirubin-induced neuronal damage.
Collapse
Affiliation(s)
- Ilkcan Ercan
- Izmir International Biomedicine and Genome Institute, Izmir, Turkey; Izmir Biomedicine and Genome Center, Izmir, Turkey
| | - Serap Cilaker Micili
- Department of Histology and Embryology, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Sila Soy
- Department of Histology and Embryology, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Defne Engur
- Izmir International Biomedicine and Genome Institute, Izmir, Turkey; Department of Neonatology, Tepecik Training and Research Hospital, Izmir, Turkey
| | - Kemal Ugur Tufekci
- Vocational School of Health Services, Izmir Democracy University, Izmir, Turkey,; Center for Brain and Neuroscience Research, Izmir Democracy University, Izmir, Turkey
| | | | - Sermin Genc
- Izmir Biomedicine and Genome Center, Izmir, Turkey; Department of Neuroscience, Institute of Health Sciences, Dokuz Eylul University, Izmir, Turkey.
| |
Collapse
|
16
|
Li S, Huang H, Zhang Y, Li L, Hua Z. Bilirubin Induces A1-Like Reactivity of Astrocyte. Neurochem Res 2023; 48:804-815. [PMID: 36346495 DOI: 10.1007/s11064-022-03810-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 10/04/2022] [Accepted: 10/26/2022] [Indexed: 11/09/2022]
Abstract
Astrocytes play an important role in the pathogenesis of bilirubin neurotoxicity, and activated astrocytes might be potential mediators of neuroinflammation processes contributing to neuronal cell death and tissue injury. Recent studies have reported that activated microglia induce two types of reactive astrocytes. A1 astrocytes could cause neuronal death and synaptic damage, as well as impaired phagocytosis. Therefore, the purpose of this study was to investigate whether unconjugated bilirubin (UCB)-induced A1-like astrocytes take on a neuroinflammation type and the underlying regulatory mechanisms. In this study, primary cortical astrocytes were treated with UCB in vitro. We detected the expression of complement component 3 (C3), S100 calcium binding protein A10 (S100A10), nuclear factor kappa B (NF-κB), NLR family pyrin domain containing 3 (NLRP3), activated caspase-1, gasdermin D N-terminal (GSDMD-N), PSD95, synaptophysin (SYP), the transcription levels of interleukin (IL)-1β and IL-18, and the survival rate of astrocytes after UCB treatment. The results showed that an increase in C3 was accompanied by a decrease in S100A10, and that A1-like astrocytes were functionally expressed after UCB stimulation. Meanwhile, the NF-κB and caspase-1 pathways were activated after UCB stimulation. After adding the NF-κB-specific inhibitor trans-activator of transcriptional-NEMO-binding domain (TAT-NBD) and caspase-1 specific inhibitor VX-765, the survival rate of astrocytes and neurons increased, whereas the protein expression of C3, NF-κB, NLRP3, activated caspase-1, and GSDMD-N decreased, and the mRNA levels of IL-1β and IL-18 reduced. Thus, we concluded that UCB stimulates the activation of A1-like astrocytes. Inhibition of NF-κB and caspase-1 alleviated A1-like astrocytes and exerted anti-inflammatory protective effects.
Collapse
Affiliation(s)
- Siyu Li
- Department of Neonatology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Child Infection and Immunity, Chongqing, 400014, China
| | - Hongmei Huang
- Department of Neonatology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Child Infection and Immunity, Chongqing, 400014, China
| | - Yan Zhang
- Department of Neonatology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Child Infection and Immunity, Chongqing, 400014, China
| | - Ling Li
- Department of Neonatology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Child Infection and Immunity, Chongqing, 400014, China
| | - Ziyu Hua
- Department of Neonatology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Child Infection and Immunity, Chongqing, 400014, China.
| |
Collapse
|
17
|
Yin J, Gong G, Wan W, Liu X. Pyroptosis in spinal cord injury. Front Cell Neurosci 2022; 16:949939. [PMID: 36467606 PMCID: PMC9715394 DOI: 10.3389/fncel.2022.949939] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 11/03/2022] [Indexed: 10/21/2023] Open
Abstract
Spinal cord injury (SCI) often brings devastating consequences to patients and their families. Pathophysiologically, the primary insult causes irreversible damage to neurons and glial cells and initiates the secondary damage cascade, further leading to inflammation, ischemia, and cells death. In SCI, the release of various inflammatory mediators aggravates nerve injury. Pyroptosis is a new pro-inflammatory pattern of regulated cell death (RCD), mainly mediated by caspase-1 or caspase-11/4/5. Gasdermins family are pore-forming proteins known as the executor of pyroptosis and the gasdermin D (GSDMD) is best characterized. Pyroptosis occurs in multiple central nervous system (CNS) cell types, especially plays a vital role in the development of SCI. We review here the evidence for pyroptosis in SCI, and focus on the pyroptosis of different cells and the crosstalk between them. In addition, we discuss the interaction between pyroptosis and other forms of RCD in SCI. We also summarize the therapeutic strategies for pyroptosis inhibition, so as to provide novel ideas for improving outcomes following SCI.
Collapse
Affiliation(s)
- Jian Yin
- Department of Orthopedics, The Affiliated Jiangning Hospital With Nanjing Medical University, Nanjing, China
- Department of Orthopedics, Shanghai General Hospital of Nanjing Medical University, Shanghai, China
| | - Ge Gong
- Department of Geriatrics, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Wenhui Wan
- Department of Geriatrics, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Xinhui Liu
- Department of Orthopedics, The Affiliated Jiangning Hospital With Nanjing Medical University, Nanjing, China
| |
Collapse
|
18
|
Freezing-induced chemical crosslinking to fabricate nanocellulose-based cryogels for efficient bilirubin removal. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
19
|
Dascal R, Uhanova J, Minuk GY. Unconjugated hyperbilirubinemia may exacerbate certain underlying chronic liver diseases. CANADIAN LIVER JOURNAL 2022; 5:445-452. [PMID: 38144403 PMCID: PMC10735202 DOI: 10.3138/canlivj-2022-0005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 04/05/2022] [Accepted: 04/11/2022] [Indexed: 12/26/2023]
Abstract
BACKGROUND: Negative correlations have been described between elevated serum unconjugated bilirubin levels and the prevalence/severity of various chronic inflammatory conditions. Whether a similar association exists for patients with unconjugated hyperbilirubinemia (UCB) and underlying chronic liver diseases (CLD) has yet to be reported. The aim of this study was to document hepatic necro-inflammatory disease activity and fibrosis in CLD patients with and without UCB and otherwise normal liver function tests (albumin and INR). METHODS: Necro-inflammatory disease activity was assessed by serum aminotransferase levels and fibrosis by APRI and FIB-4 calculations. UCB patients were matched 1:2 by age, gender, and underlying CLD to patients with normal bilirubin levels. RESULTS: From a database of 9,745 CLD patients, 208 (2.1%) had UCB and 399 served as matched controls. Overall, UCB patients had significantly higher serum aminotransferase levels, APRI, and FIB-4 scores. The differences were driven by patients with underlying chronic viral or immune mediated liver disorders rather than non-alcoholic fatty liver disease, alcohol-related liver disease, or 'other' CLDs. CONCLUSIONS: These results suggest UCB is associated with increased rather than decreased hepatic necro-inflammatory disease activity and fibrosis in patients with certain CLDs.
Collapse
Affiliation(s)
- Roman Dascal
- Section of Hepatology, Department of Medicine, Winnipeg, Manitoba, Canada
| | - Julia Uhanova
- Section of Hepatology, Department of Medicine, Winnipeg, Manitoba, Canada
| | - Gerald Y Minuk
- Section of Hepatology, Department of Medicine, Winnipeg, Manitoba, Canada
- Department of Pharmacology and Therapeutics, Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
20
|
Wang H, Zhou X, Li C, Yan S, Feng C, He J, Li Z, Tu C. The emerging role of pyroptosis in pediatric cancers: from mechanism to therapy. J Hematol Oncol 2022; 15:140. [PMID: 36209102 PMCID: PMC9547461 DOI: 10.1186/s13045-022-01365-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 10/04/2022] [Indexed: 11/18/2022] Open
Abstract
Pediatric cancers are the driving cause of death for children and adolescents. Due to safety requirements and considerations, treatment strategies and drugs for pediatric cancers have been so far scarcely studied. It is well known that tumor cells tend to progressively evade cell death pathways, which is known as apoptosis resistance, one of the hallmarks of cancer, dominating tumor drug resistance. Recently, treatments targeting nonapoptotic cell death have drawn great attention. Pyroptosis, a newly specialized form of cell death, acts as a critical physiological regulator in inflammatory reaction, cell development, tissue homeostasis and stress response. The action in different forms of pyroptosis is of great significance in the therapy of pediatric cancers. Pyroptosis could be induced and consequently modulate tumorigenesis, progression, and metastasis if treated with local or systemic therapies. However, excessive or uncontrolled cell death might lead to tissue damage, acute inflammation, or even cytokine release syndrome, which facilitates tumor progression or recurrence. Herein, we aimed to describe the molecular mechanisms of pyroptosis, to highlight and discuss the challenges and opportunities for activating pyroptosis pathways through various oncologic therapies in multiple pediatric neoplasms, including osteosarcoma, neuroblastoma, leukemia, lymphoma, and brain tumors.
Collapse
Affiliation(s)
- Hua Wang
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China.,Xiangya School of Medicine, Central South University, Changsha, 410011, Hunan, China
| | - Xiaowen Zhou
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China.,Xiangya School of Medicine, Central South University, Changsha, 410011, Hunan, China
| | - Chenbei Li
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Shuxiang Yan
- Xiangya School of Medicine, Central South University, Changsha, 410011, Hunan, China
| | - Chengyao Feng
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Jieyu He
- Department of Geriatrics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Zhihong Li
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China. .,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China.
| | - Chao Tu
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China. .,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China.
| |
Collapse
|
21
|
Lu Y, Li B, Xu A, Liang X, Xu T, Jin H, Xie Y, Wang R, Liu X, Gao X, Han Y, Zeng J. NF-κB and AP-1 are required for the lipopolysaccharide-induced expression of MCP-1, CXCL1, and Cx43 in cultured rat dorsal spinal cord astrocytes. Front Mol Neurosci 2022; 15:859558. [PMID: 35966011 PMCID: PMC9368326 DOI: 10.3389/fnmol.2022.859558] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 06/28/2022] [Indexed: 11/13/2022] Open
Abstract
TLR4 and Cx43 signaling in dorsal spinal cord has been shown to be involved in the development of neuropathic pain. However, it is not clear whether TLR4 signaling is associated with the expression of MCP-1, CXCL1, and Cx43 in LPS (lipopolysaccharide)-treated rat dorsal spinal cord astrocytes under in vitro condition. In the present study, we found that TLR4 antagonist TAK-242 significantly inhibited LPS-induced MCP-1, CXCL1, and Cx43 expression, suggesting the role of TLR4 in response to LPS in cultured dorsal spinal cord astrocytes. Application of TAK-242 significantly blocked LPS-induced NF-κB and AP-1 activity and the expression of MCP-1, CXCL1 and Cx43. Furthermore, NF-κB inhibitor PDTC and AP-1 inhibitor SR11302 significantly blocked LPS-induced MCP-1, CXCL1, and Cx43 expression. DNA-binding activity of NF-κB, its effect on MCP-1 expression was suppressed by PDTC and SR11302. On the other hand, DNA-binding activity of AP-1, its effect on CXCL1 or Cx43 expression was also suppressed by PDTC and SR11302. In addition, PDTC was found to inhibit the nuclear translocation of AP-1 and the expression of c-Jun induced by LPS, which suggested that NF-κBp65 is essential for the AP-1 activity. Similarly, SR11302 significantly blocked LPS-induced the nuclear translocation of NF-κBp65 and the expression of NF-κBp65 induced by LPS. Pretreatment with CBX, Gap26, or Gap19 (Cx43 blockers) significantly inhibited abnormal astrocytic hemichannel opening and chemokines (MCP-1 and CXCL1) release in LPS-stimulated astrocytes. In summary, cell culture experiments revealed that LPS stimulation could evoke TLR4 signaling with the subsequent activation of NF-κB and AP-1, resulting in the expression of MCP-1, CXCL1, and Cx43. TLR4 activation increased Cx43 hemichannel, but not gap-junction activities and induced the release of the MCP-1 and CXCL1 from astrocytes via Cx43 hemichannel. These findings may help us to understand the role of astrocytic signaling in inflammatory response within dorsal spinal cord tissue.
Collapse
|
22
|
Jiedu-Yizhi Formula Improves Cognitive Impairment in an A β 25-35-Induced Rat Model of Alzheimer's Disease by Inhibiting Pyroptosis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:6091671. [PMID: 35341145 PMCID: PMC8942661 DOI: 10.1155/2022/6091671] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 02/19/2022] [Indexed: 12/28/2022]
Abstract
Jiedu-Yizhi formula (JDYZF) is prescribed for the treatment of Alzheimer's disease (AD) and was created by Jixue Ren, a master of traditional Chinese medicine, based on the "marrow deficiency and toxin damage" theory. In our clinic, this formula has been used for the treatment of AD for many years and has achieved good results. However, the mechanism by which JDYZF improves cognitive impairment has not been determined. In this study, we confirmed that orally administered JDYZF reversed the cognitive deficits in an Aβ 25-35-induced rat model, increased the number of neurons in the hippocampal CA1 area, improved their structure, decreased the deposition of β-amyloid (Aβ), reduced the expression of proteins related to the NLRP3/Caspase-1/GSDMD and LPS/Caspase-11/GSDMD pyroptosis pathways, and reduced the levels of interleukin 1β (IL-1β) and IL-18, thereby inhibiting the inflammatory response. In addition, JDYZF exerted no hepatotoxicity in rats. In short, these results provide scientific support for the clinical use of JDYZF to improve the cognitive function of patients with AD.
Collapse
|
23
|
Tricalcium phosphate particles promote pyroptotic death of calvaria osteocytes through the ROS/NLRP3/Caspase-1 signaling axis in amouse osteolysis model. Int Immunopharmacol 2022; 107:108699. [PMID: 35305384 DOI: 10.1016/j.intimp.2022.108699] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/20/2022] [Accepted: 03/10/2022] [Indexed: 12/18/2022]
Abstract
Wear particles-induced inflammatory osteolysis, a major factor of aseptic loosening affects the long-term survival of orthopedic prostheses. Increasing observations have demonstrated that osteocytes, making up over 95% of all the bone cells, is involved in wear particle-induced periprosthetic osteolysis, but its mechanism remains unclear. In the present study, we embedded micro-sized tricalcium phosphate (TCP) particles (30 mg) under the periosteum around the middle suture of the mouse calvaria to establish a calvarial osteolysis model and investigated the biological effects of the particles on calvaria osteocytes in vivo. Results showed that TCP particles induced pyroptosis and activated the NLRP3 inflammasome in calvaria osteocytes, which was confirmed by obvious increases in empty lacunae, protein expressions of speck-like protein containing CARD (ASC), NOD-like receptor protein 3 (NLRP3), cleaved caspase-1 (Casp-1 p20) and cleaved gasdermin D (GSDMD-N), and resulted in elevated ratios of Casp-1 p20/Casp-1 and interleukin (IL)-1β/pro-IL-1β. Simultaneously, TCP particles enhanced serum levels of lactate dehydrogenase (LDH) and IL-1β. Furthermore, the pyroptotic effect was reversed by the Casp-1 inhibitor VX765 or the NLRP3 inhibitor MCC950. In addition, TCP particles increased the levels of intracellular reactive oxygen species (ROS) and malonaldehyde (MDA), whereas decreased the antioxidant enzyme nuclear factor E2-related factor 2 (Nrf2) level, leading to oxidative stress in calvaria osteocytes; the ROS scavenger N-acetylcysteine (NAC) attenuated these effects of pyroptotic death and the NLPR3 activation triggered by TCP particles. Collectively, our data suggested that TCP particles promote pyroptotic death of calvaria osteocytes through the ROS/NLRP3/Caspase-1 signaling axis, contributing to osteoclastogenesis and periprosthetic osteolysis.
Collapse
|
24
|
Mechanisms of Vitamin C Regulating Immune and Inflammation Associated with Neonatal Hypoxic-Ischemic Encephalopathy Based on Network Pharmacology and Molecular Simulation Technology. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:4904325. [PMID: 35198034 PMCID: PMC8860524 DOI: 10.1155/2022/4904325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 01/02/2022] [Accepted: 01/19/2022] [Indexed: 11/29/2022]
Abstract
Background There are still controversies about the curative effect of vitamin C in treating HIE, and its mechanism of action is not entirely clear. This study is designed to explore the potential molecular mechanism of vitamin C in treating neonatal hypoxic ischemic encephalopathy (HIE). Methods The effect targets of vitamin C and the pathogenic targets of neonatal HIE were obtained via retrieval of public databases to screen out the molecular targets of vitamin C acting on neonatal HIE. Gene Ontology (GO) functional annotations and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were performed on the main targets. Vitamin C and the optimum target structural components are subjected to molecular docking and molecular dynamics simulation analysis via computer software so as to verify their binding activity and stability. Result Based on 16 overlapping targets of vitamin C and HIE, seven main targets were identified in this study. According to GO and KEGG analysis, molecular functions (top 25 items) and signal pathways (21 items) related to inflammatory reaction, immune response, and cell transcriptional control may be potential pathways for vitamin C to treat neonatal HIE. Molecular docking and molecular dynamics simulation were adopted to definitively determine the 4 optimum core target spots. Conclusion The efficacy of vitamin C on HIE is involved in the immunoregulation and inflammation-related functional processes and signal pathways. These molecular mechanisms, including core targets, will contribute to the clinical practice of neonatal HIE in the future.
Collapse
|
25
|
Effects of Hypoxic Environment on Periodontal Tissue through the ROS/TXNIP/NLRP3 Inflammasome Pathway. BIOMED RESEARCH INTERNATIONAL 2022; 2022:7690960. [PMID: 35083332 PMCID: PMC8786523 DOI: 10.1155/2022/7690960] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 11/30/2021] [Accepted: 12/08/2021] [Indexed: 11/23/2022]
Abstract
There is low evidence for the possible association between obstructive sleep apnea-hypopnea syndrome (OSAHS) and periodontitis, necessitating further research. This study was aimed at investigating this association. For the in vitro study, 8-day-old Wistar rats were divided into the unilateral nasal obstruction group (UNO) and the sham surgery group (SHAM). Rats in the former group were subjected to UNO by cauterization of the external nostril at the age of 8 days. Immunofluorescence analysis, quantitative real-time polymerase chain reaction, and western blot were performed to assess the expression of thioredoxin-interacting protein (TXNIP), NLR family pyrin domain-containing 3 (NLRP3) inflammasome-associated factors, and interleukin-1β (IL-1β). Throughout the experimental period, the weights of rats in the two groups were similar. The mRNA and protein expression of TXNIP and IL-1β was significantly higher in the UNO than in the SHAM groups. Compared with SHAM, NLRP3 inflammasome-associated factors were activated in the UNO group. For the in vitro study, a cellular hypoxia model was established by treating human periodontal ligament cells (HPDLCs) with cobalt chloride. The studies showed that hypoxia can induce an excessive production and accumulation of reactive oxygen species (ROS) in HPDLCs and induce abnormal expression of TNXIP, NLRP3 inflammasome-related factors, and IL-1β. More importantly, N-acetylcysteine induced reduction of ROS in HPDLCs, downregulated TXNIP expression, inhibited the expression and aggregation of NLRP3 inflammasome-related factors, and abrogated the inflammatory response to hypoxia. In conclusion, hypoxia-induced ROS can activate the TXNIP/NLRP3 inflammasome signaling pathway in response to oxidative stress, resulting in the increased expression of inflammatory factors in HPDLCs. Our findings provide evidence for the mechanism underlying the possible association between OSAHS and periodontal disease.
Collapse
|
26
|
Zhang Y, Yan M, Shan W, Zhang T, Shen Y, Zhu R, Fang J, Mao H. Bisphenol A induces pyroptotic cell death via ROS/NLRP3/Caspase-1 pathway in osteocytes MLO-Y4. Food Chem Toxicol 2021; 159:112772. [PMID: 34929351 DOI: 10.1016/j.fct.2021.112772] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/27/2021] [Accepted: 12/15/2021] [Indexed: 02/07/2023]
Abstract
Bisphenol A (BPA), a ubiquitous endocrine-disrupting chemical, is commonly used as a plasticizer to manufacture various food packaging materials. Evidence has demonstrated that BPA disturbed bone health. However, few studies focused on the effect of BPA on osteocytes, making up over 95% of all the bone cells. Here, we reported that BPA inhibited the cell viability of MLO-Y4 cells, and increased apoptosis in a dose-dependent manner. Furthermore, BPA up-regulated protein expressions of speck-like protein containing CARD (ASC), NLRP3, cleaved caspase-1 (Casp-1 p20) and cleaved gasdermin D (GSDMD-N), and increased the ratios of interleukin (IL)-1β/pro-IL-1β and IL-18/pro-IL-18 in MLO-Y4 cells. BPA enhanced levels of lactate dehydrogenase (LDH), IL-1β and IL-18 in culture supernatants. This pyroptotic death and the NLPR3 inflammasome activation were reversed by the caspase-1 inhibitor VX765 or the NLRP3 inflammasome inhibitor MCC950. Furthermore, BPA stimulated the production of intracellular reactive oxygen species (ROS), mitochondrial ROS (mtROS), elevated malondialdehyde (MDA) level and decreased superoxide dismutase (SOD) activity, which led to oxidative damage in MLO-Y4 cells. The ROS scavenger N-acetylcysteine (NAC) or the mitochondrial antioxidant Mito-TEMPO inhibited the NLPR3 inflammasome activation and pyroptotic death induced by BPA. Collectively, our data suggest that BPA causes pyroptotic death of osteocytes via ROS/NLRP3/Caspase-1 pathway.
Collapse
Affiliation(s)
- Yun Zhang
- College of Medicine, Shaoxing University, Huancheng West Road 508, Shaoxing, 312000, China.
| | - Ming Yan
- School of Automation, HangZhou Dianzi University, Baiyang Street 2 Avenue 1158, Hangzhou, 310018, China.
| | - Weiyan Shan
- College of Medicine, Shaoxing University, Huancheng West Road 508, Shaoxing, 312000, China
| | - Tao Zhang
- College of Medicine, Shaoxing University, Huancheng West Road 508, Shaoxing, 312000, China
| | - Yunchen Shen
- College of Medicine, Shaoxing University, Huancheng West Road 508, Shaoxing, 312000, China
| | - Ruirong Zhu
- College of Medicine, Shaoxing University, Huancheng West Road 508, Shaoxing, 312000, China
| | - Jian Fang
- College of Medicine, Shaoxing University, Huancheng West Road 508, Shaoxing, 312000, China
| | - Hongjiao Mao
- College of Medicine, Shaoxing University, Huancheng West Road 508, Shaoxing, 312000, China
| |
Collapse
|
27
|
Chai Y, Liu Z, Du Y, Wang L, Lu J, Zhang Q, Han W, Wang T, Yu Y, Sun L, Ou L. Hydroxyapatite reinforced inorganic-organic hybrid nanocomposite as high-performance adsorbents for bilirubin removal in vitro and in pig models. Bioact Mater 2021; 6:4772-4785. [PMID: 34095628 PMCID: PMC8144535 DOI: 10.1016/j.bioactmat.2021.05.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 04/15/2021] [Accepted: 05/10/2021] [Indexed: 12/20/2022] Open
Abstract
Highly efficient removal of bilirubin from whole blood directly by hemoperfusion for liver failure therapy remains a challenge in the clinical field due to the low adsorption capacity, poor mechanical strength and low biocompatibility of adsorbents. In this work, a new class of nanocomposite adsorbents was constructed through an inorganic-organic co-crosslinked nanocomposite network between vinyltriethoxysilane (VTES)-functionalized hydroxyapatite nanoparticles (V-Hap) and non-ionic styrene-divinylbenzene (PS-DVB) resins (PS-DVB/V-Hap) using suspension polymerization. Notably, our adsorbent demonstrated substantially improved mechanical performance compared to the pure polymer, with the hardness and modulus increasing by nearly 3 and 2.5 times, respectively. Moreover, due to the development of a mesoporous structure, the prepared PS-DVB/V-Hap3 exhibited an ideal adsorption capacity of 40.27 mg g-1. More importantly, the obtained adsorbent beads showed outstanding blood compatibility and biocompatibility. Furthermore, in vivo extracorporeal hemoperfusion verified the efficacy and biosafety of the adsorbent for directly removing bilirubin from whole blood in pig models, and this material could potentially prevent liver damage and improve clinical outcomes. Taken together, the results suggest that PS-DVB/V-Hap3 beads can be used in commercial adsorption columns to threat hyperbilirubinemia patients through hemoperfusion, thus replacing the existing techniques where plasma separation is initially required.
Collapse
Affiliation(s)
- Yamin Chai
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Zhuang Liu
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Yunzheng Du
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Lichun Wang
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Jinyan Lu
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Qian Zhang
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Wenyan Han
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Tingting Wang
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Yameng Yu
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Lisha Sun
- General Hospital, Tianjin Medical University, Tianjin, 300052, China
| | - Lailiang Ou
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| |
Collapse
|
28
|
Peng Q, Bi R, Chen S, Chen J, Li Z, Li J, Jin H, Hu B. Predictive value of different bilirubin subtypes for clinical outcomes in patients with acute ischemic stroke receiving thrombolysis therapy. CNS Neurosci Ther 2021; 28:226-236. [PMID: 34779141 PMCID: PMC8739039 DOI: 10.1111/cns.13759] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 10/26/2021] [Accepted: 10/28/2021] [Indexed: 12/19/2022] Open
Abstract
Aims To explore the association of total bilirubin (TBIL), direct bilirubin (DBIL), and indirect bilirubin (IBIL) levels with, as well as the incremental predictive value of different bilirubin subtypes for, poor outcomes in acute ischemic stroke patients after thrombolysis. Methods We analyzed 588 individuals out of 718 AIS participants, and all patients were followed up at 3 months after thrombolysis. The primary outcome was 3‐month death and major disability (modified Rankin Scale (mRS) score of 3–6). The secondary outcomes were 3‐month mortality (mRS score of 6), moderate‐severe cerebral edema, and symptomatic intracranial hemorrhage (sICH), respectively. Results Elevated DBIL pre‐thrombolysis was associated with an increased risk of primary outcome (OR 3.228; 95% CI 1.595–6.535; p for trend = 0.014) after fully adjustment. Elevated TBIL pre‐thrombolysis showed the similar results (OR 2.185; 95% CI 1.111–4.298; p for trend = 0.047), while IBIL pre‐thrombolysis was not significantly associated with primary outcome (OR 1.895; 95% CI 0.974–3.687; p for trend = 0.090). Multivariable‐adjusted spline regression model showed a positive linear dose‐response relationship between DBIL pre‐thrombolysis and risk of primary outcome (p for linearity = 0.004). Adding DBIL pre‐thrombolysis into conventional model had greater incremental predictive value for primary outcome, with net reclassification improvement (NRI) 95% CI = 0.275 (0.084–0.466) and integrated discrimination improvement (IDI) 95% CI = 0.011 (0.001–0.024). Increased DBIL post‐thrombolysis had an association with primary outcome (OR 2.416; 95%CI 1.184–4.930; p for trend = 0.039), and it also elevated the incremental predictive value for primary outcome, with NRI (95% CI) = 0.259 (0.066–0.453) and IDI (95% CI) = 0.025 (0.008–0.043). Conclusion Increased DBIL pre‐thrombolysis had a stronger association with, as well as greater incremental predictive value for, poor outcomes than TBIL and IBIL did in AIS patients after thrombolysis, which should be understood in the context of retrospective design. The effect of DBIL on targeted populations should be investigated in further researches.
Collapse
Affiliation(s)
- Qiwei Peng
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rentang Bi
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shengcai Chen
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiefang Chen
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhifang Li
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jianzhuang Li
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huijuan Jin
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bo Hu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
29
|
Downregulation of phosphoglycerate mutase 5 improves microglial inflammasome activation after traumatic brain injury. Cell Death Discov 2021; 7:290. [PMID: 34642327 PMCID: PMC8511105 DOI: 10.1038/s41420-021-00686-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 09/20/2021] [Accepted: 09/29/2021] [Indexed: 01/01/2023] Open
Abstract
Traumatic brain injury (TBI) is considered as the most common cause of disability and death, and therefore an effective intervention of cascade pathology of secondary brain injury promptly can be a potential therapeutic direction for TBI prognosis. Further study of the physiological mechanism of TBI is urgent and important. Phosphoglycerate mutase 5 (Pgam5), a mitochondrial protein, mediate mitochondrial homeostasis, cellular senescence, and necroptosis. This study evaluated the effects of Pgam5 on neurological deficits and neuroinflammation of controlled cortical impact-induced TBI mouse model in vivo and LPS + ATP-induced microglia model in vitro. Pgam5 was overexpressed post-TBI. Pgam5 depletion reduced pyroptosis-related molecules and improved microglia activation, neuron damage, tissue lesion, and neurological dysfunctions in TBI mice. RNA-seq analysis and molecular biology experiments demonstrated that Pgam5 might regulate inflammatory responses by affecting the post-translational modification and protein expression of related genes, including Nlrp3, caspase1, Gsdmd, and Il-1β. In microglia, Pgam5-sh abrogated LPS + ATP-induced Il-1β secretion through Asc oligomerization-mediated caspase-1 activation, which was independent of Rip3. The data demonstrate the critical role Pgam5 plays in nerve injury in the progression of TBI, which regulates Asc polymerization and subsequently caspase1 activation, and thus reveals a fundamental mechanism linking microglial inflammasome activation to Asc/caspase1-generated Il-1β-mediated neuroinflammation. Thus, our data indicate Pgam5 worsens physiological and neurological outcomes post-TBI, which may be a potential therapeutic target to improve neuroinflammation after TBI.
Collapse
|
30
|
Hao W, Hao C, Wu C, Xu Y, Wu S, Lu X, Yang J, Jin C. Aluminum impairs cognitive function by activating DDX3X-NLRP3-mediated pyroptosis signaling pathway. Food Chem Toxicol 2021; 157:112591. [PMID: 34614429 DOI: 10.1016/j.fct.2021.112591] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/29/2021] [Accepted: 10/01/2021] [Indexed: 11/16/2022]
Abstract
INTRODUCTION Aluminum is a kind of chemical contaminants in food which can induce neurotoxicity. Aluminum exposure is closely related to neurodegenerative diseases (ND), in which neuroinflammation might involve. However, the molecular mechanism of aluminum-induced neuroinflammation through pyroptosis is not fully clarified yet. MATERIAL AND METHODS The mice model of subacute exposure to aluminum chloride (AlCl3) was established. BV2 microglia cells was treated with AlCl3 in vitro. Resveratrol (Rsv) was adopted as intervention agent. RESULTS Our results showed that aluminum induced cognitive impairment, destroying blood brain barrier (BBB), and causing nerve injury in mice. Meanwhile, aluminum could stimulate nucleotide oligomerization domain-like receptor family pyrin domain containing protein 3 (NLRP3) inflammasome assembly and activate caspase-1 (CASP1), inducing gasdermin D (GSDMD)-mediated pyroptosis signaling, releasing cytokines IL-1β and IL-18, further promoting the activation of glial cells to magnify neuroinflammatory response. Moreover, DEAD-box helicase 3 X-linked (DDX3X) and stress granule RasGAP SH3-domain-binding protein 1 (G3BP1) both participated in neuroinflammation induced by aluminum. When co-treated with Rsv, these injuries were alleviated to some extent. CONCLUSION Aluminum exposure could induce nerve cell pyroptosis and neuroinflammation by DDX3X-NLRP3 inflammasome signaling pathway, which could be rescued via Rsv activating sirtuin 1 (SIRT1).
Collapse
Affiliation(s)
- Wudi Hao
- Department of Toxicology, School of Public Health, China Medical University, Shenyang, 110122, PR China
| | - Chenyu Hao
- Department of Toxicology, School of Public Health, China Medical University, Shenyang, 110122, PR China
| | - Chengrong Wu
- Department of Toxicology, School of Public Health, China Medical University, Shenyang, 110122, PR China
| | - Yuqing Xu
- Department of Toxicology, School of Public Health, China Medical University, Shenyang, 110122, PR China
| | - Shengwen Wu
- Department of Toxicology, School of Public Health, China Medical University, Shenyang, 110122, PR China
| | - Xiaobo Lu
- Department of Toxicology, School of Public Health, China Medical University, Shenyang, 110122, PR China
| | - Jinghua Yang
- Department of Toxicology, School of Public Health, China Medical University, Shenyang, 110122, PR China
| | - Cuihong Jin
- Department of Toxicology, School of Public Health, China Medical University, Shenyang, 110122, PR China.
| |
Collapse
|
31
|
Hu JH, Fan P, Zhang LR, Chen CY, Xu J, Huang J, Lu WT, Zhu SJ, Qiu GP, Xu SY, Ran JH, Gan SW. Neuroglobin expression and function in the temporal cortex of bilirubin encephalopathy rats. Anat Rec (Hoboken) 2021; 305:254-264. [PMID: 34358403 DOI: 10.1002/ar.24734] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 06/10/2021] [Accepted: 06/24/2021] [Indexed: 11/09/2022]
Affiliation(s)
- Jia-Heng Hu
- Institute of Neuroscience, College of Basic Medicine, Chongqing Medical University, Chongqing, China
| | - Ping Fan
- Department of Gynecology and Obstetrics, The Fifth People's Hospital of Chongqing, Chongqing, China
| | - Li-Rong Zhang
- Institute of Neuroscience, College of Basic Medicine, Chongqing Medical University, Chongqing, China
| | - Chun-Yan Chen
- Institute of Neuroscience, College of Basic Medicine, Chongqing Medical University, Chongqing, China
| | - Jin Xu
- Institute of Neuroscience, College of Basic Medicine, Chongqing Medical University, Chongqing, China
| | - Juan Huang
- Institute of Neuroscience, College of Basic Medicine, Chongqing Medical University, Chongqing, China
| | - Wei-Tian Lu
- Institute of Neuroscience, College of Basic Medicine, Chongqing Medical University, Chongqing, China
| | - Shu-Juan Zhu
- Institute of Neuroscience, College of Basic Medicine, Chongqing Medical University, Chongqing, China
| | - Guo-Ping Qiu
- Institute of Neuroscience, College of Basic Medicine, Chongqing Medical University, Chongqing, China
| | - Shi-Ye Xu
- Institute of Neuroscience, College of Basic Medicine, Chongqing Medical University, Chongqing, China
| | - Jian-Hua Ran
- Institute of Neuroscience, College of Basic Medicine, Chongqing Medical University, Chongqing, China
| | - Sheng-Wei Gan
- Institute of Neuroscience, College of Basic Medicine, Chongqing Medical University, Chongqing, China
| |
Collapse
|
32
|
Li S, Huang H, Wei Q, He C, Feng J, Wang Y, Li M, Zhang Q, Xia X, Hua Z. Depression of Pyroptosis by Inhibiting Caspase-1 Activation Improves Neurological Outcomes of Kernicterus Model Rats. ACS Chem Neurosci 2021; 12:2929-2939. [PMID: 34296848 DOI: 10.1021/acschemneuro.1c00287] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Kernicterus is a severe complication of extreme neonatal hyperbilirubinemia. Prolonged exposure to high-level unconjugated bilirubin (UCB) directly damages brain tissue. Neuroinflammation is believed to contribute to UCB-induced neurotoxicity. Pyroptosis has been as a highly inflammatory form of programmed cell death. Therefore, this study aimed to explore whether pyroptosis was involved in the pathogenesis of UCB neurotoxicity in kernicterus model rats. VX-765, a specific inhibitor of caspase-1, was intraperitoneally administered to the model rats to observe its effects on the short-term and long-term outcomes of the model animals at the molecular, cellular, morphological, and behavioral levels. The results indicated that UCB significantly induced the activation of caspase-1 and gasdermin D(GSDMD), and VX-765 inhibited caspase-1-GSDMD pathway. Compared with those of the UCB group and the vehicle+UCB group, VX-765-treated rats released lower levels of IL-1β and IL-18. Furthermore, H&E and TUNEL staining showed that nerve cells in the VX-765-treated group were better preserved and had less DNA fragmentation. Most importantly, VX-765 improved both the short-term and long-term neurological functions of kernicterus model rats. This study demonstrated that pyroptosis was involved in the pathogenesis of kernicterus through caspase-1 activation, which could be inhibited by VX-765, exerting a neuroprotective effect in kernicterus model rats.
Collapse
Affiliation(s)
- Siyu Li
- Department of Neonatology, Children’s Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing 400014, China
- Chongqing Key Laboratory of Child Infection and Immunity, Chongqing 400014, China
| | - Hongmei Huang
- Department of Neonatology, Children’s Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing 400014, China
- Chongqing Key Laboratory of Child Infection and Immunity, Chongqing 400014, China
| | - Qian Wei
- Department of Neonatology, Children’s Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing 400014, China
- Chongqing Key Laboratory of Child Infection and Immunity, Chongqing 400014, China
| | - Chunmei He
- Department of Neonatology, Children’s Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing 400014, China
- Chongqing Key Laboratory of Child Infection and Immunity, Chongqing 400014, China
| | - Jie Feng
- Department of Neonatology, Children’s Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, China
| | - Yao Wang
- Department of Neonatology, Children’s Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, China
| | - Mengwen Li
- Department of Neonatology, Children’s Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, China
| | - Qiannan Zhang
- Department of Neonatology, Children’s Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing 400014, China
| | - Xuhua Xia
- Department of Neonatology, Children’s Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing 400014, China
| | - Ziyu Hua
- Department of Neonatology, Children’s Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing 400014, China
| |
Collapse
|
33
|
Deng J, Tan W, Luo Q, Lin L, Zheng L, Yang J. Long Non-coding RNA MEG3 Promotes Renal Tubular Epithelial Cell Pyroptosis by Regulating the miR-18a-3p/GSDMD Pathway in Lipopolysaccharide-Induced Acute Kidney Injury. Front Physiol 2021; 12:663216. [PMID: 34012408 PMCID: PMC8128073 DOI: 10.3389/fphys.2021.663216] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 03/31/2021] [Indexed: 12/14/2022] Open
Abstract
Background and Objective: Acute kidney injury (AKI) is a complication of sepsis. Pyroptosis of gasdermin D (GSDMD)-mediated tubular epithelial cells (TECs) play important roles in pathogenesis of sepsis-associated AKI. Long non-coding RNA (lncRNA) maternally expressed gene 3 (MEG3), an imprinted gene involved in tumorigenesis, is implicated in pyroptosis occurring in multiple organs. Herein, we investigated the role and mechanisms of MEG3 in regulation of TEC pyroptosis in lipopolysaccharide (LPS)-induced AKI. Materials and Methods: Male C57BL/6 mice and primary human TECs were treated with LPS for 24 h to establish the animal and cell models, respectively, of sepsis-induced AKI. Renal function was assessed by evaluation of serum creatinine and urea levels. Renal tubule injury score was assessed by Periodic acid-Schiff staining. Renal pyroptosis was assessed by evaluating expression of caspase-1, GSDMD, and inflammatory factors IL-1β and IL-18. Cellular pyroptosis was assessed by analyzing the release rate of LDH, expression of IL-1β, IL-18, caspase-1, and GSDMD, and using EtBr and EthD2 staining. MEG3 expression in renal tissues and cells was detected using RT-qPCR. The molecular mechanisms of MEG3 in LPS-induced AKI were assessed through bioinformatics analysis, RNA-binding protein immunoprecipitation, dual luciferase reporter gene assays, and a rescue experiment. Results: Pyroptosis was detected in both LPS-induced animal and cell models, and the expression of MEG3 in these models was significantly up-regulated. MEG3-knockdown TECs treated with LPS showed a decreased number of pyroptotic cells, down-regulated secretion of LDH, IL-1β, and IL-18, and decreased expression of GSDMD, compared with those of controls; however, there was no difference in the expression of caspase-1 between MEG3 knockdown cells and controls. Bioinformatics analysis screened out miR-18a-3P, and further experiments demonstrated that MEG3 controls GSDMD expression by acting as a ceRNA for miR-18a-3P to promote TECs pyroptosis. Conclusion: Our study demonstrates that lncRNA MEG3 promoted renal tubular epithelial pyroptosis by regulating the miR-18a-3p/GSDMD pathway in LPS-induced AKI.
Collapse
Affiliation(s)
- Junhui Deng
- The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wei Tan
- The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qinglin Luo
- The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lirong Lin
- The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Luquan Zheng
- The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jurong Yang
- The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
34
|
Li Y, Dong Y, Meng L, Yu P, Zhao P, Gong M, Gao Q, Shi H, Meng C, Gao Y. Effects of Exogenous Biliverdin Treatment on Neurobehaviors in Mice. Biol Pharm Bull 2021; 44:325-331. [PMID: 33642542 DOI: 10.1248/bpb.b20-00340] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The neuroprotective effects of heme oxygenase (HO) have been well investigated. The potential effects of exogenous supplementation of biliverdin (BVD), one of the main products catalyzed by HO, on neurobehaviors are still largely unknown. The present study aimed to investigate the effects of BVD treatment on depression, anxiety, and memory in adult mice. Mice were injected with BVD through tail vein daily for a total 5 d, and depression- and anxiety-like behaviors were conducted by using open field test (OFT), novelty suppressed feeding (NSF), forced swimming test (FST) and tail suspension test (TST) since the third day of BVD administration. Novel object recognition (NOR) paradigm was used for memory formation test. After the final test, serum and hippocampal levels of interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) of mice were analyzed by enzyme-linked immunosorbent assay (ELISA). The results showed that BVD treatment at low dose (2 mg/kg) induced depression-like behaviors, and high dose (8 mg/kg) BVD injection increased anxiety-like behaviors and impaired memory formation in mice. ELISA data showed that BVD treatment significantly increased hippocampal IL-6 and TNF-α level while only decreasing serum IL-6 level of mice. The present data suggest that exogenous BVD treatment induced depression- and anxiety-like phenotypes, which may be related to inflammatory factors, providing BVD may be a potential target for the prevention of mental disorders.
Collapse
Affiliation(s)
- Yueyi Li
- Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University
| | - Yan Dong
- Intensive Care Unit of Hebei Hospital of Traditional Chinese Medicine, Hebei University of Chinese Medicine
| | - Li Meng
- Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University
| | - Panpan Yu
- Department of State Assets and Laboratory Administrative, Hebei Medical University
| | - Penghui Zhao
- Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University
| | - Miao Gong
- Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University
| | - Qiang Gao
- Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University
| | - Haishui Shi
- Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei Medicinal University
- Hebei Key Laboratory of Neurophysiology, Hebei Medicinal University
| | - Cuili Meng
- Department of Biochemistry, School of Basic Medicine, Xingtai Medical College
| | - Yuan Gao
- Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei Medicinal University
- Hebei Key Laboratory of Neurophysiology, Hebei Medicinal University
| |
Collapse
|
35
|
Wen S, Li S, Li L, Fan Q. circACTR2: A Novel Mechanism Regulating High Glucose-Induced Fibrosis in Renal Tubular Cells via Pyroptosis. Biol Pharm Bull 2020; 43:558-564. [PMID: 32115515 DOI: 10.1248/bpb.b19-00901] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Diabetic kidney disease (DKD) is the leading cause of chronic kidney disease. Current therapies for DKD are insufficient. Therefore, there is an urgent need for identifying new therapies. An increasing number of micro RNAs (miRNAs) and long noncoding RNAs (lncRNAs) have been demonstrated to modulate the progression of diabetic kidney disease. Nevertheless, until now, there have been few reports evaluating the relevance of circular RNAs (circRNAs) in DKD. circRNAs have been reported to regulate the occurrence and development of multiple diseases. In this study, we intended to explore the circRNA expression profiles and determine the role of circRNA in DKD. We identified a series of dysregulated circRNAs in glucose-stressed HK-2 cells using circRNA microarray analysis. Among the candidate circRNAs, we found that circACTR2 was upregulated and may be involved in inflammation and pyroptosis. Knockdown of circACTR2 significantly decreased pyroptosis, interleukin (IL)-1β release and collagen IV and fibronectin production, indicating the effective regulation by circACTR2 of cell death and inflammation. Overall, our study identified a new circRNA, circACTR2, that regulates high glucose-induced pyroptosis, inflammation and fibrosis in proximal tubular cells. The present study preliminarily explores the role of circRNAs in pyroptosis of tubular cells, and provides novel insight into the pathogenesis of DKD and new therapeutic strategies.
Collapse
Affiliation(s)
- Si Wen
- Department of Nephrology, First Hospital of China Medical University
| | - Shuangliang Li
- Department of Nephrology, First Hospital of China Medical University
| | - Lulu Li
- Department of Nephrology, First Hospital of China Medical University
| | - Qiuling Fan
- Department of Nephrology, First Hospital of China Medical University
| |
Collapse
|
36
|
Huang HM, He CM, Li SY, Zhang Y, Hua ZY. [Role of pyroptosis in bilirubin-induced microglial injury]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2020; 22:1027-1033. [PMID: 32933638 PMCID: PMC7499435 DOI: 10.7499/j.issn.1008-8830.2003175] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 08/07/2020] [Indexed: 06/11/2023]
Abstract
OBJECTIVE To study whether pyroptosis is involved in the bilirubin-induced injury of primary cultured rat cortical microglial cells. METHODS Primary cultured rat cortical microglial cells were randomly administered with 30 μmol/L bilirubin (bilirubin group), 30 μmol/L bilirubin following 30 μmol/L VX-765 pretreatment (VX-765+bilirubin group), or an equal volume of dimethyl sulfoxide (control group). Modified MTT assay was used to measure the viability of microglial cells. Western blot was used to measure the expression of the pyroptosis-related proteins Caspase-1 and gasdermin D (GSDMD). Lactate dehydrogenase (LDH)-release assay was used to evaluate the cytotoxicity of microglial cells. EtBr/EthD2 with different molecular weights (394 Da/1 293 Da) was used to measure the size of plasma membrane pores. ELISA was used to measure the level of the inflammatory factor interleukin-1β (IL-1β) in culture supernatant. RESULTS After bilirubin stimulation, the viability of microglial cells decreased and LDH release increased, both in a time-dependent manner. Compared with the control group, the bilirubin group had a significantly higher positive rate of small-molecule EtBr passing through the cell membrane (P<0.001), while there was no significant difference in the pass rate of large-molecule EthD2 between groups (P>0.05). The expression of activated Caspase-1 significantly increased at 0.5 hour after bilirubin stimulation (P<0.05), and that of activated GSDMD significantly increased at 6 hours after bilirubin stimulation (P<0.05). The release of IL-1β significantly increased at 6 hours after bilirubin stimulation and reached the peak at 24 hours (P<0.001). Compared with the bilirubin group, the VX-765+bilirubin group had a significant increase in cell viability (P<0.05) and significant reductions in the expression of activated GSDMD, the pass rate of EtBr, and the release of LDH and IL-1β (P<0.05). CONCLUSIONS Pyroptosis is involved in bilirubin-induced injury of primary cultured microglial cells.
Collapse
Affiliation(s)
- Hong-Mei Huang
- Department of Neonatology, Children's Hospital of Chongqing Medical University/Ministry of Education Key Laboratory of Child Development and Disorders/National Clinical Research Center for Child Health and Disorders/China International Science and Technology Cooperation Base of Child Development and Critical Disorders/Chongqing Key Laboratory of Child Infection and Immunity, Chongqing 400013, China.
| | | | | | | | | |
Collapse
|
37
|
Han C, Yang Y, Guan Q, Zhang X, Shen H, Sheng Y, Wang J, Zhou X, Li W, Guo L, Jiao Q. New mechanism of nerve injury in Alzheimer's disease: β-amyloid-induced neuronal pyroptosis. J Cell Mol Med 2020; 24:8078-8090. [PMID: 32521573 PMCID: PMC7348172 DOI: 10.1111/jcmm.15439] [Citation(s) in RCA: 144] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 05/03/2020] [Accepted: 05/12/2020] [Indexed: 12/28/2022] Open
Abstract
The present study was designed to investigate the role of β-amyloid (Aβ1-42 ) in inducing neuronal pyroptosis and its mechanism. Mice cortical neurons (MCNs) were used in this study, LPS + Nigericin was used to induce pyroptosis in MCNs (positive control group), and Aβ1-42 was used to interfere with MCNs. In addition, propidium iodide (PI) staining was used to examine cell permeability, lactate dehydrogenase (LDH) release assay was employed to detect cytotoxicity, immunofluorescence (IF) staining was used to investigate the expression level of the key protein GSDMD, Western blot was performed to detect the expression levels of key proteins, and enzyme-linked immunosorbent assay (ELISA) was utilized to determine the expression levels of inflammatory factors in culture medium, including IL-1β, IL-18 and TNF-α. Small interfering RNA (siRNA) was used to silence the mRNA expression of caspase-1 and GSDMD, and Aβ1-42 was used to induce pyroptosis, followed by investigation of the role of caspase-1-mediated GSDMD cleavage in pyroptosis. In addition, necrosulfonamide (NSA), an inhibitor of GSDMD oligomerization, was used for pre-treatment, and Aβ1-42 was subsequently used to observe the pyroptosis in MCNs. Finally, AAV9-siRNA-caspase-1 was injected into the tail vein of APP/PS1 double transgenic mice (Alzheimer's disease mice) for caspase-1 mRNA inhibition, followed by observation of behavioural changes in mice and measurement of the expression of inflammatory factors and pyroptosis-related protein. As results, Aβ1-42 could induce pyroptosis in MCNs, increase cell permeability and enhance LDH release, which were similar to the LPS + Nigericin-induced pyroptosis. Meanwhile, the expression levels of cellular GSDMD and p30-GSDMD were up-regulated, the levels of NLRP3 inflammasome and GSDMD-cleaved protein caspase-1 were up-regulated, and the levels of inflammatory factors in the medium were also up-regulated. siRNA intervention in caspase-1 or GSDMD inhibited Aβ1-42 -induced pyroptosis, and NSA pre-treatment also caused the similar inhibitory effects. The behavioural ability of Alzheimer's disease (AD) mice was relieved after the injection of AAV9-siRNA-caspase-1, and the expression of pyroptosis-related protein in the cortex and hippocampus was down-regulated. In conclusion, Aβ1-42 could induce pyroptosis by GSDMD protein, and NLRP3-caspase-1 signalling was an important signal to mediate GSDMD cleavage, which plays an important role in Aβ1-42 -induced pyroptosis in neurons. Therefore, GSDMD is expected to be a novel therapeutic target for AD.
Collapse
Affiliation(s)
- Chenyang Han
- State Key Laboratory of Pharmaceutical BiotechnologySchool of Life ScienceNanjing UniversityNanjingChina
- Department of PharmacyThe Second Affiliated Hospital of Jiaxing UniversityJiaxingChina
| | - Yi Yang
- Department of PharmacyThe Second Affiliated Hospital of Jiaxing UniversityJiaxingChina
| | - Qiaobing Guan
- Department of NeurologyThe Second Affiliated Hospital of Jiaxing UniversityJiaxingChina
| | - Xiaoling Zhang
- Department of NeurologyThe Second Affiliated Hospital of Jiaxing UniversityJiaxingChina
| | - Heping Shen
- Department of NeurologyThe Second Affiliated Hospital of Jiaxing UniversityJiaxingChina
| | - Yongjia Sheng
- Department of PharmacyThe Second Affiliated Hospital of Jiaxing UniversityJiaxingChina
| | - Jin Wang
- Department of PharmacyThe Second Affiliated Hospital of Jiaxing UniversityJiaxingChina
| | - Xiaohong Zhou
- Department of PharmacyThe Second Affiliated Hospital of Jiaxing UniversityJiaxingChina
| | - Wenyan Li
- Department of PharmacyThe Second Affiliated Hospital of Jiaxing UniversityJiaxingChina
| | - Li Guo
- Department of Center LaboratoryThe Second Affiliated Hospital of Jiaxing UniversityJiaxingChina
| | - Qingcai Jiao
- State Key Laboratory of Pharmaceutical BiotechnologySchool of Life ScienceNanjing UniversityNanjingChina
| |
Collapse
|
38
|
Tan N, Hu S, Hu Z, Wu Z, Wang B. Quantitative proteomic characterization of microvesicles/exosomes from the cerebrospinal fluid of patients with acute bilirubin encephalopathy. Mol Med Rep 2020; 22:1257-1268. [PMID: 32468033 PMCID: PMC7339682 DOI: 10.3892/mmr.2020.11194] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 05/06/2020] [Indexed: 01/10/2023] Open
Abstract
Severe hyperbilirubinemia causes neurotoxicity and may lead to acute bilirubin encephalopathy (ABE) during the critical period of central nervous system development. The aim of the present study was to identify differentially expressed proteins (DEPs) in microvesicles/exosomes (MV/E) isolated from the cerebrospinal fluid (CSF) of patients with ABE. Co-precipitation was used to isolate the MV/E from the CSF of patients with ABE and age-matched controls. Isobaric tagging for relative and absolute quantification-based proteomic technology combined with liquid chromatography/tandem mass spectrometry was used to identify DEPs in the MV/E. Bioinformatics analysis was subsequently performed to investigate Gene Ontology functional annotation and Kyoto Encyclopedia of Genes and Genomes enriched signaling pathways of these DEPs. A total of four proteins were selected for further validation via western blotting. A total of 291 dysregulated proteins were identified by comparing the patients with ABE with the controls. Bioinformatics analysis indicated the involvement of immune-inflammation-associated cellular processes and signaling pathways in the pathophysiology of ABE. In conclusion, the present study identified the proteomic profile of MV/E isolated from the CSF of patients with ABE. These results may provide an improved understanding of the pathogenesis of ABE and may help to identify early diagnostic biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Ning Tan
- Department of Pediatrics, Zhujiang Hospital, The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong 510280, P.R. China
| | - Shuiwang Hu
- Guangdong Provincial Key Laboratory of Proteomics, Department of Pathophysiology, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Zhen Hu
- National and Local Joint Engineering Laboratory for High‑through Molecular Diagnosis Technology, Translational Medicine Institute, Collaborative Research Center for Post‑doctoral Mobile Stations of Central South University, Affiliated The First People's Hospital of Chenzhou, Southern Medical University, University of South China, Chenzhou, Hunan 423000, P.R. China
| | - Zhouli Wu
- Department of Neonatology, Affiliated The First People's Hospital of Chenzhou, Southern Medical University, University of South China, Chenzhou, Hunan 423000, P.R. China
| | - Bin Wang
- Department of Pediatrics, Zhujiang Hospital, The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong 510280, P.R. China
| |
Collapse
|
39
|
Fiery Cell Death: Pyroptosis in the Central Nervous System. Trends Neurosci 2019; 43:55-73. [PMID: 31843293 DOI: 10.1016/j.tins.2019.11.005] [Citation(s) in RCA: 228] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 11/01/2019] [Accepted: 11/13/2019] [Indexed: 12/14/2022]
Abstract
Pyroptosis ('fiery death') is an inflammatory type of regulated cell death (RCD), which occurs downstream of inflammasome activation. Pyroptosis is mediated directly by the recently identified family of pore-forming proteins known as gasdermins, the best characterized of which is gasdermin D (GSDMD). Recent investigations implicate pyroptosis in the pathogenesis of multiple neurological diseases. In this review, we discuss molecular mechanisms that drive pyroptosis, evidence for pyroptosis within the CNS, and emerging therapeutic strategies for its inhibition in the context of neurological disease.
Collapse
|
40
|
Hypoxia-Induced ROS Contribute to Myoblast Pyroptosis during Obstructive Sleep Apnea via the NF- κB/HIF-1 α Signaling Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:4596368. [PMID: 31885794 PMCID: PMC6927050 DOI: 10.1155/2019/4596368] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 10/21/2019] [Accepted: 10/26/2019] [Indexed: 12/20/2022]
Abstract
Tissue hypoxia caused by upper airway collapse is a main cause of excessive oxidative stress and systemic inflammation in obstructive sleep apnea (OSA) patients. Increased reactive oxygen species (ROS) and inflammatory responses affect cell survival and ultimately contribute to tissue injury. In the present study, we proposed that the induction of ROS by hypoxia, as an intrinsic stress, activates myoblast pyroptosis in OSA. We found increased cell death and abnormal expression of pyroptosis markers in the skeletal muscle of OSA mice. In vitro studies showed hypoxia-induced pyroptotic death of C2C12 myoblasts, as evidenced by the activation of caspase-1 and gasdermin D (GSDMD). Hypoxia induced ROS overproduction and accumulation in myoblasts. More importantly, applying N-acetylcysteine (NAC), an ROS scavenger, rescued cell swelling, downregulated the inflammatory response, and prevented pyroptotic death in hypoxia-cultured myoblasts. Hypoxia stimulation promoted NF-κB P65 phosphorylation and HIF-1α nuclear translocation. Moreover, hypoxia increased the nuclear level of cleaved caspase-1 and GSDMD. NAC inhibited hypoxia-induced variations in the HIF-1α and NF-κB signaling pathway. Taken together, our results determined that hypoxia-induced ROS contribute to myoblast pyroptosis. Therefore, our findings suggest that ROS may be a potential therapeutic target for ameliorating hypoxia-induced cell death and tissue injury, especially in OSA and hypoxia-related diseases.
Collapse
|
41
|
Abstract
Schizophrenia is a complex syndrome of unknown etiology and difficult to manage. Unconjugated bilirubin has been researched as a potential biological marker of this syndrome. The objective of this review article was to gather the studies published to date on the relationship between this molecule and schizophrenia. Broad inclusion criteria have been used (PRISMA) to include as many relevant studies as possible. Fourteen studies were selected: 3 analyzed the effects of unconjugated hyperbilirubinemia in animal models; 6 demonstrated an increased incidence of schizophrenia in patients with increased unconjugated bilirubin; 2 reported an increased incidence of the disease in patients with decreased unconjugated bilirubin; and 3 linked an increased incidence of schizophrenia with an increased excretion of the oxidative product of bilirubin, the so-called biopyrrins. Because of apparently contradictory reported results, the hypothesis that the relationship between schizophrenia and unconjugated bilirubin was not linear and that there was an inflammatory dysfunction explaining this was considered. The 2 most accepted models for the pathophysiology of schizophrenia are described, and the possible role of the molecule in each is clarified. The bilirubin buffer system and its role in antioxidant defense was explored. The average levels of unconjugated bilirubin in patients with schizophrenia, schizoaffective disorder, and bipolar disorder were also compared, having been hypothesized that these diseases could be different points of a same pathological spectrum. Finally, it was concluded that unconjugated bilirubin is a promising molecule that could be used as a possible biological marker for schizophrenia, and the necessity of subsequent efforts for its research was considered.
Collapse
|
42
|
Zhou C, Sun R, Sun C, Gu M, Guo C, Zhang J, Du Y, Gu H, Liu Q. Minocycline protects neurons against glial cells-mediated bilirubin neurotoxicity. Brain Res Bull 2019; 154:102-105. [PMID: 31733348 DOI: 10.1016/j.brainresbull.2019.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 11/05/2019] [Accepted: 11/11/2019] [Indexed: 10/25/2022]
Abstract
Unconjugated bilirubin, the end product of heme catabolism and antioxidant, induced brain damage in human neonates is a well-recognized clinical syndrome. However, the cellular and molecular mechanisms underlying bilirubin neurotoxicity remain unclear. To characterize the sequence of events leading to bilirubin-induced neurotoxicity, we investigated whether bilirubin-induced glial activation was involved in bilirubin neurotoxicity by exposing co-cultured rat glial cells and cerebellar granule neurons (CGN) to bilirubin. We found that bilirubin could markedly induce the expression of TNF-α and iNOS in glial cells, and even at low concentrations, the co-culture of glial cells with neurons significantly enhances neurotoxicity of bilirubin. Pretreatment of the co-cultured cells with minocycline protected CGN from glia-mediated bilirubin neurotoxicity and inhibited overexpression of TNF-α and iNOS in glia. Furthermore, we found that high doses of bilirubin were able to induce glial injury, and minocycline attenuated bilirubin-induced glial cell death. Our data suggest that glial cells play an important role in brain damage caused by bilirubin, and minocycline blocks bilirubin-induced encephalopathy possibly by directly and indirectly inhibiting neuronal death pathways.
Collapse
Affiliation(s)
- Changwei Zhou
- Department of Orthopedics, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, 150086, PR China
| | - Rong Sun
- Department of Outpatient OR, The 1st Affiliated Hospital of Harbin Medical University, Harbin, 150086, PR China
| | - Chongyi Sun
- Department of Orthopedics, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, 150086, PR China
| | - Minghao Gu
- Department of Orthopedics, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, 150086, PR China
| | - Chuan Guo
- Department of Orthopedics, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, 150086, PR China
| | - Jiyan Zhang
- Department of Orthopedics, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, 150086, PR China
| | - Yansheng Du
- Department of Neurology, School of Medicine, Indiana University, Indianapolis, IN, 46202, USA
| | - Huiying Gu
- Department of Neurology, School of Medicine, Indiana University, Indianapolis, IN, 46202, USA.
| | - Qingpeng Liu
- Department of Orthopedics, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, 150086, PR China.
| |
Collapse
|
43
|
Espinosa-Oliva AM, García-Revilla J, Alonso-Bellido IM, Burguillos MA. Brainiac Caspases: Beyond the Wall of Apoptosis. Front Cell Neurosci 2019; 13:500. [PMID: 31749689 PMCID: PMC6848387 DOI: 10.3389/fncel.2019.00500] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 10/22/2019] [Indexed: 01/04/2023] Open
Abstract
For the last two decades, caspases, a family of cysteine-aspartic proteases, have evolved from being considered solely as regulators of apoptosis or inflammation to having a wider range of functions. In this mini review, we focus on the most recent “non-apoptotic” roles of caspases in the CNS, particularly in neurons, astrocytes and oligodendrocytes. Non-apoptotic caspase functions in microglia have already been reviewed extensively elsewhere. Here we discuss the involvement of caspases in the activation of the inflammasome, autophagy, and non-apoptotic forms of cell death such as necroptosis and pyroptosis. Also, we review the involvement of caspases in synapses and the processing of aggregates key to neurodegenerative diseases such as Parkinson’s, Alzheimer’s and Huntington’s diseases. Likewise, we mention the recently described involvement of caspases in mitochondrial biogenesis, which is a function independent of the enzymatic activity. We conclude discussing the relevance that “new” functions of caspases have in the CNS and the future of this field of research.
Collapse
Affiliation(s)
- Ana María Espinosa-Oliva
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, and Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC, Seville, Spain
| | - Juan García-Revilla
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, and Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC, Seville, Spain
| | - Isabel María Alonso-Bellido
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, and Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC, Seville, Spain
| | - Miguel Angel Burguillos
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, and Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC, Seville, Spain
| |
Collapse
|
44
|
Zhou Y, Gu Y, Liu J. BRD4 suppression alleviates cerebral ischemia-induced brain injury by blocking glial activation via the inhibition of inflammatory response and pyroptosis. Biochem Biophys Res Commun 2019; 519:481-488. [DOI: 10.1016/j.bbrc.2019.07.097] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 07/24/2019] [Indexed: 12/28/2022]
|
45
|
Caspase-1 involves in bilirubin-induced injury of cultured rat cortical neurons. Pediatr Res 2019; 86:492-499. [PMID: 31195405 DOI: 10.1038/s41390-019-0451-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 05/24/2019] [Accepted: 05/29/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Bilirubin encephalopathy, the most serious complication of hyperbilirubinemia during the neonatal period, with high mortality and morbidity, often causes irreversible neurological damage. Currently, caspase-1, a member of the cysteinyl aspartate-specific protease caspase family, is regarded as a key mediator of inflammatory processes, attracting widespread attention. The purpose of this study was to investigate whether caspase-1 is involved in bilirubin-induced neuronal injury. METHODS VX-765, a highly potent and selective inhibitor of caspase-1, was used to investigate the effects of unconjugated bilirubin (UCB) on rat cortical neurons, including cell viability, morphological changes in the cell membrane, and nuclear factor-kappa B (NF-κB) activation. RESULTS Neurons treated with UCB showed increased caspase-1 activity without the secretion of interleukin (IL)-1β and IL-18, and caspase-1 was significantly inhibited by pretreatment with VX-765. The cell viability of the VX-765-pretreated neurons was improved, and cell membrane rupture was prevented, as detected by lactate dehydrogenase release and ethidium bromide uptake. Moreover, NF-κB activation by UCB exposure, was attenuated by VX-765 pretreatment. CONCLUSION Bilirubin-induced neuronal injury involves the activation of caspase-1 and NF-κB, leading to membrane leakage, independently of IL-1β and IL-18.
Collapse
|
46
|
Heme, Heme Oxygenase, and Endoplasmic Reticulum Stress-A New Insight into the Pathophysiology of Vascular Diseases. Int J Mol Sci 2019; 20:ijms20153675. [PMID: 31357546 PMCID: PMC6695876 DOI: 10.3390/ijms20153675] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 07/23/2019] [Accepted: 07/24/2019] [Indexed: 02/06/2023] Open
Abstract
The prevalence of vascular disorders continues to rise worldwide. Parallel with that, new pathophysiological pathways have been discovered, providing possible remedies for prevention and therapy in vascular diseases. Growing evidence suggests that endoplasmic reticulum (ER) stress is involved in a number of vasculopathies, including atherosclerosis, vascular brain events, and diabetes. Heme, which is released from hemoglobin or other heme proteins, triggers various pathophysiological consequence, including heme stress as well as ER stress. The potentially toxic free heme is converted by heme oxygenases (HOs) into carbon monoxide (CO), iron, and biliverdin (BV), the latter of which is reduced to bilirubin (BR). Redox-active iron is oxidized and stored by ferritin, an iron sequestering protein which exhibits ferroxidase activity. In recent years, CO, BV, and BR have been shown to control cellular processes such as inflammation, apoptosis, and antioxidant defense. This review covers our current knowledge about how heme induced endoplasmic reticulum stress (HIERS) participates in the pathogenesis of vascular disorders and highlights recent discoveries in the molecular mechanisms of HO-mediated cytoprotection in heme stress and ER stress, as well as crosstalk between ER stress and HO-1. Furthermore, we focus on the translational potential of HIERS and heme oxygenase-1 (HO-1) in atherosclerosis, diabetes mellitus, and brain hemorrhage.
Collapse
|
47
|
Zhao MW, Yang P, Zhao LL. Chlorpyrifos activates cell pyroptosis and increases susceptibility on oxidative stress-induced toxicity by miR-181/SIRT1/PGC-1α/Nrf2 signaling pathway in human neuroblastoma SH-SY5Y cells: Implication for association between chlorpyrifos and Parkinson's disease. ENVIRONMENTAL TOXICOLOGY 2019; 34:699-707. [PMID: 30835941 DOI: 10.1002/tox.22736] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 01/28/2019] [Accepted: 02/07/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND The insecticide exposure has been linked to Parkinson's disease (PD). In the present study, we used a most widely used cell line in study of PD, the SH-SY5Y cells, to investigate mechanisms of chlorpyrifos (CPF) induced cell toxicity and the possible roles of cell pyroptosis and oxidative stress in SH-SY5Y cells, as well as role of miR-181/SIRT1/PGC-1α/Nrf2 signaling pathway in this process. METHODS SH-SY5Y cells were treated with different concentrations of CPF. Cell viability was measured using CCK-8 assay. Cell pyroptosis was determined by immunofluorescence of caspase-1 and TUNEL assay. The miR-181 (has-miR-181-5p) level was determined by qRT-PCR. Expression of SIRT1, PGC-1α, Nrf2, and pyroptosis related proteins NLRP3, caspase-1, IL-1β, and IL-18 was determined by both qRT-PCR and Western blotting. RESULTS Cell viability was found to be decreased with the increased CPF concentrations. The pyroptosis related proteins, ROS levels, as well as level of caspase-1 and the TUNEL positive cells were all significantly up-regulated by CPF. Meanwhile, expression of miR-181 and pyroptosis proteins was also enhanced, while the SIRT1/PGC-1α/Nrf2 signaling was inhibited by CPF. Knockdown of Nrf2 significantly up-regulated the expression of pyroptosis related proteins, ROS level, caspase-1, and the TUNEL positive cells, while over-expression of Nrf2 resulted in opposite results. The expression of PGC-1α and Nrf2 was significantly down-regulated when SIRT1 was inhibited, while over-expressed SIRT1 led to increased PGC-1α and Nrf2 levels. Besides, miR-181 promoted the CPF induced activation of pyroptosis and oxidative stress, as well as down-regulated SIRT1/PGC-1α/Nrf2 signaling, while inhibition of miR-181 led to opposite results. CONCLUSIONS Chlorpyrifos could inhibit cell proliferation, activate cell pyroptosis and increase susceptibility on oxidative stress-induced toxicity by elevating miR-181 through down-regulation of the SIRT1/PGC-1α/Nrf2 pathway in human neuroblastoma SH-SY5Y cells. This study might give deeper insights for mechanisms of CPF induced toxicity and might give some novel research targets for PD treatment.
Collapse
Affiliation(s)
- Meng-Wen Zhao
- Department of Pediatrics, The Third Xiangya Hospital of Central South University, Changsha, People's Republic of China
| | - Pu Yang
- Department of Neurology, The Third Xiangya Hospital of Central South University, Changsha, People's Republic of China
| | - Ling-Ling Zhao
- Department of Pediatrics, The Third Xiangya Hospital of Central South University, Changsha, People's Republic of China
| |
Collapse
|
48
|
Xia X, Wang X, Zheng Y, Jiang J, Hu J. What role does pyroptosis play in microbial infection? J Cell Physiol 2018; 234:7885-7892. [PMID: 30537070 DOI: 10.1002/jcp.27909] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 10/25/2018] [Indexed: 12/18/2022]
Abstract
Pyroptosis, a type of programmed cell death mediated by gasdermin, is characterized by the swelling and rupture of cells, release of cellular contents and a strong inflammatory response, which is critical for controlling microbial infection. Pattern recognition receptors recognize the intracellular and extracellular pathogenic microbial components and stimulate the organism's inflammatory response by activating the pyroptosis signaling pathway and releasing interleukin-1β (IL-1β), IL-18, and other inflammatory factors to promote pathogen clearance and prevent infection. In the process of continuous evolution, pathogens have developed multiple strategies to modulate the occurrence of pyroptosis and thus enhance their ability to induce disease; that is, the competition between host cells and pathogens controls the occurrence of pyroptosis. Competition can directly affect tissue inflammation outbreaks and even alter cell survival. Studies have shown that various bacterial infections, including Shigella flexneri, Salmonella, Listeria monocytogenes, and Legionella pneumophila, can lead to pyroptosis. Pyroptosis is associated with the occurrence and development of various diseases caused by microbial infection, and the identification of molecules related to the pyroptosis signaling pathway may provide new drug targets for the treatment of related diseases. This study reviews the molecular mechanisms of pyroptosis and the role of pyroptosis in microbial infection-related diseases.
Collapse
Affiliation(s)
- Xiaojing Xia
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China.,Postdoctoral Research Base, Henan Institute of Science and Technology, Xinxiang, China.,Postdoctoral Research Station, Henan Agriculture University, Zhengzhou, China
| | - Xin Wang
- College of Agriculture and Forestry Science, Linyi University, Linyi, China
| | - Yi Zheng
- College of Basic Medical Sciences, Shandong University, Jinan, China
| | - Jinqing Jiang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Jianhe Hu
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China.,Postdoctoral Research Base, Henan Institute of Science and Technology, Xinxiang, China
| |
Collapse
|
49
|
韦 倩, 冯 洁, 何 春, 华 子. [Role of caspase-1 activation in bilirubin-induced injury in cultured primary rat hippocampal neurons]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2018; 38:567-571. [PMID: 29891453 PMCID: PMC6743908 DOI: 10.3969/j.issn.1673-4254.2018.05.10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Indexed: 06/08/2023]
Abstract
OBJECTIVE To investigate the role of caspase-1 activation in bilirubin-induced neuronal injury and the protective effect of VX-765 against bilirubin-induced neurotoxicity in cultured primary rat hippocampal neurons. METHODS Cultured primary rat hippocampal neurons were exposed to DMSO (control group), 50 µmol/L bilirubin, or 50 µmol/L bilirubin 1 h after 50 µmol/L VX-765 treatment. The expressions of NLRP3 and caspase-1 in the neurons were detected by Western blotting, and the relative cell survival and death rates were assessed with a modified MTT assay, lactate dehydrogenase assay and Typan blue staining. Interleukin-18 (IL-18) concentration in the culture supernatant was measured using enzyme-linked immunosorbent assay (ELISA). RESULTS In cultured primary rat hippocampal neurons, bilirubin exposure for 3 and 6 h caused significant increases in the expressions of NLRP3 and activated caspase-1 compared with those in the control group (P<0.05). Pretreatment of the cells with VX-765 obviously suppressed bilirubin-induced activation of caspase-1 (P<0.05). The relative survival rate of the neurons was (84.02∓2.31)% in VX-765 intervention group, significantly higher than that in bilirubin group (P<0.05) but lower than that in the control group (P<0.05); LDH release rate in VX-765 intervention group was (10.78∓1.58)%, significantly lower than that in bilirubin group (P<0.05) but higher than that in the control group (P<0.05). The cell death rate in VX-765 intervention group was (5.58∓1.23)%, significantly lower than that in bilirubin group (P<0.05) but higher than that in the control group (P<0.05). CONCLUSION In cultured primary rat hippocampal neurons, caspase-1 activation plays a role in bilirubin-induced neurotoxicity, and VX-765 treatment provides protection against bilirubin-induced neuronal injury by inhibiting caspase-1 activation.
Collapse
Affiliation(s)
- 倩 韦
- />重庆医科大学附属儿童医院新生儿科//儿童发育疾病研究教育部重点实验室//儿童发育重大疾病国家国际科技合作基地//认知发育与学习记忆障碍转化医学重庆市重点实验室, 重庆 400014Department of Neonatology, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Chongqing 400014, China
| | - 洁 冯
- />重庆医科大学附属儿童医院新生儿科//儿童发育疾病研究教育部重点实验室//儿童发育重大疾病国家国际科技合作基地//认知发育与学习记忆障碍转化医学重庆市重点实验室, 重庆 400014Department of Neonatology, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Chongqing 400014, China
| | - 春梅 何
- />重庆医科大学附属儿童医院新生儿科//儿童发育疾病研究教育部重点实验室//儿童发育重大疾病国家国际科技合作基地//认知发育与学习记忆障碍转化医学重庆市重点实验室, 重庆 400014Department of Neonatology, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Chongqing 400014, China
| | - 子瑜 华
- />重庆医科大学附属儿童医院新生儿科//儿童发育疾病研究教育部重点实验室//儿童发育重大疾病国家国际科技合作基地//认知发育与学习记忆障碍转化医学重庆市重点实验室, 重庆 400014Department of Neonatology, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Chongqing 400014, China
| |
Collapse
|