1
|
Younger DS. Pediatric early-onset neuropsychiatric obsessive compulsive disorders. J Psychiatr Res 2025; 186:84-97. [PMID: 40222306 DOI: 10.1016/j.jpsychires.2025.03.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 03/06/2025] [Accepted: 03/25/2025] [Indexed: 04/15/2025]
Abstract
At the time of this writing, most pediatricians or child psychiatrists will probably have treated a child with early acute-onset obsessive compulsive disorder (OCD) behaviors due to the pediatric autoimmune neuropsychiatric disorder associated with Group A beta-hemolytic streptococcus, abbreviated PANDAS, described more than two decades ago; or Tourette syndrome, incorporating motor and vocal tics, described more than a century ago. One typically self-limited post-infectious OCD resulting from exposure to other putative microbial disease triggers defines PANS, abbreviating pediatric autoimmune neuropsychiatric syndrome. Tourette syndrome, PANDAS and PANS share overlapping neuroimaging features of hypometabolism of the medial temporal lobe and hippocampus on brain 18Fluorodeoxyglucose positron emission tomography fused to magnetic resonance imaging (PET/MRI) consistent with involvement of common central nervous system (CNS) pathways for the shared clinical expression of OCD. The field of pediatric neuropsychiatric disorders manifesting OCD behaviors is at a crossroads commensurate with recent advances in the neurobiology of the medial temporal area, with its wide-ranging connectivity and cortical cross-talk, and CNS immune responsiveness through resident microglia. This review advances the field of pediatric neuropsychiatric disorders and in particular PANS, by providing insights through clinical vignettes and descriptive clinical and neuroimaging correlations from the author's file. Neuroscience collaborations with child psychiatry and infectious disease practitioners are needed to design clinical trials with the necessary rigor to provide meaningful insights into the rational clinical management of PANS with the aim of developing evidence-based guidelines for the clinical management of early, abrupt-onset childhood OCD to avert potentially life-long neuropsychological struggles.
Collapse
Affiliation(s)
- David S Younger
- Department of Clinical Medicine and Neuroscience, CUNY School of Medicine, And the Department of Medicine, Section of Internal Medicine and Neurology, White Plains Hospital, White Plains, NY, USA.
| |
Collapse
|
2
|
Akinlusi I, Kan B, Shi T, Barragan J, Bouchot C, Cervantes J. Human microglia polarization following infection with the Lyme disease spirochete. J Investig Med 2025; 73:172-178. [PMID: 39324305 DOI: 10.1177/10815589241290206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Infection with Borrelia burgdorferi can spread and cause central nervous system involvement, known as neuroborreliosis. Microglia phagocytose bacteria, mediate inflammation, and elicit an immune response toward the spirochete. Like other tissue macrophages, microglia can polarize into two different modulatory phenotypes, M1 and M2. We explored human microglial polarization changes upon infection with B. burgdorferi. HMC3 human microglia cell line was infected with B. burgdorferi for 24 h. Expression of polarization markers was evaluated via flow cytometry at 4 and 24 h. Secreted immunological mediators were evaluated using a multiplex ELISA system at 4, 18, and 24 h. An early decrease followed by a later increase in expression of M1 polarization marker iNOS was observed at 4 h, and 24 h, respectively. A decrease in M2 marker CX3CR1 occurred at 24 h. There were no changes in expression of M1 markers CD14, or in M2 markers CD163 and CD206. Multiplex ELISA evidenced an increase in secretion of activation markers MIP-1α, MIP- 1β, IP-10, chemotactic factor MCP-1, M1 polarization cytokine IL-8, and VEGF, at 4, 18, and 24 h. A decrease of iNOS at 4 h of infection suggests a diminished production of reactive nitrogen species that are a critical component of innate defense against infection. Increased iNOS and simultaneously decreased expression of CX3CR1 at 24 h, may suggest initiation of neuroprotective regulation of microglia recruitment to neuroinflammation. The dynamics of major inflammatory cytokines appear to be important in the microglial response to B. burgdorferi and should be further studied as these could become therapeutic targets in neuroborreliosis.
Collapse
Affiliation(s)
- Idris Akinlusi
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, TX, USA
| | - Brian Kan
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, TX, USA
| | - Ted Shi
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, TX, USA
| | - Jose Barragan
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, TX, USA
| | | | - Jorge Cervantes
- Dr. Kiran C. Patel College of Allopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL, USA
| |
Collapse
|
3
|
Baarsma ME, Hovius JW. Persistent Symptoms After Lyme Disease: Clinical Characteristics, Predictors, and Classification. J Infect Dis 2024; 230:S62-S69. [PMID: 39140720 DOI: 10.1093/infdis/jiae203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024] Open
Abstract
Persistent symptoms after an infection have been described for a number of infectious diseases, including Lyme disease. Studies have confirmed a moderate but consistent increase in the prevalence of such symptoms after Lyme disease, though the risk increase varies dependent on study design and the definition of persistent symptoms. Various possible predictors have been proposed, including a dysregulation of the immune system, metabolic changes, increased sensitization to pain signals, cognitive-behavioral factors, or-controversially-the persistence of the causative Borrelia bacteria or remnants thereof. Research on the precise roles of any of these factors is still ongoing. The lack of biological underpinning also makes it difficult to assess with certainty which patients' (generally nonspecific) persistent symptoms are etiologically related to the previous Lyme disease episode and which are not, particularly as these symptoms occur in the general population relatively frequently. The diagnostic criteria for posttreatment Lyme disease syndrome have shown their usefulness in both clinical and research settings but leave out a number of patients whose symptoms may fall just outside said criteria. Though the relationship between these symptoms and the previous Lyme disease episode may be very uncertain, we would argue that a uniform description and classification of these patients will aid in future research and patient management, regardless of the eventual underlying cause. Thus, we argue for an inclusive classification system for all persistent symptoms attributed to Lyme disease in order to promote validation of patient experiences and perspectives, while also maintaining scientific nuance regarding the very uncertain etiology of these patients' symptoms.
Collapse
Affiliation(s)
- M E Baarsma
- Division of Infectious Diseases, Department of Internal Medicine, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, The Netherlands
| | - Joppe W Hovius
- Division of Infectious Diseases, Department of Internal Medicine, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, The Netherlands
| |
Collapse
|
4
|
Parthasarathy G. Fibroblast growth factor receptor inhibitors mitigate the neuropathogenicity of Borrelia burgdorferi or its remnants ex vivo. Front Immunol 2024; 15:1327416. [PMID: 38638441 PMCID: PMC11024320 DOI: 10.3389/fimmu.2024.1327416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 03/19/2024] [Indexed: 04/20/2024] Open
Abstract
In previous studies, we showed that fibroblast growth factor receptors (FGFRs) contribute to inflammatory mediator output from primary rhesus microglia in response to live Borrelia burgdorferi. We also demonstrated that non-viable B. burgdorferi can be as pathogenic as live bacteria, if not more so, in both CNS and PNS tissues. In this study we assessed the effect of live and non-viable B. burgdorferi in inducing FGFR expression from rhesus frontal cortex (FC) and dorsal root ganglion (DRG) tissue explants as well as their neuronal/astrocyte localization. Specific FGFR inhibitors were also tested for their ability to attenuate inflammatory output and apoptosis in response to either live or non-viable organisms. Results show that in the FC, FGFR2 was the most abundantly expressed receptor followed by FGFR3 and FGFR1. Non-viable B. burgdorferi significantly upregulated FGFR3 more often than live bacteria, while the latter had a similar effect on FGFR1, although both treatments did affect the expressions of both receptors. FGFR2 was the least modulated in the FC tissues by the two treatments. FGFR1 expression was more prevalent in astrocytes while FGFR2 and FGFR3 showed higher expression in neurons. In the DRG, all three receptor expressions were also seen, but could not be distinguished from medium controls by immunofluorescence. Inhibition of FGFR1 by PD166866 downregulated both inflammation and apoptosis in both FC and DRG in response to either treatment in all the tissues tested. Inhibition of FGFR1-3 by AZD4547 similarly downregulated both inflammation and apoptosis in both FC and DRG in response to live bacteria, while with sonicated remnants, this effect was seen in one of the two FC tissues and 2 of 3 DRG tissues tested. CCL2 and IL-6 were the most downregulated mediators in the FC, while in the DRG it was CXCL8 and IL-6 in response to FGFR inhibition. Downregulation of at least two of these three mediators was observed to downregulate apoptosis levels in general. We show here that FGFR inhibition can be an effective anti-inflammatory treatment in antibiotic refractive neurological Lyme. Alternatively, two biologics may be needed to effectively curb neuroinflammation and pathology in the CNS and PNS.
Collapse
Affiliation(s)
- Geetha Parthasarathy
- Division of Immunology, Tulane National Primate Research Center, Tulane University, Covington, LA, United States
| |
Collapse
|
5
|
Adler BL, Chung T, Rowe PC, Aucott J. Dysautonomia following Lyme disease: a key component of post-treatment Lyme disease syndrome? Front Neurol 2024; 15:1344862. [PMID: 38390594 PMCID: PMC10883079 DOI: 10.3389/fneur.2024.1344862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 01/22/2024] [Indexed: 02/24/2024] Open
Abstract
Dysautonomia, or dysfunction of the autonomic nervous system (ANS), may occur following an infectious insult and can result in a variety of debilitating, widespread, and often poorly recognized symptoms. Dysautonomia is now widely accepted as a complication of COVID-19 and is an important component of Post-Acute Sequelae of COVID-19 (PASC or long COVID). PASC shares many overlapping clinical features with other infection-associated chronic illnesses including Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) and Post-Treatment Lyme Disease Syndrome (PTLDS), suggesting that they may share common underlying mechanisms including autonomic dysfunction. Despite the recognition of this complication of Lyme disease in the care of patients with PTLD, there has been a scarcity of research in this field and dysautonomia has not yet been established as a complication of Lyme disease in the medical literature. In this review, we discuss the evidence implicating Borrelia burgdorferi as a cause of dysautonomia and the related symptoms, propose potential pathogenic mechanisms given our knowledge of Lyme disease and mechanisms of PASC and ME/CFS, and discuss the diagnostic evaluation and treatments of dysautonomia. We also outline gaps in the literature and priorities for future research.
Collapse
Affiliation(s)
- Brittany L Adler
- Division of Rheumatology, Johns Hopkins University, Baltimore, MD, United States
| | - Tae Chung
- Department of Physical Medicine and Rehabilitation, Johns Hopkins University, Baltimore, MD, United States
| | - Peter C Rowe
- Department of Pediatrics, Johns Hopkins University, Baltimore, MD, United States
| | - John Aucott
- Division of Rheumatology, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
6
|
Ilchovska D. Lyme Disease and Autoimmune Diseases. INFECTION AND AUTOIMMUNITY 2024:473-488. [DOI: 10.1016/b978-0-323-99130-8.00041-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
7
|
Alruwaili Y, Jacobs MB, Hasenkampf NR, Tardo AC, McDaniel CE, Embers ME. Superior efficacy of combination antibiotic therapy versus monotherapy in a mouse model of Lyme disease. Front Microbiol 2023; 14:1293300. [PMID: 38075920 PMCID: PMC10703379 DOI: 10.3389/fmicb.2023.1293300] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 11/08/2023] [Indexed: 02/08/2024] Open
Abstract
Lyme disease (LD) results from the most prevalent tick-borne infection in North America, with over 476,000 estimated cases annually. The disease is caused by Borrelia burgdorferi (Bb) sensu lato which transmits through the bite of Ixodid ticks. Most cases treated soon after infection are resolved by a short course of oral antibiotics. However, 10-20% of patients experience chronic symptoms because of delayed or incomplete treatment, a condition called Post-Treatment Lyme Disease (PTLD). Some Bb persists in PTLD patients after the initial course of antibiotics and an effective treatment to eradicate the persistent Bb is needed. Other organisms that cause persistent infections, such as M. tuberculosis, are cleared using a combination of therapies rather than monotherapy. A group of Food and Drug Administration (FDA)-approved drugs previously shown to be efficacious against Bb in vitro were used in monotherapy or in combination in mice infected with Bb. Different methods of detection were used to assess the efficacy of the treatments in the infected mice including culture, xenodiagnosis, and molecular techniques. None of the monotherapies eradicated persistent Bb. However, 4 dual combinations (doxycycline + ceftriaxone, dapsone + rifampicin, dapsone + clofazimine, doxycycline + cefotaxime) and 3 triple combinations (doxycycline + ceftriaxone+ carbomycin, doxycycline + cefotaxime+ loratadine, dapsone+ rifampicin+ clofazimine) eradicated persistent Bb infections. These results suggest that combination therapy should be investigated in preclinical studies for treating human Lyme disease.
Collapse
Affiliation(s)
- Yasir Alruwaili
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, Saudi Arabia
- Division of Immunology, Tulane National Primate Research Center, Tulane University, Covington, LA, United States
- Department of Tropical Medicine, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, United States
| | - Mary B. Jacobs
- Division of Immunology, Tulane National Primate Research Center, Tulane University, Covington, LA, United States
| | - Nicole R. Hasenkampf
- Division of Immunology, Tulane National Primate Research Center, Tulane University, Covington, LA, United States
| | - Amanda C. Tardo
- Division of Immunology, Tulane National Primate Research Center, Tulane University, Covington, LA, United States
| | - Celine E. McDaniel
- Division of Immunology, Tulane National Primate Research Center, Tulane University, Covington, LA, United States
| | - Monica E. Embers
- Division of Immunology, Tulane National Primate Research Center, Tulane University, Covington, LA, United States
- Department of Tropical Medicine, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, United States
| |
Collapse
|
8
|
Clark IA, Vissel B. Autocrine positive feedback of tumor necrosis factor from activated microglia proposed to be of widespread relevance in chronic neurological disease. Pharmacol Res Perspect 2023; 11:e01136. [PMID: 37750203 PMCID: PMC10520644 DOI: 10.1002/prp2.1136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 09/27/2023] Open
Abstract
Over a decade's experience of post-stroke rehabilitation by administering the specific anti-TNF biological, etanercept, by the novel perispinal route, is consistent with a wide range of chronically diminished neurological function having been caused by persistent excessive cerebral levels of TNF. We propose that this TNF persistence, and cerebral disease chronicity, largely arises from a positive autocrine feedback loop of this cytokine, allowing the persistence of microglial activation caused by the excess TNF that these cells produce. It appears that many of these observations have never been exploited to construct a broad understanding and treatment of certain chronic, yet reversible, neurological illnesses. We propose that this treatment allows these chronically activated microglia to revert to their normal quiescent state, rather than simply neutralizing the direct harmful effects of this cytokine after its release from microglia. Logically, this also applies to the chronic cerebral aspects of various other neurological conditions characterized by activated microglia. These include long COVID, Lyme disease, post-stroke syndromes, traumatic brain injury, chronic traumatic encephalopathy, post-chemotherapy, post-irradiation cerebral dysfunction, cerebral palsy, fetal alcohol syndrome, hepatic encephalopathy, the antinociceptive state of morphine tolerance, and neurogenic pain. In addition, certain psychiatric states, in isolation or as sequelae of infectious diseases such as Lyme disease and long COVID, are candidates for being understood through this approach and treated accordingly. Perispinal etanercept provides the prospect of being able to treat various chronic central nervous system illnesses, whether they are of infectious or non-infectious origin, through reversing excess TNF generation by microglia.
Collapse
Affiliation(s)
- Ian A. Clark
- Research School of Biology, Australian National UniversityCanberraAustralian Capital TerritoryAustralia
| | - Bryce Vissel
- St Vincent's Hospital Centre for Applied Medical ResearchSt Vincent's HospitalDarlinghurstAustralia
- UNSW Medicine & Health, St Vincent's Healthcare Clinical Campus, Faculty of Medicine and HealthSchool of Clinical Medicine, UNSW SydneySydneyNew South WalesAustralia
| |
Collapse
|
9
|
Neumann KD, Broshek DK, Newman BT, Druzgal TJ, Kundu BK, Resch JE. Concussion: Beyond the Cascade. Cells 2023; 12:2128. [PMID: 37681861 PMCID: PMC10487087 DOI: 10.3390/cells12172128] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/14/2023] [Accepted: 08/17/2023] [Indexed: 09/09/2023] Open
Abstract
Sport concussion affects millions of athletes each year at all levels of sport. Increasing evidence demonstrates clinical and physiological recovery are becoming more divergent definitions, as evidenced by several studies examining blood-based biomarkers of inflammation and imaging studies of the central nervous system (CNS). Recent studies have shown elevated microglial activation in the CNS in active and retired American football players, as well as in active collegiate athletes who were diagnosed with a concussion and returned to sport. These data are supportive of discordance in clinical symptomology and the inflammatory response in the CNS upon symptom resolution. In this review, we will summarize recent advances in the understanding of the inflammatory response associated with sport concussion and broader mild traumatic brain injury, as well as provide an outlook for important research questions to better align clinical and physiological recovery.
Collapse
Affiliation(s)
- Kiel D. Neumann
- Department of Diagnostic Imaging, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA;
| | - Donna K. Broshek
- Department of Psychiatry and Neurobehavioral Sciences, University of Virginia, Charlottesville, VA 22903, USA;
| | - Benjamin T. Newman
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA 22903, USA; (B.T.N.); (T.J.D.); (B.K.K.)
| | - T. Jason Druzgal
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA 22903, USA; (B.T.N.); (T.J.D.); (B.K.K.)
| | - Bijoy K. Kundu
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA 22903, USA; (B.T.N.); (T.J.D.); (B.K.K.)
| | - Jacob E. Resch
- Department of Kinesiology, University of Virginia, Charlottesville, VA 22903, USA
| |
Collapse
|
10
|
Biniaz-Harris N, Kuvaldina M, Fallon BA. Neuropsychiatric Lyme Disease and Vagus Nerve Stimulation. Antibiotics (Basel) 2023; 12:1347. [PMID: 37760644 PMCID: PMC10525519 DOI: 10.3390/antibiotics12091347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/15/2023] [Accepted: 08/16/2023] [Indexed: 09/29/2023] Open
Abstract
Lyme disease, the most common tick-borne disease in the United States, is caused by infection with the spirochete Borrelia burgdorferi. While most patients with acute Lyme disease recover completely if treated with antibiotics shortly after the onset of infection, approximately 10-30% experience post-treatment symptoms and 5-10% have residual symptoms with functional impairment (post-treatment Lyme disease syndrome or PTLDS). These patients typically experience pain, cognitive problems, and/or fatigue. This narrative review provides a broad overview of Lyme disease, focusing on neuropsychiatric manifestations and persistent symptoms. While the etiology of persistent symptoms remains incompletely understood, potential explanations include persistent infection, altered neural activation, and immune dysregulation. Widely recognized is that new treatment options are needed for people who have symptoms that persist despite prior antibiotic therapy. After a brief discussion of treatment approaches, the article focuses on vagus nerve stimulation (VNS), a neuromodulation approach that is FDA-approved for depression, epilepsy, and headache syndromes and has been reported to be helpful for other diseases characterized by inflammation and neural dysregulation. Transcutaneous VNS stimulates the external branch of the vagus nerve, is minimally invasive, and is well-tolerated in other conditions with few side effects. If well-controlled double-blinded studies demonstrate that transcutaneous auricular VNS helps patients with chronic syndromes such as persistent symptoms after Lyme disease, taVNS will be a welcome addition to the treatment options for these patients.
Collapse
Affiliation(s)
- Nicholas Biniaz-Harris
- Lyme & Tick-Borne Diseases Research Center at Columbia University Irving Medical Center, 1051 Riverside Drive, New York, NY 10032, USA; (N.B.-H.); (M.K.)
| | - Mara Kuvaldina
- Lyme & Tick-Borne Diseases Research Center at Columbia University Irving Medical Center, 1051 Riverside Drive, New York, NY 10032, USA; (N.B.-H.); (M.K.)
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Brian A. Fallon
- Lyme & Tick-Borne Diseases Research Center at Columbia University Irving Medical Center, 1051 Riverside Drive, New York, NY 10032, USA; (N.B.-H.); (M.K.)
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY 10032, USA
- New York State Psychiatric Institute, 1051 Riverside Drive, New York, NY 10032, USA
| |
Collapse
|
11
|
Gorlyn M, Keilp JG, Fallon BA. Language Fluency Deficits in Post-treatment Lyme Disease Syndrome. Arch Clin Neuropsychol 2023; 38:650-654. [PMID: 36548120 PMCID: PMC10202549 DOI: 10.1093/arclin/acac095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/28/2022] [Indexed: 12/24/2023] Open
Abstract
OBJECTIVE Recent neurocognitive studies of patients with post-treatment Lyme disease syndrome (PTLDS) find consistent deficits in memory and processing speed. Language fluency deficits are observed as well but may be secondary to poor memory and slowing rather than an independent deficit. METHOD This study performed a secondary analysis of data presented previously, including individuals with PTLDS and comparison samples of healthy volunteers (HC) and patients with major depressive disorder (MDD), to determine if language fluency deficits could be accounted for by poor performance in these other neurocognitive domains. RESULTS Basic verbal abilities, memory, and processing speed were all significantly associated with fluency performance. MDD patients' fluency deficits relative to HC were accounted for by these covariates. However, PTLDS patients' poorer fluency performance relative to both other groups was not. CONCLUSIONS Language fluency appears to be an independent area of neurocognitive deficit within the constellation of PTLDS symptoms.
Collapse
Affiliation(s)
- Marianne Gorlyn
- Division of Clinical Therapeutics, Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
- Division of Molecular Imaging and Neuropathology, Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - John G Keilp
- Division of Clinical Therapeutics, Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
- Division of Molecular Imaging and Neuropathology, Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Brian A Fallon
- Division of Clinical Therapeutics, Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| |
Collapse
|
12
|
Palleis C, Forbrig R, Lehner L, Quach S, Albert NL, Brendel M, Schöberl F, Straube A. Lyme neuroborreliosis: An unusual case with extensive (peri)vasculitis of the middle cerebral artery. Eur J Neurol 2023; 30:785-787. [PMID: 36636924 DOI: 10.1111/ene.15633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 11/04/2022] [Indexed: 01/14/2023]
Abstract
Lyme disease is a tick-borne infection caused by Borrelia burgdorferi sensu latu. Neuroborreliosis is reported in approximately 10% of patients with Lyme disease. We report a patient with central nervous system (CNS) large vessel vasculitis, ischemic stroke, and tumefactive contrast-enhancing brain lesions, an unusual complication of neuroborreliosis. A 56-year-old man presented with headache and disorientation for 1 month. Magnetic resonance imaging revealed basal meningitis with rapidly progressing frontotemporoinsular edema and (peri)vasculitis. Transcranial ultrasound confirmed stenosed medial cerebral arteries. [18 F]GE-180 microglia positron emission tomography (PET) showed frontotemporoinsular signal more pronounced on the right. [18 F]FET amino acid PET demonstrated low tracer uptake, suggesting an inflammatory process. Cerebrospinal fluid (CSF) showed lymphomonocytosis (243/μl), intrathecal anti-Borrelia IgM (CSF/serum index = 15.65, normal < 1.5) and anti-Borrelia IgG (CSF/serum index = 6.5, normal < 1.5), and elevated CXCL13 (29.2 pg/ml, normal < 10 pg/ml). Main differential diagnoses of neurotuberculosis and perivascular CNS lymphoma were ruled out by biopsy and Quantiferon enzyme-linked immunosorbent assay. Ceftriaxone (28 days), cortisone, and nimodipine (3 months) led to full recovery. Neuroborreliosis is an important differential diagnosis in patients with CNS large vessel vasculitis and tumefactive contrast-enhancing brain lesions, mimicking perivascular CNS lymphoma or neurotuberculosis as main neuroradiological differential diagnoses. Vasculopathy and cerebrovascular events are rare in neuroborreliosis but should be considered, especially in endemic areas.
Collapse
Affiliation(s)
- Carla Palleis
- Department of Neurology, Campus Grosshadern, Ludwig Maximilian University of Munich, Munich, Germany
- German Center for Neurodegenerative Diseases, Munich, Germany
- Munich Cluster for Systems Neurology, Munich, Germany
| | - Robert Forbrig
- Institute of Neuroradiology, Campus Grosshadern, Ludwig Maximilian University of Munich, Munich, Germany
| | - Louisa Lehner
- Department of Neurology, Campus Grosshadern, Ludwig Maximilian University of Munich, Munich, Germany
| | - Stefanie Quach
- Department of Neurosurgery, Campus Grosshadern, Ludwig Maximilian University of Munich, Munich, Germany
| | - Nathalie L Albert
- Department of Nuclear Medicine, Campus Grosshadern, Ludwig Maximilian University of Munich, Munich, Germany
| | - Matthias Brendel
- Munich Cluster for Systems Neurology, Munich, Germany
- Department of Nuclear Medicine, Campus Grosshadern, Ludwig Maximilian University of Munich, Munich, Germany
| | - Florian Schöberl
- Department of Neurology, Campus Grosshadern, Ludwig Maximilian University of Munich, Munich, Germany
| | - Andreas Straube
- Department of Neurology, Campus Grosshadern, Ludwig Maximilian University of Munich, Munich, Germany
| |
Collapse
|
13
|
Delaney SL, Murray LA, Fallon BA. Neuropsychiatric Symptoms and Tick-Borne Diseases. Curr Top Behav Neurosci 2023; 61:279-302. [PMID: 36512289 DOI: 10.1007/7854_2022_406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
In North America, Lyme disease (LD) is primarily caused by the spirochetal bacterium Borrelia burgdorferi, transmitted to humans by Ixodes species tick bites, at an estimated rate of 476,000 patients diagnosed per year. Acute LD often manifests with flu-like symptoms and an expanding rash known as erythema migrans (EM) and less often with neurologic, neuropsychiatric, arthritic, or cardiac features. Most acute cases of Lyme disease are effectively treated with antibiotics, but 10-20% of individuals may experience recurrent or persistent symptoms. This chapter focuses on the neuropsychiatric aspects of Lyme disease, as these are less widely recognized by physicians and often overlooked. Broader education about the potential complexity, severity, and diverse manifestations of tick-borne diseases is needed.
Collapse
Affiliation(s)
- Shannon L Delaney
- Lyme and Tick-Borne Diseases Research Center at Columbia University Irving Medical Center, New York, NY, USA.
| | - Lilly A Murray
- Lyme and Tick-Borne Diseases Research Center at Columbia University Irving Medical Center, New York, NY, USA
| | - Brian A Fallon
- Lyme and Tick-Borne Diseases Research Center at Columbia University Irving Medical Center, New York, NY, USA
| |
Collapse
|
14
|
Assessment of cognitive function, structural brain changes and fatigue 6 months after treatment of neuroborreliosis. J Neurol 2023; 270:1430-1438. [PMID: 36380166 PMCID: PMC9971095 DOI: 10.1007/s00415-022-11463-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 11/16/2022]
Abstract
BACKGROUND Complete recovery after adequately treated neuroborreliosis is common, but studies report that some patients experience persistent symptoms like self-reported cognitive problems and fatigue. Persisting symptoms are often termed post-Lyme disease syndrome, of which etiology is not clearly understood. The aim of this study was to investigate cognitive function, possible structural changes in brain regions and level of fatigue. We have not found previous studies on neuroborreliosis that use standardized neuropsychological tests and MRI with advanced image processing to investigate if there are subtle regional changes in cortical thickness and brain volumes after treatment. METHODS We examined 68 patients treated for neuroborreliosis 6 months earlier and 66 healthy controls, with a comprehensive neuropsychological test protocol, quantitative structural MRI analysis of the brain and Fatigue Severity Scale. RESULTS We found no differences between the groups in either cognitive function, cortical thickness or brain volumes. The patients had higher score on Fatigue Severity Scale 3.8 vs. 2.9 (p = 0.001), and more patients (25.4%) than controls (5%) had severe fatigue (p = 0.002), but neither mean score nor proportion of patients with severe fatigue differed from findings in the general Norwegian population. CONCLUSION The prognosis regarding cognitive function, brain MRI findings and fatigue after adequately treated neuroborreliosis is favorable.
Collapse
|
15
|
Younger DS. Pediatric neuropsychiatric disorders with motor and nonmotor phenomena. HANDBOOK OF CLINICAL NEUROLOGY 2023; 196:367-387. [PMID: 37620079 DOI: 10.1016/b978-0-323-98817-9.00028-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
The concept of pediatric autoimmune neuropsychiatric disorders associated with group A beta-hemolytic streptococcus (PANDAS) has become seminal since first introduced more than two decades ago. At the time of this writing, most neurologists, pediatricians, psychiatrists, and general pediatricians will probably have heard of this association or treated an affected child with PANDAS. The concept of an acute-onset, and typically self-limited, postinfectious autoimmune neuropsychiatric disorder resembling PANDAS manifesting vocal and motor tics and obsessive-compulsive disorder has broadened to other putative microbes and related endogenous and exogenous disease triggers. These disorders with common features of hypometabolism in the medial temporal lobe and hippocampus in brain 18fluorodeoxyglucose positron emission tomography fused to magnetic resonance imaging (FDG PET-MRI), form a spectrum: with the neuropsychiatric disorder Tourette syndrome and PANDAS with its well-defined etiopathogenesis at one end, and pediatric abrupt-onset neuropsychiatric syndrome (PANS), alone or associated with specific bacterial and viral pathogens, at the other end. The designation of PANS in the absence of a specific trigger, as an exclusionary diagnosis, reflects the current problem in nosology.
Collapse
Affiliation(s)
- David S Younger
- Department of Clinical Medicine and Neuroscience, CUNY School of Medicine, New York, NY, United States; Department of Medicine, Section of Internal Medicine and Neurology, White Plains Hospital, White Plains, NY, United States.
| |
Collapse
|
16
|
Głuchowska A, Cysewski D, Baj-Krzyworzeka M, Szatanek R, Węglarczyk K, Podszywałow-Bartnicka P, Sunderland P, Kozłowska E, Śliwińska MA, Dąbrowski M, Sikora E, Mosieniak G. Unbiased proteomic analysis of extracellular vesicles secreted by senescent human vascular smooth muscle cells reveals their ability to modulate immune cell functions. GeroScience 2022; 44:2863-2884. [PMID: 35900662 PMCID: PMC9768090 DOI: 10.1007/s11357-022-00625-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 07/12/2022] [Indexed: 01/07/2023] Open
Abstract
Atherosclerosis, a common age-related disease, is characterized by intense immunological activity. Atherosclerotic plaque is composed of endothelial cells, vascular smooth muscle cells (VSMCs), lipids and immune cells infiltrating from the blood. During progression of the disease, VSMCs undergo senescence within the plaque and secrete SASP (senescence-associated secretory phenotype) factors that can actively modulate plaque microenvironment. We demonstrated that senescent VSMCs secrete increased number of extracellular vesicles (senEVs). Based on unbiased proteomic analysis of VMSC-derived EVs and of the soluble fraction of SASP (sSASP), more than 900 proteins were identified in each of SASP compartments. Comparison of the composition of VMSC-derived EVs with the SASP atlas revealed several proteins, including Serpin Family F Member 1 (SERPINF1) and Thrombospondin 1 (THBS1), as commonly upregulated components of EVs secreted by senescent VSMCs and fibroblasts. Among soluble SASP factors, only Growth Differentiation Factor 15 (GDF15) was universally increased in the secretome of senescent VSMCs, fibroblasts, and epithelial cells. Bioinformatics analysis of EV proteins distinguished functionally organized protein networks involved in immune cell function regulation. Accordingly, EVs released by senescent VSMCs induced secretion of IL-17, INFγ, and IL-10 by T cells and of TNFα produced by monocytes. Moreover senEVs influenced differentiation of monocytes favoring mix M1/M2 polarization with proinflammatory characteristics. Altogether, our studies provide a complex, unbiased analysis of VSMC SASP and prove that EVs derived from senescent VSMCs influence the cytokine milieu by modulating immune cell activity. Our results strengthen the role of senescent cells as an important inducer of inflammation in atherosclerosis.
Collapse
Affiliation(s)
- Agata Głuchowska
- Laboratory of Molecular Bases of Aging, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteura 3 St., 02-093, Warsaw, Poland
| | - Dominik Cysewski
- Mass Spectrometry Laboratory, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
- Clinical Research Centre, Medical University of Bialystok, Białystok, Poland
| | - Monika Baj-Krzyworzeka
- Department of Clinical Immunology, Institute of Pediatrics, Jagiellonian University Medical College, Krakow, Poland
| | - Rafał Szatanek
- Department of Clinical Immunology, Institute of Pediatrics, Jagiellonian University Medical College, Krakow, Poland
| | - Kazimierz Węglarczyk
- Department of Clinical Immunology, Institute of Pediatrics, Jagiellonian University Medical College, Krakow, Poland
| | | | - Piotr Sunderland
- Laboratory of Molecular Bases of Aging, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteura 3 St., 02-093, Warsaw, Poland
| | - Ewa Kozłowska
- Department of Immunology, Institute of Functional Biology and Ecology, Faculty of Biology University of Warsaw, Warsaw, Poland
| | - Małgorzata A Śliwińska
- Laboratory of Imaging Tissue Structure and Function, Nencki Institute of Experimental Biology Polish Academy of Sciences, Warsaw, Poland
| | - Michał Dąbrowski
- Laboratory of Bioinformatics, Neurobiology Centre, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Ewa Sikora
- Laboratory of Molecular Bases of Aging, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteura 3 St., 02-093, Warsaw, Poland
| | - Grażyna Mosieniak
- Laboratory of Molecular Bases of Aging, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteura 3 St., 02-093, Warsaw, Poland.
| |
Collapse
|
17
|
Marvel CL, Alm KH, Bhattacharya D, Rebman AW, Bakker A, Morgan OP, Creighton JA, Kozero EA, Venkatesan A, Nadkarni PA, Aucott JN. A multimodal neuroimaging study of brain abnormalities and clinical correlates in post treatment Lyme disease. PLoS One 2022; 17:e0271425. [PMID: 36288329 PMCID: PMC9604010 DOI: 10.1371/journal.pone.0271425] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 09/15/2022] [Indexed: 01/24/2023] Open
Abstract
Lyme disease is the most common vector-borne infectious disease in the United States. Post-treatment Lyme disease (PTLD) is a condition affecting 10-20% of patients in which symptoms persist despite antibiotic treatment. Cognitive complaints are common among those with PTLD, suggesting that brain changes are associated with the course of the illness. However, there has been a paucity of evidence to explain the cognitive difficulties expressed by patients with PTLD. This study administered a working memory task to a carefully screened group of 12 patients with well-characterized PTLD and 18 healthy controls while undergoing functional MRI (fMRI). A subset of 12 controls and all 12 PTLD participants also received diffusion tensor imaging (DTI) to measure white matter integrity. Clinical variables were also assessed and correlated with these multimodal MRI findings. On the working memory task, the patients with PTLD responded more slowly, but no less accurately, than did controls. FMRI activations were observed in expected regions by the controls, and to a lesser extent, by the PTLD participants. The PTLD group also hypoactivated several regions relevant to the task. Conversely, novel regions were activated by the PTLD group that were not observed in controls, suggesting a compensatory mechanism. Notably, three activations were located in white matter of the frontal lobe. DTI measures applied to these three regions of interest revealed that higher axial diffusivity correlated with fewer cognitive and neurological symptoms. Whole-brain DTI analyses revealed several frontal lobe regions in which higher axial diffusivity in the patients with PTLD correlated with longer duration of illness. Together, these results show that the brain is altered by PTLD, involving changes to white matter within the frontal lobe. Higher axial diffusivity may reflect white matter repair and healing over time, rather than pathology, and cognition appears to be dynamically affected throughout this repair process.
Collapse
Affiliation(s)
- Cherie L. Marvel
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
- * E-mail:
| | - Kylie H. Alm
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Deeya Bhattacharya
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Alison W. Rebman
- Division of Rheumatology, Department of Medicine, Lyme Disease Research Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Arnold Bakker
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Owen P. Morgan
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Jason A. Creighton
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Erica A. Kozero
- Division of Rheumatology, Department of Medicine, Lyme Disease Research Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Arun Venkatesan
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Prianca A. Nadkarni
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - John N. Aucott
- Division of Rheumatology, Department of Medicine, Lyme Disease Research Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| |
Collapse
|
18
|
Thompson D, Brissette CA, Watt JA. The choroid plexus and its role in the pathogenesis of neurological infections. Fluids Barriers CNS 2022; 19:75. [PMID: 36088417 PMCID: PMC9463972 DOI: 10.1186/s12987-022-00372-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 08/27/2022] [Indexed: 11/10/2022] Open
Abstract
The choroid plexus is situated at an anatomically and functionally important interface within the ventricles of the brain, forming the blood-cerebrospinal fluid barrier that separates the periphery from the central nervous system. In contrast to the blood-brain barrier, the choroid plexus and its epithelial barrier have received considerably less attention. As the main producer of cerebrospinal fluid, the secretory functions of the epithelial cells aid in the maintenance of CNS homeostasis and are capable of relaying inflammatory signals to the brain. The choroid plexus acts as an immunological niche where several types of peripheral immune cells can be found within the stroma including dendritic cells, macrophages, and T cells. Including the epithelia cells, these cells perform immunosurveillance, detecting pathogens and changes in the cytokine milieu. As such, their activation leads to the release of homing molecules to induce chemotaxis of circulating immune cells, driving an immune response at the choroid plexus. Research into the barrier properties have shown how inflammation can alter the structural junctions and promote increased bidirectional transmigration of cells and pathogens. The goal of this review is to highlight our foundational knowledge of the choroid plexus and discuss how recent research has shifted our understanding towards viewing the choroid plexus as a highly dynamic and important contributor to the pathogenesis of neurological infections. With the emergence of several high-profile diseases, including ZIKA and SARS-CoV-2, this review provides a pertinent update on the cellular response of the choroid plexus to these diseases. Historically, pharmacological interventions of CNS disorders have proven difficult to develop, however, a greater focus on the role of the choroid plexus in driving these disorders would provide for novel targets and routes for therapeutics.
Collapse
Affiliation(s)
- Derick Thompson
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, USA
| | - Catherine A Brissette
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, USA
| | - John A Watt
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, USA.
| |
Collapse
|
19
|
Kim Y, Rebman AW, Johnson TP, Wang H, Yang T, Colantuoni C, Bhargava P, Levy M, Calabresi PA, Aucott JN, Soloski MJ, Darrah E. Peptidylarginine Deiminase 2 Autoantibodies Are Linked to Less Severe Disease in Multiple Sclerosis and Post-treatment Lyme Disease. Front Neurol 2022; 13:874211. [PMID: 35734473 PMCID: PMC9207393 DOI: 10.3389/fneur.2022.874211] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 05/10/2022] [Indexed: 01/22/2023] Open
Abstract
BackgroundPeptidylarginine deiminase 2 (PAD2) mediates the post-translational conversion of arginine residues in proteins to citrullines and is highly expressed in the central nervous system (CNS). Dysregulated PAD2 activity has been implicated in the pathogenesis of several neurologic diseases, including multiple sclerosis (MS). In this study, we sought to define the cellular and regional expression of the gene encoding for PAD2 (i.e. PADI2) in the human CNS using publicly available datasets and evaluate whether anti-PAD2 antibodies were present in patients with various neurologic diseases.MethodsA total of 491 study participants were included in this study: 91 people with MS, 32 people with neuromyelitis optica (NMO), 281 people with post-treatment Lyme disease (PTLD), and 87 healthy controls. To measure PADI2 expression in the CNS from healthy individuals, publicly available tissue and single cell RNA sequencing data was analyzed. Anti-PAD2 antibodies were measured in the serum of study participants using anti-PAD2 ELISA. Clinical and demographic variables were compared according to anti-PAD2 antibody positivity for the MS and PTLD groups and correlations between anti-PAD2 levels and disease severity were examined.ResultsPADI2 expression was highest in oligodendrocytes (mean ± SD; 6.4 ± 2.2), followed closely by astrocytes (5.5 ± 2.6), microglia/macrophages (4.5 ± 3.5), and oligodendrocyte precursor cells (3.2 ± 3.3). There was an increased proportion of anti-PAD2 positivity in the MS (19.8%; p = 0.007) and PTLD groups (13.9%; p = 0.057) relative to the healthy controls (5.7%), and these antibodies were not detected in NMO patients. There was a modest inverse correlation between anti-PAD2 levels and disease severity in people with MS (τ = −0.145, p = 0.02), with levels being the highest in those with relapsing-remitting disease. Similarly, there was a modest inverse correlation between anti-PAD2 levels and neurocognitive score (τ = −0.10, p = 0.027) in people with PTLD, with difficulty focusing, memory changes, fatigue, and difficulty finding words contributing most strongly to the effect.ConclusionPADI2 expression was observed in diverse regions and cells of the CNS, and anti-PAD2 autoantibodies were associated with less severe symptoms in subsets of patients with MS and PTLD. These data suggest that anti-PAD2 antibodies may attenuate inflammation in diseases of different etiologies, which are united by high PADI2 expression in the target tissue.
Collapse
Affiliation(s)
- Yaewon Kim
- Division of Rheumatology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Alison W. Rebman
- Division of Rheumatology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Lyme Disease Research Center, Division of Rheumatology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Tory P. Johnson
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Hong Wang
- Division of Rheumatology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Ting Yang
- Division of Rheumatology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Lyme Disease Research Center, Division of Rheumatology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Carlo Colantuoni
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, United States
- Institute of Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Pavan Bhargava
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Michael Levy
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Peter A. Calabresi
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - John N. Aucott
- Division of Rheumatology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Lyme Disease Research Center, Division of Rheumatology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Mark J. Soloski
- Division of Rheumatology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Lyme Disease Research Center, Division of Rheumatology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Erika Darrah
- Division of Rheumatology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Lyme Disease Research Center, Division of Rheumatology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
- *Correspondence: Erika Darrah
| |
Collapse
|
20
|
van der Geest KSM, Sandovici M, Nienhuis PH, Slart RHJA, Heeringa P, Brouwer E, Jiemy WF. Novel PET Imaging of Inflammatory Targets and Cells for the Diagnosis and Monitoring of Giant Cell Arteritis and Polymyalgia Rheumatica. Front Med (Lausanne) 2022; 9:902155. [PMID: 35733858 PMCID: PMC9207253 DOI: 10.3389/fmed.2022.902155] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/13/2022] [Indexed: 12/26/2022] Open
Abstract
Giant cell arteritis (GCA) and polymyalgia rheumatica (PMR) are two interrelated inflammatory diseases affecting patients above 50 years of age. Patients with GCA suffer from granulomatous inflammation of medium- to large-sized arteries. This inflammation can lead to severe ischemic complications (e.g., irreversible vision loss and stroke) and aneurysm-related complications (such as aortic dissection). On the other hand, patients suffering from PMR present with proximal stiffness and pain due to inflammation of the shoulder and pelvic girdles. PMR is observed in 40-60% of patients with GCA, while up to 21% of patients suffering from PMR are also affected by GCA. Due to the risk of ischemic complications, GCA has to be promptly treated upon clinical suspicion. The treatment of both GCA and PMR still heavily relies on glucocorticoids (GCs), although novel targeted therapies are emerging. Imaging has a central position in the diagnosis of GCA and PMR. While [18F]fluorodeoxyglucose (FDG)-positron emission tomography (PET) has proven to be a valuable tool for diagnosis of GCA and PMR, it possesses major drawbacks such as unspecific uptake in cells with high glucose metabolism, high background activity in several non-target organs and a decrease of diagnostic accuracy already after a short course of GC treatment. In recent years, our understanding of the immunopathogenesis of GCA and, to some extent, PMR has advanced. In this review, we summarize the current knowledge on the cellular heterogeneity in the immunopathology of GCA/PMR and discuss how recent advances in specific tissue infiltrating leukocyte and stromal cell profiles may be exploited as a source of novel targets for imaging. Finally, we discuss prospective novel PET radiotracers that may be useful for the diagnosis and treatment monitoring in GCA and PMR.
Collapse
Affiliation(s)
- Kornelis S. M. van der Geest
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Maria Sandovici
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Pieter H. Nienhuis
- Department of Nuclear Medicine and Molecular Imaging, Medical Imaging Center, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Riemer H. J. A. Slart
- Department of Nuclear Medicine and Molecular Imaging, Medical Imaging Center, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- Department of Biomedical Photonic Imaging Group, University of Twente, Enschede, Netherlands
| | - Peter Heeringa
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Elisabeth Brouwer
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - William F. Jiemy
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| |
Collapse
|
21
|
Nag S, Miranda-Azpiazu P, Jia Z, Datta P, Arakawa R, Moein MM, Yang Z, Tu Y, Lemoine L, Ågren H, Nordberg A, Långström B, Halldin C. Development of 11C-Labeled ASEM Analogues for the Detection of Neuronal Nicotinic Acetylcholine Receptors (α7-nAChR). ACS Chem Neurosci 2022; 13:352-362. [PMID: 35020351 PMCID: PMC8815074 DOI: 10.1021/acschemneuro.1c00730] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 01/04/2022] [Indexed: 12/31/2022] Open
Abstract
The homo-pentameric alpha 7 receptor is one of the major types of neuronal nicotinic acetylcholine receptors (α7-nAChRs) related to cognition, memory formation, and attention processing. The mapping of α7-nAChRs by PET pulls a lot of attention to realize the mechanism and development of CNS diseases such as AD, PD, and schizophrenia. Several PET radioligands have been explored for the detection of the α7-nAChR. 18F-ASEM is the most functional for in vivo quantification of α7-nAChRs in the human brain. The first aim of this study was to initially use results from in silico and machine learning techniques to prescreen and predict the binding energy and other properties of ASEM analogues and to interpret these properties in terms of atomic structures using 18F-ASEM as a lead structure, and second, to label some selected candidates with carbon-11/hydrogen-3 (11C/3H) and to evaluate the binding properties in vitro and in vivo using the labeled candidates. In silico predictions are obtained from perturbation free-energy calculations preceded by molecular docking, molecular dynamics, and metadynamics simulations. Machine learning techniques have been applied for the BBB and P-gp-binding properties. Six analogues of ASEM were labeled with 11C, and three of them were additionally labeled with 3H. Binding properties were further evaluated using autoradiography (ARG) and PET measurements in non-human primates (NHPs). Radiometabolites were measured in NHP plasma. All six compounds were successfully synthesized. Evaluation with ARG showed that 11C-Kln83 was preferably binding to the α7-nAChR. Competition studies showed that 80% of the total binding was displaced. Further ARG studies using 3H-KIn-83 replicated the preliminary results. In the NHP PET study, the distribution pattern of 11C-KIn-83 was similar to other α7 nAChR PET tracers. The brain uptake was relatively low and increased by the administration of tariquidar, indicating a substrate of P-gp. The ASEM blocking study showed that 11C-KIn-83 specifically binds to α7 nAChRs. Preliminary in vitro evaluation of KIn-83 by ARG with both 11C and 3H and in vivo evaluation in NHP showed favorable properties for selectively imaging α7-nAChRs, despite a relatively low brain uptake.
Collapse
Affiliation(s)
- Sangram Nag
- Department
of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet and Stockholm County Council, 171 76 Stockholm, Sweden
| | - Patricia Miranda-Azpiazu
- Department
of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet and Stockholm County Council, 171 76 Stockholm, Sweden
| | - Zhisheng Jia
- Department
of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet and Stockholm County Council, 171 76 Stockholm, Sweden
| | - Prodip Datta
- Department
of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet and Stockholm County Council, 171 76 Stockholm, Sweden
| | - Ryosuke Arakawa
- Department
of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet and Stockholm County Council, 171 76 Stockholm, Sweden
| | - Mohammad Mahdi Moein
- Department
of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet and Stockholm County Council, 171 76 Stockholm, Sweden
| | - Zhou Yang
- Department
of Physics and Astronomy, Uppsala University, 751 20 Uppsala, Sweden
| | - Yaoquan Tu
- Division
of Theoretical Chemistry and Biology, Royal
Institute of Technology (KTH), 11428 Stockholm, Sweden
| | - Laetitia Lemoine
- Department
of Neurobiology, Care Sciences and Society, Karolinska Institutet, 141 52 Stockholm Sweden
| | - Hans Ågren
- Department
of Physics and Astronomy, Uppsala University, 751 20 Uppsala, Sweden
| | - Agneta Nordberg
- Department
of Neurobiology, Care Sciences and Society, Karolinska Institutet, 141 52 Stockholm Sweden
- Theme Aging, Karolinska University
Hospital, 141 52 Stockholm, Sweden
| | - Bengt Långström
- Department
of Chemistry, Uppsala University, 75123 Uppsala, Sweden
| | - Christer Halldin
- Department
of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet and Stockholm County Council, 171 76 Stockholm, Sweden
| |
Collapse
|
22
|
Parthasarathy G, Gadila SKG. Neuropathogenicity of non-viable Borrelia burgdorferi ex vivo. Sci Rep 2022; 12:688. [PMID: 35027599 PMCID: PMC8758786 DOI: 10.1038/s41598-021-03837-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 12/08/2021] [Indexed: 12/14/2022] Open
Abstract
Even after appropriate treatment, a proportion of Lyme disease patients suffer from a constellation of symptoms, collectively called Post-Treatment Lyme Disease Syndrome (PTLDS). Brain PET scan of patients with PTLDS have demonstrated likely glial activation indicating persistent neuroinflammatory processes. It is possible that unresolved bacterial remnants can continue to cause neuroinflammation. In previous studies, we have shown that non-viable Borrelia burgdorferi can induce neuroinflammation and apoptosis in an oligodendrocyte cell line. In this follow-up study, we analyze the effect of sonicated remnants of B. burgdorferi on primary rhesus frontal cortex (FC) and dorsal root ganglion (DRG) explants. Five FC and three DRG tissue fragments from rhesus macaques were exposed to sonicated B. burgdorferi and analyzed for 26 inflammatory mediators. Live bacteria and medium alone served as positive and negative control, respectively. Tissues were also analyzed for cell types mediating inflammation and overall apoptotic changes. Non-viable B. burgdorferi induced significant levels of several inflammatory mediators in both FC and DRG, similar to live bacteria. However, the levels induced by non-viable B. burgdorferi was often (several fold) higher than those induced by live ones, especially for IL-6, CXCL8 and CCL2. This effect was also more profound in the FC than in the DRG. Although the levels often differed, both live and dead fragments induced the same mediators, with significant overlap between FC and DRG. In the FC, immunohistochemical staining for several inflammatory mediators showed the presence of multiple mediators in astrocytes, followed by microglia and oligodendrocytes, in response to bacterial remnants. Staining was also seen in endothelial cells. In the DRG, chemokine/cytokine staining was predominantly seen in S100 positive (glial) cells. B. burgdorferi remnants also induced significant levels of apoptosis in both the FC and DRG. Apoptosis was confined to S100 + cells in the DRG while distinct neuronal apoptosis was also detected in most FC tissues in response to sonicated bacteria. Non-viable B. burgdorferi can continue to be neuropathogenic to both CNS and PNS tissues with effects likely more profound in the former. Persistence of remnant-induced neuroinflammatory processes can lead to long term health consequences.
Collapse
Affiliation(s)
- Geetha Parthasarathy
- Division of Immunology, Tulane National Primate Research Center, Tulane University, 18703, Three Rivers Road, Covington, LA, 70433, USA. .,Tulane National Primate Research Center, 18703, Three rivers Road, Room 109, Covington, LA, 70433, USA.
| | - Shiva Kumar Goud Gadila
- Division of Immunology, Tulane National Primate Research Center, Tulane University, 18703, Three Rivers Road, Covington, LA, 70433, USA
| |
Collapse
|
23
|
Chauveau F, Becker G, Boutin H. Have (R)-[ 11C]PK11195 challengers fulfilled the promise? A scoping review of clinical TSPO PET studies. Eur J Nucl Med Mol Imaging 2021; 49:201-220. [PMID: 34387719 PMCID: PMC8712292 DOI: 10.1007/s00259-021-05425-w] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 05/19/2021] [Indexed: 12/19/2022]
Abstract
PURPOSE The prototypical TSPO radiotracer (R)-[11C]PK11195 has been used in humans for more than thirty years to visualize neuroinflammation in several pathologies. Alternative radiotracers have been developed to improve signal-to-noise ratio and started to be tested clinically in 2008. Here we examined the scientific value of these "(R)-[11C]PK11195 challengers" in clinical research to determine if they could supersede (R)-[11C]PK11195. METHODS A systematic MEDLINE (PubMed) search was performed (up to end of year 2020) to extract publications reporting TSPO PET in patients with identified pathologies, excluding studies in healthy subjects and methodological studies. RESULTS Of the 288 publications selected, 152 used 13 challengers, and 142 used (R)-[11C]PK11195. Over the last 20 years, the number of (R)-[11C]PK11195 studies remained stable (6 ± 3 per year), but was surpassed by the total number of challenger studies for the last 6 years. In total, 3914 patients underwent a TSPO PET scan, and 47% (1851 patients) received (R)-[11C]PK11195. The 2 main challengers were [11C]PBR28 (24%-938 patients) and [18F]FEPPA (11%-429 patients). Only one-in-ten patients (11%-447) underwent 2 TSPO scans, among whom 40 (1%) were scanned with 2 different TSPO radiotracers. CONCLUSIONS Generally, challengers confirmed disease-specific initial (R)-[11C]PK11195 findings. However, while their better signal-to-noise ratio seems particularly useful in diseases with moderate and widespread neuroinflammation, most challengers present an allelic-dependent (Ala147Thr polymorphism) TSPO binding and genetic stratification is hindering their clinical implementation. As new challengers, insensitive to TSPO human polymorphism, are about to enter clinical evaluation, we propose this systematic review to be regularly updated (living review).
Collapse
Affiliation(s)
- Fabien Chauveau
- University of Lyon, Lyon Neuroscience Research Center (CRNL), CNRS UMR5292, INSERM U1028, University Lyon 1, Lyon, France.
| | - Guillaume Becker
- GIGA - CRC In Vivo Imaging, University Liege, Liege, Belgium
- University of Lyon, CarMeN Laboratory, INSERM U1060, University Lyon 1, Hospices Civils Lyon, Lyon, France
| | - Hervé Boutin
- Faculty of Biology Medicine and Health, Wolfson Molecular Imaging Centre, University of Manchester, Manchester, UK.
- Wolfson Molecular Imaging Centre, University of Manchester, Manchester, UK.
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance & University of Manchester, Manchester, UK.
| |
Collapse
|
24
|
Clark IA. How diseases caused by parasites allowed a wider understanding of disease in general: my encounters with parasitology in Australia and elsewhere over the last 50 years. Int J Parasitol 2021; 51:1265-1276. [PMID: 34757090 DOI: 10.1016/j.ijpara.2021.10.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 09/18/2021] [Accepted: 10/13/2021] [Indexed: 12/18/2022]
Abstract
This is an account of how it can prove possible to carve a reasonable scientific career by following what brought most scientific thrill rather than pursue a safe, institution-directed, path. The fascination began when I noticed, quite unexpectedly, that the normal mouse immune response causes Babesia microti to die, en masse, inside circulating red cells. It eventuated that prior Bacillus Calmette Guerin infection caused the same outcome, even before the protozoal infection became patent. It also rendered mice quite immune, long term. I acquired an obsession about this telling us how little we know. Surrounded by basic immunologists, parasitologists and virologists in London, I had been given, in the days that funding was ample, the opportunity to follow any promising lead with a free hand. Through Bacillus Calmette Guerin, this meant stumbling through a set of phenomena that were in their infancies, and could be explained only through nebulous novel soluble mediators such as TNF, described the following year as causing the in vivo necrosis of tumours in mice. Beginning with malarial disease pathogenesis, I followed TNF wherever it led, into innate immunity, acute and chronic infections, neurophysiology and neurodegenerative diseases, in all of which states awareness of the role of this cytokine is still growing fast. Many of these steps can be illustrated and expanded upon in parasitic diseases. Covering the importance of TNF in the pathogenesis of neurodegenerative disease has proved to be highly illuminating, scientifically and otherwise. But the insights it has given me into understanding the temptations to which patent-owners can succumb when faced with opportunities to put money before people is not for the faint hearted. Clearly, parasitologists inhabit a much more common-good yet science-orientated, civilised, world.
Collapse
Affiliation(s)
- Ian A Clark
- Biomedical Sciences and Biochemistry, Research School of Biology, Australian National University, Canberra, ACT 2601, Australia.
| |
Collapse
|
25
|
Leimer N, Wu X, Imai Y, Morrissette M, Pitt N, Favre-Godal Q, Iinishi A, Jain S, Caboni M, Leus IV, Bonifay V, Niles S, Bargabos R, Ghiglieri M, Corsetti R, Krumpoch M, Fox G, Son S, Klepacki D, Polikanov YS, Freliech CA, McCarthy JE, Edmondson DG, Norris SJ, D'Onofrio A, Hu LT, Zgurskaya HI, Lewis K. A selective antibiotic for Lyme disease. Cell 2021; 184:5405-5418.e16. [PMID: 34619078 DOI: 10.1016/j.cell.2021.09.011] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 07/22/2021] [Accepted: 09/08/2021] [Indexed: 12/11/2022]
Abstract
Lyme disease is on the rise. Caused by a spirochete Borreliella burgdorferi, it affects an estimated 500,000 people in the United States alone. The antibiotics currently used to treat Lyme disease are broad spectrum, damage the microbiome, and select for resistance in non-target bacteria. We therefore sought to identify a compound acting selectively against B. burgdorferi. A screen of soil micro-organisms revealed a compound highly selective against spirochetes, including B. burgdorferi. Unexpectedly, this compound was determined to be hygromycin A, a known antimicrobial produced by Streptomyces hygroscopicus. Hygromycin A targets the ribosomes and is taken up by B. burgdorferi, explaining its selectivity. Hygromycin A cleared the B. burgdorferi infection in mice, including animals that ingested the compound in a bait, and was less disruptive to the fecal microbiome than clinically relevant antibiotics. This selective antibiotic holds the promise of providing a better therapeutic for Lyme disease and eradicating it in the environment.
Collapse
Affiliation(s)
- Nadja Leimer
- Antimicrobial Discovery Center, Department of Biology, Northeastern University, Boston, MA 02115, USA
| | - Xiaoqian Wu
- Antimicrobial Discovery Center, Department of Biology, Northeastern University, Boston, MA 02115, USA
| | - Yu Imai
- Antimicrobial Discovery Center, Department of Biology, Northeastern University, Boston, MA 02115, USA
| | - Madeleine Morrissette
- Antimicrobial Discovery Center, Department of Biology, Northeastern University, Boston, MA 02115, USA
| | - Norman Pitt
- Antimicrobial Discovery Center, Department of Biology, Northeastern University, Boston, MA 02115, USA
| | - Quentin Favre-Godal
- Antimicrobial Discovery Center, Department of Biology, Northeastern University, Boston, MA 02115, USA
| | - Akira Iinishi
- Antimicrobial Discovery Center, Department of Biology, Northeastern University, Boston, MA 02115, USA
| | - Samta Jain
- Antimicrobial Discovery Center, Department of Biology, Northeastern University, Boston, MA 02115, USA
| | - Mariaelena Caboni
- Antimicrobial Discovery Center, Department of Biology, Northeastern University, Boston, MA 02115, USA
| | - Inga V Leus
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73019, USA
| | - Vincent Bonifay
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73019, USA
| | - Samantha Niles
- Antimicrobial Discovery Center, Department of Biology, Northeastern University, Boston, MA 02115, USA
| | - Rachel Bargabos
- Antimicrobial Discovery Center, Department of Biology, Northeastern University, Boston, MA 02115, USA
| | - Meghan Ghiglieri
- Antimicrobial Discovery Center, Department of Biology, Northeastern University, Boston, MA 02115, USA
| | - Rachel Corsetti
- Antimicrobial Discovery Center, Department of Biology, Northeastern University, Boston, MA 02115, USA
| | - Megan Krumpoch
- Antimicrobial Discovery Center, Department of Biology, Northeastern University, Boston, MA 02115, USA
| | - Gabriel Fox
- Antimicrobial Discovery Center, Department of Biology, Northeastern University, Boston, MA 02115, USA
| | - Sangkeun Son
- Antimicrobial Discovery Center, Department of Biology, Northeastern University, Boston, MA 02115, USA
| | - Dorota Klepacki
- Center for Biomolecular Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Yury S Polikanov
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Cecily A Freliech
- Division of Geographic Medicine and Infectious Diseases, Tufts Medical Center, Boston, MA 02111, USA
| | - Julie E McCarthy
- Division of Geographic Medicine and Infectious Diseases, Tufts Medical Center, Boston, MA 02111, USA
| | - Diane G Edmondson
- Department of Pathology and Laboratory Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77225, USA
| | - Steven J Norris
- Department of Pathology and Laboratory Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77225, USA
| | - Anthony D'Onofrio
- Antimicrobial Discovery Center, Department of Biology, Northeastern University, Boston, MA 02115, USA
| | - Linden T Hu
- Division of Geographic Medicine and Infectious Diseases, Tufts Medical Center, Boston, MA 02111, USA
| | - Helen I Zgurskaya
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73019, USA
| | - Kim Lewis
- Antimicrobial Discovery Center, Department of Biology, Northeastern University, Boston, MA 02115, USA.
| |
Collapse
|
26
|
Fitzgerald BL, Graham B, Delorey MJ, Pegalajar-Jurado A, Islam MN, Wormser GP, Aucott JN, Rebman AW, Soloski MJ, Belisle JT, Molins CR. Metabolic Response in Patients With Post-treatment Lyme Disease Symptoms/Syndrome. Clin Infect Dis 2021; 73:e2342-e2349. [PMID: 32975577 PMCID: PMC8492154 DOI: 10.1093/cid/ciaa1455] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Post-treatment Lyme disease symptoms/syndrome (PTLDS) occurs in approximately 10% of patients with Lyme disease following antibiotic treatment. Biomarkers or specific clinical symptoms to identify patients with PTLDS do not currently exist and the PTLDS classification is based on the report of persistent, subjective symptoms for ≥6 months following antibiotic treatment for Lyme disease. METHODS Untargeted liquid chromatography-mass spectrometry metabolomics was used to determine longitudinal metabolic responses and biosignatures in PTLDS and clinically cured non-PTLDS Lyme patients. Evaluation of biosignatures included (1) defining altered classes of metabolites, (2) elastic net regularization to define metabolites that most strongly defined PTLDS and non-PTLDS patients at different time points, (3) changes in the longitudinal abundance of metabolites, and (4) linear discriminant analysis to evaluate robustness in a second patient cohort. RESULTS This study determined that observable metabolic differences exist between PTLDS and non-PTLDS patients at multiple time points. The metabolites with differential abundance included those from glycerophospholipid, bile acid, and acylcarnitine metabolism. Distinct longitudinal patterns of metabolite abundance indicated a greater metabolic variability in PTLDS versus non-PTLDS patients. Small numbers of metabolites (6 to 40) could be used to define PTLDS versus non-PTLDS patients at defined time points, and the findings were validated in a second cohort of PTLDS and non-PTLDS patients. CONCLUSIONS These data provide evidence that an objective metabolite-based measurement can distinguish patients with PTLDS and help understand the underlying biochemistry of PTLDS.
Collapse
Affiliation(s)
| | - Barbara Graham
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Mark J Delorey
- Centers for Disease Control and Prevention, Fort Collins, Colorado, USA
| | | | - M Nurul Islam
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Gary P Wormser
- Division of Infectious Diseases, New York Medical College, Valhalla, New York, USA
| | - John N Aucott
- The Lyme Disease Research Center, Division of Rheumatology, Department of Medicine, Johns Hopkins University School of Medicine, Lutherville, Maryland, USA
| | - Alison W Rebman
- The Lyme Disease Research Center, Division of Rheumatology, Department of Medicine, Johns Hopkins University School of Medicine, Lutherville, Maryland, USA
| | - Mark J Soloski
- The Lyme Disease Research Center, Division of Rheumatology, Department of Medicine, Johns Hopkins University School of Medicine, Lutherville, Maryland, USA
| | - John T Belisle
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Claudia R Molins
- Centers for Disease Control and Prevention, Fort Collins, Colorado, USA
| |
Collapse
|
27
|
Fallon BA, Madsen T, Erlangsen A, Benros ME. Lyme Borreliosis and Associations With Mental Disorders and Suicidal Behavior: A Nationwide Danish Cohort Study. Am J Psychiatry 2021; 178:921-931. [PMID: 34315282 DOI: 10.1176/appi.ajp.2021.20091347] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
OBJECTIVE Lyme borreliosis is a tick-borne infectious disease that may confer an increased risk of mental disorders, but previous studies have been hampered by methodological limitations, including small sample sizes. The authors used a nationwide retrospective cohort study design to examine rates of mental disorders following Lyme borreliosis. METHODS Using Denmark's National Patient Register and the Psychiatric Central Research Register, and including all persons living in Denmark from 1994 through 2016 (N=6,945,837), the authors assessed the risk of mental disorders and suicidal behaviors among all individuals diagnosed with Lyme borreliosis in inpatient and outpatient hospital contacts (N=12,156). Incidence rate ratios (IRRs) were calculated by Poisson regression analyses. RESULTS Individuals with Lyme borreliosis had higher rates of any mental disorder (IRR=1.28, 95% CI=1.20, 1.37), of affective disorders (IRR=1.42, 95% CI=1.27, 1.59), of suicide attempts (IRR=2.01, 95% CI=1.58, 2.55), and of death by suicide (IRR=1.75, 95% CI=1.18, 2.58) compared with those without Lyme borreliosis. The 6-month interval after diagnosis was associated with the highest rate of any mental disorder (IRR=1.96, 95% CI=1.53, 2.52), and the first 3 years after diagnosis was associated with the highest rate of suicide (IRR=2.41, 95% CI=1.25, 4.62). Having more than one episode of Lyme borreliosis was associated with increased incidence rate ratios for mental disorders, affective disorders, and suicide attempts, but not for death by suicide. CONCLUSIONS Individuals diagnosed with Lyme borreliosis in the hospital setting had an increased risk of mental disorders, affective disorders, suicide attempts, and suicide. Although the absolute population risk is low, clinicians should be aware of potential psychiatric sequelae of this global disease.
Collapse
Affiliation(s)
- Brian A Fallon
- Department of Psychiatry, Columbia University, and New York State Psychiatric Institute, New York (Fallon); Copenhagen Research Center for Mental Health, Mental Health Center Copenhagen, Copenhagen University Hospital, Copenhagen (Madsen, Erlangsen, Benros); Danish Research Institute of Suicide Prevention, Mental Health Center Copenhagen, Capital Region of Denmark (Erlangsen); Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore (Erlangsen); Center of Mental Health Research, Australian National University, Canberra, Australia (Erlangsen); Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen (Benros)
| | - Trine Madsen
- Department of Psychiatry, Columbia University, and New York State Psychiatric Institute, New York (Fallon); Copenhagen Research Center for Mental Health, Mental Health Center Copenhagen, Copenhagen University Hospital, Copenhagen (Madsen, Erlangsen, Benros); Danish Research Institute of Suicide Prevention, Mental Health Center Copenhagen, Capital Region of Denmark (Erlangsen); Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore (Erlangsen); Center of Mental Health Research, Australian National University, Canberra, Australia (Erlangsen); Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen (Benros)
| | - Annette Erlangsen
- Department of Psychiatry, Columbia University, and New York State Psychiatric Institute, New York (Fallon); Copenhagen Research Center for Mental Health, Mental Health Center Copenhagen, Copenhagen University Hospital, Copenhagen (Madsen, Erlangsen, Benros); Danish Research Institute of Suicide Prevention, Mental Health Center Copenhagen, Capital Region of Denmark (Erlangsen); Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore (Erlangsen); Center of Mental Health Research, Australian National University, Canberra, Australia (Erlangsen); Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen (Benros)
| | - Michael E Benros
- Department of Psychiatry, Columbia University, and New York State Psychiatric Institute, New York (Fallon); Copenhagen Research Center for Mental Health, Mental Health Center Copenhagen, Copenhagen University Hospital, Copenhagen (Madsen, Erlangsen, Benros); Danish Research Institute of Suicide Prevention, Mental Health Center Copenhagen, Capital Region of Denmark (Erlangsen); Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore (Erlangsen); Center of Mental Health Research, Australian National University, Canberra, Australia (Erlangsen); Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen (Benros)
| |
Collapse
|
28
|
Borreliosi di Lyme e neuroborreliosi. Neurologia 2021. [DOI: 10.1016/s1634-7072(21)45319-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
29
|
Mahler C, Schumacher AM, Unterrainer M, Kaiser L, Höllbacher T, Lindner S, Havla J, Ertl-Wagner B, Patzig M, Seelos K, Neitzel J, Mäurer M, Krumbholz M, Metz I, Brück W, Stadelmann C, Merkler D, Gass A, Milenkovic V, Bartenstein P, Albert NL, Kümpfel T, Kerschensteiner M. TSPO PET imaging of natalizumab-associated progressive multifocal leukoencephalopathy. Brain 2021; 144:2683-2695. [PMID: 33757118 DOI: 10.1093/brain/awab127] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 02/10/2021] [Accepted: 03/01/2021] [Indexed: 01/31/2023] Open
Abstract
Progressive multifocal leukoencephalopathy (PML) is a severe infection of the central nervous system caused by the polyomavirus JC (JCV) that can occur in multiple sclerosis (MS) patients treated with natalizumab. Clinical management of patients with natalizumab-associated PML is challenging not the least because current imaging tools for the early detection, longitudinal monitoring and differential diagnosis of PML lesions are limited. Here we evaluate whether TSPO positron emission tomography (PET) imaging can be applied to monitor the inflammatory activity of PML lesions over time and differentiate them from MS lesions. For this monocenter pilot study we followed 8 patients with natalizumab-associated PML with PET imaging using the TSPO radioligand [18F]GE-180 combined with frequent 3 T MRI imaging. In addition we compared TSPO PET signals in PML lesions with the signal pattern of MS lesions from 17 independent MS patients. We evaluated the standardized uptake value ratio (SUVR) as well as the morphometry of the TSPO uptake for putative PML and MS lesions areas compared to a radiologically unaffected pseudo-reference region in the cerebrum. Furthermore TSPO expression in situ was immunohistochemically verified by determining the density and cellular identity of TSPO-expressing cells in brain sections from four patients with early natalizumab-associated PML as well as five patients with other forms of PML and six patients with inflammatory demyelinating CNS lesions (clinically isolated syndrome/MS). Histological analysis revealed a reticular accumulation of TSPO expressing phagocytes in PML lesions, while such phagocytes showed a more homogenous distribution in putative MS lesions. TSPO PET imaging showed an enhanced tracer uptake in natalizumab-associated PML lesions that was present from the early to the chronic stages (up to 52 months after PML diagnosis). While gadolinium enhancement on MRI rapidly declined to baseline levels, TSPO tracer uptake followed a slow one phase decay curve. A TSPO-based 3-dimensional diagnostic matrix taking into account the uptake levels as well as the shape and texture of the TSPO signal differentiated more than 96% of PML and MS lesions. Indeed, treatment with rituximab after natalizumab-associated PML in three patients did not affect tracer uptake in the assigned PML lesions but reverted tracer uptake to baseline in the assigned active MS lesions. Taken together our study suggests that TSPO PET imaging can reveal CNS inflammation in natalizumab-associated PML. TSPO PET may facilitate longitudinal monitoring of disease activity and help to distinguish recurrent MS activity from PML progression.
Collapse
Affiliation(s)
- Christoph Mahler
- Institute of Clinical Neuroimmunology, University Hospital, Ludwig-Maximilians-Universität Munich, Munich, Germany.,Biomedical Center (BMC), Medical Faculty, Ludwig-Maximilians-Universität Munich, Martinsried, Germany
| | - Adrian-Minh Schumacher
- Institute of Clinical Neuroimmunology, University Hospital, Ludwig-Maximilians-Universität Munich, Munich, Germany.,Biomedical Center (BMC), Medical Faculty, Ludwig-Maximilians-Universität Munich, Martinsried, Germany
| | - Marcus Unterrainer
- Department of Nuclear Medicine, University Hospital, Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - Lena Kaiser
- Department of Nuclear Medicine, University Hospital, Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - Thomas Höllbacher
- Department of Nuclear Medicine, University Hospital, Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - Simon Lindner
- Department of Nuclear Medicine, University Hospital, Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - Joachim Havla
- Institute of Clinical Neuroimmunology, University Hospital, Ludwig-Maximilians-Universität Munich, Munich, Germany.,Biomedical Center (BMC), Medical Faculty, Ludwig-Maximilians-Universität Munich, Martinsried, Germany
| | - Birgit Ertl-Wagner
- Institute of Clinical Radiology, University Hospital Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - Maximilian Patzig
- Institute of Neuroradiology, University Hospital, Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - Klaus Seelos
- Institute of Neuroradiology, University Hospital, Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - Julia Neitzel
- Institute for Stroke and Dementia Research, Ludwig-Maximilians-Universität Munich, Munich, Germany
| | | | - Markus Krumbholz
- Department of Neurology & Stroke and Hertie-Institute for Clinical Brain Research, Eberhard Karl University of Tübingen, Tübingen, Germany
| | - Imke Metz
- Institute of Neuropathology, University Medical Center Göttingen, Göttingen, Germany
| | - Wolfgang Brück
- Institute of Neuropathology, University Medical Center Göttingen, Göttingen, Germany
| | - Christine Stadelmann
- Institute of Neuropathology, University Medical Center Göttingen, Göttingen, Germany
| | - Doron Merkler
- Division of Clinical Pathology, Geneva University Hospital, Geneva, Switzerland.,Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Achim Gass
- Department of Neurology, University Hospital Mannheim, Mannheim, Germany
| | - Vladimir Milenkovic
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
| | - Peter Bartenstein
- Department of Nuclear Medicine, University Hospital, Ludwig-Maximilians-Universität Munich, Munich, Germany.,Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
| | - Nathalie L Albert
- Department of Nuclear Medicine, University Hospital, Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - Tania Kümpfel
- Institute of Clinical Neuroimmunology, University Hospital, Ludwig-Maximilians-Universität Munich, Munich, Germany.,Biomedical Center (BMC), Medical Faculty, Ludwig-Maximilians-Universität Munich, Martinsried, Germany
| | - Martin Kerschensteiner
- Institute of Clinical Neuroimmunology, University Hospital, Ludwig-Maximilians-Universität Munich, Munich, Germany.,Biomedical Center (BMC), Medical Faculty, Ludwig-Maximilians-Universität Munich, Martinsried, Germany.,Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
| |
Collapse
|
30
|
Kagitani-Shimono K, Kato H, Kuwayama R, Tominaga K, Nabatame S, Kishima H, Hatazawa J, Taniike M. Clinical evaluation of neuroinflammation in child-onset focal epilepsy: a translocator protein PET study. J Neuroinflammation 2021; 18:8. [PMID: 33407581 PMCID: PMC7789379 DOI: 10.1186/s12974-020-02055-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 12/09/2020] [Indexed: 01/17/2023] Open
Abstract
Background Neuroinflammation is associated with various chronic neurological diseases, including epilepsy; however, neuroimaging approaches for visualizing neuroinflammation have not been used in the clinical routine yet. In this study, we used the translocator protein positron emission tomography (PET) with [11C] DPA713 to investigate neuroinflammation in the epileptogenic zone in patients with child-onset focal epilepsy. Methods Patients with intractable focal epilepsy were recruited at the Epilepsy Center of Osaka University; those who were taking any immunosuppressants or steroids were excluded. PET images were acquired for 60 min after intravenous administration of [11C] DPA713. The PET image of [11C] DPA713 was co-registered to individual’s magnetic resonance imaging (MRI), and the standardized uptake value ratio (SUVr) in regions of interest, which were created in non-lesions and lesions, was calculated using the cerebellum as a pseudo-reference region. In the case of epilepsy surgery, the correlation between SUVr in lesions and pathological findings was analyzed. Results Twenty-seven patients (mean age: 11.3 ± 6.2 years, male/female: 17/10) were included in this study. Of these, 85.1% showed increased uptake of [11C] DPA713 in the focal epileptic lesion. Three patients showed epileptic spasms, suggesting partial seizure onset, and all 18 patients with abnormal lesions on MRI were similarly highlighted by significant uptake of [11C] DPA713. DPA713-positive patients had a broad range of etiologies, including focal cortical dysplasia, tumors, infarction, and hippocampal sclerosis. Five out of nine MRI-negative patients showed abnormal [11C] DPA713 uptake. The SUVr of [11C] DPA713 in lesions was significantly higher than that in non-lesions. In seven patients who underwent epilepsy surgery, increased [11C] DPA713 uptake was associated with microglial activation. Conclusions This study indicates that [11C] DPA713 uptake has valuable sensitivity in the identification of epileptic foci in child-onset focal epilepsy, and inflammation is implicated in the pathophysiology in the epileptic foci caused by various etiologies. Further research is required to establish diagnostic tools for identifying focal epileptogenic zones. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-020-02055-1.
Collapse
Affiliation(s)
- Kuriko Kagitani-Shimono
- Department of Child Development, United Graduate School of Child Development, Osaka University, Suita, Osaka, Japan. .,Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Japan. .,Epilepsy Center, Osaka University Hospital, Suita, Japan.
| | - Hiroki Kato
- Department of Nuclear Medicine and Tracer Kinetics, Osaka University Graduate School of Medicine, Suita, Japan
| | - Ryoko Kuwayama
- Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Japan.,Epilepsy Center, Osaka University Hospital, Suita, Japan
| | - Koji Tominaga
- Department of Child Development, United Graduate School of Child Development, Osaka University, Suita, Osaka, Japan.,Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Japan.,Epilepsy Center, Osaka University Hospital, Suita, Japan
| | - Shin Nabatame
- Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Japan.,Epilepsy Center, Osaka University Hospital, Suita, Japan
| | - Haruhiko Kishima
- Epilepsy Center, Osaka University Hospital, Suita, Japan.,Department of Neurosurgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Jun Hatazawa
- Department of Nuclear Medicine and Tracer Kinetics, Osaka University Graduate School of Medicine, Suita, Japan.,Department of Quantum Cancer Therapy Research Center for Nuclear Physics, Osaka University, Suita, Japan
| | - Masako Taniike
- Department of Child Development, United Graduate School of Child Development, Osaka University, Suita, Osaka, Japan.,Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Japan
| |
Collapse
|
31
|
|
32
|
Danon JJ, Tregeagle DFL, Kassiou M. Adventures in Translocation: Studies of the Translocator Protein (TSPO) 18 kDa. Aust J Chem 2021. [DOI: 10.1071/ch21176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The 18 kDa translocator protein (TSPO) is an evolutionarily conserved transmembrane protein found embedded in the outer mitochondrial membrane. A secondary target for the benzodiazepine diazepam, TSPO has been a protein of interest for researchers for decades, particularly owing to its well-established links to inflammatory conditions in the central and peripheral nervous systems. It has become a key biomarker for assessing microglial activation using positron emission tomography (PET) imaging in patients with diseases ranging from atherosclerosis to Alzheimer’s disease. This Account describes research published by our group over the past 15 years surrounding the development of TSPO ligands and their use in probing the function of this high-value target.
Collapse
|
33
|
Abstract
Most patients with acute Lyme disease are cured with antibiotic intervention, but 10 to 20% endure debilitating symptoms such as fatigue, neurological complications, and myalgias after treatment, a condition known as posttreatment Lyme disease syndrome (PTLDS). The etiology of PTLDS is not understood, and objective diagnostic tools are lacking. PTLDS symptoms overlap several diseases in which patients exhibit alterations in their microbiome. We found that patients with PTLDS have a distinct microbiome signature, allowing for an accurate classification of over 80% of analyzed cases. The signature is characterized by an increase in Blautia, a decrease in Bacteroides, and other changes. Importantly, this signature supports the validity of PTLDS and is the first potential biological diagnostic tool for the disease. Lyme disease is the most common vector-borne disease in the United States, with an estimated incidence of 300,000 infections annually. Antibiotic intervention cures Lyme disease in the majority of cases; however, 10 to 20% of patients develop posttreatment Lyme disease syndrome (PTLDS), a debilitating condition characterized by chronic fatigue, pain, and cognitive difficulties. The underlying mechanism responsible for PTLDS symptoms, as well as a reliable diagnostic tool, has remained elusive. We reasoned that the gut microbiome may play an important role in PTLDS given that the symptoms overlap considerably with conditions in which a dysbiotic microbiome has been observed, including mood, cognition, and autoimmune disorders. Analysis of sequencing data from a rigorously curated cohort of patients with PTLDS revealed a gut microbiome signature distinct from that of healthy control subjects, as well as from that of intensive care unit (ICU) patients. Notably, microbiome sequencing data alone were indicative of PTLDS, which presents a potential, novel diagnostic tool for PTLDS.
Collapse
|
34
|
Zubcevik N, Mao C, Wang QM, Bose EL, Octavien RN, Crandell D, Wood LJ. Symptom Clusters and Functional Impairment in Individuals Treated for Lyme Borreliosis. Front Med (Lausanne) 2020; 7:464. [PMID: 32974369 PMCID: PMC7472530 DOI: 10.3389/fmed.2020.00464] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 07/13/2020] [Indexed: 11/17/2022] Open
Abstract
Context: Persistent fatigue, pain, and neurocognitive impairment are common in individuals following treatment for Lyme borreliosis (LB). Poor sleep, depression, visual disturbance, and sensory neuropathies have also been reported. The cause of these symptoms is unclear, and widely accepted effective treatment strategies are lacking. Objectives: To identify symptom clusters in people with persistent symptoms previously treated for LB and to examine the relationship between symptom severity and perceived disability. Methods: This was a retrospective chart review of individuals with a history of treatment of LB referred to The Dean Center for Tick-Borne Illness at Spaulding Rehabilitation Hospital between 2015 and 2018 (n = 270) because of persistent symptoms. Symptoms and functional impairment were collected using the General Symptom Questionnaire-30 (GSQ-30), and the Sheehan Disability Scale. Clinical tests were conducted to evaluate for tick-borne co-infections and to rule out medical disorders that could mimic LB symptomatology. Exploratory factor analysis was performed to identify symptom clusters. Results: Five symptom clusters were identified. Each cluster was assigned a name to reflect the possible underlying etiology and was based on the majority of the symptoms in the cluster: the neuropathy symptom cluster, sleep-fatigue symptom cluster, migraine symptom cluster, cognitive symptom cluster, and mood symptom cluster. Symptom severity for each symptom cluster was positively associated with global functional impairment (p < 0.001). Conclusion: Identifying the interrelationship between symptoms in post-treatment LB in a cluster can aid in the identification of the etiological basis of these symptoms and could lead to more effective symptom management strategies. Key Message: This article describes symptom clusters in individuals with a history of Lyme borreliosis. Five clusters were identified: sleep-fatigue, neuropathy, migraine-like, cognition, and mood clusters. Identifying the interrelationship between symptoms in each of the identified clusters could aid in more effective symptom management through identifying triggering symptoms or an underlying etiology.
Collapse
Affiliation(s)
- Nevena Zubcevik
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA, United States.,The Dean Center for Tickborne Illness, Spaulding Research Institute, Spaulding Rehabilitation Hospital, Boston, MA, United States.,Invisible International, Cambridge, MA, United States
| | - Charlotte Mao
- The Dean Center for Tickborne Illness, Spaulding Research Institute, Spaulding Rehabilitation Hospital, Boston, MA, United States.,Massachusetts General Hospital, Department of Pediatric Infectious Diseases, Boston, MA, United States
| | - Qing Mei Wang
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA, United States.,Stroke Biological Recovery Laboratory, Spaulding Research Institute, Spaulding Rehabilitation Hospital, Boston, MA, United States
| | - Eliezer L Bose
- Stroke Biological Recovery Laboratory, Spaulding Research Institute, Spaulding Rehabilitation Hospital, Boston, MA, United States
| | - Rose Nadlyne Octavien
- The Dean Center for Tickborne Illness, Spaulding Research Institute, Spaulding Rehabilitation Hospital, Boston, MA, United States
| | - David Crandell
- The Dean Center for Tickborne Illness, Spaulding Research Institute, Spaulding Rehabilitation Hospital, Boston, MA, United States
| | - Lisa J Wood
- Massachusetts General Hospital, Institute for Health Professions, School of Nursing, Charlestown, MA, United States.,William F. Connell School of Nursing, Boston College, Chestnut Hill, MA, United States
| |
Collapse
|
35
|
Tubbs JD, Ding J, Baum L, Sham PC. Immune dysregulation in depression: Evidence from genome-wide association. Brain Behav Immun Health 2020; 7:100108. [PMID: 34589869 PMCID: PMC8474691 DOI: 10.1016/j.bbih.2020.100108] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 07/12/2020] [Indexed: 12/15/2022] Open
Abstract
A strong body of evidence supports a role for immune dysregulation across many psychiatric disorders including depression, the leading cause of global disability. Recent progress in the search for genetic variants associated with depression provides the opportunity to strengthen our current understanding of etiological factors contributing to depression and generate novel hypotheses. Here, we provide an overview of the literature demonstrating a role for immune dysregulation in depression, followed by a detailed discussion of the immune-related genes identified by the most recent genome-wide meta-analysis of depression. These genes represent strong evidence-based targets for future basic and translational research which aims to understand the role of the immune system in depression pathology and identify novel points for therapeutic intervention.
Collapse
Affiliation(s)
- Justin D. Tubbs
- Department of Psychiatry, The University of Hong Kong, Hong Kong
| | - Jiahong Ding
- Department of Psychiatry, The University of Hong Kong, Hong Kong
| | - Larry Baum
- Department of Psychiatry, The University of Hong Kong, Hong Kong
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong
| | - Pak C. Sham
- Department of Psychiatry, The University of Hong Kong, Hong Kong
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong
- Centre for PanorOmic Sciences, The University of Hong Kong, Hong Kong
| |
Collapse
|
36
|
Cavaliere C, Tramontano L, Fiorenza D, Alfano V, Aiello M, Salvatore M. Gliosis and Neurodegenerative Diseases: The Role of PET and MR Imaging. Front Cell Neurosci 2020; 14:75. [PMID: 32327973 PMCID: PMC7161920 DOI: 10.3389/fncel.2020.00075] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 03/13/2020] [Indexed: 12/16/2022] Open
Abstract
Glial activation characterizes most neurodegenerative and psychiatric diseases, often anticipating clinical manifestations and macroscopical brain alterations. Although imaging techniques have improved diagnostic accuracy in many neurological conditions, often supporting diagnosis, prognosis prediction and treatment outcome, very few molecular imaging probes, specifically focused on microglial and astrocytic activation, have been translated to a clinical setting. In this context, hybrid positron emission tomography (PET)/magnetic resonance (MR) scanners represent the most advanced tool for molecular imaging, combining the functional specificity of PET radiotracers (e.g., targeting metabolism, hypoxia, and inflammation) to both high-resolution and multiparametric information derived by MR in a single imaging acquisition session. This simultaneity of findings achievable by PET/MR, if useful for reciprocal technical adjustments regarding temporal and spatial cross-modal alignment/synchronization, opens still debated issues about its clinical value in neurological patients, possibly incompliant and highly variable from a clinical point of view. While several preclinical and clinical studies have investigated the sensitivity of PET tracers to track microglial (mainly TSPO ligands) and astrocytic (mainly MAOB ligands) activation, less studies have focused on MR specificity to this topic (e.g., through the assessment of diffusion properties and T2 relaxometry), and only few exploiting the integration of simultaneous hybrid acquisition. This review aims at summarizing and critically review the current state about PET and MR imaging for glial targets, as well as the potential added value of hybrid scanners for characterizing microglial and astrocytic activation.
Collapse
|
37
|
Abstract
This article discusses mimics of multiple sclerosis (MS). Excluded in this discussion are neuromyelitis optica and vasculitis, discussed in other articles in this journal. Covered entities include posterior reversible encephalopathy syndrome, reversible vasoconstriction syndrome, acute disseminated encephalomyelitis, Sussac's Syndrome, and chronic idiopathic demyelinating polyneuropathy. There are also multiple infectious entities that mimic MS including; progressive multi-focal leukoencephalopathy (PML), Toxoplasmosis, Tuberculosis, Herpes Simplex Virus, Cytomegalovirus, Varicella zoster virus, Epstein Barr virus, Cryptococcus and Human immunodeficiency virus. In addition, there are leukoencephalopathies that can present in adulthood including Adrenoleukodystrophy, Metachromatic leukodystrophy, Cerebral autosomal dominant idiopathic leukoencephalopathy, Leigh's and Alexanders disease that could be mistaken for MS.
Collapse
|
38
|
Rebman AW, Aucott JN. Post-treatment Lyme Disease as a Model for Persistent Symptoms in Lyme Disease. Front Med (Lausanne) 2020; 7:57. [PMID: 32161761 PMCID: PMC7052487 DOI: 10.3389/fmed.2020.00057] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 02/06/2020] [Indexed: 12/14/2022] Open
Abstract
It has long been observed in clinical practice that a subset of patients with Lyme disease report a constellation of symptoms such as fatigue, cognitive difficulties, and musculoskeletal pain, which may last for a significant period of time. These symptoms, which can range from mild to severe, have been reported throughout the literature in both prospective and population-based studies in Lyme disease endemic regions. The etiology of these symptoms is unknown, however several illness-causing mechanisms have been hypothesized, including microbial persistence, host immune dysregulation through inflammatory or secondary autoimmune pathways, or altered neural networks, as in central sensitization. Evaluation and characterization of persistent symptoms in Lyme disease is complicated by potential independent, repeat exposures to B. burgdorferi, as well as the potential for co-morbid diseases with overlapping symptom profiles. Antibody testing for B. burgdorferi is an insensitive measure after treatment, and no other FDA-approved tests currently exist. As such, diagnosis presents a complex challenge for physicians, while the lived experience for patients is one marked by uncertainty and often illness invalidation. Currently, there are no FDA-approved pharmaceutical therapies, and the safety and efficacy of off-label and/or complementary therapies have not been well studied and are not agreed-upon within the medical community. Post-treatment Lyme disease represents a narrow, defined, mechanistically-neutral subset of this larger, more heterogeneous group of patients, and is a useful definition in research settings as an initial subgroup of study. The aim of this paper is to review the current literature on the diagnosis, etiology, risk factors, and treatment of patients with persistent symptoms in the context of Lyme disease. The meaning and relevance of existing patient subgroups will be discussed, as will future research priorities, including the need to develop illness biomarkers, elucidate the biologic mechanisms of disease, and drive improvements in therapeutic options.
Collapse
Affiliation(s)
- Alison W Rebman
- Lyme Disease Research Center, Division of Rheumatology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - John N Aucott
- Lyme Disease Research Center, Division of Rheumatology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
39
|
Fallon BA, Strobino B, Reim S, Stoner J, Cunningham MW. Anti-lysoganglioside and other anti-neuronal autoantibodies in post-treatment Lyme Disease and Erythema Migrans after repeat infection. Brain Behav Immun Health 2020; 2:100015. [PMID: 34589824 PMCID: PMC8474536 DOI: 10.1016/j.bbih.2019.100015] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/23/2019] [Accepted: 11/23/2019] [Indexed: 02/04/2023] Open
Abstract
Background Molecular mimicry targeting neural tissue has been reported after Borrelia burgdorferi(Bb) infection. Herein, we investigate whether antineuronal autoantibodies are increased and whether antibody-mediated signaling of neuronal cells is elevated in a cohort of symptomatic adults with a history of Lyme Disease (LD). Methods Participants (n = 179) included 24 with recent Erythema Migrans (EM) without prior LD, 8 with recent EM and prior LD (EM + prior LD), 119 with persistent post-treatment LD symptoms (PTLS), and 28 seronegative endemic controls with no prior LD history. Antineuronal immunoglobulin G (IgG) titers were measured by standard ELISA and compared with mean titers of normal age-matched sera against lysoganglioside, tubulin, and dopamine receptors (D1R and D2R). Antibody-mediated signaling of calcium calmodulin dependent protein kinase II (CaMKII) activity in a human neuronal cell line (SK-N-SH) was identified in serum. Results EM + prior LD cases had higher antibody titers than controls for anti-lysoganglioside GM1 (p = 0.002), anti-tubulin (p = 0.03), and anti-D1R (p = 0.02), as well as higher expression in the functional antibody-mediated CaMKII Assay (p = 0.03). The EM cases with no prior history showed no significant differences on any measures. The PTLS cases demonstrated significantly higher titers (p = 0.01) than controls on anti-lysoganglioside GM1, but not for the other measures. Conclusion The finding of elevated anti-neuronal autoantibodies in our small sample of those with a prior history of Lyme disease but not in those without prior Lyme disease, if replicated in a larger sample, suggests an immune priming effect of repeated infection; the CaMKII activation suggests that antineuronal antibodies have functional significance. The elevation of anti-lysoganglioside antibodies among those with PTLS is of particular interest given the established role of anti-ganglioside antibodies in peripheral and central neurologic diseases. Future prospective studies can determine whether these autoantibodies emerge after Bb infection and whether their emergence coincides with persistent neurologic or neuropsychiatric symptoms.
Collapse
Affiliation(s)
- Brian A. Fallon
- Columbia Psychiatry, Columbia University Irving Medical Center, New York, USA
- New York State Psychiatric Institute, 1051 Riverside Drive, New York, USA
- Corresponding author. Columbia University, 1051 Riverside Drive, Unit 69, New York, NY, 10032, USA.
| | - Barbara Strobino
- Columbia Psychiatry, Columbia University Irving Medical Center, New York, USA
- New York State Psychiatric Institute, 1051 Riverside Drive, New York, USA
| | - Sean Reim
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, USA
| | - Julie Stoner
- Department of Biostatistics, University of Oklahoma Health Sciences Center, Oklahoma City, USA
| | - Madeleine W. Cunningham
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, USA
| |
Collapse
|
40
|
Fallon BA, Zubcevik N, Bennett C, Doshi S, Rebman AW, Kishon R, Moeller JR, Octavien NR, Aucott JN. The General Symptom Questionnaire-30 (GSQ-30): A Brief Measure of Multi-System Symptom Burden in Lyme Disease. Front Med (Lausanne) 2019; 6:283. [PMID: 31867334 PMCID: PMC6908481 DOI: 10.3389/fmed.2019.00283] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 11/19/2019] [Indexed: 11/13/2022] Open
Abstract
Introduction: The multi-system symptoms accompanying acute and post-treatment Lyme disease syndrome pose a challenge for time-limited assessment. The General Symptom Questionnaire (GSQ-30) was developed to fill the need for a brief patient-reported measure of multi-system symptom burden. In this study we assess the psychometric properties and sensitivity to change of the GSQ-30. Materials and Methods: 342 adult participants comprised 4 diagnostic groups: Lyme disease (post-treatment Lyme disease syndrome, n = 124; erythema migrans, n = 94); depression, n = 36; traumatic brain injury, n = 51; healthy, n = 37. Participants were recruited from clinical research facilities in Massachusetts, Maryland, and New York. Validation measures for the GSQ-30 included the Patient Health Questionnaire-4 for depression and anxiety, visual analog scales for fatigue and pain, the Sheehan Disability Scale for functional impairment, and one global health question. To assess sensitivity to change, 53 patients with erythema migrans completed the GSQ-30 before treatment and 6 months after 3 weeks of treatment with doxycycline. Results: The GSQ-30 demonstrated excellent internal consistency (Cronbach α = 0.95). The factor structure reflects four core domains: pain/fatigue, neuropsychiatric, neurologic, and viral-like symptoms. Symptom burden was significantly associated with depression (rs = 0.60), anxiety (rs = 0.55), pain (rs = 0.75), fatigue (rs = 0.77), functional impairment (rs = 0.79), and general health (rs = −0.58). The GSQ-30 detected significant change in symptom burden before and after antibiotic therapy; this change correlated with change in functional impairment. The GSQ-30 total score significantly differed for erythema migrans vs. three other groups (post-treatment Lyme disease syndrome, depression, healthy controls). The GSQ-30 total scores for traumatic brain injury and depression were not significantly different from post-treatment Lyme disease syndrome. Conclusions and Relevance: The GSQ-30 is a valid and reliable instrument to assess symptom burden among patients with acute and post-treatment Lyme disease syndrome and is sensitive in the detection of change after treatment among patients with erythema migrans. The GSQ-30 should prove useful in clinical and research settings to assess multi-system symptom burden and to monitor change over time. The GSQ-30 may also prove useful in future precision medicine studies as a clinical measure to correlate with disease-relevant biomarkers.
Collapse
Affiliation(s)
- Brian A Fallon
- Department of Psychiatry, Lyme and Tick-Borne Diseases Research Center, Columbia University Irving Medical Center, New York, NY, United States.,Department of Psychiatry, New York State Psychiatric Institute, New York, NY, United States
| | - Nevena Zubcevik
- Department of Physical Medicine and Rehabilitation, Dean Center for Tick borne Illness, Harvard Medical School, Spaulding Rehabilitation Hospital, Boston, MA, United States.,Department of Physical Medicine and Rehabilitation, Massachusetts General Hospital, Boston, MA, United States
| | - Clair Bennett
- Department of Psychiatry, Lyme and Tick-Borne Diseases Research Center, Columbia University Irving Medical Center, New York, NY, United States.,Department of Psychiatry, New York State Psychiatric Institute, New York, NY, United States
| | - Shreya Doshi
- Department of Psychiatry, Lyme and Tick-Borne Diseases Research Center, Columbia University Irving Medical Center, New York, NY, United States.,Department of Psychiatry, New York State Psychiatric Institute, New York, NY, United States
| | - Alison W Rebman
- Division of Rheumatology, Department of Medicine, Lyme Disease Research Center, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Ronit Kishon
- Department of Psychiatry, Lyme and Tick-Borne Diseases Research Center, Columbia University Irving Medical Center, New York, NY, United States.,Department of Psychiatry, New York State Psychiatric Institute, New York, NY, United States
| | - James R Moeller
- Department of Psychiatry, Lyme and Tick-Borne Diseases Research Center, Columbia University Irving Medical Center, New York, NY, United States.,Department of Psychiatry, New York State Psychiatric Institute, New York, NY, United States
| | - Nadlyne R Octavien
- Department of Physical Medicine and Rehabilitation, Dean Center for Tick borne Illness, Harvard Medical School, Spaulding Rehabilitation Hospital, Boston, MA, United States
| | - John N Aucott
- Division of Rheumatology, Department of Medicine, Lyme Disease Research Center, Johns Hopkins School of Medicine, Baltimore, MD, United States
| |
Collapse
|