1
|
Carvalho LDA, Alves VS, Coutinho-Silva R, Savio LEB. G protein-coupled purinergic P2Y receptors in infectious diseases. Pharmacol Ther 2025; 267:108796. [PMID: 39814144 DOI: 10.1016/j.pharmthera.2025.108796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/24/2024] [Accepted: 01/03/2025] [Indexed: 01/18/2025]
Abstract
The purinergic P2Y receptors comprise eight G-coupled receptor (GPCR) subtypes already identified (P2Y1, P2Y2, P2Y4, P2Y6, P2Y11, P2Y12-14). P2Y receptor physiological agonists are extracellular purine and pyrimidine nucleotides such as ATP (Adenosine triphosphate), ADP (Adenosine diphosphate), UTP (Uridine triphosphate), UDP (Uridine diphosphate), and UDP-glucose. These receptors are expressed in almost all cells. P2Y receptors are found in immune cells, such as macrophages, neutrophils, mast cells, dendritic cells, and lymphocytes. P2Y receptors play essential roles in inflammation and are involved in several cell processes, including efferocytosis, phagocytosis, chemotaxis, degranulation, killing pathogens, cytokine production, and platelet aggregation. These processes underpin immune responses against pathogens. Therefore, here we discuss P2Y receptor pharmacology and mechanisms triggered by the activation of these receptors in virus, bacteria, and parasite infections. In addition, we highlight the therapeutical potential of P2Y receptors for developing new pharmacological strategies to modulate inflammation and disease outcomes in pathogen infections.
Collapse
Affiliation(s)
- Letícia de Almeida Carvalho
- Laboratório de Neuroimunologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Vinícius Santos Alves
- Laboratório de Neuroimunologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Robson Coutinho-Silva
- Laboratório de Imunofisiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Luiz Eduardo Baggio Savio
- Laboratório de Neuroimunologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
2
|
Tugizov S. HIV-1 Tat-induced disruption of epithelial junctions and epithelial-mesenchymal transition of oral and genital epithelial cells lead to increased invasiveness of neoplastic cells and the spread of herpes simplex virus and cytomegalovirus. Front Immunol 2025; 16:1541532. [PMID: 40018040 PMCID: PMC11866325 DOI: 10.3389/fimmu.2025.1541532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Accepted: 01/28/2025] [Indexed: 03/01/2025] Open
Abstract
Human immunodeficiency virus (HIV-1) transactivator Tat is a unique multi-functional viral protein secreted by infected cells. Although its primary function is to promote HIV-1 transcription, secreted Tat interacts with neighboring cells and induces numerous disease-associated pathological changes. Despite the substantial reduction of viral load and disease burden, Tat expression and secretion persist in people living with HIV who are undergoing treatment with highly effective combination antiretroviral therapy (cART). Tat interacts with both oral and genital epithelial cells and impairs their mucosal barrier functions, which facilitates the entry of other pathogenic viruses. Tat-mediated interactions with both human papillomavirus (HPV) -infected and HPV-negative neoplastic epithelial cells lead to epithelial-mesenchymal transition and increased invasiveness of malignant cells. Likewise, Tat-induced disruption of oral epithelial cell junctions leads to herpes simplex virus-1 (HSV-1) infection and spread via exposure of its receptor, nectin-1. HIV-1 Tat facilitates infection and spread of human cytomegalovirus (HCMV) by activating mitogen-activated protein kinases (MAPK) and promoting NF-κB signaling, both critical for the replication and production of progeny virions. HIV extracellular Tat also plays a critical role in human herpesvirus 8 (HHV8) -caused Kaposi sarcoma (KS) pathogenesis by synergizing with HHV-8 lytic proteins and promoting the proliferation, angiogenesis, and migration of endothelial cells. Collectively, these findings emphasize the critical impact of HIV-1 Tat on HIV/AIDS pathogenesis during the cART era and highlight the need for further research on the molecular mechanisms underlying Tat-mediated interactions with oral and genital mucosal epithelial cells.
Collapse
Affiliation(s)
- Sharof Tugizov
- Department of Medicine, School of Medicine, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
3
|
Carvalho-Barbosa N, Zeidler JD, Savio LEB, Coutinho-Silva R. Purinergic signaling in the battlefield of viral infections. Purinergic Signal 2025; 21:83-98. [PMID: 38038801 PMCID: PMC11958901 DOI: 10.1007/s11302-023-09981-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 11/19/2023] [Indexed: 12/02/2023] Open
Abstract
Purinergic signaling has been associated with immune defenses against pathogens such as bacteria, protozoa, fungi, and viruses, acting as a sentinel system that signals to the cells when a threat is present. This review focuses on the roles of purinergic signaling and its therapeutic potential for viral infections. In this context, the purinergic system may play potent antiviral roles by boosting interferon signaling. In other cases, though, it can contribute to a hyperinflammatory response and disease severity, resulting in poor outcomes, such as during flu and potentially COVID-19. Lastly, a third situation may occur since viruses are obligatory intracellular parasites that hijack the host cell machinery for their infection and replication. Viruses such as HIV-1 use the purinergic system to favor their infection and persistence within the host cell. Therefore, understanding the particular nuances of purinergic signaling in each viral infection may contribute to designing proper therapeutic strategies to treat viral diseases.
Collapse
Affiliation(s)
- Nayara Carvalho-Barbosa
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Edifício do Centro de Ciências da Saúde, Bloco G. Av. Carlos Chagas Filho, 373. Cidade Universitária, Ilha do Fundão, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Julianna Dias Zeidler
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Edifício do Centro de Ciências da Saúde, Bloco G. Av. Carlos Chagas Filho, 373. Cidade Universitária, Ilha do Fundão, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Luiz Eduardo Baggio Savio
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Edifício do Centro de Ciências da Saúde, Bloco G. Av. Carlos Chagas Filho, 373. Cidade Universitária, Ilha do Fundão, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Robson Coutinho-Silva
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Edifício do Centro de Ciências da Saúde, Bloco G. Av. Carlos Chagas Filho, 373. Cidade Universitária, Ilha do Fundão, Rio de Janeiro, RJ, 21941-902, Brazil.
| |
Collapse
|
4
|
Muvenda T, Williams AA, Williams ME. Transactivator of Transcription (Tat)-Induced Neuroinflammation as a Key Pathway in Neuronal Dysfunction: A Scoping Review. Mol Neurobiol 2024; 61:9320-9346. [PMID: 38627350 PMCID: PMC11496333 DOI: 10.1007/s12035-024-04173-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 04/09/2024] [Indexed: 10/23/2024]
Abstract
The activity of HIV-1 and its viral proteins within the central nervous system (CNS) is responsible for a wide array of neuropathological effects, resulting in a spectrum of neurocognitive deficits defined as HIV-associated neurocognitive disorders (HAND). Amongst the various viral proteins, the transactivator of transcription (Tat) remains detectable even with effective antiretroviral therapy (ART) and suppressed viremia, highlighting the significance of this protein in the modern ART era. Tat has been extensively researched in both fundamental and clinical settings due to its role in neuroinflammation, neuronal damage, and neurocognitive impairment amongst people living with HIV (PLHIV). To date, numerous fundamental studies have explored Tat-induced neuroinflammation. However, there is no clear consensus on the most frequently studied inflammatory markers or the consistency in the levels of these Tat-induced inflammatory marker levels across different studies. Therefore, we conducted a scoping review of studies investigating Tat-induced neuroinflammation. We conducted searches in PubMed, Scopus, and Web of Science databases using a search protocol tailored specifically to adhere to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses for scoping reviews (PRISMA-ScR) guidelines. From the 22 included studies, findings suggest that the HIV-1 Tat protein amplifies levels of neuroinflammatory markers. Amongst the vast array of inflammatory markers explored in the included studies, consistent results point to higher levels of CCL2, IL-6, IL-8, and TNF-α in primary cells and cell lines exposed to or transfected with HIV-1 Tat. These markers are regulated by key inflammatory pathways, such as the extracellular signal-regulated kinase (ERK)1/2 mitogen-activated protein kinase (MAPK) pathway, the phosphatidylinositol 3-kinase (PI3K) pathway, the p38 MAPK pathway, and nuclear factor-kB (NF-kB). Furthermore, Tat has been shown to induce neuronal apoptosis, both directly and indirectly. With regards to study designs, utilizing full-length Tat101 at concentrations ranging from 100 to 1000 ng/ml and durations of 24 and 48 h appears optimal for investigating Tat-induced neuroinflammation. In this context, we highlight specific inflammatory markers and pathways that are potentially pivotal in Tat-induced neuroinflammation and subsequent neuronal damage. A deeper investigation into these markers and pathways is crucial to better understand their roles in the development of HAND.
Collapse
|
5
|
Pawar P, Akolkar K, Saxena V. An integrated bioinformatics approach reveals the potential role of microRNA-30b-5p and let-7a-5p during SARS CoV-2 spike-1 mediated neuroinflammation. Int J Biol Macromol 2024; 277:134329. [PMID: 39098684 DOI: 10.1016/j.ijbiomac.2024.134329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/16/2024] [Accepted: 07/23/2024] [Indexed: 08/06/2024]
Abstract
SARS-CoV-2 induced neuroinflammation contributing to neurological sequelae is one of the critical outcomes of long-COVID, however underlying regulatory mechanisms involved therein are poorly understood. We deciphered the profile of dysregulated microRNAs, their targets, associated pathways, protein-protein interactions (PPI), transcription factor-hub genes interaction networks, hub genes-microRNA co-regulatory networks in SARS-CoV-2 Spike-1 (S1) stimulated microglial cells along with candidate drug prediction using RNA-sequencing and multiple bioinformatics approaches. We identified 11 dysregulated microRNAs in the S1-stimulated microglial cells (p < 0.05). KEGG analysis revealed involvement of important neuroinflammatory pathways such as MAPK signalling, PI3K-AKT signalling, Ras signalling and axon guidance. PPI analysis further identified 11 hub genes involved in these pathways. Real time PCR validation confirmed a significant upregulation of microRNA-30b-5p and let-7a-5p; proinflammatory cytokines- IL-6, TNF-α, IL-1β, GM-CSF; and inflammatory genes- PIK3CA and AKT in the S1-stimulated microglial cells, while PTEN and SHIP1 expression was decreased as compared to the non-stimulated cells. Drug prediction analysis further indicated resveratrol, diclofenac and rapamycin as the potential drugs based on their degree of interaction with hub genes. Thus, targeting of these microRNAs and/or their intermediate signalling molecules would be a prospective immunotherapeutic approach in alleviating SARS-CoV-2-S1 mediated neuroinflammation; and needs further investigations.
Collapse
Affiliation(s)
- Puja Pawar
- Division of Immunology and Serology, ICMR-National Institute of Translational Virology & AIDS Research (NITVAR), MIDC, Bhosari, Pune, Maharashtra, India
| | - Kadambari Akolkar
- Division of Immunology and Serology, ICMR-National Institute of Translational Virology & AIDS Research (NITVAR), MIDC, Bhosari, Pune, Maharashtra, India
| | - Vandana Saxena
- Division of Immunology and Serology, ICMR-National Institute of Translational Virology & AIDS Research (NITVAR), MIDC, Bhosari, Pune, Maharashtra, India.
| |
Collapse
|
6
|
Gao L, Sun W, Zhang L, Liang C, Zhang D. Caffeine upregulates SIRT3 expression to ameliorate astrocytes-mediated HIV-1 Tat neurotoxicity via suppression of EGR1 signaling pathway. J Neurovirol 2024; 30:286-302. [PMID: 38926255 DOI: 10.1007/s13365-024-01222-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/10/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024]
Abstract
Caffeine is one of the most popular consumed psychostimulants that mitigates several neurodegenerative diseases. Nevertheless, the roles and molecular mechanisms of caffeine in HIV-associated neurocognitive disorders (HAND) remain largely unclear. Transactivator of transcription (Tat) is a major contributor to the neuropathogenesis of HAND in the central nervous system. In the present study, we determined that caffeine (100 µM) treatment significantly ameliorated Tat-induced decreased astrocytic viability, oxidative stress, inflammatory response and excessive glutamate and ATP release, thereby protecting neurons from apoptosis. Subsequently, SIRT3 was demonstrated to display neuroprotective effects against Tat during caffeine treatment. In addition, Tat downregulated SIRT3 expression via activation of EGR1 signaling, which was reversed by caffeine treatment in astrocytes. Overexpression of EGR1 entirely abolished the neuroprotective effects of caffeine against Tat. Furthermore, counteracting Tat or caffeine-induced differential expression of SIRT3 abrogated the neuroprotection of caffeine against Tat-triggered astrocytic dysfunction and neuronal apoptosis. Taken together, our study establishes that caffeine ameliorates astrocytes-mediated Tat neurotoxicity by targeting EGR1/SIRT3 signaling pathway. Our findings highlight the beneficial effects of caffeine on Tat-induced astrocytic dysfunction and neuronal death and propose that caffeine might be a novel therapeutic drug for relief of HAND.
Collapse
Affiliation(s)
- Lin Gao
- Medical Research Center, Affiliated Hospital 2 of Nantong University, No. 666, Shengli Road, Nantong, 226001, Jiangsu, People's Republic of China.
- Jiangsu Provincial Medical Key Discipline (Laboratory) Cultivation Unit, Medical Research Center, Nantong First People's Hospital, Nantong, 226001, People's Republic of China.
- Nantong Municipal Medical Key Laboratory of Molecular Immunology, Medical Research Center, Nantong First People's Hospital, Nantong, 226001, People's Republic of China.
- Nantong Municipal Key Laboratory of Metabolic Immunology and Disease Microenvironment, Medical Research Center, Nantong First People's Hospital, Nantong, 226001, People's Republic of China.
| | - Weixi Sun
- Disease Prevention and Control Center of Chongchuan District, Nantong, 226000, People's Republic of China
- Health Commission of Chongchuan District, Nantong, 226000, People's Republic of China
| | - Lei Zhang
- Nantong Health College of Jiangsu Province, Nantong, 226001, People's Republic of China
| | - Caixia Liang
- Medical Research Center, Affiliated Hospital 2 of Nantong University, No. 666, Shengli Road, Nantong, 226001, Jiangsu, People's Republic of China
- Jiangsu Provincial Medical Key Discipline (Laboratory) Cultivation Unit, Medical Research Center, Nantong First People's Hospital, Nantong, 226001, People's Republic of China
- Nantong Municipal Medical Key Laboratory of Molecular Immunology, Medical Research Center, Nantong First People's Hospital, Nantong, 226001, People's Republic of China
- Nantong Municipal Key Laboratory of Metabolic Immunology and Disease Microenvironment, Medical Research Center, Nantong First People's Hospital, Nantong, 226001, People's Republic of China
| | - Dongmei Zhang
- Medical Research Center, Affiliated Hospital 2 of Nantong University, No. 666, Shengli Road, Nantong, 226001, Jiangsu, People's Republic of China.
- Jiangsu Provincial Medical Key Discipline (Laboratory) Cultivation Unit, Medical Research Center, Nantong First People's Hospital, Nantong, 226001, People's Republic of China.
- Nantong Municipal Medical Key Laboratory of Molecular Immunology, Medical Research Center, Nantong First People's Hospital, Nantong, 226001, People's Republic of China.
- Nantong Municipal Key Laboratory of Metabolic Immunology and Disease Microenvironment, Medical Research Center, Nantong First People's Hospital, Nantong, 226001, People's Republic of China.
| |
Collapse
|
7
|
da Silva GB, de Carvalho Braga G, Simões JLB, Kempka AP, Bagatini MD. Cytokine storm in human monkeypox: A possible involvement of purinergic signaling. Cytokine 2024; 177:156560. [PMID: 38447385 DOI: 10.1016/j.cyto.2024.156560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/15/2024] [Accepted: 02/21/2024] [Indexed: 03/08/2024]
Abstract
Some evidence has indicated that monkeypox can induce a cytokine storm. Purinergic signaling is a cell pathway related to the cytokine storm. However, the precise mechanisms that lead to cytokine storms in monkeypox infections and the possible involvement of purinergic signaling in the immune response to this virus remain unknown. In this review article, we aimed to highlight a body of scientific evidence that consolidates the role of the cytokine storm in monkeypox infection and proposes a new hypothesis regarding the roles of purinergic signaling in this immune-mediated mechanism. We further suggested some purinergic signaling modulators to mitigate the deleterious and aggravating effects of immune dysregulation in human monkeypox virus infection by inhibiting P2X3, P2X7, P2Y2, and P2Y12, reducing inflammation, and activating A1 and A2A receptors to promote an anti-inflammatory response.
Collapse
Affiliation(s)
- Gilnei Bruno da Silva
- Multicentric Postgraduate Program in Biochemistry and Molecular Biology, State University of Santa Catarina, Lages, SC, Brazil.
| | | | | | - Aniela Pinto Kempka
- Multicentric Postgraduate Program in Biochemistry and Molecular Biology, State University of Santa Catarina, Lages, SC, Brazil
| | - Margarete Dulce Bagatini
- Multicentric Postgraduate Program in Biochemistry and Molecular Biology, State University of Santa Catarina, Lages, SC, Brazil; Postgraduate Program in Biomedical Sciences, Federal University of Fronteira Sul, Chapecó, SC, Brazil.
| |
Collapse
|
8
|
Leão Batista Simões J, Webler Eichler S, Raitz Siqueira ML, de Carvalho Braga G, Bagatini MD. Amyotrophic Lateral Sclerosis in Long-COVID Scenario and the Therapeutic Potential of the Purinergic System in Neuromodulation. Brain Sci 2024; 14:180. [PMID: 38391754 PMCID: PMC10886908 DOI: 10.3390/brainsci14020180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/10/2024] [Accepted: 02/13/2024] [Indexed: 02/24/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) involves the degeneration of motor neurons and debilitating and possibly fatal symptoms. The COVID-19 pandemic directly affected the quality of life of this group, and the SARS-CoV-2 infection accelerated the present neuroinflammatory process. Furthermore, studies indicate that the infection may have led to the development of the pathology. Thus, the scenario after this pandemic presents "long-lasting COVID" as a disease that affects people who have been infected. From this perspective, studying the pathophysiology behind ALS associated with SARS-CoV-2 infection and possible supporting therapies becomes necessary when we understand the impact on the quality of life of these patients. Thus, the purinergic system was trained to demonstrate how its modulation can add to the treatment, reduce disease progression, and result in better prognoses. From our studies, we highlight the P2X7, P2X4, and A2AR receptors and how their activity can directly influence the ALS pathway.
Collapse
Affiliation(s)
| | | | | | | | - Margarete Dulce Bagatini
- Graduate Program in Medical Sciences, Federal University of Fronteira Sul, Chapecó 89815-899, SC, Brazil
| |
Collapse
|
9
|
Huang H, He X, Shi L, Yu J, Lu Z, Cao H, Ou J, Chen X, Yan L, Yang J, Zhao W, Liu J, Yu L. Tanreqing injection inhibits dengue virus encephalitis by suppressing the activation of NLRP3 inflammasome. Chin Med 2024; 19:24. [PMID: 38355571 PMCID: PMC10868054 DOI: 10.1186/s13020-024-00893-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 01/23/2024] [Indexed: 02/16/2024] Open
Abstract
BACKGROUND Encephalitis caused by dengue virus (DENV) is considered a manifestation of severe dengue. Tanreqing injection (TRQ) is a well-known Chinese patented medicine, which has been used to treat brain-related disorders by inhibiting inflammation. Nevertheless, the effects of TRQ on DENV encephalitis have not been studied. The aim of this study was to evaluate the effects of TRQ on DENV encephalitis and to explore its potential mechanisms. METHODS The cytotoxicity of TRQ was examined by MTT assay, and the anti-DENV activities of TRQ in BHK-21 baby hamster kidney fibroblast were evaluated through CCK-8 and plaque assays. The expression levels of NO, IL1B/IL-1β, TNFα and IL6 were measured by qRT‒PCR and ELISA in the BV2 murine microglial cell line. The inhibitory effects of TRQ on NLRP3 inflammasome activation in BV2 cells were examined by Western blotting, qRT‒PCR and ELISA. The effects of TRQ on HT22 mouse hippocampal neuronal cells were examined by CCK-8 assay, morphology observation and flow cytometry. Moreover, a DENV-infected ICR suckling mouse model was developed to investigate the protective role of TRQ in vivo. RESULTS TRQ decreased the release of NO, IL6, TNFα and IL1B from BV2 cells and inhibited the activation of NLRP3. The presence of the NLRP3 agonist nigericin reversed the anti-inflammatory activities of TRQ. Furthermore, TRQ inhibited the death of HT22 cells by decreasing IL1B in DENV-infected BV2 cells. In addition, TRQ significantly attenuated weight loss, reduced clinical scores and extended the survival in DENV-infected ICR suckling mice. Critically, TRQ ameliorated pathological changes in ICR suckling mice brain by inhibiting microglia and NLRP3 activation and decreasing the production of inflammatory factors and the number of dead neurons. CONCLUSION TRQ exerts potent inhibitory effects on dengue encephalitis in vitro and in vivo by reducing DENV-2-induced microglial activation and subsequently decreasing the inflammatory response, thereby protecting neurons. These findings demonstrate the potential of TRQ in the treatment of dengue encephalitis.
Collapse
Affiliation(s)
- Hefei Huang
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Xuemei He
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Lingzhu Shi
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Jingtao Yu
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Zibin Lu
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Huihui Cao
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Jinying Ou
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Xi Chen
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Lijun Yan
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Jiabin Yang
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Wei Zhao
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Junshan Liu
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, People's Republic of China.
- Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Southern Medical University, Guangzhou, 510515, People's Republic of China.
- Department of Pharmacy, Zhujiang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China.
| | - Linzhong Yu
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, People's Republic of China.
- Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Southern Medical University, Guangzhou, 510515, People's Republic of China.
| |
Collapse
|
10
|
Sun Y, Cai M, Liang Y, Zhang Y. Disruption of blood-brain barrier: effects of HIV Tat on brain microvascular endothelial cells and tight junction proteins. J Neurovirol 2023; 29:658-668. [PMID: 37899420 DOI: 10.1007/s13365-023-01179-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 09/01/2023] [Accepted: 10/12/2023] [Indexed: 10/31/2023]
Abstract
Although the widespread use of antiretroviral therapy (ART) has prolonged the life span of people living with HIV (PLWH), the incidence of HIV-associated neurocognitive disorders (HAND) in PLWH is also gradually increasing, seriously affecting the quality of life for PLWH. However, the pathogenesis of HAND has not been elucidated, which leaves HAND without effective treatment. HIV protein transactivator of transcription (Tat), as an important regulatory protein, is crucial in the pathogenesis of HAND, and its mechanism of HAND has received widespread attention. The blood-brain barrier (BBB) and its cellular component brain microvascular endothelial cells (BMVECs) play a necessary role in protecting the central nervous system (CNS), and their damage associated with Tat is a potential therapeutic target of HAND. In this review, we will study the Tat-mediated damage mechanism of the BBB and present multiple lines of evidence related to BMVEC damage caused by Tat.
Collapse
Affiliation(s)
- Yuqing Sun
- Department of Respiratory and Critical Care Medicine, Beijing You An Hospital, Capital Medical University, Beijing, 100069, China
| | - Miaotian Cai
- Department of Respiratory and Critical Care Medicine, Beijing You An Hospital, Capital Medical University, Beijing, 100069, China
| | - Ying Liang
- Department of Respiratory and Critical Care Medicine, Beijing You An Hospital, Capital Medical University, Beijing, 100069, China
| | - Yulin Zhang
- Department of Respiratory and Critical Care Medicine, Beijing You An Hospital, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
11
|
Torices S, Daire L, Simon S, Naranjo O, Mendoza L, Teglas T, Fattakhov N, Adesse D, Toborek M. Occludin: a gatekeeper of brain Infection by HIV-1. Fluids Barriers CNS 2023; 20:73. [PMID: 37840143 PMCID: PMC10577960 DOI: 10.1186/s12987-023-00476-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 10/09/2023] [Indexed: 10/17/2023] Open
Abstract
Compromised structure and function of the blood-brain barrier (BBB) is one of the pathological hallmarks of brain infection by HIV-1. BBB damage during HIV-1 infection has been associated with modified expression of tight junction (TJ) proteins, including occludin. Recent evidence indicated occludin as a redox-sensitive, multifunctional protein that can act as both an NADH oxidase and influence cellular metabolism through AMPK kinase. One of the newly identified functions of occludin is its involvement in regulating HIV-1 infection. Studies suggest that occludin expression levels and the rate of HIV-1 infection share a reverse, bidirectional relationship; however, the mechanisms of this relationship are unclear. In this review, we describe the pathways involved in the regulation of HIV-1 infection by occludin. We propose that occludin may serve as a potential therapeutic target to control HIV-1 infection and to improve the lives of people living with HIV-1.
Collapse
Affiliation(s)
- Silvia Torices
- Department of Biochemistry and Molecular Biology, University of Miami School of Medicine, 528E Gautier Bldg. 1011 NW 15th Street Miami, Miami, FL, 11336, USA
| | - Leah Daire
- Department of Biochemistry and Molecular Biology, University of Miami School of Medicine, 528E Gautier Bldg. 1011 NW 15th Street Miami, Miami, FL, 11336, USA
| | - Sierra Simon
- Department of Biochemistry and Molecular Biology, University of Miami School of Medicine, 528E Gautier Bldg. 1011 NW 15th Street Miami, Miami, FL, 11336, USA
| | - Oandy Naranjo
- Department of Biochemistry and Molecular Biology, University of Miami School of Medicine, 528E Gautier Bldg. 1011 NW 15th Street Miami, Miami, FL, 11336, USA
| | - Luisa Mendoza
- Department of Biochemistry and Molecular Biology, University of Miami School of Medicine, 528E Gautier Bldg. 1011 NW 15th Street Miami, Miami, FL, 11336, USA
| | - Timea Teglas
- Department of Biochemistry and Molecular Biology, University of Miami School of Medicine, 528E Gautier Bldg. 1011 NW 15th Street Miami, Miami, FL, 11336, USA
| | - Nikolai Fattakhov
- Department of Biochemistry and Molecular Biology, University of Miami School of Medicine, 528E Gautier Bldg. 1011 NW 15th Street Miami, Miami, FL, 11336, USA
| | - Daniel Adesse
- Department of Biochemistry and Molecular Biology, University of Miami School of Medicine, 528E Gautier Bldg. 1011 NW 15th Street Miami, Miami, FL, 11336, USA
- Laboratório de Biologia Estrutural, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | - Michal Toborek
- Department of Biochemistry and Molecular Biology, University of Miami School of Medicine, 528E Gautier Bldg. 1011 NW 15th Street Miami, Miami, FL, 11336, USA.
| |
Collapse
|
12
|
Gao L, Sun W, Zhang D, Shang Y, Li L, Tao W, Zhang L, Liu H. HIV-1 subtype B Tat enhances NOTCH3 signaling in astrocytes to mediate oxidative stress, inflammatory response, and neuronal apoptosis. J Neurovirol 2023; 29:479-491. [PMID: 37358698 DOI: 10.1007/s13365-023-01151-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 06/02/2023] [Accepted: 06/08/2023] [Indexed: 06/27/2023]
Abstract
NOTCH receptors are relevant to multiple neurodegenerative diseases. However, the roles and mechanisms of NOTCH receptors in HIV-associated neurocognitive disorder (HAND) remain largely unclear. Transactivator of transcription (Tat) induces oxidative stress and inflammatory response in astrocytes, thereby leading to neuronal apoptosis in the central nervous system. We determined that NOTCH3 expression was upregulated during subtype B or C Tat expression in HEB astroglial cells. Moreover, bioinformatics analysis of the Gene Expression Omnibus (GEO) dataset revealed that NOTCH3 mRNA expression in the frontal cortex tissues of HIV encephalitis patients was higher than that of HIV control patients. Of note, subtype B Tat, rather than subtype C Tat, interacted with the extracellular domain of the NOTCH3 receptor, thus activating NOTCH3 signaling. Downregulation of NOTCH3 attenuated subtype B Tat-induced oxidative stress and reactive oxygen species generation. In addition, we demonstrated that NOTCH3 signaling facilitated subtype B Tat-activated NF-κB signaling pathway, thereby mediating pro-inflammatory cytokines IL-6 and TNF-α production. Furthermore, downregulation of NOTCH3 in HEB astroglial cells protected SH-SY5Y neuronal cells from astrocyte-mediated subtype B Tat neurotoxicity. Taken together, our study clarifies the potential role of NOTCH3 in subtype B Tat-induced oxidative stress and inflammatory response in astrocytes, which could be a novel therapeutic target for the relief of HAND.
Collapse
Affiliation(s)
- Lin Gao
- Medical Research Center, Affiliated Hospital 2 of Nantong University, Nantong, 226001, People's Republic of China
- Jiangsu Provincial Medical Key Discipline (Laboratory) Cultivation Unit, Medical Research Center, Nantong First People's Hospital, Nantong, 226001, People's Republic of China
- Nantong Municipal Medical Key Laboratory of Molecular Immunology, Medical Research Center, Nantong First People's Hospital, Nantong, 226001, People's Republic of China
- Nantong Municipal Key Laboratory of Metabolic Immunology and Disease Microenvironment, Medical Research Center, Nantong First People's Hospital, Nantong, 226001, People's Republic of China
| | - Weixi Sun
- Disease Prevention and Control Center of Chongchuan District, Nantong, 226000, People's Republic of China
- Health Commission of Chongchuan District, Nantong, 226000, People's Republic of China
| | - Dongmei Zhang
- Medical Research Center, Affiliated Hospital 2 of Nantong University, Nantong, 226001, People's Republic of China
- Jiangsu Provincial Medical Key Discipline (Laboratory) Cultivation Unit, Medical Research Center, Nantong First People's Hospital, Nantong, 226001, People's Republic of China
- Nantong Municipal Medical Key Laboratory of Molecular Immunology, Medical Research Center, Nantong First People's Hospital, Nantong, 226001, People's Republic of China
- Nantong Municipal Key Laboratory of Metabolic Immunology and Disease Microenvironment, Medical Research Center, Nantong First People's Hospital, Nantong, 226001, People's Republic of China
| | - Yanxing Shang
- Medical Research Center, Affiliated Hospital 2 of Nantong University, Nantong, 226001, People's Republic of China
- Jiangsu Provincial Medical Key Discipline (Laboratory) Cultivation Unit, Medical Research Center, Nantong First People's Hospital, Nantong, 226001, People's Republic of China
- Nantong Municipal Medical Key Laboratory of Molecular Immunology, Medical Research Center, Nantong First People's Hospital, Nantong, 226001, People's Republic of China
- Nantong Municipal Key Laboratory of Metabolic Immunology and Disease Microenvironment, Medical Research Center, Nantong First People's Hospital, Nantong, 226001, People's Republic of China
| | - Li Li
- Department of Pathology, Affiliated Hospital 2 of Nantong University, and First People's Hospital of Nantong City, Nantong, 226001, People's Republic of China
| | - Wenhua Tao
- Department of Traditional Chinese Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, 212000, People's Republic of China
| | - Lei Zhang
- Nantong Health College of Jiangsu Province, Nantong, 226001, People's Republic of China.
| | - Hongbin Liu
- Department of Pathology, Affiliated Hospital 2 of Nantong University, and First People's Hospital of Nantong City, Nantong, 226001, People's Republic of China.
| |
Collapse
|
13
|
Qiu X, Wang J, Zhang W, Duan C, Chen T, Zhang D, Su J, Gao L. Disruption of the ADAM17/NF-κB feedback loop in astrocytes ameliorates HIV-1 Tat-induced inflammatory response and neuronal death. J Neurovirol 2023; 29:283-296. [PMID: 37185939 DOI: 10.1007/s13365-023-01131-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 03/06/2023] [Accepted: 03/28/2023] [Indexed: 05/17/2023]
Abstract
A disintegrin and metalloproteinases (ADAMs) are involved in multiple neurodegenerative diseases. However, the roles and mechanisms of ADAMs in HIV-associated neurocognitive disorder (HAND) remain unclear. Transactivator of transcription (Tat) induces inflammatory response in astrocytes, thereby leading to neuronal apoptosis in the central nervous system. In this study, we determined that ADAM17 expression was upregulated during soluble Tat stimulus in HEB astroglial cells. Inhibition of ADAM17 suppressed Tat-induced pro-inflammatory cytokines production and rescued the astrocytes-derived conditioned media (ACM)-mediated SH-SY5Y neural cells apoptosis. Moreover, ADAM17 mediated Tat-triggered inflammatory response in a NF-κB-dependent manner. Conversely, Tat induced ADAM17 expression via NF-κB signaling pathway. In addition, pharmacological inhibition of NF-κB signaling inhibited Tat-induced inflammatory response, which could be rescued by overexpression of ADAM17. Taken together, our study clarifies the potential role of the ADAM17/NF-κB feedback loop in Tat-induced inflammatory response in astrocytes and the ACM-mediated neuronal death, which could be a novel therapeutic target for relief of HAND.
Collapse
Affiliation(s)
- Xiaoxia Qiu
- Nantong Health College of Jiangsu Province, Nantong, 226001, People's Republic of China
| | - Jianjun Wang
- Nantong Health College of Jiangsu Province, Nantong, 226001, People's Republic of China
| | - Wei Zhang
- Nantong Health College of Jiangsu Province, Nantong, 226001, People's Republic of China
| | - Chengwei Duan
- Medical Research Center, Affiliated Hospital 2 of Nantong University and First People's Hospital of Nantong City, Haier Lane North Road No. 6, Nantong, 226001, Jiangsu, People's Republic of China
| | - Tianpeng Chen
- Medical Research Center, Affiliated Hospital 2 of Nantong University and First People's Hospital of Nantong City, Haier Lane North Road No. 6, Nantong, 226001, Jiangsu, People's Republic of China
| | - Dongmei Zhang
- Medical Research Center, Affiliated Hospital 2 of Nantong University and First People's Hospital of Nantong City, Haier Lane North Road No. 6, Nantong, 226001, Jiangsu, People's Republic of China
| | - Jianbin Su
- Department of Endocrinology, Affiliated Hospital 2 of Nantong University and First People's Hospital of Nantong City, Haier Lane North Road No. 6, Nantong, 226001, Jiangsu, People's Republic of China.
| | - Lin Gao
- Medical Research Center, Affiliated Hospital 2 of Nantong University and First People's Hospital of Nantong City, Haier Lane North Road No. 6, Nantong, 226001, Jiangsu, People's Republic of China.
| |
Collapse
|
14
|
Zou Y, Yang R, Li L, Xu X, Liang S. Purinergic signaling: a potential therapeutic target for depression and chronic pain. Purinergic Signal 2023; 19:163-172. [PMID: 34338957 PMCID: PMC9984625 DOI: 10.1007/s11302-021-09801-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 06/13/2021] [Indexed: 12/13/2022] Open
Abstract
The comorbid mechanism of depression and chronic pain has been a research hotspot in recent years. Until now, the role of purinergic signals in the comorbid mechanism of depression and chronic pain has not been fully understood. This review mainly summarizes the research results published in PubMed during the past 5 years and concludes that purinergic signaling is a potential therapeutic target for comorbid depression and chronic pain, and the purinergic receptors A1, A2A, P2X3, P2X4, and P2X7and P2Y6, P2Y1, and P2Y12 may be important factors. The main potential pathways are as follows: A1 receptor-related G protein-dependent activation of introverted K+ channels (GIRKs), A2A receptor-related effects on the mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) and MAPK/nuclear factor-κB (NF-κB) pathways, P2X3 receptor-related effects on dorsal root ganglia (DRG) excitability, P2X4 receptor-related effects on proinflammatory cytokines and inflammasome activation, P2X7 receptor-related effects on ion channels, the NLRP3 inflammasome and brain-derived neurotrophic factor (BDNF), and P2Y receptor-related effects on the phospholipase C (PLC)/inositol triphosphate (IP3)/Ca2+ signaling pathway. We hope that the conclusions of this review will provide key ideas for future research on the role of purinergic signaling in the comorbid mechanism of depression and chronic pain.
Collapse
Affiliation(s)
- Yuting Zou
- First Clinical Medical College, Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Runan Yang
- Neuropharmacology Laboratory of Physiology Department, Basic Medical School, Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China.,Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Lin Li
- Neuropharmacology Laboratory of Physiology Department, Basic Medical School, Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China.,Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Xiumei Xu
- Neuropharmacology Laboratory of Physiology Department, Basic Medical School, Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China.,Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Shangdong Liang
- Neuropharmacology Laboratory of Physiology Department, Basic Medical School, Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China. .,Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, Jiangxi, 330006, People's Republic of China.
| |
Collapse
|
15
|
Wang JN, Fan H, Song JT. Targeting purinergic receptors to attenuate inflammation of dry eye. Purinergic Signal 2023; 19:199-206. [PMID: 35218451 PMCID: PMC9984584 DOI: 10.1007/s11302-022-09851-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 02/04/2022] [Indexed: 11/28/2022] Open
Abstract
Inflammation is one of the potential factors to cause the damage of ocular surface in dry eye disease (DED). Increasing evidence indicated that purinergic A1, A2A, A3, P2X4, P2X7, P2Y1, P2Y2, and P2Y4 receptors play an important role in the regulation of inflammation in DED: A1 adenosine receptor (A1R) is a systemic pro-inflammatory factor; A2AR is involved in the activation of the MAPK/NF-kB pathway; A3R combined with inhibition of adenylate cyclase and regulation of the mitogen-activated protein kinase (MAPK) pathway leads to regulation of transcription; P2X4 promotes receptor-associated activation of pro-inflammatory cytokines and inflammatory vesicles; P2X7 promotes inflammasome activation and release of pro-inflammatory cytokines IL-1β and IL-18; P2Y receptors affect the phospholipase C(PLC)/IP3/Ca2+ signaling pathway and mucin secretion. These suggested that purinergic receptors would be promising targets to control the inflammation of DED in the future.
Collapse
Affiliation(s)
- Jia-Ning Wang
- Eye Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hua Fan
- Eye Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jian-Tao Song
- Eye Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
16
|
Alves VS, Santos SACS, Leite-Aguiar R, Paiva-Pereira E, dos Reis RR, Calazans ML, Fernandes GG, Antônio LS, de Lima EV, Kurtenbach E, Silva JL, Fontes-Dantas FL, Passos GF, Figueiredo CP, Coutinho-Silva R, Savio LEB. SARS-CoV-2 Spike protein alters microglial purinergic signaling. Front Immunol 2023; 14:1158460. [PMID: 37114062 PMCID: PMC10126242 DOI: 10.3389/fimmu.2023.1158460] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 03/23/2023] [Indexed: 04/29/2023] Open
Abstract
Despite long-term sequelae of COVID-19 are emerging as a substantial public health concern, the mechanism underlying these processes still unclear. Evidence demonstrates that SARS-CoV-2 Spike protein can reach different brain regions, irrespective of viral brain replication resulting in activation of pattern recognition receptors (PRRs) and neuroinflammation. Considering that microglia dysfunction, which is regulated by a whole array of purinergic receptors, may be a central event in COVID-19 neuropathology, we investigated the impact of SARS-CoV-2 Spike protein on microglial purinergic signaling. Here, we demonstrate that cultured microglial cells (BV2 line) exposed to Spike protein induce ATP secretion and upregulation of P2Y6, P2Y12, NTPDase2 and NTPDase3 transcripts. Also, immunocytochemistry analysis shows that spike protein increases the expression of P2X7, P2Y1, P2Y6, and P2Y12 in BV2 cells. Additional, hippocampal tissue of Spike infused animals (6,5ug/site, i.c.v.) presents increased mRNA levels of P2X7, P2Y1, P2Y6, P2Y12, NTPDase1, and NTPDase2. Immunohistochemistry experiments confirmed high expression of the P2X7 receptor in microglial cells in CA3/DG hippocampal regions after spike infusion. These findings suggest that SARS-CoV-2 Spike protein modulates microglial purinergic signaling and opens new avenues for investigating the potential of purinergic receptors to mitigate COVID-19 consequences.
Collapse
Affiliation(s)
- Vinícius Santos Alves
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Raíssa Leite-Aguiar
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Elaine Paiva-Pereira
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Renata Rodrigues dos Reis
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Mariana L. Calazans
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Leticia Silva Antônio
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Emanuelle V. de Lima
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Eleonora Kurtenbach
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jerson Lima Silva
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Fabricia Lima Fontes-Dantas
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- Departamento de Farmacologia e Psicobiologia, Instituto de Biologia Roberto Alcântara Gomes Institute Biology (IBRAG), Universidade Estadual do Rio de Janeiro (UERJ), Rio de Janeiro, Brazil
| | | | | | - Robson Coutinho-Silva
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luiz Eduardo Baggio Savio
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- *Correspondence: Luiz Eduardo Baggio Savio,
| |
Collapse
|
17
|
Zhou X, Zhou S, Tao J, Gao Y, Meng G, Cao D, Gao L. HIV-1 Tat drives the Fabp4/NF-κB feedback loop in microglia to mediate inflammatory response and neuronal apoptosis. J Neurovirol 2022; 28:483-496. [PMID: 36070137 DOI: 10.1007/s13365-022-01094-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/02/2022] [Accepted: 08/23/2022] [Indexed: 01/13/2023]
Abstract
Fatty acid-binding proteins (FABPs) are relevant to multiple neurodegenerative diseases. However, the roles and mechanisms of FABPs in HIV-associated neurocognitive disorder (HAND) remain yet unclear. In this study, cultured BV-2 microglial cells and HT-22 neuronal cells were used for in vitro experiments and HAND mouse models were constructed through intracerebroventricular injection of lentiviral vectors for in vivo experiments. FABP expression was determined using quantitative reverse transcription polymerase chain reaction (qRT-PCR) and Western blot. The interrelationship between Fabp4 and NF-κB signaling was investigated using chromatin immunoprecipitation, qRT-PCR, and Western blot. The role of Fabp4 in regulating inflammatory response was determined using qRT-PCR, enzyme-linked immunosorbent assay, Western blot, and immunofluorescence staining. Cell viability and apoptosis were analyzed using cell counting kit-8 assay and flow cytometry assay, respectively. Our results suggested an upregulation of Fabp4 expression in the presence of Tat. Tat-induced Fabp4 expression was directly regulated by NF-κB p65, followed by, Fabp4 facilitating Tat-activated NF-κB signaling pathway. We also observed that Fabp4 knockdown in microglial cells significantly suppressed inflammatory response and neuronal apoptosis both in vitro and in vivo. In conclusion, the presence of Tat in microglial cells results in Fabp4 and NF-κB to form a positive feedback loop leading to exacerbate inflammatory response and neuronal apoptosis.
Collapse
Affiliation(s)
- Xiaodan Zhou
- Department of Hematology, Affiliated Hospital 2 of Nantong University and First People's Hospital of Nantong City, Nantong, 226001, People's Republic of China
| | - Shuhui Zhou
- Department of Oncology, Nantong Hospital of Traditional Chinese Medicine, Affiliated Traditional Chinese Medicine Hospital of Nantong University, Nantong, 226001, People's Republic of China
| | - Jian Tao
- Department of Hematology, Affiliated Hospital 2 of Nantong University and First People's Hospital of Nantong City, Nantong, 226001, People's Republic of China
| | - Yanan Gao
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong University, Nantong, 226001, People's Republic of China
| | - Gaoqiang Meng
- Department of Neurosurgery, Affiliated Hospital 2 of Nantong University and First People's Hospital of Nantong City, Nantong, 226001, People's Republic of China
| | - Duo Cao
- College of Life Science, Yan'an University, Yan'an, 716000, People's Republic of China.
| | - Lin Gao
- Medical Research Center, Affiliated Hospital 2 of Nantong University and First People's Hospital of Nantong City, Haier Lane North Road No. 6, Nantong, 226001, Jiangsu, People's Republic of China.
| |
Collapse
|
18
|
Saro A, Gao Z, Kambey PA, Pielnaa P, Marcellin DFH, Luo A, Zheng R, Huang Z, Liao L, Zhao M, Suo L, Lu S, Li M, Cai D, Chen D, Yu H, Huang J. HIV-Proteins-Associated CNS Neurotoxicity, Their Mediators, and Alternative Treatments. Cell Mol Neurobiol 2022; 42:2553-2569. [PMID: 34562223 PMCID: PMC11421612 DOI: 10.1007/s10571-021-01151-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 09/19/2021] [Indexed: 02/08/2023]
Abstract
Human immunodeficiency virus (HIV)-infected people's livelihoods are gradually being prolonged with the use of combined antiretroviral therapy (ART). Conversely, despite viral suppression by ART, the symptoms of HIV-associated neurocognitive disorder (HAND) endure. HAND persists because ART cannot really permanently confiscate the virus from the body. HAND encompasses a variety of conditions based on clinical presentation and severity level, comprising asymptomatic neurocognitive impairment, moderate neurocognitive disorder, and HIV-associated dementia. During the early stages of HIV infection, inflammation compromises the blood-brain barrier, allowing toxic virus, infected monocytes, macrophages, T-lymphocytes, and cellular products from the bloodstream to enter the brain and eventually the entire central nervous system. Since there are no resident T-lymphocytes in the brain, the virus will live for decades in macrophages and astrocytes, establishing a reservoir of infection. The HIV proteins then inflame neurons both directly and indirectly. The purpose of this review is to provide a synopsis of the effects of these proteins on the central nervous system and conceptualize avenues to be considered in mitigating HAND. We used bioinformatics repositories extensively to simulate the transcription factors that bind to the promoter of the HIV-1 protein and possibly could be used as a target to circumvent HIV-associated neurocognitive disorders. In the same vein, a protein-protein interaction complex was also deduced from a Search Tool for the Retrieval of Interacting Genes. In conclusion, this provides an alternative strategy that could be used to avert HAND.
Collapse
Affiliation(s)
- Adonira Saro
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, 410013, China
| | - Zhaolin Gao
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, 410013, China
| | - Piniel Alphayo Kambey
- Xuzhou Key Laboratory of Neurobiology, Department of Neurobiology and Anatomy, Xuzhou Medical University, Xuzhou, China
| | - Paul Pielnaa
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, 410013, China
| | | | - Aixiang Luo
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, 410013, China
| | - Ruping Zheng
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, 410013, China
| | - Zhongjun Huang
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, 410013, China
| | - Lvshuang Liao
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, 410013, China
| | - Mingxuan Zhao
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, 410013, China
| | - Liangpeng Suo
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, 410013, China
| | - Shuang Lu
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, 410013, China
| | - Min Li
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, 410013, China
| | - Deyang Cai
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, 410013, China
| | - Dan Chen
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, 410013, China
| | - Haiyang Yu
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, 410013, China.
| | - Jufang Huang
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, 410013, China.
- School of Life Sciences, Central South University, Changsha, 410013, China.
| |
Collapse
|
19
|
Wang M, Jiang F, Zhang L, Zhang J, Xie H. Knockdown of P2Y4 ameliorates sepsis-induced acute kidney injury in mice via inhibiting the activation of the NF-κB/MMP8 axis. Front Physiol 2022; 13:953977. [PMID: 36105291 PMCID: PMC9467379 DOI: 10.3389/fphys.2022.953977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 07/21/2022] [Indexed: 11/16/2022] Open
Abstract
Sepsis-induced acute kidney injury (S-AKI) has emerged as a frequent and life-threatening complication in critically ill patients, which is characterized by a systematic inflammatory response and a rapid decline in kidney function. P2Y4, a member of G protein–coupled P2Y nucleotide receptor family, has been reported to serve as a crucial player in inflammatory responses during the development of neurocognitive disorder and myocardial infarction. Nonetheless, the biological role of P2Y4 in S-AKI remains largely unclear. This study aimed to decipher the biological role of P2Y4 in S-AKI and illuminate the potential mechanisms. In this study, S-AKI models were successfully established in mice via cecal ligation and puncture. Results showed that the kidney tissues from S-AKI mouse models exhibited a higher P2Y4 expression level than from the sham-operated group. Knockdown of P2Y4 was found to remarkably alleviate kidney damage and reduce inflammatory response in mice of S-AKI models. Moreover, P2Y4 ablation inhibited the activation of the NF-κB/MMP-8 signaling axis. Additionally, mechanistic studies revealed that rescuing MMP-8 reversed the alleviating effects of P2Y4 knockdown against renal cell damage. Collectively, our findings indicate that P2Y4 knockdown ameliorated S-AKI in mice via inhibiting the activation of the NF-κB/MMP-8 axis and that P2Y4 may represent a novel therapeutic target for S-AKI patients.
Collapse
|
20
|
Zhang Q, Yang Y, Chen Y, Wang Y, Qin S, Lv R, Zhou M, Yu Q, Li X, Li X, Wang X, You H, Wang Y, Zhou F, Liu X. The LncRNA AK018453 regulates TRAP1/Smad signaling in IL-17-activated astrocytes: A potential role in EAE pathogenesis. Glia 2022; 70:2079-2092. [PMID: 35778934 PMCID: PMC9545958 DOI: 10.1002/glia.24239] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 12/11/2022]
Abstract
The pro-inflammatory cytokine interleukin 17 (IL-17), that is mainly produced by Th17 cells, has been recognized as a key regulator in multiple sclerosis (MS) and experimental autoimmune encephalomyelitis (EAE). Reactive astrocytes stimulated by proinflammatory cytokines including IL-17 are involved in blood brain barrier destruction, inflammatory cells infiltration and spinal cord injury. However, the role of long non-coding RNAs (lncRNAs) induced by IL-17 in the pathogenesis of MS and EAE remains unknown. Herein, we found that an IL-17-induced lncRNA AK018453 promoted TGF-β receptor-associated protein 1 (TRAP1) expression and Smad-dependent signaling in mouse primary astrocytes. Knockdown of AK018453 significantly suppressed astrocytosis, attenuated the phosphorylation of Smad2/3, reduced NF-κB p65 and CBP/P300 binding to the TRAP1 promoter, and diminished pro-inflammatory cytokine production in the IL-17-treated astrocytes. AK018453 knockdown in astrocytes by a lentiviral vector in vivo dramatically inhibited inflammation and prevented the mice from demyelination in the spinal cord during the progression of EAE. Together, these results suggest that AK018453 regulates IL-17-dependent inflammatory response in reactive astrocytes and potentially promotes the pathogenesis of EAE via the TRAP1/Smad pathway. Targeting this pathway may have a therapeutic potential for intervening inflammatory demyelinating diseases.
Collapse
Affiliation(s)
- Qingxiu Zhang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology and Laboratory of Infection and Immunity, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Department of Neurology of Drum Tower Hospital, Medical School and the State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China.,Department of Neurology, Nanjing Drum Tower Clinical College of Xuzhou Medical University, Nanjing, China
| | - Ying Yang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology and Laboratory of Infection and Immunity, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yingyu Chen
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology and Laboratory of Infection and Immunity, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yifan Wang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology and Laboratory of Infection and Immunity, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Suping Qin
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology and Laboratory of Infection and Immunity, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Ruixue Lv
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology and Laboratory of Infection and Immunity, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Menglu Zhou
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology and Laboratory of Infection and Immunity, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Qian Yu
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology and Laboratory of Infection and Immunity, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xiangyang Li
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology and Laboratory of Infection and Immunity, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xiaocui Li
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology and Laboratory of Infection and Immunity, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xiaotian Wang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology and Laboratory of Infection and Immunity, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Hongjuan You
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology and Laboratory of Infection and Immunity, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yugang Wang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology and Laboratory of Infection and Immunity, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Feng Zhou
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology and Laboratory of Infection and Immunity, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xiaomei Liu
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology and Laboratory of Infection and Immunity, Xuzhou Medical University, Xuzhou, Jiangsu, China
| |
Collapse
|
21
|
Cao W, Lin J, Xiang W, Liu J, Wang B, Liao W, Jiang T. Physical Exercise-Induced Astrocytic Neuroprotection and Cognitive Improvement Through Primary Cilia and Mitogen-Activated Protein Kinases Pathway in Rats With Chronic Cerebral Hypoperfusion. Front Aging Neurosci 2022; 14:866336. [PMID: 35721009 PMCID: PMC9198634 DOI: 10.3389/fnagi.2022.866336] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 05/03/2022] [Indexed: 01/02/2023] Open
Abstract
Chronic cerebral hypoperfusion (CCH) is closely related to vascular cognitive impairment and dementia (VCID) and Alzheimer’s disease (AD). The neuroinflammation involving astrocytes is an important pathogenic mechanism. Along with the advancement of the concept and technology of astrocytic biology, the astrocytes have been increasingly regarded as the key contributors to neurological diseases. It is well known that physical exercise can improve cognitive function. As a safe and effective non-drug treatment, physical exercise has attracted continuous interests in neurological research. In this study, we explored the effects of physical exercise on the response of reactive astrocytes, and its role and mechanism in CCH-induced cognitive impairment. A rat CCH model was established by 2 vessel occlusion (2VO) and the wheel running exercise was used as the intervention. The cognitive function of rats was evaluated by morris water maze and novel object recognition test. The phenotypic polarization and the primary cilia expression of astrocytes were detected by immunofluorescence staining. The activation of MAPKs cascades, including ERK, JNK, and P38 signaling pathways, were detected by western blot. The results showed that physical exercise improved cognitive function of rats 2 months after 2VO, reduced the number of C3/GFAP-positive neurotoxic astrocytes, promoted the expression of S100A10/GFAP-positive neuroprotective astrocytes, and enhanced primary ciliogenesis. Additionally, physical exercise also alleviated the phosphorylation of ERK and JNK proteins induced by CCH. These results indicate that physical exercise can improve the cognitive function of rats with CCH possible by promoting primary ciliogenesis and neuroprotective function of astrocytes. The MAPKs signaling cascade, especially ERK and JNK signaling pathways may be involved in this process.
Collapse
Affiliation(s)
- Wenyue Cao
- Department of Neurorehabilitation, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Junbin Lin
- Department of Neurorehabilitation, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Wei Xiang
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Jingying Liu
- Department of Neurorehabilitation, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Biru Wang
- Department of Neurorehabilitation, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Weijing Liao
- Department of Neurorehabilitation, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- Weijing Liao,
| | - Ting Jiang
- Department of Neurorehabilitation, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- *Correspondence: Ting Jiang,
| |
Collapse
|
22
|
Pasquereau S, Herbein G. CounterAKTing HIV: Toward a “Block and Clear” Strategy? Front Cell Infect Microbiol 2022; 12:827717. [PMID: 35186800 PMCID: PMC8856111 DOI: 10.3389/fcimb.2022.827717] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 01/18/2022] [Indexed: 11/20/2022] Open
Abstract
The protein kinase B or Akt is a central regulator of survival, metabolism, growth and proliferation of the cells and is known to be targeted by various viral pathogens, including HIV-1. The central role of Akt makes it a critical player in HIV-1 pathogenesis, notably by affecting viral entry, latency and reactivation, cell survival, viral spread and immune response to the infection. Several HIV proteins activate the PI3K/Akt pathway, to fuel the progression of the infection. Targeting Akt could help control HIV-1 entry, viral latency/replication, cell survival of infected cells, HIV spread from cell-to-cell, and the immune microenvironment which could ultimately allow to curtail the size of the HIV reservoir. Beside the “shock and kill” and “block and lock” strategies, the use of Akt inhibitors in combination with latency inducing agents, could favor the clearance of infected cells and be part of new therapeutic strategies with the goal to “block and clear” HIV.
Collapse
Affiliation(s)
- Sébastien Pasquereau
- Laboratory Pathogens & Inflammation-Epigenetics of Viral Infections and Inflammatory Diseases Laboratory (EPILAB), University of Franche-Comté, Bourgogne Franche-Comté University Bourgogne Franche-Comté (UBFC), Besançon, France
| | - Georges Herbein
- Laboratory Pathogens & Inflammation-Epigenetics of Viral Infections and Inflammatory Diseases Laboratory (EPILAB), University of Franche-Comté, Bourgogne Franche-Comté University Bourgogne Franche-Comté (UBFC), Besançon, France
- Laboratory of Virology, Centre Hospitalier Universitaire (CHU) Besançon University Hospital, Besançon, France
- *Correspondence: Georges Herbein,
| |
Collapse
|
23
|
Zarei M, Sahebi Vaighan N, Ziai SA. Purinergic receptor ligands: the cytokine storm attenuators, potential therapeutic agents for the treatment of COVID-19. Immunopharmacol Immunotoxicol 2021; 43:633-643. [PMID: 34647511 PMCID: PMC8544669 DOI: 10.1080/08923973.2021.1988102] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 09/25/2021] [Indexed: 12/13/2022]
Abstract
The coronavirus disease-19 (COVID-19), at first, was reported in Wuhan, China, and then rapidly became pandemic throughout the world. Cytokine storm syndrome (CSS) in COVID-19 patients is associated with high levels of cytokines and chemokines that cause multiple organ failure, systemic inflammation, and hemodynamic instabilities. Acute respiratory distress syndrome (ARDS), a common complication of COVID-19, is a consequence of cytokine storm. In this regard, several drugs have been being investigated to suppress this inflammatory condition. Purinergic signaling receptors comprising of P1 adenosine and P2 purinoceptors play a critical role in inflammation. Therefore, activation or inhibition of some subtypes of these kinds of receptors is most likely to be beneficial to attenuate cytokine storm. This article summarizes suggested therapeutic drugs with potential anti-inflammatory effects through purinergic receptors.
Collapse
Affiliation(s)
- Malek Zarei
- Department of Pharmacology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Navideh Sahebi Vaighan
- Department of Pharmacology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Ali Ziai
- Department of Pharmacology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
24
|
Wallace DR. HIV-associated neurotoxicity and cognitive decline: Therapeutic implications. Pharmacol Ther 2021; 234:108047. [PMID: 34848202 DOI: 10.1016/j.pharmthera.2021.108047] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 11/16/2021] [Accepted: 11/24/2021] [Indexed: 12/19/2022]
Abstract
As our understanding of changes to the neurological system has improved, it has become clear that patients who have contracted human immunodeficiency virus type 1 (HIV-1) can potentially suffer from a cascade of neurological issues, including neuropathy, dementia, and declining cognitive function. The progression from mild to severe symptoms tends to affect motor function, followed by cognitive changes. Central nervous system deficits that are observed as the disease progresses have been reported as most severe in later-stage HIV infection. Examining the full spectrum of neuronal damage, generalized cortical atrophy is a common hallmark, resulting in the death of multiple classes of neurons. With antiretroviral therapy (ART), we can partially control disease progression, slowing the onset of the most severe symptoms such as, reducing viral load in the brain, and developing HIV-associated dementia (HAD). HAD is a severe and debilitating outcome from HIV-related neuropathologies. HIV neurotoxicity can be direct (action directly on the neuron) or indirect (actions off-site that affect normal neuronal function). There are two critical HIV-associated proteins, Tat and gp120, which bear responsibility for many of the neuropathologies associated with HAD and HIV-associated neurocognitive disorder (HAND). A cascade of systems is involved in HIV-related neurotoxicity, and determining a critical point where therapeutic strategies can be employed is of the utmost importance. This review will provide an overview of the existing hypotheses on HIV-neurotoxicity and the potential for the development of therapeutics to aid in the treatment of HIV-related nervous system dysfunction.
Collapse
Affiliation(s)
- David R Wallace
- Oklahoma State University Center for Health Sciences, School of Biomedical Science, 1111 West 17(th) Street, Tulsa, OK 74107-1898, USA.
| |
Collapse
|
25
|
Wu S, Frank I, Derby N, Martinelli E, Cheng CY. HIV-1 Establishes a Sanctuary Site in the Testis by Permeating the BTB Through Changes in Cytoskeletal Organization. Endocrinology 2021; 162:6338140. [PMID: 34343260 PMCID: PMC8407494 DOI: 10.1210/endocr/bqab156] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Indexed: 11/19/2022]
Abstract
Studies suggest that HIV-1 invades the testis through initial permeation of the blood-testis barrier (BTB). The selectivity of the BTB to antiretroviral drugs makes this site a sanctuary for the virus. Little is known about how HIV-1 crosses the BTB and invades the testis. Herein, we used 2 approaches to examine the underlying mechanism(s) by which HIV-1 permeates the BTB and gains entry into the seminiferous epithelium. First, we examined if recombinant Tat protein was capable of perturbing the BTB and making the barrier leaky, using the primary rat Sertoli cell in vitro model that mimics the BTB in vivo. Second, we used HIV-1-infected Sup-T1 cells to investigate the activity of HIV-1 infection on cocultured Sertoli cells. Using both approaches, we found that the Sertoli cell tight junction permeability barrier was considerably perturbed and that HIV-1 effectively permeates the BTB by inducing actin-, microtubule-, vimentin-, and septin-based cytoskeletal changes in Sertoli cells. These studies suggest that HIV-1 directly perturbs BTB function, potentially through the activity of the Tat protein.
Collapse
Affiliation(s)
- Siwen Wu
- The Second Affiliated Hospital & Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- Center for Biomedical Research, Population Council, 1230 York Ave, New York, NY 10065, USA
| | - Ines Frank
- Center for Biomedical Research, Population Council, 1230 York Ave, New York, NY 10065, USA
| | - Nina Derby
- Center for Biomedical Research, Population Council, 1230 York Ave, New York, NY 10065, USA
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA 98109, USA
| | - Elena Martinelli
- Center for Biomedical Research, Population Council, 1230 York Ave, New York, NY 10065, USA
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - C Yan Cheng
- The Second Affiliated Hospital & Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- Center for Biomedical Research, Population Council, 1230 York Ave, New York, NY 10065, USA
| |
Collapse
|
26
|
D'Amico D, Valdebenito S, Eugenin EA. The role of Pannexin-1 channels and extracellular ATP in the pathogenesis of the human immunodeficiency virus. Purinergic Signal 2021; 17:563-576. [PMID: 34542793 DOI: 10.1007/s11302-021-09817-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 08/03/2021] [Indexed: 10/20/2022] Open
Abstract
Only recently, the role of large ionic channels such as Pannexin-1 channels and Connexin hemichannels has been implicated in several physiological and pathological conditions, including HIV infection and associated comorbidities. These channels are in a closed stage in healthy conditions, but in pathological conditions including HIV, Pannexin-1 channels and Connexin hemichannels become open. Our data demonstrate that acute and chronic HIV infection induces channel opening (Pannexin and Connexin channels), ATP release into the extracellular space, and subsequent activation of purinergic receptors in immune and non-immune cells. We demonstrated that Pannexin and Connexin channels contribute to HIV infection and replication, the long-term survival of viral reservoirs, and comorbidities such as NeuroHIV. Here, we discuss the available data to support the participation of these channels in the HIV life cycle and the potential therapeutic approach to prevent HIV-associated comorbidities.
Collapse
Affiliation(s)
- Daniela D'Amico
- Department of Neuroscience , Cell Biology, and Anatomy, University of Texas Medical Branch (UTMB), Research Building 17, 105 11th Street, Galveston, TX, 77555, USA
| | - Silvana Valdebenito
- Department of Neuroscience , Cell Biology, and Anatomy, University of Texas Medical Branch (UTMB), Research Building 17, 105 11th Street, Galveston, TX, 77555, USA
| | - Eliseo A Eugenin
- Department of Neuroscience , Cell Biology, and Anatomy, University of Texas Medical Branch (UTMB), Research Building 17, 105 11th Street, Galveston, TX, 77555, USA.
| |
Collapse
|
27
|
Guo X, Li Q, Pi S, Xia Y, Mao L. G protein-coupled purinergic P2Y receptor oligomerization: Pharmacological changes and dynamic regulation. Biochem Pharmacol 2021; 192:114689. [PMID: 34274353 DOI: 10.1016/j.bcp.2021.114689] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 07/12/2021] [Accepted: 07/13/2021] [Indexed: 12/12/2022]
Abstract
P2Y receptors (P2YRs) are a δ group of rhodopsin-like G protein-coupled receptors (GPCRs) with many essential functions in physiology and pathology, such as platelet aggregation, immune responses, neuroprotective effects, inflammation, and cellular proliferation. Thus, they are among the most researched therapeutic targets used for the clinical treatment of diseases (e.g., the antithrombotic drug clopidogrel and the dry eye treatment drug diquafosol). GPCRs transmit signals as dimers to increase the diversity of signalling pathways and pharmacological activities. Many studies have frequently confirmed dimerization between P2YRs and other GPCRs due to their functions in cardiovascular and cerebrovascular processes in vivo and in vitro. Recently, some P2YR dimers that dynamically balance physiological functions in the body were shown to be involved in effective signal transduction and exert pathological responses. In this review, we summarize the types, pharmacological changes, and active regulators of P2YR-related dimerization, and delineate new functions and pharmacological activities of P2YR-related dimers, which may be a novel direction to improve the effectiveness of medications.
Collapse
Affiliation(s)
- Xiaoqing Guo
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Qin Li
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Shulan Pi
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yuanpeng Xia
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Ling Mao
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
28
|
Williams ME, Stein DJ, Joska JA, Naudé PJW. Cerebrospinal fluid immune markers and HIV-associated neurocognitive impairments: A systematic review. J Neuroimmunol 2021; 358:577649. [PMID: 34280844 DOI: 10.1016/j.jneuroim.2021.577649] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 05/27/2021] [Accepted: 06/27/2021] [Indexed: 01/31/2023]
Abstract
HIV-1 is responsible for the development of a spectrum of cognitive impairments known as HIV-associated neurocognitive disorder (HAND). In the era of antiretroviral therapy (ART), HAND remains prevalent in people living with HIV (PLWH), despite low or undetectable viral loads. Persistent neuroinflammation likely plays an important role in the contributing biological mechanisms. Multiple cerebrospinal fluid (CSF) immune markers have been studied but it is unclear which markers most consistently correlate with neurocognitive impairment. We therefore conducted a systematic review of studies of the association of CSF immune markers with neurocognitive performance in ART-experienced PLWH. We aimed to synthesize the published data to determine consistent findings and to indicate the most noteworthy CSF markers of HAND. Twenty-nine studies were included, with 20 cross-sectional studies and 9 longitudinal studies. From the group of markers most often assayed, specific monocyte activation (higher levels of Neopterin, sCD163, sCD14) and neuroinflammatory markers (higher levels of IFN-γ, IL-1α, IL-7, IL-8, sTNFR-II and lower levels of IL-6) showed a consistent direction in association with HIV-associated neurocognitive impairment. Furthermore, significant differences exist in CSF immune markers between HIV-positive people with and without neurocognitive impairment, regardless of viral load and nadir/current CD4+ count. These markers may be useful in furthering our understanding of the neuropathology, diagnosis and prognosis of HAND. Studies using prospective designs (i.e. pre- and post-interventions), "multi-modal" methods (e.g. imaging, inflammation and neurocognitive evaluations) and utilizing a combination of the markers most commonly associated with HAND may help delineate the mechanisms of HAND.
Collapse
Affiliation(s)
- Monray E Williams
- Human Metabolomics, North-West University, Potchefstroom, South Africa.
| | - Dan J Stein
- Department of Psychiatry and Mental Health, Brain Behaviour Unit, University of Cape Town, Cape Town, South Africa; Neuroscience Institute, University of Cape Town, Cape Town, South Africa; SAMRC Unit on Risk and Resilience in Mental Disorders, Department of Psychiatry, University of Cape Town, Cape Town, South Africa
| | - John A Joska
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa; HIV Mental Health Research Unit, Division of Neuropsychiatry, Department of Psychiatry and Mental Health, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Petrus J W Naudé
- Department of Psychiatry and Mental Health, Brain Behaviour Unit, University of Cape Town, Cape Town, South Africa; Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
29
|
Liu X, Zhou F, Wang W, Chen G, Zhang Q, Lv R, Zhao Z, Li X, Yu Q, Meves JM, Hua H, Li X, Wang X, Sun H, Gao D. IL-9-triggered lncRNA Gm13568 regulates Notch1 in astrocytes through interaction with CBP/P300: contribute to the pathogenesis of experimental autoimmune encephalomyelitis. J Neuroinflammation 2021; 18:108. [PMID: 33971906 PMCID: PMC8112022 DOI: 10.1186/s12974-021-02156-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 04/22/2021] [Indexed: 12/20/2022] Open
Abstract
Background Interleukin 9 (IL-9), produced mainly by T helper 9 (Th9) cells, has been recognized as an important regulator in multiple sclerosis (MS) and its animal model, experimental autoimmune encephalomyelitis (EAE). Astrocytes respond to IL-9 and reactive astrocytes always associate with blood-brain barrier damage, immune cell infiltration, and spinal injury in MS and EAE. Several long non-coding RNAs (lncRNAs) with aberrant expression have been identified in the pathogenesis of MS. Here, we examined the effects of lncRNA Gm13568 (a co-upregulated lncRNA both in EAE mice and in mouse primary astrocytes activated by IL-9) on the activation of astrocytes and the process of EAE. Methods In vitro, shRNA-recombinant lentivirus with glial fibrillary acidic protein (GFAP) promoter were performed to determine the relative gene expression and proinflammatory cytokines production in IL-9 treated-astrocytes using Western blot, real-time PCR, and Cytometric Bead Array, respectively. RIP and ChIP assays were analyzed for the mechanism of lncRNA Gm13568 regulating gene expression. Immunofluorescence assays was performed to measure the protein expression in astrocytes. In vivo, H&E staining and LFB staining were applied to detect the inflammatory cells infiltrations and the medullary sheath damage in spinal cords of EAE mice infected by the recombinant lentivirus. Results were analyzed by one-way ANOVA or Student’s t test, as appropriate. Results Knockdown of the endogenous lncRNA Gm13568 remarkably inhibits the Notch1 expression, astrocytosis, and the phosphorylation of signal transducer and activator of transcription 3 (p-STAT3) as well as the production of inflammatory cytokines and chemokines (IL-6, TNF-α, IP-10) in IL-9-activated astrocytes, in which Gm13568 associates with the transcriptional co-activators CBP/P300 which are enriched in the promoter of Notch1 genes. More importantly, inhibiting Gm13568 with lentiviral vector in astrocytes ameliorates significantly inflammation and demyelination in EAE mice, therefore delaying the EAE process. Conclusions These findings uncover that Gm13568 regulates the production of inflammatory cytokines in active astrocytes and affects the pathogenesis of EAE through the Notch1/STAT3 pathway. LncRNA Gm13568 may be a promising target for treating MS and demyelinating diseases. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-021-02156-5.
Collapse
Affiliation(s)
- Xiaomei Liu
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology and Laboratory of Infection and Immunity, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, People's Republic of China.
| | - Feng Zhou
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology and Laboratory of Infection and Immunity, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, People's Republic of China
| | - Weixiao Wang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology and Laboratory of Infection and Immunity, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, People's Republic of China
| | - Guofang Chen
- Neurology Department, The Affiliated Xuzhou Center Hospital of Nanjing University of Chinese Medicine, Xuzhou, People's Republic of China.,Neurology Department, Xuzhou Central Hospital, Xuzhou, People's Republic of China.,Neurology Department, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou, Jiangsu, 221009, People's Republic of China
| | - Qingxiu Zhang
- Department of Neurology, Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221006, People's Republic of China
| | - Ruixue Lv
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology and Laboratory of Infection and Immunity, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, People's Republic of China
| | - Zijun Zhao
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology and Laboratory of Infection and Immunity, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, People's Republic of China
| | - Xiangyang Li
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology and Laboratory of Infection and Immunity, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, People's Republic of China
| | - Qian Yu
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology and Laboratory of Infection and Immunity, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, People's Republic of China
| | - Jessica M Meves
- Department of Psychiatry, University of Michigan Medicine, MI48109, Ann Arbor, Michigan, USA
| | - Hui Hua
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology and Laboratory of Infection and Immunity, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, People's Republic of China
| | - Xiaocui Li
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology and Laboratory of Infection and Immunity, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, People's Republic of China
| | - Xiaotian Wang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology and Laboratory of Infection and Immunity, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, People's Republic of China
| | - Hong Sun
- Department of Physiology, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, People's Republic of China
| | - Dianshuai Gao
- Xuzhou Key Laboratory of Neurobiology, Department of Neurobiology and Anatomy, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, People's Republic of China.
| |
Collapse
|
30
|
Chang L, Liang H, Kandel SR, He JJ. Independent and Combined Effects of Nicotine or Chronic Tobacco Smoking and HIV on the Brain: A Review of Preclinical and Clinical Studies. J Neuroimmune Pharmacol 2020; 15:658-693. [PMID: 33108618 DOI: 10.1007/s11481-020-09963-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 09/25/2020] [Indexed: 02/07/2023]
Abstract
Tobacco smoking is highly prevalent among HIV-infected individuals. Chronic smokers with HIV showed greater cognitive deficits and impulsivity, and had more psychopathological symptoms and greater neuroinflammation than HIV non-smokers or smokers without HIV infection. However, preclinical studies that evaluated the combined effects of HIV-infection and tobacco smoking are scare. The preclinical models typically used cell cultures or animal models that involved specific HIV viral proteins or the administration of nicotine to rodents. These preclinical models consistently demonstrated that nicotine had neuroprotective and anti-inflammatory effects, leading to cognitive enhancement. Although the major addictive ingredient in tobacco smoking is nicotine, chronic smoking does not lead to improved cognitive function in humans. Therefore, preclinical studies designed to unravel the interactive effects of chronic tobacco smoking and HIV infection are needed. In this review, we summarized the preclinical studies that demonstrated the neuroprotective effects of nicotine, the neurotoxic effects of the HIV viral proteins, and the scant literature on nicotine or tobacco smoke in HIV transgenic rat models. We also reviewed the clinical studies that evaluated the neurotoxic effects of tobacco smoking, HIV infection and their combined effects on the brain, including studies that evaluated the cognitive and behavioral assessments, as well as neuroimaging measures. Lastly, we compared the different approaches between preclinical and clinical studies, identified some gaps and proposed some future directions. Graphical abstract Independent and combined effects of HIV and tobacco/nicotine. Left top and bottom panels: Both clinical studies of HIV infected persons and preclinical studies using viral proteins in vitro or in vivo in animal models showed that HIV infection could lead to neurotoxicity and neuroinflammation. Right top and bottom panels: While clinical studies of tobacco smoking consistently showed deleterious effects of smoking, clinical and preclinical studies that used nicotine show mild cognitive enhancement, neuroprotective and possibly anti-inflammatory effects. In the developing brain, however, nicotine is neurotoxic. Middle overlapping panels: Clinical studies of persons with HIV who were smokers typically showed additive deleterious effects of HIV and tobacco smoking. However, in the preclinical studies, when nicotine was administered to the HIV-1 Tg rats, the neurotoxic effects of HIV were attenuated, but tobacco smoke worsened the inflammatory cascade.
Collapse
Affiliation(s)
- Linda Chang
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, 670 W. Baltimore Street, HSF III, Baltimore, MD, 21201, USA.
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, USA.
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Medicine, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI, USA.
| | - Huajun Liang
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, 670 W. Baltimore Street, HSF III, Baltimore, MD, 21201, USA
| | - Suresh R Kandel
- Department of Microbiology and Immunology, Chicago Medical School, Center for Cancer Cell Biology, Immunology and Infection, Rosalind Franklin University, 3333 Green Bay Road, Basic Science Building 2.300, North Chicago, IL, 60064, USA
| | - Johnny J He
- Department of Microbiology and Immunology, Chicago Medical School, Center for Cancer Cell Biology, Immunology and Infection, Rosalind Franklin University, 3333 Green Bay Road, Basic Science Building 2.300, North Chicago, IL, 60064, USA.
| |
Collapse
|
31
|
Alves VS, Leite-Aguiar R, Silva JPD, Coutinho-Silva R, Savio LEB. Purinergic signaling in infectious diseases of the central nervous system. Brain Behav Immun 2020; 89:480-490. [PMID: 32717399 PMCID: PMC7378483 DOI: 10.1016/j.bbi.2020.07.026] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/18/2020] [Accepted: 07/20/2020] [Indexed: 12/12/2022] Open
Abstract
The incidence of infectious diseases affecting the central nervous system (CNS) has been increasing over the last several years. Among the reasons for the expansion of these diseases and the appearance of new neuropathogens are globalization, global warming, and the increased proximity between humans and wild animals due to human activities such as deforestation. Neurotropism affecting normal brain function is shared by organisms such as viruses, bacteria, fungi, and parasites. Neuroinfections caused by these agents activate immune responses, inducing neuroinflammation, excitotoxicity, and neurodegeneration. Purinergic signaling is an evolutionarily conserved signaling pathway associated with these neuropathologies. During neuroinfections, host cells release ATP as an extracellular danger signal with pro-inflammatory activities. ATP is metabolized to its derivatives by ectonucleotidases such as CD39 and CD73; ATP and its metabolites modulate neuronal and immune mechanisms through P1 and P2 purinergic receptors that are involved in pathophysiological mechanisms of neuroinfections. In this review we discuss the beneficial or deleterious effects of various components of the purinergic signaling pathway in infectious diseases that affect the CNS, including human immunodeficiency virus (HIV-1) infection, herpes simplex virus type 1 (HSV-1) infection, bacterial meningitis, sepsis, cryptococcosis, toxoplasmosis, and malaria. We also provide a description of this signaling pathway in emerging viral infections with neurological implications such as Zika and SARS-CoV-2.
Collapse
Affiliation(s)
- Vinícius Santos Alves
- Laboratory of Immunophysiology, Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Raíssa Leite-Aguiar
- Laboratory of Immunophysiology, Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Joyce Pereira da Silva
- Laboratory of Immunophysiology, Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Robson Coutinho-Silva
- Laboratory of Immunophysiology, Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luiz Eduardo Baggio Savio
- Laboratory of Immunophysiology, Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
32
|
Li P, Zhao G, Chen F, Ding Y, Wang T, Liu S, Lu W, Xu W, Flores J, Ocak U, Zhang T, Zhang JH, Tang J. Rh-relaxin-2 attenuates degranulation of mast cells by inhibiting NF-κB through PI3K-AKT/TNFAIP3 pathway in an experimental germinal matrix hemorrhage rat model. J Neuroinflammation 2020; 17:250. [PMID: 32859236 PMCID: PMC7455905 DOI: 10.1186/s12974-020-01926-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 08/13/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Mast cells play an important role in early immune reactions in the brain by degranulation and the consequent inflammatory response. Our aim of the study is to investigate the effects of rh-relaxin-2 on mast cells and the underlying mechanisms in a germinal matrix hemorrhage (GMH) rat model. METHODS One hundred seventy-three P7 rat pups were subjected to GMH by an intraparenchymal injection of bacterial collagenase. Clodronate liposome was administered through intracerebroventricular (i.c.v.) injections 24 h prior to GMH to inhibit microglia. Rh-relaxin-2 was administered intraperitoneally at 1 h and 13 h after GMH. Small interfering RNA of RXFP1 and PI3K inhibitor LY294002 were given by i.c.v. injection. Post-GMH evaluation included neurobehavioral function, Western blot analysis, immunofluorescence, Nissl staining, and toluidine blue staining. RESULTS Our results demonstrated that endogenous relaxin-2 was downregulated and that RXFP1 level peaked on the first day after GMH. Administration of rh-relaxin-2 improved neurological functions, attenuated degranulation of mast cells and neuroinflammation, and ameliorated post-hemorrhagic hydrocephalus (PHH) after GMH. These effects were associated with RXFP1 activation, increased expression of PI3K, phosphorylated AKT and TNFAIP3, and decreased levels of phosphorylated NF-κB, tryptase, chymase, IL-6, and TNF-α. However, knockdown of RXFP1 and PI3K inhibition abolished the protective effects of rh-relaxin-2. CONCLUSIONS Our findings showed that rh-relaxin-2 attenuated degranulation of mast cells and neuroinflammation, improved neurological outcomes, and ameliorated hydrocephalus after GMH through RXFP1/PI3K-AKT/TNFAIP3/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Peng Li
- Department of Physiology and Pharmacology, Basic Science, School of Medicine, Loma Linda University, Risley Hall, 11041 Campus St, Loma Linda, CA, 92354, USA
| | - Gang Zhao
- Department of Physiology and Pharmacology, Basic Science, School of Medicine, Loma Linda University, Risley Hall, 11041 Campus St, Loma Linda, CA, 92354, USA
- Department of Emergency Surgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, 650101, China
- Traumatic Research Center of Yunnan Province, Kunming, 650101, China
| | - Fanfan Chen
- Department of Neurosurgery, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518000, China
| | - Yan Ding
- Department of Physiology and Pharmacology, Basic Science, School of Medicine, Loma Linda University, Risley Hall, 11041 Campus St, Loma Linda, CA, 92354, USA
| | - Tianyi Wang
- Department of Physiology and Pharmacology, Basic Science, School of Medicine, Loma Linda University, Risley Hall, 11041 Campus St, Loma Linda, CA, 92354, USA
| | - Shengpeng Liu
- Department of Physiology and Pharmacology, Basic Science, School of Medicine, Loma Linda University, Risley Hall, 11041 Campus St, Loma Linda, CA, 92354, USA
| | - Weitian Lu
- Department of Physiology and Pharmacology, Basic Science, School of Medicine, Loma Linda University, Risley Hall, 11041 Campus St, Loma Linda, CA, 92354, USA
| | - Weilin Xu
- Department of Physiology and Pharmacology, Basic Science, School of Medicine, Loma Linda University, Risley Hall, 11041 Campus St, Loma Linda, CA, 92354, USA
| | - Jerry Flores
- Department of Physiology and Pharmacology, Basic Science, School of Medicine, Loma Linda University, Risley Hall, 11041 Campus St, Loma Linda, CA, 92354, USA
| | - Umut Ocak
- Department of Physiology and Pharmacology, Basic Science, School of Medicine, Loma Linda University, Risley Hall, 11041 Campus St, Loma Linda, CA, 92354, USA
| | - Tongyu Zhang
- Department of Physiology and Pharmacology, Basic Science, School of Medicine, Loma Linda University, Risley Hall, 11041 Campus St, Loma Linda, CA, 92354, USA
| | - John H Zhang
- Department of Physiology and Pharmacology, Basic Science, School of Medicine, Loma Linda University, Risley Hall, 11041 Campus St, Loma Linda, CA, 92354, USA
- Departments of Anesthesiology, Neurosurgery and Neurology, Loma Linda University School of Medicine, Loma Linda, CA, 92354, USA
| | - Jiping Tang
- Department of Physiology and Pharmacology, Basic Science, School of Medicine, Loma Linda University, Risley Hall, 11041 Campus St, Loma Linda, CA, 92354, USA.
| |
Collapse
|
33
|
Yang J, Cao MX, Hu WY, Wei YY, Hu TJ. Sophorasubprosrate polysaccharide suppress the inflammatory reaction of RAW264.7 cells infected with PCV2 via regulation NF-κB/MAPKs/c-Jun signal pathway and histone acetylation modification. Int J Biol Macromol 2020; 159:957-965. [PMID: 32442564 DOI: 10.1016/j.ijbiomac.2020.05.128] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/08/2020] [Accepted: 05/15/2020] [Indexed: 12/26/2022]
Abstract
The purpose of this study was to investigate the regulation of Sophorasubprosrate polysaccharide (SSP) on inflammatory response and histone acetylation modification of RAW264.7 cells (mouse mononuclear macrophage cell line) infected with porcine circovirus type 2 (PCV2). We further explored the role of inflammatory response and histone acetylation modification on the basis of the original study. The results showed that SSP decreased the secretion levels of TNF-α and IL-6 and the intracellular iNOS, COX-2 enzyme activities and their mRNA expression levels in PCV2 infected RAW264.7 cells, but increased the level of IL-10 secretion and its mRNA expression. SSP inhibited the phosphorylation levels of proteins of p65, ERK1/2, p38 and c-Jun in RAW264.7 cells infected with PCV2. The activities of HAT and HDAC enzymes and the mRNA expression levels of HAT1 and HDAC1 were increased when the PCV2-infected RAW264.7 cells were treated by SSP. Meanwhile, the expression of acetylation modification of histones both H3 and H4 was obviously inhibited. In conclusion, SSP may reduce the acetylation levels of both H3 and H4 and activate NF-κB/MAPKs/c-Jun signaling pathway by increasing the activity of HADC enzyme and the expression of HDAC mRNA, further inhibiting inflammatory response by regulating the gene expression levels of inflammatory factors. The findings indicated that the molecular mechanism of how traditional Chinese medicine polysaccharide regulates inflammatory signal pathways and inflammatory factors by regulating histone acetylation.
Collapse
Affiliation(s)
- Jian Yang
- College of Animal Science and Technology, Guangxi University, Nanning 530004, PR China; School of Life Sciences, Longyan University, Longyan 364000, PR China; Fujian Key Laboratory of Preventive Veterinary Medicine and Biotechnology, Longyan University, Longyan 364000, PR China
| | - Mi-Xia Cao
- College of Animal Science and Technology, Guangxi University, Nanning 530004, PR China
| | - Wen-Yue Hu
- School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, PR China
| | - Ying-Yi Wei
- College of Animal Science and Technology, Guangxi University, Nanning 530004, PR China
| | - Ting-Jun Hu
- College of Animal Science and Technology, Guangxi University, Nanning 530004, PR China.
| |
Collapse
|
34
|
Circulating levels of ATP is a biomarker of HIV cognitive impairment. EBioMedicine 2019; 51:102503. [PMID: 31806564 PMCID: PMC7000317 DOI: 10.1016/j.ebiom.2019.10.029] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 10/14/2019] [Accepted: 10/16/2019] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND In developed countries, Human Immunodeficiency Virus type-1 (HIV-1) infection has become a chronic disease despite the positive effects of anti-retroviral therapies (ART), but still at least half of the HIV infected population shown signs of cognitive impairment. Therefore, biomarkers of HIV cognitive decline are urgently needed. METHODS We analyze the opening of one of the larger channels expressed by humans, pannexin-1 (Panx-1) channels, in the uninfected and HIV infected population (n = 175). We determined channel opening and secretion of intracellular second messengers released through the channel such as PGE2 and ATP. Also, we correlated the opening of Panx-1 channels with the circulating levels of PGE2 and ATP as well as cogntive status of the individuals analyzed. FINDINGS Here, we demonstrate that Panx-1 channels on fresh PBMCs obtained from uninfected individuals are closed and no significant amounts of PGE2 and ATP are detected in the circulation. In contrast, in all HIV-infected individuals analyzed, even the ones under effective ART, a spontaneous opening of Panx-1 channels and increased circulating levels of PGE2 and ATP were detected. Circulating levels of ATP were correlated with cognitive decline in the HIV-infected population supporting that ATP is a biomarker of cognitive disease in the HIV-infected population. INTERPRETATION We propose that circulating levels of ATP could predict CNS compromise and lead to the breakthroughs necessary to detect and prevent brain compromise in the HIV-infected population.
Collapse
|
35
|
Ji Y, Wang D, Zhang B, Lu H. Bergenin Ameliorates MPTP-Induced Parkinson’s Disease by Activating PI3K/Akt Signaling Pathway. J Alzheimers Dis 2019; 72:823-833. [PMID: 31658061 DOI: 10.3233/jad-190870] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Yangfei Ji
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Dan Wang
- Department of Cardiology, Zhengzhou Central Hospital, Zhengzhou, China
| | - Boai Zhang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hong Lu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|