1
|
Qi H, Ying G, Ling W, Jia H, Zhou X, Lin X. The role of lncRNAs in sepsis-induced acute lung injury: Molecular mechanisms and therapeutic potential. Arch Biochem Biophys 2025; 768:110407. [PMID: 40180295 DOI: 10.1016/j.abb.2025.110407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2025] [Revised: 03/30/2025] [Accepted: 03/31/2025] [Indexed: 04/05/2025]
Abstract
Sepsis, a life-threatening syndrome, results from a dysregulated immune and hemostatic response, contributing to acute lung injury (ALI) and its progression into acute respiratory distress syndrome (ARDS). The development of septic ALI is complex, involving excessive inflammatory mediator production that damages endothelial and epithelial cells, leading to vascular leakage, edema, and vasodilation-key factors in ALI pathogenesis. Long noncoding RNAs (lncRNAs), over 200 nucleotides in length, play critical roles in various biological processes, including sepsis regulation. They exhibit both promotive and inhibitory effects, influencing sepsis progression and resolution. Despite their significance, comprehensive reviews detailing lncRNA involvement in sepsis-induced ALI remain limited. This review aims to address this gap by summarizing the diverse functions of lncRNAs in septic ALI, emphasizing their potential in diagnosis and treatment. Furthermore, we will explore the molecular mechanisms underlying lncRNA involvement, particularly their miRNA-dependent regulatory pathways. Understanding these interactions may provide novel insights into therapeutic strategies for sepsis-induced ALI.
Collapse
Affiliation(s)
- Huijuan Qi
- Department of Intensive Care Unit, Shandong Second Provincial General Hospital, Jinan City, 250001, Shandong Province, China.
| | - Gu Ying
- Department of Intensive Care Unit, Shandong Second Provincial General Hospital, Jinan City, 250001, Shandong Province, China
| | - Wang Ling
- Department of Intensive Care Unit, Shandong Second Provincial General Hospital, Jinan City, 250001, Shandong Province, China
| | - Honggang Jia
- Department of Intensive Care Unit, Shandong Second Provincial General Hospital, Jinan City, 250001, Shandong Province, China
| | - Xinxiu Zhou
- Department of Intensive Care Unit, Shandong Second Provincial General Hospital, Jinan City, 250001, Shandong Province, China
| | - Xinyu Lin
- Department of Intensive Care Unit, Shandong Second Provincial General Hospital, Jinan City, 250001, Shandong Province, China
| |
Collapse
|
2
|
Liu MW, Zhang Y, Xiong GF, Zhang BR, Zhang QJ, Gao SJ, Zhu YL, Zhang LM. Dexmedetomidine for the treatment of sepsis-associated encephalopathy: Mechanism and prospects. Biomed Pharmacother 2025; 188:118209. [PMID: 40424824 DOI: 10.1016/j.biopha.2025.118209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 05/21/2025] [Accepted: 05/22/2025] [Indexed: 05/29/2025] Open
Abstract
Sepsis-associated encephalopathy (SAE) is a severe central nervous system complication that is secondary to sepsis and is characterized by a poor prognosis, high mortality, and multiple systemic manifestations. Although the specific etiology remains incompletely understood, SAE typically presents with varying degrees of neurological dysfunction. The complex mechanisms underlying SAE significantly influence patient outcomes. Recent studies have emphasized the roles of bloodbrain barrier (BBB) disruption, microglial activation, mitochondrial dysfunction, apoptosis, inflammatory responses, and oxidative stress in the development and progression of SAE. Dexmedetomidine, a highly selective α2-adrenergic receptor agonist initially employed as an anesthetic adjunct, has attracted increasing attention for its therapeutic potential in SAE. Its notable pharmacological properties include anti-inflammatory activity, modulation of microglial responses, regulation of immune function, stabilization of mitochondrial activity, inhibition of apoptosis, and maintenance of hemodynamic stability in patients with sepsis. In addition, dexmedetomidine supports gastrointestinal homeostasis and offers multiorgan protection. This review consolidates current findings regarding the protective mechanisms of dexmedetomidine in sepsis-induced brain injury and provides insight into its potential clinical applications in the management of SAE.
Collapse
Affiliation(s)
- Ming-Wei Liu
- Department of Emergency, Dali Bai Autonomous Prefecture People's Hospital, Dali 671000, China.
| | - Ye Zhang
- Department of Traditional Chinese Medicine, The Third People's Hospital of Yunnan Province, Kunming, Yunnan 650011, China.
| | - Gui-Fei Xiong
- Department of Pain Management, People's Hospital of Kaiyuan City, KaiYuan, Hani-Yi Autonomous Prefecture of Honghe, 661600, China.
| | - Bin-Ran Zhang
- Department of Emergency, The First Hospital Affiliated To Kunming Medical University, Kunming 650032, China.
| | - Qiu-Juan Zhang
- Department of Emergency, The First Hospital Affiliated To Kunming Medical University, Kunming 650032, China.
| | - Shu-Ji Gao
- Department of Emergency, The First Hospital Affiliated To Kunming Medical University, Kunming 650032, China.
| | - Yan-Lin Zhu
- Department of Emergency, The First Hospital Affiliated To Kunming Medical University, Kunming 650032, China.
| | - Lin-Ming Zhang
- Department of Neurology, The First Hospital Affiliated To Kunming Medical University, Kunming 650032, China.
| |
Collapse
|
3
|
Nguyen THV, Ferron F, Murakami K. Neurotoxic Implications of Human Coronaviruses in Neurodegenerative Diseases: A Perspective from Amyloid Aggregation. ACS Chem Biol 2025; 20:983-992. [PMID: 40272376 DOI: 10.1021/acschembio.5c00153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2025]
Abstract
Human coronaviruses (HCoVs) include seven species: HCoV-229E, HCoV-NL63, HCoV-OC43, HCoV-HKU1, MERS-CoV, SARS-CoV-1, and SARS-CoV-2. The last three, classified as Betacoronaviruses, are highly transmissible and have caused severe pandemics. HCoV infections primarily affect the respiratory system, leading to symptoms such as dry cough, fever, and breath shortness, which can progress to acute respiratory failure and death. Beyond respiratory effects, increasing evidence links HCoVs to neurological dysfunction. However, distinguishing direct neural complications from preexisting disorders, particularly in the elderly, remains challenging. This study examines the association between HCoVs and neurodegenerative diseases like Alzheimer disease, Parkinson disease, Lewy body dementia, amyotrophic lateral sclerosis, and Creutzfeldt-Jakob disease. It also presents the long-term neurological effects of HCoV infections and their differential impact across age groups and sexes. A key aspect of this study is the investigation of the sequence and structural similarities between amyloidogenic and HCoV spike proteins, which can provide insights into potential neuropathomechanisms.
Collapse
Affiliation(s)
- Thi Hong Van Nguyen
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Francois Ferron
- Aix Marseille Univ, CNRS-Architecture et Fonction des Macromolécules Biologiques (AFMB) UMR7257, Marseille 13288, France
- European Virus Bioinformatics Center, Jena 07743, Germany
| | - Kazuma Murakami
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
4
|
Vo Q, Nacionales DC, McFarland KN, Gorski C, Barrios EL, Park G, Moldawer LL, Casadesus G, Nagpal R, Efron PA, Chakrabarty P. Temporal impact of sepsis on Alzheimer's disease pathology and neuroinflammation. Prog Neurobiol 2025; 250:102775. [PMID: 40324581 DOI: 10.1016/j.pneurobio.2025.102775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 04/22/2025] [Accepted: 04/29/2025] [Indexed: 05/07/2025]
Abstract
Epidemiological evidence has revealed an associative link between sepsis survivorship and increased risk of dementia, particularly Alzheimer's disease (AD). Paradoxically, population studies show females are less susceptible to sepsis but more vulnerable to post-sepsis dementia. Here, we examined the temporal impacts of sepsis in the context of AD by using an AD-amyloidosis model (TgCRND8) and their wild-type littermates and assessing outcomes at 7 days and 3 months post-sepsis in male and female mice. Following 7-days recovery, the microglia and astrocytes in AD-model mice were largely refractile to the systemic immune stimuli. Notably, the female AD-model mice accumulated higher hippocampal amyloid-beta (Aβ) burden and upregulated AD-type transcriptomic signature at this time. On the other hand, male AD-model mice showed no Aβ changes. At this time, the wild-type post-septic males, but not females, displayed robust astrocytosis, with nominal microgliosis. By 3 months post-sepsis, microgliosis was specifically elevated in wild-type females, indicating a prolonged central immune response. At this time, both male and female AD-model mice showed exacerbated Aβ and anxiety indices. Gene network analysis revealed a stronger immune response in females, while the male response was linked to estrogen receptor (ESR) signaling, with ERα protein upregulated in the brains of post-septic AD-model males. Together, our data highlights a sex-dimorphic temporal response in post-sepsis neuroinflammation, with ESR signaling playing a key role in males, while Aβ burden is affected similarly in both males and females.
Collapse
Affiliation(s)
- Quan Vo
- Department of Neuroscience, University of Florida, Gainesville, FL 32610, USA
| | - Dina C Nacionales
- Department of Surgery, University of Florida, Gainesville, FL 32610, USA; Sepsis & Critical Illness Research Center, University of Florida, Gainesville, FL 32610, USA
| | - Karen N McFarland
- Department of Neurology, University of Florida, Gainesville, FL 32610, USA
| | - Carmelina Gorski
- Department of Neuroscience, University of Florida, Gainesville, FL 32610, USA
| | - Evan L Barrios
- Department of Surgery, University of Florida, Gainesville, FL 32610, USA; Sepsis & Critical Illness Research Center, University of Florida, Gainesville, FL 32610, USA
| | - Gwoncheol Park
- Department of Health, Nutrition and Food Sciences, Florida State University, Tallahassee, FL 32306, USA
| | - Lyle L Moldawer
- Department of Surgery, University of Florida, Gainesville, FL 32610, USA; Sepsis & Critical Illness Research Center, University of Florida, Gainesville, FL 32610, USA
| | - Gemma Casadesus
- Department of Pharmacology & Therapeutics, University of Florida, Gainesville, FL 32610, USA; Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL 32610, USA; McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA
| | - Ravinder Nagpal
- Department of Health, Nutrition and Food Sciences, Florida State University, Tallahassee, FL 32306, USA
| | - Philip A Efron
- Department of Surgery, University of Florida, Gainesville, FL 32610, USA; Sepsis & Critical Illness Research Center, University of Florida, Gainesville, FL 32610, USA
| | - Paramita Chakrabarty
- Department of Neuroscience, University of Florida, Gainesville, FL 32610, USA; Sepsis & Critical Illness Research Center, University of Florida, Gainesville, FL 32610, USA; Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL 32610, USA; McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA.
| |
Collapse
|
5
|
Ružičić A, Srdić T, Bobić K, Drakulić D, Veljković F, Todorović A, Đurašević S, Lakić I. Region-specific neuroprotective effects of meldonium pretreatment in two models of sepsis-associated encephalopathy. Front Pharmacol 2025; 16:1588831. [PMID: 40371344 PMCID: PMC12075131 DOI: 10.3389/fphar.2025.1588831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Accepted: 04/14/2025] [Indexed: 05/16/2025] Open
Abstract
Sepsis-associated encephalopathy (SAE) is a common yet poorly understood complication of sepsis, which poses a burden in clinical settings, as its management relies on supportive care without targeted pharmacological interventions. Meldonium is a drug approved for ischemic heart disease but has also gained attention for its neuroprotective effects. In animal models of sepsis, meldonium pretreatment exerted antioxidative, antiapoptotic, and anti-inflammatory effects, but its neurological effects have not been studied in SAE. In the present study, rats were pretreated with meldonium for 4 weeks, before sepsis was induced via a faecal intraperitoneal injection (FIP) or a lipopolysaccharide (LPS) injection. The cerebellum, medulla oblongata, and prefrontal cortex were examined due to their involvement in functions that are often impaired in sepsis. Eight hours post-sepsis induction, markers of brain injury were assessed, including reflexes scores, dry to wet brain mass ratio, prooxidant-antioxidant balance (PAB), advanced oxidation protein products (AOPP), lipid peroxidation (LPO), phosphatidylcholine (PC) to lysophosphatidylcholine (LPC) ratio, HMGB1 and haptoglobin protein expression, and CD73 activity. Meldonium-pretreated FIP-septic rats showed an earlier decline in reflex scores compared to the sepsis-only group, accompanied by a slight brain water accumulation. However, in both models of sepsis, meldonium pretreatment prevented alterations in the PAB, AOPP, and LPO in a region-specific manner. It also preserved the PC/LPC ratio in the prefrontal cortex of FIP-septic rats and in all regions of LPS-septic rats. Haptoglobin protein content was altered only in FIP-septic rats, and preserved by meldonium pretreatment in the cerebellum and medulla oblongata of these rats. Additionally, meldonium pretreatment preserved CD73 activity in the medulla oblongata and prefrontal cortex of FIP-septic rats and in the cerebellum and prefrontal cortex of LPS-septic rats. In conclusion, our study is the first to demonstrate that pretreatment with meldonium, a drug that has shown neuroprotective effects in other invasive models can also provide benefits in SAE, with the extent of protection depending on both the model of sepsis induction and the specific brain region investigated. Our findings support the discussion on the importance of selecting the right sepsis model and studying individual brain regions when investigating SAE and potential therapeutic approaches.
Collapse
Affiliation(s)
- Aleksandra Ružičić
- Department of Animal and Human Physiology, Institute for Physiology and Biochemistry Ivan Đaja, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Tijana Srdić
- Department of Animal and Human Physiology, Institute for Physiology and Biochemistry Ivan Đaja, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Katarina Bobić
- Department of Molecular Biology and Endocrinology, VINČA Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Dunja Drakulić
- Department of Molecular Biology and Endocrinology, VINČA Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Filip Veljković
- Department of Physical Chemistry, VINČA Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Ana Todorović
- Department of Molecular Biology and Endocrinology, VINČA Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Siniša Đurašević
- Department of Animal and Human Physiology, Institute for Physiology and Biochemistry Ivan Đaja, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Iva Lakić
- Department of Animal and Human Physiology, Institute for Physiology and Biochemistry Ivan Đaja, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
6
|
Torres JSS, Tamayo-Giraldo FJ, Bejarano-Zuleta A, Nati-Castillo HA, Quintero DA, Ospina-Mejía MJ, Salazar-Santoliva C, Suárez-Sangucho I, Ortiz-Prado E, Izquierdo-Condoy JS. Sepsis and post-sepsis syndrome: a multisystem challenge requiring comprehensive care and management-a review. Front Med (Lausanne) 2025; 12:1560737. [PMID: 40265185 PMCID: PMC12011779 DOI: 10.3389/fmed.2025.1560737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 03/28/2025] [Indexed: 04/24/2025] Open
Abstract
Sepsis, a medical emergency with high mortality rates, demands comprehensive care spanning from early identification to patient rehabilitation. The sepsis survival chain encompasses early recognition, severity assessment, activation of emergency services, initial antimicrobial therapy, hemodynamic stabilization, and integrated rehabilitation. These interconnected steps are critical to reducing morbidity and mortality. Despite advancements in international guidelines, adherence remains limited, contributing to a significant disease burden. Beyond its acute phase, post-sepsis syndrome (PSS) is characterized by long-term immune dysregulation, chronic inflammation, and metabolic dysfunction, predisposing survivors to recurrent infections, cardiovascular disease, and neurocognitive decline. Mitochondrial dysfunction and epigenetic modifications play a central role in prolonged immunosuppression, impairing adaptive and innate immune responses. Sepsis-induced organ dysfunction impacts multiple systems, including the brain, heart, and kidneys. In the brain, it is associated with neuroinflammation, blood-brain barrier dysfunction, and the accumulation of neurotoxic proteins, leading to acute and chronic cognitive impairment. Myocardial dysfunction involves inflammatory mediators such as TNF-α and IL-6, while sepsis-associated acute kidney injury (SA-AKI) arises from hypoperfusion and inflammation, heightening the risk of progression to chronic kidney disease. Additionally, immune alterations such as neutrophil dysfunction, continuous platelet activation, and suppressed antitumoral responses contribute to increased infection risk and long-term complications. Timely and targeted interventions, including antimicrobial therapy, cytokine modulation, immune restoration, metabolic support, and structured rehabilitation strategies, are pivotal for improving outcomes. However, financial and infrastructural limitations in low-resource settings pose significant barriers to effective sepsis management. Precision medicine, AI-driven early warning systems, and optimized referral networks can enhance early detection and personalized treatments. Promoting public and professional awareness of sepsis, strengthening multidisciplinary post-sepsis care, and integrating long-term follow-up programs are imperative priorities for reducing mortality and improving the quality of life in sepsis survivors.
Collapse
Affiliation(s)
| | | | - Alejandro Bejarano-Zuleta
- Servicio de Cuidado intensivo Adulto, Clínica Versalles, Cali, Colombia
- Interinstitutional Group on Internal Medicine (GIMI 1), Department of Internal Medicine, Universidad Libre, Cali, Colombia
| | - H. A. Nati-Castillo
- Interinstitutional Group on Internal Medicine (GIMI 1), Department of Internal Medicine, Universidad Libre, Cali, Colombia
| | - Diego A. Quintero
- Facultad de Ciencias de la Salud, Universidad del Quindío, Armenia, Colombia
| | - M. J. Ospina-Mejía
- Facultad de Ciencias de la Salud, Universidad del Quindío, Armenia, Colombia
| | | | | | | | | |
Collapse
|
7
|
Sarkar S. Pathological role of RAGE underlying progression of various diseases: its potential as biomarker and therapeutic target. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:3467-3487. [PMID: 39589529 DOI: 10.1007/s00210-024-03595-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 10/31/2024] [Indexed: 11/27/2024]
Abstract
The receptor for advanced glycation end products (RAGE) is a multi-ligand receptor with several structural types, performing a myriad of molecular mechanisms. The RAGE-ligand interactions play important roles in maintaining latent chronic inflammation, and oxidative damage underlying various pathological conditions like metabolic syndrome (MetS), neurodegenerative diseases, stroke, cardiovascular disorders, pulmonary disorders, cancer and infections. RAGE is thoroughly explored in knockout animals and human trials, targeted by small molecule inhibitors, peptides, diet, and natural compounds. But it is yet to be incorporated in the mainstream management of any ailment. This review performs an appraisal of the pathological mechanisms influenced by RAGE to uncover its prospects as a biomarker while also assessing its power to become a promising therapeutic target.
Collapse
Affiliation(s)
- Sinjini Sarkar
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS Deemed-to-be-University, V.L. Mehta Road, Vile Parle (W), Mumbai, 400056, India.
| |
Collapse
|
8
|
Yang H, Li J, Zhang C, Sierra AP, Shen B. Large Language Model-Driven Knowledge Graph Construction in Sepsis Care Using Multicenter Clinical Databases: Development and Usability Study. J Med Internet Res 2025; 27:e65537. [PMID: 40146985 PMCID: PMC11986385 DOI: 10.2196/65537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 10/28/2024] [Accepted: 02/18/2025] [Indexed: 03/29/2025] Open
Abstract
BACKGROUND Sepsis is a complex, life-threatening condition characterized by significant heterogeneity and vast amounts of unstructured data, posing substantial challenges for traditional knowledge graph construction methods. The integration of large language models (LLMs) with real-world data offers a promising avenue to address these challenges and enhance the understanding and management of sepsis. OBJECTIVE This study aims to develop a comprehensive sepsis knowledge graph by leveraging the capabilities of LLMs, specifically GPT-4.0, in conjunction with multicenter clinical databases. The goal is to improve the understanding of sepsis and provide actionable insights for clinical decision-making. We also established a multicenter sepsis database (MSD) to support this effort. METHODS We collected clinical guidelines, public databases, and real-world data from 3 major hospitals in Western China, encompassing 10,544 patients diagnosed with sepsis. Using GPT-4.0, we used advanced prompt engineering techniques for entity recognition and relationship extraction, which facilitated the construction of a nuanced sepsis knowledge graph. RESULTS We established a sepsis database with 10,544 patient records, including 8497 from West China Hospital, 690 from Shangjin Hospital, and 357 from Tianfu Hospital. The sepsis knowledge graph comprises of 1894 nodes and 2021 distinct relationships, encompassing nine entity concepts (diseases, symptoms, biomarkers, imaging examinations, etc) and 8 semantic relationships (complications, recommended medications, laboratory tests, etc). GPT-4.0 demonstrated superior performance in entity recognition and relationship extraction, achieving an F1-score of 76.76 on a sepsis-specific dataset, outperforming other models such as Qwen2 (43.77) and Llama3 (48.39). On the CMeEE dataset, GPT-4.0 achieved an F1-score of 65.42 using few-shot learning, surpassing traditional models such as BERT-CRF (62.11) and Med-BERT (60.66). Building upon this, we compiled a comprehensive sepsis knowledge graph, comprising of 1894 nodes and 2021 distinct relationships. CONCLUSIONS This study represents a pioneering effort in using LLMs, particularly GPT-4.0, to construct a comprehensive sepsis knowledge graph. The innovative application of prompt engineering, combined with the integration of multicenter real-world data, has significantly enhanced the efficiency and accuracy of knowledge graph construction. The resulting knowledge graph provides a robust framework for understanding sepsis, supporting clinical decision-making, and facilitating further research. The success of this approach underscores the potential of LLMs in medical research and sets a new benchmark for future studies in sepsis and other complex medical conditions.
Collapse
Affiliation(s)
- Hao Yang
- Department of Critical Care Medicine, Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, Institutes for Systems Genetics, Sichuan University, West China Hospital, Chengdu, China
- Information Center, Engineering Research Center of Medical Information Technology, Ministry of Education, West China Hospital, Sichuan University, Chengdu, China
- Department of Computer Science and Information Technologies, Iberian Society of Telehealth and Telemedicine, University of A Coruña, A Coruña, Spain
| | - Jiaxi Li
- Department of Clinical Laboratory Medicine, Jinniu Maternity and Child Health Hospital of Chengdu, Chengdu, China
| | - Chi Zhang
- Department of Critical Care Medicine, Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, Institutes for Systems Genetics, Sichuan University, West China Hospital, Chengdu, China
| | - Alejandro Pazos Sierra
- Department of Computer Science and Information Technologies, Iberian Society of Telehealth and Telemedicine, Research Center for Information and Communications Technologies, Biomedical Research Institute of A Coruña, University of A Coruña, A Coruña, Spain
| | - Bairong Shen
- Department of Critical Care Medicine, Joint Laboratory of Artifcial Intelligence for Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, Institutes for Systems Genetics, Sichuan University, West China Hospital, Chengdu, China
| |
Collapse
|
9
|
Hu J, Xie S, Chen T, Liao Y, Qian Z, Zhang L. Glial vascular Unit as a bridge between Blood-Brain Barrier and glymphatic System: Roles in sepsis-associated encephalopathy. Neuroscience 2025; 570:68-71. [PMID: 39984027 DOI: 10.1016/j.neuroscience.2025.02.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/02/2025] [Accepted: 02/17/2025] [Indexed: 02/23/2025]
Abstract
This article underscores the Glial Vascular Unit (GVU) 's possible role in bridging the Blood-Brain Barrier (BBB) and Glymphatic System in Sepsis-associated encephalopathy (SAE). Future studies should prioritize understanding the mechanistic underpinnings of GVU dysfunction in sepsis and explore interventions aimed at modulating BBB permeability, astrocytic function, and glymphatic clearance. Understanding these complex mechanisms is crucial for developing therapeutic strategies aimed at mitigating the neurological impact of sepsis and improving outcomes for patients with SAE.
Collapse
Affiliation(s)
- Jiyun Hu
- Department of Critical Care Medicine, Hunan Provincial Clinical Research Center for Critical Care Medicine, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Shucai Xie
- Department of Critical Care Medicine, Hunan Provincial Clinical Research Center for Critical Care Medicine, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Tao Chen
- Department of Critical Care Medicine, Hunan Provincial Clinical Research Center for Critical Care Medicine, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Ya Liao
- Department of Critical Care Medicine, Hunan Provincial Clinical Research Center for Critical Care Medicine, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Zhaoxin Qian
- Department of Critical Care Medicine, Hunan Provincial Clinical Research Center for Critical Care Medicine, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China.
| | - Lina Zhang
- Department of Critical Care Medicine, Hunan Provincial Clinical Research Center for Critical Care Medicine, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China.
| |
Collapse
|
10
|
Chen Y, Jan J, Yang C, Yen T, Linh TTD, Annavajjula S, Satapathy MK, Tsao S, Hsieh C. Cognitive Sequelae of COVID-19: Mechanistic Insights and Therapeutic Approaches. CNS Neurosci Ther 2025; 31:e70348. [PMID: 40152069 PMCID: PMC11950837 DOI: 10.1111/cns.70348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 03/10/2025] [Accepted: 03/13/2025] [Indexed: 03/29/2025] Open
Abstract
BACKGROUND The COVID-19 pandemic has left an indelible mark on the world, with mounting evidence suggesting that it not only posed acute challenges to global healthcare systems but has also unveiled a complex array of long-term consequences, particularly cognitive impairment (CI). As the persistence of post-COVID-19 neurological syndrome could evolve into the next public health crisis, it is imperative to gain a better understanding of the intricate pathophysiology of CI in COVID-19 patients and viable treatment strategies. METHODS This comprehensive review explores the pathophysiology and management of cognitive impairment across the phases of COVID-19, from acute infection to Long-COVID, by synthesizing findings from clinical, preclinical, and mechanistic studies to identify key contributors to CI, as well as current therapeutic approaches. RESULTS Key mechanisms contributing to CI include persistent neuroinflammation, cerebrovascular complications, direct neuronal injury, activation of the kynurenine pathway, and psychological distress. Both pharmacological interventions, such as anti-inflammatory therapies and agents targeting neuroinflammatory pathways, and non-pharmacological strategies, including cognitive rehabilitation, show promise in addressing these challenges. Although much of the current evidence is derived from preclinical and animal studies, these findings provide foundational insights into potential treatment approaches. CONCLUSION By synthesizing current knowledge, this review highlights the importance of addressing COVID-19-related cognitive impairment and offers actionable insights for mitigation and recovery as the global community continues to grapple with the pandemic's long-term impact.
Collapse
Affiliation(s)
- Yu‐Hao Chen
- Section of Neurosurgery, Department of SurgeryDitmanson Medical Foundation, Chia‐Yi Christian HospitalChia‐Yi CityTaiwan
- Chung‐Jen Junior College of Nursing, Health Sciences and ManagementChia‐Yi CountryTaiwan
- Department of PharmacologySchool of Medicine, College of Medicine, Taipei Medical UniversityTaipeiTaiwan
| | - Jing‐Shiun Jan
- Department of PharmacologySchool of Medicine, College of Medicine, Taipei Medical UniversityTaipeiTaiwan
| | - Chih‐Hao Yang
- Department of PharmacologySchool of Medicine, College of Medicine, Taipei Medical UniversityTaipeiTaiwan
| | - Ting‐Lin Yen
- Department of PharmacologySchool of Medicine, College of Medicine, Taipei Medical UniversityTaipeiTaiwan
- Department of Medical ResearchCathay General HospitalTaipeiTaiwan
| | - Tran Thanh Duy Linh
- Department of PharmacologySchool of Medicine, College of Medicine, Taipei Medical UniversityTaipeiTaiwan
- Family Medicine Training Center, University of Medicine and Pharmacy at Ho Chi Minh CityHo Chi Minh CityVietnam
| | - Saileela Annavajjula
- Department of PharmacologySchool of Medicine, College of Medicine, Taipei Medical UniversityTaipeiTaiwan
| | - Mantosh Kumar Satapathy
- Department of PharmacologySchool of Medicine, College of Medicine, Taipei Medical UniversityTaipeiTaiwan
| | - Shin‐Yi Tsao
- Department of PharmacologySchool of Medicine, College of Medicine, Taipei Medical UniversityTaipeiTaiwan
- Division of Endocrinology and Metabolism, Department of Internal MedicineTaipeiTaiwan
| | - Cheng‐Ying Hsieh
- Department of PharmacologySchool of Medicine, College of Medicine, Taipei Medical UniversityTaipeiTaiwan
| |
Collapse
|
11
|
Hsieh MS, Wu PH, Chiu KC, Liao SH, Chen CS, Hsiao TH, Chen YM, Hu SY, How CK, Chattopadhyay A, Lu TP. Population-specific genetic-risk scores enable improved prediction of mortality within 28 days of sepsis onset: a retrospective Taiwanese cohort study. J Intensive Care 2025; 13:11. [PMID: 40011956 DOI: 10.1186/s40560-025-00783-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 02/13/2025] [Indexed: 02/28/2025] Open
Abstract
BACKGROUND Sepsis is characterized by organ dysfunction as a response to infection and is one of the leading causes of mortality and loss of health. The heterogeneous nature of sepsis, along with ethnic differences in susceptibility, challenges a thorough understanding of its etiology. This study aimed to propose prediction models by leveraging genetic-risk scores and clinical variables that can assist in risk stratification of patients. METHODS A total of 1,403 patients from Taiwan, diagnosed with sepsis, were utilized. Genome-wide survival analysis was conducted, with death within 28 days from sepsis onset, as the primary event to report significantly associated SNPs. A polygenic risk score (PRS-sepsis) was constructed via clumping and thresholding method which was added to clinical-only models to generate better performing prognostic models for identifying high-risk patients. Kaplan-Meier analysis was conducted using PRS-sepsis. RESULTS A total of five single-nucleotide-polymorphisms (SNPs) reached genome-wide significance (p < 5e-8), and 86 SNPs reached suggestive significance (p < 1e-5). The prognostic model using PRS-sepsis showed significantly improved performance with c-index [confidence interval (CI)] of 0.79 [0.62-0.96] and area under receiver operating characteristic curve (AUROC) [CI] of 0.78 [0.75-0.80], in comparison to clinical-only prognostic models (c-index [CI] = 0.63 [0.45- 0.81], AUROC [CI] = 0.61 [0.58-0.64]). The ethnic specificity was established for our proposed models by comparing it with models generated using significant SNPs from prior European studies (c-index [CI] = 0.63 [0.42-0.85], AUROC [CI] = 0.60 [0.58-0.63]). Kaplan-Meier plots showed that patient groups with higher PRSs have inferior survival probability compared to those with lower PRSs. CONCLUSIONS This study proposed genetic-risk models specific for Taiwanese populations that outperformed clinical-only models. Also it established a strong racial-effect on the underlying genetics of sepsis-related mortality. The model can potentially be used in real clinical setting for deciding precise treatment courses for patients at high-risk thereby reducing the possibility of worse outcomes.
Collapse
Affiliation(s)
- Ming-Shun Hsieh
- Department of Emergency Medicine, Taipei Veterans General Hospital, Taoyuan Branch, Taoyuan, 330, Taiwan
- Department of Emergency Medicine, Taipei Veterans General Hospital, Taipei, 11217, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan
- Department of Emergency Medicine, Taichung Veterans General Hospital, Taichung, 40705, Taiwan
| | - Pei-Hsuan Wu
- Institute of Epidemiology and Preventive Medicine, Department of Public Health, National Taiwan University, Taipei, 100, Taiwan
| | - Kuan-Chih Chiu
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei, 100, Taiwan
| | - Shu-Hui Liao
- Department of Pathology and Laboratory, Taipei Veterans General Hospital, Taoyuan Branch, Taoyuan, 330, Taiwan
| | - Che-Shao Chen
- Department of Emergency Medicine, Taipei Veterans General Hospital, Taoyuan Branch, Taoyuan, 330, Taiwan
| | - Tzu-Hung Hsiao
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
- Institute of Genomics and Bioinformatics, National Chung Hsing University, Taichung, Taiwan
- Research Center for Biomedical Science and Engineering, National Tsing Hua University, Hsinchu, Taiwan
- Department of Public Health, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Yi-Ming Chen
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
- Department of Post-Baccalaureate Medicine, National Chung Hsing University, Taichung, Taiwan
- Division of Allergy, Immunology and Rheumatology, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Sung-Yuan Hu
- Department of Emergency Medicine, Taichung Veterans General Hospital, Taichung, 40705, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung, 40201, Taiwan
- Institute of Medicine, Chung Shan Medical University, Taichung, 40201, Taiwan
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, 402, Taiwan
| | - Chorng-Kuang How
- Department of Emergency Medicine, Taipei Veterans General Hospital, Taipei, 11217, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan
| | - Amrita Chattopadhyay
- Institute of Epidemiology and Preventive Medicine, Department of Public Health, National Taiwan University, Taipei, 100, Taiwan.
| | - Tzu-Pin Lu
- Institute of Health Data Analytics and Statistics, Department of Public Health, National Taiwan University, Taipei, 100, Taiwan.
| |
Collapse
|
12
|
Beltran-Velasco AI. Brain Glycogen-Its Metabolic Role in Neuronal Health and Neurological Disorders-An Extensive Narrative Review. Metabolites 2025; 15:128. [PMID: 39997753 PMCID: PMC11857135 DOI: 10.3390/metabo15020128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 01/29/2025] [Accepted: 02/10/2025] [Indexed: 02/26/2025] Open
Abstract
Background: Brain glycogen is imperative for neuronal health, as it supports energy demands and metabolic processes. This review examines the pathways involved in glycogen storage and utilization in the central nervous system, emphasizing their role in both physiology and pathology. It explores how alterations in glycogen metabolism contribute to neurological disorders, including neurodegenerative diseases, epilepsy, and metabolic conditions while highlighting the bidirectional interaction between neurons and glia in maintaining brain homeostasis. Methods: A comprehensive search of articles published between 2015 and 2025 was conducted using the following databases: ScienceDirect, Scopus, Wiley, Web of Science, Medline, and PubMed. The selection of relevant studies was based on their focus on brain glycogen metabolism and its role in neurological conditions, with studies that did not meet the inclusion criteria being excluded. Results: The metabolic processes of brain glycogen are subject to rigorous regulation by astrocyte-neuron interactions, thereby ensuring metabolic homeostasis and energy availability. The dysregulation of glycogen storage and mobilization has been implicated in the development of synaptic dysfunction, excitotoxicity, and neurodegeneration in a variety of disorders. For instance, aberrant glycogen accumulation in diseases such as Lafora disease has been associated with severe neurodegeneration, while impaired glycogen mobilization has been shown to exacerbate energy deficits in Alzheimer's and epilepsy. Conclusions: Targeting brain glycogen metabolism represents a promising approach for therapeutic intervention in neurological disorders. However, the translation of these strategies to human models remains challenging, particularly with regard to the long-term safety and specificity of glycogen-targeted therapies.
Collapse
|
13
|
Zhang X, Zhang W, Zhang H, Liao X. Sepsis subphenotypes: bridging the gaps in sepsis treatment strategies. Front Immunol 2025; 16:1546474. [PMID: 40013154 PMCID: PMC11862915 DOI: 10.3389/fimmu.2025.1546474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 01/20/2025] [Indexed: 02/28/2025] Open
Abstract
Sepsis, a heterogeneous illness produced by a dysregulated host response to infection, remains a severe mortality risk. Recent discoveries in sepsis research have stressed phenotyping as a feasible strategy for tackling heterogeneity and enhancing therapy precision. Sepsis phenotyping has moved from traditional stratifications based on severity and prognosis to dynamic, phenotype-driven therapeutic options. This review covers recent progress in connecting sepsis subgroups to personalized treatments, with a focus on phenotype-based therapeutic predictions and decision-support systems. Despite ongoing challenges, such as standardizing phenotyping frameworks and incorporating findings into clinical practice, this topic has enormous promise. By investigating phenotypic variation in therapy responses, we hope to uncover new biomarkers and phenotype-driven therapeutic solutions, laying the groundwork for more effective therapies and, ultimately improving patient outcomes.
Collapse
Affiliation(s)
- Xue Zhang
- Department of Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Wei Zhang
- Institute of Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Huan Zhang
- Department of Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xuelian Liao
- Department of Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Critical Care Medicine, West China Tianfu Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
14
|
Ates G, Tamer S, Ozkok E, Yorulmaz H, Gundogan GI, Aksu A, Balkis N. Utility of melatonin on brain injury, synaptic transmission, and energy metabolism in rats with sepsis. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:1509-1519. [PMID: 39105798 PMCID: PMC11825594 DOI: 10.1007/s00210-024-03337-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 07/25/2024] [Indexed: 08/07/2024]
Abstract
Melatonin is a powerful endogenous antioxidant hormone. Its healing effects on energy balance and neuronal damage associated with oxidative metabolism disorders have been reported in pathologic conditions. We aimed to determinate the utility of melatonin on neuronal damage, synaptic transmission, and energy balance in the brain tissue of rats with sepsis induced with LPS. Rats was divided into four groups such as control, LPS (20 mg/kg i.p.), melatonin (10 mg/kg i.p. × 3), and LPS + Melatonin (LPS + Mel). After 6 h from the first injection, rats were decapitated, and also tissue and serum samples were taken. Lipid peroxidation and neuron-specific enolase (NSE) levels were determined from the serum in all group. High energy compounds, creatine, and creatine phosphate are measured by HPLC methods from the homogenized tissue. Counts of living neurons are marked with NeuN (neuronal nuclei), degenerated neurons are marked with S100-ß and synaptic vesicles transmission is analyzed with synaptophysin antibodies immunoreactivities. One-way ANOVA and post hoc Tukey tests were used to statistical analysis. In LPS group, AMP, ATP, creatine, and creatine phosphate levels were significantly decreased (p < 0.05), and also ADP levels were significantly increased compared with the other groups (p < 0.01). Living neurons counts were significantly decreased in LPS (p < 0.01), melatonin, and LPS + Melatonin (p < 0.05) groups compared with control. Degenerated neurons counts were increased in LPS group compared with control (p < 0.01) and also decreased in both of melatonin and LPS + Melatonin groups (p < 0.01). Synaptophysin immunoreactivity was decreased in LPS group compared with the other groups (p < 0.05). We observed that melatonin administration prevents neuronal damage, regulates energy metabolism, and protects synaptic vesicle proteins from sepsis-induced reduction.
Collapse
Affiliation(s)
- Gulten Ates
- Department of Physiology, Faculty of Medicine, Istanbul Yeni Yuzyil University, Yilanlı Ayazma St, Cevizlibag, Istanbul, 34010, Turkey.
| | - Sule Tamer
- Department of Physiology, Istanbul Medical Faculty, Istanbul University, Istanbul, Turkey
| | - Elif Ozkok
- Department of Neuroscience, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Hatice Yorulmaz
- Faculty of Health Science, Halic University, Istanbul, Turkey
| | - Gul Ipek Gundogan
- Department of Histology and Embryology, Faculty of Medicine, Biruni University, Istanbul, Turkey
| | - Abdullah Aksu
- Department of Chemical Oceanography, Institute of Marine Sciences and Management, Istanbul University, Istanbul, Turkey
| | - Nuray Balkis
- Department of Chemical Oceanography, Institute of Marine Sciences and Management, Istanbul University, Istanbul, Turkey
| |
Collapse
|
15
|
Sun Y, Pu Z, Zhao H, Deng Y, Zhang J, Li S, Jiang Y, Sun M, Zhu J, Alam A, Ma D, Han R. Vitamin D can mitigate sepsis-associated neurodegeneration by inhibiting exogenous histone-induced pyroptosis and ferroptosis: Implications for brain protection and cognitive preservation. Brain Behav Immun 2025; 124:40-54. [PMID: 39566666 DOI: 10.1016/j.bbi.2024.11.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 11/14/2024] [Accepted: 11/17/2024] [Indexed: 11/22/2024] Open
Abstract
BACKGROUND Sepsis-induced neurodegeneration and cognitive dysfunction remain critical challenges worldwide. Vitamin D was reported to reduce neuronal injury and neurotoxicity and its deficiency was associated with neurocognitive disorders. This study investigates the mechanisms by which vitamin D exerts neuroprotective potential against damage-associated molecular patterns (DAMPs), specifically extracellular histones, in sepsis-related brain dysfunction. METHODS The cultured mouse hippocampal neuronal HT22 cells were exposed to 20 µg/ml exogenous histone for 24 h to induce pyroptosis and ferroptosis in the presence or absence of the active form of vitamin D, calcitriol (1 nM). A cecal ligation and puncture mouse sepsis model was used to evaluate histone release and pyroptosis/ferroptosis biomarkers in the brain together with neurobehavioral performance with or without calcitriol treatment (1 µg/kg, i.p. injection) at 24 h or 1 week after sepsis onset. RESULTS In vitro, histone exposure triggered both pyroptosis and ferroptosis in neuronal cells, which was significantly suppressed by calcitriol treatment with the reduced expression of caspase-1 by 38 %, GSDMD by 30 %, ACSL4 by 33 %, and the increased expression of GPX4 by 35 % (n = 6, P < 0.05). Similarly, in vivo, calcitriol treatment inhibited both neuronal pyroptosis and ferroptosis by reducing expression of pyroptosis marker, GSDMD/NeuN (11.6 ± 1.2 % vs. 19.4 ± 1.1 %) and increasing expression of ferroptosis marker, GPX4/NeuN (21.4 ± 1.7 % vs. 13.5 ± 1.1 %), in the brain of septic mice (n = 6, P < 0.01). In addition, calcitriol increased survival rate (72 % vs. 41 %) and ameliorated cognitive dysfunction of septic mice (n = 8-13, P < 0.05). CONCLUSIONS This study demonstrates that vitamin D exerts a neuroprotective effect against sepsis by attenuating histone-induced pyroptosis and ferroptosis. These findings highlight the potential therapeutic role of vitamin D supplementation in mitigating brain dysfunction associated with sepsis which needs for further investigation.
Collapse
Affiliation(s)
- Yibing Sun
- Department of Anesthesiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, PR China
| | - Zhuonan Pu
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, PR China
| | - Hailin Zhao
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea & Westminster Hospital, London, UK
| | - Yuxuan Deng
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, PR China
| | - Jing Zhang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, PR China
| | - Shiwei Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, PR China
| | - Yingying Jiang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, PR China
| | - Ming Sun
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, PR China
| | - Jinpiao Zhu
- Perioperative and Systems Medicine Laboratory, Department of Anesthesiology and Rehabilitation, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Zhejiang, PR China
| | - Azeem Alam
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea & Westminster Hospital, London, UK
| | - Daqing Ma
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea & Westminster Hospital, London, UK; Perioperative and Systems Medicine Laboratory, Department of Anesthesiology and Rehabilitation, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Zhejiang, PR China.
| | - Ruquan Han
- Department of Anesthesiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, PR China.
| |
Collapse
|
16
|
Zhu D, Wang P, Chen X, Wang K, Wu Y, Zhang M, Qin J. Astrocyte-Derived Interleukin 11 Modulates Astrocyte-Microglia Crosstalk via Nuclear Factor-κB Signaling Pathway in Sepsis-Associated Encephalopathy. RESEARCH (WASHINGTON, D.C.) 2025; 8:0598. [PMID: 39886603 PMCID: PMC11780073 DOI: 10.34133/research.0598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 12/31/2024] [Accepted: 01/08/2025] [Indexed: 02/01/2025]
Abstract
Sepsis-associated encephalopathy (SAE) is a severe and frequent septic complication, characterized by neuronal damage as key pathological features. The astrocyte-microglia crosstalk in the central nervous system (CNS) plays important roles in various neurological diseases. However, how astrocytes interact with microglia to regulate neuronal injury in SAE is poorly defined. In this study, we aim to investigate the molecular basis of the astrocyte-microglia crosstalk underlying SAE pathogenesis and also to explore the new therapeutic strategies targeting this crosstalk in this devastating disease. We established a human astrocyte/microglia coculture system on a microfluidic device, which allows real-time and high-resolution recording of glial responses to inflammatory stimuli. Based on this microfluidic system, we can test the responses of astrocytes and microglia to lipopolysaccharide (LPS) treatment, and identify the molecular cues that mediate the astrocyte-microglia crosstalk underlying the pathological condition. In addition, the SAE mouse model was utilized to determine the state of glial cells and evaluate the therapeutic effect of drugs targeting the astrocyte-microglia crosstalk in vivo. Here, we found that activated astrocytes and microglia exhibited close spatial interaction in the SAE mouse model. Upon LPS exposure for astrocytes, we detected that more microglia migrated to the central astrocyte culture compartment on the microfluidic device, accompanied by M1 polarization and increased cell motility in microglia. Cytokine array analysis revealed that less interleukin 11 (IL11) was secreted by astrocytes following LPS treatment, which further promoted reprogramming of microglia to pro-inflammatory M1 phenotype via the nuclear factor-κB (NF-κB) signaling pathway. Intriguingly, we found that IL11 addition markedly rescued LPS-induced neuronal injuries on the microfluidic system and brain injury in the SAE mouse model. This study defines an unknown crosstalk of astrocyte-microglia mediated by IL11, which contributed to the neuropathogenesis of SAE, and suggested a potential therapeutic value of IL11 in the devastating disease.
Collapse
Affiliation(s)
- Dandan Zhu
- Division of Biotechnology, Dalian Institute of Chemical Physics,
Chinese Academy of Sciences, Dalian 116023, China
- Department of Critical Care Medicine,
The Second Hospital of Dalian Medical University, Dalian 116023, China
| | - Peng Wang
- University of Science and Technology of China, Hefei 230026, China
- Suzhou Institute for Advanced Research,
University of Science and Technology of China, Suzhou 215123, China
| | - Xiyue Chen
- Division of Biotechnology, Dalian Institute of Chemical Physics,
Chinese Academy of Sciences, Dalian 116023, China
| | - Kaituo Wang
- Division of Biotechnology, Dalian Institute of Chemical Physics,
Chinese Academy of Sciences, Dalian 116023, China
| | - Yunsong Wu
- Division of Biotechnology, Dalian Institute of Chemical Physics,
Chinese Academy of Sciences, Dalian 116023, China
| | - Min Zhang
- Division of Biotechnology, Dalian Institute of Chemical Physics,
Chinese Academy of Sciences, Dalian 116023, China
| | - Jianhua Qin
- Division of Biotechnology, Dalian Institute of Chemical Physics,
Chinese Academy of Sciences, Dalian 116023, China
- University of Science and Technology of China, Hefei 230026, China
- Suzhou Institute for Advanced Research,
University of Science and Technology of China, Suzhou 215123, China
- Beijing Institute for Stem Cell and Regenerative Medicine,
Chinese Academy of Sciences, Beijing 100000, China
| |
Collapse
|
17
|
Hosseininasab SSM, Ebrahimi R, Yaghoobpoor S, Kazemi K, Khakpour Y, Hajibeygi R, Mohamadkhani A, Fathi M, Vakili K, Tavasol A, Tutunchian Z, Fazel T, Fathi M, Hajiesmaeili M. Alzheimer's disease and infectious agents: a comprehensive review of pathogenic mechanisms and microRNA roles. Front Neurosci 2025; 18:1513095. [PMID: 39840010 PMCID: PMC11747386 DOI: 10.3389/fnins.2024.1513095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 12/02/2024] [Indexed: 01/23/2025] Open
Abstract
Alzheimer's Disease (AD) is the most prevalent type of dementia and is characterized by the presence of senile plaques and neurofibrillary tangles. There are various theories concerning the causes of AD, but the connection between viral and bacterial infections and their potential role in the pathogenesis of AD has become a fascinating area of research for the field. Various viruses such as Herpes simplex virus 1 (HSV-1), Epstein-Barr virus (EBV), Cytomegalovirus (CMV), influenza viruses, and Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), as well as bacteria such as Chlamydia pneumoniae (CP), Helicobacter pylori (HP), Porphyromonas gingivalis (P. gingivalis), Spirochetes and eukaryotic unicellular parasites (e.g., Toxoplasma gondii), have been linked to AD due to their ability to activate the immune system, induce inflammation and increase oxidative stress, thereby leading to cognitive decline and AD. In addition, microRNAs (miRNAs) might play a crucial role in the pathogenesis mechanisms of these pathogens since they are utilized to target various protein-coding genes, allowing for immune evasion, maintaining latency, and suppressing cellular signaling molecules. Also, they can regulate gene expression in human cells. This article provides an overview of the association between AD and various infectious agents, with a focus on the mechanisms by which these pathogens may be related to the pathogenesis of AD. These findings suggest important areas for further research to be explored in future studies.
Collapse
Affiliation(s)
- Seyyed Sam Mehdi Hosseininasab
- Critical Care Quality Improvement Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Rasoul Ebrahimi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shirin Yaghoobpoor
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kiarash Kazemi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Yaser Khakpour
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ramtin Hajibeygi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ashraf Mohamadkhani
- Liver and Pancreatobiliary Diseases Research Center, Digestive Diseases Research Institute, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Mobina Fathi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kimia Vakili
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arian Tavasol
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zohreh Tutunchian
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Tara Fazel
- Student Research Committee, School of International Campus, Guilan University of Medical Sciences, Tehran, Iran
| | - Mohammad Fathi
- Department of Anesthesiology, Critical Care Quality Improvement Research Center, Shahid Modarres Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammadreza Hajiesmaeili
- Critical Care Quality Improvement Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
18
|
Jiang F, Dong J, Han Y. Apelin-13 Ameliorates Sepsis-induced Brain Injury by Activating Phosphatase and Tensin Homolog-induced Putative Kinase 1/Parkin-mediated Mitophagy and Modulating Nucleotide-binding Oligomerization Domain-like Receptor Pyrin Domain-Containing 3-driven Pyroptosis in Rats. JOURNAL OF PHYSIOLOGICAL INVESTIGATION 2025; 68:31-42. [PMID: 39774002 DOI: 10.4103/ejpi.ejpi-d-24-00086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 11/01/2024] [Indexed: 01/11/2025]
Abstract
ABSTRACT Sepsis is a life-threatening condition that often results in severe brain injury, primarily due to excessive inflammation and mitochondrial dysfunction. This study aims to investigate the neuroprotective effects of Apelin-13, a bioactive peptide, in a rat model of sepsis-induced brain injury (SBI). Specifically, we examined the role of Apelin-13 in regulating mitophagy through the phosphatase and tensin homolog-induced putative kinase 1 (PINK1)/Parkin pathway and its impact on nucleotide-binding oligomerization domain-like receptor pyrin domain-containing 3 (NLRP3) inflammasome-mediated pyroptosis and oxidative stress. A sepsis model was induced in male Sprague-Dawley rats ( n = 110, 200-230 g, 12 weeks old) through cecal ligation and puncture (CLP). The septic rats received Apelin-13 (20 μg/kg, intravenously), either alone or combined with mitochondrial division inhibitor-1 (Mdv-1), a mitophagy inhibitor, before undergoing CLP surgery. Survival rates were assessed over a 72-h period, while the cognitive function was evaluated using the Morris water maze over 5 days. Western blotting and immunohistochemistry were utilized to measure the expression levels of NLRP3, cleaved caspase-1, N-terminal fragment of gasdermin D, PINK1, and Parkin in the brains of the rats. In addition, enzyme-linked immunosorbent assays were conducted to evaluate markers of oxidative stress and inflammatory responses in brain samples. Apelin-13 significantly improved survival rates and cognitive function and mitigated brain injury in septic rats. The treatment enhanced PINK1/Parkin-mediated mitophagy and suppressed NLRP3 inflammasome activation, leading to a reduction in pyroptosis, inflammation, and oxidative stress. Inhibition of mitophagy by Mdv-1 significantly reversed the protective effects of Apelin-13 in septic rats. Our findings suggest that Apelin-13 provides neuroprotection in sepsis by modulating mitophagy and inhibiting pyroptosis. These results highlight the potential of Apelin-13 as a therapeutic strategy for SBI.
Collapse
Affiliation(s)
- Fan Jiang
- Department of Emergency ICU, Jingdezhen Hospital of Traditional Chinese Medicine, Jingdezhen, China
| | - Junxia Dong
- Healthcare Clinic, Qingdao Municipal Hospital, Qingdao, China
| | - Yi Han
- Department of Emergency, Shijiazhuang Traditional Chinese Medicine Hospital, Shijiazhuang, China
| |
Collapse
|
19
|
Dai M, Sun S, Dai Y, Dou X, Yang J, Chen X, Yang D, Lin Y. Maresin-1 Ameliorates Sepsis-Induced Microglial Activation Through Modulation of the P38 MAPK Pathway. Neurochem Res 2024; 50:26. [PMID: 39565476 DOI: 10.1007/s11064-024-04280-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 07/10/2024] [Accepted: 11/05/2024] [Indexed: 11/21/2024]
Abstract
Sepsis is a life-threatening disease characterized by a dysregulated immune response to infection, often leading to neuroinflammation. As a known immunomodulator, Maresin-1 (MaR1) may have potential applications in the treatment of sepsis-induced neuroinflammation, but its effects in this context are unknown. We used a mouse cecum ligation and puncture (CLP)-induced sepsis model and an in vitro lipopolysaccharide (LPS)-induced neuroinflammatory model of BV2 microglia. Expression of microglial cell markers (IBA1, CD11B, CD68, CD86 and CD206) and pro-inflammatory markers (iNOS and COX2) was assessed. The role of MaR1 in regulating the P38 MAPK pathway was explored using the P38 MAPK inhibitor SB203580. In the CLP model, an increased proportion of M1-type microglia was observed, and MaR1 was able to reverse it. However, the combination of SB203580 and MaR1 did not enhance the therapeutic effect compared to SB20580 alone. In vitro experiments, MaR1 inhibited LPS-induced P38 MAPK nuclear translocation and decreased the expression of pro-inflammatory markers such as iNOS and COX2. As with the animal results, no stacking effect could be obtained with the co-administration of SB203580 and MaR1. Our findings suggest that MaR1 attenuates sepsis-induced neuroinflammation mainly by inhibiting phosphorylation of P38 MAPK in microglial cells. This suggests that MaR1 may have a potential therapeutic role in the treatment of sepsis neuroinflammation.
Collapse
Affiliation(s)
- Maosha Dai
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277, Jiefang Avenue, Wuhan, 430022, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277, Jiefang Avenue, Wuhan, 430022, China
- Key Laboratory of Anesthesiology and Resuscitation, Huazhong University of Science and Technology), Ministry of Education, Wuhan, China
| | - Shujun Sun
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277, Jiefang Avenue, Wuhan, 430022, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277, Jiefang Avenue, Wuhan, 430022, China
- Key Laboratory of Anesthesiology and Resuscitation, Huazhong University of Science and Technology), Ministry of Education, Wuhan, China
- Department of Pain, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277, Jiefang Avenue, Wuhan, 430022, China
| | - Yan Dai
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277, Jiefang Avenue, Wuhan, 430022, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277, Jiefang Avenue, Wuhan, 430022, China
- Key Laboratory of Anesthesiology and Resuscitation, Huazhong University of Science and Technology), Ministry of Education, Wuhan, China
| | - Xiaoke Dou
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277, Jiefang Avenue, Wuhan, 430022, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277, Jiefang Avenue, Wuhan, 430022, China
- Key Laboratory of Anesthesiology and Resuscitation, Huazhong University of Science and Technology), Ministry of Education, Wuhan, China
| | - Juexi Yang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277, Jiefang Avenue, Wuhan, 430022, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277, Jiefang Avenue, Wuhan, 430022, China
- Key Laboratory of Anesthesiology and Resuscitation, Huazhong University of Science and Technology), Ministry of Education, Wuhan, China
| | - Xiangdong Chen
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277, Jiefang Avenue, Wuhan, 430022, China.
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277, Jiefang Avenue, Wuhan, 430022, China.
- Key Laboratory of Anesthesiology and Resuscitation, Huazhong University of Science and Technology), Ministry of Education, Wuhan, China.
| | - Dong Yang
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277, Jiefang Avenue, Wuhan, 430022, China.
- Key Laboratory of Anesthesiology and Resuscitation, Huazhong University of Science and Technology), Ministry of Education, Wuhan, China.
- Department of Pain, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277, Jiefang Avenue, Wuhan, 430022, China.
| | - Yun Lin
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277, Jiefang Avenue, Wuhan, 430022, China.
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277, Jiefang Avenue, Wuhan, 430022, China.
- Key Laboratory of Anesthesiology and Resuscitation, Huazhong University of Science and Technology), Ministry of Education, Wuhan, China.
| |
Collapse
|
20
|
Li X, Tang Y, Deng X, Zhou F, Huang X, Bai Z, Liang X, Wang Y, Lyu J. Modified frailty index effectively predicts adverse outcomes in sepsis patients in the intensive care unit. Intensive Crit Care Nurs 2024; 84:103749. [PMID: 38896964 DOI: 10.1016/j.iccn.2024.103749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 06/21/2024]
Abstract
BACKGROUND Frailty and sepsis have a significant impact on patient prognosis. However, research into the relationship between frailty and sepsis in the general adult population remains inadequate. This paper aims to investigate the association between frailty and adverse outcomes in this population. METHOD This retrospective analysis investigated sepsis patients who were initially admitted to the intensive care unit (ICU). The Modified Frailty Index (MFI) was derived by tracking patients' International Classification of Diseases (ICD) codes during their hospitalization. Patients were classified into two groups based on their MFI scores: a frail group (MFI ≥ 3) and a non-frail group (MFI = 0-2). The key outcomes were mortality rates at 90 and 180 days, with secondary outcomes including the incidence of delirium and pressure injury. RESULT Of the 21,338 patients who were recruited for this study (median age about 68 years, 41.8 % female), 5,507 were classified as frail and 15,831 were classified as non-frail. Frail patients were significantly more likely to have delirium (48.9 % vs. 36.1 %, p < 0.001) and pressure injury (60.5 % vs. 51.4 %, p < 0.001). After controlling for confounding variables, the multifactorial Cox proportional hazard regression analyses revealed a significantly elevated mortality rate at 90 days (adjusted HR: 1.58, 95 % CI: 1.24-2.02, p < 0.001) and 180 days (adjusted HR: 1.47, 95 % CI: 1.18, 1.83, p < 0.001) in the frail group compared to their non-frail counterparts. CONCLUSIONS Frailty independently predisposes adult sepsis patients in the ICU to adverse outcomes. Future investigations should concentrate on evaluating frailty and developing targeted interventions to improve patient prognosis. IMPLICATION FOR CLINICAL PRACTICE The MFI provides a simple clinical assessment tool that can be integrated into electronic medical records for immediate calculation. This simplifies the assessment process and plays a key role in predicting patient outcomes.
Collapse
Affiliation(s)
- Xinya Li
- School of Nursing, Jinan University, Guangzhou, China
| | - Yonglan Tang
- School of Nursing, Jinan University, Guangzhou, China
| | - Xingwen Deng
- Department of Medical Information, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Fuling Zhou
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xiaxuan Huang
- Department of Neurology, the First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Zihong Bai
- Department of Neurology, the First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Xin Liang
- School of Nursing, Jinan University, Guangzhou, China
| | - Yu Wang
- School of Nursing, Jinan University, Guangzhou, China; Community Health Service Center of Jinan University, Guangzhou, China; Department of School Clinic, the First Affiliated Hospital of Jinan University, Guangzhou, China.
| | - Jun Lyu
- Department of Clinical Research, the First Affiliated Hospital of Jinan University, Guangzhou, China.
| |
Collapse
|
21
|
Scarlatescu F, Scarlatescu E, Tomescu DR, Bartos D. The Correlation of Hemostatic Parameters with the Development of Early Sepsis-Associated Encephalopathy. A Retrospective Observational Study. J Crit Care Med (Targu Mures) 2024; 10:329-336. [PMID: 39829725 PMCID: PMC11740703 DOI: 10.2478/jccm-2024-0040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 09/28/2024] [Indexed: 01/22/2025] Open
Abstract
Introduction Sepsis-associated encephalopathy (SAE) is one of the most common complications seen both in early and late stages of sepsis, with a wide spectrum of clinical manifestations ranging from mild neurological dysfunction to delirium and coma. The pathophysiology of SAE is still not completely understood, and the diagnosis can be challenging especially in early stages of sepsis and in patients with subtle symptoms. Aim of the study The objective of this study was to assess the coagulation profile in patients with early SAE and to compare the hemostatic parameters between septic patients with and without SAE in the first 24 hours from sepsis diagnosis. Material and methods This retrospective observational study included 280 patients with sepsis in the first 24 hours after sepsis diagnosis. A complete blood count was available in all patients; a complex hemostatic assessment including standard coagulation tests, plasmatic levels of coagulation factors, inhibitors, D-dimers, and Rotation thromboelastometry (ROTEM, Instrumentation Laboratory) was performed in a subgroup of patients. Results Early SAE was diagnosed in 184 patients (65.7%) and was correlated with a higher platelet count, after adjusting for age and leucocyte count. Compared to patients without neurological dysfunction, patients with early SAE presented a more active coagulation system revealed by faster propagation phase, increased clot firmness and elasticity with a higher platelet contribution to clot strength. The initiation of coagulation and clot lysis were not different between the groups. Conclusion In the early stages of sepsis, the development of SAE is correlated with increased systemic clotting activity where platelets seem to have an important role. More research is needed to investigate the role of platelets and the coagulation system in relation to the development of early SAE.
Collapse
Affiliation(s)
| | - Ecaterina Scarlatescu
- Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
- Fundeni Clinical Institute, Bucharest, Romania
| | - Dana Rodica Tomescu
- Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
- Fundeni Clinical Institute, Bucharest, Romania
| | - Daniela Bartos
- Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| |
Collapse
|
22
|
Raturi A, Chandran S. Neonatal Sepsis: Aetiology, Pathophysiology, Diagnostic Advances and Management Strategies. Clin Med Insights Pediatr 2024; 18:11795565241281337. [PMID: 39371316 PMCID: PMC11452898 DOI: 10.1177/11795565241281337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 08/21/2024] [Indexed: 10/08/2024] Open
Abstract
Neonatal sepsis, a bloodstream infection in the first 28 days of life, is a leading cause of morbidity and mortality among infants in both developing and developed countries. Additionally, sepsis is distinguished in neonates by unique pathophysiological and presentational factors relating to its development in immature neonatal immune systems. This review focuses on the current understanding of the mechanics and implications of neonatal sepsis, providing a comprehensive overview of the epidemiology, aetiology, pathophysiology, major risk factors, signs and symptoms and recent consensus on the diagnosis and management of both early-onset and late-onset neonatal sepsis. It also includes a discussion on novel biomarkers and upcoming treatment strategies for the condition as well as the potential of COVID-19 infection to progress to sepsis in infants.
Collapse
Affiliation(s)
- Adi Raturi
- University of Glasgow School of Medicine, Glasgow, UK
| | - Suresh Chandran
- Department of Neonatology, KK Women’s and Children’s Hospital, Singapore, Singapore
- Duke NUS Medical School, Singapore, Singapore
- Lee Kong Chian School of Medicine, Singapore, Singapore
- Yong Loo Lin School of Medicine, Singapore, Singapore
| |
Collapse
|
23
|
Park G, Kadyan S, Hochuli N, Salazar G, Laitano O, Chakrabarty P, Efron PA, Zafar MA, Wilber A, Nagpal R. An Enteric Bacterial Infection Triggers Neuroinflammation and Neurobehavioral Impairment in 3xTg-AD Transgenic Mice. J Infect Dis 2024; 230:S95-S108. [PMID: 39255397 PMCID: PMC11385593 DOI: 10.1093/infdis/jiae165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 03/26/2024] [Indexed: 09/12/2024] Open
Abstract
BACKGROUND Klebsiella pneumoniae is infamous for hospital-acquired infections and sepsis, which have also been linked to Alzheimer disease (AD)-related neuroinflammatory and neurodegenerative impairment. However, its causative and mechanistic role in AD pathology remains unstudied. METHODS A preclinical model of K. pneumoniae enteric infection and colonization is developed in an AD model (3xTg-AD mice) to investigate whether and how K. pneumoniae pathogenesis exacerbates neuropathogenesis via the gut-blood-brain axis. RESULTS K. pneumoniae, particularly under antibiotic-induced dysbiosis, was able to translocate from the gut to the bloodstream by penetrating the gut epithelial barrier. Subsequently, K. pneumoniae infiltrated the brain by breaching the blood-brain barrier. Significant neuroinflammatory phenotype was observed in mice with K. pneumoniae brain infection. K. pneumoniae-infected mice also exhibited impaired neurobehavioral function and elevated total tau levels in the brain. Metagenomic analyses revealed an inverse correlation of K. pneumoniae with gut biome diversity and commensal bacteria, highlighting how antibiotic-induced dysbiosis triggers an enteroseptic "pathobiome" signature implicated in gut-brain perturbations. CONCLUSIONS The findings demonstrate how infectious agents following hospital-acquired infections and consequent antibiotic regimen may induce gut dysbiosis and pathobiome and increase the risk of sepsis, thereby increasing the predisposition to neuroinflammatory and neurobehavioral impairments via breaching the gut-blood-brain barrier.
Collapse
Affiliation(s)
- Gwoncheol Park
- The Gut Biome Lab, Department of Health, Nutrition, and Food Sciences, Florida State University, Tallahassee, Florida, USA
- Department of Health, Nutrition, and Food Sciences, Florida State University, Tallahassee, Florida, USA
| | - Saurabh Kadyan
- The Gut Biome Lab, Department of Health, Nutrition, and Food Sciences, Florida State University, Tallahassee, Florida, USA
- Department of Health, Nutrition, and Food Sciences, Florida State University, Tallahassee, Florida, USA
| | - Nathaniel Hochuli
- The Gut Biome Lab, Department of Health, Nutrition, and Food Sciences, Florida State University, Tallahassee, Florida, USA
- Department of Health, Nutrition, and Food Sciences, Florida State University, Tallahassee, Florida, USA
| | - Gloria Salazar
- Department of Health, Nutrition, and Food Sciences, Florida State University, Tallahassee, Florida, USA
| | - Orlando Laitano
- Department of Applied Physiology and Kinesiology, College of Health and Human Performance, University of Florida, Gainesville, Florida, USA
| | - Paramita Chakrabarty
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Philip A Efron
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida College of Medicine, Gainesville, Florida, USA
| | - M Ammar Zafar
- Department of Microbiology and Immunology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Aaron Wilber
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, Florida, USA
| | - Ravinder Nagpal
- The Gut Biome Lab, Department of Health, Nutrition, and Food Sciences, Florida State University, Tallahassee, Florida, USA
- Department of Health, Nutrition, and Food Sciences, Florida State University, Tallahassee, Florida, USA
| |
Collapse
|
24
|
Jin YY, Liang YP, Wei ZY, Sui WJ, Chen JH. Hippocampal adenosine-to-inosine RNA editing in sepsis: dynamic changes and influencing factors. Brain Commun 2024; 6:fcae260. [PMID: 39135964 PMCID: PMC11317967 DOI: 10.1093/braincomms/fcae260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 06/05/2024] [Accepted: 08/07/2024] [Indexed: 08/15/2024] Open
Abstract
Sepsis-associated encephalopathy is a diffuse brain dysfunction secondary to infection. It has been established that factors such as age and sex can significantly contribute to the development of sepsis-associated encephalopathy. Our recent study implicated a possible link between adenosine-to-inosine RNA editing and sepsis-associated encephalopathy, yet the dynamics of adenosine-to-inosine RNA editing during sepsis-associated encephalopathy and how it could be influenced by factors such as age, sex and antidepressants remain uninvestigated. Our current study analysed and validated transcriptome-wide changes in adenosine-to-inosine RNA editing in the hippocampus of different septic mouse models. Seventy-four sites in 64 genes showed significant differential RNA editing over time in septic mice induced by caecal ligation and perforation. The differential RNA editing might contribute to the RNA expression regulation of the edited genes, with 42.2% differentially expressed. These differentially edited genes, especially those with missense editing, such as glutamate receptor, ionotropic, kainate 2 (Grik2, p.M620V), filamin A (Flna, p.S2331G) and capicua transcriptional repressor (Cic, p.E2270G), were mainly involved in abnormal social behaviour and neurodevelopmental and psychiatric disorders. Significant effects of age and sex were also observed on sepsis-associated RNA editing. Further comparison highlighted 40 common differential RNA editing sites that caecal ligation and perforation-induced and lipopolysaccharide-induced septic mouse models shared. Interestingly, these findings demonstrate temporal dynamics of adenosine-to-inosine RNA editing in the mouse hippocampus during sepsis, add to the understanding of age and sex differences in the disease and underscore the role of the epigenetic process in sepsis-associated encephalopathy.
Collapse
Affiliation(s)
- Yun-Yun Jin
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China
- Joint Primate Research Center for Chronic Diseases, Jiangnan University and Institute of Zoology, Guangdong Academy of Sciences, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China
- Jiangnan University Brain Institute, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Ya-Ping Liang
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China
- Joint Primate Research Center for Chronic Diseases, Jiangnan University and Institute of Zoology, Guangdong Academy of Sciences, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China
- Jiangnan University Brain Institute, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Zhi-Yuan Wei
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China
- Joint Primate Research Center for Chronic Diseases, Jiangnan University and Institute of Zoology, Guangdong Academy of Sciences, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China
- Jiangnan University Brain Institute, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wei-Jia Sui
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China
- Joint Primate Research Center for Chronic Diseases, Jiangnan University and Institute of Zoology, Guangdong Academy of Sciences, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China
- Jiangnan University Brain Institute, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jian-Huan Chen
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China
- Joint Primate Research Center for Chronic Diseases, Jiangnan University and Institute of Zoology, Guangdong Academy of Sciences, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China
- Jiangnan University Brain Institute, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
25
|
Zhong H, Liu T, Shang Y, Huang C, Pan S. Breaking the vicious cycle: Targeting the NLRP3 inflammasome for treating sepsis-associated encephalopathy. Biomed Pharmacother 2024; 177:117042. [PMID: 39004064 DOI: 10.1016/j.biopha.2024.117042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/21/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024] Open
Abstract
Sepsis-associated encephalopathy (SAE) is a collection of clinical syndromes resulting from sepsis and characterized by widespread brain dysfunction. The high prevalence of SAE has adverse outcomes on the clinical management and prognosis of sepsis patients. However, currently, there are no effective treatments to ameliorate SAE. The pathogenesis of SAE is complex, including neuroinflammation and microglia activation, destruction of the blood-brain barrier (BBB), neurotransmitter dysfunction, cerebral metabolism and mitochondrial impairment, accumulation of amyloid beta and tauopathy, complement activation, among others. Furthermore, these mechanisms intertwine with each other, further complicating the comprehension of SAE. Among them, neuroinflammation mediated by hyperactivated microglia is considered the primary etiology of SAE. This instigates a detrimental cycle wherein BBB permeability escalates, facilitating direct damage to the central nervous system (CNS) by various neurotoxic substances. Activation of the NLRP3 inflammasome, situated within microglia, can be triggered by diverse danger signals, leading to cell pyroptosis, apoptosis, and tauopathy. These complex processes intricately regulate the onset and progression of neuroinflammation. In this review, we focus on elucidating the inhibitory regulatory mechanism of the NLRP3 inflammasome in microglia, which ultimately manifests as suppression of the inflammatory response. Our ultimate objective is to augment comprehension regarding the role of microglial NLRP3 inflammasome as we explore potential targets for therapeutic interventions against SAE.
Collapse
Affiliation(s)
- Hui Zhong
- Wuhan Jinyintan Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan Institute of Virology and Wuhan Jinyintan Hospital, Chinese Academy of Sciences, ,; Hubei Clinical Research Center for Infectious Diseases, ,; Wuhan Research Center for Communicable Disease Diagnosis and Treatment, Chinese Academy of Medical Sciences, ,; Joint Laboratory of Infectious Diseases and Health, Wuhan Institute of Virology and Wuhan Jinyintan Hospital, Chinese Academy of Sciences,
| | - Tianshu Liu
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology,
| | - You Shang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology,
| | - Chaolin Huang
- Wuhan Jinyintan Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan Institute of Virology and Wuhan Jinyintan Hospital, Chinese Academy of Sciences, ,; Hubei Clinical Research Center for Infectious Diseases, ,; Wuhan Research Center for Communicable Disease Diagnosis and Treatment, Chinese Academy of Medical Sciences, ,; Joint Laboratory of Infectious Diseases and Health, Wuhan Institute of Virology and Wuhan Jinyintan Hospital, Chinese Academy of Sciences, ,.
| | - Shangwen Pan
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, ,.
| |
Collapse
|
26
|
Liu BT, Li Q, Sun K, Pan CS, Huo XM, Huang P, Yan L, He QH, Zhong LJ, Wang Y, Hu ML, Li AQ, Jiao YQ, Zhang S, Wang XY, Liu J, Han JY. Angong Niuhuang Wan ameliorates LPS-induced cerebrovascular edema by inhibiting blood‒brain barrier leakage and promoting the membrane expression of AQP4. Front Pharmacol 2024; 15:1421635. [PMID: 39148543 PMCID: PMC11324430 DOI: 10.3389/fphar.2024.1421635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 07/15/2024] [Indexed: 08/17/2024] Open
Abstract
Introduction Angong Niuhuang Wan (AGNHW), developed during the Qing dynasty (18th century) for the treatment of consciousness disturbances caused by severe infections, has been used to treat brain edema caused by ischemia‒reperfusion. However, it remains unclear whether AGNHW can ameliorate vascular-origin brain edema caused by lipopolysaccharides (LPS). This study explored the ameliorative effects of AGNHW on LPS-induced cerebrovascular edema in mice, as well as the potential underlying mechanisms. Methods A cerebrovascular edema model was established in male C57BL/6N mice by two intraperitoneal injections of LPS (15 mg/kg), at 0 and 24 h. AGNHW was administered by gavage at doses of 0.2275 g/kg, 0.455 g/kg, and 0.91 g/kg, 2 h after LPS administration. In control mice, normal saline (NS) or AGNHW (0.455 g/kg) was administered by gavage 2 h after intraperitoneal injection of NS. The survival rate, cerebral water content, cerebral venous FITC-dextran leakage, Evans blue extravasation, and expression of vascular endothelial cadherin (VE-cadherin), zonula occludens-1 (ZO-1), claudin-5, phosphorylated caveolin-1 (CAV-1), and cytomembrane and cytoplasmic aquaporin 1 (AQP1) and aquaporin 4 (AQP4) were evaluated. The cerebral tissue phosphoproteome, blood levels of AGNHW metabolites, and the relationships between these blood metabolites and differentially phosphorylated proteins were analyzed. Results AGNHW inhibited the LPS-induced decrease in survival rate, increase in cerebral water content, decrease in VE-Cadherin expression and increase in phosphorylated CAV-1 (P-CAV-1). AGNHW treatment increased the expression of AQP4 on astrocyte membrane after LPS injection. AGNHW also inhibited the LPS-induced increases in the phosphorylation of 21 proteins, including protein kinase C-α (PKC-α) and mitogen-activated protein kinase 1 (MAPK1), in the cerebral tissue. Eleven AGNHW metabolites were detected in the blood. These metabolites might exert therapeutic effects by regulating PKC-α and MAPK1. Conclusion AGNHW can ameliorate cerebrovascular edema caused by LPS. This effect is associated with the inhibition of VE-Cadherin reduction and CAV-1 phosphorylation, as well as the upregulation of AQP4 expression on the astrocyte membrane, following LPS injection.
Collapse
Affiliation(s)
- Bo-Tong Liu
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China
- The Key Discipline for Integration of Chinese and Western Basic Medicine (Microcirculation) of the National Administration of Traditional Chinese Medicine, Beijing, China
- Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China
- Beijing Microvascular Institute of Integration of Chinese and Western Medicine, Beijing, China
| | - Quan Li
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China
- The Key Discipline for Integration of Chinese and Western Basic Medicine (Microcirculation) of the National Administration of Traditional Chinese Medicine, Beijing, China
- Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China
- Beijing Microvascular Institute of Integration of Chinese and Western Medicine, Beijing, China
| | - Kai Sun
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China
- The Key Discipline for Integration of Chinese and Western Basic Medicine (Microcirculation) of the National Administration of Traditional Chinese Medicine, Beijing, China
- Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China
- Beijing Microvascular Institute of Integration of Chinese and Western Medicine, Beijing, China
| | - Chun-Shui Pan
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China
- The Key Discipline for Integration of Chinese and Western Basic Medicine (Microcirculation) of the National Administration of Traditional Chinese Medicine, Beijing, China
- Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China
- Beijing Microvascular Institute of Integration of Chinese and Western Medicine, Beijing, China
| | - Xin-Mei Huo
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China
- The Key Discipline for Integration of Chinese and Western Basic Medicine (Microcirculation) of the National Administration of Traditional Chinese Medicine, Beijing, China
- Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China
- Beijing Microvascular Institute of Integration of Chinese and Western Medicine, Beijing, China
| | - Ping Huang
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China
- The Key Discipline for Integration of Chinese and Western Basic Medicine (Microcirculation) of the National Administration of Traditional Chinese Medicine, Beijing, China
- Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China
- Beijing Microvascular Institute of Integration of Chinese and Western Medicine, Beijing, China
| | - Li Yan
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China
- The Key Discipline for Integration of Chinese and Western Basic Medicine (Microcirculation) of the National Administration of Traditional Chinese Medicine, Beijing, China
- Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China
- Beijing Microvascular Institute of Integration of Chinese and Western Medicine, Beijing, China
| | - Qi-Hua He
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, China
| | - Li-Jun Zhong
- Peking University Medical and Health Analysis Center, Peking University, Beijing, China
| | - Yuan Wang
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, China
| | - Meng-Lei Hu
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China
- The Key Discipline for Integration of Chinese and Western Basic Medicine (Microcirculation) of the National Administration of Traditional Chinese Medicine, Beijing, China
- Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China
- Beijing Microvascular Institute of Integration of Chinese and Western Medicine, Beijing, China
| | - An-Qing Li
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China
- The Key Discipline for Integration of Chinese and Western Basic Medicine (Microcirculation) of the National Administration of Traditional Chinese Medicine, Beijing, China
- Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China
- Beijing Microvascular Institute of Integration of Chinese and Western Medicine, Beijing, China
| | - Ying-Qian Jiao
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China
- The Key Discipline for Integration of Chinese and Western Basic Medicine (Microcirculation) of the National Administration of Traditional Chinese Medicine, Beijing, China
- Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China
- Beijing Microvascular Institute of Integration of Chinese and Western Medicine, Beijing, China
| | - Shuang Zhang
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China
- The Key Discipline for Integration of Chinese and Western Basic Medicine (Microcirculation) of the National Administration of Traditional Chinese Medicine, Beijing, China
- Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China
- Beijing Microvascular Institute of Integration of Chinese and Western Medicine, Beijing, China
| | - Xiao-Yi Wang
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China
- The Key Discipline for Integration of Chinese and Western Basic Medicine (Microcirculation) of the National Administration of Traditional Chinese Medicine, Beijing, China
- Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China
- Beijing Microvascular Institute of Integration of Chinese and Western Medicine, Beijing, China
| | - Jian Liu
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China
- The Key Discipline for Integration of Chinese and Western Basic Medicine (Microcirculation) of the National Administration of Traditional Chinese Medicine, Beijing, China
- Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China
- Beijing Microvascular Institute of Integration of Chinese and Western Medicine, Beijing, China
| | - Jing-Yan Han
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China
- The Key Discipline for Integration of Chinese and Western Basic Medicine (Microcirculation) of the National Administration of Traditional Chinese Medicine, Beijing, China
- Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China
- Beijing Microvascular Institute of Integration of Chinese and Western Medicine, Beijing, China
| |
Collapse
|
27
|
May CN, Ow CP, Pustovit RV, Lane DJ, Jufar AH, Trask-Marino A, Peiris RM, Gunn A, Booth LC, Plummer MP, Bellomo R, Lankadeva YR. Reversal of cerebral ischaemia and hypoxia and of sickness behaviour by megadose sodium ascorbate in ovine Gram-negative sepsis. Br J Anaesth 2024; 133:316-325. [PMID: 38960833 DOI: 10.1016/j.bja.2024.04.058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/08/2024] [Accepted: 04/25/2024] [Indexed: 07/05/2024] Open
Abstract
BACKGROUND The mechanisms by which megadose sodium ascorbate improves clinical status in experimental sepsis is unclear. We determined its effects on cerebral perfusion, oxygenation, and temperature, and plasma levels of inflammatory biomarkers, nitrates, nitrites, and ascorbate in ovine Gram-negative sepsis. METHODS Sepsis was induced by i.v. infusion of live Escherichia coli for 31 h in unanaesthetised Merino ewes instrumented with a combination sensor in the frontal cerebral cortex to measure tissue perfusion, oxygenation, and temperature. Fluid resuscitation at 23 h was followed by i.v. megadose sodium ascorbate (0.5 g kg-1 over 30 min+0.5 g kg-1 h-1 for 6.5 h) or vehicle (n=6 per group). Norepinephrine was titrated to restore mean arterial pressure (MAP) to 70-80 mm Hg. RESULTS At 23 h of sepsis, MAP (mean [sem]: 85 [2] to 64 [2] mm Hg) and plasma ascorbate (27 [2] to 15 [1] μM) decreased (both P<0.001). Cerebral ischaemia (901 [58] to 396 [40] units), hypoxia (34 [1] to 19 [3] mm Hg), and hyperthermia (39.5 [0.1]°C to 40.8 [0.1]°C) (all P<0.001) developed, accompanied by malaise and lethargy. Sodium ascorbate restored cerebral perfusion (703 [121] units], oxygenation (30 [2] mm Hg), temperature (39.2 [0.1]°C) (all PTreatment<0.05), and the behavioural state to normal. Sodium ascorbate slightly reduced the sepsis-induced increase in interleukin-6, returned VEGF-A to normal (both PGroupxTime<0.01), and increased plasma ascorbate (20 000 [300] μM; PGroup<0.001). The effects of sodium ascorbate were not reproduced by equimolar sodium bicarbonate. CONCLUSIONS Megadose sodium ascorbate rapidly reversed sepsis-induced cerebral ischaemia, hypoxia, hyperthermia, and sickness behaviour. These effects were not reproduced by an equimolar sodium load.
Collapse
Affiliation(s)
- Clive N May
- Preclinical Critical Care Unit, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia; Department of Critical Care, Melbourne Medical School, University of Melbourne, Melbourne, VIC, Australia.
| | - Connie P Ow
- Preclinical Critical Care Unit, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - Ruslan V Pustovit
- Preclinical Critical Care Unit, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - Darius J Lane
- Preclinical Critical Care Unit, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia; Melbourne Dementia Research Centre, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - Alemayehu H Jufar
- Preclinical Critical Care Unit, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - Anton Trask-Marino
- Preclinical Critical Care Unit, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - Rachel M Peiris
- Preclinical Critical Care Unit, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - Adam Gunn
- Melbourne Dementia Research Centre, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - Lindsea C Booth
- Preclinical Critical Care Unit, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - Mark P Plummer
- Department of Intensive Care, Royal Melbourne Hospital, Melbourne, VIC, Australia; Department of Intensive Care, Royal Adelaide Hospital, Adelaide, VIC, Australia
| | - Rinaldo Bellomo
- Department of Critical Care, Melbourne Medical School, University of Melbourne, Melbourne, VIC, Australia; Department of Intensive Care, Royal Melbourne Hospital, Melbourne, VIC, Australia; Australian and New Zealand Intensive Care Research Centre, Monash University, Melbourne, VIC, Australia; Department of Intensive Care, Austin Hospital, Melbourne, VIC, Australia
| | - Yugeesh R Lankadeva
- Preclinical Critical Care Unit, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia; Department of Critical Care, Melbourne Medical School, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
28
|
Fu CF, Li JL, Chen JW, Liang H, Zhao WR, He SY, Ma XW, Yang XF, Wang HL. Mechanism and therapeutic potential of traditional Chinese medicine extracts in sepsis. Front Pharmacol 2024; 15:1365639. [PMID: 39021837 PMCID: PMC11251979 DOI: 10.3389/fphar.2024.1365639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 06/03/2024] [Indexed: 07/20/2024] Open
Abstract
Sepsis is a complex syndrome characterized by multi-organ dysfunction, due to the presence of harmful microorganisms in blood which could cause mortality. Complications associated with sepsis involve multiple organ dysfunction. The pathogenesis of sepsis remains intricate, with limited treatment options and high mortality rates. Traditional Chinese medicine (TCM) has consistently demonstrated to have a potential on various disease management. Its complements include reduction of oxidative stress, inhibiting inflammatory pathways, regulating immune responses, and improving microcirculation. Traditional Chinese medicine can mitigate or even treat sepsis in a human system. This review examines progress on the use of TCM extracts for treating sepsis through different pharmacological action and its mechanisms. The potential targets of TCM extracts and active ingredients for the treatment of sepsis and its complications have been elucidated through molecular biology research, network pharmacology prediction, molecular docking analysis, and visualization analysis. Our aim is to provide a theoretical basis and empirical support for utilizing TCM in the treatment of sepsis and its complications while also serving as a reference for future research and development of sepsis drugs.
Collapse
Affiliation(s)
- Chen-Fei Fu
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Jian-Long Li
- Heilongjiang University of Chinese Medicine, Harbin, China
| | | | - Hao Liang
- Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Wen-Rui Zhao
- Hongqi Hospital Affiliated to Mudanjiang Medical University, Mudanjiang, China
| | - Shi-Yu He
- Shenzhen Pingle Orthopedic Hospital, Shenzhen, China
| | - Xiao-Wei Ma
- Hongqi Hospital Affiliated to Mudanjiang Medical University, Mudanjiang, China
| | - Xiao-Fan Yang
- Hongqi Hospital Affiliated to Mudanjiang Medical University, Mudanjiang, China
| | - He-Lin Wang
- Donghuashi Community Health Service Center, Beijing, China
| |
Collapse
|
29
|
Korkmaz FT, Quinton LJ. Extra-pulmonary control of respiratory defense. Cell Immunol 2024; 401-402:104841. [PMID: 38878619 PMCID: PMC12002097 DOI: 10.1016/j.cellimm.2024.104841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 06/06/2024] [Indexed: 07/13/2024]
Abstract
Pneumonia persists as a public health crisis, representing the leading cause of death due to infection. Whether respiratory tract infections progress to pneumonia and its sequelae such as acute respiratory distress syndrome and sepsis depends on numerous underlying conditions related to both the causative agent and host. Regarding the former, pneumonia burden remains staggeringly high, despite the effectiveness of pathogen-targeting strategies such as vaccines and antibiotics. This demands a greater understanding of host features that collaborate to promote immune resistance and tissue resilience in the infected lung. Such features inside the pulmonary compartment have drawn much attention, where major advances have been made related to resident and recruited immune activity. By comparison, extra-pulmonary processes guiding pneumonia susceptibility are relatively elusive, constituting the focus of this review. Here we will highlight examples of when, how, and why tissues outside of the lungs dispatch signals that modulate local immunity in the airspaces. Topics include the liver, gut, bone marrow, brain and more, all of which contribute in direct and indirect ways to pneumonia outcome. When tuned appropriately, it has become clear that these responses can serve protective roles, and this will be considered distinctly from what would otherwise be aberrant responses characteristic of pneumonia-induced organ injury and sepsis. Further advances in this area may reveal novel targetable areas for clinical intervention that are not confined to the intra-pulmonary space.
Collapse
Affiliation(s)
- Filiz T Korkmaz
- Department of Medicine, Division of Immunology and Infectious Disease, UMass Chan Medical School, Worcester, MA 01602, United States.
| | - Lee J Quinton
- Department of Medicine, Division of Immunology and Infectious Disease, UMass Chan Medical School, Worcester, MA 01602, United States
| |
Collapse
|
30
|
Li D, Zhang X, Lu Y, Jing L, Hu H, Song Y, Wu S, Zhu W. Post-sepsis psychiatric disorder: Pathophysiology, prevention, and treatment. Neurol Sci 2024; 45:3093-3105. [PMID: 38381393 PMCID: PMC11176234 DOI: 10.1007/s10072-024-07409-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 02/14/2024] [Indexed: 02/22/2024]
Abstract
Post-sepsis psychiatric disorder, encompassing anxiety, depression, post-traumatic stress disorder and delirium, is a highly prevalent complication secondary to sepsis, resulting in a marked increase in long-term mortality among affected patients. Regrettably, psychiatric impairment associated with sepsis is frequently disregarded by clinicians. This review aims to summarize recent advancements in the understanding of the pathophysiology, prevention, and treatment of post-sepsis mental disorder, including coronavirus disease 2019-related psychiatric impairment. The pathophysiology of post-sepsis psychiatric disorder is complex and is known to involve blood-brain barrier disruption, overactivation of the hypothalamic-pituitary-adrenal axis, neuroinflammation, oxidative stress, neurotransmitter dysfunction, programmed cell death, and impaired neuroplasticity. No unified diagnostic criteria for this disorder are currently available; however, screening scales are often applied in its assessment. Modifiable risk factors for psychiatric impairment post-sepsis include the number of experienced traumatic memories, the length of ICU stay, level of albumin, the use of vasopressors or inotropes, daily activity function after sepsis, and the cumulative dose of dobutamine. To contribute to the prevention of post-sepsis psychiatric disorder, it may be beneficial to implement targeted interventions for these modifiable risk factors. Specific therapies for this condition remain scarce. Nevertheless, non-pharmacological approaches, such as comprehensive nursing care, may provide a promising avenue for treating psychiatric disorder following sepsis. In addition, although several therapeutic drugs have shown preliminary efficacy in animal models, further confirmation of their potential is required through follow-up clinical studies.
Collapse
Affiliation(s)
- Dayong Li
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Intensive Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, Hubei, China
| | - Xujie Zhang
- Department of Intensive Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, Hubei, China
| | - Yuru Lu
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Intensive Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, Hubei, China
| | - Liang Jing
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Intensive Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, Hubei, China
| | - Hongjie Hu
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Intensive Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, Hubei, China
| | - Yaqin Song
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Intensive Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, Hubei, China
| | - Shuhui Wu
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Intensive Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, Hubei, China
| | - Wei Zhu
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Department of Intensive Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, Hubei, China.
| |
Collapse
|
31
|
Wang Y, Ni P, Zhuang D, Zhou P, Zhu F, Yin D, Zhu R, Mei B, Hu S. Early hyperbaric oxygen therapy through regulating the HIF-1α signaling pathway attenuates Neuroinflammation and behavioral deficits in a mouse model of Sepsis-associated encephalopathy. J Neuroimmunol 2024; 391:578367. [PMID: 38735091 DOI: 10.1016/j.jneuroim.2024.578367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/18/2024] [Accepted: 05/05/2024] [Indexed: 05/14/2024]
Abstract
BACKGROUND Sepsis-associated encephalopathy (SAE) presents a significant clinical challenge, associated with increased mortality and healthcare expenses. Hyperbaric oxygen therapy (HBOT), involving inhaling pure or highly concentrated oxygen under pressures exceeding one atmosphere, has demonstrated neuroprotective effects in various conditions. However, the precise mechanisms underlying its protective actions against sepsis-associated brain injury remain unclear. This study aimed to determine whether HBOT protects against SAE and to elucidate the impact of the hypoxia-inducible factor-1α (HIF-1α) signaling pathway on SAE. METHODS The experiment consisted of two parts. In the first part, C57BL/6 J male mice were divided into five groups using a random number table method: control group, sham surgery group, sepsis group, HBOT + sepsis group, and HBOT + sham surgery group. In the subsequent part, C57BL/6 J male mice were divided into four groups: sepsis group, HBOT + sepsis group, HIF-1α + HBOT + sepsis group, and HIF-1α + sepsis group. Sepsis was induced via cecal ligation and puncture (CLP). Hyperbaric oxygen therapy was administered at 1 h and 4 h post-CLP. After 24 h, blood and hippocampal tissue were collected for cytokine measurements. HIF-1α, TNF-α, IL-1β, and IL-6 expression were assessed via ELISA and western blotting. Microglial expression was determined by immunofluorescence. Blood-brain barrier permeability was quantified using Evans Blue. Barnes maze and fear conditioning were conducted 14 days post-CLP to evaluate learning and memory. RESULTS Our findings reveal that CLP-induced hippocampus-dependent cognitive deficits coincided with elevated HIF-1α and increased TNF-α, IL-1β, and IL-6 levels in both blood and hippocampus. Observable activation of microglial cells in the hippocampus and increased blood-brain barrier (BBB) permeability were also evident. HBOT mitigated HIF-1α, TNF-α, IL-1β, and IL-6 levels, attenuated microglial activation in the hippocampus, and significantly improved learning and memory deficits in CLP-exposed mice. Additionally, these outcomes were corroborated by injecting a lentivirus that overexpressed HIF-1α into the hippocampal region of the mice. CONCLUSION HIF-1α escalation induced peripheral and central inflammatory factors, promoting microglial activation, BBB impairment, and cognitive dysfunction. However, HBOT ameliorated these effects by reducing HIF-1α levels in Sepsis-Associated Encephalopathy.
Collapse
Affiliation(s)
- Yan Wang
- School of Nursing, Anhui Medical University, Hefei, Anhui Province, China; The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Ping Ni
- School of Nursing, Anhui Medical University, Hefei, Anhui Province, China
| | - Dongmei Zhuang
- School of Nursing, Anhui Medical University, Hefei, Anhui Province, China
| | - Peng Zhou
- The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Furong Zhu
- School of Nursing, Anhui Medical University, Hefei, Anhui Province, China
| | - Danqiao Yin
- The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Rui Zhu
- The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Bin Mei
- Department of Anesthesiology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China.
| | - Shaohua Hu
- Department of Nursing, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China.
| |
Collapse
|
32
|
Irastorza-Valera L, Soria-Gómez E, Benitez JM, Montáns FJ, Saucedo-Mora L. Review of the Brain's Behaviour after Injury and Disease for Its Application in an Agent-Based Model (ABM). Biomimetics (Basel) 2024; 9:362. [PMID: 38921242 PMCID: PMC11202129 DOI: 10.3390/biomimetics9060362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/28/2024] [Accepted: 06/05/2024] [Indexed: 06/27/2024] Open
Abstract
The brain is the most complex organ in the human body and, as such, its study entails great challenges (methodological, theoretical, etc.). Nonetheless, there is a remarkable amount of studies about the consequences of pathological conditions on its development and functioning. This bibliographic review aims to cover mostly findings related to changes in the physical distribution of neurons and their connections-the connectome-both structural and functional, as well as their modelling approaches. It does not intend to offer an extensive description of all conditions affecting the brain; rather, it presents the most common ones. Thus, here, we highlight the need for accurate brain modelling that can subsequently be used to understand brain function and be applied to diagnose, track, and simulate treatments for the most prevalent pathologies affecting the brain.
Collapse
Affiliation(s)
- Luis Irastorza-Valera
- E.T.S. de Ingeniería Aeronáutica y del Espacio, Universidad Politécnica de Madrid, Pza. Cardenal Cisneros 3, 28040 Madrid, Spain; (L.I.-V.); (J.M.B.); (F.J.M.)
- PIMM Laboratory, ENSAM–Arts et Métiers ParisTech, 151 Bd de l’Hôpital, 75013 Paris, France
| | - Edgar Soria-Gómez
- Achúcarro Basque Center for Neuroscience, Barrio Sarriena, s/n, 48940 Leioa, Spain;
- Ikerbasque, Basque Foundation for Science, Plaza Euskadi, 5, 48009 Bilbao, Spain
- Department of Neurosciences, University of the Basque Country UPV/EHU, Barrio Sarriena, s/n, 48940 Leioa, Spain
| | - José María Benitez
- E.T.S. de Ingeniería Aeronáutica y del Espacio, Universidad Politécnica de Madrid, Pza. Cardenal Cisneros 3, 28040 Madrid, Spain; (L.I.-V.); (J.M.B.); (F.J.M.)
| | - Francisco J. Montáns
- E.T.S. de Ingeniería Aeronáutica y del Espacio, Universidad Politécnica de Madrid, Pza. Cardenal Cisneros 3, 28040 Madrid, Spain; (L.I.-V.); (J.M.B.); (F.J.M.)
- Department of Mechanical and Aerospace Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Luis Saucedo-Mora
- E.T.S. de Ingeniería Aeronáutica y del Espacio, Universidad Politécnica de Madrid, Pza. Cardenal Cisneros 3, 28040 Madrid, Spain; (L.I.-V.); (J.M.B.); (F.J.M.)
- Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PJ, UK
- Department of Nuclear Science and Engineering, Massachusetts Institute of Technology (MIT), 77 Massachusetts Ave, Cambridge, MA 02139, USA
| |
Collapse
|
33
|
He J, Qin W, Jiang S, Lin Y, Lin Y, Yang R, Xu M, Liu Q. Oxymatrine attenuates sepsis-induced inflammation and organ injury via inhibition of HMGB1/RAGE/NF-κB signaling pathway. Drug Dev Res 2024; 85:e22219. [PMID: 38845211 DOI: 10.1002/ddr.22219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 02/21/2024] [Accepted: 05/20/2024] [Indexed: 06/15/2024]
Abstract
Sepsis is a life-threatening organ dysfunction that endangers patient lives and is caused by an imbalance in the host defense against infection. Sepsis continues to be a significant cause of morbidity and mortality in critically sick patients. Oxymatrine (OMT), a quinolizidine alkaloid derived from the traditional Chinese herb Sophora flavescens Aiton, has been shown to have anti-inflammatory effects on a number of inflammatory illnesses according to research. In this study, we aimed to evaluate the therapeutic effects of OMT on sepsis and explore the underlying mechanisms. We differentiated THP-1 cells into THP-1 macrophages and studied the anti-inflammatory mechanism of OMT in a lipopolysaccharide (LPS)-induced THP-1 macrophage sepsis model. Activation of the receptor for advanced glycation end products (RAGE), as well as NF-κB, was assessed by Western blot analysis and immunofluorescence staining. ELISA was used to measure the levels of inflammatory factors. We found that OMT significantly inhibited HMGB1-mediated RAGE/NF-κB activation and downstream inflammatory cytokine production in response to LPS stimulation. Finally, an in vivo experiment was performed on septic mice to further study the effect of OMT on injured organs. The animal experiments showed that OMT significantly inhibited HMGB1-mediated RAGE/NF-κB activation, protected against the inflammatory response and organ injury induced by CLP, and prolonged the survival rate of septic mice. Herein, we provide evidence that OMT exerts a significant therapeutic effect on sepsis by inhibiting the HMGB1/RAGE/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Junbing He
- Jieyang Medical Research Center, Jieyang People's Hospital, Jieyang, China
| | - Wanbing Qin
- Jieyang Medical Research Center, Jieyang People's Hospital, Jieyang, China
| | - Shusong Jiang
- Jieyang Medical Research Center, Jieyang People's Hospital, Jieyang, China
| | - Yao Lin
- Jieyang Medical Research Center, Jieyang People's Hospital, Jieyang, China
| | - Yingying Lin
- Jieyang Medical Research Center, Jieyang People's Hospital, Jieyang, China
| | - Ruoxuan Yang
- Jieyang Medical Research Center, Jieyang People's Hospital, Jieyang, China
| | - Mingwei Xu
- Jieyang Medical Research Center, Jieyang People's Hospital, Jieyang, China
| | - Qinghua Liu
- Jieyang Medical Research Center, Jieyang People's Hospital, Jieyang, China
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- NHC Key Laboratory of Clinical Nephrology (Sun Yat-Sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, China
| |
Collapse
|
34
|
Tao H, Shen L. RESEARCH PROGRESS OF CURCUMIN IN THE TREATMENT OF SEPSIS. Shock 2024; 61:805-816. [PMID: 38664750 DOI: 10.1097/shk.0000000000002342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
ABSTRACT Sepsis is a life-threatening organ dysfunction caused by an unregulated host response to infection. It is an important clinical problem in acute and critical care. In recent years, with the increasing research on the epidemiology, and pathogenesis, diagnostic and therapeutic strategies of sepsis, great progress has been made in clinical practice, but there is still a lack of specific and effective treatment plans. Curcuma longa , a leafy plant of the ginger family, which is a common and safe compound, has multiple pharmacological actions, including, but not limited to, scavenging of oxygen free radicals, attenuation of inflammatory response, and antifibrotic effects. Great progress has been made in the study of sepsis-associated rodent models and in vitro cellular models. However, the evidence of curcumin in the clinical management practice of sepsis is still insufficient; hence, it is very important to systematically summarize the study of curcumin and sepsis pathogenesis.
Collapse
|
35
|
Dobson GP, Letson HL, Morris JL. Revolution in sepsis: a symptoms-based to a systems-based approach? J Biomed Sci 2024; 31:57. [PMID: 38811967 PMCID: PMC11138085 DOI: 10.1186/s12929-024-01043-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 05/17/2024] [Indexed: 05/31/2024] Open
Abstract
Severe infection and sepsis are medical emergencies. High morbidity and mortality are linked to CNS dysfunction, excessive inflammation, immune compromise, coagulopathy and multiple organ dysfunction. Males appear to have a higher risk of mortality than females. Currently, there are few or no effective drug therapies to protect the brain, maintain the blood brain barrier, resolve excessive inflammation and reduce secondary injury in other vital organs. We propose a major reason for lack of progress is a consequence of the treat-as-you-go, single-nodal target approach, rather than a more integrated, systems-based approach. A new revolution is required to better understand how the body responds to an infection, identify new markers to detect its progression and discover new system-acting drugs to treat it. In this review, we present a brief history of sepsis followed by its pathophysiology from a systems' perspective and future opportunities. We argue that targeting the body's early immune-driven CNS-response may improve patient outcomes. If the barrage of PAMPs and DAMPs can be reduced early, we propose the multiple CNS-organ circuits (or axes) will be preserved and secondary injury will be reduced. We have been developing a systems-based, small-volume, fluid therapy comprising adenosine, lidocaine and magnesium (ALM) to treat sepsis and endotoxemia. Our early studies indicate that ALM therapy shifts the CNS from sympathetic to parasympathetic dominance, maintains cardiovascular-endothelial glycocalyx coupling, reduces inflammation, corrects coagulopathy, and maintains tissue O2 supply. Future research will investigate the potential translation to humans.
Collapse
Affiliation(s)
- Geoffrey P Dobson
- Heart, Sepsis and Trauma Research Laboratory, College of Medicine and Dentistry, James Cook University, 1 James Cook Drive, Townsville, QLD, 4811, Australia.
| | - Hayley L Letson
- Heart, Sepsis and Trauma Research Laboratory, College of Medicine and Dentistry, James Cook University, 1 James Cook Drive, Townsville, QLD, 4811, Australia
| | - Jodie L Morris
- Heart, Sepsis and Trauma Research Laboratory, College of Medicine and Dentistry, James Cook University, 1 James Cook Drive, Townsville, QLD, 4811, Australia
| |
Collapse
|
36
|
Tan H, Liang D, Lu N, Zhang J, Zhang S, Tan G. Mangiferin attenuates lipopolysaccharide-induced neuronal injuries in primary cultured hippocampal neurons. Aging (Albany NY) 2024; 16:8645-8656. [PMID: 38752883 PMCID: PMC11164489 DOI: 10.18632/aging.205830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 04/10/2024] [Indexed: 06/06/2024]
Abstract
Mangiferin, a naturally occurring potent glucosylxanthone, is mainly isolated from the Mangifera indica plant and shows potential pharmacological properties, including anti-bacterial, anti-inflammation, and antioxidant in sepsis-induced lung and kidney injury. However, there was a puzzle as to whether mangiferin had a protective effect on sepsis-associated encephalopathy. To answer this question, we established an in vitro cell model of sepsis-associated encephalopathy and investigated the neuroprotective effects of mangiferin in primary cultured hippocampal neurons challenged with lipopolysaccharide (LPS). Neurons treated with 20 μmol/L or 40 μmol/L mangiferin for 48 h can significantly reverse cell injuries induced by LPS treatment, including improved cell viability, decreased inflammatory cytokines secretion, relief of microtubule-associated light chain 3 expression levels and several autophagosomes, as well as attenuated cell apoptosis. Furthermore, mangiferin eliminated pathogenic proteins and elevated neuroprotective factors at both the mRNA and protein levels, showing strong neuroprotective effects of mangiferin, including anti-inflammatory, anti-autophagy, and anti-apoptotic effects on neurons in vitro.
Collapse
Affiliation(s)
- Hongling Tan
- Department of Emergency Intensive Care Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Dan Liang
- Department of Emergency Intensive Care Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Na Lu
- Department of Emergency Intensive Care Medicine, The First Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Junli Zhang
- Department of Emergency Intensive Care Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Shiyan Zhang
- Department of Medical, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Guojun Tan
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
| |
Collapse
|
37
|
Sun J, Fleishman JS, Liu X, Wang H, Huo L. Targeting novel regulated cell death:Ferroptosis, pyroptosis, and autophagy in sepsis-associated encephalopathy. Biomed Pharmacother 2024; 174:116453. [PMID: 38513593 DOI: 10.1016/j.biopha.2024.116453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/04/2024] [Accepted: 03/15/2024] [Indexed: 03/23/2024] Open
Abstract
Sepsis-associated encephalopathy (SAE), a common neurological complication of sepsis, is a heterogenous complex clinical syndrome caused by the dysfunctional response of a host to infection. This dysfunctional response leads to excess mortality and morbidity worldwide. Despite clinical relevance with high incidence, there is a lack of understanding for its both its acute/chronic pathogenesis and therapeutic management. A better understanding of the molecular mechanisms behind SAE may provide tools to better enhance therapeutic efficacy. Mounting evidence indicates that some types of non-apoptotic regulated cell death (RCD), such as ferroptosis, pyroptosis, and autophagy, contribute to SAE. Targeting these types of RCD may provide meaningful targets for future treatments against SAE. This review summarizes the core mechanism by which non-apoptotic RCD leads to the pathogenesis of SAE. We focus on the emerging types of therapeutic compounds that can inhibit RCD and delineate their beneficial pharmacological effects against SAE. Within this review we suggest that pharmacological inhibition of non-apoptotic RCD may serve as a potential therapeutic strategy against SAE.
Collapse
Affiliation(s)
- Jingjing Sun
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 11004, China
| | - Joshua S Fleishman
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Xueyan Liu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 11004, China
| | - Hongquan Wang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, 300060, China
| | - Liang Huo
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 11004, China.
| |
Collapse
|
38
|
Gupta L, Subair MN, Munjal J, Singh B, Bansal V, Gupta V, Jain R. Beyond survival: understanding post-intensive care syndrome. Acute Crit Care 2024; 39:226-233. [PMID: 38863353 PMCID: PMC11167423 DOI: 10.4266/acc.2023.01158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/03/2023] [Accepted: 11/08/2023] [Indexed: 06/13/2024] Open
Abstract
Post-intensive care syndrome (PICS) refers to persistent or new onset physical, mental, and neurocognitive complications that can occur following a stay in the intensive care unit. PICS encompasses muscle weakness; neuropathy; cognitive deficits including memory, executive, and attention impairments; post-traumatic stress disorder; and other mood disorders. PICS can last long after hospital admission and can cause significant physical, emotional, and financial stress for patients and their families. Several modifiable risk factors, such as duration of sepsis, delirium, and mechanical ventilation, are associated with PICS. However, due to limited awareness about PICS, these factors are often overlooked. The objective of this paper is to highlight the pathophysiology, clinical features, diagnostic methods, and available preventive and treatment options for PICS.
Collapse
Affiliation(s)
| | | | - Jaskaran Munjal
- Shri Ram Murti Smarak Institute of Medical Sciences, Bareilly, India
| | - Bhupinder Singh
- Howard County Center for Lung and Sleep Medicine, Columbia, MD, USA
| | - Vasu Bansal
- Department of Internal Medicine, Dayanand Medical College and Hospital, Ludhiana, India
| | - Vasu Gupta
- Department of Internal Medicine, Cleveland Clinic Akron General, Akron, OH, USA
| | - Rohit Jain
- Penn State Milton S. Hershey Medical Center, Hershey, PA, USA
| |
Collapse
|
39
|
Zhou Z, Yang Y, Wei Y, Xie Y. Remimazolam Attenuates LPS-Derived Cognitive Dysfunction via Subdiaphragmatic Vagus Nerve Target α7nAChR-Mediated Nrf2/HO-1 Signal Pathway. Neurochem Res 2024; 49:1306-1321. [PMID: 38472553 PMCID: PMC10991060 DOI: 10.1007/s11064-024-04115-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/12/2023] [Accepted: 01/25/2024] [Indexed: 03/14/2024]
Abstract
Sepsis-induced neuroinflammation is significantly associated with sepsis-related brain dysfunction. Remimazolam is a novel ultra-short-acting benzodiazepine anesthetic with multiple organ protective effects. However, it is unknown whether remimazolam can ameliorate LPS-induced brain impairment. In this study, Lipopolysaccharide (5 mg/kg, LPS) severely impaired Sprague-Dawley rats spatial learning ability, memory, and cognitive function. However, remimazolam treatment showed a protective effect on LPS-induced cognitive dysfunction. Remimazolam partly reversed LPS-induced splenomegaly, decreased serum cytokine expression, suppressed hippocampal M1 microglial activation, and mitigated oxidative stress injury and neuroinflammation. Electroacupuncture (EA) or PNU282987 treatment improved LPS-induced cognitive dysfunction and also significantly inhibited neuroinflammation and systemic inflammation. However, MLA, ML385, or subdiaphragmatic vagus nerve (SDV) treatment abolished the protective effects of remimazolam. Further mechanistic studies showed that remimazolam induces protective effects by activating subdiaphragmatic vagus nerve target α7nAChR-mediated Nrf2/HO-1 signaling pathway. These results demonstrate that remimazolam can up-regulate α7nAChR, Cyto-Nrf2, HO-1, and cognitive-related (CREB, BDNF, PSD95) protein expressions, suppress M1 microglia, ameliorate neuroinflammation or systemic inflammation, and reverse cognitive dysfunction. Therefore, this study provides insight into a new therapeutic target for the treatment of sepsis-induced cerebral dysfunction.
Collapse
Affiliation(s)
- Zhan Zhou
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Ying Yang
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Yi Wei
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Yubo Xie
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China.
- Guangxi Key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China.
| |
Collapse
|
40
|
Sokołowska EM, Wityk P, Szypenbejl J, Petrosjan R, Raczak-Gutknecht J, Waszczuk-Jankowska M, Dudzik D, Markuszewski M, Siemiński M. Clinical image of sepsis-associated encephalopathy midst E. coli urosepsis: Emergency department database study. Heliyon 2024; 10:e29530. [PMID: 38655312 PMCID: PMC11036046 DOI: 10.1016/j.heliyon.2024.e29530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 04/08/2024] [Accepted: 04/09/2024] [Indexed: 04/26/2024] Open
Abstract
Background Sepsis is a life-threatening organ dysfunction caused by a dysregulated host response to infection, which, if untreated, leads to multi-organ failure. One of the severe possible complications is sepsis associated encephalopathy (SAE), a neurological dysfunction occurring secondary to a severe inflammatory response. It manifests as acute cognitive dysfunction and sudden-onset dysfunctions in mental state. Uropathogenic Escherichia coli is the most common pathogen causing bacteremia, responsible for 80% of uncomplicated outpatient urinary tract infections and 40% of nosocomial infections. The study aimed to assess the difference in the severity and the course of urosepsis caused by E. coli in patients with and without septic encephalopathy. Materials and methods This study presents a retrospective analysis of the population of urosepsis patients admitted to the Emergency Department between September 2019 and June 2022. Inflammatory parameters, urinalysis and blood cultures were performed, along with a clinical evaluation of sepsis severity and encephalopathy. The patients were then stratified into SAE and non-SAE groups based on neurological manifestations and compared according to the collected data. Results A total of 199 septic patients were included in the study. E. coli-induced urosepsis was diagnosed in 84 patients. In this group, SAE was diagnosed in 31 (36.9%) patients (33.3% in males, 40.5% females). Patients with SAE were found to be hypotensive (p < 0,005), with a higher respiratory rate (p < 0,017) resulting in a higher mortality rate (p = 0.002) compared to non-SAE septic patients. The APACHE II score was an independent risk factor associated with a higher mortality rate. Biochemical parameters between the groups did not show any statistical importance related to the severity of urosepsis. Conclusions The severity of urosepsis and risk of SAE development increase according to the clinical condition and underlying comorbidities. Urosepsis patients with SAE are at a higher risk of death. Patients should undergo more careful screening for the presence of SAE on admission, and more intense monitoring and treatment should be provided for patients with SAE. This study indicates the need to develop projects aiming to further investigate neuroprotective interventions in sepsis.
Collapse
Affiliation(s)
| | - Paweł Wityk
- Department of Biopharmaceutics and Pharmacodynamics, Medical University of Gdańsk, Gdańsk, Poland
| | - Jacek Szypenbejl
- Department of Emergency Medicine, Medical University of Gdansk, Poland
| | - Rafael Petrosjan
- Emergency Department, University Clinical Center, Gdansk, Poland
| | - Joanna Raczak-Gutknecht
- Department of Biopharmaceutics and Pharmacodynamics, Medical University of Gdańsk, Gdańsk, Poland
| | | | - Danuta Dudzik
- Department of Biopharmaceutics and Pharmacodynamics, Medical University of Gdańsk, Gdańsk, Poland
| | - Michał Markuszewski
- Department of Biopharmaceutics and Pharmacodynamics, Medical University of Gdańsk, Gdańsk, Poland
| | - Mariusz Siemiński
- Department of Emergency Medicine, Medical University of Gdansk, Poland
| |
Collapse
|
41
|
Chen SH, Chang TY, Wang YL, Lee EP, Lin JJ, Hsiao YW, Jaing TH, Yang CP, Hung IJ. Outcome of Tocilizumab Treatment in Febrile Neutropenic Children with Severe Sepsis/Septic Shock in a Single-Center Retrospective Case Series. Cancers (Basel) 2024; 16:1512. [PMID: 38672594 PMCID: PMC11048420 DOI: 10.3390/cancers16081512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/08/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
PURPOSE To assess the efficacy of an IL-6 blockade with tocilizumab on treatment outcome of severe sepsis/septic shock in children with febrile neutropenia. METHODS We performed a retrospective study of febrile neutropenic patients younger than 18 years old who developed severe sepsis/septic shock at a single medical center between November 2022 and October 2023. RESULTS Seven patients with febrile neutropenia complicated with severe sepsis/septic shock were identified. Four of seven patients received tocilizumab in addition to standard of care. The median IL-6 level before administration of tocilizumab was 14,147 pg/mL (range: 672-30,509 pg/mL). All four patients successfully recovered from severe sepsis/septic shock. Three of seven patients received standard of care without tocilizumab. IL-6 levels were checked intwo2 patients, with a median of 1514.5 (range: 838-2191). Only one of three (33%) patients without tocilizumab therapy made a full recovery from severe sepsis/septic shock. The mortality rate was higher in patients without tocilizumab therapy compared to patients with tocilizumab therapy (67% vs. 0%). CONCLUSIONS Administration of tocilizumab reduced mortality of severe sepsis/septic shock in children with febrile neutropenia. However, it warrants confirmation with a larger number of patients and a longer follow-up.
Collapse
Affiliation(s)
- Shih-Hsiang Chen
- Division of Pediatric Hematology-Oncology, College of Medicine, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan 333, Taiwan; (T.-Y.C.); (Y.-L.W.); (T.-H.J.); (C.-P.Y.); (I.-J.H.)
| | - Tsung-Yen Chang
- Division of Pediatric Hematology-Oncology, College of Medicine, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan 333, Taiwan; (T.-Y.C.); (Y.-L.W.); (T.-H.J.); (C.-P.Y.); (I.-J.H.)
| | - Yi-Lun Wang
- Division of Pediatric Hematology-Oncology, College of Medicine, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan 333, Taiwan; (T.-Y.C.); (Y.-L.W.); (T.-H.J.); (C.-P.Y.); (I.-J.H.)
| | - En-Pei Lee
- Division of Pediatric Critical Care Medicine, College of Medicine, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan 333, Taiwan; (E.-P.L.); (J.-J.L.)
| | - Jainn-Jim Lin
- Division of Pediatric Critical Care Medicine, College of Medicine, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan 333, Taiwan; (E.-P.L.); (J.-J.L.)
| | - Yi-Wen Hsiao
- Department of Nursing, College of Medicine, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan 333, Taiwan;
| | - Tang-Her Jaing
- Division of Pediatric Hematology-Oncology, College of Medicine, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan 333, Taiwan; (T.-Y.C.); (Y.-L.W.); (T.-H.J.); (C.-P.Y.); (I.-J.H.)
| | - Chao-Ping Yang
- Division of Pediatric Hematology-Oncology, College of Medicine, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan 333, Taiwan; (T.-Y.C.); (Y.-L.W.); (T.-H.J.); (C.-P.Y.); (I.-J.H.)
| | - Iou-Jih Hung
- Division of Pediatric Hematology-Oncology, College of Medicine, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan 333, Taiwan; (T.-Y.C.); (Y.-L.W.); (T.-H.J.); (C.-P.Y.); (I.-J.H.)
| |
Collapse
|
42
|
Zhu Q, Wan L, Huang H, Liao Z. IL-1β, the first piece to the puzzle of sepsis-related cognitive impairment? Front Neurosci 2024; 18:1370406. [PMID: 38665289 PMCID: PMC11043581 DOI: 10.3389/fnins.2024.1370406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 04/02/2024] [Indexed: 04/28/2024] Open
Abstract
Sepsis is a leading cause of death resulting from an uncontrolled inflammatory response to an infectious agent. Multiple organ injuries, including brain injuries, are common in sepsis. The underlying mechanism of sepsis-associated encephalopathy (SAE), which is associated with neuroinflammation, is not yet fully understood. Recent studies suggest that the release of interleukin-1β (IL-1β) following activation of microglial cells plays a crucial role in the development of long-lasting neuroinflammation after the initial sepsis episode. This review provides a comprehensive analysis of the recent literature on the molecular signaling pathways involved in microglial cell activation and interleukin-1β release. It also explores the physiological and pathophysiological role of IL-1β in cognitive function, with a particular focus on its contribution to long-lasting neuroinflammation after sepsis. The findings from this review may assist healthcare providers in developing novel interventions against SAE.
Collapse
Affiliation(s)
- Qing Zhu
- Department of Anesthesiology, Key Laboratory of Birth Defects and Related Diseases of Women and Children, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Li Wan
- Department of Medical Genetics/Prenatal Diagnostic Center Nursing and Key Laboratory of Birth Defects and Related Diseases of Women and Children, West China Second University Hospital of Sichuan University, Chengdu, China
| | - Han Huang
- Department of Anesthesiology, Key Laboratory of Birth Defects and Related Diseases of Women and Children, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Zhimin Liao
- Department of Anesthesiology, Key Laboratory of Birth Defects and Related Diseases of Women and Children, West China Second University Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
43
|
Zhang J, Li W, Li Y, Ma M, Shang K. Evaluating the efficacy of standardized pressure ulcer management protocols in the prevention of pressure injuries among patients undergoing neurosurgical procedures. Int Wound J 2024; 21:e14879. [PMID: 38581264 PMCID: PMC10998278 DOI: 10.1111/iwj.14879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/24/2024] [Accepted: 03/25/2024] [Indexed: 04/08/2024] Open
Abstract
Pressure injuries are a significant concern for patients undergoing neurosurgical procedures due to prolonged immobility and the complexity of care. This study evaluates the efficacy of standardized pressure ulcer management protocols in preventing pressure injuries and enhancing patient care in a neurosurgical context. A comprehensive retrospective analysis was conducted at a single institution from December 2020 to December 2023, comparing 50 patients who received standardized pressure ulcer management (intervention group) with 50 patients who received conventional care (control group). The study assessed the incidence of pressure ulcers, patient comfort levels using the Kolcaba Comfort Scale and sleep quality using the Richards-Campbell Sleep Questionnaire (RCSQ). Statistical analysis was performed using SPSS software, version 27.0, applying t-tests and chi-square tests as appropriate. The intervention group exhibited a significantly lower incidence of pressure ulcers at all measured time points post-surgery compared to the control group. Patient comfort levels in the intervention group were consistently higher across psychological, environmental, physiological and socio-cultural domains. Sleep quality metrics, including sleep depth, latency to sleep onset and overall sleep quality, were significantly improved in the intervention group. The implementation of standardized pressure ulcer management protocols in neurosurgical care significantly reduces the incidence of pressure injuries, enhances patient comfort and improves sleep quality. These findings highlight the importance of adopting structured care protocols to improve postoperative outcomes and patient well-being in neurosurgical settings.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Central Operating Room, Henan Provincial Key Medicine Laboratory of Nursing, Henan Provincial People's HospitalZhengzhou University People's HospitalZhengzhouChina
| | - Wenxia Li
- Department of Central Operating Room, Henan Provincial Key Medicine Laboratory of Nursing, Henan Provincial People's HospitalZhengzhou University People's HospitalZhengzhouChina
| | - Yanyan Li
- Department of Central Operating Room, Henan Provincial Key Medicine Laboratory of Nursing, Henan Provincial People's HospitalZhengzhou University People's HospitalZhengzhouChina
| | - Man Ma
- Department of Central Operating Room, Henan Provincial Key Medicine Laboratory of Nursing, Henan Provincial People's HospitalZhengzhou University People's HospitalZhengzhouChina
| | - Kun Shang
- Department of Central Operating Room, Henan Provincial Key Medicine Laboratory of Nursing, Henan Provincial People's HospitalZhengzhou University People's HospitalZhengzhouChina
| |
Collapse
|
44
|
LI Z, WANG X, Luis U, Ayman Y, BAI Y, XU X, LIU Q. Complementary and alternative medicine on cognitive defects and neuroinflammation after sepsis. J TRADIT CHIN MED 2024; 44:408-416. [PMID: 38504548 PMCID: PMC10927414 DOI: 10.19852/j.cnki.jtcm.20240203.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 04/27/2023] [Indexed: 03/21/2024]
Abstract
Sepsis-associated encephalopathy (SAE) is a common manifestation of sepsis, ranging from mild confusion and delirium to severe cognitive impairment and deep coma. SAE is associated with higher mortality and long-term outcomes, particularly substantial declines in cognitive function. The mechanisms of SAE probably include neuroinflammation that is mediated by systemic inflammation and ischemic lesions in the brain, a disrupted blood-brain barrier, oxidative stress, neurotransmitter dysfunction, and severe microglial activation. Increasing evidence suggests that complementary and alternative medicine, especially Traditional Chinese Medicine (TCM), is favorable in alleviating cognitive decline after sepsis. Here, we summarized the studies of traditional herbal remedies, TCM formulas and acupuncture therapy in animal models of neurological dysfunctions after sepsis in recent decades and reviewed their potential mechanisms.
Collapse
Affiliation(s)
- Zhenxuan LI
- 1 Department of Infectious Diseases, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, China
- 2 Beijing Key Laboratory of Basic Research with Traditional Chinese Medicine on Infectious Diseases, Beijing 100010, China
- 3 Infection immunity laboratory, Beijing Institute of Traditional Chinese Medicine, Beijing 100010, China
- 4 Clinical College of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China
| | - Xuerui WANG
- 1 Department of Infectious Diseases, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, China
- 2 Beijing Key Laboratory of Basic Research with Traditional Chinese Medicine on Infectious Diseases, Beijing 100010, China
- 3 Infection immunity laboratory, Beijing Institute of Traditional Chinese Medicine, Beijing 100010, China
- 4 Clinical College of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China
| | - Ulloa Luis
- 5 Center for Perioperative Organ Protection, Department of Anesthesiology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Youssef Ayman
- 5 Center for Perioperative Organ Protection, Department of Anesthesiology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Yunjing BAI
- 1 Department of Infectious Diseases, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, China
- 2 Beijing Key Laboratory of Basic Research with Traditional Chinese Medicine on Infectious Diseases, Beijing 100010, China
- 3 Infection immunity laboratory, Beijing Institute of Traditional Chinese Medicine, Beijing 100010, China
- 4 Clinical College of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China
| | - Xiaolong XU
- 1 Department of Infectious Diseases, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, China
- 2 Beijing Key Laboratory of Basic Research with Traditional Chinese Medicine on Infectious Diseases, Beijing 100010, China
- 3 Infection immunity laboratory, Beijing Institute of Traditional Chinese Medicine, Beijing 100010, China
- 4 Clinical College of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China
| | - Qingquan LIU
- 1 Department of Infectious Diseases, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, China
- 2 Beijing Key Laboratory of Basic Research with Traditional Chinese Medicine on Infectious Diseases, Beijing 100010, China
- 3 Infection immunity laboratory, Beijing Institute of Traditional Chinese Medicine, Beijing 100010, China
- 4 Clinical College of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China
| |
Collapse
|
45
|
Fan TH, Premraj L, Roberts J, Lydston M, Robba C, Hager D, Suarez JI, Battaglini D, Cho SM. In-Hospital Neurologic Complications, Neuromonitoring, and Long-Term Neurologic Outcomes in Patients With Sepsis: A Systematic Review and Meta-Analysis. Crit Care Med 2024; 52:452-463. [PMID: 37921513 PMCID: PMC10923122 DOI: 10.1097/ccm.0000000000006096] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
OBJECTIVES Although delirium is well described in patients with sepsis, there are limited data on other neurologic complications. We aimed to systematically review the prevalence, neuromonitoring tools, and neurocognitive outcomes in sepsis patients with neurologic complications. DATA SOURCES MEDLINE and six other databases (Embase, Web of Science, Cochrane CENTRAL, and ClinicalTrials.gov ) were searched through January 2023. STUDY SELECTION Studies of adult patients with sepsis reported neurologic complications, use of neuromonitoring tools, neuropathology, and cognitive outcomes. DATA EXTRACTION Two independent reviewers extracted the data. Random-effect meta-analyses were used to pool data. DATA SYNTHESIS Seventy-four studies ( n = 146,855) were included. Neurologic complications were reported in 38 studies ( n = 142,193) including septic encephalopathy (36%, 95% CI, 27-46%; I 2 = 99%), ischemic stroke (5%, 95% CI, 2.1-11.5; I 2 = 99%), intracranial hemorrhage (2%, 95% CI, 1.0-4.4%; I 2 = 96%), seizures (1%, 95% CI, 0.2-7%; I 2 = 96%), posterior reversible encephalopathy syndrome (9%), and hypoxic-ischemic brain injury (7%). In the meta-regression analysis, pulmonary infection, sepsis induced by a gram-positive organism, higher sequential organ failure assessment score, acute physiology and chronic health evaluation II score at admission, and longer ICU length of stay were associated with higher risk of developing septic encephalopathy. Three studies ( n = 159) reported postmortem neuropathological findings, acute brain injury was noted in 47% of patients. Twenty-six studies ( n = 1,358) reported the use of neuromonitoring tools, electroencephalogram was the most used tool for seizure detection. Transcranial Doppler and near infrared spectroscopy were used for monitoring cerebral hemodynamic changes to detect early ischemia. Six studies reported cognitive outcomes ( n = 415) up to 12 months postdischarge and cognitive impairment (≥ one domain) was reported in 30%. CONCLUSIONS In-hospital neurologic complications are common in patients with sepsis. However, the mechanism and timing of those sepsis-associated complications are poorly understood and there are limited data on standardized neuromonitoring in this population.
Collapse
Affiliation(s)
- Tracey H Fan
- Department of Neurology, Neurocritical Care Division, Massachusetts General Hospital, Boston, MA
- Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Lavienraj Premraj
- Griffith University School of Medicine, Gold Coast, Queensland, Australia
- Critical Care Research Group, The Prince Charles Hospital, Chermside, Queensland, Australia
| | - Jacob Roberts
- School of Medicine, Johns Hopkins University, Baltimore, MD
| | - Melissa Lydston
- Treadwell Virtual Library, Massachusetts General Hospital, Boston, MA
| | - Chiara Robba
- IRCCS Ospedale Policlinico San Martino, Genova, Italy
- Dipartimento di Scienze Chirurgiche e Diagnostiche Integrate, Università degli Studi di Genova, Genova, Italy
| | - David Hager
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University, Baltimore, MD
| | - Jose I. Suarez
- Divisions of Neuroscience Critical Care and Cardiac Surgery, Departments of Neurology, Surgery, Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, MD
| | - Denise Battaglini
- IRCCS Ospedale Policlinico San Martino, Genova, Italy
- Dipartimento di Scienze Chirurgiche e Diagnostiche Integrate, Università degli Studi di Genova, Genova, Italy
| | - Sung-Min Cho
- Divisions of Neuroscience Critical Care and Cardiac Surgery, Departments of Neurology, Surgery, Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, MD
| |
Collapse
|
46
|
Renema P, Pittet JF, Brandon AP, Leal SM, Gu S, Promer G, Hackney A, Braswell P, Pickering A, Rafield G, Voth S, Balczon R, Lin MT, Morrow KA, Bell J, Audia JP, Alvarez D, Stevens T, Wagener BM. Tau and Aβ42 in lavage fluid of pneumonia patients are associated with end-organ dysfunction: A prospective exploratory study. PLoS One 2024; 19:e0298816. [PMID: 38394060 PMCID: PMC10889620 DOI: 10.1371/journal.pone.0298816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 01/30/2024] [Indexed: 02/25/2024] Open
Abstract
BACKGROUND Bacterial pneumonia and sepsis are both common causes of end-organ dysfunction, especially in immunocompromised and critically ill patients. Pre-clinical data demonstrate that bacterial pneumonia and sepsis elicit the production of cytotoxic tau and amyloids from pulmonary endothelial cells, which cause lung and brain injury in naïve animal subjects, independent of the primary infection. The contribution of infection-elicited cytotoxic tau and amyloids to end-organ dysfunction has not been examined in the clinical setting. We hypothesized that cytotoxic tau and amyloids are present in the bronchoalveolar lavage fluid of critically ill patients with bacterial pneumonia and that these tau/amyloids are associated with end-organ dysfunction. METHODS Bacterial culture-positive and culture-negative mechanically ventilated patients were recruited into a prospective, exploratory observational study. Levels of tau and Aβ42 in, and cytotoxicity of, the bronchoalveolar lavage fluid were measured. Cytotoxic tau and amyloid concentrations were examined in comparison with patient clinical characteristics, including measures of end-organ dysfunction. RESULTS Tau and Aβ42 were increased in culture-positive patients (n = 49) compared to culture-negative patients (n = 50), independent of the causative bacterial organism. The mean age of patients was 52.1 ± 16.72 years old in the culture-positive group and 52.78 ± 18.18 years old in the culture-negative group. Males comprised 65.3% of the culture-positive group and 56% of the culture-negative group. Caucasian culture-positive patients had increased tau, boiled tau, and Aβ42 compared to both Caucasian and minority culture-negative patients. The increase in cytotoxins was most evident in males of all ages, and their presence was associated with end-organ dysfunction. CONCLUSIONS Bacterial infection promotes the generation of cytotoxic tau and Aβ42 within the lung, and these cytotoxins contribute to end-organ dysfunction among critically ill patients. This work illuminates an unappreciated mechanism of injury in critical illness.
Collapse
Affiliation(s)
- Phoibe Renema
- Center for Lung Biology, University of South Alabama, Mobile, Alabama, United States of America
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, Alabama, United States of America
- Department of Biomedical Sciences, University of South Alabama, Mobile, Alabama, United States of America
| | - Jean-Francois Pittet
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Angela P. Brandon
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Sixto M. Leal
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Steven Gu
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Grace Promer
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Andrew Hackney
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Phillip Braswell
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Andrew Pickering
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Grace Rafield
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Sarah Voth
- Department of Cell Biology and Physiology, Edward Via College of Osteopathic Medicine, Monroe, Louisiana, United States of America
| | - Ron Balczon
- Center for Lung Biology, University of South Alabama, Mobile, Alabama, United States of America
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, Alabama, United States of America
| | - Mike T. Lin
- Center for Lung Biology, University of South Alabama, Mobile, Alabama, United States of America
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, Alabama, United States of America
| | - K. Adam Morrow
- Department of Cell Biology and Physiology, Edward Via College of Osteopathic Medicine, Monroe, Louisiana, United States of America
| | - Jessica Bell
- Center for Lung Biology, University of South Alabama, Mobile, Alabama, United States of America
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, Alabama, United States of America
| | - Jonathon P. Audia
- Center for Lung Biology, University of South Alabama, Mobile, Alabama, United States of America
- Department of Microbiology and Immunology, University of South Alabama, Mobile, Alabama, United States of America
| | - Diego Alvarez
- Department of Physiology and Pharmacology, Sam Houston State University, Conroe, Texas, United States of America
| | - Troy Stevens
- Center for Lung Biology, University of South Alabama, Mobile, Alabama, United States of America
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, Alabama, United States of America
- Department of Internal Medicine, University of South Alabama, Mobile, Alabama, United States of America
| | - Brant M. Wagener
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| |
Collapse
|
47
|
Geleta D, Abebe G, Workneh N, Ararso M, Tilahun T, Beyene G. Hierarchical Predictors of Mortality in Neonatal Sepsis at Jimma Medical Center, Ethiopia: A Case-Control Study. J Multidiscip Healthc 2024; 17:541-555. [PMID: 38348209 PMCID: PMC10860391 DOI: 10.2147/jmdh.s446303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/26/2024] [Indexed: 02/15/2024] Open
Abstract
Background Neonatal sepsis made the neonatal period the most perilous time for child survival, and it continued to cause preventable mortalities worldwide. These mortalities stem from the interaction of several factors that have not been sufficiently studied and, in some cases, remain overlooked. Thus, the study aims to investigate the predictors of mortality that arise from the interaction of these factors and quantitatively determine their etiologic fraction. Methods A case-control study with hierarchical data input was conducted at Jimma Medical Center (JMC) in Oromia, Ethiopia, spanning from May 2022 to July 2023. It employed logistic regression to calculate adjusted odds ratios (AORs) and their corresponding 95% confidence intervals (CI) at a significance level of p ≤ 0.05. The model adjusted odds ratios (ORs) for variables within each level and farther levels and presented an etiologic fraction (EF), indicating the proportion of neonatal mortality attributable to specific factors. Results The analysis of 67 cases and 268 controls unveiled significant predictors of mortality in sepsis that emerged from distal, intermediate, and proximal levels. In the final model, thus, rural residence [AOR 3.1; 95% CI (1.5, 6.3), p ≤ 0.01], prolonged labor [AOR 4.5; 95% CI (2.2, 9.3), p ≤ 0.01], prematurity [AOR 3.9; 95% CI (1.9, 7.9), P ≤ 0.0], gram-negative bacteremia [AOR 3.8; 95% CI (1.9, 7.6); P ≤ 0.01], convulsion [AOR 3.2; 95% CI (1.6, 6.4); P ≤ 0.03], low birth weight [AOR 2.7; 95% CI (1.3, 5.4); P≤0.01], and delayed breastfeeding [AOR 2.5; 95% CI (1.2, 4.9); P ≤ 0.01] attributed a variable percentage of mortality. Conclusion Factors emerging and interacting at distal (residence), intermediate (prolonged labor), and proximal (prematurity, birth weight, convulsion, bacterial etiology, and feeding) levels influence neonatal mortality in sepsis at JMC. Therefore, concurrently improving rural family characteristics, managing labor duration, strengthening diagnostic stewardship, and promoting essential newborn care can actively prevent and reduce these mortalities.
Collapse
Affiliation(s)
- Daniel Geleta
- School of Medical Laboratory Sciences, Faculty of Health Sciences, Jimma University, Jimma, Oromia, Ethiopia
| | - Gemeda Abebe
- School of Medical Laboratory Sciences, Faculty of Health Sciences, Jimma University, Jimma, Oromia, Ethiopia
- Mycobacteriology Research Center, Institute of Health, Jimma University, Jimma, Oromia, Ethiopia
| | - Netsanet Workneh
- Department of Pediatrics and Child Health, Faculty of Medicine, Jimma University, Jimma, Oromia, Ethiopia
| | - Mekdes Ararso
- Department of Pediatrics and Child Health, Faculty of Medicine, Jimma University, Jimma, Oromia, Ethiopia
| | - Tsion Tilahun
- Department of Pediatrics and Child Health, Faculty of Medicine, Jimma University, Jimma, Oromia, Ethiopia
| | - Getenet Beyene
- School of Medical Laboratory Sciences, Faculty of Health Sciences, Jimma University, Jimma, Oromia, Ethiopia
| |
Collapse
|
48
|
Chen J, Chen JS, Li S, Zhang F, Deng J, Zeng LH, Tan J. Amyloid Precursor Protein: A Regulatory Hub in Alzheimer's Disease. Aging Dis 2024; 15:201-225. [PMID: 37307834 PMCID: PMC10796103 DOI: 10.14336/ad.2023.0308] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 03/08/2023] [Indexed: 06/14/2023] Open
Abstract
Decades of research have demonstrated an incontrovertible role of amyloid-β (Aβ) in the etiology of Alzheimer's disease (AD). However, the overemphasis on the pathological impacts of Aβ may obscure the role of its metabolic precursor, amyloid precursor protein (APP), as a significant hub in the occurrence and progression of AD. The complicated enzymatic processing, ubiquitous receptor-like properties, and abundant expression of APP in the brain, as well as its close links with systemic metabolism, mitochondrial function and neuroinflammation, imply that APP plays multifaceted roles in AD. In this review, we briefly describe the evolutionarily conserved biological characteristics of APP, including its structure, functions and enzymatic processing. We also discuss the possible involvement of APP and its enzymatic metabolites in AD, both detrimental and beneficial. Finally, we describe pharmacological agents or genetic approaches with the capability to reduce APP expression or inhibit its cellular internalization, which can ameliorate multiple aspects of AD pathologies and halt disease progression. These approaches provide a basis for further drug development to combat this terrible disease.
Collapse
Affiliation(s)
- Jiang Chen
- Key Laboratory of Endemic and Ethnic Diseases, Laboratory of Molecular Biology, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, China.
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, China.
| | - Jun-Sheng Chen
- Key Laboratory of Endemic and Ethnic Diseases, Laboratory of Molecular Biology, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, China.
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, China.
| | - Song Li
- The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China.
| | - Fengning Zhang
- Key Laboratory of Endemic and Ethnic Diseases, Laboratory of Molecular Biology, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, China.
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, China.
| | - Jie Deng
- Key Laboratory of Endemic and Ethnic Diseases, Laboratory of Molecular Biology, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, China.
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, China.
| | - Ling-Hui Zeng
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang, China
| | - Jun Tan
- Key Laboratory of Endemic and Ethnic Diseases, Laboratory of Molecular Biology, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, China.
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, China.
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang, China
| |
Collapse
|
49
|
Olney KC, de Ávila C, Todd KT, Tallant LE, Barnett JH, Gibson KA, Hota P, Pandiane AS, Durgun PC, Serhan M, Wang R, Lind ML, Forzani E, Gades NM, Thomas LF, Fryer JD. Commonly disrupted pathways in brain and kidney in a pig model of systemic endotoxemia. J Neuroinflammation 2024; 21:9. [PMID: 38178237 PMCID: PMC10765757 DOI: 10.1186/s12974-023-03002-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 12/19/2023] [Indexed: 01/06/2024] Open
Abstract
Sepsis is a life-threatening state that arises due to a hyperactive inflammatory response stimulated by infection and rarely other insults (e.g., non-infections tissue injury). Although changes in several proinflammatory cytokines and signals are documented in humans and small animal models, far less is known about responses within affected tissues of large animal models. We sought to understand the changes that occur during the initial stages of inflammation by administering intravenous lipopolysaccharide (LPS) to Yorkshire pigs and assessing transcriptomic alterations in the brain, kidney, and whole blood. Robust transcriptional alterations were found in the brain, with upregulated responses enriched in inflammatory pathways and downregulated responses enriched in tight junction and blood vessel functions. Comparison of the inflammatory response in the pig brain to a similar mouse model demonstrated some overlapping changes but also numerous differences, including oppositely dysregulated genes between species. Substantial changes also occurred in the kidneys following LPS with several enriched upregulated pathways (cytokines, lipids, unfolded protein response, etc.) and downregulated gene sets (tube morphogenesis, glomerulus development, GTPase signal transduction, etc.). We also found significant dysregulation of genes in whole blood that fell into several gene ontology categories (cytokines, cell cycle, neutrophil degranulation, etc.). We observed a strong correlation between the brain and kidney responses, with significantly shared upregulated pathways (cytokine signaling, cell death, VEGFA pathways) and downregulated pathways (vasculature and RAC1 GTPases). In summary, we have identified a core set of shared genes and pathways in a pig model of systemic inflammation.
Collapse
Affiliation(s)
- Kimberly C Olney
- Department of Neuroscience, Mayo Clinic, 13400 East Shea Boulevard, Scottsdale, AZ, USA
| | - Camila de Ávila
- Department of Neuroscience, Mayo Clinic, 13400 East Shea Boulevard, Scottsdale, AZ, USA
| | - Kennedi T Todd
- Department of Neuroscience, Mayo Clinic, 13400 East Shea Boulevard, Scottsdale, AZ, USA
| | - Lauren E Tallant
- Department of Neuroscience, Mayo Clinic, 13400 East Shea Boulevard, Scottsdale, AZ, USA
- Mayo Clinic Graduate School of Biomedical Sciences, Scottsdale, AZ, USA
| | - J Hudson Barnett
- Department of Neuroscience, Mayo Clinic, 13400 East Shea Boulevard, Scottsdale, AZ, USA
- Mayo Clinic Graduate School of Biomedical Sciences, Scottsdale, AZ, USA
- MD/PhD Training Program, Mayo Clinic, Scottsdale, AZ, USA
| | - Katelin A Gibson
- Department of Neuroscience, Mayo Clinic, 13400 East Shea Boulevard, Scottsdale, AZ, USA
| | - Piyush Hota
- Division of Nephrology & Hypertension, Mayo Clinic, 13400 East Shea Boulevard, Scottsdale, AZ, USA
| | | | - Pinar Cay Durgun
- School of Engineering of Matter, Transport & Energy, Arizona State University, Tempe, AZ, USA
| | - Michael Serhan
- School of Engineering of Matter, Transport & Energy, Arizona State University, Tempe, AZ, USA
| | - Ran Wang
- School of Engineering of Matter, Transport & Energy, Arizona State University, Tempe, AZ, USA
| | - Mary Laura Lind
- School of Engineering of Matter, Transport & Energy, Arizona State University, Tempe, AZ, USA
| | - Erica Forzani
- School of Engineering of Matter, Transport & Energy, Arizona State University, Tempe, AZ, USA
| | - Naomi M Gades
- Department of Comparative Medicine, Mayo Clinic, Scottsdale, AZ, USA
| | - Leslie F Thomas
- Division of Nephrology & Hypertension, Mayo Clinic, 13400 East Shea Boulevard, Scottsdale, AZ, USA.
| | - John D Fryer
- Department of Neuroscience, Mayo Clinic, 13400 East Shea Boulevard, Scottsdale, AZ, USA.
- Mayo Clinic Graduate School of Biomedical Sciences, Scottsdale, AZ, USA.
- MD/PhD Training Program, Mayo Clinic, Scottsdale, AZ, USA.
| |
Collapse
|
50
|
Tuckey AN, Brandon A, Eslaamizaad Y, Siddiqui W, Nawaz T, Clarke C, Sutherland E, Williams V, Spadafora D, Barrington RA, Alvarez DF, Mulekar MS, Simmons JD, Fouty BW, Audia JP. Amyloid-β and caspase-1 are indicators of sepsis and organ injury. ERJ Open Res 2024; 10:00572-2023. [PMID: 38410714 PMCID: PMC10895426 DOI: 10.1183/23120541.00572-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 12/04/2023] [Indexed: 02/28/2024] Open
Abstract
Background Sepsis is a life-threatening condition that results from a dysregulated host response to infection, leading to organ dysfunction. Despite the prevalence and associated socioeconomic costs, treatment of sepsis remains limited to antibiotics and supportive care, and a majority of intensive care unit (ICU) survivors develop long-term cognitive complications post-discharge. The present study identifies a novel regulatory relationship between amyloid-β (Aβ) and the inflammasome-caspase-1 axis as key innate immune mediators that define sepsis outcomes. Methods Medical ICU patients and healthy individuals were consented for blood and clinical data collection. Plasma cytokine, caspase-1 and Aβ levels were measured. Data were compared against indices of multiorgan injury and other clinical parameters. Additionally, recombinant proteins were tested in vitro to examine the effect of caspase-1 on a functional hallmark of Aβ, namely aggregation. Results Plasma caspase-1 levels displayed the best predictive value in discriminating ICU patients with sepsis from non-infected ICU patients (area under the receiver operating characteristic curve=0.7080). Plasma caspase-1 and the Aβ isoform Aβx-40 showed a significant positive correlation and Aβx-40 associated with organ injury. Additionally, Aβ plasma levels continued to rise from time of ICU admission to 7 days post-admission. In silico, Aβ harbours a predicted caspase-1 cleavage site, and in vitro studies demonstrated that caspase-1 cleaved Aβ to inhibit its auto-aggregation, suggesting a novel regulatory relationship. Conclusions Aβx-40 and caspase-1 are potentially useful early indicators of sepsis and its attendant organ injury. Additionally, Aβx-40 has emerged as a potential culprit in the ensuing development of post-ICU syndrome.
Collapse
Affiliation(s)
- Amanda N. Tuckey
- Department of Microbiology and Immunology, University of South Alabama College of Medicine
- Center for Lung Biology, University of South Alabama College of Medicine
| | - Arcole Brandon
- Center for Lung Biology, University of South Alabama College of Medicine
| | - Yasaman Eslaamizaad
- Department of Internal Medicine, University of South Alabama College of Medicine
- Division of Pulmonary and Critical Care Medicine, University of South Alabama College of Medicine
| | - Waqar Siddiqui
- Department of Internal Medicine, University of South Alabama College of Medicine
- Division of Pulmonary and Critical Care Medicine, University of South Alabama College of Medicine
| | - Talha Nawaz
- Department of Internal Medicine, University of South Alabama College of Medicine
- Division of Pulmonary and Critical Care Medicine, University of South Alabama College of Medicine
| | - Christopher Clarke
- Department of Internal Medicine, University of South Alabama College of Medicine
- Division of Pulmonary and Critical Care Medicine, University of South Alabama College of Medicine
| | - Erica Sutherland
- Department of Internal Medicine, University of South Alabama College of Medicine
| | - Veronica Williams
- Department of Laboratory Medicine, University of South Alabama University Hospital
| | - Domenico Spadafora
- Flow Cytometry Shared Resources Laboratory, University of South Alabama College of Medicine
| | - Robert A. Barrington
- Department of Microbiology and Immunology, University of South Alabama College of Medicine
- Center for Lung Biology, University of South Alabama College of Medicine
- Flow Cytometry Shared Resources Laboratory, University of South Alabama College of Medicine
| | - Diego F. Alvarez
- Center for Lung Biology, University of South Alabama College of Medicine
- Department of Internal Medicine, University of South Alabama College of Medicine
- Department of Pharmacology College of Medicine, University of South Alabama College of Medicine
| | - Madhuri S. Mulekar
- Department of Mathematics and Statistics, University of South Alabama College of Arts and Sciences
| | - Jon D. Simmons
- Center for Lung Biology, University of South Alabama College of Medicine
- Department of Pharmacology College of Medicine, University of South Alabama College of Medicine
- Department of Surgery, University of South Alabama College of Medicine
| | - Brian W. Fouty
- Center for Lung Biology, University of South Alabama College of Medicine
- Department of Internal Medicine, University of South Alabama College of Medicine
- Division of Pulmonary and Critical Care Medicine, University of South Alabama College of Medicine
- Department of Pharmacology College of Medicine, University of South Alabama College of Medicine
| | - Jonathon P. Audia
- Department of Microbiology and Immunology, University of South Alabama College of Medicine
- Center for Lung Biology, University of South Alabama College of Medicine
| |
Collapse
|