1
|
Duan G, Zou T, Wu X, Zhang Y, Liu H, Mei C. Neuroprotective role of geniposide-loaded UMSC nanovesicles in depression via P2ry12 downregulation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 140:156581. [PMID: 40085991 DOI: 10.1016/j.phymed.2025.156581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 02/05/2025] [Accepted: 02/24/2025] [Indexed: 03/16/2025]
Abstract
BACKGROUND Depression is a prevalent mental disorder characterized by persistent low mood, loss of interest, and cognitive impairment. Oxidative stress and inflammation play crucial roles in its pathogenesis. Novel therapeutic strategies targeting these mechanisms are needed to improve treatment outcomes. PURPOSE The purpose of this study is to gauge the therapeutic effectiveness of geniposide (GEN)-loaded umbilical cord-derived mesenchymal stem cell membrane biomimetic nanovesicles (CSPG@UMSC NPs) targeting the P2ry12 factor for depression management, considering its association with oxidative stress and inflammatory pathways. STUDY DESIGN A combination of in vitro neuronal cell culture experiments and an in vivo chronic unpredictable mild stress (CUMS) mouse model was used to assess the effects of CSPG@UMSC NPs. METHODS In vitro investigations involved culture and characterization of CSPG@UMSC NPs and transcriptome sequencing analysis to identify DEGs in neurons. In vivo experiments utilized a depression mouse model treated with CSPG@UMSC NPs, followed by behavioral tests, biomarker analysis, and histological assessments. RESULTS CSPG@UMSC NPs successfully downregulated P2ry12 expression, leading to improved neuronal activity, decreased inflammation, reduced cell apoptosis, and lowered reactive oxygen species levels in both in vitro and in vivo settings. CONCLUSION CSPG@UMSC NPs loaded with GEN inhibit oxidative stress and inflammation by downregulating P2ry12. This research unveils, for the initial instance, the vital role of P2ry12 in depression and proposes a novel nano-therapy strategy based on MSCs and GEN, offering new insights and potential clinical applications for the treatment of depression.
Collapse
Affiliation(s)
- Guoxiang Duan
- Department of Acupuncture, Heilongjiang Academy of Chinese Medical Sciences, Room 602, Zone C, No. 33 Xidazhi Street, Nangang District, Harbin, Heilongjiang Province 150001, China
| | - Tianyu Zou
- Department of Encephalopathy, Shenzhen Luohu District Hospital of Traditional Chinese Medicine, Shenzhen 518000, China
| | - Xue Wu
- Department of Nephrology, Heilongjiang Academy of Chinese Medical Sciences, Harbin 150001, China
| | - Yiming Zhang
- Department of Continuing Education, Heilongjiang Academy of Chinese Medical Sciences, Harbin 150001, China
| | - Hongmei Liu
- Department of Acupuncture, Heilongjiang Academy of Chinese Medical Sciences, Room 602, Zone C, No. 33 Xidazhi Street, Nangang District, Harbin, Heilongjiang Province 150001, China
| | - Cheng Mei
- Department of Acupuncture, Heilongjiang Academy of Chinese Medical Sciences, Room 602, Zone C, No. 33 Xidazhi Street, Nangang District, Harbin, Heilongjiang Province 150001, China.
| |
Collapse
|
2
|
Wang X, Li K, Guo L, Liu X, Guo Y, Zhang W. The Influence of Changes in Microglia Development on the Plasticity of the Developing Visual Cortex Circuit in Juvenile Mice. Invest Ophthalmol Vis Sci 2025; 66:45. [PMID: 40244609 PMCID: PMC12013681 DOI: 10.1167/iovs.66.4.45] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 03/19/2025] [Indexed: 04/18/2025] Open
Abstract
Purpose To investigate the role of microglial subtypes in mouse visual cortex development, focusing on ocular dominance plasticity and interactions with GABAergic neurons and the extracellular matrix. Methods Immunofluorescence and single-nucleus RNA-sequencing (snRNA-seq) were used to study microglia in the binocular primary visual cortex (V1) from postnatal day (P) 11 to P42. Gene ontology (GO) analysis assessed synapse organization, and the impact of microglial disruption on ocular dominance plasticity was examined. Visual evoked potentials and miniature postsynaptic current recordings are used to monitor functional changes in V1. Results Microglia underwent a marked expansion between P11 and P21 and stabilized after P35, coinciding with notable changes in gene expression that aligned with synaptic remodeling. GO analysis at P14 and P28 revealed significant enrichment in synaptic organization linked to microglia. Single-nucleus RNA sequencing identified six distinct microglial clusters, among which two functionally relevant subpopulations were closely linked to cortical synaptic plasticity. One cluster, enriched in inflammatory responses and endocytosis, peaked at P21, whereas another cluster, associated with synapse organization and signaling, exhibited dynamic changes after eye opening and during the critical period, significantly influencing cortical synaptic plasticity. In parallel, perineuronal nets (PNNs) and PV(+) interneuron populations increased and reached steady levels by P42, suggesting that microglia help coordinate the timing of inhibitory circuit maturation. Disrupting microglial function during the critical period impaired ocular dominance plasticity, but this effect was reversed after treatment cessation. Mechanistically, microglial depletion enhanced PV(+) interneuron numbers, elevated PNN expression, and altered synapse development. Conclusions Our findings highlight specific microglial subtypes as key regulators of cortical synapse development and plasticity through their interactions with PV(+) interneurons and PNNs. These insights advance our understanding of microglial contributions to visual cortex development and provide potential avenues for targeting microglial function to modulate cortical plasticity.
Collapse
Affiliation(s)
- Xuechun Wang
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Ophthalmology and Visual Science, Tianjin Eye Institute, Tianjin Eye Hospital, Tianjin, China
| | - Kuan Li
- Department of Respiratory Medicine, Haihe Hospital, Tianjin University, Tianjin, China
| | - Lingzhi Guo
- Institute of Ophthalmology, Nankai University, Tianjin, China
- School of Medicine, Nankai University, Tianjin, China
| | - Xinlong Liu
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Ophthalmology and Visual Science, Tianjin Eye Institute, Tianjin Eye Hospital, Tianjin, China
| | - Yatu Guo
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Ophthalmology and Visual Science, Tianjin Eye Institute, Tianjin Eye Hospital, Tianjin, China
- Institute of Ophthalmology, Nankai University, Tianjin, China
| | - Wei Zhang
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Ophthalmology and Visual Science, Tianjin Eye Institute, Tianjin Eye Hospital, Tianjin, China
- Institute of Ophthalmology, Nankai University, Tianjin, China
| |
Collapse
|
3
|
Jobling AI, Greferath U, Dixon MA, Quiriconi P, Eyar B, van Koeverden AK, Mills SA, Vessey KA, Bui BV, Fletcher EL. Microglial regulation of the retinal vasculature in health and during the pathology associated with diabetes. Prog Retin Eye Res 2025; 106:101349. [PMID: 40020909 DOI: 10.1016/j.preteyeres.2025.101349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 02/25/2025] [Accepted: 02/25/2025] [Indexed: 03/03/2025]
Abstract
The high metabolic demand of retinal neurons requires a precisely regulated vascular system that can deliver rapid changes in blood flow in response to neural need. In the retina, this is achieved via the action of a coordinated group of cells that form the neurovascular unit. While cells such as pericytes, Müller cells, and astrocytes have long been linked to neurovascular coupling, more recently the resident microglial population have also been implicated. In the healthy retina, microglia make extensive contact with blood vessels, as well as neuronal synapses, and are important in vascular patterning during development. Work in the brain and retina has recently indicated that microglia can directly regulate the local vasculature. In the retina, the fractalkine-Cx3cr1 signalling axis has been shown to induce local capillary constriction within the superficial vascular plexus via a mechanism involving components of the renin-angiotensin system. Furthermore, aberrant microglial induced vasoconstriction may be at the centre of early vascular reactivity changes observed in those with diabetes. This review summarizes the recent emerging evidence that microglia play multiple roles in retinal homeostasis especially in regulating the vasculature. We highlight what is known about the role of microglia under normal circumstances, and then build on this to discuss how microglia contribute to early vascular compromise during diabetes. Further understanding of the mechanisms of microglial-vascular regulation may allow alternate treatment strategies to be devised to reduce vascular pathology in diseases such as diabetic retinopathy.
Collapse
Affiliation(s)
- Andrew I Jobling
- Department of Anatomy and Physiology, The University of Melbourne, Victoria, Australia
| | - Ursula Greferath
- Department of Anatomy and Physiology, The University of Melbourne, Victoria, Australia
| | - Michael A Dixon
- Department of Anatomy and Physiology, The University of Melbourne, Victoria, Australia
| | - Pialuisa Quiriconi
- Department of Anatomy and Physiology, The University of Melbourne, Victoria, Australia
| | - Belinda Eyar
- Department of Anatomy and Physiology, The University of Melbourne, Victoria, Australia
| | - Anna K van Koeverden
- Department of Optometry and Vision Sciences, The University of Melbourne, Victoria, Australia
| | - Samuel A Mills
- Department of Anatomy and Physiology, The University of Melbourne, Victoria, Australia
| | - Kirstan A Vessey
- Department of Anatomy and Physiology, The University of Melbourne, Victoria, Australia
| | - Bang V Bui
- Department of Optometry and Vision Sciences, The University of Melbourne, Victoria, Australia
| | - Erica L Fletcher
- Department of Anatomy and Physiology, The University of Melbourne, Victoria, Australia.
| |
Collapse
|
4
|
Webster SE, Les SM, Deleon N, Heck DM, Tsuj NL, Clemente MJ, Jones P, Holodick NE. Secreted IgM deficiency alters the retinal landscape enhancing neurodegeneration associated with aging. Immun Ageing 2025; 22:9. [PMID: 39994686 PMCID: PMC11849284 DOI: 10.1186/s12979-025-00502-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 02/08/2025] [Indexed: 02/26/2025]
Abstract
BACKGROUND Maintenance of the retina, part of the central nervous system, and other structures in the eye is critical for vision preservation. Aging increases the prevalence of vision impairment, including glaucoma, macular degeneration, and diabetic retinopathy. The retina is primarily maintained by glial cells; however, recent literature suggests that lymphocytes may play a role in the homeostasis of central nervous system tissues. Natural antibodies are produced by B cells without infection or immunization and maintain tissue homeostasis. Here, we explored the potential role of natural immunoglobulin M (IgM) produced by B lymphocytes in maintaining retinal health during aging in mice. RESULTS Our results indicate that the vitreous humor of both mice and humans contains IgM and IgG, suggesting that these immunoglobulins may play a role in ocular function. Furthermore, we observed that aged mice lacking secreted IgM (µs-/-) exhibited pronounced retinal degeneration, accompanied by reactive gliosis, and a proinflammatory cytokine environment. This contrasts with the aged wild-type counterparts, which retain their ability to secrete IgM and maintain a better retinal structure and anti-inflammatory environment. In addition to these findings, the absence of secreted IgM was associated with significant alterations in the retinal pigment epithelium, including disruptions to its morphology and signs of increased stress. This was further observed in changes to the blood-retinal-barrier, which is critical for regulation of retinal homeostasis. CONCLUSIONS These data suggest a previously unrecognized association between a lack of secreted IgM and alterations in the retinal microenvironment, leading to enhanced retinal degeneration during aging. Although the precise mechanism remains unclear, these findings highlight the potential importance of secreted IgM in processes that support retinal health over time. By increasing our understanding of ocular aging, these results show that there is a broader role for the immune system in retinal function and integrity in advanced age, opening new areas for the exploration of immune-related interventions in age-associated retinal conditions.
Collapse
Affiliation(s)
- Sarah E Webster
- Center for Immunobiology, Department of Investigative Medicine, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI, 49007, USA.
| | - Sydney M Les
- Center for Immunobiology, Department of Investigative Medicine, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI, 49007, USA
- Department of Medicine, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI, 49007, United States of America
| | - Nico Deleon
- Center for Immunobiology, Department of Investigative Medicine, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI, 49007, USA
| | - Daken M Heck
- Center for Immunobiology, Department of Investigative Medicine, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI, 49007, USA
| | - Naomi L Tsuj
- Center for Immunobiology, Department of Investigative Medicine, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI, 49007, USA
| | - Michael J Clemente
- Center for Immunobiology, Department of Investigative Medicine, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI, 49007, USA
- Flow Cytometry and Imaging Core, Department of Investigative Medicine, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI, 49007, USA
| | - Prentiss Jones
- Department of Pathology, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI, 49007, USA
| | - Nichol E Holodick
- Center for Immunobiology, Department of Investigative Medicine, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI, 49007, USA
- Flow Cytometry and Imaging Core, Department of Investigative Medicine, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI, 49007, USA
| |
Collapse
|
5
|
Lee CY, Yang CH. The Role of Fractalkine in Diabetic Retinopathy: Pathophysiology and Clinical Implications. Int J Mol Sci 2025; 26:378. [PMID: 39796231 PMCID: PMC11720318 DOI: 10.3390/ijms26010378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 12/30/2024] [Accepted: 01/02/2025] [Indexed: 01/13/2025] Open
Abstract
Diabetic retinopathy (DR) is a complication of diabetes, characterized by progressive microvascular dysfunction that can result in vision loss. Chronic hyperglycemia drives oxidative stress, endothelial dysfunction, and inflammation, leading to retinal damage and complications such as neovascularization. Current treatments, including anti-VEGF agents, have limitations, necessitating the exploration of alternative therapeutic strategies. Fractalkine (CX3CL1), a chemokine with dual roles as a membrane-bound adhesion molecule and a soluble chemoattractant, has emerged as a potential therapeutic target. Its receptor, CX3CR1, is expressed on immune cells and mediates processes such as immune cell recruitment and microglial activation through intracellular signaling pathways. In DR, soluble fractalkine plays critical roles in retinal inflammation, angiogenesis, and neuroprotection, balancing tissue damage and repair. In DR, elevated fractalkine levels are associated with retinal inflammation and endothelial dysfunction. Experimental studies suggest that fractalkine deficiency exacerbates the severity of diabetic retinopathy (DR), whereas exogenous fractalkine appears to reduce inflammation, oxidative stress, and neuronal damage. However, its role in pathological angiogenesis within DR remains unclear and warrants further investigation. Preclinical evidence indicates that fractalkine may hold therapeutic potential, particularly in mitigating tissue injury and inflammation associated with early-stage DR.
Collapse
Affiliation(s)
- Cheng-Yung Lee
- Department of Ophthalmology, National Taiwan University Hospital Hsin-Chu Hospital, No. 25, Ln. 442, Sec. 1, Jingguo Rd., North Dist., Hsinchu City 300195, Taiwan
- Department of Ophthalmology, National Taiwan University Hospital, No. 7, Chung Shan S. Rd. (Zhongshan S. Rd.), Zhongzheng Dist., Taipei City 100225, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, No. 7, Chung Shan S. Rd. (Zhongshan S. Rd.), Zhongzheng Dist., Taipei City 100225, Taiwan
| | - Chang-Hao Yang
- Department of Ophthalmology, National Taiwan University Hospital, No. 7, Chung Shan S. Rd. (Zhongshan S. Rd.), Zhongzheng Dist., Taipei City 100225, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, No. 7, Chung Shan S. Rd. (Zhongshan S. Rd.), Zhongzheng Dist., Taipei City 100225, Taiwan
- Department of Ophthalmology, College of Medicine, National Taiwan University, No. 1 Jen-Ai Road Section 1, Taipei City 10051, Taiwan
| |
Collapse
|
6
|
Yuan X, Li W, Yan Q, Ou Y, Long Q, Zhang P. Biomarkers of mature neuronal differentiation and related diseases. Future Sci OA 2024; 10:2410146. [PMID: 39429212 PMCID: PMC11497955 DOI: 10.1080/20565623.2024.2410146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 09/16/2024] [Indexed: 10/22/2024] Open
Abstract
The nervous system regulates perception, cognition and behavioral responses by serving as the body's primary communication system for receiving, regulating and transmitting information. Neurons are the fundamental structures and units of the nervous system. Their differentiation and maturation processes rely on the expression of specific biomarkers. Neuron-specific intracellular markers can be used to determine the degree of neuronal maturation. Neuronal cytoskeletal proteins dictate the shape and structure of neurons, while synaptic plasticity and signaling processes are intricately associated with neuronal synaptic markers. Furthermore, abnormal expression levels of biomarkers can serve as diagnostic indicators for nervous system diseases. This article reviews the markers of mature neuronal differentiation and their relationship with nervous system diseases.
Collapse
Affiliation(s)
- Xiaodong Yuan
- Department of Neurology, Kailuan General Hospital Affiliated to North China University of Science & Technology, Tangshan, Hebei Province, 063000, China
- Hebei Provincial Key Laboratory of Neurobiological Function, Department of Neurology, Tangshan, Hebei Province, 063000, China
| | - Wen Li
- Department of Neurology, Kailuan General Hospital Affiliated to North China University of Science & Technology, Tangshan, Hebei Province, 063000, China
- Hebei Provincial Key Laboratory of Neurobiological Function, Department of Neurology, Tangshan, Hebei Province, 063000, China
| | - Qi Yan
- Department of Neurology, Kailuan General Hospital Affiliated to North China University of Science & Technology, Tangshan, Hebei Province, 063000, China
- Hebei Provincial Key Laboratory of Neurobiological Function, Department of Neurology, Tangshan, Hebei Province, 063000, China
| | - Ya Ou
- Department of Neurology, Kailuan General Hospital Affiliated to North China University of Science & Technology, Tangshan, Hebei Province, 063000, China
- Hebei Provincial Key Laboratory of Neurobiological Function, Department of Neurology, Tangshan, Hebei Province, 063000, China
| | - Qingxi Long
- Department of Neurology, Kailuan General Hospital Affiliated to North China University of Science & Technology, Tangshan, Hebei Province, 063000, China
- Hebei Provincial Key Laboratory of Neurobiological Function, Department of Neurology, Tangshan, Hebei Province, 063000, China
| | - Pingshu Zhang
- Department of Neurology, Kailuan General Hospital Affiliated to North China University of Science & Technology, Tangshan, Hebei Province, 063000, China
- Hebei Provincial Key Laboratory of Neurobiological Function, Department of Neurology, Tangshan, Hebei Province, 063000, China
| |
Collapse
|
7
|
Alfarhan M, Liu F, Matani BR, Somanath PR, Narayanan SP. SMOX Inhibition Preserved Visual Acuity, Contrast Sensitivity, and Retinal Function and Reduced Neuro-Glial Injury in Mice During Prolonged Diabetes. Cells 2024; 13:2049. [PMID: 39768141 PMCID: PMC11674681 DOI: 10.3390/cells13242049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/05/2024] [Accepted: 12/05/2024] [Indexed: 01/11/2025] Open
Abstract
Diabetic retinopathy, a major cause of vision loss, is characterized by neurovascular changes in the retina. The lack of effective treatments to preserve vision in diabetic patients remains a significant challenge. A previous study from our laboratory demonstrated that 12-week treatment with MDL 72527, a pharmacological inhibitor of spermine oxidase (SMOX, a critical regulator of polyamine metabolism), reduced neurodegeneration in diabetic mice. Utilizing the streptozotocin-induced diabetic mouse model and MDL 72527, the current study investigated the effectiveness of SMOX inhibition on the measures of vision impairment and neuro-glial injury following 24 weeks of diabetes. Reductions in visual acuity, contrast sensitivity, and inner retinal function in diabetic mice were improved by MDL 72527 treatment. Diabetes-induced changes in neuronal-specific class III tubulin (Tuj-1), synaptophysin, glutamine synthetase, and vimentin were attenuated in response to SMOX inhibition. In conclusion, our findings show that SMOX inhibition improved visual acuity, contrast sensitivity, and inner retinal function and mitigated diabetes-induced neuroglial damage during long-term diabetes. Targeting SMOX signaling may provide a potential strategy for reducing retinal neuronal damage and preserving vision in diabetes.
Collapse
Affiliation(s)
- Moaddey Alfarhan
- Program in Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, GA 30907, USA; (M.A.); (F.L.); (B.R.M.); (P.R.S.)
- Research Division, Charlie Norwood VA Medical Center, Augusta, GA 30901, USA
- Culver Vision Discovery Institute, Augusta University, Augusta, GA 30907, USA
- Department of Clinical Practice, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Fang Liu
- Program in Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, GA 30907, USA; (M.A.); (F.L.); (B.R.M.); (P.R.S.)
- Research Division, Charlie Norwood VA Medical Center, Augusta, GA 30901, USA
- Culver Vision Discovery Institute, Augusta University, Augusta, GA 30907, USA
| | - Bayan R. Matani
- Program in Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, GA 30907, USA; (M.A.); (F.L.); (B.R.M.); (P.R.S.)
- Research Division, Charlie Norwood VA Medical Center, Augusta, GA 30901, USA
- Culver Vision Discovery Institute, Augusta University, Augusta, GA 30907, USA
| | - Payaningal R. Somanath
- Program in Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, GA 30907, USA; (M.A.); (F.L.); (B.R.M.); (P.R.S.)
- Research Division, Charlie Norwood VA Medical Center, Augusta, GA 30901, USA
- Culver Vision Discovery Institute, Augusta University, Augusta, GA 30907, USA
| | - S. Priya Narayanan
- Program in Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, GA 30907, USA; (M.A.); (F.L.); (B.R.M.); (P.R.S.)
- Research Division, Charlie Norwood VA Medical Center, Augusta, GA 30901, USA
- Culver Vision Discovery Institute, Augusta University, Augusta, GA 30907, USA
| |
Collapse
|
8
|
Wu X, Zhu H, Liu J, Ouyang S, Lyu Z, Jin Y, Chen X, Meng Q. Jagged1-Notch1 Signaling Pathway Induces M1 Microglia to Disrupt the Barrier Function of Retinal Microvascular Endothelial Cells. Curr Eye Res 2024; 49:1098-1106. [PMID: 38783634 DOI: 10.1080/02713683.2024.2357601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/28/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024]
Abstract
PURPOSE Microglia-related inflammation is closely linked to the pathogenesis of retinal diseases. The primary objective of this research was to investigate the impact and mechanism of M1 phenotype microglia on the barrier function of retina microvascular endothelial cells. METHODS Quantitative polymerase chain reactions and western blot techniques were utilized to analysis the mRNA and protein expressions of M1 and M2 markers of human microglial clone 3 cell line (HMC3), as well as the levels of Notch ligands and receptors under the intervention of lipopolysaccharide (LPS) or interleukin (IL)-4. ELISA was utilized to detect the pro-inflammatory and anti-inflammatory cytokines from HMC3 cells. The cellular tight junction and apoptosis of human retinal microvascular endothelial cells (HRMECs) were assessed by western blot and fluorescein isothiocyanate-dextran permeability assay. The inhibitors of Notch1 and RNA interference (RNAi) targeting Jagged1 were used to assess their contribution to the barrier function of vascular endothelial cells. RESULTS Inducible nitric oxide synthase (iNOS) and IL-1β were considerably elevated in LPS-treated HMC3, while CD206 and Arg-1 markedly elevated under IL-4 stimulation. The conditioned medium derived from LPS-treated HMC3 cells promoted permeability, diminished the expression of zonula occludens-1 and Occludin, and elevated the expression of Cleaved caspase-3 in HRMECs. RNAi targeting Jagged1 or Notch1 inhibitor could block M1 HMC3 polarization and maintain barrier function of HRMECs. CONCLUSION Our findings suggest that Jagged1-Notch1 signaling pathway induces M1 microglial cells to disrupt the barrier function of HRMECs, which may lead to retinal diseases.
Collapse
Affiliation(s)
- Xiyu Wu
- School of Medicine, South China University of Technology, Guangzhou, China
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Haoxian Zhu
- School of Medicine, South China University of Technology, Guangzhou, China
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Junbin Liu
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Shuyi Ouyang
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Zheng Lyu
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Yeanqi Jin
- School of Medicine, South China University of Technology, Guangzhou, China
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Xinyu Chen
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Qianli Meng
- School of Medicine, South China University of Technology, Guangzhou, China
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| |
Collapse
|
9
|
Cao Y, Qiao L, Song Y, Yan Y, Ni Y, Xi H, Chen J, Li S, Liu H. Caspase-1 Inhibition Ameliorates Photoreceptor Damage Following Retinal Detachment by Inhibiting Microglial Pyroptosis. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:1924-1937. [PMID: 39032599 DOI: 10.1016/j.ajpath.2024.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 05/31/2024] [Accepted: 06/10/2024] [Indexed: 07/23/2024]
Abstract
Retinal detachment (RD) is a sight-threatening condition that occurs in several retinal diseases. Microglia that reside in retina are activated after RD and play a role in the death of photoreceptor cells. The involvement of microglial pyroptosis in the early pathological process of RD is still unclear. VX-765, an inhibitor of caspase-1, may exert neuroprotective effects by targeting microglial pyroptosis in nervous system disease; however, whether it plays a role in RD is uncertain. This study detected and localized pyroptosis to specific cells by immunofluorescence co-staining and flow cytometry in rat RD models. The majority of gasdermin D N-terminal (GSDMD-N)-positive cells exhibited IBA1-positive or P2RY12-positive microglia in the early stage of RD, indicating the pyroptosis of microglia. Administration of VX-765 shifted the microglia phenotype from M1 to M2, inhibited microglial migration toward the outer nuclear layer (ONL) post-RD, and most importantly, inhibited microglial pyroptosis. The thickness of ONL increased with VX-765 administration, and the photoreceptors were more structured and orderly under hematoxylin and eosin staining and transmission electron microscopy, revealing the protective effects of VX-765 on photoreceptors. Overall, this study demonstrated that inflammation induced by pyroptosis of microglia is the early pathological process of RD. VX-765 may serve as a candidate therapeutic approach for the treatment of RD by targeting microglia.
Collapse
Affiliation(s)
- Yumei Cao
- Department of Ophthalmology, The Affiliated Xuzhou Municipal Hospital of Xuzhou Medical University, Xuzhou First People's Hospital, Eye Disease Prevention and Treatment Institute of Xuzhou, Xuzhou, China; Xuzhou Medical University, Xuzhou, China
| | - Lei Qiao
- Central Laboratory, The Affiliated Xuzhou Municipal Hospital of Xuzhou Medical University, Xuzhou First People's Hospital, Eye Disease Prevention and Treatment Institute of Xuzhou, Xuzhou, China
| | - Yingying Song
- Department of Ophthalmology, The Affiliated Xuzhou Municipal Hospital of Xuzhou Medical University, Xuzhou First People's Hospital, Eye Disease Prevention and Treatment Institute of Xuzhou, Xuzhou, China; Xuzhou Medical University, Xuzhou, China
| | - Yuanye Yan
- Department of Ophthalmology, The Affiliated Xuzhou Municipal Hospital of Xuzhou Medical University, Xuzhou First People's Hospital, Eye Disease Prevention and Treatment Institute of Xuzhou, Xuzhou, China
| | - Yewen Ni
- Department of Ophthalmology, The Affiliated Xuzhou Municipal Hospital of Xuzhou Medical University, Xuzhou First People's Hospital, Eye Disease Prevention and Treatment Institute of Xuzhou, Xuzhou, China; Xuzhou Medical University, Xuzhou, China
| | - Huiyu Xi
- Department of Ophthalmology, The Affiliated Xuzhou Municipal Hospital of Xuzhou Medical University, Xuzhou First People's Hospital, Eye Disease Prevention and Treatment Institute of Xuzhou, Xuzhou, China
| | - Jiayu Chen
- Department of Ophthalmology, The Affiliated Xuzhou Municipal Hospital of Xuzhou Medical University, Xuzhou First People's Hospital, Eye Disease Prevention and Treatment Institute of Xuzhou, Xuzhou, China; Xuzhou Medical University, Xuzhou, China
| | - Suyan Li
- Department of Ophthalmology, The Affiliated Xuzhou Municipal Hospital of Xuzhou Medical University, Xuzhou First People's Hospital, Eye Disease Prevention and Treatment Institute of Xuzhou, Xuzhou, China; Xuzhou Medical University, Xuzhou, China.
| | - Haiyang Liu
- Department of Ophthalmology, The Affiliated Xuzhou Municipal Hospital of Xuzhou Medical University, Xuzhou First People's Hospital, Eye Disease Prevention and Treatment Institute of Xuzhou, Xuzhou, China; Xuzhou Medical University, Xuzhou, China.
| |
Collapse
|
10
|
Zhou L, Xu Z, Lu H, Cho H, Xie Y, Lee G, Ri K, Duh EJ. Suppression of inner blood-retinal barrier breakdown and pathogenic Müller glia activation in ischemia retinopathy by myeloid cell depletion. J Neuroinflammation 2024; 21:210. [PMID: 39182142 PMCID: PMC11344463 DOI: 10.1186/s12974-024-03190-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 07/29/2024] [Indexed: 08/27/2024] Open
Abstract
Ischemic retinopathies including diabetic retinopathy are major causes of vision loss. Inner blood-retinal barrier (BRB) breakdown with retinal vascular hyperpermeability results in macular edema. Although dysfunction of the neurovascular unit including neurons, glia, and vascular cells is now understood to underlie this process, there is a need for fuller elucidation of the underlying events in BRB dysfunction in ischemic disease, including a systematic analysis of myeloid cells and exploration of cellular cross-talk. We used an approach for microglia depletion with the CSF-1R inhibitor PLX5622 (PLX) in the retinal ischemia-reperfusion (IR) model. Under non-IR conditions, PLX treatment successfully depleted microglia in the retina. PLX suppressed the microglial activation response following IR as well as infiltration of monocyte-derived macrophages. This occurred in association with reduction of retinal expression of chemokines including CCL2 and the inflammatory adhesion molecule ICAM-1. In addition, there was a marked suppression of retinal neuroinflammation with reduction in expression of IL-1b, IL-6, Ptgs2, TNF-a, and Angpt2, a protein that regulates BRB permeability. PLX treatment significantly suppressed inner BRB breakdown following IR, without an appreciable effect on neuronal dysfunction. A translatomic analysis of Müller glial-specific gene expression in vivo using the Ribotag approach demonstrated a strong suppression of Müller cell expression of multiple pro-inflammatory genes following PLX treatment. Co-culture studies of Müller cells and microglia demonstrated that activated microglia directly upregulates Müller cell-expression of these inflammatory genes, indicating Müller cells as a downstream effector of myeloid cells in retinal IR. Co-culture studies of these two cell types with endothelial cells demonstrated the ability of both activated microglia and Müller cells to compromise EC barrier function. Interestingly, quiescent Müller cells enhanced EC barrier function in this co-culture system. Together this demonstrates a pivotal role for myeloid cells in inner BRB breakdown in the setting of ischemia-associated disease and indicates that myeloid cells play a major role in iBRB dysregulation, through direct and indirect effects, while Müller glia participate in amplifying the neuroinflammatory effect of myeloid cells.
Collapse
Affiliation(s)
- Lingli Zhou
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-Sen University, Guangzhou, China
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Zhenhua Xu
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Haining Lu
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hongkwan Cho
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yangyiran Xie
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Grace Lee
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kaoru Ri
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Elia J Duh
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
11
|
Hu A, Schmidt MHH, Heinig N. Microglia in retinal angiogenesis and diabetic retinopathy. Angiogenesis 2024; 27:311-331. [PMID: 38564108 PMCID: PMC11303477 DOI: 10.1007/s10456-024-09911-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 02/18/2024] [Indexed: 04/04/2024]
Abstract
Diabetic retinopathy has a high probability of causing visual impairment or blindness throughout the disease progression and is characterized by the growth of new blood vessels in the retina at an advanced, proliferative stage. Microglia are a resident immune population in the central nervous system, known to play a crucial role in regulating retinal angiogenesis in both physiological and pathological conditions, including diabetic retinopathy. Physiologically, they are located close to blood vessels and are essential for forming new blood vessels (neovascularization). In diabetic retinopathy, microglia become widely activated, showing a distinct polarization phenotype that leads to their accumulation around neovascular tufts. These activated microglia induce pathogenic angiogenesis through the secretion of various angiogenic factors and by regulating the status of endothelial cells. Interestingly, some subtypes of microglia simultaneously promote the regression of neovascularization tufts and normal angiogenesis in neovascularization lesions. Modulating the state of microglial activation to ameliorate neovascularization thus appears as a promising potential therapeutic approach for managing diabetic retinopathy.
Collapse
Affiliation(s)
- Aiyan Hu
- Institute of Anatomy, Medical Faculty Carl Gustav Carus, Technische Universität Dresden School of Medicine, Fetscherstr 74, 01307, Dresden, Germany
| | - Mirko H H Schmidt
- Institute of Anatomy, Medical Faculty Carl Gustav Carus, Technische Universität Dresden School of Medicine, Fetscherstr 74, 01307, Dresden, Germany.
| | - Nora Heinig
- Institute of Anatomy, Medical Faculty Carl Gustav Carus, Technische Universität Dresden School of Medicine, Fetscherstr 74, 01307, Dresden, Germany.
| |
Collapse
|
12
|
Diemler CA, MacLean M, Heuer SE, Hewes AA, Marola OJ, Libby RT, Howell GR. Microglia depletion leads to increased susceptibility to ocular hypertension-dependent glaucoma. Front Aging Neurosci 2024; 16:1396443. [PMID: 39015474 PMCID: PMC11250491 DOI: 10.3389/fnagi.2024.1396443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 06/07/2024] [Indexed: 07/18/2024] Open
Abstract
In recent years, microglia have been highlighted for playing integral roles in neurodegenerative diseases, like glaucoma. To better understand the role of microglia during chronic ocular hypertension, we depleted microglia from aged (9-12 months old) DBA/2 J (D2) mice, which exhibit age-related increases in intraocular pressure, using a dietary CSF1R antagonist, PLX5622. Retinal ganglion cell (RGC) somas were counted, and optic nerve cross-sections stained and assessed for glaucomatous damage. Sustained administration of dietary PLX5622 significantly reduced the numbers of retinal microglia. Dietary PLX5622 did not lead to changes in intraocular pressure in D2 or normotensive DBA/2 J-Gpnmb+ (D2-Gpnmb+ ) control mice. While PLX5622-treated D2-Gpnmb+ did not develop optic nerve damage, PLX5622-treated D2 mice showed a significant increase in moderate-to-severe optic nerve damage compared to D2 mice fed a control diet. In conclusion, global reduction of microglia exacerbated glaucomatous neurodegeneration in D2 mice suggesting microglia play an overall beneficial role in protecting from ocular hypertension associated RGC loss.
Collapse
Affiliation(s)
- Cory A. Diemler
- The Jackson Laboratory, Bar Harbor, ME, United States
- Graduate School of Biological Sciences and Engineering, University of Maine, Orono, ME, United States
| | | | - Sarah E. Heuer
- The Jackson Laboratory, Bar Harbor, ME, United States
- Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA, United States
| | | | | | - Richard T. Libby
- Flaum Eye Institute, University of Rochester Medical Center, Rochester, NY, United States
| | - Gareth R. Howell
- The Jackson Laboratory, Bar Harbor, ME, United States
- Graduate School of Biological Sciences and Engineering, University of Maine, Orono, ME, United States
- Flaum Eye Institute, University of Rochester Medical Center, Rochester, NY, United States
| |
Collapse
|
13
|
Rorex C, Cardona SM, Church KA, Rodriguez D, Vanegas D, Saldivar R, Faz B, Cardona AE. Astrogliosis in the GFAP-Cre ERT2:Rosa26 iDTR Mouse Model Does Not Exacerbate Retinal Microglia Activation or Müller Cell Gliosis under Hypoxic Conditions. Biomolecules 2024; 14:567. [PMID: 38785974 PMCID: PMC11117533 DOI: 10.3390/biom14050567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/26/2024] [Accepted: 05/08/2024] [Indexed: 05/25/2024] Open
Abstract
Diabetic retinopathy (DR) affects over 140 million people globally. The mechanisms that lead to blindness are still enigmatic but there is evidence that sustained inflammation and hypoxia contribute to vascular damage. Despite efforts to understand the role of inflammation and microglia in DR's pathology, the contribution of astrocytes to hypoxic responses is less clear. To investigate the role of astrocytes in hypoxia-induced retinopathy, we utilized a 7-day systemic hypoxia model using the GFAP-CreERT2:Rosa26iDTR transgenic mouse line. This allows for the induction of inflammatory reactive astrogliosis following tamoxifen and diphtheria toxin administration. We hypothesize that DTx-induced astrogliosis is neuroprotective during hypoxia-induced retinopathy. Glial, neuronal, and vascular responses were quantified using immunostaining, with antibodies against GFAP, vimentin, IBA-1, NeuN, fibrinogen, and CD31. Cytokine responses were measured in both the brain and serum. We report that while both DTx and hypoxia induced a phenotype of reduced microglia morphological activation, DTx, but not hypoxia, induced an increase in the Müller glia marker vimentin. We did not observe that the combination of DTx and hypoxic treatments exacerbated the signs of reactive glial cells, nor did we observe a significant change in the expression immunomodulatory mediators IL-1β, IL2, IL-4, IL-5, IL-6, IL-10, IL-18, CCL17, TGF-β1, GM-CSF, TNF-α, and IFN-γ. Overall, our results suggest that, in this hypoxia model, reactive astrogliosis does not alter the inflammatory responses or cause vascular damage in the retina.
Collapse
Affiliation(s)
- Colin Rorex
- Molecular Microbiology and Immunology, College of Sciences, The University of Texas at San Antonio, San Antonio, TX 78249, USA; (C.R.)
| | - Sandra M. Cardona
- Molecular Microbiology and Immunology, College of Sciences, The University of Texas at San Antonio, San Antonio, TX 78249, USA; (C.R.)
| | - Kaira A. Church
- Molecular Microbiology and Immunology, College of Sciences, The University of Texas at San Antonio, San Antonio, TX 78249, USA; (C.R.)
| | - Derek Rodriguez
- Molecular Microbiology and Immunology, College of Sciences, The University of Texas at San Antonio, San Antonio, TX 78249, USA; (C.R.)
- Integrative Biology, The University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Difernando Vanegas
- Molecular Microbiology and Immunology, College of Sciences, The University of Texas at San Antonio, San Antonio, TX 78249, USA; (C.R.)
| | - Reina Saldivar
- Molecular Microbiology and Immunology, College of Sciences, The University of Texas at San Antonio, San Antonio, TX 78249, USA; (C.R.)
| | - Brianna Faz
- Integrative Biology, The University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Astrid E. Cardona
- Molecular Microbiology and Immunology, College of Sciences, The University of Texas at San Antonio, San Antonio, TX 78249, USA; (C.R.)
- South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX 78249, USA
| |
Collapse
|
14
|
Wang M, Caryotakis SE, Smith GG, Nguyen AV, Pleasure DE, Soulika AM. CSF1R antagonism results in increased supraspinal infiltration in EAE. J Neuroinflammation 2024; 21:103. [PMID: 38643194 PMCID: PMC11031888 DOI: 10.1186/s12974-024-03063-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 03/11/2024] [Indexed: 04/22/2024] Open
Abstract
BACKGROUND Colony stimulating factor 1 receptor (CSF1R) signaling is crucial for the maintenance and function of various myeloid subsets. CSF1R antagonism was previously shown to mitigate clinical severity in experimental autoimmune encephalomyelitis (EAE). The associated mechanisms are still not well delineated. METHODS To assess the effect of CSF1R signaling, we employed the CSF1R antagonist PLX5622 formulated in chow (PLX5622 diet, PD) and its control chow (control diet, CD). We examined the effect of PD in steady state and EAE by analyzing cells isolated from peripheral immune organs and from the CNS via flow cytometry. We determined CNS infiltration sites and assessed the extent of demyelination using immunohistochemistry of cerebella and spinal cords. Transcripts of genes associated with neuroinflammation were also analyzed in these tissues. RESULTS In addition to microglial depletion, PD treatment reduced dendritic cells and macrophages in peripheral immune organs, both during steady state and during EAE. Furthermore, CSF1R antagonism modulated numbers and relative frequencies of T effector cells both in the periphery and in the CNS during the early stages of the disease. Classical neurological symptoms were milder in PD compared to CD mice. Interestingly, a subset of PD mice developed atypical EAE symptoms. Unlike previous studies, we observed that the CNS of PD mice was infiltrated by increased numbers of peripheral immune cells compared to that of CD mice. Immunohistochemical analysis showed that CNS infiltrates in PD mice were mainly localized in the cerebellum while in CD mice infiltrates were primarily localized in the spinal cords during the onset of neurological deficits. Accordingly, during the same timepoint, cerebella of PD but not of CD mice had extensive demyelinating lesions, while spinal cords of CD but not of PD mice were heavily demyelinated. CONCLUSIONS Our findings suggest that CSF1R activity modulates the cellular composition of immune cells both in the periphery and within the CNS, and affects lesion localization during the early EAE stages.
Collapse
Affiliation(s)
- Marilyn Wang
- Department of Dermatology, School of Medicine, University of California, Davis, Sacramento, CA, USA
| | - Sofia E Caryotakis
- Shriners Hospitals for Children, Northern California, Sacramento, CA, USA
- University of California, San Francisco, San Francisco, CA, USA
| | - Glendalyn G Smith
- Shriners Hospitals for Children, Northern California, Sacramento, CA, USA
| | - Alan V Nguyen
- Department of Dermatology, School of Medicine, University of California, Davis, Sacramento, CA, USA
- Sutro Biosciences, South San Francisco, CA, USA
| | - David E Pleasure
- Shriners Hospitals for Children, Northern California, Sacramento, CA, USA
- Department of Neurology, School of Medicine, University of California, Davis, Sacramento, CA, USA
| | - Athena M Soulika
- Department of Dermatology, School of Medicine, University of California, Davis, Sacramento, CA, USA.
- Shriners Hospitals for Children, Northern California, Sacramento, CA, USA.
| |
Collapse
|
15
|
Diemler CA, MacLean M, Heuer SE, Hewes AA, Marola OJ, Libby RT, Howell GR. Microglia Depletion leads to Increased Susceptibility to Ocular Hypertension-Dependent Glaucoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.05.583529. [PMID: 38496398 PMCID: PMC10942367 DOI: 10.1101/2024.03.05.583529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
In recent years, microglia have been highlighted for playing integral roles in neurodegenerative diseases, like glaucoma. To better understand the role of microglia during chronic ocular hypertension, we depleted microglia from aged (9-12 months old) DBA/2J (D2) mice, which exhibit age-related increases in intraocular pressure, using a dietary CSF1R antagonist, PLX5622. Retinal ganglion cell (RGC) somas were counted, and optic nerve cross-sections stained and assessed for glaucomatous damage. Sustained administration of dietary PLX5622 significantly reduced the numbers of retinal microglia. Dietary PLX5622 did not lead to changes in intraocular pressure in D2 or normotensive DBA/2J-Gpnmb+ (D2-Gpnmb+) control mice. While PLX5622-treated D2-Gpnmb+ did not develop optic nerve damage, PLX5622-treated D2 mice showed a significant increase in moderate-to-severe optic nerve damage compared to D2 mice fed a control diet. In conclusion, global reduction of microglia exacerbated glaucomatous neurodegeneration in D2 mice suggesting microglia play an overall beneficial role in protecting from ocular hypertension associated RGC loss.
Collapse
Affiliation(s)
- Cory A. Diemler
- The Jackson Laboratory, Bar Harbor, ME
- Graduate School of Biological Sciences and Engineering, University of Maine, Orono, ME
| | | | - Sarah E. Heuer
- The Jackson Laboratory, Bar Harbor, ME
- Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA
| | | | | | - Richard T. Libby
- Flaum Eye Institute, University of Rochester Medical Center, Rochester, NY
| | - Gareth R. Howell
- The Jackson Laboratory, Bar Harbor, ME
- Graduate School of Biological Sciences and Engineering, University of Maine, Orono, ME
- Flaum Eye Institute, University of Rochester Medical Center, Rochester, NY
| |
Collapse
|
16
|
Shahror RA, Morris CA, Mohammed AA, Wild M, Zaman B, Mitchell CD, Phillips PH, Rusch NJ, Shosha E, Fouda AY. Role of myeloid cells in ischemic retinopathies: recent advances and unanswered questions. J Neuroinflammation 2024; 21:65. [PMID: 38454477 PMCID: PMC10918977 DOI: 10.1186/s12974-024-03058-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 02/28/2024] [Indexed: 03/09/2024] Open
Abstract
Myeloid cells including microglia and macrophages play crucial roles in retinal homeostasis by clearing cellular debris and regulating inflammation. These cells are activated in several blinding ischemic retinal diseases including diabetic retinopathy, where they may exert both beneficial and detrimental effects on neurovascular function and angiogenesis. Myeloid cells impact the progression of retinal pathologies and recent studies suggest that targeting myeloid cells is a promising therapeutic strategy to mitigate diabetic retinopathy and other ischemic retinal diseases. This review summarizes the recent advances in our understanding of the role of microglia and macrophages in retinal diseases and focuses on the effects of myeloid cells on neurovascular injury and angiogenesis in ischemic retinopathies. We highlight gaps in knowledge and advocate for a more detailed understanding of the role of myeloid cells in retinal ischemic injury to fully unlock the potential of targeting myeloid cells as a therapeutic strategy for retinal ischemia.
Collapse
Affiliation(s)
- Rami A Shahror
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences (UAMS), 4301 West Markham Street, Slot 611, BIOMED-1, B306, Little Rock, AR, 72205, USA
| | - Carol A Morris
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences (UAMS), 4301 West Markham Street, Slot 611, BIOMED-1, B306, Little Rock, AR, 72205, USA
| | - Aya A Mohammed
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences (UAMS), 4301 West Markham Street, Slot 611, BIOMED-1, B306, Little Rock, AR, 72205, USA
| | - Melissa Wild
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences (UAMS), 4301 West Markham Street, Slot 611, BIOMED-1, B306, Little Rock, AR, 72205, USA
| | - Bushra Zaman
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences (UAMS), 4301 West Markham Street, Slot 611, BIOMED-1, B306, Little Rock, AR, 72205, USA
| | - Christian D Mitchell
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences (UAMS), 4301 West Markham Street, Slot 611, BIOMED-1, B306, Little Rock, AR, 72205, USA
| | - Paul H Phillips
- Department of Ophthalmology, Harvey & Bernice Jones Eye Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Nancy J Rusch
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences (UAMS), 4301 West Markham Street, Slot 611, BIOMED-1, B306, Little Rock, AR, 72205, USA
| | - Esraa Shosha
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences (UAMS), 4301 West Markham Street, Slot 611, BIOMED-1, B306, Little Rock, AR, 72205, USA
- Clinical Pharmacy Department, Cairo University, Cairo, Egypt
| | - Abdelrahman Y Fouda
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences (UAMS), 4301 West Markham Street, Slot 611, BIOMED-1, B306, Little Rock, AR, 72205, USA.
- Clinical Pharmacy Department, Cairo University, Cairo, Egypt.
| |
Collapse
|
17
|
Rodriguez D, Church KA, Pietramale AN, Cardona SM, Vanegas D, Rorex C, Leary MC, Muzzio IA, Nash KR, Cardona AE. Fractalkine isoforms differentially regulate microglia-mediated inflammation and enhance visual function in the diabetic retina. J Neuroinflammation 2024; 21:42. [PMID: 38311721 PMCID: PMC10840196 DOI: 10.1186/s12974-023-02983-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 12/01/2023] [Indexed: 02/06/2024] Open
Abstract
Diabetic retinopathy (DR) affects about 200 million people worldwide, causing leakage of blood components into retinal tissues, leading to activation of microglia, the resident phagocytes of the retina, promoting neuronal and vascular damage. The microglial receptor, CX3CR1, binds to fractalkine (FKN), an anti-inflammatory chemokine that is expressed on neuronal membranes (mFKN), and undergoes constitutive cleavage to release a soluble domain (sFKN). Deficiencies in CX3CR1 or FKN showed increased microglial activation, inflammation, vascular damage, and neuronal loss in experimental mouse models. To understand the mechanism that regulates microglia function, recombinant adeno-associated viral vectors (rAAV) expressing mFKN or sFKN were delivered to intact retinas prior to diabetes. High-resolution confocal imaging and mRNA-seq were used to analyze microglia morphology and markers of expression, neuronal and vascular health, and inflammatory mediators. We confirmed that prophylactic intra-vitreal administration of rAAV expressing sFKN (rAAV-sFKN), but not mFKN (rAAV-mFKN), in FKNKO retinas provided vasculo- and neuro-protection, reduced microgliosis, mitigated inflammation, improved overall optic nerve health by regulating microglia-mediated inflammation, and prevented fibrin(ogen) leakage at 4 weeks and 10 weeks of diabetes induction. Moreover, administration of sFKN improved visual acuity. Our results elucidated a novel intervention via sFKN gene therapy that provides an alternative pathway to implement translational and therapeutic approaches, preventing diabetes-associated blindness.
Collapse
Affiliation(s)
- Derek Rodriguez
- Department of Molecular Microbiology and Immunology, UTSA Circle, The University of Texas at San Antonio, San Antonio, TX, 78249, USA
| | - Kaira A Church
- Department of Molecular Microbiology and Immunology, UTSA Circle, The University of Texas at San Antonio, San Antonio, TX, 78249, USA
| | - Alicia N Pietramale
- Department of Molecular Microbiology and Immunology, UTSA Circle, The University of Texas at San Antonio, San Antonio, TX, 78249, USA
| | - Sandra M Cardona
- Department of Molecular Microbiology and Immunology, UTSA Circle, The University of Texas at San Antonio, San Antonio, TX, 78249, USA
| | - Difernando Vanegas
- Department of Molecular Microbiology and Immunology, UTSA Circle, The University of Texas at San Antonio, San Antonio, TX, 78249, USA
| | - Colin Rorex
- Department of Molecular Microbiology and Immunology, UTSA Circle, The University of Texas at San Antonio, San Antonio, TX, 78249, USA
| | - Micah C Leary
- Department of Molecular Microbiology and Immunology, UTSA Circle, The University of Texas at San Antonio, San Antonio, TX, 78249, USA
| | - Isabel A Muzzio
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA, 52242, USA
| | - Kevin R Nash
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, FL, 33620, USA
| | - Astrid E Cardona
- Department of Molecular Microbiology and Immunology, UTSA Circle, The University of Texas at San Antonio, San Antonio, TX, 78249, USA.
| |
Collapse
|
18
|
Rodriguez D, Church KA, Smith CT, Vanegas D, Cardona SM, Muzzio IA, Nash KR, Cardona AE. Therapeutic Delivery of Soluble Fractalkine Ameliorates Vascular Dysfunction in the Diabetic Retina. Int J Mol Sci 2024; 25:1727. [PMID: 38339005 PMCID: PMC10855319 DOI: 10.3390/ijms25031727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/20/2024] [Accepted: 01/27/2024] [Indexed: 02/12/2024] Open
Abstract
Diabetic retinopathy (DR)-associated vision loss is a devastating disease affecting the working-age population. Retinal pathology is due to leakage of serum components into retinal tissues, activation of resident phagocytes (microglia), and vascular and neuronal damage. While short-term interventions are available, they do not revert visual function or halt disease progression. The impact of microglial inflammatory responses on the neurovascular unit remains unknown. In this study, we characterized microglia-vascular interactions in an experimental model of DR. Early diabetes presents activated retinal microglia, vascular permeability, and vascular abnormalities coupled with vascular tortuosity and diminished astrocyte and endothelial cell-associated tight-junction (TJ) and gap-junction (GJ) proteins. Microglia exclusively bind to the neuronal-derived chemokine fractalkine (FKN) via the CX3CR1 receptor to ameliorate microglial activation. Using neuron-specific recombinant adeno-associated viruses (rAAVs), we therapeutically overexpressed soluble (sFKN) or membrane-bound (mFKN) FKN using intra-vitreal delivery at the onset of diabetes. This study highlights the neuroprotective role of rAAV-sFKN, reducing microglial activation, vascular tortuosity, fibrin(ogen) deposition, and astrogliosis and supporting the maintenance of the GJ connexin-43 (Cx43) and TJ zonula occludens-1 (ZO-1) molecules. The results also show that microglia-vascular interactions influence the vascular width upon administration of rAAV-sFKN and rAAV-mFKN. Administration of rAAV-sFKN improved visual function without affecting peripheral immune responses. These findings suggest that overexpression of rAAV-sFKN can mitigate vascular abnormalities by promoting glia-neural signaling. sFKN gene therapy is a promising translational approach to reverse vision loss driven by vascular dysfunction.
Collapse
Affiliation(s)
- Derek Rodriguez
- Department of Molecular Microbiology and Immunology, The University of Texas at San Antonio, San Antonio, TX 78249, USA; (D.R.); (K.A.C.); (C.T.S.); (D.V.); (S.M.C.)
| | - Kaira A. Church
- Department of Molecular Microbiology and Immunology, The University of Texas at San Antonio, San Antonio, TX 78249, USA; (D.R.); (K.A.C.); (C.T.S.); (D.V.); (S.M.C.)
| | - Chelsea T. Smith
- Department of Molecular Microbiology and Immunology, The University of Texas at San Antonio, San Antonio, TX 78249, USA; (D.R.); (K.A.C.); (C.T.S.); (D.V.); (S.M.C.)
| | - Difernando Vanegas
- Department of Molecular Microbiology and Immunology, The University of Texas at San Antonio, San Antonio, TX 78249, USA; (D.R.); (K.A.C.); (C.T.S.); (D.V.); (S.M.C.)
| | - Sandra M. Cardona
- Department of Molecular Microbiology and Immunology, The University of Texas at San Antonio, San Antonio, TX 78249, USA; (D.R.); (K.A.C.); (C.T.S.); (D.V.); (S.M.C.)
| | - Isabel A. Muzzio
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA 52242, USA;
| | - Kevin R. Nash
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, FL 33612, USA;
| | - Astrid E. Cardona
- Department of Molecular Microbiology and Immunology, The University of Texas at San Antonio, San Antonio, TX 78249, USA; (D.R.); (K.A.C.); (C.T.S.); (D.V.); (S.M.C.)
| |
Collapse
|
19
|
Laudenberg N, Kinuthia UM, Langmann T. Microglia depletion/repopulation does not affect light-induced retinal degeneration in mice. Front Immunol 2024; 14:1345382. [PMID: 38288111 PMCID: PMC10822957 DOI: 10.3389/fimmu.2023.1345382] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 12/28/2023] [Indexed: 01/31/2024] Open
Abstract
Reactive microglia are a hallmark of age-related retinal degenerative diseases including age-related macular degeneration (AMD). These cells are capable of secreting neurotoxic substances that may aggravate inflammation that leads to loss of photoreceptors and impaired vision. Despite their role in driving detrimental inflammation, microglia also play supporting roles in the retina as they are a crucial cellular component of the regulatory innate immune system. In this study, we used the colony stimulating factor 1 receptor (CSF1R)-antagonist PLX3397 to investigate the effects of microglia depletion and repopulation in a mouse model of acute retinal degeneration that mimics some aspects of dry AMD. Our main goal was to investigate whether microglia depletion and repopulation affects the outcome of light-induced retinal degeneration. We found that microglia depletion effectively decreased the expression of several key pro-inflammatory factors but was unable to influence the extent of retinal degeneration as determined by optical coherence tomography (OCT) and histology. Interestingly, we found prominent cell debris accumulation in the outer retina under conditions of microglia depletion, presumably due to the lack of efficient phagocytosis that could not be compensated by the retinal pigment epithelium. Moreover, our in vivo experiments showed that renewal of retinal microglia by repopulation did also not prevent rapid microglia activation or preserve photoreceptor death under conditions of light damage. We conclude that microglia ablation strongly reduces the expression of pro-inflammatory factors but cannot prevent photoreceptor loss in the light-damage paradigm of retinal degeneration.
Collapse
Affiliation(s)
- Nils Laudenberg
- Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Urbanus Muthai Kinuthia
- Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Thomas Langmann
- Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| |
Collapse
|
20
|
Keeley PW, Trod S, Gamboa BN, Coffey PJ, Reese BE. Nfia Is Critical for AII Amacrine Cell Production: Selective Bipolar Cell Dependencies and Diminished ERG. J Neurosci 2023; 43:8367-8384. [PMID: 37775301 PMCID: PMC10711738 DOI: 10.1523/jneurosci.1099-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/20/2023] [Accepted: 09/21/2023] [Indexed: 10/01/2023] Open
Abstract
The nuclear factor one (NFI) transcription factor genes Nfia, Nfib, and Nfix are all enriched in late-stage retinal progenitor cells, and their loss has been shown to retain these progenitors at the expense of later-generated retinal cell types. Whether they play any role in the specification of those later-generated fates is unknown, but the expression of one of these, Nfia, in a specific amacrine cell type may intimate such a role. Here, Nfia conditional knockout (Nfia-CKO) mice (both sexes) were assessed, finding a massive and largely selective absence of AII amacrine cells. There was, however, a partial reduction in type 2 cone bipolar cells (CBCs), being richly interconnected to AII cells. Counts of dying cells showed a significant increase in Nfia-CKO retinas at postnatal day (P)7, after AII cell numbers were already reduced but in advance of the loss of type 2 CBCs detected by P10. Those results suggest a role for Nfia in the specification of the AII amacrine cell fate and a dependency of the type 2 CBCs on them. Delaying the conditional loss of Nfia to the first postnatal week did not alter AII cell number nor differentiation, further suggesting that its role in AII cells is solely associated with their production. The physiological consequences of their loss were assessed using the ERG, finding the oscillatory potentials to be profoundly diminished. A slight reduction in the b-wave was also detected, attributed to an altered distribution of the terminals of rod bipolar cells, implicating a role of the AII amacrine cells in constraining their stratification.SIGNIFICANCE STATEMENT The transcription factor NFIA is shown to play a critical role in the specification of a single type of retinal amacrine cell, the AII cell. Using an Nfia-conditional knockout mouse to eliminate this population of retinal neurons, we demonstrate two selective bipolar cell dependencies on the AII cells; the terminals of rod bipolar cells become mis-stratified in the inner plexiform layer, and one type of cone bipolar cell undergoes enhanced cell death. The physiological consequence of this loss of the AII cells was also assessed, finding the cells to be a major contributor to the oscillatory potentials in the electroretinogram.
Collapse
Affiliation(s)
- Patrick W Keeley
- Neuroscience Research Institute, University of California, Santa Barbara, California 93106-5060
| | - Stephanie Trod
- Neuroscience Research Institute, University of California, Santa Barbara, California 93106-5060
| | - Bruno N Gamboa
- Neuroscience Research Institute, University of California, Santa Barbara, California 93106-5060
| | - Pete J Coffey
- Neuroscience Research Institute, University of California, Santa Barbara, California 93106-5060
| | - Benjamin E Reese
- Neuroscience Research Institute, University of California, Santa Barbara, California 93106-5060
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, California 93106-5060
| |
Collapse
|
21
|
Hong S, Weerasinghe-Mudiyanselage PDE, Kang S, Moon C, Shin T. Retinal transcriptome profiling identifies novel candidate genes associated with visual impairment in a mouse model of multiple sclerosis. Anim Cells Syst (Seoul) 2023; 27:219-233. [PMID: 37808551 PMCID: PMC10552570 DOI: 10.1080/19768354.2023.2264354] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 09/22/2023] [Indexed: 10/10/2023] Open
Abstract
Visual impairment is occasionally observed in multiple sclerosis (MS) and its animal model, experimental autoimmune encephalomyelitis (EAE). Although uveitis and optic neuritis have been reported in MS and EAE, the precise mechanisms underlying the pathogenesis of these visual impairments remain poorly understood. This study aims to identify differentially expressed genes (DEGs) in the retinas of mice with EAE to identify genes that may be implicated in EAE-induced visual impairment. Fourteen adult mice were injected with myelin oligodendrocyte glycoprotein35-55 to induce the EAE model. Transcriptomes of retinas with EAE were analyzed by RNA-sequencing. Gene expression analysis revealed 347 DEGs in the retinas of mice with EAE: 345 were upregulated, and 2 were downregulated (adjusted p-value < 0.05 and absolute log2 fold change > 1). Gene ontology (GO) analysis showed that the upregulated genes in the retinas of mice with EAE were primarily related to immune responses, responses to external biotic stimuli, defense responses, and leukocyte-mediated immunity in the GO biological process. The expression of six upregulated hub genes (c1qb, ctss, itgam, itgb2, syk, and tyrobp) from the STRING analysis and the two significantly downregulated DEGs (hapln1 and ndst4) were validated by reverse transcription-quantitative polymerase chain reaction. In addition, gene set enrichment analysis showed that the negatively enriched gene sets in EAE-affected retinas were associated with the neuronal system and phototransduction cascade. This study provides novel molecular evidence for visual impairments in EAE and indicates directions for further research to elucidate the mechanisms of these visual impairments in MS.
Collapse
Affiliation(s)
- Sungmoo Hong
- Department of Veterinary Anatomy, College of Veterinary Medicine and Veterinary Medical Research Institute, Jeju National University, Jeju, Republic of Korea
| | - Poornima D. E. Weerasinghe-Mudiyanselage
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju, Republic of Korea
| | - Sohi Kang
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju, Republic of Korea
| | - Changjong Moon
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju, Republic of Korea
| | - Taekyun Shin
- Department of Veterinary Anatomy, College of Veterinary Medicine and Veterinary Medical Research Institute, Jeju National University, Jeju, Republic of Korea
| |
Collapse
|
22
|
Church KA, Rodriguez D, Mendiola AS, Vanegas D, Gutierrez IL, Tamayo I, Amadu A, Velazquez P, Cardona SM, Gyoneva S, Cotleur AC, Ransohoff RM, Kaur T, Cardona AE. Pharmacological depletion of microglia alleviates neuronal and vascular damage in the diabetic CX3CR1-WT retina but not in CX3CR1-KO or hCX3CR1 I249/M280-expressing retina. Front Immunol 2023; 14:1130735. [PMID: 37033925 PMCID: PMC10077890 DOI: 10.3389/fimmu.2023.1130735] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 02/28/2023] [Indexed: 04/11/2023] Open
Abstract
Diabetic retinopathy, a microvascular disease characterized by irreparable vascular damage, neurodegeneration and neuroinflammation, is a leading complication of diabetes mellitus. There is no cure for DR, and medical interventions marginally slow the progression of disease. Microglia-mediated inflammation in the diabetic retina is regulated via CX3CR1-FKN signaling, where FKN serves as a calming signal for microglial activation in several neuroinflammatory models. Polymorphic variants of CX3CR1, hCX3CR1I249/M280 , found in 25% of the human population, result in a receptor with lower binding affinity for FKN. Furthermore, disrupted CX3CR1-FKN signaling in CX3CR1-KO and FKN-KO mice leads to exacerbated microglial activation, robust neuronal cell loss and substantial vascular damage in the diabetic retina. Thus, studies to characterize the effects of hCX3CR1I249/M280 -expression in microglia-mediated inflammation in the diseased retina are relevant to identify mechanisms by which microglia contribute to disease progression. Our results show that hCX3CR1I249/M280 mice are significantly more susceptible to microgliosis and production of Cxcl10 and TNFα under acute inflammatory conditions. Inflammation is exacerbated under diabetic conditions and coincides with robust neuronal loss in comparison to CX3CR1-WT mice. Therefore, to further investigate the role of hCX3CR1I249/M280 -expression in microglial responses, we pharmacologically depleted microglia using PLX-5622, a CSF-1R antagonist. PLX-5622 treatment led to a robust (~70%) reduction in Iba1+ microglia in all non-diabetic and diabetic mice. CSF-1R antagonism in diabetic CX3CR1-WT prevented TUJ1+ axonal loss, angiogenesis and fibrinogen deposition. In contrast, PLX-5622 microglia depletion in CX3CR1-KO and hCX3CR1I249/M280 mice did not alleviate TUJ1+ axonal loss or angiogenesis. Interestingly, PLX-5622 treatment reduced fibrinogen deposition in CX3CR1-KO mice but not in hCX3CR1I249/M280 mice, suggesting that hCX3CR1I249/M280 expressing microglia influences vascular pathology differently compared to CX3CR1-KO microglia. Currently CX3CR1-KO mice are the most commonly used strain to investigate CX3CR1-FKN signaling effects on microglia-mediated inflammation and the results in this study indicate that hCX3CR1I249/M280 receptor variants may serve as a complementary model to study dysregulated CX3CR1-FKN signaling. In summary, the protective effects of microglia depletion is CX3CR1-dependent as microglia depletion in CX3CR1-KO and hCX3CR1I249/M280 mice did not alleviate retinal degeneration nor microglial morphological activation as observed in CX3CR1-WT mice.
Collapse
Affiliation(s)
- Kaira A. Church
- Department of Molecular Microbiology and Immunology, The University of Texas at San Antonio, San Antonio, TX, United States
- South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX, United States
| | - Derek Rodriguez
- Department of Molecular Microbiology and Immunology, The University of Texas at San Antonio, San Antonio, TX, United States
- South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX, United States
| | - Andrew S. Mendiola
- Department of Molecular Microbiology and Immunology, The University of Texas at San Antonio, San Antonio, TX, United States
- South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX, United States
| | - Difernando Vanegas
- Department of Molecular Microbiology and Immunology, The University of Texas at San Antonio, San Antonio, TX, United States
- South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX, United States
| | - Irene L. Gutierrez
- Department of Molecular Microbiology and Immunology, The University of Texas at San Antonio, San Antonio, TX, United States
- Department of Pharmacology and Toxicology, Universidad Complutense de Madrid, Centro de Investigacion Biomedica en Red Salud Mental (CIBERSAM), Madrid, Spain
| | - Ian Tamayo
- Department of Molecular Microbiology and Immunology, The University of Texas at San Antonio, San Antonio, TX, United States
| | - Abdul Amadu
- Department of Molecular Microbiology and Immunology, The University of Texas at San Antonio, San Antonio, TX, United States
| | - Priscila Velazquez
- Department of Molecular Microbiology and Immunology, The University of Texas at San Antonio, San Antonio, TX, United States
| | - Sandra M. Cardona
- Department of Molecular Microbiology and Immunology, The University of Texas at San Antonio, San Antonio, TX, United States
- South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX, United States
| | - Stefka Gyoneva
- Human Genetics, Cerevel Therapeutics, Cambridge, MA, United States
- Acute Neurology, Biogen, Cambridge, MA, United States
| | | | - Richard M. Ransohoff
- Acute Neurology, Biogen, Cambridge, MA, United States
- Department of Neurosciences, The Cleveland Clinic Lerner Research Institute, Cleveland, OH, United States
- Neuroinflammation Research Center, The Cleveland Clinic Lerner Research Institute, Cleveland, OH, United States
| | - Tejbeer Kaur
- Biomedical Sciences, School of Medicine, Creighton University, Omaha, NE, United States
| | - Astrid E. Cardona
- Department of Molecular Microbiology and Immunology, The University of Texas at San Antonio, San Antonio, TX, United States
- South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX, United States
| |
Collapse
|