1
|
Dlala A, Gabsi A, Ben Salem K, Boutabba A, Nacer I, Missaoui F, Neili B, Saïd F, Smiti-Khanfir M, Triki-Marrakchi R. Elevated Interleukin-21 expression is correlated with systemic sclerosis' severity in Tunisian patients. Hum Immunol 2024; 85:111154. [PMID: 39418741 DOI: 10.1016/j.humimm.2024.111154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 10/03/2024] [Accepted: 10/04/2024] [Indexed: 10/19/2024]
Abstract
Systemic sclerosis (SSc), a rare and lethal autoimmune disorder where patients presents diverse clinical features, therefore unravelling a potential biomarker within a specific cohort is crucial for improving patient care, especially for rare diseases. This study sought to identify potential biomarkers in Tunisian SSc patients. Gene expression analysis of interleukins (IL)-21 and IL-22 in peripheral blood mononuclear cells, using quantitative real-time polymerase chain reaction (qrt-pcr), revealed upregulated IL-21 and downregulated IL-22 in SSc patients compared to healthy controls. Notably, IL-21 overexpression in patients correlated with pulmonary complications, a severe SSc manifestation. Interestingly, flow cytometry analysis displayed no difference in Th17 cells between groups, suggesting that Th17 might not be the primary drivers of cytokine dysregulation. The hypothesis was supported by qRT-PCR, which analysed two key genes: IL-17A and RORγt. Finally, we examined RNA sequencing data to further validate our hypothesis. Collectively, our study provides novel insights into the cytokine landscape of SSc in Tunisian patients, highlighting a dysregulation in IL-21 and IL-22 expression, and suggesting that IL-21 could be a potential biomarker of severity.
Collapse
Affiliation(s)
- Akram Dlala
- Laboratory of Genetics Immunology and Human Pathology, Biology Department, Faculty of Sciences of Tunis, University of Tunis el Manar, Tunis, Tunisia
| | - Amira Gabsi
- Laboratory of Genetics Immunology and Human Pathology, Biology Department, Faculty of Sciences of Tunis, University of Tunis el Manar, Tunis, Tunisia
| | - Khalil Ben Salem
- Laboratory of Genetics Immunology and Human Pathology, Biology Department, Faculty of Sciences of Tunis, University of Tunis el Manar, Tunis, Tunisia
| | - Alya Boutabba
- Laboratory of Genetics Immunology and Human Pathology, Biology Department, Faculty of Sciences of Tunis, University of Tunis el Manar, Tunis, Tunisia
| | - Ines Nacer
- Internal Medicine Department, University Hospital La Rabta, Tunis, Tunisia
| | - Fadoua Missaoui
- Laboratory of Genetics Immunology and Human Pathology, Biology Department, Faculty of Sciences of Tunis, University of Tunis el Manar, Tunis, Tunisia
| | - Bilel Neili
- Laboratory of Genetics Immunology and Human Pathology, Biology Department, Faculty of Sciences of Tunis, University of Tunis el Manar, Tunis, Tunisia
| | - Fatma Saïd
- Internal Medicine Department, University Hospital La Rabta, Tunis, Tunisia
| | | | - Raja Triki-Marrakchi
- Laboratory of Genetics Immunology and Human Pathology, Biology Department, Faculty of Sciences of Tunis, University of Tunis el Manar, Tunis, Tunisia.
| |
Collapse
|
2
|
Fang Q, Xie J, Zong J, Zhou Y, Zhou Q, Yin S, Cao L, Yin H, Zhou D. Expression and diagnostic value of interleukin-22 in rheumatoid arthritis-associated interstitial lung disease. Int Immunopharmacol 2024; 134:112173. [PMID: 38728884 DOI: 10.1016/j.intimp.2024.112173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/13/2024] [Accepted: 04/27/2024] [Indexed: 05/12/2024]
Abstract
Rheumatoid arthritis-associated interstitial lung disease (RA-ILD) is characterized by a high incidence and mortality rate, highlighting the need for biomarkers to detect ILD early in RA patients. Previous studies have shown the protective effects of Interleukin-22 (IL-22) in pulmonary fibrosis using mouse models. This study aims to assess IL-22 expression in RA-ILD to validate foundational experiments and explore its diagnostic value. The study included 66 newly diagnosed RA patients (33 with ILD, 33 without ILD) and 14 healthy controls (HC). ELISA was utilized to measure IL-22 levels and perform intergroup comparisons. The correlation between IL-22 levels and the severity of RA-ILD was examined. Logistic regression analysis was employed to screen potential predictive factors for RA-ILD risk and establish a predictive nomogram. The diagnostic value of IL-22 in RA-ILD was assessed using ROC. Subsequently, the data were subjected to 30-fold cross-validation. IL-22 levels in the RA-ILD group were lower than in the RA-No-ILD group and were inversely correlated with the severity of RA-ILD. Logistic regression analysis identified IL-22, age, smoking history, anti-mutated citrullinated vimentin antibody (MCV-Ab), and mean corpuscular hemoglobin concentration (MCHC) as independent factors for distinguishing between the groups. The diagnostic value of IL-22 in RA-ILD was moderate (AUC = 0.75) and improved when combined with age, smoking history, MCV-Ab and MCHC (AUC = 0.97). After 30-fold cross-validation, the average AUC was 0.886. IL-22 expression is dysregulated in the pathogenesis of RA-ILD. This study highlights the potential of IL-22, along with other factors, as a valuable biomarker for assessing RA-ILD occurrence and progression.
Collapse
Affiliation(s)
- Quanquan Fang
- Department of Rheumatology and Immunology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221005, Jiangsu Province, China
| | - Jingzhi Xie
- Department of Rheumatology and Immunology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221005, Jiangsu Province, China
| | - Juan Zong
- Department of Rheumatology and Immunology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221005, Jiangsu Province, China
| | - Yu Zhou
- School of Mathematics and Statistics, Jiangsu Normal University, Xuzhou 221116, Jiangsu Province, China
| | - Qin Zhou
- School of Mathematics and Statistics, Jiangsu Normal University, Xuzhou 221116, Jiangsu Province, China
| | - Songlou Yin
- Department of Rheumatology and Immunology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221005, Jiangsu Province, China
| | - Lina Cao
- Department of Rheumatology and Immunology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221005, Jiangsu Province, China
| | - Hanqiu Yin
- Department of Rheumatology and Immunology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221005, Jiangsu Province, China.
| | - Dongmei Zhou
- Department of Rheumatology and Immunology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221005, Jiangsu Province, China.
| |
Collapse
|
3
|
Liu J, Liu F, Liang T, Zhou Y, Su X, Li X, Zeng J, Qu P, Wang Y, Chen F, Lei Q, Li G, Cheng P. The roles of Th cells in myocardial infarction. Cell Death Discov 2024; 10:287. [PMID: 38879568 PMCID: PMC11180143 DOI: 10.1038/s41420-024-02064-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 06/07/2024] [Accepted: 06/10/2024] [Indexed: 06/19/2024] Open
Abstract
Myocardial infarction, commonly known as a heart attack, is a serious condition caused by the abrupt stoppage of blood flow to a part of the heart, leading to tissue damage. A significant aspect of this condition is reperfusion injury, which occurs when blood flow is restored but exacerbates the damage. This review first addresses the role of the innate immune system, including neutrophils and macrophages, in the cascade of events leading to myocardial infarction and reperfusion injury. It then shifts focus to the critical involvement of CD4+ T helper cells in these processes. These cells, pivotal in regulating the immune response and tissue recovery, include various subpopulations such as Th1, Th2, Th9, Th17, and Th22, each playing a unique role in the pathophysiology of myocardial infarction and reperfusion injury. These subpopulations contribute to the injury process through diverse mechanisms, with cytokines such as IFN-γ and IL-4 influencing the balance between tissue repair and injury exacerbation. Understanding the interplay between the innate immune system and CD4+ T helper cells, along with their cytokines, is crucial for developing targeted therapies to mitigate myocardial infarction and reperfusion injury, ultimately improving outcomes for cardiac patients.
Collapse
Affiliation(s)
- Jun Liu
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, China
| | - Feila Liu
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, China
| | - Tingting Liang
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, China
| | - Yue Zhou
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, China
| | - Xiaohan Su
- Department of Breast and Thyroid Surgery, Biological Targeting Laboratory of Breast Cancer, Academician (expert) workstation, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Xue Li
- Department of Laboratory Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Jiao Zeng
- Department of Breast and Thyroid Surgery, Biological Targeting Laboratory of Breast Cancer, Academician (expert) workstation, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Peng Qu
- Department of Laboratory Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Yali Wang
- Department of Breast and Thyroid Surgery, Biological Targeting Laboratory of Breast Cancer, Academician (expert) workstation, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Fuli Chen
- Institute of Cardiovascular Diseases & Department of Cardiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Qian Lei
- Department of Anesthesiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.
| | - Gang Li
- Institute of Cardiovascular Diseases & Department of Cardiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.
| | - Panke Cheng
- Institute of Cardiovascular Diseases & Department of Cardiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.
- Ultrasound in Cardiac Electrophysiology and Biomechanics Key Laboratory of Sichuan Province, Chengdu, China.
| |
Collapse
|
4
|
Golino M, Harding D, Del Buono MG, Fanti S, Mohiddin S, Toldo S, Smyth J, Sanna T, Marelli-Berg F, Abbate A. Innate and adaptive immunity in acute myocarditis. Int J Cardiol 2024; 404:131901. [PMID: 38403204 PMCID: PMC11450758 DOI: 10.1016/j.ijcard.2024.131901] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/12/2024] [Accepted: 02/21/2024] [Indexed: 02/27/2024]
Abstract
Acute myocarditis is an acute inflammatory cardiomyopathy associated with cardiac damage triggered by a virus or a pathological immune activation. It may present with a wide range of clinical presentations, ranging from mild symptoms to severe forms like fulminant myocarditis, characterized by hemodynamic compromise and cardiogenic shock. The immune system plays a central role in the pathogenesis of myocarditis. In fact, while its function is primarily protective, aberrant responses can be detrimental. In this context, both innate and adaptive immunity play pivotal roles; notably, the innate system offers a non-specific and immediate defense, while the adaptive provides specialized protection with immunological memory. However, dysregulation in these systems can misidentify cardiac tissue, triggering autoimmune reactions and possibly leading to significant cardiac tissue damage. This review highlights the importance of innate and adaptive immune responses in the progression and treatment of acute myocarditis.
Collapse
Affiliation(s)
- Michele Golino
- Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA, United States of America; Pauley Heart Center, Virginia Commonwealth University, Richmond, VA, United States of America
| | - Daniel Harding
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, London, United Kingdom
| | - Marco Giuseppe Del Buono
- Department of Cardiovascular Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Silvia Fanti
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, London, United Kingdom
| | - Saidi Mohiddin
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, London, United Kingdom; Barts Heart Centre, London, United Kingdom
| | - Stefano Toldo
- Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA, United States of America
| | - James Smyth
- Fralin Biomedical Research Institute at Virginia Tech Carillion, Roanoke, VA, United States of America; Virginia Tech Carilion School of Medicine, Roanoke, VA, United States of America; Department of Biological Sciences, College of Science, Virginia Tech, Blacksburg, VA, United States of America
| | - Tommaso Sanna
- Department of Cardiovascular Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Federica Marelli-Berg
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, London, United Kingdom.
| | - Antonio Abbate
- Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA, United States of America.
| |
Collapse
|
5
|
Wang L, Sun T, Liu X, Wang Y, Qiao X, Chen N, Liu F, Zhou X, Wang H, Shen H. Myocarditis: A multi-omics approach. Clin Chim Acta 2024; 554:117752. [PMID: 38184138 DOI: 10.1016/j.cca.2023.117752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 12/29/2023] [Accepted: 12/29/2023] [Indexed: 01/08/2024]
Abstract
Myocarditis, an inflammatory condition of weakened heart muscles often triggered by a variety of causes, that can result in heart failure and sudden death. Novel ways to enhance our understanding of myocarditis pathogenesis is available through newer modalities (omics). In this review, we examine the roles of various biomolecules and associated functional pathways across genomics, transcriptomics, proteomics, and metabolomics in the pathogenesis of myocarditis. Our analysis further explores the reproducibility and variability intrinsic to omics studies, underscoring the necessity and significance of employing a multi-omics approach to gain profound insights into myocarditis pathogenesis. This integrated strategy not only enhances our understanding of the disease, but also confirms the critical importance of a holistic multi-omics approach in disease analysis.
Collapse
Affiliation(s)
- Lulu Wang
- School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Tao Sun
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang 212000, Jiangsu, China
| | - Xiaolan Liu
- School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Yan Wang
- School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Xiaorong Qiao
- School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Nuo Chen
- School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Fangqian Liu
- School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Xiaoxiang Zhou
- School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Hua Wang
- School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Hongxing Shen
- School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, China.
| |
Collapse
|
6
|
Zhang Y, Zhou X, Chen S, Sun X, Zhou C. Immune mechanisms of group B coxsackievirus induced viral myocarditis. Virulence 2023; 14:2180951. [PMID: 36827455 PMCID: PMC9980623 DOI: 10.1080/21505594.2023.2180951] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023] Open
Abstract
Viral myocarditis is known to be a primary cause of dilated cardiomyopathy (DCM) that can lead to heart failure and sudden cardiac death and is invariably caused by myocardial viral infection following active inflammatory destruction of the myocardium. Although acute viral myocarditis frequently recovers on its own, current chronic myocarditis therapies are unsatisfactory, where the persistence of viral or immunological insults to the heart may play a role. Cellular and mouse experimental models that utilized the most prevalent Coxsackievirus group B type 3 (CVB3) virus infection causing myocarditis have illustrated the pathophysiology of viral myocarditis. In this review, immunological insights into the different stages of development of viral myocarditis were discussed, concentrating on the mechanisms of innate and adaptive immunity in the development of CVB3-induced myocarditis.
Collapse
Affiliation(s)
- Yue Zhang
- Clinical Medical Laboratory Center, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou, China,School of public health, Nantong University, Nantong, China
| | - Xiaobin Zhou
- Clinical Medical Laboratory Center, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou, China
| | - Shuyi Chen
- Clinical Medical Laboratory Center, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou, China
| | - Xinchen Sun
- Clinical Medical Laboratory Center, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou, China
| | - Chenglin Zhou
- Clinical Medical Laboratory Center, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou, China,CONTACT Chenglin Zhou Clinical Medical Laboratory Center, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou, China
| |
Collapse
|
7
|
Haybar H, Bandar B, Torfi E, Mohebbi A, Saki N. Cytokines and their role in cardiovascular diseases. Cytokine 2023; 169:156261. [PMID: 37413877 DOI: 10.1016/j.cyto.2023.156261] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/28/2023] [Accepted: 06/01/2023] [Indexed: 07/08/2023]
Abstract
The evaluation of diagnostic and prognostic biomarkers has always been a hot topic in various diseases. Considering that cardiovascular diseases (CVDs) have the highest mortality and morbidity rates in the world, various studies have been conducted so far to find CVD associated biomarkers, including cardiac troponin (cTn) and NT-proBNP. Cytokines are components of the immune system that are involved in the pathogenesis of CVD due to their contribution to the inflammation process. The level of cytokines varies in many cardiovascular diseases. For instance, the plasma level of IL-1α, IL-18, IL-33, IL-6 and IL-8 is positively correlated with atherosclerosis and that of some other interleukins such as IL-35 is negatively correlated with acute myocardial infarction or cardiac angina. Due to its pivotal role in the inflammation process, IL-1 super family is involved in many CVDs, including atherosclerosis. IL-20 among the interleukins of IL-10 family has a pro-atherogenic role, while others, such as IL-10 and IL-19, play an anti-atherogenic role. In the present review, we have collected the latest published evidence in this respect to discuss valuable cytokines from the diagnostic and prognostic stand point in CVDs.
Collapse
Affiliation(s)
- Habib Haybar
- Atherosclerosis Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Bita Bandar
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ekhlas Torfi
- Department of Cardiovascular Disease, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Alireza Mohebbi
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Najmaldin Saki
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
8
|
Seth P, Dubey S. IL-22 as a target for therapeutic intervention: Current knowledge on its role in various diseases. Cytokine 2023; 169:156293. [PMID: 37441942 DOI: 10.1016/j.cyto.2023.156293] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 06/12/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023]
Abstract
IL-22 has emerged as a crucial cytokine mediating protective response against pathogens and tissue regeneration. Dysregulated production of IL-22 has been shown to play a pivotal role in the pathogenesis of various diseases like malignant tumours, viral, cardiovascular, allergic and autoimmune disorders. Interleukin 22 belongs to IFN-IL-10 cytokine family. It is a major proinflammatory cytokine secreted by activated Th1 cells (Th22), though can also be secreted by many other immune cells like group 3 innate lymphocytes, γδ T cells, NK cells, NK T cells, and mucosal associated invariant T cells. Th22 cells exclusively release IL-22 but not IL-17 or IFN-γ (as Th1 cells releases IFN-γ along with IL-22 and Th17 cells releases IL-17 along with IL-22) and also express aryl hydrocarbon receptor as the key transcription factor. Th22 cells also exhibit expression of chemokine receptor CCR6 and skin-homing receptors CCR4 and CCR10 indicating the involvement of this subset in bolstering epithelial barrier immunity and promoting secretion of antimicrobial peptides (AMPs) from intestinal epithelial cells. The function of IL-22 is modulated by IL-22 binding protein (binds to IL-22 and inhibits it binding to its cell surface receptor); which serves as a competitor for IL-22R1 chain of IL-22 receptor. The pathogenic and protective nature of the Th22 cells is modulated both by the site of infected tissue and the type of disease pathology. This review aims to discuss key features of IL-22 biology, comparisons between IL and 22 and IFN-γ and its role as a potential immune therapy target in different maladies.
Collapse
Affiliation(s)
- Pranav Seth
- Amity Institute of Virology & Immunology, Amity University Uttar Pradesh, Sector 125, Noida, India
| | - Shweta Dubey
- Amity Institute of Virology & Immunology, Amity University Uttar Pradesh, Sector 125, Noida, India.
| |
Collapse
|
9
|
He W, Zhou L, Xu K, Li H, Wang JJ, Chen C, Wang D. Immunopathogenesis and immunomodulatory therapy for myocarditis. SCIENCE CHINA. LIFE SCIENCES 2023; 66:2112-2137. [PMID: 37002488 PMCID: PMC10066028 DOI: 10.1007/s11427-022-2273-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 01/16/2023] [Indexed: 04/03/2023]
Abstract
Myocarditis is an inflammatory cardiac disease characterized by the destruction of myocardial cells, infiltration of interstitial inflammatory cells, and fibrosis, and is becoming a major public health concern. The aetiology of myocarditis continues to broaden as new pathogens and drugs emerge. The relationship between immune checkpoint inhibitors, severe acute respiratory syndrome coronavirus 2, vaccines against coronavirus disease-2019, and myocarditis has attracted increased attention. Immunopathological processes play an important role in the different phases of myocarditis, affecting disease occurrence, development, and prognosis. Excessive immune activation can induce severe myocardial injury and lead to fulminant myocarditis, whereas chronic inflammation can lead to cardiac remodelling and inflammatory dilated cardiomyopathy. The use of immunosuppressive treatments, particularly cytotoxic agents, for myocarditis, remains controversial. While reasonable and effective immunomodulatory therapy is the general trend. This review focuses on the current understanding of the aetiology and immunopathogenesis of myocarditis and offers new perspectives on immunomodulatory therapies.
Collapse
Affiliation(s)
- Wu He
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, China
| | - Ling Zhou
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, China
| | - Ke Xu
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, China
| | - Huihui Li
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, China
| | - James Jiqi Wang
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, China
| | - Chen Chen
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, China.
| | - DaoWen Wang
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, China.
| |
Collapse
|
10
|
Wang E, Zhou R, Li T, Hua Y, Zhou K, Li Y, Luo S, An Q. The Molecular Role of Immune Cells in Dilated Cardiomyopathy. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1246. [PMID: 37512058 PMCID: PMC10385992 DOI: 10.3390/medicina59071246] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/29/2023] [Accepted: 07/03/2023] [Indexed: 07/30/2023]
Abstract
Dilated cardiomyopathy (DCM) is a rare and severe condition characterized by chamber dilation and impaired contraction of the left ventricle. It constitutes a fundamental etiology for profound heart failure and abrupt cardiac demise, rendering it a prominent clinical indication for heart transplantation (HTx) among both adult and pediatric populations. DCM arises from various etiologies, including genetic variants, epigenetic disorders, infectious insults, autoimmune diseases, and cardiac conduction abnormalities. The maintenance of cardiac function involves two distinct types of immune cells: resident immune cells and recruited immune cells. Resident immune cells play a crucial role in establishing a harmonious microenvironment within the cardiac tissue. Nevertheless, in response to injury, cardiomyocytes initiate a cytokine cascade that attracts peripheral immune cells, thus perturbing this intricate equilibrium and actively participating in the initiation and pathological remodeling of dilated cardiomyopathy (DCM), particularly during the progression of myocardial fibrosis. Additionally, immune cells assume a pivotal role in orchestrating the inflammatory processes, which are intimately linked to the prognosis of DCM. Consequently, understanding the molecular role of various immune cells and their regulation mechanisms would provide an emerging era for managing DCM. In this review, we provide a summary of the most recent advancements in our understanding of the molecular mechanisms of immune cells in DCM. Additionally, we evaluate the effectiveness and limitations of immunotherapy approaches for the treatment of DCM, with the aim of optimizing future immunotherapeutic strategies for this condition.
Collapse
Affiliation(s)
- Enping Wang
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Ruofan Zhou
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Tiange Li
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Yimin Hua
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Kaiyu Zhou
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Yifei Li
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Shuhua Luo
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Qi An
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
11
|
Yamamoto M, Yasukawa H, Takahashi J, Nohara S, Sasaki T, Shibao K, Akagaki D, Okabe K, Yanai T, Shibata T, Fukumoto Y. Endogenous interleukin-22 prevents cardiac rupture after myocardial infarction in mice. PLoS One 2023; 18:e0286907. [PMID: 37319277 PMCID: PMC10270598 DOI: 10.1371/journal.pone.0286907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 05/26/2023] [Indexed: 06/17/2023] Open
Abstract
Myocardial infarction (MI) can result in fatal myocardial rupture or heart failure due to adverse remodeling and dysfunction of the left ventricle. Although recent studies have shown that exogenous interleukin (IL)-22 shows cardioprotective effect after MI, the pathophysiological significance of endogenous IL-22 is unknown. In this study, we investigated the role of endogenous IL-22 in a mouse model of MI. We produced MI model by permanent ligation of the left coronary artery in wild-type (WT) and IL-22 knock-out (KO) mice. The post-MI survival rate was significantly worse in IL-22KO mice than in WT mice due to a higher rate of cardiac rupture. Although IL-22KO mice exhibited a significantly greater infarct size than WT mice, there was no significant difference in left ventricular geometry or function between WT and IL-22KO mice. IL-22KO mice showed increase in infiltrating macrophages and myofibroblasts, and altered expression pattern of inflammation- and extracellular matrix (ECM)-related genes after MI. While IL-22KO mice showed no obvious changes in cardiac morphology or function before MI, expressions of matrix metalloproteinase (MMP)-2 and MMP-9 were increased, whereas that of tissue inhibitor of MMPs (TIMP)-3 was decreased in cardiac tissue. Protein expression of IL-22 receptor complex, IL-22 receptor alpha 1 (IL-22R1) and IL-10 receptor beta (IL-10RB), were increased in cardiac tissue 3 days after MI, regardless of the genotype. We propose that endogenous IL-22 plays an important role in preventing cardiac rupture after MI, possibly by regulating inflammation and ECM metabolism.
Collapse
Affiliation(s)
- Mai Yamamoto
- Cardiovascular Research Institute, Kurume University, Kurume, Japan
| | - Hideo Yasukawa
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Jinya Takahashi
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Shoichiro Nohara
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Tomoko Sasaki
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Kodai Shibao
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Daiki Akagaki
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Kota Okabe
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Toshiyuki Yanai
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Tatsuhiro Shibata
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Yoshihiro Fukumoto
- Cardiovascular Research Institute, Kurume University, Kurume, Japan
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kurume University School of Medicine, Kurume, Japan
| |
Collapse
|
12
|
Identification of key immune-related genes in dilated cardiomyopathy using bioinformatics analysis. Sci Rep 2023; 13:1820. [PMID: 36725968 PMCID: PMC9892583 DOI: 10.1038/s41598-022-26277-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 12/13/2022] [Indexed: 02/03/2023] Open
Abstract
Dilated cardiomyopathy (DCM) is characterized by the left ventricular dilatation and impaired myocardial systolic dysfunction with high mortality and morbidity. However, the underlying mechanisms remain elusive. We first identified the differentially expressed genes (DEGs) between the DCM and control group using two expression profiles from GSE3585 and GSE84796. Enrichment analysis was conducted to explore the potential mechanisms underlying DCM. A total of four algorithms, including key module of MCODE, degree, maximum neighborhood component (MNC), and maximal clique centrality (MCC), were used to identify the hub genes within Cytoscape. The correlation between hub genes and infiltrated immune cells was evaluated to determine potential immune-related genes. The expression analysis and diagnosis value analysis of potential immune-related genes were performed. Finally, the expression analysis with GSE57338 and relationship analysis with the comparative toxicogenomics database (CTD) were performed to identify the key immune-related genes in DCM. A total of 80 DEGs were screened for DCM. Enrichment analysis revealed that DEGs were involved in the immune-related pathological process. Immune infiltration analysis indicated a potentially abnormal immune response in DCM. Four up-regulated genes (COL1A2, COL3A1, CD53, and POSTN) were identified as potential immune-related genes. Finally, three genes (COL1A2, COL3A1, and POSTN) were determined as the key immune-related genes in DCM via expression analysis with a validation set (GSE57338) and relationship analysis with CTD. Our study suggested that the upregulated COL1A2, COL3A1, and POSTN might be the key immune-related genes for DCM. Further studies are needed to validate the underlying mechanisms.
Collapse
|
13
|
Zhang K, Chen L, Zhu C, Zhang M, Liang C. Current Knowledge of Th22 Cell and IL-22 Functions in Infectious Diseases. Pathogens 2023; 12:pathogens12020176. [PMID: 36839448 PMCID: PMC9965464 DOI: 10.3390/pathogens12020176] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/19/2023] [Accepted: 01/19/2023] [Indexed: 01/24/2023] Open
Abstract
T helper 22 (Th22) cells, a newly defined CD4+ T-cell lineage, are characterized by their distinct cytokine profile, which primarily consists of IL-13, IL-22 and TNF-α. Th22 cells express a wide spectrum of chemokine receptors, such as CCR4, CCR6 and CCR10. The main effector molecule secreted by Th22 cells is IL-22, a member of the IL-10 family, which acts by binding to IL-22R and triggering a complex downstream signaling system. Th22 cells and IL-22 have been found to play variable roles in human immunity. In preventing the progression of infections such as HIV and influenza, Th22/IL-22 exhibited protective anti-inflammatory characteristics, and their deleterious proinflammatory activities have been demonstrated to exacerbate other illnesses, including hepatitis B and Helicobacter pylori infection. Herein, we review the current understanding of Th22 cells, including their definition, differentiation and mechanisms, and the effect of Th22/IL-22 on human infectious diseases. According to studies on Th22 cells, Th22/IL-22 may be a promising therapeutic target and an effective treatment strategy for various infections.
Collapse
Affiliation(s)
- Kunyu Zhang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei 230022, China
- Institute of Urology, Anhui Medical University, Hefei 230022, China
- The Second Clinical Medical College, Anhui Medical University, Hefei 230032, China
| | - Lei Chen
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei 230022, China
- Institute of Urology, Anhui Medical University, Hefei 230022, China
| | - Chenyu Zhu
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei 230022, China
- Institute of Urology, Anhui Medical University, Hefei 230022, China
- The Second Clinical Medical College, Anhui Medical University, Hefei 230032, China
| | - Meng Zhang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei 230022, China
- Institute of Urology, Anhui Medical University, Hefei 230022, China
- Correspondence: (M.Z.); (C.L.); Tel./Fax: +86-55162922034 (M.Z.); +86-55162922034 (C.L.)
| | - Chaozhao Liang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei 230022, China
- Institute of Urology, Anhui Medical University, Hefei 230022, China
- Correspondence: (M.Z.); (C.L.); Tel./Fax: +86-55162922034 (M.Z.); +86-55162922034 (C.L.)
| |
Collapse
|
14
|
Fanti S, Stephenson E, Rocha-Vieira E, Protonotarios A, Kanoni S, Shahaj E, Longhi MP, Vyas VS, Dyer C, Pontarini E, Asimaki A, Bueno-Beti C, De Gaspari M, Rizzo S, Basso C, Bombardieri M, Coe D, Wang G, Harding D, Gallagher I, Solito E, Elliott P, Heymans S, Sikking M, Savvatis K, Mohiddin SA, Marelli-Berg FM. Circulating c-Met-Expressing Memory T Cells Define Cardiac Autoimmunity. Circulation 2022; 146:1930-1945. [PMID: 36417924 PMCID: PMC9770129 DOI: 10.1161/circulationaha.121.055610] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 09/20/2022] [Indexed: 11/25/2022]
Abstract
BACKGROUND Autoimmunity is increasingly recognized as a key contributing factor in heart muscle diseases. The functional features of cardiac autoimmunity in humans remain undefined because of the challenge of studying immune responses in situ. We previously described a subset of c-mesenchymal epithelial transition factor (c-Met)-expressing (c-Met+) memory T lymphocytes that preferentially migrate to cardiac tissue in mice and humans. METHODS In-depth phenotyping of peripheral blood T cells, including c-Met+ T cells, was undertaken in groups of patients with inflammatory and noninflammatory cardiomyopathies, patients with noncardiac autoimmunity, and healthy controls. Validation studies were carried out using human cardiac tissue and in an experimental model of cardiac inflammation. RESULTS We show that c-Met+ T cells are selectively increased in the circulation and in the myocardium of patients with inflammatory cardiomyopathies. The phenotype and function of c-Met+ T cells are distinct from those of c-Met-negative (c-Met-) T cells, including preferential proliferation to cardiac myosin and coproduction of multiple cytokines (interleukin-4, interleukin-17, and interleukin-22). Furthermore, circulating c-Met+ T cell subpopulations in different heart muscle diseases identify distinct and overlapping mechanisms of heart inflammation. In experimental autoimmune myocarditis, elevations in autoantigen-specific c-Met+ T cells in peripheral blood mark the loss of immune tolerance to the heart. Disease development can be halted by pharmacologic c-Met inhibition, indicating a causative role for c-Met+ T cells. CONCLUSIONS Our study demonstrates that the detection of circulating c-Met+ T cells may have use in the diagnosis and monitoring of adaptive cardiac inflammation and definition of new targets for therapeutic intervention when cardiac autoimmunity causes or contributes to progressive cardiac injury.
Collapse
Affiliation(s)
- Silvia Fanti
- William Harvey Research Institute, Barts and The London Faculty of Medicine and Dentistry (S.F., E. Stephenson, E.R.-V., S.K., E. Shahaj, M.P.L., V.S.V., C.D., E.P., M.B., D.C., G.W., D.H., E. Solito, K.S., S.A.M., F.M.M.-B.), Queen Mary University of London, UK
| | - Edward Stephenson
- William Harvey Research Institute, Barts and The London Faculty of Medicine and Dentistry (S.F., E. Stephenson, E.R.-V., S.K., E. Shahaj, M.P.L., V.S.V., C.D., E.P., M.B., D.C., G.W., D.H., E. Solito, K.S., S.A.M., F.M.M.-B.), Queen Mary University of London, UK
- Barts Heart Centre, Barts Health NHS Trust, St Bartholomew’s Hospital, West Smithfield, London (E. Stephenson, A.P., V.S.V., D.H., P.E., K.S., S.A.M.)
| | - Etel Rocha-Vieira
- William Harvey Research Institute, Barts and The London Faculty of Medicine and Dentistry (S.F., E. Stephenson, E.R.-V., S.K., E. Shahaj, M.P.L., V.S.V., C.D., E.P., M.B., D.C., G.W., D.H., E. Solito, K.S., S.A.M., F.M.M.-B.), Queen Mary University of London, UK
- Federal University of Vales do Jequitinhonha e Mucuri, Diamantina, Minas Gerais, Brazil (E.R.-V.)
| | - Alexandros Protonotarios
- Barts Heart Centre, Barts Health NHS Trust, St Bartholomew’s Hospital, West Smithfield, London (E. Stephenson, A.P., V.S.V., D.H., P.E., K.S., S.A.M.)
- Institute of Cardiovascular Science, University College London, UK (A.P., P.E.)
| | - Stavroula Kanoni
- William Harvey Research Institute, Barts and The London Faculty of Medicine and Dentistry (S.F., E. Stephenson, E.R.-V., S.K., E. Shahaj, M.P.L., V.S.V., C.D., E.P., M.B., D.C., G.W., D.H., E. Solito, K.S., S.A.M., F.M.M.-B.), Queen Mary University of London, UK
| | - Eriomina Shahaj
- William Harvey Research Institute, Barts and The London Faculty of Medicine and Dentistry (S.F., E. Stephenson, E.R.-V., S.K., E. Shahaj, M.P.L., V.S.V., C.D., E.P., M.B., D.C., G.W., D.H., E. Solito, K.S., S.A.M., F.M.M.-B.), Queen Mary University of London, UK
| | - M. Paula Longhi
- William Harvey Research Institute, Barts and The London Faculty of Medicine and Dentistry (S.F., E. Stephenson, E.R.-V., S.K., E. Shahaj, M.P.L., V.S.V., C.D., E.P., M.B., D.C., G.W., D.H., E. Solito, K.S., S.A.M., F.M.M.-B.), Queen Mary University of London, UK
| | - Vishal S. Vyas
- William Harvey Research Institute, Barts and The London Faculty of Medicine and Dentistry (S.F., E. Stephenson, E.R.-V., S.K., E. Shahaj, M.P.L., V.S.V., C.D., E.P., M.B., D.C., G.W., D.H., E. Solito, K.S., S.A.M., F.M.M.-B.), Queen Mary University of London, UK
- Barts Heart Centre, Barts Health NHS Trust, St Bartholomew’s Hospital, West Smithfield, London (E. Stephenson, A.P., V.S.V., D.H., P.E., K.S., S.A.M.)
| | - Carlene Dyer
- William Harvey Research Institute, Barts and The London Faculty of Medicine and Dentistry (S.F., E. Stephenson, E.R.-V., S.K., E. Shahaj, M.P.L., V.S.V., C.D., E.P., M.B., D.C., G.W., D.H., E. Solito, K.S., S.A.M., F.M.M.-B.), Queen Mary University of London, UK
| | - Elena Pontarini
- William Harvey Research Institute, Barts and The London Faculty of Medicine and Dentistry (S.F., E. Stephenson, E.R.-V., S.K., E. Shahaj, M.P.L., V.S.V., C.D., E.P., M.B., D.C., G.W., D.H., E. Solito, K.S., S.A.M., F.M.M.-B.), Queen Mary University of London, UK
| | - Angeliki Asimaki
- Molecular and Clinical Science Institute, St George’s, University of London, UK (A.A., C.B.-B.)
| | - Carlos Bueno-Beti
- Molecular and Clinical Science Institute, St George’s, University of London, UK (A.A., C.B.-B.)
| | - Monica De Gaspari
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padua Medical School, Italy (M.D.G., S.R., C.B.)
| | - Stefania Rizzo
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padua Medical School, Italy (M.D.G., S.R., C.B.)
| | - Cristina Basso
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padua Medical School, Italy (M.D.G., S.R., C.B.)
| | - Michele Bombardieri
- William Harvey Research Institute, Barts and The London Faculty of Medicine and Dentistry (S.F., E. Stephenson, E.R.-V., S.K., E. Shahaj, M.P.L., V.S.V., C.D., E.P., M.B., D.C., G.W., D.H., E. Solito, K.S., S.A.M., F.M.M.-B.), Queen Mary University of London, UK
| | - David Coe
- William Harvey Research Institute, Barts and The London Faculty of Medicine and Dentistry (S.F., E. Stephenson, E.R.-V., S.K., E. Shahaj, M.P.L., V.S.V., C.D., E.P., M.B., D.C., G.W., D.H., E. Solito, K.S., S.A.M., F.M.M.-B.), Queen Mary University of London, UK
| | - Guosu Wang
- William Harvey Research Institute, Barts and The London Faculty of Medicine and Dentistry (S.F., E. Stephenson, E.R.-V., S.K., E. Shahaj, M.P.L., V.S.V., C.D., E.P., M.B., D.C., G.W., D.H., E. Solito, K.S., S.A.M., F.M.M.-B.), Queen Mary University of London, UK
| | - Daniel Harding
- William Harvey Research Institute, Barts and The London Faculty of Medicine and Dentistry (S.F., E. Stephenson, E.R.-V., S.K., E. Shahaj, M.P.L., V.S.V., C.D., E.P., M.B., D.C., G.W., D.H., E. Solito, K.S., S.A.M., F.M.M.-B.), Queen Mary University of London, UK
- Barts Heart Centre, Barts Health NHS Trust, St Bartholomew’s Hospital, West Smithfield, London (E. Stephenson, A.P., V.S.V., D.H., P.E., K.S., S.A.M.)
| | - Iain Gallagher
- Faculty of Health Sciences & Sport, University of Stirling, UK (I.G.)
| | - Egle Solito
- William Harvey Research Institute, Barts and The London Faculty of Medicine and Dentistry (S.F., E. Stephenson, E.R.-V., S.K., E. Shahaj, M.P.L., V.S.V., C.D., E.P., M.B., D.C., G.W., D.H., E. Solito, K.S., S.A.M., F.M.M.-B.), Queen Mary University of London, UK
- Department of Medicina Molecolare e Biotecnologie Mediche, University of Naples “Federico II,” Italy (E. Solito)
| | - Perry Elliott
- Barts Heart Centre, Barts Health NHS Trust, St Bartholomew’s Hospital, West Smithfield, London (E. Stephenson, A.P., V.S.V., D.H., P.E., K.S., S.A.M.)
- Institute of Cardiovascular Science, University College London, UK (A.P., P.E.)
| | - Stephane Heymans
- Maastricht University Medical Centre, Cardiovascular Research Institute Maastricht, the Netherlands (S.H., M.S.)
- Department of Cardiovascular Sciences, Centre for Vascular and Molecular Biology, KU Leuven, Belgium (S.H.)
| | - Maurits Sikking
- Maastricht University Medical Centre, Cardiovascular Research Institute Maastricht, the Netherlands (S.H., M.S.)
| | - Konstantinos Savvatis
- William Harvey Research Institute, Barts and The London Faculty of Medicine and Dentistry (S.F., E. Stephenson, E.R.-V., S.K., E. Shahaj, M.P.L., V.S.V., C.D., E.P., M.B., D.C., G.W., D.H., E. Solito, K.S., S.A.M., F.M.M.-B.), Queen Mary University of London, UK
- Barts Heart Centre, Barts Health NHS Trust, St Bartholomew’s Hospital, West Smithfield, London (E. Stephenson, A.P., V.S.V., D.H., P.E., K.S., S.A.M.)
| | - Saidi A. Mohiddin
- William Harvey Research Institute, Barts and The London Faculty of Medicine and Dentistry (S.F., E. Stephenson, E.R.-V., S.K., E. Shahaj, M.P.L., V.S.V., C.D., E.P., M.B., D.C., G.W., D.H., E. Solito, K.S., S.A.M., F.M.M.-B.), Queen Mary University of London, UK
- Barts Heart Centre, Barts Health NHS Trust, St Bartholomew’s Hospital, West Smithfield, London (E. Stephenson, A.P., V.S.V., D.H., P.E., K.S., S.A.M.)
| | - Federica M. Marelli-Berg
- William Harvey Research Institute, Barts and The London Faculty of Medicine and Dentistry (S.F., E. Stephenson, E.R.-V., S.K., E. Shahaj, M.P.L., V.S.V., C.D., E.P., M.B., D.C., G.W., D.H., E. Solito, K.S., S.A.M., F.M.M.-B.), Queen Mary University of London, UK
- Centre for Inflammation and Therapeutic Innovation (F.M.M.-B.), Queen Mary University of London, UK
| |
Collapse
|
15
|
Li J, Zhang X, Mo Y, Huang T, Rao H, Tan Z, Huang L, Zeng D, Jiang C, Zhong Y, Cai Y, Liang B, Wu J. Urokinase-loaded cyclic RGD-decorated liposome targeted therapy for in-situ thrombus of pulmonary arteriole of pulmonary hypertension. Front Bioeng Biotechnol 2022; 10:1038829. [PMID: 36324896 PMCID: PMC9618629 DOI: 10.3389/fbioe.2022.1038829] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 09/26/2022] [Indexed: 09/07/2024] Open
Abstract
Backgroud: In-situ thrombosis is a significant pathophysiological basis for the development of pulmonary hypertension (PH). However, thrombolytic therapy for in-situ thrombus in PH was often hampered by the apparent side effects and the low bioavailability of common thrombolytic medications. Nanoscale cyclic RGD (cRGD)-decorated liposomes have received much attention thanks to their thrombus-targeting and biodegradability properties. As a result, we synthesized urokinase-loaded cRGD-decorated liposome (UK-cRGD-Liposome) for therapy of in-situ thrombosis as an exploration of pulmonary hypertensive novel therapeutic approaches. Purpose: To evaluate the utilize of UK-cRGD-Liposome for targeted thrombolysis of in-situ thrombus in PH and to explore the potential mechanisms of in-situ thrombus involved in the development of PH. Methods: UK-cRGD-Liposome nanoscale drug delivery system was prepared using combined methods of thin-film hydration and sonication. Induced PH via subcutaneous injection of monocrotaline (MCT). Fibrin staining (modified MSB method) was applied to detect the number of vessels within-situ thrombi in PH. Echocardiography, hematoxylin-eosin (H & E) staining, and Masson's trichrome staining were used to analyze right ventricular (RV) function, pulmonary vascular remodeling, as well as RV remodeling. Results: The number of vessels with in-situ thrombi revealed that UK-cRGD-Liposome could actively target urokinase to in-situ thrombi and release its payload in a controlled manner in the in vivo environment, thereby enhancing the thrombolytic effect of urokinase. Pulmonary artery hemodynamics and echocardiography indicated a dramatical decrease in pulmonary artery pressure and a significant improvement in RV function post targeted thrombolytic therapy. Moreover, pulmonary vascular remodeling and RV remodeling were significantly restricted post targeted thrombolytic therapy. Conclusion: UK-cRGD-Liposome can restrict the progression of PH and improve RV function by targeting the dissolution of pulmonary hypertensive in-situ thrombi, which may provide promising therapeutic approaches for PH.
Collapse
Affiliation(s)
- Jingtao Li
- Department of Ultrasound, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xiaofeng Zhang
- Department of Ultrasound, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yingying Mo
- Department of Ultrasound, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Tongtong Huang
- Department of Ultrasound, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Huaqing Rao
- Department of Ultrasound, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zhenyuan Tan
- Pharmaceutical College, Guangxi Medical University, Nanning, China
| | - Liuliu Huang
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Decai Zeng
- Department of Ultrasound, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Chunlan Jiang
- Department of Ultrasound, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yanfen Zhong
- Department of Ultrasound, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yongzhi Cai
- Department of Ultrasound, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Binbin Liang
- Department of Ultrasound, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Ji Wu
- Department of Ultrasound, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
16
|
Zindl CL, Witte SJ, Laufer VA, Gao M, Yue Z, Janowski KM, Cai B, Frey BF, Silberger DJ, Harbour SN, Singer JR, Turner H, Lund FE, Vallance BA, Rosenberg AF, Schoeb TR, Chen JY, Hatton RD, Weaver CT. A nonredundant role for T cell-derived interleukin 22 in antibacterial defense of colonic crypts. Immunity 2022; 55:494-511.e11. [PMID: 35263568 PMCID: PMC9126440 DOI: 10.1016/j.immuni.2022.02.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 11/11/2021] [Accepted: 02/04/2022] [Indexed: 02/05/2023]
Abstract
Interleukin (IL)-22 is central to immune defense at barrier sites. We examined the contributions of innate lymphoid cell (ILC) and T cell-derived IL-22 during Citrobacter rodentium (C.r) infection using mice that both report Il22 expression and allow lineage-specific deletion. ILC-derived IL-22 activated STAT3 in C.r-colonized surface intestinal epithelial cells (IECs) but only temporally restrained bacterial growth. T cell-derived IL-22 induced a more robust and extensive activation of STAT3 in IECs, including IECs lining colonic crypts, and T cell-specific deficiency of IL-22 led to pathogen invasion of the crypts and increased mortality. This reflected a requirement for T cell-derived IL-22 for the expression of a host-protective transcriptomic program that included AMPs, neutrophil-recruiting chemokines, and mucin-related molecules, and it restricted IFNγ-induced proinflammatory genes. Our findings demonstrate spatiotemporal differences in the production and action of IL-22 by ILCs and T cells during infection and reveal an indispensable role for IL-22-producing T cells in the protection of the intestinal crypts.
Collapse
Affiliation(s)
- Carlene L Zindl
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | - Steven J Witte
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Vincent A Laufer
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Min Gao
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA; Informatics Institute, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Zongliang Yue
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA; Informatics Institute, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Karen M Janowski
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Baiyi Cai
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Blake F Frey
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Daniel J Silberger
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Stacey N Harbour
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Jeffrey R Singer
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Henrietta Turner
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Frances E Lund
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Bruce A Vallance
- Department of Pediatrics, University of British Columbia, Vancouver, BC V6H 3V4, Canada
| | - Alexander F Rosenberg
- Informatics Institute, University of Alabama at Birmingham, Birmingham, AL 35294, USA; Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Trenton R Schoeb
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Jake Y Chen
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA; Informatics Institute, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Robin D Hatton
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Casey T Weaver
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
17
|
Qu Z, Dou W, Zhang K, Duan L, Zhou D, Yin S. IL-22 inhibits bleomycin-induced pulmonary fibrosis in association with inhibition of IL-17A in mice. Arthritis Res Ther 2022; 24:280. [PMID: 36564791 PMCID: PMC9789559 DOI: 10.1186/s13075-022-02977-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 12/12/2022] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Interstitial lung disease, a common extra-articular complication of connective tissue disease, is characterized by progressive and irreversible pulmonary inflammation and fibrosis, which causes significant mortality. IL-22 shows a potential in regulating chronic inflammation and possibly plays an anti-fibrotic role by protecting epithelial cells. However, the detailed effects and underlying mechanisms are still unclear. In this study, we explored the impact of IL-22 on pulmonary fibrosis both in vivo and in vitro. METHODS To induce pulmonary fibrosis, wild-type mice and IL-22 knockout mice were intratracheally injected with bleomycin followed by treatments with recombinant IL-22 or IL-17A neutralizing antibody. We investigated the role of IL-22 on bleomycin-induced pulmonary fibrosis and the mechanism in the possible interaction between IL-22 and IL-17A. Fibrosis-related genes were detected using RT-qPCR, western blot, and immunofluorescence. Inflammatory and fibrotic changes were assessed based on histological features. We also used A549 human alveolar epithelial cells, NIH/3T3 mouse fibroblast cells, and primary mouse lung fibroblasts to study the impact of IL-22 on fibrosis in vitro. RESULTS IL-22 knockout mice showed aggravated pulmonary fibrosis compared with wild-type mice, and injection of recombinant IL-22 decreased the severe fibrotic manifestations in IL-22 knockout mice. In cell culture assays, IL-22 decreased protein levels of Collagen I in A549 cells, NIH/3T3 cells, and primary mouse lung fibroblasts. IL-22 also reduced the protein level of Collagen I in NIH/3T3 cells which were co-cultured with T cells. Mechanistically, IL-22 reduced the Th17 cell proportion and IL-17A mRNA level in lung tissues, and treatment with an IL-17A neutralizing antibody alleviated the severe pulmonary fibrosis in IL-22 knockout mice. The IL-17A neutralizing antibody also reduced Collagen I expression in NIH/3T3 cells in vitro. Knockdown of IL-17A with siRNAs or administration of IL-22 in NIH/3T3 cells and MLFs decreased expression of Collagen I, an effect blocked by concurrent use of recombinant IL-17A. CONCLUSIONS IL-22 mediated an anti-fibrogenesis effect in the bleomycin-induced pulmonary fibrosis model and this effect was associated with inhibition of IL-17A.
Collapse
Affiliation(s)
- Ziye Qu
- grid.413389.40000 0004 1758 1622Department of Rheumatology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002 China ,grid.417303.20000 0000 9927 0537The First Clinical Medicine School, Xuzhou Medical University, Xuzhou, 221002 China
| | - Wencan Dou
- grid.413389.40000 0004 1758 1622Department of Rheumatology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002 China ,grid.417303.20000 0000 9927 0537The First Clinical Medicine School, Xuzhou Medical University, Xuzhou, 221002 China
| | - Kexin Zhang
- grid.417303.20000 0000 9927 0537Blood Diseases Institute, Xuzhou Medical University, Xuzhou, 221002 China
| | - Lili Duan
- Department of Rheumatology, The People’s Hospital of Jiawang District of Xuzhou, Xuzhou, 221011 China
| | - Dongmei Zhou
- grid.413389.40000 0004 1758 1622Department of Rheumatology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002 China ,grid.417303.20000 0000 9927 0537The First Clinical Medicine School, Xuzhou Medical University, Xuzhou, 221002 China
| | - Songlou Yin
- grid.413389.40000 0004 1758 1622Department of Rheumatology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002 China ,grid.417303.20000 0000 9927 0537The First Clinical Medicine School, Xuzhou Medical University, Xuzhou, 221002 China
| |
Collapse
|
18
|
Attenuated strain of CVB3 with a mutation in the CAR-interacting region protects against both myocarditis and pancreatitis. Sci Rep 2021; 11:12432. [PMID: 34127684 PMCID: PMC8203608 DOI: 10.1038/s41598-021-90434-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 05/06/2021] [Indexed: 12/28/2022] Open
Abstract
Coxsackievirus B3 (CVB3), is commonly implicated in myocarditis, which can lead to dilated cardiomyopathy, in addition to causing acute pancreatitis and meningitis. Yet, no vaccines are currently available to prevent this infection. Here, we describe the derivation of a live attenuated vaccine virus, termed mutant (Mt) 10, encoding a single amino acid substitution H790A within the viral protein 1, that prevents CVB3 infection in mice and protects from both myocarditis and pancreatitis in challenge studies. We noted that animals vaccinated with Mt 10 developed virus-neutralizing antibodies, predominantly containing IgG2a and IgG2b, and to a lesser extent IgG3 and IgG1. Furthermore, by using major histocompatibility complex class II dextramers and tetramers, we demonstrated that Mt 10 induces antigen-specific T cell responses that preferentially produce interferon-γ. Finally, neither vaccine recipients nor those challenged with the wild-type virus revealed evidence of autoimmunity or cardiac injury as determined by T cell response to cardiac myosin and measurement of circulating cardiac troponin I levels, respectively. Together, our data suggest that Mt 10 is a vaccine candidate that prevents CVB3 infection through the induction of neutralizing antibodies and antigen-specific T cell responses, the two critical components needed for complete protection against virus infections in vaccine studies.
Collapse
|
19
|
Marie RESM, Abuzeid AQEM, Attia FM, Anani MM, Gomaa AHA, Atef LM. Serum level of interleukin-22 in patients with cutaneous warts: A case-control study. J Cosmet Dermatol 2021; 20:1782-1787. [PMID: 33043549 DOI: 10.1111/jocd.13779] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 09/23/2020] [Accepted: 10/06/2020] [Indexed: 12/28/2022]
Abstract
BACKGROUND Warts are viral cutaneous infections caused by human papilloma virus (HPV), presented by verrucous growth over the skin surface. The immune response is considered to play a crucial role in HPV clearance. It depends on intact cellular immunity including natural killer (NK) cell and cytotoxic T cells. It has been clarified that T-helper (Th) 1 cytokines (interleukin (IL)-2, interferon-γ, and tumor necrosis factor-a) and IL-17 are involved in HPV clearance. IL-22 is one of IL-10 family of cytokines produced by NK cells, Th1, Th17, and Th22 cells. In the skin, IL-22 reduces keratinocyte cornification and enhances keratinocyte production of antimicrobial peptides. IL-22 overexpression has been demonstrated in various viral infections and skin inflammatory disorders. AIM The aim of this study was to assess serum levels of IL-22 in patients with warts and its association with their different clinical characteristics. METHODS The study included 20 patients with warts and 20 control subjects. Serum concentration of IL-22 was measured by enzyme-linked immune sorbent assay. RESULTS Serum levels of IL-22 were significantly higher in patients with warts than in control subjects (P < .001). The levels were significantly higher in patients with recurrent warts after prior treatment than in patients with first-time warts (P = .007). Moreover, a significant positive correlation was detected between serum levels of IL-22 and the number of warts (P = .017). CONCLUSION Serum level of IL-22 was elevated in patients with warts. Thus, IL-22 may have a crucial role in the antiviral immune response against this infection.
Collapse
Affiliation(s)
- Radwa El-Sayed Mahmoud Marie
- Department of Dermatology, Venereology and Andrology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | | | - Fadia M Attia
- Department of Clinical Pathology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Maha Mohamed Anani
- Department of Clinical Pathology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Amal H A Gomaa
- Department of Dermatology, Venereology and Andrology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Lina M Atef
- Department of Dermatology, Venereology and Andrology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
20
|
Xu S, Zhang J, Liu J, Ye J, Xu Y, Wang Z, Yu J, Ye D, Zhao M, Feng Y, Pan W, Wang M, Wan J. The role of interleukin-10 family members in cardiovascular diseases. Int Immunopharmacol 2021; 94:107475. [PMID: 33662690 DOI: 10.1016/j.intimp.2021.107475] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/29/2021] [Accepted: 02/03/2021] [Indexed: 12/15/2022]
Abstract
Interleukin (IL)-10 cytokine family members, including IL-10, IL-19, IL-20, IL-22, IL-24, IL-26 and the distantly related IL-28A, IL-28B, and IL-29, play critical roles in the regulation of inflammation. The occurrence and progression of cardiovascular diseases closely correlate with the regulation of inflammation, which may provide novel strategies for the treatment of cardiovascular diseases. In recent years, studies have focused on the association between the IL-10 cytokine family and the physiological and pathological progression of cardiovascular diseases. The aim of this review is to summarize relevant studies and clarify whether the IL-10 cytokine family contributes to the regulation of cardiovascular diseases.
Collapse
Affiliation(s)
- Shuwan Xu
- The First Clinical College of Wuhan University, Wuhan, China; Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Jishou Zhang
- The First Clinical College of Wuhan University, Wuhan, China; Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Jianfang Liu
- The First Clinical College of Wuhan University, Wuhan, China; Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Jing Ye
- The First Clinical College of Wuhan University, Wuhan, China; Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Yao Xu
- The First Clinical College of Wuhan University, Wuhan, China; Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Zhen Wang
- The First Clinical College of Wuhan University, Wuhan, China; Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Junping Yu
- The First Clinical College of Wuhan University, Wuhan, China; Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Di Ye
- The First Clinical College of Wuhan University, Wuhan, China; Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Mengmeng Zhao
- The First Clinical College of Wuhan University, Wuhan, China; Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Yongqi Feng
- The First Clinical College of Wuhan University, Wuhan, China; Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Wei Pan
- The First Clinical College of Wuhan University, Wuhan, China; Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Menglong Wang
- The First Clinical College of Wuhan University, Wuhan, China; Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan, China.
| | - Jun Wan
- The First Clinical College of Wuhan University, Wuhan, China; Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan, China.
| |
Collapse
|
21
|
Gong X, Xia L, Su Z. Friend or foe of innate lymphoid cells in inflammation-associated cardiovascular disease. Immunology 2020; 162:368-376. [PMID: 32967038 DOI: 10.1111/imm.13271] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/11/2020] [Accepted: 09/04/2020] [Indexed: 12/17/2022] Open
Abstract
As a distinctive population of leucocytes, innate lymphoid cells (ILCs) participate in immune-mediated diseases and play crucial roles in tissue remodelling after injury. ILC lineages can be divided into helper ILCs and cytotoxic ILCs. Most helper ILCs are integrated into the fabric of tissues and produce different types of cytokines involving in the pathogenesis of many kinds of cardiovascular disease and form intricate response circuits with adaptive immune cells. However, the specific phenotype and function of helper ILC subsets in cardiovascular diseases are still poorly understood. In this review, we firstly highlight the distribution of helper ILCs in cardiovascular system and further discuss the potential contribution of helper ILCs in inflammation-associated cardiovascular disease.
Collapse
Affiliation(s)
- Xiangmei Gong
- International Genome Center, Jiangsu University, Zhenjiang, China.,Department of Immunology, Jiangsu University, Zhenjiang, China
| | - Lin Xia
- International Genome Center, Jiangsu University, Zhenjiang, China.,Department of Laboratory Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Zhaoliang Su
- International Genome Center, Jiangsu University, Zhenjiang, China.,Department of Immunology, Jiangsu University, Zhenjiang, China.,Laboratory Center, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, China
| |
Collapse
|
22
|
Chen J, Lodi R, Zhang S, Su Z, Wu Y, Xia L. The double-edged role of IL-22 in organ fibrosis. Immunopharmacol Immunotoxicol 2020; 42:392-399. [PMID: 32689851 DOI: 10.1080/08923973.2020.1799388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 07/16/2020] [Indexed: 10/23/2022]
Abstract
Fibrosis is unregulated tissue repair in damaged or diseased organs, and the accumulation of excess extracellular matrix (ECM) impacts the structure and functions of organs, leading to death. Fibrosis is usually triggered by inflammation and tissue damage, and inflammatory mediators stimulate the proliferation of myofibroblasts and the excessive production of ECM. The IL-10 family cytokines play important roles in the development of fibrosis, and its member IL-22 has recently attracted specific attention. IL-22 plays great roles in preventing pathogens invasion and tissue damage, as well as making a contribution to pathogenic processes. Increasing evidence suggested that IL-22 is a key molecule in tissue repair, proliferation and mucosal barrier defense, and it has also been suggested to play both pro-fibrotic and anti-fibrotic roles in tissues. In this review, we summarized the pro-fibrotic and anti-fibrotic functions of IL-22 in various organs which may be of great significance for the development of potential therapeutic strategies for fibrosis-related diseases.
Collapse
Affiliation(s)
- Jia Chen
- International Genome Center, Jiangsu University, Zhenjiang, China
| | | | - Shiqing Zhang
- International Genome Center, Jiangsu University, Zhenjiang, China
| | - Zhaoliang Su
- International Genome Center, Jiangsu University, Zhenjiang, China
| | - Yan Wu
- Central Laboratory, Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Lin Xia
- International Genome Center, Jiangsu University, Zhenjiang, China
- Department of Laboratory Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| |
Collapse
|
23
|
Lv S, Yuan P, Dong J, Lu C, Li M, Qu F, Zhu Y, Yuan Z, Zhang J. QiShenYiQi pill improves the reparative myocardial fibrosis by regulating autophagy. J Cell Mol Med 2020; 24:11283-11293. [PMID: 32881330 PMCID: PMC7576289 DOI: 10.1111/jcmm.15695] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/17/2020] [Accepted: 07/10/2020] [Indexed: 12/12/2022] Open
Abstract
QiShenYiQi pill (QSYQ), a traditional Chinese medicine, is well known for improving the myocardial remodelling, but the dose‐effect relationship of its intervention in the reparative myocardial fibrosis is still unclear. We investigated the effect of QSYQ on the reparative myocardial fibrosis in cardiac myosin‐induced rats and explored its mechanism of action by regulating autophagy. The results indicated that QSYQ increased LVEF and LVFS, and decreased the LVEDD, LVESD, HMI, LVMI, myocardial inflammation histology score, and collagen volume fraction in a dose‐dependent manner. In addition, QSYQ declined the number of autophagosomes, down‐regulated the expression of myocardial Beclin‐1 and LC3B, up‐regulated the expression of myocardial p62 and increased the ratios of myocardial p‐PI3K/PI3K, p‐Akt/Akt and p‐mTOR/mTOR. We provided evidence for that QSYQ could inhibit excessive myocardial autophagy by regulating the PI3K/Akt‐mTOR pathway and can be a potential therapeutic approach in treating the cardiovascular diseases such as myocarditis and dilated cardiomyopathy.
Collapse
Affiliation(s)
- Shichao Lv
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Tianjin Key Laboratory of Traditional Research of TCM Prescription and Syndrome, Tianjin, China
| | - Peng Yuan
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | | | - Chunmiao Lu
- Jiashan Hospital of Traditional Chinese Medicine, Jiaxing, China
| | - Meng Li
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Fan Qu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yaping Zhu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zhuo Yuan
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Junping Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
24
|
Wu Y, Tan L, Shi L, Yang Z, Xue Y, Zeng T, Shi Y, Lin Y, Liu L. Interleukin-22 is elevated in the atrium and plasma of patients with atrial fibrillation and increases collagen synthesis in transforming growth factor-β1-treated cardiac fibroblasts via the JNK pathway. Exp Ther Med 2020; 20:1012-1020. [PMID: 32742343 PMCID: PMC7388263 DOI: 10.3892/etm.2020.8778] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 03/11/2020] [Indexed: 01/01/2023] Open
Abstract
Our previous studies demonstrated that interleukin (IL)-22 is involved in cardiovascular diseases such as hypertension, cardiac fibrosis and aortic dissection. The purpose of the present study was to detect IL-22 expression in patients with atrial fibrillation (AF). Atrial tissue was collected from donors with sinus rhythm and patients with permanent AF, and the expression level of IL-22 and its receptors (IL-22R1 and IL-10R2) in both the left atrium (LA) and right atrium (RA) of each sample was detected. Blood samples were also obtained from donors with paroxysmal, persistent and permanent AF and from donors without AF history, and IL-22 levels were measured. In addition, the effects of IL-22 on collagen synthesis in TGF-β1-treated cardiac fibroblasts were investigated. IL-22R1, IL-10R2 and IL-22 expression was elevated in both the LA and RA in permanent AF patients. Elevated IL-22 expression positively correlated with the collagen areas and fibrosis marker levels in the atria of these patients. Plasma IL-22 levels were higher in AF patients compared with healthy donors and increased with increasing AF duration (from paroxysmal to persistent to permanent AF). A positive correlation was observed between IL-22 levels and TGF-β1 levels in AF patients. In vitro, recombinant mouse IL-22 treatment upregulated α-SMA, collagen I and collagen III expression in TGF-β1-treated cardiac fibroblasts. These effects were reversed by SP600125, an inhibitor of the JNK pathway. To conclude, IL-22 levels are elevated in patients with AF and may exacerbate collagen synthesis in TGF-β1-induced cardiac fibroblasts. IL-22 may also influence AF by activating the JNK pathway.
Collapse
Affiliation(s)
- Yongxin Wu
- Department of Cardiology, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China.,Department of Cardiology, Gongan County People's Hospital, Jingzhou, Hubei 434300, P.R. China
| | - Lihua Tan
- Department of Cardiology, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China.,Department of Cardiology, Gongan County People's Hospital, Jingzhou, Hubei 434300, P.R. China
| | - Lei Shi
- Department of Cardiology, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Zicong Yang
- Department of Cardiology, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Yan Xue
- Department of Cardiology, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Tao Zeng
- Department of Cardiology, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Ying Shi
- Department of Cardiology, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Yingzhong Lin
- Department of Cardiology, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Ling Liu
- Department of Cardiology, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| |
Collapse
|
25
|
Zhang M, Zhang S. T Cells in Fibrosis and Fibrotic Diseases. Front Immunol 2020; 11:1142. [PMID: 32676074 PMCID: PMC7333347 DOI: 10.3389/fimmu.2020.01142] [Citation(s) in RCA: 208] [Impact Index Per Article: 41.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 05/11/2020] [Indexed: 01/08/2023] Open
Abstract
Fibrosis is the extensive deposition of fibrous connective tissue, and it is characterized by the accumulation of collagen and other extracellular matrix (ECM) components. Fibrosis is essential for wound healing and tissue repair in response to a variety of triggers, which include infection, inflammation, autoimmune disorder, degenerative disease, tumor, and injury. Fibrotic remodeling in various diseases, such as liver cirrhosis, pulmonary fibrosis, renal interstitial fibrosis, myocardial infarction, systemic sclerosis (SSc), and graft-versus-host disease (GVHD), can impair organ function, causing high morbidity and mortality. Both innate and adaptive immunity are involved in fibrogenesis. Although the roles of macrophages in fibrogenesis have been studied for many years, the underlying mechanisms concerning the manner in which T cells regulate fibrosis are not completely understood. The T cell receptor (TCR) engages the antigen and shapes the repertoire of antigen-specific T cells. Based on the divergent expression of surface molecules and cell functions, T cells are subdivided into natural killer T (NKT) cells, γδ T cells, CD8+ cytotoxic T lymphocytes (CTL), regulatory T (Treg) cells, T follicular regulatory (Tfr) cells, and T helper cells, including Th1, Th2, Th9, Th17, Th22, and T follicular helper (Tfh) cells. In this review, we summarize the pro-fibrotic or anti-fibrotic roles and distinct mechanisms of different T cell subsets. On reviewing the literature, we conclude that the T cell regulations are commonly disease-specific and tissue-specific. Finally, we provide perspectives on microbiota, viral infection, and metabolism, and discuss the current advancements of technologies for identifying novel targets and developing immunotherapies for intervention in fibrosis and fibrotic diseases.
Collapse
Affiliation(s)
- Mengjuan Zhang
- College of Life Sciences, Nankai University, Tianjin, China
| | - Song Zhang
- College of Life Sciences, Nankai University, Tianjin, China
| |
Collapse
|
26
|
Interleukin-22 Inhibits Respiratory Syncytial Virus Production by Blocking Virus-Mediated Subversion of Cellular Autophagy. iScience 2020; 23:101256. [PMID: 32580124 PMCID: PMC7317237 DOI: 10.1016/j.isci.2020.101256] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 04/28/2020] [Accepted: 06/05/2020] [Indexed: 12/18/2022] Open
Abstract
Respiratory syncytial virus (RSV) infection can cause severe bronchiolitis in infants requiring hospitalization, whereas the elderly and immunocompromised are prone to RSV-induced pneumonia. RSV primarily infects lung epithelial cells. Given that no vaccine against RSV is currently available, we tested the ability of the epithelial-barrier protective cytokine interleukin-22 (IL-22) to control RSV production. When used in a therapeutic modality, IL-22 efficiently blunted RSV production from infected human airway and alveolar epithelial cells and IL-22 administration drastically reduced virus titer in the lungs of infected newborn mice. RSV infection resulted in increased expression of LC3B, a key component of the cellular autophagic machinery, and knockdown of LC3B ablated virus production. RSV subverted LC3B with evidence of co-localization and caused a significant reduction in autophagic flux, both reversed by IL-22 treatment. Our findings inform a previously unrecognized anti-viral effect of IL-22 that can be harnessed to prevent RSV-induced severe respiratory disease. RSV infection of lung epithelial cells subverts the cellular autophagic machinery RSV infection inhibits autophagic flux in infected cells IL-22 inhibits RSV production from human lung epithelial cells and in neonatal mice IL-22 blocks RSV-LC3B co-localization and restores cellular autophagic flux
Collapse
|
27
|
Bouin A, Semler BL. Picornavirus Cellular Remodeling: Doubling Down in Response to Viral-Induced Inflammation. CURRENT CLINICAL MICROBIOLOGY REPORTS 2020; 7:31-37. [PMID: 32704466 PMCID: PMC7377643 DOI: 10.1007/s40588-020-00138-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Purpose of Review To highlight recent findings on how picornavirus infections of the airways and cardiac tissues impact cellular inflammation and remodeling events. Recent Findings Recent published work has revealed that although many picornavirus infections appear to be initially asymptomatic, there are significant disease sequelae that result from chronic or persistent infections and the long-term, pathogenic effects on host tissues. Summary Because many acute picornavirus infections are asymptomatic, it is difficult to diagnose these pathologies at the early stages of disease. As a result, we must rely on preventative measures (i.e., vaccination) or discover novel treatments to reverse tissue damage and remodeling in affected individuals. Both of these strategies will require a comprehensive knowledge of virus-and cell-specific replication determinants and how these processes induce pathogenic effects in infected cells and tissues.
Collapse
Affiliation(s)
- Alexis Bouin
- Department of Microbiology & Molecular Genetics and Center for Virus Research, School of Medicine, University of California, Med Sci Bldg, Room B237, Irvine, CA 92697-4025, USA
| | - Bert L Semler
- Department of Microbiology & Molecular Genetics and Center for Virus Research, School of Medicine, University of California, Med Sci Bldg, Room B237, Irvine, CA 92697-4025, USA
| |
Collapse
|
28
|
Che Y, Su Z, Xia L. Effects of IL-22 on cardiovascular diseases. Int Immunopharmacol 2020; 81:106277. [PMID: 32062077 DOI: 10.1016/j.intimp.2020.106277] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 01/29/2020] [Accepted: 02/01/2020] [Indexed: 12/11/2022]
Abstract
Interleukin-22 (IL-22), which belongs to the IL-10 family, is an alpha helix cytokine specifically produced by many lymphocytes, such as Th1, Th17, Th22, ILCs, CD4+ and CD8+ T cells. In recent years, more and more studies have demonstrated that IL-22 has an interesting relationship with various cardiovascular diseases, including myocarditis, myocardial infarction, atherosclerosis, and other cardiovascular diseases, and IL-22 signal may play a dual role in cardiovascular diseases. Here, we summarize the recent progress on the source, function, regulation of IL-22 and the effects of IL-22 signal in cardiovascular diseases. The study of IL-22 will suggest more specific strategies to maneuver these functions for the effective treatment of cardiovascular diseases and future clinical treatment.
Collapse
Affiliation(s)
- Yang Che
- Department of Laboratory Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China; International Genome Center, Jiangsu University, Zhenjiang 212013, China
| | - Zhaoliang Su
- International Genome Center, Jiangsu University, Zhenjiang 212013, China; Department of Immunology, Jiangsu University, Zhenjiang 212013, China
| | - Lin Xia
- Department of Laboratory Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China; International Genome Center, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
29
|
Shi L, Ji Q, Liu L, Shi Y, Lu Z, Ye J, Zeng T, Xue Y, Yang Z, Liu Y, Lu J, Huang X, Qin Q, Li T, Lin Y. IL-22 produced by Th22 cells aggravates atherosclerosis development in ApoE -/- mice by enhancing DC-induced Th17 cell proliferation. J Cell Mol Med 2020; 24:3064-3078. [PMID: 32022386 PMCID: PMC7077608 DOI: 10.1111/jcmm.14967] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 12/15/2019] [Accepted: 12/21/2019] [Indexed: 12/12/2022] Open
Abstract
Th22 cells are a novel subset of CD4+ T cells that primarily mediate biological effects through IL-22, with both Th22 cells and IL-22 being closely associated with multiple autoimmune and chronic inflammatory diseases. In this study, we investigated whether and how Th22 cells affect atherosclerosis. ApoE-/- mice and age-matched C57BL/6J mice were fed a Western diet for 0, 4, 8 or 12 weeks. The results of dynamic analyses showed that Th22 cells, which secrete the majority of IL-22 among the known CD4+ cells, play a major role in atherosclerosis. ApoE-/- mice fed a Western diet for 12 weeks and administered recombinant mouse IL-22 (rIL-22) developed substantially larger plaques in both the aorta and aortic root and higher levels of CD3+ T cells, CD68+ macrophages, collagen, IL-6, Th17 cells, dendritic cells (DCs) and pSTAT3 but lower smooth muscle cell (SMC) α-actin expression than the control mice. Treatment with a neutralizing anti-IL-22 monoclonal antibody (IL-22 mAb) reversed the above effects. Bone marrow-derived DCs exhibited increased differentiation into mature DCs following rIL-22 and ox-LDL stimulation. IL-17 and pSTAT3 were up-regulated after stimulation with IL-22 and ox-LDL in cells cocultured with CD4+ T cells and mature DC supernatant, but this up-regulation was significantly inhibited by IL-6mAb or the cell-permeable STAT3 inhibitor S31-201. Thus, Th22 cell-derived IL-22 aggravates atherosclerosis development through a mechanism that is associated with IL-6/STAT3 activation, DC-induced Th17 cell proliferation and IL-22-stimulated SMC dedifferentiation into a synthetic phenotype.
Collapse
Affiliation(s)
- Lei Shi
- Department of CardiologyThe People's Hospital of Guangxi Zhuang Autonomous RegionNanningChina
| | - Qingwei Ji
- Department of CardiologyThe People's Hospital of Guangxi Zhuang Autonomous RegionNanningChina
| | - Ling Liu
- Department of CardiologyThe People's Hospital of Guangxi Zhuang Autonomous RegionNanningChina
| | - Ying Shi
- Department of CardiologyThe People's Hospital of Guangxi Zhuang Autonomous RegionNanningChina
| | - Zhengde Lu
- Department of CardiologyThe People's Hospital of Guangxi Zhuang Autonomous RegionNanningChina
| | - Jing Ye
- Department of CardiologyThe People's Hospital of Guangxi Zhuang Autonomous RegionNanningChina
| | - Tao Zeng
- Department of CardiologyThe People's Hospital of Guangxi Zhuang Autonomous RegionNanningChina
| | - Yan Xue
- Department of CardiologyThe People's Hospital of Guangxi Zhuang Autonomous RegionNanningChina
| | - Zicong Yang
- Department of CardiologyThe People's Hospital of Guangxi Zhuang Autonomous RegionNanningChina
| | - Yu Liu
- Department of CardiologyThe People's Hospital of Guangxi Zhuang Autonomous RegionNanningChina
| | - Jianyong Lu
- Department of CardiologyThe People's Hospital of Guangxi Zhuang Autonomous RegionNanningChina
| | - Xinshun Huang
- Department of CardiologyThe People's Hospital of Guangxi Zhuang Autonomous RegionNanningChina
| | - Qiuwen Qin
- Department of CardiologyThe People's Hospital of Guangxi Zhuang Autonomous RegionNanningChina
| | - Tianzhu Li
- Department of CardiologyThe People's Hospital of Guangxi Zhuang Autonomous RegionNanningChina
| | - Ying‐zhong Lin
- Department of CardiologyThe People's Hospital of Guangxi Zhuang Autonomous RegionNanningChina
| |
Collapse
|
30
|
Li S, Xiang C, Wei X, Sun X, Li R, Li P, Sun J, Wei D, Chen Y, Zhang Y, Wei L. Early supplemental α2-macroglobulin attenuates cartilage and bone damage by inhibiting inflammation in collagen II-induced arthritis model. Int J Rheum Dis 2019; 22:654-665. [PMID: 30609267 DOI: 10.1111/1756-185x.13457] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 11/08/2018] [Indexed: 11/30/2022]
Abstract
OBJECTIVE To determine if early supplemental intra-articular α2-macroglobulin (A2M) has a chondroprotective effect in a collagen II-induced arthritis (CIA) mice model. METHODS DBA/1 mice were randomized into four groups (n = 15/group): (a) CIA + 1.2 μg of A2M; (b) CIA + 0.8 μg of A2M; (c) CIA + 0.4 μg of A2M; (d) vehicle + phosphate-buffered saline (PBS). A2M was injected into right ankles and PBS was injected into the left ankles simultaneously as internal control at days 36, 43 and 50. The CIA inflammation clinical score and ankle thickness were recorded every other day starting on day 21 until sacrifice. Changes in inflammation were monitored by in vivo fluorescence molecular tomography (FMT). Inflammation, cartilage and bone damage were assessed with X-ray, histology and immunohistochemistry. Cartilage and inflammation-related gene expression was quantified by real-time polymerase chain reaction (PCR). RESULTS All mice showed ankle inflammation on day 33. After day 43, lower clinical scores, ankle thickness and Sharp/van der Heijde method scores in A2M-treated ankles compared with PBS-treated ankles. FMT data indicated that the inflammation markers MMPSense and ProSense were significantly elevated in the PBS-treated ankles than A2M-treated ankles. Histology and X-ray analyses indicated that A2M administration resulted in lower levels of inflammatory infiltration and synovial hyperplasia, as well as more typical cartilage and bone organization with increased COL II and Aggrecan staining when compared with PBS-treated ankles. In addition, real-time PCR showed that,matrix metalloproteinase-3, -9, -13, COL X and Runx2 were significantly less expressed in A2M-treated groups than PBS-treated animals. CONCLUSION Early supplemental intra-articular A2M exerts an anti-inflammatory effect and attenuates cartilage and bone damage in a CIA model.
Collapse
Affiliation(s)
- Shengchun Li
- The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Chuan Xiang
- The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Xiaochun Wei
- The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Xiaojuan Sun
- The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Ruifang Li
- The Third people's Hospital of Hubei Province, Wuhan, China
| | - Pengcui Li
- The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Jian Sun
- The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Dinglu Wei
- The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Yong Chen
- The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Yanxiang Zhang
- The Third people's Hospital of Hubei Province, Wuhan, China
| | - Lei Wei
- The Second Hospital of Shanxi Medical University, Taiyuan, China.,Department of Orthopedics, Warren Alpert Medical School of Brown University/RIH, Providence, Rhode Island
| |
Collapse
|
31
|
Zheng Y, Li T. Interleukin-22, a potent target for treatment of non-autoimmune diseases. Hum Vaccin Immunother 2018; 14:2811-2819. [PMID: 30335564 DOI: 10.1080/21645515.2018.1509649] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Interleukin -22 (IL-22) is a member of interleukin-10 (IL-10) family cytokines that is produced by different types of lymphocytes included in both innate and adaptive immune systems. These lymphocytes include activated T cells, most notably Th17 and Th22 cells, as well as NK cells, γδ T cells, etc. IL-22 mediate its effects via the IL-22-IL-22R complex and subsequent Janus Kinase-signal transduces and activators transcription (JAK-STAT) signaling pathway. According to recent evidence, IL-22 played a critical role in the pathogenesis of many non-autoimmune diseases. In this review, we mainly discussed the recent findings and advancements of the role of IL-22 in several non-autoimmune diseases, such as acute lung injury, atherosclerosis and some bacterial infections, suggesting that IL-22 may have therapeutic potential for treating non-autoimmune diseases.
Collapse
Affiliation(s)
- Yue Zheng
- a Cardiology , The Third Central Clinical College of Tianjin Medical University , Tianjin , China.,b Cardiology , Tianjin Key Laboratory of Artificial Cell.,c Artificial Cell Engineering Technology Research Center of Public Health Ministry , Tianjin , China.,d Tianjin Institute of Hepatobiliary Disease , Tianjin , China
| | - Tong Li
- b Cardiology , Tianjin Key Laboratory of Artificial Cell.,c Artificial Cell Engineering Technology Research Center of Public Health Ministry , Tianjin , China.,d Tianjin Institute of Hepatobiliary Disease , Tianjin , China.,e The Third Central Hospital of Tianjin , Tianjin , China
| |
Collapse
|
32
|
Xuan X, Tian Z, Zhang M, Zhou J, Gao W, Zhang Y, Zhang Y, Lei B, Ni B, Wu Y, Fan W. Diverse effects of interleukin-22 on pancreatic diseases. Pancreatology 2018; 18:231-237. [PMID: 29502986 DOI: 10.1016/j.pan.2018.02.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 02/20/2018] [Accepted: 02/23/2018] [Indexed: 12/11/2022]
Abstract
Interleukin-22 (IL-22) is involved in the development of lymphocytes and serves as a rapid and early source of the effector cytokines that are released in response to pathogen-induced changes in the microenvironment. Recent research has implicated IL-22 as a potential contributing factor to the spectrum of inflammation-related pancreatic diseases, particularly pancreatitis, fibrosis, carcinoma and diabetes. In this review, we summarize the current knowledge on the roles of IL-22 in the various pancreatic pathogenesis, providing insights into the underlying cellular and signaling mechanisms that will help guide future research into promising interventional targets with therapeutic potential.
Collapse
Affiliation(s)
- Xiuyun Xuan
- Department of Pathophysiology, Third Military Medical University, Chongqing, 400038, China; Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, 030200, China
| | - Zhiqiang Tian
- Institute of Immunology, PLA, Third Military Medical University, Chongqing, 400038, China
| | - Mengjie Zhang
- Department of Pathophysiology, Third Military Medical University, Chongqing, 400038, China
| | - Jian Zhou
- Department of Pathophysiology, Third Military Medical University, Chongqing, 400038, China
| | - Weiwu Gao
- Department of Pathophysiology, Third Military Medical University, Chongqing, 400038, China
| | - Yi Zhang
- Department of Pathophysiology, Third Military Medical University, Chongqing, 400038, China
| | - Yue Zhang
- Department of Dermatology, 105th Hospital of PLA, Bengbu Medical College, Hefei, 230001, China
| | - Bo Lei
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, 030200, China
| | - Bing Ni
- Department of Pathophysiology, Third Military Medical University, Chongqing, 400038, China
| | - Yuzhang Wu
- Institute of Immunology, PLA, Third Military Medical University, Chongqing, 400038, China.
| | - Weiping Fan
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, 030200, China.
| |
Collapse
|
33
|
Ye J, Liu L, Ji Q, Huang Y, Shi Y, Shi L, Liu J, Wang M, Xu Y, Jiang H, Wang Z, Lin Y, Wan J. Anti-Interleukin-22-Neutralizing Antibody Attenuates Angiotensin II-Induced Cardiac Hypertrophy in Mice. Mediators Inflamm 2017; 2017:5635929. [PMID: 29358851 PMCID: PMC5735629 DOI: 10.1155/2017/5635929] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Revised: 09/05/2017] [Accepted: 09/12/2017] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Interleukin- (IL-) 22 is considered a proinflammatory cytokine. Recent evidence has demonstrated that it plays a role in cardiovascular diseases. In the recent study, we investigate whether IL-22 is involved in cardiac hypertrophy. METHODS Angiotensin II was used to build hypertrophy model and the IL-22 and IL-22 receptor 1 (IL-22R1) levels in heart tissue were measured. In addition, angiotensin II-treated mice received an injection of anti-IL-22-neutralizing antibody (nAb) to investigate the effects of IL-22 nAb on myocardial hypertrophy, cardiac function, and cardiac fibrosis; the activation of the signaling pathway and the prohypertrophic inflammatory cytokine mRNA levels was detected. Furthermore, the effect of IL-22 nAb on angiotensin II-induced hypertrophy in vitro was also determined. RESULTS IL-22 and IL-22R1 levels were significantly increased after angiotensin II infusion. Anti-IL-22 nAb significantly alleviated the severity of hypertrophy, prevented systolic and diastolic abnormalities, reduced cardiac fibrosis, STAT3 and ERK phosphorylation, and downregulated the mRNA expression of IL-17, IL-6, IL-1β, IFN-γ, and TNF-α. In addition, IL-22 nAb attenuated angiotensin II-induced hypertrophy in H9C2 cells. CONCLUSION Our data demonstrated that neutralization of IL-22 alleviated angiotensin II-induced cardiac hypertrophy. The downregulation of IL-22 may be a novel therapeutic strategy to prevent cardiac hypertrophy.
Collapse
Affiliation(s)
- Jing Ye
- Department of Cardiology, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Department of Cardiology, Hubei Key Laboratory of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China
| | - Ling Liu
- Department of Cardiology, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Qingwei Ji
- Department of Cardiology, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Emergency & Critical Care Center, Beijing Institute of Heart, Lung, and Blood Vessel Diseases and Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| | - Ying Huang
- Department of Cardiology, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Ying Shi
- Department of Cardiology, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Lei Shi
- Department of Cardiology, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Jianfang Liu
- Department of Cardiology, Hubei Key Laboratory of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China
| | - Menglong Wang
- Department of Cardiology, Hubei Key Laboratory of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China
| | - Yao Xu
- Department of Cardiology, Hubei Key Laboratory of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China
| | - Huimin Jiang
- Department of Cardiology, Hubei Key Laboratory of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China
| | - Zhen Wang
- Department of Cardiology, Hubei Key Laboratory of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China
| | - Yingzhong Lin
- Department of Cardiology, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Department of Cardiology, Hubei Key Laboratory of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China
| | - Jun Wan
- Department of Cardiology, Hubei Key Laboratory of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China
| |
Collapse
|
34
|
Jiang BC, Liu X, Liu XH, Li ZSN, Zhu GZ. Notch Signaling Regulates Circulating T Helper 22 Cells in Patients with Chronic Hepatitis C. Viral Immunol 2017; 30:522-532. [PMID: 28410452 DOI: 10.1089/vim.2017.0007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Notch signaling enhanced the response of interleukin (IL)-22-producing CD4+ T cells that were defined as T helper 22 (Th22) cells, and Notch-aryl hydrocarbon receptor (AhR)-IL-22 axis fine-tuned inflammatory response. Previous studies have demonstrated that both Notch signaling and Th22 cells took part in the pathogenesis of chronic hepatitis C virus (HCV) infection. Thus, in this study, we aimed at examining the regulatory role of Notch signaling in Th22 cells in HCV infection. A total of 59 patients with chronic hepatitis C and 22 normal controls (NCs) were enrolled in this study. The percentage of Th22 cells and mRNA expression of related transcriptional factors and cytokines were analyzed in response to γ-secretase inhibitor. Th22 cell frequency was significantly elevated in chronic hepatitis C in comparison with that in NCs. Inhibition of Notch signaling downregulated HCV-specific Th22 cells and IL-22 production, which was accompanied by the reduction of AhR and modulatory cytokines (IL-6 and tumor necrosis factor-α). Moreover, the suppression of Notch signaling also decreased the IL-22-mediated antimicrobial response in both normal and HCV-infected HepG2 cells/Huh7.5 cells. This process was also accompanied by the depression of signal transducers and activators of transcription 3 signaling. In conclusion, the current results suggested that Notch signaling acted as a critical pathway in determining the response to IL-22 in chronic hepatitis C. Thus, Notch-Th22 axis might be considered a new therapeutic target for HCV-infected patients.
Collapse
Affiliation(s)
- Ben-Chun Jiang
- 1 Department of Clinical Laboratory Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine , Changchun, China
| | - Xin Liu
- 1 Department of Clinical Laboratory Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine , Changchun, China
| | - Xiao-Hong Liu
- 2 The Geriatric Department, The First Bethune Hospital of Jilin University , Changchun, China
| | | | - Guang-Ze Zhu
- 1 Department of Clinical Laboratory Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine , Changchun, China
| |
Collapse
|
35
|
Deng Y, Wu W, Guo S, Chen Y, Liu C, Gao X, Wei B. Altered mTOR and Beclin-1 mediated autophagic activation during right ventricular remodeling in monocrotaline-induced pulmonary hypertension. Respir Res 2017; 18:53. [PMID: 28340591 PMCID: PMC5366117 DOI: 10.1186/s12931-017-0536-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 03/12/2017] [Indexed: 01/25/2023] Open
Abstract
Background Right ventricular structure and function is a major predictor of outcomes in pulmonary hypertension (PH), yet the underlying mechanisms remain poorly understood. Growing evidence suggests the importance of autophagy in cardiac remodeling; however, its dynamics in the process of right ventricle(RV) remodeling in PH has not been fully explored. We sought to study the time course of cardiomyocyte autophagy in the RV in PH and determine whether mammalian target of rapamycin (mTOR) and Beclin-1 hypoxia-related pro-autophagic pathways are underlying mechanisms. Methods Rats were studied at 2, 4, and 6 weeks after subcutaneous injection of 60 mg/kg monocrotaline (MCT) (MCT-2 W, 4 W, 6 W) or vehicle (CON-2 W, 4 W, 6 W). Cardiac hemodynamics and RV function were assessed in rats. Autophagy structures and markers were assessed using transmission electron microscope, RT-qPCR, immunohistochemistry staining, and western blot analyses. Western blot was also used to quantify the expression of mTOR and Beclin-1 mediated pro-autophagy signalings in the RV. Results Two weeks after MCT injection, pulmonary artery systolic pressure increased and mild RV hypertrophy without RV dilation was observed. RV enlargement presented at 4 weeks with moderately decreased function, whereas typical characteristics of RV decompensation and failure occurred at 6 weeks thus demonstrating the progression of RV remodeling in the MCT model. A higher LC3 (microtubule- associated protein light chain 3) II/I ratio, upregulated LC3 mRNA and protein levels, as well as accumulation of autophagosomes in RV of MCT rats indicated autophagy induction. Autophagy activation was coincident with increased pulmonary artery systolic pressure. Pro-autophagy signaling pathways were activated in a RV remodeling stage-dependent manner since phospho-AMPK (adenosine monophosphate-activated protein kinase)-α were primarily upregulated and phospho-mTOR suppressed in the RV at 2 and 4 weeks post-MCT injection, whearas, BNIP3 (Bcl2-interacting protein 3) and beclin-1 expression were relatively low during these stages, they were significantly upregulated after 6 weeks in this model. Conclusions Our findings provide evidence of sustained activation of autophagy in RV remodeling of MCT induced PH model, while pro-autophagic signaling pathways varied depending on the phase.
Collapse
Affiliation(s)
- Yan Deng
- Department of Ultrasound, First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Weifeng Wu
- Department of Cardiology, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021, People's Republic of China.
| | - Shenglan Guo
- Department of Ultrasound, First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Yuming Chen
- Department of Cardiology, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021, People's Republic of China
| | - Chang Liu
- Department of Cardiology, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021, People's Republic of China
| | - Xingcui Gao
- Department of Cardiology, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021, People's Republic of China
| | - Bin Wei
- Department of Cardiology, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021, People's Republic of China
| |
Collapse
|
36
|
Gimeno Brias S, Stack G, Stacey MA, Redwood AJ, Humphreys IR. The Role of IL-22 in Viral Infections: Paradigms and Paradoxes. Front Immunol 2016; 7:211. [PMID: 27303405 PMCID: PMC4885595 DOI: 10.3389/fimmu.2016.00211] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 05/17/2016] [Indexed: 12/12/2022] Open
Abstract
Interleukin-22 (IL-22) is a member of the IL-10 family of cytokines. Hematopoietic cells express IL-22, and this cytokine signals through the heterodimeric IL-22 receptor expressed by non-hematopoietic cells. A growing body of evidence points toward a role for IL-22 in a diverse array of biological functions ranging from cellular proliferation, tissue protection and regeneration, and inflammation. In recent years, the role that IL-22 plays in antiviral immune responses has been examined in a number of infection models. Herein, we assess our current understanding of how IL-22 determines the outcome of viral infections and define common mechanisms that are evident from, sometimes paradoxical, findings derived from these studies. Finally, we discuss the potential therapeutic utility of IL-22 manipulation in the treatment and prevention of viral infections and associated pathologies.
Collapse
Affiliation(s)
- Silvia Gimeno Brias
- Institute of Infection and Immunity, Cardiff University, Cardiff, UK; Systems Immunity University Research Institute, Cardiff University, Cardiff, UK
| | - Gabrielle Stack
- Institute of Infection and Immunity, Cardiff University, Cardiff, UK; Systems Immunity University Research Institute, Cardiff University, Cardiff, UK
| | - Maria A Stacey
- Institute of Infection and Immunity, Cardiff University, Cardiff, UK; Systems Immunity University Research Institute, Cardiff University, Cardiff, UK
| | - Alec J Redwood
- The Institute for Immunology and Infectious Diseases, Murdoch University , Murdoch, WA , Australia
| | - Ian R Humphreys
- Institute of Infection and Immunity, Cardiff University, Cardiff, UK; Systems Immunity University Research Institute, Cardiff University, Cardiff, UK
| |
Collapse
|
37
|
|
38
|
Abstract
Importance of chronic fibroproliferative diseases (FDs) including pulmonary fibrosis, chronic kidney diseases, inflammatory bowel disease, and cardiovascular or liver fibrosis is rapidly increasing and they have become a major public health problem. According to some estimates about 45% of all deaths are attributed to FDs in the developed world. Independently of their etiology the common hallmark of FDs is chronic inflammation. Infiltrating immune cells, endothelial, epithelial, and other resident cells of the injured organ release an orchestra of inflammatory mediators, which stimulate the proliferation and excessive extracellular matrix (ECM) production of myofibroblasts, the effector cells of organ fibrosis. Abnormal amount of ECM disturbs the original organ architecture leading to the decline of function. Although our knowledge is rapidly expanding, we still have neither a diagnostic tool to detect nor a drug to specifically target fibrosis. Therefore, there is an urgent need for the more comprehensive understanding of the pathomechanism of fibrosis and development of novel diagnostic and therapeutic strategies. In the present review we provide an overview of the common key mediators of organ fibrosis highlighting the role of interleukin-10 (IL-10) cytokine family members (IL-10, IL-19, IL-20, IL-22, IL-24, and IL-26), which recently came into focus as tissue remodeling-related inflammatory cytokines.
Collapse
|