1
|
Cui Z, Wang J, Diao J, Xi L, Pan Y. Knowledge mapping of childhood infectious mononucleosis: a bibliometric analysis for the twenty-first century. JOURNAL OF HEALTH, POPULATION, AND NUTRITION 2025; 44:43. [PMID: 39962592 PMCID: PMC11834496 DOI: 10.1186/s41043-025-00781-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 02/02/2025] [Indexed: 02/20/2025]
Abstract
BACKGROUND The incidence of infectious mononucleosis (IM) has increased in recent years, particularly in the pediatric population, and there are currently no specific drugs available, posing a threat to the lives and health of children worldwide. Although some results have been published, there is a lack of systematic review and summarization of current research. METHODS Based on screening criteria, literature on IM in children from 2000 to 2023 was retrieved from the Web of Science Core Collection. The included literature's indicators (country, institution, journal, author, keywords, and references) were analyzed and visualized using Citespace, VOSviewer software, and the Bibliometrix program package. RESULTS A total of 538 eligible publications were included in this study. The number of publications has been on an upward trend during this century, with great potential for future growth. The countries with the most publications are the USA and China, and Capital Medical University is the most contributing institution. Hjalgrim, Henrik and Cohen, Jeffrey, I are among the field's most influential authors and co-cited authors. Among the major journals, the JOURNAL OF MEDICAL VIROLOGY had the highest output and the JOURNAL OF INFECTIOUS DISEASES was the most frequently cited. The reference with the highest outbreak intensity was Ramagopalan, SV, LANCET NEUROLOGY, 2010. Through in-depth analysis of the keywords, we conclude that the characteristics of diagnosis and assessment of IM, the association of IM with other diseases, and interventions for IM are the current hot topics of research in the field and that the pathogenesis of IM due to EBV is a cutting-edge topic in the field. This study also analyzes the reasons for geographical research differences and proposes a new "increasing quantity-improving quality-integrating" cooperation model. CONCLUSION This study's hotspots and frontiers reflect the current status and trends in pediatric IM, and these findings provide important insights to guide future research and optimize therapeutic strategies. In the future, there is a need to strengthen international collaboration and cooperation, conduct RCTs with large sample sizes, and promote the development of new drugs in mechanism research.
Collapse
Affiliation(s)
- Zhengjiu Cui
- Department of Pediatrics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Jinjuan Wang
- Department of Pediatrics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Juanjuan Diao
- Department of Pediatrics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Leiming Xi
- Department of Pediatrics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China.
| | - Yueli Pan
- Department of Pediatrics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
2
|
Rezaei M, Moghoofei M. The role of viral infection in implantation failure: direct and indirect effects. Reprod Biol Endocrinol 2024; 22:142. [PMID: 39529140 PMCID: PMC11552308 DOI: 10.1186/s12958-024-01303-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
Implantation is the key initial complex stage of pregnancy. Several factors are involved in implantation, but acute and controlled inflammation has been shown to play as a key role. On the other hand, the role of viral infections in directly infecting blastocyst and trophoblast and inducing chronic and uncontrolled inflammation and disrupting microRNAs expression can make this review strongly attractive and practical. We aim to provide an overview of viral infections as the potential etiology of unsuccessful implantation pathophysiology through alteration of the cellular and molecular endometrial microenvironment. Based on our search, this is the first review to discuss the role of inflammation associated with viral infection in implantation failure.
Collapse
Affiliation(s)
- Marzieh Rezaei
- Department of Obstetrics and Gynecology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohsen Moghoofei
- Infectious Diseases Research Center, Health Research Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
- Department of Microbiology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
3
|
Böge FL, Ruff S, Hemandhar Kumar S, Selle M, Becker S, Jung K. Combined Analysis of Multi-Study miRNA and mRNA Expression Data Shows Overlap of Selected miRNAs Involved in West Nile Virus Infections. Genes (Basel) 2024; 15:1030. [PMID: 39202390 PMCID: PMC11353516 DOI: 10.3390/genes15081030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/30/2024] [Accepted: 08/01/2024] [Indexed: 09/03/2024] Open
Abstract
The emerging zoonotic West Nile virus (WNV) has serious impact on public health. Thus, understanding the molecular basis of WNV infections in mammalian hosts is important to develop improved diagnostic and treatment strategies. In this context, the role of microRNAs (miRNAs) has been analyzed by several studies under different conditions and with different outcomes. A systematic comparison is therefore necessary. Furthermore, additional information from mRNA target expression data has rarely been taken into account to understand miRNA expression profiles under WNV infections. We conducted a meta-analysis of publicly available miRNA expression data from multiple independent studies, and analyzed them in a harmonized way to increase comparability. In addition, we used gene-set tests on mRNA target expression data to further gain evidence about differentially expressed miRNAs. For this purpose, we also studied the use of target information from different databases. We detected a substantial number of miRNA that emerged as differentially expressed from several miRNA datasets, and from the mRNA target data analysis as well. When using mRNA target data, we found that the targetscan databases provided the most useful information. We demonstrated improved miRNA detection through research synthesis of multiple independent miRNA datasets coupled with mRNA target set testing, leading to the discovery of multiple miRNAs which should be taken into account for further research on the molecular mechanism of WNV infections.
Collapse
Affiliation(s)
- Franz Leonard Böge
- Institute of Animal Genomics, University of Veterinary Medicine Hannover, Bünteweg 17p, 30559 Hannover, Germany; (F.L.B.); (S.R.); (S.H.K.); (M.S.)
| | - Sergej Ruff
- Institute of Animal Genomics, University of Veterinary Medicine Hannover, Bünteweg 17p, 30559 Hannover, Germany; (F.L.B.); (S.R.); (S.H.K.); (M.S.)
| | - Shamini Hemandhar Kumar
- Institute of Animal Genomics, University of Veterinary Medicine Hannover, Bünteweg 17p, 30559 Hannover, Germany; (F.L.B.); (S.R.); (S.H.K.); (M.S.)
| | - Michael Selle
- Institute of Animal Genomics, University of Veterinary Medicine Hannover, Bünteweg 17p, 30559 Hannover, Germany; (F.L.B.); (S.R.); (S.H.K.); (M.S.)
| | - Stefanie Becker
- Institute of Parasitology, University of Veterinary Medicine Hannover, Bünteweg 17, 30539 Hannover, Germany;
| | - Klaus Jung
- Institute of Animal Genomics, University of Veterinary Medicine Hannover, Bünteweg 17p, 30559 Hannover, Germany; (F.L.B.); (S.R.); (S.H.K.); (M.S.)
| |
Collapse
|
4
|
Alshahrani SH, Yuliastanti T, Al-Dolaimy F, Korotkova NL, Rasulova I, Almuala AF, Alsaalamy A, Ali SHJ, Alasheqi MQ, Mustafa YF. A glimpse into let-7e roles in human disorders; friend or foe? Pathol Res Pract 2024; 253:154992. [PMID: 38103367 DOI: 10.1016/j.prp.2023.154992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/17/2023] [Accepted: 11/27/2023] [Indexed: 12/19/2023]
Abstract
MicroRNAs (miRNAs) have been linked to abnormal expression and regulation in a number of diseases, including cancer. Recent studies have concentrated on miRNA Let-7e's significance in precision medicine for cancer screening and diagnosis as well as its prognostic and therapeutic potential. Differential let-7e levels in bodily fluids have the possibility to enable early detection of cancer utilizing less-invasive techniques, reducing biopsy-related risks. Although Let-7e miRNAs have been described as tumor suppressors, it is crucial to note that there exists proof to support their oncogenic activity in vitro and in in vivo. Let-7e's significance in chemo- and radiation treatment decisions has also been demonstrated. Let-7e can also prevent the synthesis of proinflammatory cytokines in a number of degenerative disorders, including musculoskeletal and neurological conditions. For the first time, an overview of the significance of let-7e in the prevention, detection, and therapy of cancer and other conditions has been given in the current review. Additionally, we focused on the specific molecular processes that underlie the actions of let-7e, more particularly, on malignant cells.
Collapse
Affiliation(s)
| | | | | | - Nadezhda L Korotkova
- I.M. Sechenov First Moscow State Medical University, Moscow, Russian Federation; Federal State Budgetary Educational Institution of Higher Education "Privolzhsky Research Medical University" of the Ministry of Health of the Russian Federation, Nizhny Novgorod, Russian Federation
| | - Irodakhon Rasulova
- School of Humanities, Natural & Social Sciences, New Uzbekistan University, 54 Mustaqillik Ave., Tashkent 100007, Uzbekistan; Department of Public Health, Samarkand State Medical University, Amir Temur Street 18, Samarkand, Uzbekistan
| | - Abbas Firras Almuala
- College of Technical Engineering, the Islamic University, Najaf, Iraq; College of Technical Engineering, the Islamic University of Al Diwaniyah, Iraq; College of Technical Engineering, the Islamic University of Babylon, Iraq
| | - Ali Alsaalamy
- College of Technical Engineering, Imam Ja'afar Al-Sadiq University, Al-Muthanna 66002, Iraq
| | - Saad Hayif Jasim Ali
- Department of Medical Laboratory, College of Health and Medical Technololgy, Al-Ayen University, Thi-Qar, Iraq
| | | | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul 41001, Iraq
| |
Collapse
|
5
|
Wang WT, Yang Y, Zhang Y, Le YN, Wu YL, Liu YY, Tu YJ. EBV-microRNAs as Potential Biomarkers in EBV-related Fever: A Narrative Review. Curr Mol Med 2024; 24:2-13. [PMID: 36411555 PMCID: PMC10825793 DOI: 10.2174/1566524023666221118122005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 07/31/2022] [Accepted: 10/11/2022] [Indexed: 11/23/2022]
Abstract
At present, timely and accurate diagnosis and effective treatment of Epstein- Barr Virus (EBV) infection-associated fever remain a difficult challenge. EBV encodes 44 mature microRNAs (miRNAs) that inhibit viral lysis, adjust inflammatory response, regulate cellular apoptosis, promote tumor genesis and metastasis, and regulate tumor cell metabolism. Herein, we have collected the specific expression data of EBV-miRNAs in EBV-related fevers, including infectious mononucleosis (IM), EBVassociated hemophagocytic lymphohistiocytosis (EBV-HLH), chronic active EBV infection (CAEBV), and EBV-related tumors, and proposed the potential value of EBVmiRNAs as biomarkers to assist in the identification, diagnosis, and prognosis of EBVrelated fever, as well as therapeutic targets for drug development.
Collapse
Affiliation(s)
- Wei-ting Wang
- School of Acupuncture-moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai (201203), China
| | - Yun Yang
- School of Acupuncture-moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai (201203), China
| | - Yang Zhang
- Information Center of Science and Technology, Shanghai Innovation Center of TCM Health Service, Shanghai University of Traditional Chinese Medicine, Shanghai (201203), China
| | - Yi-ning Le
- National Key Laboratory of Medical Immunology & Institute of Immunology, Second Military Medical University, Shanghai (200433), China
| | - Yu-lin Wu
- School of Acupuncture-moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai (201203), China
| | - Yi-yi Liu
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai (200032), China
| | - Yan-jie Tu
- Department of Febrile Disease, Basic Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai (201203), China
| |
Collapse
|
6
|
Rad SMAH, Wannigama DL, Hirankarn N, McLellan AD. The impact of non-synonymous mutations on miRNA binding sites within the SARS-CoV-2 NSP3 and NSP4 genes. Sci Rep 2023; 13:16945. [PMID: 37805621 PMCID: PMC10560223 DOI: 10.1038/s41598-023-44219-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 10/05/2023] [Indexed: 10/09/2023] Open
Abstract
Non-synonymous mutations in the SARS-CoV-2 spike region affect cell entry, tropism, and immune evasion, while frequent synonymous mutations may modify viral fitness. Host microRNAs, a type of non-coding RNA, play a crucial role in the viral life cycle, influencing viral replication and the host immune response directly or indirectly. Recently, we identified ten miRNAs with a high complementary capacity to target various regions of the SARS-CoV-2 genome. We filtered our candidate miRNAs to those only expressed with documented expression in SARS-CoV-2 target cells, with an additional focus on miRNAs that have been reported in other viral infections. We determined if mutations in the first SARS-CoV-2 variants of concern affected these miRNA binding sites. Out of ten miRNA binding sites, five were negatively impacted by mutations, with three recurrent synonymous mutations present in multiple SARS-CoV-2 lineages with high-frequency NSP3: C3037U and NSP4: G9802U/C9803U. These mutations were predicted to negatively affect the binding ability of miR-197-5p and miR-18b-5p, respectively. In these preliminary findings, using a dual-reporter assay system, we confirmed the ability of these miRNAs in binding to the predicted NSP3 and NSP4 regions and the loss/reduced miRNA bindings due to the recurrent mutations.
Collapse
Affiliation(s)
- S M Ali Hosseini Rad
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand.
- Center of Excellence in Immunology and Immune-Mediated Diseases, Chulalongkorn University, Bangkok, Thailand.
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand.
| | - Dhammika Leshan Wannigama
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
- Department of Infectious Diseases and Infection Control, Yamagata Prefectural Central Hospital, Yamagata, Japan
- Center of Excellence in Antimicrobial Resistance and Stewardship Research, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- School of Medicine, Faculty of Health and Medical Sciences, The University of Western Australia, Nedlands, WA, Australia
- Biofilms and Antimicrobial Resistance Consortium of ODA Receiving Countries, The University of Sheffield, Sheffield, UK
- Pathogen Hunter's Research Team, Department of Infectious Diseases and Infection Control, Yamagata Prefectural Central Hospital, Yamagata, Japan
- Yamagata Prefectural University of Health Sciences, Kamiyanagi, Yamagata, 990-2212, Japan
| | - Nattiya Hirankarn
- Center of Excellence in Immunology and Immune-Mediated Diseases, Chulalongkorn University, Bangkok, Thailand.
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand.
| | - Alexander D McLellan
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand.
| |
Collapse
|
7
|
Daprà V, Galliano I, Rassu M, Calvi C, Montanari P, Bergallo M. Mir-155 expression is downregulated in hematopoietic stem cell transplantation patients with Epstein-Barr virus infection. Minerva Pediatr (Torino) 2023; 75:550-556. [PMID: 31833346 DOI: 10.23736/s2724-5276.19.05420-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
BACKGROUND MicroRNAs (miRNAs) are a class of short length double strand genome encoded RNAs that are produced to repress post-transcriptionally the expression of cellular mRNAs. 2578 unique mature miRNAs are currently annotated in the human genome and participate in the regulation of multiple events, such as cellular proliferation or apoptosis. The over-expression of miR-155 of cellular origin might play a key role in the life cycle of EBV. In this study 24 pediatric patients undergoing HSCT seropositive and seronegative to EBV were enrolled. Thirty-one peripheral blood samples were collected from these patients. The mir-155 expression profile has been evaluated by a stem-loop Real Time PCR in all these conditions. METHODS Of 24 patients, 4 were seronegative to EBV and EBV negative to PCR (Group I), 10 were seropositive to EBV and EBV negative to PCR (Group II) and 10 were seropositive to EBV and EBV positive to PCR (Group III). RESULTS Based on relative quantification, the mir-155 expression was compared among the groups. The comparison between HSCT patients without EBV infection seronegative to EBV (Group I) showed higher levels of mir-155 expression than patients seropositive to EBV (P=0.1419). The mir-155 expression levels in seronegative to EBV were not significantly different compared with the patients seropositive to EBV (P=0.6504). The mir-155 expression levels in seropositive to EBV without and with EBV infection (positive viral load), were not significantly (P=0.7667). Also, when we evaluated the mir-155 expression levels comparing all EBV negative patients with an active EBV infection, we did not observe a statistically significant difference (P=0.9782). CONCLUSIONS Our results are controversial, showing a higher production of mir-155 levels during EBV infection.
Collapse
Affiliation(s)
- Valentina Daprà
- Medical School, Department of Public Health and Pediatric Sciences, University of Turin, Turin, Italy
| | - Ilaria Galliano
- Medical School, Department of Public Health and Pediatric Sciences, University of Turin, Turin, Italy
| | - Marco Rassu
- Medical School, Department of Public Health and Pediatric Sciences, University of Turin, Turin, Italy
| | - Cristina Calvi
- Medical School, Department of Public Health and Pediatric Sciences, University of Turin, Turin, Italy
| | - Paola Montanari
- Medical School, Department of Public Health and Pediatric Sciences, University of Turin, Turin, Italy
| | - Massimiliano Bergallo
- Medical School, Department of Public Health and Pediatric Sciences, University of Turin, Turin, Italy -
| |
Collapse
|
8
|
Kim KU, Han K, Kim J, Kwon DH, Ji YW, Yi DY, Min H. The Protective Role of Exosome-Derived MicroRNAs and Proteins from Human Breast Milk against Infectious Agents. Metabolites 2023; 13:metabo13050635. [PMID: 37233676 DOI: 10.3390/metabo13050635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 04/28/2023] [Accepted: 05/06/2023] [Indexed: 05/27/2023] Open
Abstract
Human breast milk (HBM)-derived exosomes contain various biological and immunological components. However, comprehensive immune-related and antimicrobial factor analysis requires transcriptomic, proteomic, and multiple databases for functional analyses, and has yet to be conducted. Therefore, we isolated and confirmed HBM-derived exosomes by detecting specific markers and examining their morphology using western blot and transmission electron microscopy. Moreover, we implemented small RNA sequencing and liquid chromatography-mass spectrometry to investigate substances within the HBM-derived exosomes and their roles in combating pathogenic effects, identifying 208 miRNAs and 377 proteins associated with immunological pathways and diseases. Integrated omics analyses identified a connection between the exosomal substances and microbial infections. In addition, gene ontology and the Kyoto Encyclopedia of Genes and Genomes pathway analyses demonstrated that HBM-derived exosomal miRNA and proteins influence immune-related functions and pathogenic infections. Finally, protein-protein interaction analysis identified three primary proteins (ICAM1, TLR2, and FN1) associated with microbial infections mediating pro-inflammation, controlling infection, and facilitating microbial elimination. Our findings determine that HBM-derived exosomes modulate the immune system and could offer therapeutic strategies for regulating pathogenic microbial infection.
Collapse
Affiliation(s)
- Ki-Uk Kim
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Kyusun Han
- Institute of Vision Research, Department of Ophthalmology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Jisu Kim
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Da Hyeon Kwon
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Yong Woo Ji
- Institute of Vision Research, Department of Ophthalmology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
- Department of Ophthalmology, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin 16995, Republic of Korea
| | - Dae Yong Yi
- Department of Pediatrics, Chung-Ang University College of Medicine, Seoul 06974, Republic of Korea
- Department of Internal Medicine, Chung-Ang University College of Medicine, Seoul 06974, Republic of Korea
| | - Hyeyoung Min
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| |
Collapse
|
9
|
Hu G, Hauk PJ, Zhang N, Elsegeiny W, Guardia CM, Kullas A, Crosby K, Deterding RR, Schedel M, Reynolds P, Abbott JK, Knight V, Pittaluga S, Raffeld M, Rosenzweig SD, Bonifacino JS, Uzel G, Williamson PR, Gelfand EW. Autophagy-associated immune dysregulation and hyperplasia in a patient with compound heterozygous mutations in ATG9A. Autophagy 2023; 19:678-691. [PMID: 35838483 PMCID: PMC9851204 DOI: 10.1080/15548627.2022.2093028] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 06/16/2022] [Accepted: 06/17/2022] [Indexed: 01/27/2023] Open
Abstract
ABBREVIATIONS BCL2: BCL2 apoptosis regulator; BCL10: BCL10 immune signaling adaptor; CARD11: caspase recruitment domain family member 11; CBM: CARD11-BCL10-MALT1; CR2: complement C3d receptor 2; EBNA: Epstein Barr nuclear antigen; EBV: Epstein-Barr virus; FCGR3A; Fc gamma receptor IIIa; GLILD: granulomatous-lymphocytic interstitial lung disease; HV: healthy volunteer; IKBKB/IKB kinase: inhibitor of nuclear factor kappa B kinase subunit beta; IL2RA: interleukin 2 receptor subunit alpha; MALT1: MALT1 paracaspase; MS4A1: membrane spanning 4-domain A1; MTOR: mechanistic target of rapamycin kinase; MYC: MYC proto-oncogene, bHLH: transcription factor; NCAM1: neural cell adhesion molecule 1; NFKB: nuclear factor kappa B; NIAID: National Institute of Allergy and Infectious Diseases; NK: natural killer; PTPRC: protein tyrosine phosphatase receptor type C; SELL: selectin L; PBMCs: peripheral blood mononuclear cells; TR: T cell receptor; Tregs: regulatory T cells; WT: wild-type.
Collapse
Affiliation(s)
- Guowu Hu
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Pia J Hauk
- Divisions of Allergy and Immunology and Cell Biology and Immunodeficiency Diagnosis and Treatment Program, Department of Pediatrics, National Jewish Health, Denver, CO, USA
- Section Pediatric Allergy and Immunology, Children’s Hospital, Colorado, Aurora, CO, USA
| | - Nannan Zhang
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Waleed Elsegeiny
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Carlos M. Guardia
- Section on Intracellular Protein Trafficking, Neurosciences and Cellular and Structural Biology Division, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Amy Kullas
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Kevin Crosby
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Robin R. Deterding
- Section Pediatric Pulmonary Medicine, Children’s Hospital, Colorado, Aurora, CO, USA
| | - Michaela Schedel
- Divisions of Allergy and Immunology and Cell Biology and Immunodeficiency Diagnosis and Treatment Program, Department of Pediatrics, National Jewish Health, Denver, CO, USA
- Department of Pulmonary Medicine, University Medicine Essen-Ruhrlandklinik, Essen, Germany
- Department of Pulmonary Medicine, University Medicine Essen, University Hospital, Essen, Germany
| | - Paul Reynolds
- Divisions of Allergy and Immunology and Cell Biology and Immunodeficiency Diagnosis and Treatment Program, Department of Pediatrics, National Jewish Health, Denver, CO, USA
| | - Jordan K Abbott
- Divisions of Allergy and Immunology and Cell Biology and Immunodeficiency Diagnosis and Treatment Program, Department of Pediatrics, National Jewish Health, Denver, CO, USA
- Section Pediatric Allergy and Immunology, Children’s Hospital, Colorado, Aurora, CO, USA
| | - Vijaya Knight
- Section Pediatric Allergy and Immunology, Children’s Hospital, Colorado, Aurora, CO, USA
| | - Stefania Pittaluga
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Mark Raffeld
- Immunology Service, Department of Laboratory Medicine, NIH Clinical Center, Bethesda, MD, USA
| | - Sergio D. Rosenzweig
- Immunology Service, Department of Laboratory Medicine, NIH Clinical Center, Bethesda, MD, USA
| | - Juan S. Bonifacino
- Section on Intracellular Protein Trafficking, Neurosciences and Cellular and Structural Biology Division, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Gulbu Uzel
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Peter R. Williamson
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Erwin W. Gelfand
- Divisions of Allergy and Immunology and Cell Biology and Immunodeficiency Diagnosis and Treatment Program, Department of Pediatrics, National Jewish Health, Denver, CO, USA
| |
Collapse
|
10
|
Liu T, Jia J, Wang L, Yin Z, Liu Y. Explore the mechanism of incomplete Kawasaki disease and identify a novel biomarker by weighted gene co-expression network analysis. Immunobiology 2022; 227:152285. [DOI: 10.1016/j.imbio.2022.152285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 09/05/2022] [Accepted: 09/26/2022] [Indexed: 11/05/2022]
|
11
|
Letafati A, Najafi S, Mottahedi M, Karimzadeh M, Shahini A, Garousi S, Abbasi-Kolli M, Sadri Nahand J, Tamehri Zadeh SS, Hamblin MR, Rahimian N, Taghizadieh M, Mirzaei H. MicroRNA let-7 and viral infections: focus on mechanisms of action. Cell Mol Biol Lett 2022; 27:14. [PMID: 35164678 PMCID: PMC8853298 DOI: 10.1186/s11658-022-00317-9] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 01/26/2022] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs (miRNAs) are fundamental post-transcriptional modulators of several critical cellular processes, a number of which are involved in host defense mechanisms. In particular, miRNA let-7 functions as an essential regulator of the function and differentiation of both innate and adaptive immune cells. Let-7 is involved in several human diseases, including cancer and viral infections. Several viral infections have found ways to dysregulate the expression of miRNAs. Extracellular vesicles (EV) are membrane-bound lipid structures released from many types of human cells that can transport proteins, lipids, mRNAs, and miRNAs, including let-7. After their release, EVs are taken up by the recipient cells and their contents released into the cytoplasm. Let-7-loaded EVs have been suggested to affect cellular pathways and biological targets in the recipient cells, and can modulate viral replication, the host antiviral response, and the action of cancer-related viruses. In the present review, we summarize the available knowledge concerning the expression of let-7 family members, functions, target genes, and mechanistic involvement in viral pathogenesis and host defense. This may provide insight into the development of new therapeutic strategies to manage viral infections.
Collapse
Affiliation(s)
- Arash Letafati
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Sajad Najafi
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehran Mottahedi
- Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Karimzadeh
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Shahini
- Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Setareh Garousi
- Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Abbasi-Kolli
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Javid Sadri Nahand
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Michael R. Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, 2028 South Africa
| | - Neda Rahimian
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences (IUMS), Tehran, Iran
- Department of Internal Medicine, School of Medicine, Firoozgar Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Taghizadieh
- Department of Pathology, School of Medicine, Center for Women’s Health Research Zahra, Tabriz University of Medical Sciences, Tabriz, Islamic Republic of Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
12
|
Khokhar M, Tomo S, Purohit P. MicroRNAs based regulation of cytokine regulating immune expressed genes and their transcription factors in COVID-19. Meta Gene 2021; 31:100990. [PMID: 34722158 PMCID: PMC8547816 DOI: 10.1016/j.mgene.2021.100990] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 10/21/2021] [Accepted: 10/22/2021] [Indexed: 01/08/2023] Open
Abstract
Background Coronavirus disease 2019 is characterized by the elevation of a broad spectrum of inflammatory mediators associated with poor disease outcomes. We aimed at an in-silico analysis of regulatory microRNA and their transcription factors (TF) for these inflammatory genes that may help to devise potential therapeutic strategies in the future. Methods The cytokine regulating immune-expressed genes (CRIEG) were sorted from literature and the GEO microarray dataset. Their co-differentially expressed miRNA and transcription factors were predicted from publicly available databases. Enrichment analysis was done through mienturnet, MiEAA, Gene Ontology, and pathways predicted by KEGG and Reactome pathways. Finally, the functional and regulatory features were analyzed and visualized through Cytoscape. Results Sixteen CRIEG were observed to have a significant protein-protein interaction network. The ontological analysis revealed significantly enriched pathways for biological processes, molecular functions, and cellular components. The search performed in the miRNA database yielded ten miRNAs that are significantly involved in regulating these genes and their transcription factors. Conclusion An in-silico representation of a network involving miRNAs, CRIEGs, and TF, which take part in the inflammatory response in COVID-19, has been elucidated. Thus, these regulatory factors may have potentially critical roles in the inflammatory response in COVID-19 and may be explored further to develop targeted therapeutic strategies and mechanistic validation.
Collapse
Key Words
- AHR, Aryl hydrocarbon receptor
- ARDS, acute respiratory distress syndrome
- BAL, Bronchoalveolar Lavage
- CC, Cellular components
- CCL, Chemokine (C-C motif) ligands
- CCL2, C-C motif chemokine 2
- CCL3, C-C motif chemokine 3
- CCL4, C-C motif chemokine 4
- CCR, CC chemokine receptor
- CEBPA, CCAAT/enhancer-binding protein alpha
- COVID-19
- COVID-19, Coronavirus Disease 2019
- CREM, cAMP responsive element modulator
- CRIEGs, Cytokine regulating immune expressed genes
- CSF2, Granulocyte-macrophage colony-stimulating factor
- CSF3, Granulocyte colony-stimulating factor
- CXCL10, C-X-C motif chemokine 10
- CXCL2, Chemokine (C-X-C motif) ligand 2
- CXCL8, Interleukin-8
- CXCR, C-X-C chemokine receptor
- Cytokine storm
- Cytokines
- DDIT3, DNA damage-inducible transcript 3 protein
- DEGs, Differentially expressed genes
- E2F1, Transcription factor E2F1
- EGR1, Early growth response protein 1
- EP300, Histone acetyltransferase p300
- ESR1, Estrogen receptor, Nuclear hormone receptor
- ETS2, Protein C-ets-2
- FOXP3, Forkhead box protein P3
- GO, Gene Ontology
- GSEs, Gene Series Expressions
- HDAC1, Histone deacetylase 1
- HDAC2, Histone deacetylase 2
- HSF1, Heat shock factor protein 1
- IL-6, interleukin-6
- IL10, Interleukin-10
- IL17A, Interleukin-17A
- IL1B, Interleukin-1
- IL2, Interleukin-2
- IL6, Interleukin-6
- IL7, Interleukin-7
- IL9, Interleukin-9
- IP-10, Interferon-Inducible Protein 10
- IRF1, Interferon regulatory factor 1
- Immuno-interactomics
- JAK-STAT, Janus kinase (JAK)-signal transducer and activator
- JAK2, Tyrosine-protein kinase JAK2
- JUN, Transcription factor AP-1
- KEGG, Kyoto Encyclopedia of Genes and Genomes
- KLF4, Krueppel-like factor 4
- MicroRNA, SARS-CoV-2
- NF-κB, nuclear factor kappa-light-chain-enhancer of activated B cells
- NFAT5, Nuclear factor of activated T-cells 5
- NFKB1, Nuclear factor NF-kappa-B p105 subunit
- NFKBIA, NF-kappa-B inhibitor alpha
- NR1I2, Nuclear receptor subfamily 1 group I member 2
- PDM, peripheral blood mononuclear cell
- REL, Proto-oncogene c-Rel
- RELA, Transcription factor p65
- RUNX1, Runt-related transcription factor 1
- SARS-CoV-2, Severe Acute Respiratory Syndrome Coronavirus 2
- SIRT1, NAD-dependent protein deacetylase sirtuin-1
- SP1, Transcription factor Sp1
- SPI1, Transcription factor PU.1
- STAT1, Signal transducer and activator of transcription 1-alpha/beta
- STAT3, Signal transducer and activator of transcription 3
- TLR3, Toll-like receptor 3 (TLR3)
- TNF, Tumor necrosis factor
- TNF-α, Tumor Necrosis Factor-Alpha
- VDR, Vitamin D3 receptor
- XBP1, X-box-binding protein 1
- ZFP36, mRNA decay activator protein ZFP36
- ZNF300, Zinc finger protein 300, heme oxygenase-1 (HO-1)
- miEAA, miRNA Enrichment Analysis and Annotation t
Collapse
Affiliation(s)
- Manoj Khokhar
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur 342005, India
| | - Sojit Tomo
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur 342005, India
| | - Purvi Purohit
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur 342005, India
| |
Collapse
|
13
|
Charostad J, Nakhaei M, Azaran A, Kaydani GA, Astani A, Motamedfar A, Makvandi M. MiRNA-218 Is Frequently Downregulated in Malignant Breast Tumors: A Footprint of Epstein-Barr Virus Infection. IRANIAN JOURNAL OF PATHOLOGY 2021; 16:376-385. [PMID: 34567186 PMCID: PMC8463758 DOI: 10.30699/ijp.20201.521107.2550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 03/07/2021] [Indexed: 11/08/2022]
Abstract
BACKGROUND & OBJECTIVE The role of Epstein-Barr Virus in development of breast cancer is frequently studied. In this regard, miRNAs are among the contributing elements in the molecular pathophysiology of EBV-related diseases. In addition, a growing number of host miRNAs are believed to be implicated in pathogenesis of breast cancer. MiR-218 is a tumor suppressive miRNA that is subjected to dysregulation in various EBV-associated cancers. We aimed to investigate the frequency of EBV and its relationship with expression status of tumor suppressive miR-218 in breast cancer and adjacent normal tissue. METHODS A total number of 51 fresh malignant breast cancer tissues (cases) and their adjacent normal tissues (controls) were collected. Nested-PCR and RT-qPCR were set to identify EBV frequency and miR-218 expression in cases and controls, respectively. RESULTS Out of all samples, 6.8% (7/102) comprising 11.6% (6/51) in malignant tissues and 1.9% (1/51) in normal control tissues were positive for EBV (P<0.05). Quantitative data showed that miR-218 was significantly downregulated in malignant tissues compared to control tissues (P<0.0001). In addition, reduced expression of miR-218 was associated with adverse clinical outcomes, metastasis, and higher grades of malignancy. Given the presence of EBV, lower expression of miR-218 was observed in breast cancer group in comparison with normal group (P<0.05). CONCLUSION Our results raise the possibility of the relation between EBV infection and miR-218 downregulation in breast cancer and propose further investigations in this regard.
Collapse
Affiliation(s)
- Javad Charostad
- Cancer Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Virology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohsen Nakhaei
- Department of Virology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Azarakhsh Azaran
- Department of Virology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Gholam Abbas Kaydani
- Department of Laboratory Sciences, School of Allied Health Sciences, Ahvaz Jundishapur University of Medical sciences Ahvaz, Iran
| | - Akram Astani
- Department of Microbiology, Shahid Sadoghi University of Medical Sciences, Yazd, Iran
| | - Azim Motamedfar
- Department of Nuclear Medicine, School of Medicine, Golestan Hospital, Ahvaz Jundishapur University of Medical sciences, Ahvaz, Iran
| | - Manoochehr Makvandi
- Cancer Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Virology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
14
|
Bastami M, Masotti A, Saadatian Z, Daraei A, Farjam M, Ghanbariasad A, Vahed SZ, Eyvazi S, Mansoori Y, Nariman-Saleh-Fam Z. Critical roles of microRNA-196 in normal physiology and non-malignant diseases: Diagnostic and therapeutic implications. Exp Mol Pathol 2021; 122:104664. [PMID: 34166682 DOI: 10.1016/j.yexmp.2021.104664] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/26/2021] [Accepted: 06/18/2021] [Indexed: 02/06/2023]
Abstract
MicroRNAs (miRNAs) have emerged as a critical component of regulatory networks that modulate and fine-tune gene expression in a post-transcriptional manner. The microRNA-196 family is encoded by three loci in the human genome, namely hsa-mir-196a-1, hsa-mir-196a-2, and hsa-mir-196b. Increasing evidence supports the roles of different components of this miRNA family in regulating key cellular processes during differentiation and development, ranging from inflammation and differentiation of stem cells to limb development and remodeling and structure of adipose tissue. This review first discusses about the genomic context and regulation of this miRNA family and then take a bird's eye view on the updated list of its target genes and their biological processes to obtain insights about various functions played by members of the microRNA-196 family. We then describe evidence supporting the involvement of the human microRNA-196 family in regulating critical cellular processes both in physiological and non-malignant inflammatory conditions, highlighting recent seminal findings that carry implications for developing novel therapeutic or diagnostic strategies.
Collapse
Affiliation(s)
- Milad Bastami
- Non-communicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Andrea Masotti
- Research Laboratories, Bambino Gesù Children's Hospital-IRCCS, Rome 00146, Italy
| | - Zahra Saadatian
- Department of Genetics, Faculty of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Abdolreza Daraei
- Department of Medical Genetics, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Mojtaba Farjam
- Non-communicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Ali Ghanbariasad
- Department of Medical Biotechnology, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | | | - Shirin Eyvazi
- Department of Biology, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Yaser Mansoori
- Non-communicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran; Medical Genetics Department, Fasa University of Medical Sciences, Fasa, Iran.
| | - Ziba Nariman-Saleh-Fam
- Women's Reproductive Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
15
|
Anderson G, Maes M. Mitochondria and immunity in chronic fatigue syndrome. Prog Neuropsychopharmacol Biol Psychiatry 2020; 103:109976. [PMID: 32470498 DOI: 10.1016/j.pnpbp.2020.109976] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 05/19/2020] [Indexed: 02/07/2023]
Abstract
It is widely accepted that the pathophysiology and treatment of myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) could be considerably improved. The heterogeneity of ME/CFS and the confusion over its classification have undoubtedly contributed to this, although this would seem a consequence of the complexity of the array of ME/CFS presentations and high levels of diverse comorbidities. This article reviews the biological underpinnings of ME/CFS presentations, including the interacting roles of the gut microbiome/permeability, endogenous opioidergic system, immune cell mitochondria, autonomic nervous system, microRNA-155, viral infection/re-awakening and leptin as well as melatonin and the circadian rhythm. This details not only relevant pathophysiological processes and treatment options, but also highlights future research directions. Due to the complexity of interacting systems in ME/CFS pathophysiology, clarification as to its biological underpinnings is likely to considerably contribute to the understanding and treatment of other complex and poorly managed conditions, including fibromyalgia, depression, migraine, and dementia. The gut and immune cell mitochondria are proposed to be two important hubs that interact with the circadian rhythm in driving ME/CFS pathophysiology.
Collapse
Affiliation(s)
- G Anderson
- CRC Scotland & London, Eccleston Square, London, UK.
| | - M Maes
- Dept Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Dept Psychiatry, Medical University Plovdiv, Plovdiv, Bulgaria.; IMPACT Research Center, Deakin University, Geelong, Australia
| |
Collapse
|
16
|
Tang J, Liu ZY, Tang Y, Wang Y. Effects of Dicer1 targeted by EBV-miR-BART6-5p on biological properties and radiosensitivity of nasopharyngeal carcinoma. Hum Exp Toxicol 2020; 40:977-993. [PMID: 33305599 DOI: 10.1177/0960327120979020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
OBJECTIVE To discuss the effects of Epstein-Barr virus (EBV)-encoded BamHI A rightward transcript (BART) microRNA (miR-BART6-5p) by targeting Dicer1 on biological properties and radiosensitivity of nasopharyngeal carcinoma (NPC). METHODS NPC patients (n = 96) treated with radiotherapy were collected from Jan 2010 to Jan 2011. Real-time quantitative PCR (qRT-PCR) and western blot were carried out to measure the expression of miR-BART6-5p and Dicer1. Dual luciferase reporter gene assay verified that miR-BART6-5p targeted Dicer1. CCK8, wound-healing, Transwell and Annexin-FITC/PI were employed to evaluate the effects of Dicer1 mediated by miR-BART6-5p on biological characteristics of NPC cells. The radiosensitivity of miR-BART6-5p targeting Dicer1 was assessed in vitro and in vivo. RESULTS Increased miR-BART6-5p and decreased Dicer1 were discovered in NPC patients, displaying a close association with T-stage, clinical stage, as well as Pre-DNA of NPC. While elevated Dicer1 and miR-BART6-5p down-regulation in NPC patients were found after effective radiotherapy. Both miR-BART6-5p and Dicer1 were prognostic factors of NPC. Down-regulation of miR-BART6-5p could enhance Dicer1 expression and inhibit NPC cell proliferation, invasion and migration with promoted apoptosis. Clone formation assay also showed miR-BART6-5p down-regulation reduced planting efficiency (PE), which further decreased with the increased dose of irradiation. Injection with miR-BART6-5p inhibitors in nude mice after 6-Gy irradiation contributed to the overexpression of Dicer1 and the inhibition of tumor growth. CONCLUSIONS EBV-miR-BART6-5p may target Dicer1 to facilitate proliferation and metastasis of NPC cells and suppress apoptosis, thus being a new target for NPC therapy.
Collapse
Affiliation(s)
- Jing Tang
- Department of Stomatology, Jingzhou Central Hospital, The Second Clinical Medical College, Yangtze University, Jingzhou, China
| | - Zhao-Yang Liu
- Department of Stomatology, Jingzhou Central Hospital, The Second Clinical Medical College, Yangtze University, Jingzhou, China
| | - Yi Tang
- Department of Stomatology, Jingzhou Central Hospital, The Second Clinical Medical College, Yangtze University, Jingzhou, China
| | - Yan Wang
- Department of Otolaryngology, 549615The People's Hospital of Rizhao, Rizhao, China
| |
Collapse
|
17
|
Yan Y, Yang X, Sun X, Zhang H, Liu L, Ran R. Inhibitory effect of simiao qingwen baidu decoction on epstein-barr virus EA, VCA expression and DNA replication in vitro. Biomed Pharmacother 2020; 131:110638. [PMID: 32916537 DOI: 10.1016/j.biopha.2020.110638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/29/2020] [Accepted: 08/17/2020] [Indexed: 10/23/2022] Open
Abstract
This article aims to investigate the role of Simiao Qingwen Baidu Decoction (traditional Chinese medicine) in Epstein-Barr virus (EBV)-induced infectious mononucleosis. Sprague Dawley rats were given Simiao Qingwen Baidu Decoction by gavage, and the medicated serum was collected. EBV-latent infected human Burkitt lymphomas Raji and EBV-transformed marmosets B lymphoblast cell B95-8 were treated with medicated serum. CCK8 assay and flow cytometry were performed to detect cell proliferation and apoptosis. Indirect immunofluorescence assay was performed to analyze EA or VCA positive expression. The copy-number of EBV-DNA and the gene expression were detected by quantitative PCR or quantitative real-time PCR. We found that the medicated serum inhibited proliferation of Raji and B95-8 cells, especially 10 %-medicated serum. The 10 %-medicated serum significantly suppressed EA expression in Raji cells and VCA expression in B95-8 cells. The expression of BZLF1, BRLF1, BMLF1 and EBNA-1 in Raji cells was significantly inhibited by 10 %-medicated serum. 10 %-medicated serum caused a decrease in the copy-number of EBV-DNA in Raji cells. In conclusion, our data imply that Simiao Qingwen Baidu Decoction represses the expression of EA and VCA, and EBV-DNA replication. Thus, our work suggests that Simiao Qingwen Baidu Decoction may play a vital role in anti-EBV.
Collapse
Affiliation(s)
- Yongbin Yan
- Pediatric Zone 5, First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, 450000, Henan, China
| | - Xianhui Yang
- Pediatric Zone 5, First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, 450000, Henan, China
| | - Xiaoxu Sun
- Pediatric Zone 5, First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, 450000, Henan, China
| | - Huijuan Zhang
- Pediatric Zone 5, First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, 450000, Henan, China
| | - Lingling Liu
- Pediatric Zone 5, First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, 450000, Henan, China.
| | - Ruiying Ran
- Pediatric Zone 5, First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, 450000, Henan, China.
| |
Collapse
|
18
|
Mishra R, Bhattacharya S, Rawat BS, Kumar A, Kumar A, Niraj K, Chande A, Gandhi P, Khetan D, Aggarwal A, Sato S, Tailor P, Takaoka A, Kumar H. MicroRNA-30e-5p has an Integrated Role in the Regulation of the Innate Immune Response during Virus Infection and Systemic Lupus Erythematosus. iScience 2020; 23:101322. [PMID: 32688283 PMCID: PMC7371751 DOI: 10.1016/j.isci.2020.101322] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 05/26/2020] [Accepted: 06/25/2020] [Indexed: 01/02/2023] Open
Abstract
Precise regulation of innate immunity is crucial for development of appropriate host immunity against microbial infections and maintenance of immune homeostasis. MicroRNAs are small non-coding RNAs, post-transcriptional regulator of multiple genes, and act as a rheostat for protein expression. Here, we identified microRNA-30e-5p induced by hepatitis B virus and other viruses that act as a master regulator for innate immunity. Moreover, pegylated interferons treatment of patients with HBV for viral reduction also reduces miRNA. Additionally, we have also shown the immuno-pathological effects of miR-30e in patients with systemic lupus erythematosus (SLE) and mouse model. Mechanistically, miR-30e targets multiple negative regulators of innate immune signaling and enhances immune responses. Furthermore, sequestering of miR-30e in patients with SLE and mouse model significantly reduces type-I interferon and pro-inflammatory cytokines. Collectively, our study demonstrates the novel role of miR-30e in innate immunity and its prognostic and therapeutic potential in infectious and autoimmune diseases.
Collapse
Affiliation(s)
- Richa Mishra
- Laboratory of Immunology and Infectious Disease Biology, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, AB-3, Room No. 215, Bhopal By-pass Road, Bhauri, Bhopal, MP 462066, India
| | - Sanjana Bhattacharya
- Laboratory of Immunology and Infectious Disease Biology, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, AB-3, Room No. 215, Bhopal By-pass Road, Bhauri, Bhopal, MP 462066, India
| | - Bhupendra Singh Rawat
- Laboratory of Innate Immunity, National Institute of Immunology (NII), New Delhi 110067, India
| | - Ashish Kumar
- Laboratory of Immunology and Infectious Disease Biology, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, AB-3, Room No. 215, Bhopal By-pass Road, Bhauri, Bhopal, MP 462066, India
| | - Akhilesh Kumar
- Laboratory of Immunology and Infectious Disease Biology, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, AB-3, Room No. 215, Bhopal By-pass Road, Bhauri, Bhopal, MP 462066, India
| | - Kavita Niraj
- Department of Research (Medical Biotechnology), Bhopal Memorial Hospital & Research Centre (BMHRC), Bhopal, MP 462038, India
| | - Ajit Chande
- Molecular Virology Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal, MP 462066, India
| | - Puneet Gandhi
- Department of Research (Medical Biotechnology), Bhopal Memorial Hospital & Research Centre (BMHRC), Bhopal, MP 462038, India
| | - Dheeraj Khetan
- Department of Transfusion Medicine, Sanjay Gandhi Postgraduate Institute of Medical Sciences (SGPGIMS), Lucknow, UP 226014, India
| | - Amita Aggarwal
- Department of Clinical Immunology and Rheumatology, Sanjay Gandhi Postgraduate Institute of Medical Sciences (SGPGIMS), Lucknow, UP 226014, India
| | - Seiichi Sato
- Division of Signaling in Cancer and Immunology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Prafullakumar Tailor
- Laboratory of Innate Immunity, National Institute of Immunology (NII), New Delhi 110067, India
| | - Akinori Takaoka
- Division of Signaling in Cancer and Immunology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Himanshu Kumar
- Laboratory of Immunology and Infectious Disease Biology, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, AB-3, Room No. 215, Bhopal By-pass Road, Bhauri, Bhopal, MP 462066, India; WPI Immunology, Frontier Research Centre, Osaka University, Osaka 5650871, Japan.
| |
Collapse
|
19
|
Tagawa T, Serquiña A, Kook I, Ziegelbauer J. Viral non-coding RNAs: Stealth strategies in the tug-of-war between humans and herpesviruses. Semin Cell Dev Biol 2020; 111:135-147. [PMID: 32631785 DOI: 10.1016/j.semcdb.2020.06.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 06/20/2020] [Accepted: 06/24/2020] [Indexed: 12/23/2022]
Abstract
Oncogenic DNA viruses establish lifelong infections in humans, and they cause cancers, often in immunocompromised patients, despite anti-viral immune surveillance targeted against viral antigens. High-throughput sequencing techniques allowed the field to identify novel viral non-coding RNAs (ncRNAs). ncRNAs are ideal factors for DNA viruses to exploit; they are non-immunogenic to T cells, thus viral ncRNAs can manipulate host cells without evoking adaptive immune responses. Viral ncRNAs may still trigger the host innate immune response, but many viruses encode decoys/inhibitors to counter-act and evade recognition. In addition, ncRNAs can be secreted to the extracellular space and influence adjacent cells to create a pro-viral microenvironment. In this review, we present recent progress in understanding interactions between oncoviruses and ncRNAs including small and long ncRNAs, microRNAs, and recently identified viral circular RNAs. In addition, potential clinical applications for ncRNA will be discussed. Extracellular ncRNAs are suggested to be diagnostic and prognostic biomarkers and, with the realization of the importance of viral ncRNAs in tumorigenesis, approaches to target critical viral ncRNAs are emerging. Further understanding of viral utilization of ncRNAs will advance anti-viral therapeutics beyond conventional medication and vaccination.
Collapse
Affiliation(s)
- Takanobu Tagawa
- HIV and AIDS Malignancy Branch, National Cancer Institute, Bethesda, Maryland 20892, United States
| | - Anna Serquiña
- HIV and AIDS Malignancy Branch, National Cancer Institute, Bethesda, Maryland 20892, United States
| | - Insun Kook
- HIV and AIDS Malignancy Branch, National Cancer Institute, Bethesda, Maryland 20892, United States
| | - Joseph Ziegelbauer
- HIV and AIDS Malignancy Branch, National Cancer Institute, Bethesda, Maryland 20892, United States.
| |
Collapse
|
20
|
Song J, Hu Y, Zheng H, Guo L, Huang X, Jiang X, Li W, Li J, Yang Z, Dong S, Liu L. Comparative analysis of putative novel microRNA expression profiles induced by enterovirus 71 and coxsackievirus A16 infections in human umbilical vein endothelial cells using high-throughput sequencing. INFECTION GENETICS AND EVOLUTION 2019; 73:401-410. [PMID: 31176031 DOI: 10.1016/j.meegid.2019.06.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 06/03/2019] [Accepted: 06/04/2019] [Indexed: 12/14/2022]
Abstract
Hand, foot and mouth disease (HFMD) is mainly caused by human enterovirus 71 (EV71) and coxsackievirus A16 (CA16), which circulate alternatively or together in epidemic areas. Although the two viruses exhibit genetic homology, their clinical manifestations have some discrepancies. However, the factors underlying these differences remain unclear. Herein, we mainly focused on the alterations and roles of putative novel miRNAs in human umbilical vein endothelial cells (HUVECs) following EV71 and CA16 infections using high-throughput sequencing. The results identified 247 putative novel, differentially expressed miRNAs, of which only 11 miRNAs presented an opposite trend between the EV71- and CA16-infected samples and were used for target prediction. Gene ontology (GO) and pathway enrichment analysis of the predicted targets displayed the top 15 significant biological processes, molecular functions, cell components and pathways. Subsequently, regulatory miRNA-predicted targets and miRNA-GO and miRNA-pathway networks were constructed to further reveal the complex regulatory mechanisms of the miRNAs during infection. Therefore, our data provide useful insights that will help elucidate the different host-pathogen interactions following EV71 and CA16 infections and may offer novel therapeutic targets for these infections.
Collapse
Affiliation(s)
- Jie Song
- Yunnan Key Laboratory of Vaccine Research & Development on Severe Infections Disease, Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming 650118, China
| | - Yajie Hu
- Yunnan Key Laboratory of Vaccine Research & Development on Severe Infections Disease, Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming 650118, China
| | - Huiwen Zheng
- Yunnan Key Laboratory of Vaccine Research & Development on Severe Infections Disease, Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming 650118, China
| | - Lei Guo
- Yunnan Key Laboratory of Vaccine Research & Development on Severe Infections Disease, Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming 650118, China
| | - Xing Huang
- Yunnan Key Laboratory of Vaccine Research & Development on Severe Infections Disease, Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming 650118, China
| | - Xi Jiang
- Yunnan Key Laboratory of Vaccine Research & Development on Severe Infections Disease, Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming 650118, China
| | - Weiyu Li
- Yunnan Key Laboratory of Vaccine Research & Development on Severe Infections Disease, Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming 650118, China
| | - Jiaqi Li
- Yunnan Key Laboratory of Vaccine Research & Development on Severe Infections Disease, Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming 650118, China
| | - Zening Yang
- Yunnan Key Laboratory of Vaccine Research & Development on Severe Infections Disease, Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming 650118, China
| | - Shaozhong Dong
- Yunnan Key Laboratory of Vaccine Research & Development on Severe Infections Disease, Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming 650118, China.
| | - Longding Liu
- Yunnan Key Laboratory of Vaccine Research & Development on Severe Infections Disease, Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming 650118, China.
| |
Collapse
|
21
|
Hassani A, Khan G. Epstein-Barr Virus and miRNAs: Partners in Crime in the Pathogenesis of Multiple Sclerosis? Front Immunol 2019; 10:695. [PMID: 31001286 PMCID: PMC6456696 DOI: 10.3389/fimmu.2019.00695] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 03/13/2019] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that modulate gene expression post transcriptionally. In healthy individuals, miRNAs contribute to maintaining gene expression homeostasis. However, the level of miRNAs expressed is markedly altered in different diseases, including multiple sclerosis (MS). The impact of such changes is being investigated, and thought to shape the immune system into the inflammatory autoimmune phenotype. Much is yet to be learned about the contribution of miRNAs in the molecular pathology of MS. Epstein-Barr virus (EBV) infection is a major risk factor for the development of MS. EBV encodes more than 40 miRNAs, most of which have been studied in the context of EBV associated cancers. These viral miRNAs regulate genes involved in cell apoptosis, antigen presentation and recognition, as well as B cell transformation. If EBV infection contributes to the pathology of MS, it is plausible that EBV miRNAs may be involved. Unfortunately, there are limited studies addressing how EBV miRNAs are involved in the pathogenesis of MS. This review summarizes what has been reported regarding cellular and viral miRNA profiles in MS and proposes possible interactions between the two in the development of MS.
Collapse
Affiliation(s)
- Asma Hassani
- Department of Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Gulfaraz Khan
- Department of Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
22
|
Zheng J, Shi Y, Feng Z, Zheng Y, Li Z, Zhao Y, Wang Y. Oncogenic effects of exosomes in γ‐herpesvirus‐associated neoplasms. J Cell Physiol 2019; 234:19167-19179. [DOI: 10.1002/jcp.28573] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 02/22/2019] [Accepted: 03/05/2019] [Indexed: 02/06/2023]
Affiliation(s)
- Jiayu Zheng
- Microbiology and Immunology Department, Basic Medical School Guangdong Medical University Dongguan Guangdong China
- The Second School of Clinical Medicine Guangdong Medical University Dongguan Guangdong China
| | - Yiwan Shi
- The Second School of Clinical Medicine Guangdong Medical University Dongguan Guangdong China
| | - Zhenyu Feng
- The Second School of Clinical Medicine Guangdong Medical University Dongguan Guangdong China
| | - Yilu Zheng
- The Second School of Clinical Medicine Guangdong Medical University Dongguan Guangdong China
| | - Zhanhao Li
- The Second School of Clinical Medicine Guangdong Medical University Dongguan Guangdong China
| | - Yi Zhao
- Microbiology and Immunology Department, Basic Medical School Guangdong Medical University Dongguan Guangdong China
| | - Yan Wang
- Microbiology and Immunology Department, Basic Medical School Guangdong Medical University Dongguan Guangdong China
| |
Collapse
|
23
|
Hartung A, Makarewicz O, Egerer R, Karrasch M, Klink A, Sauerbrei A, Kentouche K, Pletz MW. EBV miRNA expression profiles in different infection stages: A prospective cohort study. PLoS One 2019; 14:e0212027. [PMID: 30759142 PMCID: PMC6373943 DOI: 10.1371/journal.pone.0212027] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 01/25/2019] [Indexed: 01/15/2023] Open
Abstract
The Epstein-Barr virus (EBV) produces different microRNAs (miRNA) with distinct regulatory functions within the infectious cycle. These viral miRNAs regulate the expression of viral and host genes and have been discussed as potential diagnostic markers or even therapeutic targets, provided that the expression profile can be unambiguously correlated to a specific stage of infection or a specific EBV-induced disorder. In this context, miRNA profiling becomes more important since the roles of these miRNAs in the pathogenesis of infections and malignancies are not fully understood. Studies of EBV miRNA expression profiles are sparse and have mainly focused on associated malignancies. This study is the first to examine the miRNA profiles of EBV reactivation and to use a correction step with seronegative patients as a reference. Between 2012 and 2017, we examined the expression profiles of 11 selected EBV miRNAs in 129 whole blood samples from primary infection, reactivation, healthy carriers and EBV seronegative patients. Three of the miRNAs could not be detected in any sample. Other miRNAs showed significantly higher expression levels and prevalence during primary infection than in other stages; miR-BHRF1-1 was the most abundant. The expression profiles from reactivation differed slightly but not significantly from those of healthy carriers, but a specific marker miRNA for each stage could not be identified within the selected EBV miRNA targets.
Collapse
Affiliation(s)
- Anita Hartung
- Institute of Infectious Diseases and Infection Control, Jena University Hospital, Jena, Germany
- * E-mail:
| | - Oliwia Makarewicz
- Institute of Infectious Diseases and Infection Control, Jena University Hospital, Jena, Germany
| | - Renate Egerer
- Institute of Medical Microbiology, Jena University Hospital, Jena, Germany
| | - Matthias Karrasch
- Institute of Medical Microbiology, Jena University Hospital, Jena, Germany
| | - Anne Klink
- Department of Haematology and Medical Oncology, Jena University Hospital, Jena, Germany
| | - Andreas Sauerbrei
- Institute of Virology and Antiviral Therapy, Jena University Hospital, Jena, Germany
| | - Karim Kentouche
- Clinic for Children and Youth Medicine, Jena University Hospital, Jena, Germany
| | - Mathias W. Pletz
- Institute of Infectious Diseases and Infection Control, Jena University Hospital, Jena, Germany
| |
Collapse
|
24
|
Kaul V, Weinberg KI, Boyd SD, Bernstein D, Esquivel CO, Martinez OM, Krams SM. Dynamics of Viral and Host Immune Cell MicroRNA Expression during Acute Infectious Mononucleosis. Front Microbiol 2018; 8:2666. [PMID: 29379474 PMCID: PMC5775229 DOI: 10.3389/fmicb.2017.02666] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 12/21/2017] [Indexed: 11/13/2022] Open
Abstract
Epstein–Barr virus (EBV) is the etiological agent of acute infectious mononucleosis (IM). Since acute IM is a self-resolving disease with most patients regaining health in 1–3 weeks there have been few studies examining molecular signatures in early acute stages of the disease. MicroRNAs (miRNAs) have been shown, however, to influence immune cell function and consequently the generation of antibody responses in IM. In this study, we performed a comprehensive analysis of differentially expressed miRNAs in early stage uncomplicated acute IM. miRNAs were profiled from patient peripheral blood obtained at the time of IM diagnosis and at subsequent time points, and pathway analysis performed to identify important immune and cell signaling pathways. We identified 215 differentially regulated miRNAs at the most acute stage of infection when the patients initially sought medical help. The number of differentially expressed miRNAs decreased to 148 and 68 at 1 and 2 months post-primary infection, with no significantly changed miRNAs identified at 7 months post-infection. Interferon signaling, T and B cell signaling and antigen presentation were the top pathways influenced by the miRNAs associated with IM. Thus, a dynamic and regulated expression profile of miRNA accompanies the early acute immune response, and resolution of infection, in IM.
Collapse
Affiliation(s)
- Vandana Kaul
- Division of Abdominal Transplantation, Department of Surgery, Stanford University, Stanford, CA, United States
| | - Kenneth I Weinberg
- Division of Stem Cell Transplantation, Department of Pediatrics, Stanford University, Stanford, CA, United States
| | - Scott D Boyd
- Department of Pathology, Stanford University, Stanford, CA, United States
| | - Daniel Bernstein
- Division of Cardiology, Department of Pediatrics, Stanford University, Stanford, CA, United States
| | - Carlos O Esquivel
- Division of Abdominal Transplantation, Department of Surgery, Stanford University, Stanford, CA, United States
| | - Olivia M Martinez
- Division of Abdominal Transplantation, Department of Surgery, Stanford University, Stanford, CA, United States.,Stanford Immunology, Stanford University School of Medicine, Stanford, CA, United States
| | - Sheri M Krams
- Division of Abdominal Transplantation, Department of Surgery, Stanford University, Stanford, CA, United States.,Stanford Immunology, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
25
|
Drury RE, O'Connor D, Pollard AJ. The Clinical Application of MicroRNAs in Infectious Disease. Front Immunol 2017; 8:1182. [PMID: 28993774 PMCID: PMC5622146 DOI: 10.3389/fimmu.2017.01182] [Citation(s) in RCA: 126] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 09/06/2017] [Indexed: 12/19/2022] Open
Abstract
MicroRNAs (miRNAs) are short single-stranded non-coding RNA sequences that posttranscriptionally regulate up to 60% of protein encoding genes. Evidence is emerging that miRNAs are key mediators of the host response to infection, predominantly by regulating proteins involved in innate and adaptive immune pathways. miRNAs can govern the cellular tropism of some viruses, are implicated in the resistance of some individuals to infections like HIV, and are associated with impaired vaccine response in older people. Not surprisingly, pathogens have evolved ways to undermine the effects of miRNAs on immunity. Recognition of this has led to new experimental treatments, RG-101 and Miravirsen—hepatitis C treatments which target host miRNA. miRNAs are being investigated as novel infection biomarkers, and they are being used to design attenuated vaccines, e.g., against Dengue virus. This comprehensive review synthesizes current knowledge of miRNA in host response to infection with emphasis on potential clinical applications, along with an evaluation of the challenges still to be overcome.
Collapse
Affiliation(s)
- Ruth E Drury
- Oxford Vaccine Group, Centre for Clinical Vaccinology and Tropical Medicine, Department of Paediatrics, University of Oxford, The Churchill Hospital, Oxford, United Kingdom
| | - Daniel O'Connor
- Oxford Vaccine Group, Centre for Clinical Vaccinology and Tropical Medicine, Department of Paediatrics, University of Oxford, The Churchill Hospital, Oxford, United Kingdom
| | - Andrew J Pollard
- Oxford Vaccine Group, Centre for Clinical Vaccinology and Tropical Medicine, Department of Paediatrics, University of Oxford, The Churchill Hospital, Oxford, United Kingdom
| |
Collapse
|
26
|
Sunagawa K, Hishima T, Fukumoto H, Hasegawa H, Katano H. Conserved sequences of BART and BHRF regions encoding viral microRNAs in Epstein-Barr virus-associated lymphoma. BMC Res Notes 2017; 10:279. [PMID: 28705173 PMCID: PMC5513352 DOI: 10.1186/s13104-017-2603-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 07/07/2017] [Indexed: 12/27/2022] Open
Abstract
Objective Epstein-Barr virus (EBV) encodes at least 25 pri-microRNAs (miRNAs) in two regions of its DNA genome, BART and BHRF. B95-8, an EBV reference strain, has a deletion in the BART region. However, no information is available on the deletions or mutations in the BART and BHRF regions in clinical samples of EBV-associated lymphoma. Results Nine DNA fragments encoding miR-BARTs and two coding miR-BHRF1s were amplified by PCR from DNA samples extracted from 16 cases of EBV-associated lymphoma. All the PCR products were sequenced directly. DNA fragments encoding miR-BARTs and miR-BHRF1-1 were successfully amplified from all samples. An adenine-to-guanine mutation in the DNA fragment encoding miR-BART2-3p was detected in four of the 16 cases, and a cytosine-to-thymidine mutation in the DNA fragment encoding miR-BART11-3p was detected in one of the 16 samples. These mutations were not associated with any histological categories of lymphoma. In conclusion, mutations were rarely observed in the DNA encoding viral miRNAs in cases of lymphoma. This suggests that the DNA sequences of EBV-encoded miR-BARTs and miR-BHRF1-1 are conserved in EBV-associated lymphoma.
Collapse
Affiliation(s)
- Keishin Sunagawa
- Department of Pathology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan.,Department of Pathology, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan
| | - Tsunekazu Hishima
- Department of Pathology, Tokyo Metropolitan Komagome Hospital, 3-18-22 Honkomagome, Bunkyo-ku, Tokyo, 113-8677, Japan
| | - Hitomi Fukumoto
- Department of Pathology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan
| | - Hideki Hasegawa
- Department of Pathology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan
| | - Harutaka Katano
- Department of Pathology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan.
| |
Collapse
|
27
|
Wu X, Liu P, Zhang H, Li Y, Salmani JMM, Wang F, Yang K, Fu R, Chen Z, Chen B. Wogonin as a targeted therapeutic agent for EBV (+) lymphoma cells involved in LMP1/NF-κB/miR-155/PU.1 pathway. BMC Cancer 2017; 17:147. [PMID: 28222771 PMCID: PMC5320633 DOI: 10.1186/s12885-017-3145-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 02/15/2017] [Indexed: 12/15/2022] Open
Abstract
Background Wogonin is an encouraging choice for clinical use owing to its potent anti-tumor and anti-inflammatory effects with the high safety profile. However, wogonin for targeted therapy of lymphoma was not well addressed. In this study, we focused on its anticancer effect alongside with the underlying mechanisms for targeted therapy in EBV-positive lymphoma. This will facilitate its introduction to clinical use, which is planned in the near future. Methods Cell proliferation was studied by CCK8. Flow cytometry was used to analyze the apoptosis and the cycle arrest of cells. Further, we also used immunofluorescent staining to detect the morphologic changes of the apoptotic cells. The expression of LMP1/miR-155/p65/pp65/PU.1 was evaluated by quantitative real-time PCR (qRT-PCR) and western blot, while that of NF-κB was analyzed by EMSA. At last, immunohistochemical staining was applied to assess the expression of target proteins and relevant molecules. Results In vitro, wogonin induced the apoptosis of Raji cells by downregulating the expression of NF-κB through LMP1/miR-155/NF-κB/PU.1 pathway, which was in a dose and time-dependent manner. In vivo, wogonin could suppress tumor growth, associated with the downregulation of ki67, p65 and upregulation of PU.1. Conclusions Wogonin could suppress tumor growth and induce cell apoptosis by inhibiting the expression of NF-κB. Taken these findings, we concluded that wogonin could be a potential targeted therapeutic agent for EBV-positive lymphoma with the expression of LMP1 through the pathway of LMP1/NF-κB/miR-155/PU.1. Electronic supplementary material The online version of this article (doi:10.1186/s12885-017-3145-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xue Wu
- Department of Hematology and Oncology (Key Department of Jiangsu Medicine), Medical School, the Affiliated Zhongda Hospital, Southeast University, Nanjing, 210009, China
| | - Ping Liu
- Department of Hematology and Oncology (Key Department of Jiangsu Medicine), Medical School, the Affiliated Zhongda Hospital, Southeast University, Nanjing, 210009, China
| | - Haijun Zhang
- Department of Hematology and Oncology (Key Department of Jiangsu Medicine), Medical School, the Affiliated Zhongda Hospital, Southeast University, Nanjing, 210009, China
| | - Yuan Li
- Department of Gastroenterology, Medical School, The Second Hospital of Nanjing Affiliated to Southeast University, Nanjing, China
| | - Jumah Masoud Mohammad Salmani
- Department of Hematology and Oncology (Key Department of Jiangsu Medicine), Medical School, the Affiliated Zhongda Hospital, Southeast University, Nanjing, 210009, China
| | - Fei Wang
- Department of Hematology and Oncology (Key Department of Jiangsu Medicine), Medical School, the Affiliated Zhongda Hospital, Southeast University, Nanjing, 210009, China
| | - Ke Yang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Rong Fu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, China
| | - Zhewei Chen
- Department of Hematology and Oncology (Key Department of Jiangsu Medicine), Medical School, the Affiliated Zhongda Hospital, Southeast University, Nanjing, 210009, China
| | - Baoan Chen
- Department of Hematology and Oncology (Key Department of Jiangsu Medicine), Medical School, the Affiliated Zhongda Hospital, Southeast University, Nanjing, 210009, China.
| |
Collapse
|
28
|
miR-155 Dysregulation and Therapeutic Intervention in Multiple Sclerosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1024:111-131. [DOI: 10.1007/978-981-10-5987-2_5] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
29
|
Deng L, Wang X, Jiang L, Yang J, Zhou X, Lu Z, Hu H. Modulation of miR-185-5p expression by EBV-miR-BART6 contributes to developmental differences in ABCG4 gene expression in human megakaryocytes. Int J Biochem Cell Biol 2016; 81:105-111. [DOI: 10.1016/j.biocel.2016.11.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 10/29/2016] [Accepted: 11/01/2016] [Indexed: 11/16/2022]
|
30
|
Epigenetic Impact on EBV Associated B-Cell Lymphomagenesis. Biomolecules 2016; 6:biom6040046. [PMID: 27886133 PMCID: PMC5197956 DOI: 10.3390/biom6040046] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 11/02/2016] [Accepted: 11/07/2016] [Indexed: 01/09/2023] Open
Abstract
Epigenetic modifications leading to either transcriptional repression or activation, play an indispensable role in the development of human cancers. Epidemiological study revealed that approximately 20% of all human cancers are associated with tumor viruses. Epstein-Barr virus (EBV), the first human tumor virus, demonstrates frequent epigenetic alterations on both viral and host genomes in associated cancers—both of epithelial and lymphoid origin. The cell type-dependent different EBV latent gene expression patterns appear to be determined by the cellular epigenetic machinery and similarly viral oncoproteins recruit epigenetic regulators in order to deregulate the cellular gene expression profile resulting in several human cancers. This review elucidates the epigenetic consequences of EBV–host interactions during development of multiple EBV-induced B-cell lymphomas, which may lead to the discovery of novel therapeutic interventions against EBV-associated B-cell lymphomas by alteration of reversible patho-epigenetic markings.
Collapse
|
31
|
Altered Expressions of miR-1238-3p, miR-494, miR-6069, and miR-139-3p in the Formation of Chronic Brucellosis. J Immunol Res 2016; 2016:4591468. [PMID: 27722176 PMCID: PMC5046029 DOI: 10.1155/2016/4591468] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Revised: 07/29/2016] [Accepted: 07/31/2016] [Indexed: 01/18/2023] Open
Abstract
Brucellosis is a zoonotic disease that is still endemic in developing countries. Despite early diagnosis and treatment of patients, chronic infections are seen in 10–30% of patients. In this study, we aimed to investigate the immunological factors that play roles in the transition of brucellosis from acute infection into chronic infection. Here, more than 2000 miRNAs were screened in peripheral blood mononuclear cells (PBMCs) of patients with acute or chronic brucellosis and healthy controls by using miRNA array, and the results of the miRNA array were validated through qRT-PCR. Findings were evaluated using GeneSpring GX (Agilent) 13.0 software and KEGG pathway analysis. Four miRNAs were expressed in the chronic group but were not expressed in acute and control groups. Among these miRNAs, the expression level of miR-1238-3p was increased while miR-494, miR-6069, and miR-139-3p were decreased (p < 0.05, fold change > 2). These miRNAs have the potential to be markers for chronic cases. The differentially expressed miRNAs and their predicted target genes involved in endocytosis, regulation of actin cytoskeleton, MAPK signaling pathway, and cytokine-cytokine receptor interaction and its chemokine signaling pathway indicate their potential roles in chronic brucellosis and its progression. It is the first study of miRNA expression analysis of human PBMC to clarify the mechanism of inveteracy in brucellosis.
Collapse
|
32
|
Siegismund CS, Rohde M, Kühl U, Escher F, Schultheiss HP, Lassner D. Absent MicroRNAs in Different Tissues of Patients with Acquired Cardiomyopathy. GENOMICS PROTEOMICS & BIOINFORMATICS 2016; 14:224-34. [PMID: 27475403 PMCID: PMC4996855 DOI: 10.1016/j.gpb.2016.04.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2015] [Revised: 03/29/2016] [Accepted: 04/18/2016] [Indexed: 01/22/2023]
Abstract
MicroRNAs (miRNAs) can be found in a wide range of tissues and body fluids, and their specific signatures can be used to determine diseases or predict clinical courses. The miRNA profiles in biological samples (tissue, serum, peripheral blood mononuclear cells or other body fluids) differ significantly even in the same patient and therefore have their own specificity for the presented condition. Complex profiles of deregulated miRNAs are of high interest, whereas the importance of non-expressed miRNAs was ignored. Since miRNAs regulate gene expression rather negatively, absent miRNAs could indicate genes with unaltered expression that therefore are normally expressed in specific compartments or under specific disease situations. For the first time, non-detectable miRNAs in different tissues and body fluids from patients with different diseases (cardiomyopathies, Alzheimer’s disease, bladder cancer, and ocular cancer) were analyzed and compared in this study. miRNA expression data were generated by microarray or TaqMan PCR-based platforms. Lists of absent miRNAs of primarily cardiac patients (myocardium, blood cells, and serum) were clustered and analyzed for potentially involved pathways using two prediction platforms, i.e., miRNA enrichment analysis and annotation tool (miEAA) and DIANA miRPath. Extensive search in biomedical publication databases for the relevance of non-expressed miRNAs in predicted pathways revealed no evidence for their involvement in heart-related pathways as indicated by software tools, confirming proposed approach.
Collapse
Affiliation(s)
| | - Maria Rohde
- Institute for Cardiac Diagnostics and Therapy (IKDT), 12203 Berlin, Germany
| | - Uwe Kühl
- Institute for Cardiac Diagnostics and Therapy (IKDT), 12203 Berlin, Germany; Department of Cardiology, Campus Virchow, Charité - University Hospital Berlin, 13353 Berlin, Germany
| | - Felicitas Escher
- Institute for Cardiac Diagnostics and Therapy (IKDT), 12203 Berlin, Germany; Department of Cardiology, Campus Virchow, Charité - University Hospital Berlin, 13353 Berlin, Germany
| | | | - Dirk Lassner
- Institute for Cardiac Diagnostics and Therapy (IKDT), 12203 Berlin, Germany.
| |
Collapse
|
33
|
Guo XY, Lu M, Chen XQ, He FD, Li A. Correlation study of biological characteristics of non-small cell lung cancer A549 cells after transfecting plasmid by microbubble ultrasound contrast agent. ASIAN PAC J TROP MED 2016; 9:582-6. [DOI: 10.1016/j.apjtm.2016.04.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 03/16/2016] [Indexed: 10/21/2022] Open
|
34
|
Development of a Low-Cost Stem-Loop Real-Time Quantification PCR Technique for EBV miRNA Expression Analysis. Mol Biotechnol 2016; 58:540-50. [DOI: 10.1007/s12033-016-9951-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
35
|
Jiang S, Li X, Wang X, Ban Q, Hui W, Jia B. MicroRNA profiling of the intestinal tissue of Kazakh sheep after experimental Echinococcus granulosus infection, using a high-throughput approach. ACTA ACUST UNITED AC 2016; 23:23. [PMID: 27235195 PMCID: PMC4884269 DOI: 10.1051/parasite/2016023] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 04/30/2016] [Indexed: 12/15/2022]
Abstract
Cystic echinococcosis (CE), caused by infection with the larval stage of the cestode Echinococcus granulosus, is a chronic zoonosis, to which sheep are highly susceptible. Previously, we found that Kazakh sheep with different MHC haplotypes differed in CE infection. Sheep with haplotype MHCMvaIbc-SacIIab-Hin1Iab were resistant to CE infection, while their counterparts without this haplotype were not. MicroRNAs (miRNAs), a class of small non-coding RNAs, are key regulators of gene expression at the post-transcriptional level and play essential roles in fundamental biological processes such as development and metabolism. To identify microRNA controlling resistance to CE in the early stage of infection, microRNA profiling was conducted in the intestinal tissue of sheep with resistant and non-resistant MHC haplotypes after peroral infection with E. granulosus eggs. A total of 351 known and 186 novel miRNAs were detected in the resistant group, against 353 known and 129 novel miRNAs in the non-resistant group. Among these miRNAs, 83 known miRNAs were significantly differentially expressed, including 75 up-regulated and 8 down-regulated miRNAs. Among these known microRNAs, miR-21-3p, miR-542-5p, miR-671, miR-134-5p, miR-26b, and miR-27a showed a significantly higher expression in CE-resistant sheep compared to the CE-non-resistant library, with the FC > 3. Functional analysis showed that they were NF-kB pathway-responsive miRNAs, which are involved in the inflammation process. The results suggest that these microRNAs may play important roles in the response of intestinal tissue to E. granulosus.
Collapse
Affiliation(s)
- Song Jiang
- College of Animal Science and Technology, Shihezi University, Road Beisi, Shihezi 832003, Xinjiang, PR China
| | - Xin Li
- College of Animal Science and Technology, Shihezi University, Road Beisi, Shihezi 832003, Xinjiang, PR China
| | - Xuhai Wang
- College of Animal Science and Technology, Shihezi University, Road Beisi, Shihezi 832003, Xinjiang, PR China
| | - Qian Ban
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Road Jiulong, Hefei 230000, Anhui, PR China
| | - Wenqiao Hui
- College of Animal Science and Technology, Shihezi University, Road Beisi, Shihezi 832003, Xinjiang, PR China - Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agriculture Sciences, Road Nongkenan, Hefei 230031, Anhui, PR China
| | - Bin Jia
- College of Animal Science and Technology, Shihezi University, Road Beisi, Shihezi 832003, Xinjiang, PR China
| |
Collapse
|