1
|
Crilly S, Shand I, Bennington A, McMahon E, Flatman D, Tapia VS, Kasher PR. Investigating recovery after a spontaneous intracerebral haemorrhage in zebrafish larvae. Brain Commun 2024; 6:fcae310. [PMID: 39420961 PMCID: PMC11483570 DOI: 10.1093/braincomms/fcae310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 07/26/2024] [Accepted: 09/11/2024] [Indexed: 10/19/2024] Open
Abstract
Intracerebral haemorrhage is a debilitating stroke sub-type with high morbidity and mortality rates. For survivors, rehabilitation is a long process, and with no available therapeutics to limit the immediate pathophysiology of the haemorrhage, recovery is dependent on individual neuroplasticity. We have previously shown that zebrafish larvae can be used to model spontaneous brain haemorrhage. Zebrafish exhibit innate recovery mechanisms and are often used as a model system for investigation into regeneration after injury, including injury to the nervous system. Here, we investigate the spontaneous and immediate recovery in zebrafish larvae following an intracerebral haemorrhage at 2 days post-fertilisation, during pre-protected stages and over the first 3 weeks of life. We have shown that following the onset of bleed at ∼2 days post-fertilisation zebrafish are capable of clearing the haematoma through the ventricles. Brain cell damage associated with intracerebral haemorrhage is resolved within 48 h, and this recovery is associated with survival rates equal to wildtype and non-haemorrhaged sibling control animals. Larvae express more nestin-positive neural progenitor cells 24 h after injury when the most damage is observed, and through mass spectrometry analysis, we have determined that these cells are highly proliferative and may specially differentiate into oligodendrocytes. This study provides an insight into the haematoma resolution processes in a live, intact organism, and may suggest potential therapeutic approaches to support the recovery of intracerebral haemorrhage patients.
Collapse
Affiliation(s)
- Siobhan Crilly
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester M13 9PT, UK
- Geoffrey Jefferson Brain Research Centre, The Manchester Academic Health Science Centre, Northern Care Alliance and University of Manchester, Manchester M13 9PT, UK
| | - Isabel Shand
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester M13 9PT, UK
| | - Abigail Bennington
- Geoffrey Jefferson Brain Research Centre, The Manchester Academic Health Science Centre, Northern Care Alliance and University of Manchester, Manchester M13 9PT, UK
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester M13 9PT, UK
| | - Emily McMahon
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester M13 9PT, UK
- Geoffrey Jefferson Brain Research Centre, The Manchester Academic Health Science Centre, Northern Care Alliance and University of Manchester, Manchester M13 9PT, UK
| | - Daisy Flatman
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester M13 9PT, UK
- Geoffrey Jefferson Brain Research Centre, The Manchester Academic Health Science Centre, Northern Care Alliance and University of Manchester, Manchester M13 9PT, UK
| | - Victor S Tapia
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester M13 9PT, UK
- Geoffrey Jefferson Brain Research Centre, The Manchester Academic Health Science Centre, Northern Care Alliance and University of Manchester, Manchester M13 9PT, UK
| | - Paul R Kasher
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester M13 9PT, UK
- Geoffrey Jefferson Brain Research Centre, The Manchester Academic Health Science Centre, Northern Care Alliance and University of Manchester, Manchester M13 9PT, UK
| |
Collapse
|
2
|
Jeong I, Andreassen SN, Hoang L, Poulain M, Seo Y, Park HC, Fürthauer M, MacAulay N, Jurisch-Yaksi N. The evolutionarily conserved choroid plexus contributes to the homeostasis of brain ventricles in zebrafish. Cell Rep 2024; 43:114331. [PMID: 38843394 DOI: 10.1016/j.celrep.2024.114331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 04/24/2024] [Accepted: 05/22/2024] [Indexed: 07/02/2024] Open
Abstract
The choroid plexus (ChP) produces cerebrospinal fluid (CSF). It also contributes to brain development and serves as the CSF-blood barrier. Prior studies have identified transporters on the epithelial cells that transport water and ions from the blood vasculature to the ventricles and tight junctions involved in the CSF-blood barrier. Yet, how the ChP epithelial cells control brain physiology remains unresolved. We use zebrafish to provide insights into the physiological roles of the ChP. Upon histological and transcriptomic analyses, we identify that the zebrafish ChP is conserved with mammals and expresses transporters involved in CSF secretion. Next, we show that the ChP epithelial cells secrete proteins into CSF. By ablating the ChP epithelial cells, we identify a reduction of the ventricular sizes without alterations of the CSF-blood barrier. Altogether, our findings reveal that the zebrafish ChP is conserved and contributes to the size and homeostasis of the brain ventricles.
Collapse
Affiliation(s)
- Inyoung Jeong
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Erling Skjalgsons Gate 1, 7491 Trondheim, Norway
| | - Søren N Andreassen
- Department of Neuroscience, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark
| | - Linh Hoang
- Cellular and Molecular Imaging Core Facility (CMIC), Norwegian University of Science and Technology, Erling Skjalgsons Gate 1, 7491 Trondheim, Norway
| | - Morgane Poulain
- Université Côte d'Azur, CNRS, Inserm, iBV, 28 Avenue Valrose, 06108 Nice cedex 2, France
| | - Yongbo Seo
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Hae-Chul Park
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Maximilian Fürthauer
- Université Côte d'Azur, CNRS, Inserm, iBV, 28 Avenue Valrose, 06108 Nice cedex 2, France
| | - Nanna MacAulay
- Department of Neuroscience, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark
| | - Nathalie Jurisch-Yaksi
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Erling Skjalgsons Gate 1, 7491 Trondheim, Norway.
| |
Collapse
|
3
|
Valamparamban GF, Spéder P. Homemade: building the structure of the neurogenic niche. Front Cell Dev Biol 2023; 11:1275963. [PMID: 38107074 PMCID: PMC10722289 DOI: 10.3389/fcell.2023.1275963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 11/16/2023] [Indexed: 12/19/2023] Open
Abstract
Neural stem/progenitor cells live in an intricate cellular environment, the neurogenic niche, which supports their function and enables neurogenesis. The niche is made of a diversity of cell types, including neurons, glia and the vasculature, which are able to signal to and are structurally organised around neural stem/progenitor cells. While the focus has been on how individual cell types signal to and influence the behaviour of neural stem/progenitor cells, very little is actually known on how the niche is assembled during development from multiple cellular origins, and on the role of the resulting topology on these cells. This review proposes to draw a state-of-the art picture of this emerging field of research, with the aim to expose our knowledge on niche architecture and formation from different animal models (mouse, zebrafish and fruit fly). We will span its multiple aspects, from the existence and importance of local, adhesive interactions to the potential emergence of larger-scale topological properties through the careful assembly of diverse cellular and acellular components.
Collapse
Affiliation(s)
| | - Pauline Spéder
- Institut Pasteur, Université Paris Cité, CNRS UMR3738, Structure and Signals in the Neurogenic Niche, Paris, France
| |
Collapse
|
4
|
Korzh V. Development of the brain ventricular system from a comparative perspective. Clin Anat 2023; 36:320-334. [PMID: 36529666 DOI: 10.1002/ca.23994] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
The brain ventricular system (BVS) consists of brain ventricles and channels filled with cerebrospinal fluid (CSF). Disturbance of CSF flow has been linked to scoliosis and neurodegenerative diseases, including hydrocephalus. This could be due to defects of CSF production by the choroid plexus or impaired CSF movement over the ependyma dependent on motile cilia. Most vertebrates have horizontal body posture. They retain additional evolutionary innovations assisting CSF flow, such as the Reissner fiber. The causes of hydrocephalus have been studied using animal models including rodents (mice, rats, hamsters) and zebrafish. However, the horizontal body posture reduces the effect of gravity on CSF flow, which limits the use of mammalian models for scoliosis. In contrast, fish swim against the current and experience a forward-to-backward mechanical force akin to that caused by gravity in humans. This explains the increased popularity of the zebrafish model for studies of scoliosis. "Slit-ventricle" syndrome is another side of the spectrum of BVS anomalies. It develops because of insufficient inflation of the BVS. Recent advances in zebrafish functional genetics have revealed genes that could regulate the development of the BVS and CSF circulation. This review will describe the BVS of zebrafish, a typical teleost, and vertebrates in general, in comparative perspective. It will illustrate the usefulness of the zebrafish model for developmental studies of the choroid plexus (CP), CSF flow and the BVS.
Collapse
Affiliation(s)
- Vladimir Korzh
- International Institute of Molecular and Cell Biology, Warsaw, Poland
| |
Collapse
|
5
|
Saunders NR, Dziegielewska KM, Fame RM, Lehtinen MK, Liddelow SA. The choroid plexus: a missing link in our understanding of brain development and function. Physiol Rev 2023; 103:919-956. [PMID: 36173801 PMCID: PMC9678431 DOI: 10.1152/physrev.00060.2021] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 09/01/2022] [Accepted: 09/17/2022] [Indexed: 11/22/2022] Open
Abstract
Studies of the choroid plexus lag behind those of the more widely known blood-brain barrier, despite a much longer history. This review has two overall aims. The first is to outline long-standing areas of research where there are unanswered questions, such as control of cerebrospinal fluid (CSF) secretion and blood flow. The second aim is to review research over the past 10 years where the focus has shifted to the idea that there are choroid plexuses located in each of the brain's ventricles that make specific contributions to brain development and function through molecules they generate for delivery via the CSF. These factors appear to be particularly important for aspects of normal brain growth. Most research carried out during the twentieth century dealt with the choroid plexus, a brain barrier interface making critical contributions to the composition and stability of the brain's internal environment throughout life. More recent research in the twenty-first century has shown the importance of choroid plexus-generated CSF in neurogenesis, influence of sex and other hormones on choroid plexus function, and choroid plexus involvement in circadian rhythms and sleep. The advancement of technologies to facilitate delivery of brain-specific therapies via the CSF to treat neurological disorders is a rapidly growing area of research. Conversely, understanding the basic mechanisms and implications of how maternal drug exposure during pregnancy impacts the developing brain represents another key area of research.
Collapse
Affiliation(s)
- Norman R Saunders
- Department of Neuroscience, The Alfred Centre, Monash University, Melbourne, Victoria, Australia
| | | | - Ryann M Fame
- Department of Pathology, Boston Children's Hospital, Boston, Massachusetts
| | - Maria K Lehtinen
- Department of Pathology, Boston Children's Hospital, Boston, Massachusetts
| | - Shane A Liddelow
- Neuroscience Institute, NYU Grossman School of Medicine, New York, New York
- Department of Neuroscience and Physiology, NYU Grossman School of Medicine, New York, New York
- Department of Ophthalmology, NYU Grossman School of Medicine, New York, New York
- Parekh Center for Interdisciplinary Neurology, NYU Grossman School of Medicine, New York, New York
| |
Collapse
|
6
|
D'Gama PP, Jurisch-Yaksi N. Methods to study motile ciliated cell types in the zebrafish brain. Methods Cell Biol 2023; 176:103-123. [PMID: 37164533 DOI: 10.1016/bs.mcb.2023.01.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Cilia are well conserved hair-like structures that have diverse sensory and motile functions. In the brain, motile ciliated cells, known as ependymal cells, line the cerebrospinal fluid (CSF) filled ventricles, where their beating contribute to fluid movement. Ependymal cells have gathered increasing interest since they are associated with hydrocephalus, a neurological condition with ventricular enlargement. In this article, we highlight methods to identify and characterize motile ciliated ependymal lineage in the brain of zebrafish using histological staining and transgenic reporter lines.
Collapse
|
7
|
Segal D, Mazloom-Farsibaf H, Chang BJ, Roudot P, Rajendran D, Daetwyler S, Fiolka R, Warren M, Amatruda JF, Danuser G. In vivo 3D profiling of site-specific human cancer cell morphotypes in zebrafish. J Cell Biol 2022; 221:213501. [PMID: 36155740 PMCID: PMC9516844 DOI: 10.1083/jcb.202109100] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 05/11/2022] [Accepted: 08/22/2022] [Indexed: 12/18/2022] Open
Abstract
Tissue microenvironments affect the functional states of cancer cells, but determining these influences in vivo has remained a challenge. We present a quantitative high-resolution imaging assay of single cancer cells in zebrafish xenografts to probe functional adaptation to variable cell-extrinsic cues and molecular interventions. Using cell morphology as a surrogate readout of cell functional states, we examine environmental influences on the morphotype distribution of Ewing Sarcoma, a pediatric cancer associated with the oncogene EWSR1-FLI1 and whose plasticity is thought to determine disease outcome through non-genomic mechanisms. Computer vision analysis reveals systematic shifts in the distribution of 3D morphotypes as a function of cell type and seeding site, as well as tissue-specific cellular organizations that recapitulate those observed in human tumors. Reduced expression of the EWSR1-FLI1 protein product causes a shift to more protrusive cells and decreased tissue specificity of the morphotype distribution. Overall, this work establishes a framework for a statistically robust study of cancer cell plasticity in diverse tissue microenvironments.
Collapse
Affiliation(s)
- Dagan Segal
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX.,Department of Cell Biology, UT Southwestern Medical Center, Dallas, TX
| | - Hanieh Mazloom-Farsibaf
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX.,Department of Cell Biology, UT Southwestern Medical Center, Dallas, TX
| | - Bo-Jui Chang
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX.,Department of Cell Biology, UT Southwestern Medical Center, Dallas, TX
| | - Philippe Roudot
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX.,Department of Cell Biology, UT Southwestern Medical Center, Dallas, TX
| | - Divya Rajendran
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX.,Department of Cell Biology, UT Southwestern Medical Center, Dallas, TX
| | - Stephan Daetwyler
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX.,Department of Cell Biology, UT Southwestern Medical Center, Dallas, TX
| | - Reto Fiolka
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX.,Department of Cell Biology, UT Southwestern Medical Center, Dallas, TX
| | - Mikako Warren
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - James F Amatruda
- Cancer and Blood Disease Institute, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Gaudenz Danuser
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX.,Department of Cell Biology, UT Southwestern Medical Center, Dallas, TX
| |
Collapse
|
8
|
Jeong I, Hansen JN, Wachten D, Jurisch-Yaksi N. Measurement of ciliary beating and fluid flow in the zebrafish adult telencephalon. STAR Protoc 2022; 3:101542. [PMID: 35842868 PMCID: PMC9294268 DOI: 10.1016/j.xpro.2022.101542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/20/2022] [Accepted: 06/16/2022] [Indexed: 11/19/2022] Open
Affiliation(s)
- Inyoung Jeong
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Erling Skjalgsons Gate 1, 7491 Trondheim, Norway.
| | - Jan Niklas Hansen
- Institute of Innate Immunity, Biophysical Imaging, Medical Faculty, University of Bonn, 53127 Bonn, Germany
| | - Dagmar Wachten
- Institute of Innate Immunity, Biophysical Imaging, Medical Faculty, University of Bonn, 53127 Bonn, Germany
| | - Nathalie Jurisch-Yaksi
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Erling Skjalgsons Gate 1, 7491 Trondheim, Norway.
| |
Collapse
|
9
|
Salman HE, Jurisch-Yaksi N, Yalcin HC. Computational Modeling of Motile Cilia-Driven Cerebrospinal Flow in the Brain Ventricles of Zebrafish Embryo. Bioengineering (Basel) 2022; 9:bioengineering9090421. [PMID: 36134967 PMCID: PMC9495466 DOI: 10.3390/bioengineering9090421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/04/2022] [Accepted: 07/06/2022] [Indexed: 11/16/2022] Open
Abstract
Motile cilia are hair-like microscopic structures which generate directional flow to provide fluid transport in various biological processes. Ciliary beating is one of the sources of cerebrospinal flow (CSF) in brain ventricles. In this study, we investigated how the tilt angle, quantity, and phase relationship of cilia affect CSF flow patterns in the brain ventricles of zebrafish embryos. For this purpose, two-dimensional computational fluid dynamics (CFD) simulations are performed to determine the flow fields generated by the motile cilia. The cilia are modeled as thin membranes with prescribed motions. The cilia motions were obtained from a two-day post-fertilization zebrafish embryo previously imaged via light sheet fluorescence microscopy. We observed that the cilium angle significantly alters the generated flow velocity and mass flow rates. As the cilium angle gets closer to the wall, higher flow velocities are observed. Phase difference between two adjacent beating cilia also affects the flow field as the cilia with no phase difference produce significantly lower mass flow rates. In conclusion, our simulations revealed that the most efficient method for cilia-driven fluid transport relies on the alignment of multiple cilia beating with a phase difference, which is also observed in vivo in the developing zebrafish brain.
Collapse
Affiliation(s)
- Huseyin Enes Salman
- Department of Mechanical Engineering, TOBB University of Economics and Technology, Ankara 06510, Turkey
| | - Nathalie Jurisch-Yaksi
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | | |
Collapse
|
10
|
Yi W, Mueller T, Rücklin M, Richardson MK. Developmental neuroanatomy of the rosy bitterling Rhodeus ocellatus (Teleostei: Cypriniformes)-A microCT study. J Comp Neurol 2022; 530:2132-2153. [PMID: 35470436 PMCID: PMC9245027 DOI: 10.1002/cne.25324] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 02/09/2022] [Accepted: 03/17/2022] [Indexed: 11/11/2022]
Abstract
Bitterlings are carp-like teleost fish (Cypriniformes: Acheilanathidae) known for their specialized brood parasitic lifestyle. Bitterling embryos, in fact, develop inside the gill chamber of their freshwater mussel hosts. However, little is known about how their parasitic lifestyle affects brain development in comparison to nonparasitic species. Here, we document the development of the brain of the rosy bitterling, Rhodeus ocellatus, at four embryonic stages of 165, 185, 210, 235 hours postfertilization (hpf) using micro-computed tomography (microCT). Focusing on developmental regionalization and brain ventricular organization, we relate the development of the brain divisions to those described for zebrafish using the prosomeric model as a reference paradigm. Segmentation and three-dimensional visualization of the ventricular system allowed us to identify changes in the longitudinal brain axis as a result of cephalic flexure during development. The results show that during early embryonic and larval development, histological differentiation, tissue boundaries, periventricular proliferation zones, and ventricular spaces are all detectable by microCT. The results of this study visualized with differential CT profiles are broadly consistent with comparable histological studies, and with the genoarchitecture of teleosts like the zebrafish. Compared to the zebrafish, our study identifies distinct developmental heterochronies in the rosy bitterling, such as a precocious development of the inferior lobe.
Collapse
Affiliation(s)
- Wenjing Yi
- Institute of Biology, University of Leiden, Sylvius Laboratory, Leiden, the Netherlands.,Vertebrate Evolution, Development and Ecology, Naturalis Biodiversity Center, Leiden, the Netherlands
| | - Thomas Mueller
- Vertebrate Evolution, Development and Ecology, Naturalis Biodiversity Center, Leiden, the Netherlands.,Division of Biology, Kansas State University, Manhattan, Kansas, USA
| | - Martin Rücklin
- Institute of Biology, University of Leiden, Sylvius Laboratory, Leiden, the Netherlands.,Vertebrate Evolution, Development and Ecology, Naturalis Biodiversity Center, Leiden, the Netherlands
| | - Michael K Richardson
- Institute of Biology, University of Leiden, Sylvius Laboratory, Leiden, the Netherlands.,Vertebrate Evolution, Development and Ecology, Naturalis Biodiversity Center, Leiden, the Netherlands
| |
Collapse
|
11
|
Diversity and function of motile ciliated cell types within ependymal lineages of the zebrafish brain. Cell Rep 2021; 37:109775. [PMID: 34610312 PMCID: PMC8524669 DOI: 10.1016/j.celrep.2021.109775] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 07/16/2021] [Accepted: 09/07/2021] [Indexed: 12/15/2022] Open
Abstract
Motile cilia defects impair cerebrospinal fluid (CSF) flow and can cause brain and spine disorders. The development of ciliated cells, their impact on CSF flow, and their function in brain and axial morphogenesis are not fully understood. We have characterized motile ciliated cells within the zebrafish brain ventricles. We show that the ventricles undergo restructuring through development, involving a transition from mono- to multiciliated cells (MCCs) driven by gmnc. MCCs co-exist with monociliated cells and generate directional flow patterns. These ciliated cells have different developmental origins and are genetically heterogenous with respect to expression of the Foxj1 family of ciliary master regulators. Finally, we show that cilia loss from the tela choroida and choroid plexus or global perturbation of multiciliation does not affect overall brain or spine morphogenesis but results in enlarged ventricles. Our findings establish that motile ciliated cells are generated by complementary and sequential transcriptional programs to support ventricular development. Glutamylated tubulin is enriched in cilia of foxj1-expressing cells in the zebrafish Motile ciliated ependymal cells in the zebrafish forebrain are highly diverse Gmnc drives the transition from mono- to multiciliated cells at juvenile stage Lack of multiciliation does not impact brain and spine morphogenesis
Collapse
|
12
|
Chebli J, Rahmati M, Lashley T, Edeman B, Oldfors A, Zetterberg H, Abramsson A. The localization of amyloid precursor protein to ependymal cilia in vertebrates and its role in ciliogenesis and brain development in zebrafish. Sci Rep 2021; 11:19115. [PMID: 34580355 PMCID: PMC8476544 DOI: 10.1038/s41598-021-98487-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 09/09/2021] [Indexed: 11/17/2022] Open
Abstract
Amyloid precursor protein (APP) is expressed in many tissues in human, mice and in zebrafish. In zebrafish, there are two orthologues, Appa and Appb. Interestingly, some cellular processes associated with APP overlap with cilia-mediated functions. Whereas the localization of APP to primary cilia of in vitro-cultured cells has been reported, we addressed the presence of APP in motile and in non-motile sensory cilia and its potential implication for ciliogenesis using zebrafish, mouse, and human samples. We report that Appa and Appb are expressed by ciliated cells and become localized at the membrane of cilia in the olfactory epithelium, otic vesicle and in the brain ventricles of zebrafish embryos. App in ependymal cilia persisted in adult zebrafish and was also detected in mouse and human brain. Finally, we found morphologically abnormal ependymal cilia and smaller brain ventricles in appa−/−appb−/− mutant zebrafish. Our findings demonstrate an evolutionary conserved localisation of APP to cilia and suggest a role of App in ciliogenesis and cilia-related functions.
Collapse
Affiliation(s)
- Jasmine Chebli
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, 41345, Gothenburg, Sweden
| | - Maryam Rahmati
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, 41345, Gothenburg, Sweden
| | - Tammaryn Lashley
- Department of Clinical and Movement Neurosciences, Queen Square Brain Bank for Neurological Disorders, Queen Square Institute of Neurology, University College London, London, UK.,Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
| | - Brigitta Edeman
- Department of Laboratory Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Anders Oldfors
- Department of Laboratory Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, 41345, Gothenburg, Sweden.,Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,UK Dementia Research Institute, London, UK
| | - Alexandra Abramsson
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, 41345, Gothenburg, Sweden.
| |
Collapse
|
13
|
Donati A, Anselme I, Schneider-Maunoury S, Vesque C. Planar polarization of cilia in the zebrafish floor-plate involves Par3-mediated posterior localization of highly motile basal bodies. Development 2021; 148:269080. [PMID: 34104942 DOI: 10.1242/dev.196386] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 06/01/2021] [Indexed: 12/12/2022]
Abstract
Epithelial cilia, whether motile or primary, often display an off-center planar localization within the apical cell surface. This form of planar cell polarity (PCP) involves the asymmetric positioning of the ciliary basal body (BB). Using the monociliated epithelium of the embryonic zebrafish floor-plate, we investigated the dynamics and mechanisms of BB polarization by live imaging. BBs were highly motile, making back-and-forth movements along the antero-posterior (AP) axis and contacting both the anterior and posterior membranes. Contacts exclusively occurred at junctional Par3 patches and were often preceded by membrane digitations extending towards the BB, suggesting focused cortical pulling forces. Accordingly, BBs and Par3 patches were linked by dynamic microtubules. Later, BBs became less motile and eventually settled at posterior apical junctions enriched in Par3. BB posterior positioning followed Par3 posterior enrichment and was impaired upon Par3 depletion or disorganization of Par3 patches. In the PCP mutant vangl2, BBs were still motile but displayed poorly oriented membrane contacts that correlated with Par3 patch fragmentation and lateral spreading. Thus, we propose an unexpected function for posterior Par3 enrichment in controlling BB positioning downstream of the PCP pathway.
Collapse
Affiliation(s)
- Antoine Donati
- Sorbonne Université, CNRS UMR7622, INSERM U1156, Institut de Biologie Paris Seine (IBPS), Developmental Biology Unit, 75005 Paris, France
| | - Isabelle Anselme
- Sorbonne Université, CNRS UMR7622, INSERM U1156, Institut de Biologie Paris Seine (IBPS), Developmental Biology Unit, 75005 Paris, France
| | - Sylvie Schneider-Maunoury
- Sorbonne Université, CNRS UMR7622, INSERM U1156, Institut de Biologie Paris Seine (IBPS), Developmental Biology Unit, 75005 Paris, France
| | - Christine Vesque
- Sorbonne Université, CNRS UMR7622, INSERM U1156, Institut de Biologie Paris Seine (IBPS), Developmental Biology Unit, 75005 Paris, France
| |
Collapse
|
14
|
Yang S, Emelyanov A, You MS, Sin M, Korzh V. Camel regulates development of the brain ventricular system. Cell Tissue Res 2021; 383:835-852. [PMID: 32902807 PMCID: PMC7904751 DOI: 10.1007/s00441-020-03270-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 07/29/2020] [Indexed: 10/25/2022]
Abstract
Development of the brain ventricular system of vertebrates and the molecular mechanisms involved are not fully understood. The developmental genes expressed in the elements of the brain ventricular system such as the ependyma and circumventricular organs act as molecular determinants of cell adhesion critical for the formation of brain ventricular system. They control brain development and function, including the flow of cerebrospinal fluid. Here, we describe the novel distantly related member of the zebrafish L1-CAM family of genes-camel. Whereas its maternal transcripts distributed uniformly, the zygotic transcripts demonstrate clearly defined expression patterns, in particular in the axial structures: floor plate, hypochord, and roof plate. camel expresses in several other cell lineages with access to the brain ventricular system, including the midbrain roof plate, subcommissural organ, organum vasculosum lamina terminalis, median eminence, paraventricular organ, flexural organ, and inter-rhombomeric boundaries. This expression pattern suggests a role of Camel in neural development. Several isoforms of Camel generated by differential splicing of exons encoding the sixth fibronectin type III domain enhance cell adhesion differentially. The antisense oligomer morpholino-mediated loss-of-function of Camel affects cell adhesion and causes hydrocephalus and scoliosis manifested via the tail curled down phenotype. The subcommissural organ's derivative-the Reissner fiber-participates in the flow of cerebrospinal fluid. The Reissner fiber fails to form upon morpholino-mediated Camel loss-of-function. The Camel mRNA-mediated gain-of-function causes the Reissner fiber misdirection. This study revealed a link between Chl1a/Camel and Reissner fiber formation, and this supports the idea that CHL1 is one of the scoliosis factors.
Collapse
Affiliation(s)
- Shulan Yang
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore
- Translational Medicine Centre, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Alexander Emelyanov
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore
- Institute for Research on Cancer and Aging, Nice, France
| | - May-Su You
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore
- National Health Research Institutes, Zhunan, Taiwan
| | - Melvin Sin
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore
| | - Vladimir Korzh
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore.
- International Institute of Molecular and Cell Biology, Warsaw, Poland.
| |
Collapse
|
15
|
Dur AH, Tang T, Viviano S, Sekuri A, Willsey HR, Tagare HD, Kahle KT, Deniz E. In Xenopus ependymal cilia drive embryonic CSF circulation and brain development independently of cardiac pulsatile forces. Fluids Barriers CNS 2020; 17:72. [PMID: 33308296 PMCID: PMC7731788 DOI: 10.1186/s12987-020-00234-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 11/28/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Hydrocephalus, the pathological expansion of the cerebrospinal fluid (CSF)-filled cerebral ventricles, is a common, deadly disease. In the adult, cardiac and respiratory forces are the main drivers of CSF flow within the brain ventricular system to remove waste and deliver nutrients. In contrast, the mechanics and functions of CSF circulation in the embryonic brain are poorly understood. This is primarily due to the lack of model systems and imaging technology to study these early time points. Here, we studied embryos of the vertebrate Xenopus with optical coherence tomography (OCT) imaging to investigate in vivo ventricular and neural development during the onset of CSF circulation. METHODS Optical coherence tomography (OCT), a cross-sectional imaging modality, was used to study developing Xenopus tadpole brains and to dynamically detect in vivo ventricular morphology and CSF circulation in real-time, at micrometer resolution. The effects of immobilizing cilia and cardiac ablation were investigated. RESULTS In Xenopus, using OCT imaging, we demonstrated that ventriculogenesis can be tracked throughout development until the beginning of metamorphosis. We found that during Xenopus embryogenesis, initially, CSF fills the primitive ventricular space and remains static, followed by the initiation of the cilia driven CSF circulation where ependymal cilia create a polarized CSF flow. No pulsatile flow was detected throughout these tailbud and early tadpole stages. As development progressed, despite the emergence of the choroid plexus in Xenopus, cardiac forces did not contribute to the CSF circulation, and ciliary flow remained the driver of the intercompartmental bidirectional flow as well as the near-wall flow. We finally showed that cilia driven flow is crucial for proper rostral development and regulated the spatial neural cell organization. CONCLUSIONS Our data support a paradigm in which Xenopus embryonic ventriculogenesis and rostral brain development are critically dependent on ependymal cilia-driven CSF flow currents that are generated independently of cardiac pulsatile forces. Our work suggests that the Xenopus ventricular system forms a complex cilia-driven CSF flow network which regulates neural cell organization. This work will redirect efforts to understand the molecular regulators of embryonic CSF flow by focusing attention on motile cilia rather than other forces relevant only to the adult.
Collapse
Affiliation(s)
- A H Dur
- Department of Pediatrics, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06510, USA
- Acibadem Mehmet Ali Aydinlar University School of Medicine, Istanbul, Turkey
| | - T Tang
- Department of Radiology and Biomedical Imaging, Yale University, 300 Cedar St, New Haven, CT, 06510, USA
| | - S Viviano
- Department of Pediatrics, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06510, USA
- Pediatric Genomics Discovery Program, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06510, USA
| | - A Sekuri
- Acibadem Mehmet Ali Aydinlar University School of Medicine, Istanbul, Turkey
| | - H R Willsey
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - H D Tagare
- Department of Radiology and Biomedical Imaging, Yale University, 300 Cedar St, New Haven, CT, 06510, USA
| | - K T Kahle
- Department of Pediatrics, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06510, USA
- Department of Neurosurgery and Cellular & Molecular Physiology, and Centers for Mendelian Genomics, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06510, USA
| | - E Deniz
- Department of Pediatrics, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06510, USA.
- Pediatric Genomics Discovery Program, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06510, USA.
| |
Collapse
|
16
|
Fame RM, Lehtinen MK. Emergence and Developmental Roles of the Cerebrospinal Fluid System. Dev Cell 2020; 52:261-275. [PMID: 32049038 DOI: 10.1016/j.devcel.2020.01.027] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/14/2020] [Accepted: 01/24/2020] [Indexed: 12/21/2022]
Abstract
We summarize recent work illuminating how cerebrospinal fluid (CSF) regulates brain function. More than a protective fluid cushion and sink for waste, the CSF is an integral CNS component with dynamic and diverse roles emerging in parallel with the developing CNS. This review examines the current understanding about early CSF and its maturation and roles during CNS development and discusses open questions in the field. We focus on developmental changes in the ventricular system and CSF sources (including neural progenitors and choroid plexus). We also discuss concepts related to the development of fluid dynamics including flow, perivascular transport, drainage, and barriers.
Collapse
Affiliation(s)
- Ryann M Fame
- Department of Pathology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Maria K Lehtinen
- Department of Pathology, Boston Children's Hospital, Boston, MA 02115, USA.
| |
Collapse
|
17
|
Yang L, Jiménez JA, Earley AM, Hamlin V, Kwon V, Dixon CT, Shiau CE. Drainage of inflammatory macromolecules from the brain to periphery targets the liver for macrophage infiltration. eLife 2020; 9:58191. [PMID: 32735214 PMCID: PMC7434444 DOI: 10.7554/elife.58191] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 07/27/2020] [Indexed: 12/16/2022] Open
Abstract
Many brain pathologies are associated with liver damage, but a direct link has long remained elusive. Here, we establish a new paradigm for interrogating brain-periphery interactions by leveraging zebrafish for its unparalleled access to the intact whole animal for in vivo analysis in real time after triggering focal brain inflammation. Using traceable lipopolysaccharides (LPS), we reveal that drainage of these inflammatory macromolecules from the brain led to a strikingly robust peripheral infiltration of macrophages into the liver independent of Kupffer cells. We further demonstrate that this macrophage recruitment requires signaling from the cytokine IL-34 and Toll-like receptor adaptor MyD88, and occurs in coordination with neutrophils. These results highlight the possibility for circulation of brain-derived substances to serve as a rapid mode of communication from brain to the liver. Understanding how the brain engages the periphery at times of danger may offer new perspectives for detecting and treating brain pathologies.
Collapse
Affiliation(s)
- Linlin Yang
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, United States
| | - Jessica A Jiménez
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, United States
| | - Alison M Earley
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, United States
| | - Victoria Hamlin
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, United States
| | - Victoria Kwon
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, United States
| | - Cameron T Dixon
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, United States
| | - Celia E Shiau
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, United States.,Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, United States
| |
Collapse
|
18
|
Castaneyra-Ruiz L, McAllister JP, Morales DM, Brody SL, Isaacs AM, Limbrick DD. Preterm intraventricular hemorrhage in vitro: modeling the cytopathology of the ventricular zone. Fluids Barriers CNS 2020; 17:46. [PMID: 32690048 PMCID: PMC7372876 DOI: 10.1186/s12987-020-00210-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 07/13/2020] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Severe intraventricular hemorrhage (IVH) is one of the most devastating neurological complications in preterm infants, with the majority suffering long-term neurological morbidity and up to 50% developing post-hemorrhagic hydrocephalus (PHH). Despite the importance of this disease, its cytopathological mechanisms are not well known. An in vitro model of IVH is required to investigate the effects of blood and its components on the developing ventricular zone (VZ) and its stem cell niche. To address this need, we developed a protocol from our accepted in vitro model to mimic the cytopathological conditions of IVH in the preterm infant. METHODS Maturing neuroepithelial cells from the VZ were harvested from the entire lateral ventricles of wild type C57BL/6 mice at 1-4 days of age and expanded in proliferation media for 3-5 days. At confluence, cells were re-plated onto 24-well plates in differentiation media to generate ependymal cells (EC). At approximately 3-5 days, which corresponded to the onset of EC differentiation based on the appearance of multiciliated cells, phosphate-buffered saline for controls or syngeneic whole blood for IVH was added to the EC surface. The cells were examined for the expression of EC markers of differentiation and maturation to qualitatively and quantitatively assess the effect of blood exposure on VZ transition from neuroepithelial cells to EC. DISCUSSION This protocol will allow investigators to test cytopathological mechanisms contributing to the pathology of IVH with high temporal resolution and query the impact of injury to the maturation of the VZ. This technique recapitulates features of normal maturation of the VZ in vitro, offering the capacity to investigate the developmental features of VZ biogenesis.
Collapse
Affiliation(s)
- Leandro Castaneyra-Ruiz
- Department of Neurological Surgery, Washington University School of Medicine and the St. Louis Children's Hospital, Campus Box 8057, 660 South Euclid Ave., St. Louis, MO, 63110, USA.
| | - James P McAllister
- Department of Neurological Surgery, Washington University School of Medicine and the St. Louis Children's Hospital, Campus Box 8057, 660 South Euclid Ave., St. Louis, MO, 63110, USA
| | - Diego M Morales
- Department of Neurological Surgery, Washington University School of Medicine and the St. Louis Children's Hospital, Campus Box 8057, 660 South Euclid Ave., St. Louis, MO, 63110, USA
| | - Steven L Brody
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Albert M Isaacs
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - David D Limbrick
- Department of Neurological Surgery, Washington University School of Medicine and the St. Louis Children's Hospital, Campus Box 8057, 660 South Euclid Ave., St. Louis, MO, 63110, USA
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, 63110, USA
| |
Collapse
|
19
|
Bearce EA, Grimes DT. On being the right shape: Roles for motile cilia and cerebrospinal fluid flow in body and spine morphology. Semin Cell Dev Biol 2020; 110:104-112. [PMID: 32693941 DOI: 10.1016/j.semcdb.2020.07.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 07/07/2020] [Accepted: 07/07/2020] [Indexed: 12/12/2022]
Abstract
How developing and growing organisms attain their proper shape is a central problem of developmental biology. In this review, we investigate this question with respect to how the body axis and spine form in their characteristic linear head-to-tail fashion in vertebrates. Recent work in the zebrafish has implicated motile cilia and cerebrospinal fluid flow in axial morphogenesis and spinal straightness. We begin by introducing motile cilia, the fluid flows they generate and their roles in zebrafish development and growth. We then describe how cilia control body and spine shape through sensory cells in the spinal canal, a thread-like extracellular structure called the Reissner fiber, and expression of neuropeptide signals. Last, we discuss zebrafish mutants in which spinal straightness breaks down and three-dimensional curves form. These curves resemble the common but little-understood human disease Idiopathic Scoliosis. Zebrafish research is therefore poised to make progress in our understanding of this condition and, more generally, how body and spine shape is acquired and maintained through development and growth.
Collapse
Affiliation(s)
- Elizabeth A Bearce
- Institute of Molecular Biology, Department of Biology, University of Oregon, Eugene, OR, 97403, USA.
| | - Daniel T Grimes
- Institute of Molecular Biology, Department of Biology, University of Oregon, Eugene, OR, 97403, USA.
| |
Collapse
|
20
|
Jurisch-Yaksi N, Yaksi E, Kizil C. Radial glia in the zebrafish brain: Functional, structural, and physiological comparison with the mammalian glia. Glia 2020; 68:2451-2470. [PMID: 32476207 DOI: 10.1002/glia.23849] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/07/2020] [Accepted: 05/13/2020] [Indexed: 02/01/2023]
Abstract
The neuroscience community has witnessed a tremendous expansion of glia research. Glial cells are now on center stage with leading roles in the development, maturation, and physiology of brain circuits. Over the course of evolution, glia have highly diversified and include the radial glia, astroglia or astrocytes, microglia, oligodendrocytes, and ependymal cells, each having dedicated functions in the brain. The zebrafish, a small teleost fish, is no exception to this and recent evidences point to evolutionarily conserved roles for glia in the development and physiology of its nervous system. Due to its small size, transparency, and genetic amenability, the zebrafish has become an increasingly prominent animal model for brain research. It has enabled the study of neural circuits from individual cells to entire brains, with a precision unmatched in other vertebrate models. Moreover, its high neurogenic and regenerative potential has attracted a lot of attention from the research community focusing on neural stem cells and neurodegenerative diseases. Hence, studies using zebrafish have the potential to provide fundamental insights about brain development and function, and also elucidate neural and molecular mechanisms of neurological diseases. We will discuss here recent discoveries on the diverse roles of radial glia and astroglia in neurogenesis, in modulating neuronal activity and in regulating brain homeostasis at the brain barriers. By comparing insights made in various animal models, particularly mammals and zebrafish, our goal is to highlight the similarities and differences in glia biology among species, which could set new paradigms relevant to humans.
Collapse
Affiliation(s)
- Nathalie Jurisch-Yaksi
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Norwegian University of Science and Technology, Trondheim, Norway.,Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway.,Department of Neurology and Clinical Neurophysiology, St Olav University Hospital, Trondheim, Norway
| | - Emre Yaksi
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Norwegian University of Science and Technology, Trondheim, Norway
| | - Caghan Kizil
- German Center for Neurodegenerative Diseases (DZNE), Helmholtz Association, Dresden, Germany.,Center for Molecular and Cellular Bioengineering (CMCB), TU Dresden, Dresden, Germany
| |
Collapse
|
21
|
Fame RM, Cortés-Campos C, Sive HL. Brain Ventricular System and Cerebrospinal Fluid Development and Function: Light at the End of the Tube: A Primer with Latest Insights. Bioessays 2020; 42:e1900186. [PMID: 32078177 DOI: 10.1002/bies.201900186] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 01/02/2020] [Indexed: 12/12/2022]
Abstract
The brain ventricular system is a series of connected cavities, filled with cerebrospinal fluid (CSF), that forms within the vertebrate central nervous system (CNS). The hollow neural tube is a hallmark of the chordate CNS, and a closed neural tube is essential for normal development. Development and function of the ventricular system is examined, emphasizing three interdigitating components that form a functional system: ventricle walls, CSF fluid properties, and activity of CSF constituent factors. The cellular lining of the ventricle both can produce and is responsive to CSF. Fluid properties and conserved CSF components contribute to normal CNS development. Anomalies of the CSF/ventricular system serve as diagnostics and may cause CNS disorders, further highlighting their importance. This review focuses on the evolution and development of the brain ventricular system, associated function, and connected pathologies. It is geared as an introduction for scholars with little background in the field.
Collapse
Affiliation(s)
- Ryann M Fame
- Whitehead Institute for Biomedical Research, Cambridge, MA, 02142, USA
| | | | - Hazel L Sive
- Whitehead Institute for Biomedical Research, Cambridge, MA, 02142, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| |
Collapse
|
22
|
Tseng YT, Ko CL, Chang CT, Lee YH, Huang Fu WC, Liu IH. Leucine-rich repeat containing 8A contributes to the expansion of brain ventricles in zebrafish embryos. Biol Open 2020; 9:bio048264. [PMID: 31941702 PMCID: PMC6994961 DOI: 10.1242/bio.048264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 12/23/2019] [Indexed: 12/16/2022] Open
Abstract
The sodium osmotic gradient is necessary for the initiation of brain ventricle inflation, but a previous study predicted that organic and inorganic osmolytes play equivalently important roles in osmotic homeostasis in astrocytes. To test whether organic osmoregulation also plays a role in brain ventricle inflation, the core component for volume-regulated anion and organic osmolyte channel, lrrc8a, was investigated in the zebrafish model. RT-PCR and whole-mount in situ hybridization indicated that both genes were ubiquitously expressed through to 12 hpf, and around the ventricular layer of neural tubes and the cardiogenic region at 24 hpf. Knocking down either one lrrc8a paralog with morpholino oligos resulted in abnormalities in circulation at 32 hpf. Morpholino oligos or CRISPR interference against either paralog led to smaller brain ventricles at 24 hpf. Either lrrc8aa or lrrc8ab mRNA rescued the phenotypic penetrance in both lrrc8aa and lrrc8ab morphants. Supplementation of taurine in the E3 medium and overexpression csad mRNA also rescued lrrc8aa and lrrc8ab morphants. Our results indicate that the two zebrafish lrrc8a paralogs are maternal message genes and are ubiquitously expressed in early embryos. The two genes play redundant roles in the expansion of brain ventricles and the circulatory system and taurine contributes to brain ventricle expansion via the volume-regulated anion and organic osmolyte channels.
Collapse
Affiliation(s)
- Yen-Tzu Tseng
- Department of Animal Science and Technology, National Taiwan University, Taipei, 106, Taiwan
| | - Chun-Lin Ko
- Department of Animal Science and Technology, National Taiwan University, Taipei, 106, Taiwan
| | - Chia-Teng Chang
- Department of Animal Science and Technology, National Taiwan University, Taipei, 106, Taiwan
| | - Yen-Hua Lee
- Department of Animal Science and Technology, National Taiwan University, Taipei, 106, Taiwan
| | - Wei-Chun Huang Fu
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, 110 Taiwan
| | - I-Hsuan Liu
- Department of Animal Science and Technology, National Taiwan University, Taipei, 106, Taiwan
- Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, 106, Taiwan
- Department of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei, 106, Taiwan
| |
Collapse
|
23
|
Thouvenin O, Keiser L, Cantaut-Belarif Y, Carbo-Tano M, Verweij F, Jurisch-Yaksi N, Bardet PL, van Niel G, Gallaire F, Wyart C. Origin and role of the cerebrospinal fluid bidirectional flow in the central canal. eLife 2020; 9:e47699. [PMID: 31916933 PMCID: PMC6989091 DOI: 10.7554/elife.47699] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 01/07/2020] [Indexed: 12/22/2022] Open
Abstract
Circulation of the cerebrospinal fluid (CSF) contributes to body axis formation and brain development. Here, we investigated the unexplained origins of the CSF flow bidirectionality in the central canal of the spinal cord of 30 hpf zebrafish embryos and its impact on development. Experiments combined with modeling and simulations demonstrate that the CSF flow is generated locally by caudally-polarized motile cilia along the ventral wall of the central canal. The closed geometry of the canal imposes the average flow rate to be null, explaining the reported bidirectionality. We also demonstrate that at this early stage, motile cilia ensure the proper formation of the central canal. Furthermore, we demonstrate that the bidirectional flow accelerates the transport of particles in the CSF via a coupled convective-diffusive transport process. Our study demonstrates that cilia activity combined with muscle contractions sustain the long-range transport of extracellular lipidic particles, enabling embryonic growth.
Collapse
Affiliation(s)
- Olivier Thouvenin
- Institut du Cerveau et de la Moelle épinière (ICM), Sorbonne Universités, UPMC Univ Paris 06, Inserm, CNRS, AP-HP, Hôpital Pitié-SalpêtrièreParisFrance
- ESPCI Paris, PSL University, CNRS, Institut LangevinParisFrance
| | - Ludovic Keiser
- Laboratory of Fluid Mechanics and InstabilitiesÉcole Polytechnique Fédérale de LausanneLausanneSwitzerland
| | - Yasmine Cantaut-Belarif
- Institut du Cerveau et de la Moelle épinière (ICM), Sorbonne Universités, UPMC Univ Paris 06, Inserm, CNRS, AP-HP, Hôpital Pitié-SalpêtrièreParisFrance
| | - Martin Carbo-Tano
- Institut du Cerveau et de la Moelle épinière (ICM), Sorbonne Universités, UPMC Univ Paris 06, Inserm, CNRS, AP-HP, Hôpital Pitié-SalpêtrièreParisFrance
| | - Frederik Verweij
- Institute of Psychiatry and Neuroscience of Paris, Hôpital Saint-Anne, Université Descartes, INSERM U1266ParisFrance
| | - Nathalie Jurisch-Yaksi
- Kavli Institute for Systems Neuroscience, Centre for Neural Computation, The Faculty of MedicineNorwegian University of Science and TechnologyTrondheimNorway
- Department of Clinical and Molecular Medicine, The Faculty of MedicineNorwegian University of Science and TechnologyTrondheimNorway
| | - Pierre-Luc Bardet
- Institut du Cerveau et de la Moelle épinière (ICM), Sorbonne Universités, UPMC Univ Paris 06, Inserm, CNRS, AP-HP, Hôpital Pitié-SalpêtrièreParisFrance
| | - Guillaume van Niel
- Institute of Psychiatry and Neuroscience of Paris, Hôpital Saint-Anne, Université Descartes, INSERM U1266ParisFrance
| | - Francois Gallaire
- Laboratory of Fluid Mechanics and InstabilitiesÉcole Polytechnique Fédérale de LausanneLausanneSwitzerland
| | - Claire Wyart
- Institut du Cerveau et de la Moelle épinière (ICM), Sorbonne Universités, UPMC Univ Paris 06, Inserm, CNRS, AP-HP, Hôpital Pitié-SalpêtrièreParisFrance
| |
Collapse
|
24
|
Eichele G, Bodenschatz E, Ditte Z, Günther AK, Kapoor S, Wang Y, Westendorf C. Cilia-driven flows in the brain third ventricle. Philos Trans R Soc Lond B Biol Sci 2019; 375:20190154. [PMID: 31884922 DOI: 10.1098/rstb.2019.0154] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The brain ventricles are interconnected, elaborate cavities that traverse the brain. They are filled with cerebrospinal fluid (CSF) that is, to a large part, produced by the choroid plexus, a secretory epithelium that reaches into the ventricles. CSF is rich in cytokines, growth factors and extracellular vesicles that glide along the walls of ventricles, powered by bundles of motile cilia that coat the ventricular wall. We review the cellular and biochemical properties of the ventral part of the third ventricle that is surrounded by the hypothalamus. In particular, we consider the recently discovered intricate network of cilia-driven flows that characterize this ventricle and discuss the potential physiological significance of this flow for the directional transport of CSF signals to cellular targets located either within the third ventricle or in the adjacent hypothalamic brain parenchyma. Cilia-driven streams of signalling molecules offer an exciting perspective on how fluid-borne signals are dynamically transmitted in the brain. This article is part of the Theo Murphy meeting issue 'Unity and diversity of cilia in locomotion and transport'.
Collapse
Affiliation(s)
- Gregor Eichele
- Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Eberhard Bodenschatz
- Max Planck Institute for Dynamics and Self-Organization, Am Fassberg 17, 37077 Göttingen, Germany
| | - Zuzana Ditte
- Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Ann-Kathrin Günther
- Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Shoba Kapoor
- Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Yong Wang
- Max Planck Institute for Dynamics and Self-Organization, Am Fassberg 17, 37077 Göttingen, Germany
| | - Christian Westendorf
- Max Planck Institute for Dynamics and Self-Organization, Am Fassberg 17, 37077 Göttingen, Germany
| |
Collapse
|
25
|
Ringers C, Olstad EW, Jurisch-Yaksi N. The role of motile cilia in the development and physiology of the nervous system. Philos Trans R Soc Lond B Biol Sci 2019; 375:20190156. [PMID: 31884916 DOI: 10.1098/rstb.2019.0156] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Motile cilia are miniature, whip-like organelles whose beating generates a directional fluid flow. The flow generated by ciliated epithelia is a subject of great interest, as defective ciliary motility results in severe human diseases called motile ciliopathies. Despite the abundance of motile cilia in diverse organs including the nervous system, their role in organ development and homeostasis remains poorly understood. Recently, much progress has been made regarding the identity of motile ciliated cells and the role of motile-cilia-mediated flow in the development and physiology of the nervous system. In this review, we will discuss these recent advances from sensory organs, specifically the nose and the ear, to the spinal cord and brain ventricles. This article is part of the Theo Murphy meeting issue 'Unity and diversity of cilia in locomotion and transport'.
Collapse
Affiliation(s)
- Christa Ringers
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Norwegian University of Science and Technology, Olav Kyrres Gate 9, 7030 Trondheim, Norway
| | - Emilie W Olstad
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Norwegian University of Science and Technology, Olav Kyrres Gate 9, 7030 Trondheim, Norway
| | - Nathalie Jurisch-Yaksi
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Norwegian University of Science and Technology, Olav Kyrres Gate 9, 7030 Trondheim, Norway.,Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Olav Kyrres Gate 9, 7030 Trondheim, Norway.,Department of Neurology and Clinical Neurophysiology, St Olavs University Hospital, Edvard Griegs Gate 8, 7030 Trondheim, Norway
| |
Collapse
|
26
|
Gross NB, Abad N, Lichtstein D, Taron S, Aparicio L, Fonteh AN, Arakaki X, Cowan RP, Grant SC, Harrington MG. Endogenous Na+, K+-ATPase inhibitors and CSF [Na+] contribute to migraine formation. PLoS One 2019; 14:e0218041. [PMID: 31173612 PMCID: PMC6555523 DOI: 10.1371/journal.pone.0218041] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Accepted: 05/24/2019] [Indexed: 12/24/2022] Open
Abstract
There is strong evidence that neuronal hyper-excitability underlies migraine, and may or may not be preceded by cortical spreading depression. However, the mechanisms for cortical spreading depression and/or migraine are not established. Previous studies reported that cerebrospinal fluid (CSF) [Na+] is higher during migraine, and that higher extracellular [Na+] leads to hyper-excitability. We raise the hypothesis that altered choroid plexus Na+, K+-ATPase activity can cause both migraine phenomena: inhibition raises CSF [K+] and initiates cortical spreading depression, while activation raises CSF [Na+] and causes migraine. In this study, we examined levels of specific Na+, K+-ATPase inhibitors, endogenous ouabain-like compounds (EOLC), in CSF from migraineurs and controls. CSF EOLC levels were significantly lower during ictal migraine (0.4 nM +/- 0.09) than from either controls (1.8 nM +/- 0.4) or interictal migraineurs (3.1 nM +/- 1.9). Blood plasma EOLC levels were higher in migraineurs than controls, but did not differ between ictal and interictal states. In a Sprague-Dawley rat model of nitroglycerin-triggered central sensitization, we changed the concentrations of EOLC and CSF sodium, and measured aversive mechanical threshold (von Frey hairs), trigeminal nucleus caudalis activation (cFos), and CSF [Na+] (ultra-high field 23Na MRI). Animals were sensitized by three independent treatments: intraperitoneal nitroglycerin, immunodepleting EOLC from cerebral ventricles, or cerebroventricular infusion of higher CSF [Na+]. Conversely, nitroglycerin-triggered sensitization was prevented by either vascular or cerebroventricular delivery of the specific Na+, K+-ATPase inhibitor, ouabain. These results affirm our hypothesis that higher CSF [Na+] is linked to human migraine and to a rodent migraine model, and demonstrate that EOLC regulates them both. Our data suggest that altered choroid plexus Na+, K+-ATPase activity is a common source of these changes, and may be the initiating mechanism in migraine.
Collapse
Affiliation(s)
- Noah B. Gross
- Huntington Medical Research Institutes, Pasadena, California, United States of America
| | - Nastaren Abad
- Department of Chemical & Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, Florida, United States of America
- Center for Interdisciplinary Magnetic Resonance, National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida, United States of America
| | - David Lichtstein
- Department of Medical Neurobiology, Institute for Medical Research, Israel-Canada, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Shiri Taron
- Department of Medical Neurobiology, Institute for Medical Research, Israel-Canada, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Lorena Aparicio
- Huntington Medical Research Institutes, Pasadena, California, United States of America
| | - Alfred N. Fonteh
- Huntington Medical Research Institutes, Pasadena, California, United States of America
| | - Xianghong Arakaki
- Huntington Medical Research Institutes, Pasadena, California, United States of America
| | - Robert P. Cowan
- Department of Neurology, Stanford University, Palo Alto, California, United States of America
| | - Samuel C. Grant
- Department of Chemical & Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, Florida, United States of America
- Center for Interdisciplinary Magnetic Resonance, National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida, United States of America
| | - Michael G. Harrington
- Huntington Medical Research Institutes, Pasadena, California, United States of America
| |
Collapse
|
27
|
Date P, Ackermann P, Furey C, Fink IB, Jonas S, Khokha MK, Kahle KT, Deniz E. Visualizing flow in an intact CSF network using optical coherence tomography: implications for human congenital hydrocephalus. Sci Rep 2019; 9:6196. [PMID: 30996265 PMCID: PMC6470164 DOI: 10.1038/s41598-019-42549-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 04/02/2019] [Indexed: 12/30/2022] Open
Abstract
Cerebrospinal fluid (CSF) flow in the brain ventricles is critical for brain development. Altered CSF flow dynamics have been implicated in congenital hydrocephalus (CH) characterized by the potentially lethal expansion of cerebral ventricles if not treated. CH is the most common neurosurgical indication in children effecting 1 per 1000 infants. Current treatment modalities are limited to antiquated brain surgery techniques, mostly because of our poor understanding of the CH pathophysiology. We lack model systems where the interplay between ependymal cilia, embryonic CSF flow dynamics and brain development can be analyzed in depth. This is in part due to the poor accessibility of the vertebrate ventricular system to in vivo investigation. Here, we show that the genetically tractable frog Xenopus tropicalis, paired with optical coherence tomography imaging, provides new insights into CSF flow dynamics and role of ciliary dysfunction in hydrocephalus pathogenesis. We can visualize CSF flow within the multi-chambered ventricular system and detect multiple distinct polarized CSF flow fields. Using CRISPR/Cas9 gene editing, we modeled human L1CAM and CRB2 mediated aqueductal stenosis. We propose that our high-throughput platform can prove invaluable for testing candidate human CH genes to understand CH pathophysiology.
Collapse
Affiliation(s)
- Priya Date
- Pediatric Genomics Discovery Program, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06510, USA
- Department of Pediatrics, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06510, USA
| | - Pascal Ackermann
- Department of Pediatrics, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06510, USA
- Department of Medical Informatics, Uniklinik RWTH Aachen, Pauwelsstr 30, 52074, Aachen, Germany
| | - Charuta Furey
- Department of Genetics, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06510, USA
- Department of Neurosurgery and Cellular & Molecular Physiology, and Centers for Mendelian Genomics, 333 Cedar Street, New Haven, CT, 06510, USA
| | - Ina Berenice Fink
- Department of Medical Informatics, Uniklinik RWTH Aachen, Pauwelsstr 30, 52074, Aachen, Germany
| | - Stephan Jonas
- Department of Informatics, Technical University of Munich, Munich, Germany
| | - Mustafa K Khokha
- Pediatric Genomics Discovery Program, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06510, USA
- Department of Pediatrics, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06510, USA
- Department of Genetics, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06510, USA
| | - Kristopher T Kahle
- Department of Pediatrics, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06510, USA.
- Department of Genetics, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06510, USA.
- Department of Neurosurgery and Cellular & Molecular Physiology, and Centers for Mendelian Genomics, 333 Cedar Street, New Haven, CT, 06510, USA.
| | - Engin Deniz
- Pediatric Genomics Discovery Program, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06510, USA.
- Department of Pediatrics, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06510, USA.
| |
Collapse
|
28
|
Olstad EW, Ringers C, Hansen JN, Wens A, Brandt C, Wachten D, Yaksi E, Jurisch-Yaksi N. Ciliary Beating Compartmentalizes Cerebrospinal Fluid Flow in the Brain and Regulates Ventricular Development. Curr Biol 2019; 29:229-241.e6. [PMID: 30612902 PMCID: PMC6345627 DOI: 10.1016/j.cub.2018.11.059] [Citation(s) in RCA: 134] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 10/31/2018] [Accepted: 11/27/2018] [Indexed: 12/17/2022]
Abstract
Motile cilia are miniature, propeller-like extensions, emanating from many cell types across the body. Their coordinated beating generates a directional fluid flow, which is essential for various biological processes, from respiration to reproduction. In the nervous system, ependymal cells extend their motile cilia into the brain ventricles and contribute to cerebrospinal fluid (CSF) flow. Although motile cilia are not the only contributors to CSF flow, their functioning is crucial, as patients with motile cilia defects develop clinical features, like hydrocephalus and scoliosis. CSF flow was suggested to primarily deliver nutrients and remove waste, but recent studies emphasized its role in brain development and function. Nevertheless, it remains poorly understood how ciliary beating generates and organizes CSF flow to fulfill these roles. Here, we study motile cilia and CSF flow in the brain ventricles of larval zebrafish. We identified that different populations of motile ciliated cells are spatially organized and generate a directional CSF flow powered by ciliary beating. Our investigations revealed that CSF flow is confined within individual ventricular cavities, with little exchange of fluid between ventricles, despite a pulsatile CSF displacement caused by the heartbeat. Interestingly, our results showed that the ventricular boundaries supporting this compartmentalized CSF flow are abolished during bodily movement, highlighting that multiple physiological processes regulate the hydrodynamics of CSF flow. Finally, we showed that perturbing cilia reduces hydrodynamic coupling between the brain ventricles and disrupts ventricular development. We propose that motile-cilia-generated flow is crucial in regulating the distribution of CSF within and across brain ventricles. Spatially organized motile cilia with rotational beats create directional CSF flow Ciliary beating, heartbeat, and locomotion generate distinct components of CSF flow Joint action of these components balances CSF compartmentalization and dispersion Disruption of ciliary beating leads to ventricular defects during brain development
Collapse
Affiliation(s)
- Emilie W Olstad
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, The Faculty of Medicine, Norwegian University of Science and Technology, Olav Kyrres Gate 9, 7030 Trondheim, Norway
| | - Christa Ringers
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, The Faculty of Medicine, Norwegian University of Science and Technology, Olav Kyrres Gate 9, 7030 Trondheim, Norway
| | - Jan N Hansen
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, The Faculty of Medicine, Norwegian University of Science and Technology, Olav Kyrres Gate 9, 7030 Trondheim, Norway; Institute of Innate Immunity, Department of Biophysical Imaging, University Hospital, University of Bonn, Sigmund-Freud-Str. 25, 53127 Bonn, Germany
| | - Adinda Wens
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, The Faculty of Medicine, Norwegian University of Science and Technology, Olav Kyrres Gate 9, 7030 Trondheim, Norway
| | - Cecilia Brandt
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, The Faculty of Medicine, Norwegian University of Science and Technology, Olav Kyrres Gate 9, 7030 Trondheim, Norway
| | - Dagmar Wachten
- Institute of Innate Immunity, Department of Biophysical Imaging, University Hospital, University of Bonn, Sigmund-Freud-Str. 25, 53127 Bonn, Germany
| | - Emre Yaksi
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, The Faculty of Medicine, Norwegian University of Science and Technology, Olav Kyrres Gate 9, 7030 Trondheim, Norway; Department of Neurology and Clinical Neurophysiology, St. Olavs University Hospital, Edvard Griegs Gate 8, 7030 Trondheim, Norway.
| | - Nathalie Jurisch-Yaksi
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, The Faculty of Medicine, Norwegian University of Science and Technology, Olav Kyrres Gate 9, 7030 Trondheim, Norway; Department of Neurology and Clinical Neurophysiology, St. Olavs University Hospital, Edvard Griegs Gate 8, 7030 Trondheim, Norway.
| |
Collapse
|
29
|
Korzh V. Development of brain ventricular system. Cell Mol Life Sci 2018; 75:375-383. [PMID: 28780589 PMCID: PMC5765195 DOI: 10.1007/s00018-017-2605-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 07/20/2017] [Accepted: 08/02/2017] [Indexed: 12/15/2022]
Abstract
The brain ventricular system (BVS) consists of brain ventricles and channels connecting ventricles filled with cerebrospinal fluid (CSF). The disturbance of CSF flow has been linked to neurodegenerative disease including hydrocephalus, which manifests itself as an abnormal expansion of BVS. This relatively common developmental disorder has been observed in human and domesticated animals and linked to functional deficiency of various cells lineages facing BVS, including the choroid plexus or ependymal cells that generate CSF or the ciliated cells that cilia beating generates CSF flow. To understand the underlying causes of hydrocephalus, several animal models were developed, including rodents (mice, rat, and hamster) and zebrafish. At another side of a spectrum of BVS anomalies there is the "slit-ventricle" syndrome, which develops due to insufficient inflation of BVS. Recent advances in functional genetics of zebrafish brought to light novel genetic elements involved in development of BVS and circulation of CSF. This review aims to reveal common elements of morphologically different BVS of zebrafish as a typical representative of teleosts and other vertebrates and illustrate useful features of the zebrafish model for studies of BVS. Along this line, recent analyses of the two novel zebrafish mutants affecting different subunits of the potassium voltage-gated channels allowed to emphasize an important functional convergence of the evolutionarily conserved elements of protein transport essential for BVS development, which were revealed by the zebrafish and mouse studies.
Collapse
Affiliation(s)
- Vladimir Korzh
- International Institute of Molecular and Cell Biology, Warsaw, Poland.
| |
Collapse
|
30
|
Rueden CT, Schindelin J, Hiner MC, DeZonia BE, Walter AE, Arena ET, Eliceiri KW. ImageJ2: ImageJ for the next generation of scientific image data. BMC Bioinformatics 2017; 18:529. [PMID: 29187165 PMCID: PMC5708080 DOI: 10.1186/s12859-017-1934-z] [Citation(s) in RCA: 3260] [Impact Index Per Article: 407.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 11/14/2017] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND ImageJ is an image analysis program extensively used in the biological sciences and beyond. Due to its ease of use, recordable macro language, and extensible plug-in architecture, ImageJ enjoys contributions from non-programmers, amateur programmers, and professional developers alike. Enabling such a diversity of contributors has resulted in a large community that spans the biological and physical sciences. However, a rapidly growing user base, diverging plugin suites, and technical limitations have revealed a clear need for a concerted software engineering effort to support emerging imaging paradigms, to ensure the software's ability to handle the requirements of modern science. RESULTS We rewrote the entire ImageJ codebase, engineering a redesigned plugin mechanism intended to facilitate extensibility at every level, with the goal of creating a more powerful tool that continues to serve the existing community while addressing a wider range of scientific requirements. This next-generation ImageJ, called "ImageJ2" in places where the distinction matters, provides a host of new functionality. It separates concerns, fully decoupling the data model from the user interface. It emphasizes integration with external applications to maximize interoperability. Its robust new plugin framework allows everything from image formats, to scripting languages, to visualization to be extended by the community. The redesigned data model supports arbitrarily large, N-dimensional datasets, which are increasingly common in modern image acquisition. Despite the scope of these changes, backwards compatibility is maintained such that this new functionality can be seamlessly integrated with the classic ImageJ interface, allowing users and developers to migrate to these new methods at their own pace. CONCLUSIONS Scientific imaging benefits from open-source programs that advance new method development and deployment to a diverse audience. ImageJ has continuously evolved with this idea in mind; however, new and emerging scientific requirements have posed corresponding challenges for ImageJ's development. The described improvements provide a framework engineered for flexibility, intended to support these requirements as well as accommodate future needs. Future efforts will focus on implementing new algorithms in this framework and expanding collaborations with other popular scientific software suites.
Collapse
Affiliation(s)
- Curtis T Rueden
- Laboratory for Optical and Computational Instrumentation, University of Wisconsin at Madison, Madison, Wisconsin, USA
| | - Johannes Schindelin
- Laboratory for Optical and Computational Instrumentation, University of Wisconsin at Madison, Madison, Wisconsin, USA
- Morgridge Institute for Research, Madison, Wisconsin, USA
| | - Mark C Hiner
- Laboratory for Optical and Computational Instrumentation, University of Wisconsin at Madison, Madison, Wisconsin, USA
| | - Barry E DeZonia
- Laboratory for Optical and Computational Instrumentation, University of Wisconsin at Madison, Madison, Wisconsin, USA
| | - Alison E Walter
- Laboratory for Optical and Computational Instrumentation, University of Wisconsin at Madison, Madison, Wisconsin, USA
- Morgridge Institute for Research, Madison, Wisconsin, USA
| | - Ellen T Arena
- Laboratory for Optical and Computational Instrumentation, University of Wisconsin at Madison, Madison, Wisconsin, USA
- Morgridge Institute for Research, Madison, Wisconsin, USA
| | - Kevin W Eliceiri
- Laboratory for Optical and Computational Instrumentation, University of Wisconsin at Madison, Madison, Wisconsin, USA.
- Morgridge Institute for Research, Madison, Wisconsin, USA.
| |
Collapse
|
31
|
Rueden CT, Schindelin J, Hiner MC, DeZonia BE, Walter AE, Arena ET, Eliceiri KW. ImageJ2: ImageJ for the next generation of scientific image data. BMC Bioinformatics 2017. [PMID: 29187165 DOI: 10.1186/s12859-017-1934-z.] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND ImageJ is an image analysis program extensively used in the biological sciences and beyond. Due to its ease of use, recordable macro language, and extensible plug-in architecture, ImageJ enjoys contributions from non-programmers, amateur programmers, and professional developers alike. Enabling such a diversity of contributors has resulted in a large community that spans the biological and physical sciences. However, a rapidly growing user base, diverging plugin suites, and technical limitations have revealed a clear need for a concerted software engineering effort to support emerging imaging paradigms, to ensure the software's ability to handle the requirements of modern science. RESULTS We rewrote the entire ImageJ codebase, engineering a redesigned plugin mechanism intended to facilitate extensibility at every level, with the goal of creating a more powerful tool that continues to serve the existing community while addressing a wider range of scientific requirements. This next-generation ImageJ, called "ImageJ2" in places where the distinction matters, provides a host of new functionality. It separates concerns, fully decoupling the data model from the user interface. It emphasizes integration with external applications to maximize interoperability. Its robust new plugin framework allows everything from image formats, to scripting languages, to visualization to be extended by the community. The redesigned data model supports arbitrarily large, N-dimensional datasets, which are increasingly common in modern image acquisition. Despite the scope of these changes, backwards compatibility is maintained such that this new functionality can be seamlessly integrated with the classic ImageJ interface, allowing users and developers to migrate to these new methods at their own pace. CONCLUSIONS Scientific imaging benefits from open-source programs that advance new method development and deployment to a diverse audience. ImageJ has continuously evolved with this idea in mind; however, new and emerging scientific requirements have posed corresponding challenges for ImageJ's development. The described improvements provide a framework engineered for flexibility, intended to support these requirements as well as accommodate future needs. Future efforts will focus on implementing new algorithms in this framework and expanding collaborations with other popular scientific software suites.
Collapse
Affiliation(s)
- Curtis T Rueden
- Laboratory for Optical and Computational Instrumentation, University of Wisconsin at Madison, Madison, Wisconsin, USA
| | - Johannes Schindelin
- Laboratory for Optical and Computational Instrumentation, University of Wisconsin at Madison, Madison, Wisconsin, USA.,Morgridge Institute for Research, Madison, Wisconsin, USA
| | - Mark C Hiner
- Laboratory for Optical and Computational Instrumentation, University of Wisconsin at Madison, Madison, Wisconsin, USA
| | - Barry E DeZonia
- Laboratory for Optical and Computational Instrumentation, University of Wisconsin at Madison, Madison, Wisconsin, USA
| | - Alison E Walter
- Laboratory for Optical and Computational Instrumentation, University of Wisconsin at Madison, Madison, Wisconsin, USA.,Morgridge Institute for Research, Madison, Wisconsin, USA
| | - Ellen T Arena
- Laboratory for Optical and Computational Instrumentation, University of Wisconsin at Madison, Madison, Wisconsin, USA.,Morgridge Institute for Research, Madison, Wisconsin, USA
| | - Kevin W Eliceiri
- Laboratory for Optical and Computational Instrumentation, University of Wisconsin at Madison, Madison, Wisconsin, USA. .,Morgridge Institute for Research, Madison, Wisconsin, USA.
| |
Collapse
|
32
|
McAllister JP, Guerra MM, Ruiz LC, Jimenez AJ, Dominguez-Pinos D, Sival D, den Dunnen W, Morales DM, Schmidt RE, Rodriguez EM, Limbrick DD. Ventricular Zone Disruption in Human Neonates With Intraventricular Hemorrhage. J Neuropathol Exp Neurol 2017; 76:358-375. [PMID: 28521038 DOI: 10.1093/jnen/nlx017] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
To determine if ventricular zone (VZ) and subventricular zone (SVZ) alterations are associated with intraventricular hemorrhage (IVH) and posthemorrhagic hydrocephalus, we compared postmortem frontal and subcortical brain samples from 12 infants with IVH and 3 nonneurological disease controls without hemorrhages or ventriculomegaly. Birth and expiration estimated gestational ages were 23.0-39.1 and 23.7-44.1 weeks, respectively; survival ranges were 0-42 days (median, 2.0 days). Routine histology and immunohistochemistry for neural stem cells (NSCs), neural progenitors (NPs), multiciliated ependymal cells (ECs), astrocytes (AS), and cell adhesion molecules were performed. Controls exhibited monociliated NSCs and multiciliated ECs lining the ventricles, abundant NPs in the SVZ, and medial vs. lateral wall differences with a complex mosaic organization in the latter. In IVH cases, normal VZ/SVZ areas were mixed with foci of NSC and EC loss, eruption of cells into the ventricle, cytoplasmic transposition of N-cadherin, subependymal rosettes, and periventricular heterotopia. Mature AS populated areas believed to be sites of VZ disruption. The cytopathology and extension of the VZ disruption correlated with developmental age but not with brain hemorrhage grade or location. These results corroborate similar findings in congenital hydrocephalus in animals and humans and indicate that VZ disruption occurs consistently in premature neonates with IVH.
Collapse
Affiliation(s)
- James P McAllister
- From the Department of Neurosurgery, Washington University School of Medicine, St Louis, Missouri (JPM, LCR, DMM, DDL); Instituto de Antomía, Histologia y Patologia, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile (MMG, EMR); Instituto de Biología Celular, Genética y Fisiología Facultad de Ciencias, Universidad de Malaga, Malaga, Spain and Instituto de Investigación Biomédica (IBIMA), Malaga, Spain (AJJ, DDP); Departments of Pediatrics, Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands (DS, WD); Department of Pathology and Immunology, Washington University School of Medicine, St Louis, Missouri (RES); and Department of Pediatrics, Washington University School of Medicine, St Louis, Missouri (DDL)
| | - Maria Montserrat Guerra
- From the Department of Neurosurgery, Washington University School of Medicine, St Louis, Missouri (JPM, LCR, DMM, DDL); Instituto de Antomía, Histologia y Patologia, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile (MMG, EMR); Instituto de Biología Celular, Genética y Fisiología Facultad de Ciencias, Universidad de Malaga, Malaga, Spain and Instituto de Investigación Biomédica (IBIMA), Malaga, Spain (AJJ, DDP); Departments of Pediatrics, Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands (DS, WD); Department of Pathology and Immunology, Washington University School of Medicine, St Louis, Missouri (RES); and Department of Pediatrics, Washington University School of Medicine, St Louis, Missouri (DDL)
| | - Leandro Castaneyra Ruiz
- From the Department of Neurosurgery, Washington University School of Medicine, St Louis, Missouri (JPM, LCR, DMM, DDL); Instituto de Antomía, Histologia y Patologia, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile (MMG, EMR); Instituto de Biología Celular, Genética y Fisiología Facultad de Ciencias, Universidad de Malaga, Malaga, Spain and Instituto de Investigación Biomédica (IBIMA), Malaga, Spain (AJJ, DDP); Departments of Pediatrics, Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands (DS, WD); Department of Pathology and Immunology, Washington University School of Medicine, St Louis, Missouri (RES); and Department of Pediatrics, Washington University School of Medicine, St Louis, Missouri (DDL)
| | - Antonio J Jimenez
- From the Department of Neurosurgery, Washington University School of Medicine, St Louis, Missouri (JPM, LCR, DMM, DDL); Instituto de Antomía, Histologia y Patologia, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile (MMG, EMR); Instituto de Biología Celular, Genética y Fisiología Facultad de Ciencias, Universidad de Malaga, Malaga, Spain and Instituto de Investigación Biomédica (IBIMA), Malaga, Spain (AJJ, DDP); Departments of Pediatrics, Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands (DS, WD); Department of Pathology and Immunology, Washington University School of Medicine, St Louis, Missouri (RES); and Department of Pediatrics, Washington University School of Medicine, St Louis, Missouri (DDL)
| | - Dolores Dominguez-Pinos
- From the Department of Neurosurgery, Washington University School of Medicine, St Louis, Missouri (JPM, LCR, DMM, DDL); Instituto de Antomía, Histologia y Patologia, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile (MMG, EMR); Instituto de Biología Celular, Genética y Fisiología Facultad de Ciencias, Universidad de Malaga, Malaga, Spain and Instituto de Investigación Biomédica (IBIMA), Malaga, Spain (AJJ, DDP); Departments of Pediatrics, Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands (DS, WD); Department of Pathology and Immunology, Washington University School of Medicine, St Louis, Missouri (RES); and Department of Pediatrics, Washington University School of Medicine, St Louis, Missouri (DDL)
| | - Deborah Sival
- From the Department of Neurosurgery, Washington University School of Medicine, St Louis, Missouri (JPM, LCR, DMM, DDL); Instituto de Antomía, Histologia y Patologia, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile (MMG, EMR); Instituto de Biología Celular, Genética y Fisiología Facultad de Ciencias, Universidad de Malaga, Malaga, Spain and Instituto de Investigación Biomédica (IBIMA), Malaga, Spain (AJJ, DDP); Departments of Pediatrics, Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands (DS, WD); Department of Pathology and Immunology, Washington University School of Medicine, St Louis, Missouri (RES); and Department of Pediatrics, Washington University School of Medicine, St Louis, Missouri (DDL)
| | - Wilfred den Dunnen
- From the Department of Neurosurgery, Washington University School of Medicine, St Louis, Missouri (JPM, LCR, DMM, DDL); Instituto de Antomía, Histologia y Patologia, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile (MMG, EMR); Instituto de Biología Celular, Genética y Fisiología Facultad de Ciencias, Universidad de Malaga, Malaga, Spain and Instituto de Investigación Biomédica (IBIMA), Malaga, Spain (AJJ, DDP); Departments of Pediatrics, Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands (DS, WD); Department of Pathology and Immunology, Washington University School of Medicine, St Louis, Missouri (RES); and Department of Pediatrics, Washington University School of Medicine, St Louis, Missouri (DDL)
| | - Diego M Morales
- From the Department of Neurosurgery, Washington University School of Medicine, St Louis, Missouri (JPM, LCR, DMM, DDL); Instituto de Antomía, Histologia y Patologia, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile (MMG, EMR); Instituto de Biología Celular, Genética y Fisiología Facultad de Ciencias, Universidad de Malaga, Malaga, Spain and Instituto de Investigación Biomédica (IBIMA), Malaga, Spain (AJJ, DDP); Departments of Pediatrics, Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands (DS, WD); Department of Pathology and Immunology, Washington University School of Medicine, St Louis, Missouri (RES); and Department of Pediatrics, Washington University School of Medicine, St Louis, Missouri (DDL)
| | - Robert E Schmidt
- From the Department of Neurosurgery, Washington University School of Medicine, St Louis, Missouri (JPM, LCR, DMM, DDL); Instituto de Antomía, Histologia y Patologia, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile (MMG, EMR); Instituto de Biología Celular, Genética y Fisiología Facultad de Ciencias, Universidad de Malaga, Malaga, Spain and Instituto de Investigación Biomédica (IBIMA), Malaga, Spain (AJJ, DDP); Departments of Pediatrics, Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands (DS, WD); Department of Pathology and Immunology, Washington University School of Medicine, St Louis, Missouri (RES); and Department of Pediatrics, Washington University School of Medicine, St Louis, Missouri (DDL)
| | - Esteban M Rodriguez
- From the Department of Neurosurgery, Washington University School of Medicine, St Louis, Missouri (JPM, LCR, DMM, DDL); Instituto de Antomía, Histologia y Patologia, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile (MMG, EMR); Instituto de Biología Celular, Genética y Fisiología Facultad de Ciencias, Universidad de Malaga, Malaga, Spain and Instituto de Investigación Biomédica (IBIMA), Malaga, Spain (AJJ, DDP); Departments of Pediatrics, Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands (DS, WD); Department of Pathology and Immunology, Washington University School of Medicine, St Louis, Missouri (RES); and Department of Pediatrics, Washington University School of Medicine, St Louis, Missouri (DDL)
| | - David D Limbrick
- From the Department of Neurosurgery, Washington University School of Medicine, St Louis, Missouri (JPM, LCR, DMM, DDL); Instituto de Antomía, Histologia y Patologia, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile (MMG, EMR); Instituto de Biología Celular, Genética y Fisiología Facultad de Ciencias, Universidad de Malaga, Malaga, Spain and Instituto de Investigación Biomédica (IBIMA), Malaga, Spain (AJJ, DDP); Departments of Pediatrics, Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands (DS, WD); Department of Pathology and Immunology, Washington University School of Medicine, St Louis, Missouri (RES); and Department of Pediatrics, Washington University School of Medicine, St Louis, Missouri (DDL)
| |
Collapse
|
33
|
van Lessen M, Shibata-Germanos S, van Impel A, Hawkins TA, Rihel J, Schulte-Merker S. Intracellular uptake of macromolecules by brain lymphatic endothelial cells during zebrafish embryonic development. eLife 2017; 6. [PMID: 28498105 PMCID: PMC5457137 DOI: 10.7554/elife.25932] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 05/11/2017] [Indexed: 01/01/2023] Open
Abstract
The lymphatic system controls fluid homeostasis and the clearance of macromolecules from interstitial compartments. In mammals brain lymphatics were only recently discovered, with significant implications for physiology and disease. We examined zebrafish for the presence of brain lymphatics and found loosely connected endothelial cells with lymphatic molecular signature covering parts of the brain without forming endothelial tubular structures. These brain lymphatic endothelial cells (BLECs) derive from venous endothelium, are distinct from macrophages, and are sensitive to loss of Vegfc. BLECs endocytose macromolecules in a selective manner, which can be blocked by injection of mannose receptor ligands. This first report on brain lymphatic endothelial cells in a vertebrate embryo identifies cells with unique features, including the uptake of macromolecules at a single cell level. Future studies will address whether this represents an uptake mechanism that is conserved in mammals and how these cells affect functions of the embryonic and adult brain. DOI:http://dx.doi.org/10.7554/eLife.25932.001
Collapse
Affiliation(s)
- Max van Lessen
- Institute of Cardiovascular Organogenesis and Regeneration, WWU Münster, Münster, Germany.,Faculty of Medicine, WWU Münster, Münster, Germany.,Cells-in-Motion Cluster of Excellence, WWU Münster, Münster, Germany
| | | | - Andreas van Impel
- Institute of Cardiovascular Organogenesis and Regeneration, WWU Münster, Münster, Germany.,Faculty of Medicine, WWU Münster, Münster, Germany.,Cells-in-Motion Cluster of Excellence, WWU Münster, Münster, Germany
| | - Thomas A Hawkins
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Jason Rihel
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Stefan Schulte-Merker
- Institute of Cardiovascular Organogenesis and Regeneration, WWU Münster, Münster, Germany.,Faculty of Medicine, WWU Münster, Münster, Germany.,Cells-in-Motion Cluster of Excellence, WWU Münster, Münster, Germany
| |
Collapse
|