1
|
Chen Y, Wei Y, Liu J, Zhu T, Zhou C, Zhang D. Spatial transcriptomics combined with single-nucleus RNA sequencing reveals glial cell heterogeneity in the human spinal cord. Neural Regen Res 2025; 20:3302-3316. [PMID: 38934400 PMCID: PMC11881709 DOI: 10.4103/nrr.nrr-d-23-01876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 03/04/2024] [Accepted: 04/30/2024] [Indexed: 06/28/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202511000-00032/figure1/v/2024-12-20T164640Z/r/image-tiff Glial cells play crucial roles in regulating physiological and pathological functions, including sensation, the response to infection and acute injury, and chronic neurodegenerative disorders. Glial cells include astrocytes, microglia, and oligodendrocytes in the central nervous system, and satellite glial cells and Schwann cells in the peripheral nervous system. Despite the greater understanding of glial cell types and functional heterogeneity achieved through single-cell and single-nucleus RNA sequencing in animal models, few studies have investigated the transcriptomic profiles of glial cells in the human spinal cord. Here, we used high-throughput single-nucleus RNA sequencing and spatial transcriptomics to map the cellular and molecular heterogeneity of astrocytes, microglia, and oligodendrocytes in the human spinal cord. To explore the conservation and divergence across species, we compared these findings with those from mice. In the human spinal cord, astrocytes, microglia, and oligodendrocytes were each divided into six distinct transcriptomic subclusters. In the mouse spinal cord, astrocytes, microglia, and oligodendrocytes were divided into five, four, and five distinct transcriptomic subclusters, respectively. The comparative results revealed substantial heterogeneity in all glial cell types between humans and mice. Additionally, we detected sex differences in gene expression in human spinal cord glial cells. Specifically, in all astrocyte subtypes, the levels of NEAT1 and CHI3L1 were higher in males than in females, whereas the levels of CST3 were lower in males than in females. In all microglial subtypes, all differentially expressed genes were located on the sex chromosomes. In addition to sex-specific gene differences, the levels of MT-ND4 , MT2A , MT-ATP6 , MT-CO3 , MT-ND2 , MT-ND3 , and MT-CO2 in all spinal cord oligodendrocyte subtypes were higher in females than in males. Collectively, the present dataset extensively characterizes glial cell heterogeneity and offers a valuable resource for exploring the cellular basis of spinal cord-related illnesses, including chronic pain, amyotrophic lateral sclerosis, and multiple sclerosis.
Collapse
Affiliation(s)
- Yali Chen
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Yiyong Wei
- Department of Anesthesiology, Longgang District Maternity & Child Healthcare Hospital of Shenzhen City (Longgang Maternity and Child Institute of Shantou University Medical College), Shenzhen, Guangdong Province, China
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, China
| | - Jin Liu
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Tao Zhu
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Cheng Zhou
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Donghang Zhang
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| |
Collapse
|
2
|
Arrazola R, Espinosa-Jeffrey A, Serafín N, Harmony T, Quirarte GL. Excitotoxic lesion in the corpus callosum of neonatal rats: A model for encephalopathy of prematurity. Neuroscience 2025; 573:198-213. [PMID: 40096962 DOI: 10.1016/j.neuroscience.2025.03.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 02/19/2025] [Accepted: 03/12/2025] [Indexed: 03/19/2025]
Abstract
Encephalopathy of prematurity (EP) can develop in preterm infants exposed to risk factors like extreme prematurity, low birth weight, hypoxia, infections, and inflammation. These factors can induce excitotoxicity in the brain's gray and white matter, leading to the death of neurons and oligodendrocyte progenitors. Understanding the brain mechanisms of EP requires animal models. In this study, we generated an EP model by injecting N-methyl-D-aspartic acid (NMDA) into the corpus callosum (CC) of neonatal male rats on postnatal day (PND) 5. Rats were divided into five groups: Intact, Vehicle, and three doses of NMDA (3, 4, or 5 μg). On PND 20, we measured the volumes of the CC, motor cortex (MC), and lateral ventricles. The 5 µg NMDA dose caused the largest lesion. We later assessed these structures on PNDs 6, 10, 20, and 30 to monitor lesion progression. We also analyzed myelin basic protein (MBP) expression and counted NeuN-positive cells using immunofluorescent markers. NMDA groups showed reduced MBP expression and fewer NeuN-positive cells in the MC. Additionally, NMDA-treated rats exhibited increased motor activity in the open field and reduced fall latencies in the rotarod task compared to controls. In conclusion, our perinatal excitotoxic lesion model in rats demonstrates structural abnormalities, including decreased MBP and loss of NeuN-positive cells, alongside motor and habituation impairments, resembling those seen in human EP.
Collapse
Affiliation(s)
- Rafael Arrazola
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro, Qro. Mexico
| | - Araceli Espinosa-Jeffrey
- Intellectual and Developmental Disabilities Research Center, Jane and Terry Semel Institute for Neuroscience and Human Behavior, Departments of Neurobiology, Psychiatry & Biobehavioral Sciences, University of California, Los Angeles, CA, USA
| | - Norma Serafín
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro, Qro. Mexico
| | - Thalía Harmony
- Unidad de Investigación en Neurodesarrollo, Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro, Qro, Mexico.
| | - Gina L Quirarte
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro, Qro. Mexico.
| |
Collapse
|
3
|
Wang H, Li Y, Ye F, Deng Z, Huang K, Li G, Chen Y, Liu Y, Zhou L. Clinical value of inflammatory indices in predicting poor prognosis and post-hemorrhagic hydrocephalus in patients with intraventricular hemorrhage. BMC Neurol 2025; 25:115. [PMID: 40108520 PMCID: PMC11921687 DOI: 10.1186/s12883-025-04137-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 03/14/2025] [Indexed: 03/22/2025] Open
Abstract
BACKGROUND Hemorrhagic stroke has a high mortality and disability rate. Among them, intraventricular hemorrhage (IVH) is an important factor leading to adverse outcomes. IVH can induce acute obstructive hydrocephalus and chronic communicating hydrocephalus. However, there are currently no effective predictive factors for the early prediction of post-hemorrhage hydrocephalus (PHH). OBJECTIVES To assess the role of inflammatory indicators in predicting PHH and poor prognostic outcomes in patients with ventricular hemorrhage. DESIGN Single center retrospective case-control study. METHODS We retrospectively examined IVH patients treated at our institution from April 2017 to March 2022. Patient characteristics, laboratory data, imaging findings, and 3-month follow-up results were recorded and analyzed. RESULTS Among the 145 patients included in the analysis, 102 eventually developed adverse outcomes. There were significant differences between patients with good and poor prognosis in terms of age at admission, GCS score, prevalence of hypertension, lymphocyte count, albumin level, red blood cell distribution width, neutrophil count, NLR, PLR, NAR, PIV, and SII; in addition, among the 110 surviving patients, 36 eventually developed posthemorrhagic hydrocephalus within 3 months. Multivariate logistic regression showed that age and NAR are independent predictors of poor prognosis in IVH patients, while albumin is an independent predictor of posthemorrhagic hydrocephalus within 3 months. CONCLUSION The NLR and NAR are independent risk factors for poor prognosis in IVH patients. Additionally, albumin is an independent predictor of chronic hydrocephalus development within 3 months in IVH patients. The NLR, NAR and albumin level could provide prognostic information about IVH patients.
Collapse
Affiliation(s)
- Haoxiang Wang
- Department of Neurosurgery, West China Medical School, West China Hospital, Sichuan University, Chengdu, China
| | - Yuanyou Li
- Department of Pediatric Neurosurgery, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Feng Ye
- Department of Neurosurgery, West China Medical School, West China Hospital, Sichuan University, Chengdu, China
| | - Ziang Deng
- Department of Neurosurgery, West China Medical School, West China Hospital, Sichuan University, Chengdu, China
| | - Keru Huang
- Department of Neurosurgery, West China Medical School, West China Hospital, Sichuan University, Chengdu, China
| | - Gaowei Li
- Department of Neurosurgery, West China Medical School, West China Hospital, Sichuan University, Chengdu, China
| | - Yaxing Chen
- Department of Neurosurgery, West China Medical School, West China Hospital, Sichuan University, Chengdu, China
| | - Yi Liu
- Department of Neurosurgery, West China Medical School, West China Hospital, Sichuan University, Chengdu, China
| | - Liangxue Zhou
- Department of Neurosurgery, West China Medical School, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
4
|
McMahon JT, Malcolm JG, Douglas JM, Greven A, Sadan O, Samuels OB, Cawley CM, Barrow DL, Grossberg JA, Howard BM. Shunt-Dependent Hydrocephalus After Aneurysmal Subarachnoid Hemorrhage: Investigation of Prognostic Variables and Creation of a Stronger Predictive Model. World Neurosurg 2025; 195:123659. [PMID: 39778627 DOI: 10.1016/j.wneu.2025.123659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 01/02/2025] [Accepted: 01/03/2025] [Indexed: 01/11/2025]
Abstract
OBJECTIVE Aneurysmal subarachnoid hemorrhage (SAH) is frequently complicated by permanent shunt-dependent hydrocephalus, but it is difficult to predict which patients are at highest risk. This study seeks to identify novel variables associated with shunt dependency after aneurysmal SAH and to create a predictive algorithm that improves upon existing models. METHODS Retrospective case-control design was used. Patients who presented with aneurysmal SAH and external ventricular drain (EVD) placement were included. Those who successfully weaned off their EVD were compared with those who required shunt placement. Demographic and treatment data were analyzed using univariate and multivariable logistic regression. Receiver operating characteristic was used to compare the proposed model's performance against existing ones (Barrow Neurological Institute, chronic hydrocephalus ensuing from SAH score, and shunt dependency in SAH scores). RESULTS One hundred patients were included: 50 no shunt and 50 shunt. Advanced age, elevated modified Graeb score, intraventricular hemorrhage, increased clot thickness, acute hydrocephalus, and cerebrospinal fluid protein >110 mg/dL prior to wean attempt were all found to be significantly associated with progression to shunt-dependency (P = 0.0351, 0.0022, 0.0407, 0.0274, 0.0014, and 0.0064, respectively). Multivariate regression demonstrated an area under the curve of 0.7852 (P < 0.0001), outperforming those of the other models. CONCLUSIONS Our study suggests that elevated modified Graeb score on initial computed tomography and high cerebrospinal fluid protein levels prior to EVD wean are important prognostic indicators for the development of shunt dependency after aneurysmal SAH. Integrating these findings into clinical practice may aid in earlier and more targeted decision-making.
Collapse
Affiliation(s)
- J Tanner McMahon
- Department of Neurosurgery, Brigham and Women's Hospital, Boston, Massachusetts, USA.
| | - James G Malcolm
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, Georgia, USA
| | - J Miller Douglas
- Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Alex Greven
- Department of Neurosurgery, Barrow Neurological Institute, Phoenix, Arizona, USA
| | - Ofer Sadan
- Department of Neurology and Neurosurgery, Division of Neurocritical Care, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Owen B Samuels
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, Georgia, USA; Department of Neurology and Neurosurgery, Division of Neurocritical Care, Emory University School of Medicine, Atlanta, Georgia, USA
| | - C Michael Cawley
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, Georgia, USA; Radiology and Imaging Sciences, Division of Interventional Neuroradiology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Daniel L Barrow
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Jonathan A Grossberg
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Brian M Howard
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, Georgia, USA; Radiology and Imaging Sciences, Division of Interventional Neuroradiology, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
5
|
Alzahrani AA, Zawawi AM, Alrudaini SH, Hassan NA, Alsulami AA, Alkhoshi AM, Alyousef M. Incidence of Communicating Hydrocephalus Following Intraventricular Hemorrhage Among Adult Patients Treated at a Hospital in Jeddah, Saudi Arabia: A Retrospective Study. Cureus 2025; 17:e77699. [PMID: 39834661 PMCID: PMC11744732 DOI: 10.7759/cureus.77699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/20/2025] [Indexed: 01/22/2025] Open
Abstract
Introduction Intraventricular hemorrhage is a severe condition caused by bleeding within the brain ventricles. It is often due to trauma, tumors, vascular malformation, aneurysm, oxygen deprivation, or idiopathic. A common complication associated with intraventricular hemorrhage is hydrocephalus, which is the accumulation of cerebrospinal fluid in the ventricles. Hydrocephalus can be classified as communicating or non-communicating. This study aimed to evaluate the incidence of communicating hydrocephalus after intraventricular hemorrhage. Methods This retrospective study was conducted at King Abdulaziz University Hospital in Jeddah, Saudi Arabia, and included 52 adult patients treated between 2012-2022 who met the eligibility criteria. We examined the relationships among age, sex, length of hospitalization, presenting symptoms, co-morbidities, Evans index, Graeb score, Glasgow Coma Score, survival, and ventriculoperitoneal shunt complications through univariate and bivariate analyses. The Shapiro-Wilk test was used to evaluate data distribution. Differences between groups were analyzed using the chi-square test for categorical variables and the Mann-Whitney U test for non-parametric variables. Results The median age of the participants was 54 years, with a male predominance (57.7%). Motor dysfunction was the most frequently reported symptom at presentation (48.1%). Among the 30 patients who developed hydrocephalus after intraventricular hemorrhage, 70% had communicating hydrocephalus. There was a substantial correlation between mortality and hydrocephalus type (P =0.020). Conclusion Intraventricular bleeding is associated with an increased risk of communicating hydrocephalus, with an incidence rate of 3% per person-year.
Collapse
Affiliation(s)
| | | | - Suhail H Alrudaini
- College of Medicine, King Abdulaziz University Faculty of Medicine, Jeddah, SAU
| | - Nader A Hassan
- College of Medicine, King Abdulaziz University Faculty of Medicine, Jeddah, SAU
| | - Adel A Alsulami
- College of Medicine, King Abdulaziz University Faculty of Medicine, Jeddah, SAU
| | | | - Mohammed Alyousef
- Department of Neurosurgery, King Abdulaziz University Hospital, Jeddah, SAU
| |
Collapse
|
6
|
Yu W, Alexander MJ. Spontaneous intracerebral hemorrhage: Recent advances and critical thinking on future clinical trial design. Chin Med J (Engl) 2024; 137:2899-2906. [PMID: 39654449 PMCID: PMC11706597 DOI: 10.1097/cm9.0000000000003408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Indexed: 01/11/2025] Open
Affiliation(s)
- Wengui Yu
- Department of Neurology, University of California Irvine, Irvine, CA, USA
| | | |
Collapse
|
7
|
Wu W, Li Q. Mechanisms of hydrocephalus after intraventricular haemorrhage: a review. Childs Nerv Syst 2024; 41:49. [PMID: 39674974 DOI: 10.1007/s00381-024-06711-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 12/05/2024] [Indexed: 12/17/2024]
Abstract
Intraventricular haemorrhage (IVH) is bleeding within the ventricular system, which in adults is usually mainly secondary to cerebral haemorrhage and subarachnoid haemorrhage. Hydrocephalus is one of the most common complications of intraventricular haemorrhage, which is characterised by an increase in intracranial pressure due to an increased accumulation of cerebrospinal fluid within the ventricular system, and is closely related to the patient's prognosis. Surgical methods such as shunt surgery have been used to treat secondary hydrocephalus in recent years and have been effective in improving the survival and prognosis of patients with hydrocephalus. However, complications such as shunt blockage and intracranial infection are often faced after surgery. Moreover, little is known about the mechanism of hydrocephalus secondary to intraventricular haemorrhage. This review discusses the mechanisms regarding the occurrence of secondary hydrocephalus after intraventricular haemorrhage in adults in terms of blood clot obstruction, altered cerebrospinal fluid dynamics, inflammation, and blood composition.
Collapse
Affiliation(s)
- Wenchao Wu
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin Medical University, No. 157, Health Care RoadHeilongjiang Province, Harbin City, Harbin, China
| | - Qingsong Li
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin Medical University, No. 157, Health Care RoadHeilongjiang Province, Harbin City, Harbin, China.
| |
Collapse
|
8
|
Zhu H, Hu E, Guo X, Yuan Z, Jiang H, Zhang W, Tang T, Wang Y, Li T. Promoting remyelination in central nervous system diseases: Potentials and prospects of natural products and herbal medicine. Pharmacol Res 2024; 210:107533. [PMID: 39617281 DOI: 10.1016/j.phrs.2024.107533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/22/2024] [Accepted: 11/28/2024] [Indexed: 12/20/2024]
Abstract
Myelin damage is frequently associated with central nervous system (CNS) diseases and is a critical factor influencing neurological function and disease prognosis. Nevertheless, the majority of current treatments for the CNS concentrate on gray matter injury and repair strategies, while clinical interventions specifically targeting myelin repair remain unavailable. In recent years, natural products and herbal medicine have achieved considerable progress in the domain of myelin repair, given their remarkable curative effect and low toxic side effects, demonstrating significant therapeutic potential. In this review, we present a rather comprehensive account of the mechanisms underlying myelin formation, injury, and repair, with a particular emphasis on the interactions between oligodendrocytes and other glial cells. Furthermore, we summarize the natural products and herbal medicine currently employed in remyelination along with their mechanisms of action, highlighting the potential and challenges of certain natural compounds to enhance myelin repair. This review aims to facilitate the expedited development of innovative therapeutics derived from natural products and herbal medicine and furnish novel insights into myelin repair in the CNS.
Collapse
Affiliation(s)
- Haonan Zhu
- Institute of Integrative Chinese Medicine, Department of Integrated Chinese Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; Hunan Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
| | - En Hu
- Institute of Integrative Chinese Medicine, Department of Integrated Chinese Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; Hunan Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; Department of Neurology of Integrated Chinese Medicine, Xiangya Jiangxi Hospital, Central South University, Nanchang 330006, PR China
| | - Xin Guo
- Institute of Integrative Chinese Medicine, Department of Integrated Chinese Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; Hunan Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
| | - Zhiqiang Yuan
- Institute of Integrative Chinese Medicine, Department of Integrated Chinese Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; Hunan Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; Department of Neurology of Integrated Chinese Medicine, Xiangya Jiangxi Hospital, Central South University, Nanchang 330006, PR China
| | - Haoying Jiang
- Institute of Integrative Chinese Medicine, Department of Integrated Chinese Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; Hunan Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
| | - Wei Zhang
- The College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, PR China
| | - Tao Tang
- Institute of Integrative Chinese Medicine, Department of Integrated Chinese Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; Hunan Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; Department of Neurology of Integrated Chinese Medicine, Xiangya Jiangxi Hospital, Central South University, Nanchang 330006, PR China
| | - Yang Wang
- Institute of Integrative Chinese Medicine, Department of Integrated Chinese Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; Hunan Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; Department of Neurology of Integrated Chinese Medicine, Xiangya Jiangxi Hospital, Central South University, Nanchang 330006, PR China
| | - Teng Li
- Institute of Integrative Chinese Medicine, Department of Integrated Chinese Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; Hunan Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; Department of Neurology of Integrated Chinese Medicine, Xiangya Jiangxi Hospital, Central South University, Nanchang 330006, PR China.
| |
Collapse
|
9
|
Wang W, Liu M, Wang Z, Ma L, Zhao Y, Ye W, Li X. A Bibliometric Analysis of Inflammation in Hydrocephalus. World Neurosurg 2024; 192:e435-e446. [PMID: 39357771 DOI: 10.1016/j.wneu.2024.09.120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/04/2024]
Abstract
BACKGROUND Hydrocephalus ranks among the most prevalent neurosurgical conditions worldwide, with a growing body of literature suggesting a potential association with inflammation. Employing bibliometric methods, this research visually analyzes the scholarly output on inflammation in hydrocephalus over the past 2 decades and provides a scientific framework for delineating research pathways and addressing key issues in this field. METHODS Publications sourced from the Web of Science Core Collection as of July 18, 2024 encompassed articles and reviews in English spanning from January 1, 2000, to December 31, 2024. Statistical analyses of countries, institutions, authors, references, and keywords were conducted utilizing VOSviewer1.6.20 and CiteSpace6.3. R1. RESULTS A total of 424 reviews and articles were included in the analysis, showcasing a rising trajectory in publications concerning inflammation and hydrocephalus over time. The United States emerged as the leading contributor in terms of publication output, with Harvard Medical School topping the list of institutions. Notably, World Neurosurgery and Journal of Neurosurgery emerged as the most prolific journals and the most frequently cited, respectively. Authors Keep, Richard F., and Xi, Guo Hua, demonstrated the highest productivity, while Karimy, J.K., emerged as the author with the highest co-citation count. Following thorough analysis, the predominant keywords identified include mechanisms, management, inflammation, posthemorrhagic hydrocephalus, cerebrospinal fluid, surgery, microglia, risk factors, and choroid plexus, reflecting current research hotspots likely to persist. CONCLUSIONS This study will help researchers determine the mainstream research directions and latest hotspots of inflammation in hydrocephalus and provide a reference for revealing the molecular mechanism of hydrocephalus.
Collapse
Affiliation(s)
- Wencai Wang
- The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Menghao Liu
- The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zun Wang
- The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Luyao Ma
- The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yongqiang Zhao
- The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wei Ye
- The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xianfeng Li
- The Second Affiliated Hospital of Harbin Medical University, Harbin, China.
| |
Collapse
|
10
|
Yuan Y, Li ZH, An ZJ, Gao F, Xu W, Sun Y. Advancing the management of neonatal hemorrhages: clinical evaluation of external ventricular drainage efficacy. Childs Nerv Syst 2024; 41:18. [PMID: 39611996 DOI: 10.1007/s00381-024-06671-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 10/31/2024] [Indexed: 11/30/2024]
Abstract
OBJECTIVE To evaluate the clinical efficacy of external ventricular drainage (EVD) in the treatment of neonatal intraventricular hemorrhage (IVH). METHODS A retrospective analysis was conducted on the clinical data of neonates with IVH admitted to the Department of Neurosurgery at Qingdao Women and Children's Hospital from January 2018 to February 2024. All patients received a definitive diagnosis followed by EVD treatment. Regular follow-ups were conducted, and patients who developed posthemorrhagic hydrocephalus (PHH) underwent ventriculoperitoneal shunt (VPS) procedures. RESULTS Among the 44 neonates with IVH, 28 were male and 16 were female. The median gestational age at birth was 36 weeks (range: 24-40 weeks), and the median birth weight was 2.9 kg (range: 0.78-4.33 kg). There were 3 cases of grade II IVH, 34 cases of grade III IVH, and 7 cases of grade IV IVH. The average duration of EVD was 12.2 ± 5.6 days. All patients were followed up for at least 1 year. Twelve patients (27%) developed hydrocephalus, of which 8 cases (18%) with progressive ventricular enlargement underwent VPS, and 4 cases (9%) had arrested hydrocephalus and remained stable without VPS. During the follow-up period, 39 patients exhibited normal development, 3 patients (6.8%) developed epilepsy, and 2 patients (4.5%) developed cerebral palsy. CONCLUSION EVD is an effective treatment for intraventricular hemorrhage. It improves survival rates and outcomes for patients while effectively reducing the incidence of hydrocephalus.
Collapse
Affiliation(s)
- Yi Yuan
- School of Clinical Medicine, Shandong Second Medical University, Weifang, 261000, China
| | - Zhi Hu Li
- Woman and Children's Hospital, Qingdao University, Qingdao, 266034, China
| | - Zong Jian An
- Woman and Children's Hospital, Qingdao University, Qingdao, 266034, China
| | - Fei Gao
- Woman and Children's Hospital, Qingdao University, Qingdao, 266034, China
| | - WeiLi Xu
- Woman and Children's Hospital, Qingdao University, Qingdao, 266034, China
| | - Yong Sun
- Woman and Children's Hospital, Qingdao University, Qingdao, 266034, China.
| |
Collapse
|
11
|
Eide PK, Undseth RM, Gjertsen Ø, Valnes LM, Ringstad G, Lindstrøm EK. Significant individual variation in cardiac-cycle-linked cerebrospinal fluid production following subarachnoid hemorrhage. Fluids Barriers CNS 2024; 21:85. [PMID: 39438961 PMCID: PMC11495023 DOI: 10.1186/s12987-024-00587-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 10/14/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND Spontaneous subarachnoid hemorrhage (SAH) often results in altered cerebrospinal fluid (CSF) flow and secondary hydrocephalus, yet the mechanisms behind these phenomena remain poorly understood. This study aimed to elucidate the impact of SAH on individual CSF flow patterns and their association with secondary hydrocephalus. METHODS In patients who had experienced SAH, changes in CSF flow were assessed using cardiac-gated phase-contrast magnetic resonance imaging (PC-MRI) at the Sylvian aqueduct and cranio-cervical junction (CCJ). Within these regions of interest, volumetric CSF flow was determined for every pixel and net CSF flow volume and direction calculated. The presence of acute or chronic hydrocephalus was deemed from ventriculomegaly and need of CSF diversion. For comparison, we included healthy subjects and patients examined for different CSF diseases. RESULTS Twenty-four SAH patients were enrolled, revealing a heterogeneous array of CSF flow alterations at the Sylvian aqueduct. The cardiac-cycle-linked CSF net flow in Sylvian aqueduct differed from the traditional figures of ventricular CSF production about 0.30-0.40 mL/min. In 15 out of 24 patients (62.5%), net CSF flow was retrograde from the fourth to the third and lateral ventricles, while it was upward at the cranio-cervical junction in 2 out of 2 patients (100%). The diverse CSF flow metrics did not distinguish between individuals with acute or chronic secondary hydrocephalus. In comparison, 4/4 healthy subjects showed antegrade net CSF flow in the Sylvian aqueduct and net upward CSF flow in CCJ. These net CSF flow measures also showed interindividual variability among other patients with CSF diseases. CONCLUSIONS There is considerable inter-individual variation in net CSF flow rates following SAH. Net CSF flow in the Sylvian aqueduct differs markedly from the traditional ventricular CSF production rates of 0.30-0.40 mL/min in SAH patients, but less so in healthy subjects. Furthermore, the cardiac-cycle-linked net CSF flow rates in Sylvian aqueduct and CCJ suggest an important role of extra-ventricular CSF production.
Collapse
Affiliation(s)
- Per Kristian Eide
- Department of Neurosurgery, Oslo University Hospital-Rikhospitalet, Pb 4950, Nydalen, Oslo, N-0424, Norway.
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.
- KG Jebsen Centre for Brain Fluid Research, University of Oslo, Oslo, Norway.
| | | | - Øyvind Gjertsen
- Department of Radiology, Oslo University Hospital- Rikshospitalet, Oslo, Norway
| | - Lars Magnus Valnes
- Department of Neurosurgery, Oslo University Hospital-Rikhospitalet, Pb 4950, Nydalen, Oslo, N-0424, Norway
- Department of Mathematics, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | - Geir Ringstad
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- KG Jebsen Centre for Brain Fluid Research, University of Oslo, Oslo, Norway
- Department of Radiology, Oslo University Hospital- Rikshospitalet, Oslo, Norway
- Department of Geriatrics and Internal medicine, Sorlandet Hospital, Arendal, Norway
| | | |
Collapse
|
12
|
Wang Q, Liu F, Li Y, Zhang H, Qi X, Wu K, Zhang Y, You S, Liu W, Hui X, Li H, Zhu L, Gao H, Cheng J. Choroid plexus CCL2‒CCR2 signaling orchestrates macrophage recruitment and cerebrospinal fluid hypersecretion in hydrocephalus. Acta Pharm Sin B 2024; 14:4544-4559. [PMID: 39525574 PMCID: PMC11544184 DOI: 10.1016/j.apsb.2024.06.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/16/2024] [Accepted: 06/17/2024] [Indexed: 11/16/2024] Open
Abstract
The choroid plexus (ChP) serves as the principal origin of cerebrospinal fluid (CSF). CSF hypersecretion due to ChP inflammation has emerged as an important pathogenesis of hydrocephalus recently. Nevertheless, the precise mechanisms of ChP inflammation and the ensuing CSF hypersecretion in hydrocephalus remain ill-defined. In the present study, we elucidate the critical role of macrophages in the pathogenesis of ChP inflammation. Specifically, we identify the chemokine CCL2, released by ChP epithelial cells, recruits CCR2+ monocytes to the ChP thereby inciting hydrocephalus pathogenesis. The accumulated ChP macrophages increase the inflammation in ChP epithelial cells through TNF-α/TNFR1/NF-κB signaling cascade, thereby leading to CSF hypersecretion. Strikingly, augmentation of ChP‒CCL2 using an adeno-associated viral approach (AAV) exacerbates macrophage recruitment, activation, and ventriculomegaly in rat PHH models. Systemic application of Bindarit, a specific CCL2 inhibitor, significantly inhibits ChP macrophage infiltration and activation and reduces CSF secretion rate. Furthermore, the administration of CCR2 antagonist (INCB 3284) reduces ChP macrophage accumulation and ventriculomegaly. This study not only unveils the ChP CCL2‒CCR2 signaling in the pathophysiology of hydrocephalus but also unveils Bindarit as a promising therapeutic choice for the management of posthemorrhagic hydrocephalus.
Collapse
Affiliation(s)
- Qiguang Wang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Fei Liu
- Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yue Li
- Research Core Facility of West China Hospital, Sichuan University, Chengdu 610041, China
| | - Huan Zhang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xin Qi
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ke Wu
- Institute of Rare Diseases, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Yi Zhang
- Research Core Facility of West China Hospital, Sichuan University, Chengdu 610041, China
| | - Shenglan You
- Research Core Facility of West China Hospital, Sichuan University, Chengdu 610041, China
| | - Wenke Liu
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xuhui Hui
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hanmei Li
- Key Laboratory of Coarse Cereal Processing, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Lei Zhu
- Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Huile Gao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Jian Cheng
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
13
|
Fei X, Dou Y, Yang Y, Zheng B, Luo P, Dai S, Zhang J, Peng K, Jiang X, Yu Y, Wei J. Lipocalin-2 inhibition alleviates neural injury by microglia ferroptosis suppression after experimental intracerebral hemorrhage in mice via enhancing ferritin light chain expression. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167435. [PMID: 39067535 DOI: 10.1016/j.bbadis.2024.167435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 07/16/2024] [Accepted: 07/16/2024] [Indexed: 07/30/2024]
Abstract
INTRODUCTION Microglia play pivotal roles in post-intracerebral hemorrhage (ICH) neural injury. Iron metabolism, which is dysregulated after ICH, participates in microglial dysfunction. Previous studies have shown that iron metabolism-related lipocalin-2 (LCN2) is involved in regulating microglial function following ICH. In this study, we investigated the role of LCN2 in microglial function following ICH. METHODS The BV2 (microglia) cell line, transfected with LCN2 for overexpression/interference, received a blood infusion from C57BL/6 mice in vitro. For the in vivo study of LCN2 function, an LCN2 knockout was conducted in mice. Liproxstatin-1 and RSL3 were used to manipulate ferroptosis and to study the effects of LCN2 on microglia after ICH. A BV2 (microglia) cell line, transfected with ferritin light chain (FTL) for overexpression/interference, was co-cultured with primary cultured neurons for a study on the mechanism of LCN2. Behavioral tests were conducted pre-ICH and on days 3, 7, and 28 post-ICH, and the brains and cultured cells were collected for protein, histological, and morphological studies. RESULTS Brain LCN2 expression was upregulated in microglia, astrocytes, and neurons and played hazardous roles after ICH. In microglia, LCN2 promoted ferroptosis, which facilitated neural injury after ICH. LCN2-mediated FTL deficiency was shown to be responsible for microglial ferroptosis-induced neural injury. CONCLUSION Our study suggests that LCN2-enhanced microglial ferroptosis plays a detrimental role by inducing FTL deficiency after ICH. The current study reveals a novel molecular mechanism involved in the pathophysiological progression of ICH.
Collapse
Affiliation(s)
- Xiaowei Fei
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yanan Dou
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yuefan Yang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Buyi Zheng
- Department of Neurosurgery, Wenzhou People's Hospital, Wenzhou, Zhejiang, China
| | - Peng Luo
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Shuhui Dai
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Jingwei Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Kang Peng
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
| | - Xiaofan Jiang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yang Yu
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Jialiang Wei
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China; Department of Health Service, Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
14
|
Fang Y, Liu Y, Chen L, Wang J, Zhang J, Zhang H, Tian S, Zhang A, Zhang J, Zhang JH, Wang X, Yu J, Chen S. Cerebrospinal fluid markers of neuroinflammation and coagulation in severe cerebral edema and chronic hydrocephalus after subarachnoid hemorrhage: a prospective study. J Neuroinflammation 2024; 21:237. [PMID: 39334416 PMCID: PMC11438016 DOI: 10.1186/s12974-024-03236-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND Early severe cerebral edema and chronic hydrocephalus are the primary cause of poor prognosis in patients with subarachnoid hemorrhage (SAH). This study investigated the role of cerebrospinal fluid (CSF) inflammatory cytokines and coagulation factors in the development of severe cerebral edema and chronic hydrocephalus in patients with SAH. METHODS Patients with SAH enrolled in this study were categorized into mild and severe cerebral edema groups based on the Subarachnoid Hemorrhage Early Brain Edema Score at admission. During long-term follow-up, patients were further classified into hydrocephalus and non-hydrocephalus groups. CSF samples were collected within 48 h post-SAH, and levels of inflammatory cytokines and coagulation factors were measured. Univariate and multivariate logistic regression analyses were performed to identify independent factors associated with severe cerebral edema and chronic hydrocephalus. The correlation between inflammatory cytokines and coagulation factors was further investigated and validated in a mouse model of SAH. RESULTS Seventy-two patients were enrolled in the study. Factors from the extrinsic coagulation pathway and inflammatory cytokines were associated with both severe cerebral edema and chronic hydrocephalus. Coagulation products thrombin-antithrombin complexes (TAT) and fibrin, as well as inflammatory cytokines IL-1β, IL-2, IL-5, IL-7, and IL-4, were independently associated with severe cerebral edema. Additionally, Factor VII, fibrin, IL-2, IL-5, IL-12, TNF-α, and CCL-4 were independently associated with chronic hydrocephalus. A positive correlation between extrinsic coagulation factors and inflammatory cytokines was observed. In the SAH mouse model, tissue plasminogen activator was shown to alleviate neuroinflammation and cerebral edema, potentially by restoring glymphatic-meningeal lymphatic function. CONCLUSIONS Elevated levels of inflammatory cytokines and extrinsic coagulation pathway factors in the CSF are associated with the development of early severe cerebral edema and chronic hydrocephalus following SAH. These factors are interrelated and may contribute to post-SAH glymphatic-meningeal lymphatic dysfunction.
Collapse
Affiliation(s)
- Yuanjian Fang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou, Zhejiang, 310009, China
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, China
| | - Yibo Liu
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou, Zhejiang, 310009, China
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, China
| | - Luxi Chen
- Department of Medical Genetics, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Junjie Wang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou, Zhejiang, 310009, China
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, China
| | - Jiahao Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou, Zhejiang, 310009, China
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, China
| | - Haocheng Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou, Zhejiang, 310009, China
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, China
| | - Sixuan Tian
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou, Zhejiang, 310009, China
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, China
| | - Anke Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou, Zhejiang, 310009, China
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, China
| | - Jianmin Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou, Zhejiang, 310009, China
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, China
| | - John H Zhang
- Department of Neurosurgery, Loma Linda University, Loma Linda, CA, USA
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, USA
- Department of Anesthesiology, Loma Linda University, Loma Linda, CA, USA
| | - Xiaoyu Wang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou, Zhejiang, 310009, China.
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China.
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, China.
| | - Jun Yu
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou, Zhejiang, 310009, China.
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China.
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, China.
| | - Sheng Chen
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou, Zhejiang, 310009, China.
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China.
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, China.
| |
Collapse
|
15
|
Davis LM, Hwang M. Metabolic Pathways in Hydrocephalus: Profiling with Proteomics and Advanced Imaging. Metabolites 2024; 14:412. [PMID: 39195508 DOI: 10.3390/metabo14080412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/16/2024] [Accepted: 07/23/2024] [Indexed: 08/29/2024] Open
Abstract
Hemorrhagic hydrocephalus is a common pathology in neonates with high mortality and morbidity. Current imaging approaches fail to capture the mechanisms behind its pathogenesis. Here, we discuss the processes underlying this pathology, the metabolic dysfunction that occurs as a result, and the ways in which these metabolic changes inform novel methods of clinical imaging. The imaging advances described allow earlier detection of the cellular and metabolic changes, leading to better outcomes for affected neonates.
Collapse
Affiliation(s)
- Laura May Davis
- Clinical Research Core, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Misun Hwang
- Clinical Research Core, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Radiology, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
16
|
Shen Y, Li C, Zhang X, Wang Y, Zhang H, Yu Z, Gui B, Hu R, Li Q, Gao A, Liang H. Gut microbiota linked to hydrocephalus through inflammatory factors: a Mendelian randomization study. Front Immunol 2024; 15:1372051. [PMID: 39076985 PMCID: PMC11284128 DOI: 10.3389/fimmu.2024.1372051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 06/27/2024] [Indexed: 07/31/2024] Open
Abstract
Background The gut microbiota (GM) has been implicated in neurological disorders, but the relationship with hydrocephalus, especially the underlying mechanistic pathways, is unclear. Using Mendelian randomization (MR), we aim to discover the mediating role of inflammatory factors in the relationship between GM and hydrocephalus. Methods After removing confounders, univariable and multivariable MR analyses were performed using summary statistics to assess the causal relationships between GM, inflammatory factors (IL-17A and IL-27), and types of hydrocephalus. Meta-analyses were used to reconcile the differences in MR results between different hydrocephalus sources. Finally, mediator MR analyses were applied to determine the mediating effect of inflammatory factors. Various sensitivity analysis methods were employed to ensure the reliability and stability of the results. Results After correction for P-values, Firmicutes (phylum) (OR, 0.34; 95%CI, 0.17-0.69; P = 2.71E-03, P FDR = 2.44E-02) significantly reduced the risk of obstructive hydrocephalus. The remaining 18 different taxa of GM had potential causal relationships for different types of hydrocephalus. In addition, Firmicutes (phylum) decreased the risk of obstructive hydrocephalus by increasing levels of IL-17A (mediating effect = 21.01%), while Eubacterium ruminantium group (genus) increased the risk of normal-pressure hydrocephalus by decreasing levels of IL-27 (mediating effect = 7.48%). Conclusion We reveal the connection between GM, inflammatory factors (IL-17A and IL-27), and hydrocephalus, which lays the foundation for unraveling the mechanism between GM and hydrocephalus.
Collapse
Affiliation(s)
- Yingjie Shen
- Department of Neurosurgery, National Health Commission Key Laboratory of Cell Transplantation, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Changyu Li
- Department of Neurosurgery, Hainan Cancer Hospital, Haikou, Hainan, China
| | - Xi Zhang
- Department of Neurosurgery, National Health Commission Key Laboratory of Cell Transplantation, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Yaolou Wang
- Department of Neurosurgery, National Health Commission Key Laboratory of Cell Transplantation, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Haopeng Zhang
- Department of Neurosurgery, National Health Commission Key Laboratory of Cell Transplantation, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Zhao Yu
- Department of Neurosurgery, National Health Commission Key Laboratory of Cell Transplantation, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Binbin Gui
- Department of Neurosurgery, National Health Commission Key Laboratory of Cell Transplantation, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Renjie Hu
- Department of Neurosurgery, National Health Commission Key Laboratory of Cell Transplantation, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Qi Li
- Department of Neurosurgery, National Health Commission Key Laboratory of Cell Transplantation, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Aili Gao
- School of Life Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Hongsheng Liang
- Department of Neurosurgery, National Health Commission Key Laboratory of Cell Transplantation, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| |
Collapse
|
17
|
Zhang T, Xia F, Wan Y, Xi G, Ya H, Keep RF. Complement Inhibition Reduces Early Erythrolysis, Attenuates Brain Injury, Hydrocephalus, and Iron Accumulation after Intraventricular Hemorrhage in Aged Rats. Transl Stroke Res 2024:10.1007/s12975-024-01273-6. [PMID: 38943026 DOI: 10.1007/s12975-024-01273-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/03/2024] [Accepted: 06/20/2024] [Indexed: 06/30/2024]
Abstract
Blood components released by erythrolysis play an important role in secondary brain injury and posthemorrhagic hydrocephalus (PHH) after intraventricular hemorrhage (IVH). The current study examined the impact of N-acetylheparin (NAH), a complement inhibitor, on early erythrolysis, PHH and iron accumulation in aged rats following IVH. This study, on 18-months-old male Fischer 344 rats, was in 3 parts. First, rats had an intracerebroventricular injection of autologous blood (IVH) mixed with NAH or saline, or saline alone. After MRI at four hours, Western blot and immunohistochemistry examined complement activation and electron microscopy choroid plexus and periventricular damage. Second, rats had an IVH with NAH or vehicle, or saline. Rats underwent serial MRI at 4 h and 1 day to assess ventricular volume and erythrolysis. Immunohistochemistry and H&E staining examined secondary brain injury. Third, rats had an IVH with NAH or vehicle. Serial MRIs on day 1 and 28 assessed ventricular volume and iron accumulation. H&E staining and immunofluorescence evaluated choroid plexus phagocytes. Complement activation was found 4 h after IVH, and co-injection of NAH inhibited that activation. NAH administration attenuated erythrolysis, reduced ventricular volume, alleviated periventricular and choroid plexus injury at 4 h and 1 day after IVH. NAH decreased iron accumulation, the number of choroid plexus phagocytes, and attenuated hydrocephalus at 28 days after IVH. Inhibiting complement can reduce early erythrolysis, attenuates hydrocephalus and iron accumulation after IVH in aged animals.
Collapse
Affiliation(s)
- Tianjie Zhang
- Department of Neurosurgery, University of Michigan, R5018 BSRB 109 Zina Pitcher Place, Ann Arbor, MI, 48109, USA
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Fan Xia
- Department of Neurosurgery, University of Michigan, R5018 BSRB 109 Zina Pitcher Place, Ann Arbor, MI, 48109, USA
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Yingfeng Wan
- Department of Neurosurgery, University of Michigan, R5018 BSRB 109 Zina Pitcher Place, Ann Arbor, MI, 48109, USA
| | - Guohua Xi
- Department of Neurosurgery, University of Michigan, R5018 BSRB 109 Zina Pitcher Place, Ann Arbor, MI, 48109, USA
| | - Hua Ya
- Department of Neurosurgery, University of Michigan, R5018 BSRB 109 Zina Pitcher Place, Ann Arbor, MI, 48109, USA
| | - Richard F Keep
- Department of Neurosurgery, University of Michigan, R5018 BSRB 109 Zina Pitcher Place, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
18
|
Wang C, Bai J, He Q, Jiao Y, Zhang W, Huo R, Wang J, Xu H, Zhao S, Wu Z, Sun Y, Yu Q, Tang J, Zeng X, Yang W, Cao Y. Therapy management and outcome of acute hydrocephalus secondary to intraventricular hemorrhage in adults. Chin Neurosurg J 2024; 10:17. [PMID: 38831472 PMCID: PMC11149196 DOI: 10.1186/s41016-024-00369-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 05/21/2024] [Indexed: 06/05/2024] Open
Abstract
BACKGROUND Intraventricular hemorrhage (IVH) refers to bleeding within the brain's ventricular system, and hydrocephalus is a life-threatening complication of IVH characterized by increased cerebrospinal fluid accumulation in the ventricles resulting in elevated intracranial pressure. IVH poses significant challenges for healthcare providers due to the complexity of the underlying pathophysiology and lack of standardized treatment guidelines. Herein, we performed a systematic review of the treatment strategies for hydrocephalus secondary to IVH. METHODS This systematic review was prospectively registered with PROSPERO (CRD42023450786). The search was conducted in PubMed, Cochrane Library, and Web of Science on July 15, 2023. We included original studies containing valid information on therapy management and outcome of hydrocephalus secondary to primary, spontaneous, and subarachnoid or intracranial hemorrhage following IVH in adults that were published between 2000 and 2023. Glasgow Outcome Scale (GOS) or modified Ranking Scale (mRS) scores during follow-up were extracted as primary outcomes. The risk of bias was assessed using the Newcastle-Ottawa Scale for Cohort Studies or Cochrane Risk of Bias 2.0 Tool. RESULTS Two hundred and seven patients from nine published papers, including two randomized controlled trials, were included in the analysis. The GOS was used in five studies, while the mRS was used in four. Seven interventions were applied, including craniotomy for removal of hematoma, endoscopic removal of hematoma with/without endoscopic third ventriculostomy (ETV), traditional external ventricular drainage (EVD), and various combinations of EVD, lumbar drainage (LD), and intraventricular fibrinolysis (IVF). Endoscopic removal of hematoma was performed in five of nine studies. Traditional EVD had no obvious benefit compared with new management strategies. Three different combinations of EVD, LD, and IVF demonstrated satisfactory outcomes, although more studies are required to confirm their reliability. Removal of hematoma through craniotomy generated reliable result. Generally, endoscopic removal of hematoma with ETV, removal of hematoma through craniotomy, EVD with IVF, and EVD with early continuous LD were useful. CONCLUSION EVD is still crucial for the management of IVH and hydrocephalus. Despite a more reliable result from the removal of hematoma through craniotomy, a trend toward endoscopic approach was observed due to a less invasive profile.
Collapse
Affiliation(s)
- Chaoyang Wang
- Department of Neurosurgery, Shenzhen Qianhai Shekou Free Trade Zone Hospital, Shenzhen, China
| | - Jianuo Bai
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No.119 South West 4th Ring Road, Beijing, China
| | - Qiheng He
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No.119 South West 4th Ring Road, Beijing, China
| | - Yuming Jiao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No.119 South West 4th Ring Road, Beijing, China
| | - Wenqian Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No.119 South West 4th Ring Road, Beijing, China
| | - Ran Huo
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No.119 South West 4th Ring Road, Beijing, China
| | - Jie Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No.119 South West 4th Ring Road, Beijing, China
| | - Hongyuan Xu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No.119 South West 4th Ring Road, Beijing, China
| | - Shaozhi Zhao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No.119 South West 4th Ring Road, Beijing, China
| | - Zhiyou Wu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No.119 South West 4th Ring Road, Beijing, China
| | - Yingfan Sun
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No.119 South West 4th Ring Road, Beijing, China
| | - Qifeng Yu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No.119 South West 4th Ring Road, Beijing, China
| | - Jinyi Tang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No.119 South West 4th Ring Road, Beijing, China
| | - Xianwei Zeng
- Department of Neurosurgery, National Research Center for Rehabilitation Technical Aids, Beijing, China
- Department of Neurosurgery, Rehabilitation Hospital, National Research Center for Rehabilitation Technical Aids, Beijing, China
- Key Laboratory of Neuro-Functional Information and Rehabilitation Engineering of the Ministry of Civil Affairs, Beijing, China
| | - Wuyang Yang
- Department of Neurosurgery, The Johns Hopkins Hospital, 1800 Orleans Street Suite 6007, Baltimore, MD, 21287, USA.
| | - Yong Cao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No.119 South West 4th Ring Road, Beijing, China.
| |
Collapse
|
19
|
Das N, Sharma A, Mann M, Gordillo A, Desai A, Serletis D, Moosa AN, Rammo R, Bingaman W. Postoperative shunt failure following hemispherectomy in pediatric patients with pre-existing hydrocephalus. Childs Nerv Syst 2024; 40:1507-1514. [PMID: 38273143 PMCID: PMC11026181 DOI: 10.1007/s00381-024-06295-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 01/17/2024] [Indexed: 01/27/2024]
Abstract
OBJECTIVE The risk of hydrocephalus following hemispherectomy for drug resistant epilepsy (DRE) remains high. Patients with pre-existing hydrocephalus pose a postoperative challenge, as maintaining existing shunt patency is necessary but lacks a clearly defined strategy. This study examines the incidence and predictors of shunt failure in pediatric hemispherectomy patients with pre-existing ventricular shunts. METHODS We performed a retrospective chart review at our center to identify pediatric patients diagnosed with DRE who were treated with ventricular shunt prior to their first hemispherectomy surgery. Demographic and perioperative data were obtained including shunt history, hydrocephalus etiology, epilepsy duration, surgical technique, and postoperative outcomes. Univariate analysis was performed using Fisher's exact test and Pearson correlation, with Bonferroni correction to a = 0.00625 and a = 0.01, respectively. RESULTS Five of nineteen (26.3%) patients identified with ventriculoperitoneal shunting prior to hemispherectomy experienced postoperative shunt malfunction. All 5 of these patients underwent at least 1 shunt revision prior to hemispherectomy, with a significant association between pre- and post-hemispherectomy shunt revisions. There was no significant association between post-hemispherectomy shunt failure and valve type, intraoperative shunt alteration, postoperative external ventricular drain placement, hemispherectomy revision, lateralization of shunt relative to resection, postoperative complications, or postoperative aseptic meningitis. There was no significant correlation between number of post-hemispherectomy shunt revisions and age at shunt placement, age at hemispherectomy, epilepsy duration, or shunt duration prior to hemispherectomy. CONCLUSIONS Earlier shunt revision surgery may portend a subsequent need for shunt revision following hemispherectomy. These findings may guide neurosurgeons in counseling patients with pre-existing ventricular shunts prior to hemispherectomy surgery.
Collapse
Affiliation(s)
- Nikita Das
- School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Akshay Sharma
- Epilepsy Center, Cleveland Clinic Neurological Institute, Cleveland, OH, USA.
- Department of Neurological Surgery, Cleveland Clinic, Cleveland, OH, USA.
| | - Michael Mann
- School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Alan Gordillo
- School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Ansh Desai
- School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Demitre Serletis
- Epilepsy Center, Cleveland Clinic Neurological Institute, Cleveland, OH, USA
- Department of Neurological Surgery, Cleveland Clinic, Cleveland, OH, USA
| | - Ahsan N Moosa
- Epilepsy Center, Cleveland Clinic Neurological Institute, Cleveland, OH, USA
| | - Richard Rammo
- Epilepsy Center, Cleveland Clinic Neurological Institute, Cleveland, OH, USA
- Department of Neurological Surgery, Cleveland Clinic, Cleveland, OH, USA
| | - William Bingaman
- Epilepsy Center, Cleveland Clinic Neurological Institute, Cleveland, OH, USA
- Department of Neurological Surgery, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
20
|
Yang M, Kim S, Sung SI, Chang YS, Park WS, Ahn SY. Current Status and Associated Factors of Post-Hemorrhagic Hydrocephalus in Infants of 22 to 28 Weeks Gestation With Severe Intraventricular Hemorrhage in Korea: A Nationwide Cohort Study. J Korean Med Sci 2024; 39:e139. [PMID: 38651224 PMCID: PMC11035714 DOI: 10.3346/jkms.2024.39.e139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 03/26/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND Post-hemorrhagic hydrocephalus (PHH), a common complication of severe intraventricular hemorrhage (IVH) in very low birth weight (BW) infants, is associated with significant morbidity and poor neurological outcomes. The objective of this study was to assess the current status of PHH and analyze the risk factors associated with the necessity of treatment for PHH in infants born between 22 and 28 weeks of gestation, specifically those with severe IVH (grade 3 or 4). METHODS The analysis was conducted on 1,097 infants who were born between 22-28 gestational weeks and diagnosed with severe IVH, using data from the Korean Neonatal Network. We observed that the prevalence of PHH requiring treatment was 46.3% in infants with severe IVH. RESULTS Higher rates of mortality, transfer during admission, cerebral palsy, and ventriculoperitoneal shunt after discharge were higher in infants with PHH than in those without PHH. PHH in severe IVH was associated with a higher rate of pulmonary hemorrhage, seizures, and IVH grade 4 in the entire cohort. In addition, it was associated with a lower rate of small for gestational age and chorioamnionitis. In the subgroup analysis, high BW, outborn status, pulmonary hemorrhage, seizure, sepsis, and IVH grade 4 were associated with a higher incidence of PHH between 22 and 25 gestational weeks (GW). In infants born between 26 and 28 GW, a higher incidence of PHH was associated with seizures and IVH grade 4. CONCLUSION It is necessary to maintain meticulous monitoring and neurological intervention for infants with PHH not only during admission but also after discharge. In addition, identifying the clinical factors that increase the likelihood of developing PHH from severe IVH is crucial.
Collapse
Affiliation(s)
- Misun Yang
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
- Cell and Gene Therapy Institute, Samsung Medical Center, Seoul, Korea
| | - Sumin Kim
- Department of Clinical Research Design and Evaluation, Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Sungkyunkwan University, Seoul, Korea
| | - Se In Sung
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
- Cell and Gene Therapy Institute, Samsung Medical Center, Seoul, Korea
| | - Yun Sil Chang
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
- Cell and Gene Therapy Institute, Samsung Medical Center, Seoul, Korea
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Sungkyunkwan University, Seoul, Korea
| | - Won Soon Park
- Department of Pediatrics, Gangnam CHA Hospital, Seoul, Korea
| | - So Yoon Ahn
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
- Cell and Gene Therapy Institute, Samsung Medical Center, Seoul, Korea.
| |
Collapse
|
21
|
Rodriguez-Perez LM, Ojeda-Pérez B, López-de-San-Sebastián J, García-Bonilla M, González-García M, Fernández-Muñoz B, Sánchez-Pernaute R, García-Martín ML, Domínguez-Pinos D, Cárdenas-García C, Jiménez AJ, Paez-Gonzalez P. Design of a Stem Cell-Based Therapy for Ependymal Repair in Hydrocephalus Associated With Germinal Matrix Hemorrhages. Stroke 2024; 55:1062-1074. [PMID: 38436063 PMCID: PMC10962438 DOI: 10.1161/strokeaha.123.044677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 01/24/2024] [Indexed: 03/05/2024]
Abstract
BACKGROUND In preterm birth germinal matrix hemorrhages (GMHs) and the consequent posthemorrhagic hydrocephalus (PHH), the neuroepithelium/ependyma development is disrupted. This work is aimed to explore the possibilities of ependymal repair in GMH/PHH using a combination of neural stem cells, ependymal progenitors (EpPs), and mesenchymal stem cells. METHODS GMH/PHH was induced in 4-day-old mice using collagenase, blood, or blood serum injections. PHH severity was characterized 2 weeks later using magnetic resonance, immunofluorescence, and protein expression quantification with mass spectrometry. Ependymal restoration and wall regeneration after stem cell treatments were tested in vivo and in an ex vivo experimental approach using ventricular walls from mice developing moderate and severe GMH/PHH. The effect of the GMH environment on EpP differentiation was tested in vitro. Two-tailed Student t or Wilcoxon-Mann-Whitney U test was used to find differences between the treated and nontreated groups. ANOVA and Kruskal-Wallis tests were used to compare >2 groups with post hoc Tukey and Dunn multiple comparison tests, respectively. RESULTS PHH severity was correlated with the extension of GMH and ependymal disruption (means, 88.22% severe versus 19.4% moderate). GMH/PHH hindered the survival rates of the transplanted neural stem cells/EpPs. New multiciliated ependymal cells could be generated from transplanted neural stem cells and more efficiently from EpPs (15% mean increase). Blood and TNFα (tumor necrosis factor alpha) negatively affected ciliogenesis in cells committed to ependyma differentiation (expressing Foxj1 [forkhead box J1] transcription factor). Pretreatment with mesenchymal stem cells improved the survival rates of EpPs and ependymal differentiation while reducing the edematous (means, 18% to 0.5% decrease in severe edema) and inflammatory conditions in the explants. The effectiveness of this therapeutical strategy was corroborated in vivo (means, 29% to 0% in severe edema). CONCLUSIONS In GMH/PHH, the ependyma can be restored and edema decreased from either neural stem cell or EpP transplantation in vitro and in vivo. Mesenchymal stem cell pretreatment improved the success of the ependymal restoration.
Collapse
Affiliation(s)
- Luis M Rodriguez-Perez
- Departamento de Fisiología Humana, Histología Humana, Anatomía Patológica y Educación Física y Deportiva, University of Malaga, Spain. (L.M.R.-P.)
| | - Betsaida Ojeda-Pérez
- Departamento de Biología Celular, Genética y Fisiología, University of Malaga, Spain. (B.O.-P., J.L.-d.-S.-S., M.G.-G.)
- Instituto de Investigación Biomédica de Málaga, Spain (B.O.-P., M.L.G.-M., D.D.-P., A.J.J., P.P.-G.)
| | - Javier López-de-San-Sebastián
- Departamento de Biología Celular, Genética y Fisiología, University of Malaga, Spain. (B.O.-P., J.L.-d.-S.-S., M.G.-G.)
| | - María García-Bonilla
- Department of Neurosurgery, Washington University in St. Louis School of Medicine, MO (M.G.-B.)
| | - Marcos González-García
- Departamento de Biología Celular, Genética y Fisiología, University of Malaga, Spain. (B.O.-P., J.L.-d.-S.-S., M.G.-G.)
| | - Beatriz Fernández-Muñoz
- Unidad de Producción y Reprogramación Celular, Red Andaluza para el diseño y traslación de Terapias Avanzadas, Sevilla, Spain (B.F.-M.)
| | - Rosario Sánchez-Pernaute
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain (R.S.-P.)
- Instituto de Investigación Sanitaria Biobizkai, Barakaldo, Spain (R.S.-P.)
| | - María L García-Martín
- Instituto de Investigación Biomédica de Málaga, Spain (B.O.-P., M.L.G.-M., D.D.-P., A.J.J., P.P.-G.)
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina, Spain (M.L.G.-M.)
| | - Dolores Domínguez-Pinos
- Departamento de Radiología y Medicina Física, Oftalmología y Otorrinolaringología, University of Malaga, Spain. (D.D.-P.)
- Instituto de Investigación Biomédica de Málaga, Spain (B.O.-P., M.L.G.-M., D.D.-P., A.J.J., P.P.-G.)
| | | | - Antonio J Jiménez
- Instituto de Investigación Biomédica de Málaga, Spain (B.O.-P., M.L.G.-M., D.D.-P., A.J.J., P.P.-G.)
| | - Patricia Paez-Gonzalez
- Instituto de Investigación Biomédica de Málaga, Spain (B.O.-P., M.L.G.-M., D.D.-P., A.J.J., P.P.-G.)
| |
Collapse
|
22
|
Zakaria Z, Ismail MI, Ang SY, Idris Z. Neuroradiological Correlation of the Lateral Third Periventricular, Pituitary Gland and Stalk, Pineal Gland, Cerebral Aqueduct, and Foramen Magendie and Luschka With Intraventricular Neuroendoscopic Images: A Case Series. Cureus 2024; 16:e56952. [PMID: 38665765 PMCID: PMC11044081 DOI: 10.7759/cureus.56952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
Neuroendoscopy procedures in pediatrics have expanded beyond the endoscopic third ventriculostomy. As such, a direct and angled endoscope allows further visualization around the corner, capturing the surrounding anatomy. Intraoperative live images look different than radiological images. Hence, in this single institutional experience, we correlate neuroradiology images with intraoperative intraventricular endoscopic views of the third-fourth ventricle, pituitary, pineal gland, cerebral aqueduct, and foramen magendie and luschka. Our collective case series reveals a few interesting case scenarios of normal and abnormal findings during the procedure. Careful navigation of the neuroendoscope is crucial to prevent injury to the neurovascular bundle. A close relationship with normal anatomy from radiological imaging is necessary to prevent it from getting lost once inside the ventricular cavity.
Collapse
Affiliation(s)
- Zaitun Zakaria
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia (USM), Kota Bharu, MYS
| | - Muhammad Ihfaz Ismail
- Department of Neurosciences, Hospital UniversitI Sains Malaysia (HUSM), Kota Bharu, MYS
| | - Song Yee Ang
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia (USM), Kota Bharu, MYS
| | - Zamzuri Idris
- Department of Neurosciences, School of Medical Sciences, Hospital Universiti Sains Malaysia, Universiti Sains Malaysia (USM), Kota Bharu, MYS
| |
Collapse
|
23
|
Yoon JT, Lee KM, Ryu J, Park JI. Rapidly growing distal choroidal artery aneurysm re-rupture following revascularization for hemorrhagic Moyamoya disease: A case report. Clin Case Rep 2024; 12:e8605. [PMID: 38455861 PMCID: PMC10918708 DOI: 10.1002/ccr3.8605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 03/09/2024] Open
Abstract
Intracranial hemorrhage is the leading cause of neurological deficits and poor prognosis in adult patients with Moyamoya disease (MMD). Intracranial hemorrhage is occasionally accompanied by MMD-associated aneurysm and requires additional treatment. To date, direct or indirect bypass surgery or endovascular treatment, such as coil embolization, has been adopted and has achieved successful outcomes. The rapid growth of MMD-associated aneurysms and rebleeding after direct bypass surgery via superficial temporal artery-middle cerebral artery (STA-MCA) anastomosis has rarely been reported. We report a case of a rapidly growing fragile arterial pseudoaneurysm in a patient with MMD. A 45-year-old female was admitted with a headache and decreased mental status. Radiological evaluation, including distal subtraction angiography, revealed intraventricular hemorrhage with a left posterior choroidal artery pseudoaneurysm. Within 4 days after revascularization surgery via STA-MCA direct bypass, the size of the pseudoaneurysm rapidly increased and rebleeding occurred, requiring coil embolization. After endovascular therapy and a second STA-MCA bypass surgery, the patient recovered well and was discharged 8 days later. Follow-up radiological imaging revealed an obliterated pseudoaneurysm without rebleeding or complications. In this case, the rapid growth of an MMD-associated pseudoaneurysm was observed after revascularization surgery because of temporary hemodynamic instability. This report raises questions regarding the causes and management of unstable postbypass hemodynamics.
Collapse
Affiliation(s)
- Jeong Taek Yoon
- Department of Medicine, Graduate SchoolKyung Hee UniversitySeoulKorea
| | - Kyung Mi Lee
- Department of Radiology, Kyung Hee University HospitalKyung Hee University College of MedicineSeoulKorea
| | - Jiwook Ryu
- Department of Neurosurgery, Kyung Hee University HospitalKyung Hee University College of MedicineSeoulKorea
| | - Ju In Park
- Department of Neurosurgery, Kyung Hee University HospitalKyung Hee University College of MedicineSeoulKorea
| |
Collapse
|
24
|
Li Y, Nan D, Liu R, Li J, Zhang Z, Deng J, Zhang Y, Yan Z, Hou C, Yao E, Sun W, Wang Z, Huang Y. Aquaporin 4 Mediates the Effect of Iron Overload on Hydrocephalus After Intraventricular Hemorrhage. Neurocrit Care 2024; 40:225-236. [PMID: 37208490 PMCID: PMC10861395 DOI: 10.1007/s12028-023-01746-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 05/01/2023] [Indexed: 05/21/2023]
Abstract
BACKGROUND Iron overload plays an important role in hydrocephalus development following intraventricular hemorrhage (IVH). Aquaporin 4 (AQP4) participates in the balance of cerebrospinal fluid secretion and absorption. The current study investigated the role of AQP4 in the formation of hydrocephalus caused by iron overload after IVH. METHODS There were three parts to this study. First, Sprague-Dawley rats received an intraventricular injection of 100 µl autologous blood or saline control. Second, rats had IVH and were treated with deferoxamine (DFX), an iron chelator, or vehicle. Third, rats had IVH and were treated with 2-(nicotinamide)-1,3,4-thiadiazole (TGN-020), a specific AQP4 inhibitor, or vehicle. Rats underwent T2-weighted and T2* gradient-echo magnetic resonance imaging to assess lateral ventricular volume and intraventricular iron deposition at 7, 14, and 28 days after intraventricular injection and were then euthanized. Real-time quantitative polymerase chain reaction, western blot analysis, and immunofluorescence analyses were conducted on the rat brains to evaluate the expression of AQP4 at different time points. Hematoxylin and eosin-stained brain sections were obtained to assess the ventricular wall damage on day 28. RESULTS Intraventricular injection of autologous blood caused a significant ventricular dilatation, iron deposition, and ventricular wall damage. There was increased AQP4 mRNA and protein expression in the periventricular tissue in IVH rats through day 7 to day 28. The DFX treatment group had a lower lateral ventricular volume and less intraventricular iron deposition and ventricular wall damage than the vehicle-treated group after IVH. The expression of AQP4 protein in periventricular tissue was also inhibited by DFX on days 14 and 28 after IVH. The use of TGN-020 attenuated hydrocephalus development after IVH and inhibited the expression of AQP4 protein in the periventricular tissue between day 14 and day 28 without a significant effect on intraventricular iron deposition or ventricular wall damage. CONCLUSIONS AQP4 located in the periventricular area mediated the effect of iron overload on hydrocephalus after IVH.
Collapse
Affiliation(s)
- Ying Li
- Department of Neurology, Peking University First Hospital, 8 Xishiku Street, Xicheng District, Beijing, 100034, China
- Beijing Key Laboratory of Neurovascular Disease Discovery, Beijing, China
| | - Ding Nan
- Department of Neurology, Peking University First Hospital, 8 Xishiku Street, Xicheng District, Beijing, 100034, China
- Beijing Key Laboratory of Neurovascular Disease Discovery, Beijing, China
- Department of Hyperbaric Oxygen, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Ran Liu
- Department of Neurology, Peking University First Hospital, 8 Xishiku Street, Xicheng District, Beijing, 100034, China
- Beijing Key Laboratory of Neurovascular Disease Discovery, Beijing, China
| | - Jieyu Li
- Department of Neurology, Peking University First Hospital, 8 Xishiku Street, Xicheng District, Beijing, 100034, China
- Beijing Key Laboratory of Neurovascular Disease Discovery, Beijing, China
| | - Zhuangzhuang Zhang
- Department of Neurology, Peking University First Hospital, 8 Xishiku Street, Xicheng District, Beijing, 100034, China
- Beijing Key Laboratory of Neurovascular Disease Discovery, Beijing, China
| | - Jianwen Deng
- Department of Neurology, Peking University First Hospital, 8 Xishiku Street, Xicheng District, Beijing, 100034, China
- Beijing Key Laboratory of Neurovascular Disease Discovery, Beijing, China
| | - Yang Zhang
- Department of Neurosurgery, Peking University First Hospital, Beijing, China
| | - Ziguang Yan
- Department of Interventional Radiology and Vascular Surgery, Peking University First Hospital, Beijing, China
| | - Chao Hou
- Department of Radiology, Peking University First Hospital, Beijing, China
| | - Ensheng Yao
- Department of Neurology, First Affiliated Hospital, School of Medicine, Shihezi University, Xinjiang, China
| | - Weiping Sun
- Department of Neurology, Peking University First Hospital, 8 Xishiku Street, Xicheng District, Beijing, 100034, China.
- Beijing Key Laboratory of Neurovascular Disease Discovery, Beijing, China.
| | - Zhaoxia Wang
- Department of Neurology, Peking University First Hospital, 8 Xishiku Street, Xicheng District, Beijing, 100034, China
- Beijing Key Laboratory of Neurovascular Disease Discovery, Beijing, China
| | - Yining Huang
- Department of Neurology, Peking University First Hospital, 8 Xishiku Street, Xicheng District, Beijing, 100034, China
- Beijing Key Laboratory of Neurovascular Disease Discovery, Beijing, China
| |
Collapse
|
25
|
Pan S, Hale AT, Lemieux ME, Raval DK, Garton TP, Sadler B, Mahaney KB, Strahle JM. Iron homeostasis and post-hemorrhagic hydrocephalus: a review. Front Neurol 2024; 14:1287559. [PMID: 38283681 PMCID: PMC10811254 DOI: 10.3389/fneur.2023.1287559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 11/21/2023] [Indexed: 01/30/2024] Open
Abstract
Iron physiology is regulated by a complex interplay of extracellular transport systems, coordinated transcriptional responses, and iron efflux mechanisms. Dysregulation of iron metabolism can result in defects in myelination, neurotransmitter synthesis, and neuronal maturation. In neonates, germinal matrix-intraventricular hemorrhage (GMH-IVH) causes iron overload as a result of blood breakdown in the ventricles and brain parenchyma which can lead to post-hemorrhagic hydrocephalus (PHH). However, the precise mechanisms by which GMH-IVH results in PHH remain elusive. Understanding the molecular determinants of iron homeostasis in the developing brain may lead to improved therapies. This manuscript reviews the various roles iron has in brain development, characterizes our understanding of iron transport in the developing brain, and describes potential mechanisms by which iron overload may cause PHH and brain injury. We also review novel preclinical treatments for IVH that specifically target iron. Understanding iron handling within the brain and central nervous system may provide a basis for preventative, targeted treatments for iron-mediated pathogenesis of GMH-IVH and PHH.
Collapse
Affiliation(s)
- Shelei Pan
- Department of Neurosurgery, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
| | - Andrew T. Hale
- Department of Neurosurgery, University of Alabama at Birmingham School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Mackenzie E. Lemieux
- Department of Neurosurgery, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
| | - Dhvanii K. Raval
- Department of Neurosurgery, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
| | - Thomas P. Garton
- Department of Neurology, Johns Hopkins University School of Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Brooke Sadler
- Department of Pediatrics, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
- Department of Hematology and Oncology, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
| | - Kelly B. Mahaney
- Department of Neurosurgery, Stanford University School of Medicine, Stanford University, Palo Alto, CA, United States
| | - Jennifer M. Strahle
- Department of Neurosurgery, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
- Department of Pediatrics, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
- Department of Orthopedic Surgery, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
| |
Collapse
|
26
|
Gu T, Pan J, Chen L, Li K, Wang L, Zou Z, Shi Q. Association of inflammatory cytokines expression in cerebrospinal fluid with the severity and prognosis of spontaneous intracerebral hemorrhage. BMC Neurol 2024; 24:7. [PMID: 38167007 PMCID: PMC10759732 DOI: 10.1186/s12883-023-03487-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 12/04/2023] [Indexed: 01/05/2024] Open
Abstract
OBJECTIVE To investigate the potential diagnostic and prognostic implications of inflammatory cytokine levels in the cerebrospinal fluid (CSF) of patients with spontaneous intracerebral hemorrhage (SICH) upon their initial hospital admission. METHODS Our cohort included 100 patients diagnosed with acute SICH, presenting to the Department of Neurosurgery. Additionally, we recruited 50 individuals without central nervous system (CNS) pathology, treated concurrently at our facility, as controls. CSF samples, collected upon hospital entry, were quantitatively assessed for 10 inflammatory cytokines using the Mesoscale Discovery Platform (MSD, Rockville, MD, USA) electrochemiluminescence technology, followed by validation through enzyme-linked immunosorbent assay (ELISA). RESULTS We observed a marked elevation of IL-6, IL-8, IL-10, and TNF-α in the CSF of the SICH subgroup compared to controls. Higher Glasgow Coma Scale (GCS) scores in SICH patients corresponded with lower CSF concentrations of IL-6, IL-8, IL-10, and TNF-α, indicating an inverse relationship. Notably, CSF inflammatory cytokine levels were consistently higher in SICH patients with hydrocephalus than in those without. Increases in IL-6, IL-8, IL-10, and TNF-α in the CSF were notably more pronounced in the poor prognosis group (Glasgow Outcome Scale, GOS 1-3) compared to those with a favorable prognosis (GOS 4-5). The AUC values for these cytokines in predicting SICH prognosis were 0.750, 0.728, 0.717, and 0.743, respectively. CONCLUSIONS Initial CSF levels of IL-6, IL-8, IL-10, and TNF-α upon admission provide significant insights into the severity of neural damage and are robust indicators for prognosis in SICH patients.
Collapse
Affiliation(s)
- Tianyan Gu
- Graduate School of Xinjiang Medical University, Urumqi, Xinjiang, 830000, China
| | - Jingyu Pan
- Medical College of Shihezi University, Shihezi, Xinjiang, 832000, China
| | - Ling Chen
- Clinical Laboratory Diagnostic Center, General Hospital of Xinjiang Military Command, Urumqi, Xinjiang, 830000, China
| | - Kai Li
- Clinical Laboratory Diagnostic Center, General Hospital of Xinjiang Military Command, Urumqi, Xinjiang, 830000, China
| | - Li Wang
- Clinical Laboratory Diagnostic Center, General Hospital of Xinjiang Military Command, Urumqi, Xinjiang, 830000, China
| | - Zhihao Zou
- Department of Neurosurgery, General Hospital of Xinjiang Military Command, Urumqi, Xinjiang, 830000, China.
| | - Qinghai Shi
- Clinical Laboratory Diagnostic Center, General Hospital of Xinjiang Military Command, Urumqi, Xinjiang, 830000, China.
| |
Collapse
|
27
|
Chen J, Pan Y, Liu Q, Li G, Chen G, Li W, Zhao W, Wang Q. The Interplay between Meningeal Lymphatic Vessels and Neuroinflammation in Neurodegenerative Diseases. Curr Neuropharmacol 2024; 22:1016-1032. [PMID: 36380442 PMCID: PMC10964105 DOI: 10.2174/1570159x21666221115150253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/02/2022] [Accepted: 10/06/2022] [Indexed: 11/17/2022] Open
Abstract
Meningeal lymphatic vessels (MLVs) are essential for the drainage of cerebrospinal fluid, macromolecules, and immune cells in the central nervous system. They play critical roles in modulating neuroinflammation in neurodegenerative diseases. Dysfunctional MLVs have been demonstrated to increase neuroinflammation by horizontally blocking the drainage of neurotoxic proteins to the peripheral lymph nodes. Conversely, MLVs protect against neuroinflammation by preventing immune cells from becoming fully encephalitogenic. Furthermore, evidence suggests that neuroinflammation affects the structure and function of MLVs, causing vascular anomalies and angiogenesis. Although this field is still in its infancy, the strong link between MLVs and neuroinflammation has emerged as a potential target for slowing the progression of neurodegenerative diseases. This review provides a brief history of the discovery of MLVs, introduces in vivo and in vitro MLV models, highlights the molecular mechanisms through which MLVs contribute to and protect against neuroinflammation, and discusses the potential impact of neuroinflammation on MLVs, focusing on recent progress in neurodegenerative diseases.
Collapse
Affiliation(s)
- Junmei Chen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
| | - Yaru Pan
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
| | - Qihua Liu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
| | - Guangyao Li
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
- Clinical Medical College of Acupuncture Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
| | - Gongcan Chen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
| | - Weirong Li
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
| | - Wei Zhao
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
| | - Qi Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
| |
Collapse
|
28
|
Yao S, Gao Z, Fang W, Fu Y, Xue Q, Lai T, Shangguan H, Sun W, Lin Y, Lin F, Kang D. DPA714 PET Imaging Shows That Inflammation of the Choroid Plexus Is Active in Chronic-Phase Intracerebral Hemorrhage. Clin Nucl Med 2024; 49:56-65. [PMID: 38054504 PMCID: PMC11805473 DOI: 10.1097/rlu.0000000000004948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 09/16/2023] [Indexed: 12/07/2023]
Abstract
PURPOSE Our aims were to investigate the presence of choroid plexus (CP) inflammation in chronic-phase intracerebral hemorrhage (ICH) patients and to characterize any inflammatory cells in the CP. PATIENTS AND METHODS An in vivo 18 F-DPA714 PET study was undertaken in 22 chronic-phase ICH patients who were admitted to the First Affiliated Hospital of Fujian Medical University or Tianjin Medical University General Hospital from April 2017 to June 2020. Ten control participants with nonhemorrhagic central nervous system diseases were included. Choroid plexus 18 F-DPA714 uptake was calculated as the average SUVR. To aid the interpretation of the 18 F-DPA714 uptake results at the CP level, Cy5-DPA714 in vivo imaging and immunofluorescence staining were used to show the presence of CP inflammation in an ICH mouse model during the chronic phase (14 weeks after ICH). Then immunofluorescence staining against translocator protein and other specific biomarkers was used to characterize the cells present in the inflamed CP of ICH mice in the chronic phase. RESULTS PET imaging showed that CP DPA714 SUVRs in chronic-phase ICH patients were higher than in controls (mean CP SUVR ± SD; ICH group: 1.05 ± 0.35; control group: 0.81 ± 0.21; P = 0.006). Immunofluorescence staining of the CP in ICH model mice identified a population of CD45 + immune cells, peripheral monocyte-derived CD14 + cells, CD68 + phagocytes, and CD11b + resident microglia/macrophages expressing translocator protein, possibly contributing to the increased 18 F-DPA714 uptake. CONCLUSIONS Our study shows that CP DPA714 uptake in chronic-phase ICH patients was higher than that of participants with nonhemorrhagic central nervous system diseases, which means that CP inflammation is still active in chronic-phase ICH patients.
Collapse
Affiliation(s)
- Shaobo Yao
- From the Departments of Department of Neurosurgery, Department of Nuclear Medicine, Neurosurgery Research Institute
| | - Zhuyu Gao
- From the Departments of Department of Neurosurgery, Department of Nuclear Medicine, Neurosurgery Research Institute
| | - Wenhua Fang
- From the Departments of Department of Neurosurgery, Department of Nuclear Medicine, Neurosurgery Research Institute
- Fujian Provincial Institutes of Brain Disorders and Brain Sciences
- Fujian Provincial Clinical Research Center for Neurological Diseases
| | - Ying Fu
- Department of Neurology, Institute of Neurology, First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian
| | - Qianqian Xue
- From the Departments of Department of Neurosurgery, Department of Nuclear Medicine, Neurosurgery Research Institute
| | - Tianmin Lai
- Department of Neurology, Ganzhou People's Hospital, Ganzhou, Jiangxi, China
| | - Huangcheng Shangguan
- From the Departments of Department of Neurosurgery, Department of Nuclear Medicine, Neurosurgery Research Institute
| | - Weiwei Sun
- From the Departments of Department of Neurosurgery, Department of Nuclear Medicine, Neurosurgery Research Institute
| | - Yuanxiang Lin
- From the Departments of Department of Neurosurgery, Department of Nuclear Medicine, Neurosurgery Research Institute
- Fujian Provincial Institutes of Brain Disorders and Brain Sciences
- Fujian Provincial Clinical Research Center for Neurological Diseases
| | - Fuxin Lin
- From the Departments of Department of Neurosurgery, Department of Nuclear Medicine, Neurosurgery Research Institute
| | - Dezhi Kang
- From the Departments of Department of Neurosurgery, Department of Nuclear Medicine, Neurosurgery Research Institute
- Fujian Provincial Institutes of Brain Disorders and Brain Sciences
- Fujian Provincial Clinical Research Center for Neurological Diseases
| |
Collapse
|
29
|
Wu Z, Wang H, Zhao J, Wang C, Liu H, Wang C, Li A, Hu J. Preoperative Fibrinogen Levels and Function as Predictive Factors for Acute Bleeding in the Hematoma Cavity After Burr Hole Drainage in Patients with CSDH. World Neurosurg 2023; 180:e364-e375. [PMID: 37769840 DOI: 10.1016/j.wneu.2023.09.072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 09/18/2023] [Indexed: 10/03/2023]
Abstract
OBJECTIVE Burr hole drainage (BHD) is the primary surgical intervention for managing chronic subdural hematoma (CSDH). However, it can lead to postoperative complications such as acute bleeding within the hematoma cavity and hematoma recurrence. The objective of this study is to identify the risk factors for these complications and develop a predictive model for acute hematoma cavity bleeding after BHD in patients with CSDH. METHODS This study presents a retrospective cohort investigation conducted at a single center. The clinical dataset of 308 CSDH patients who underwent BHD at a hospital from 2016 to 2022 was analyzed to develop and assess a prognostic model. RESULTS The nonbleeding group exhibited a significant correlation between fibrinogen (FIB) and thrombin time (TT), whereas no correlation was observed in the bleeding group. Notably, both FIB and TT were identified as risk factors for postoperative acute bleeding within the hematoma cavity. We developed a prognostic model to predict the occurrence of postoperative acute bleeding within the hematoma cavity after BHD in patients with CSDH. The model incorporated FIB, TT, coronary artery disease, and Glasgow Coma Scale scores. The model exhibited good discrimination (area under the curve: 0.725) and calibration (Hosmer-Leeshawn goodness of fit test: P > 0.1). Furthermore, decision curve analysis demonstrated the potential clinical benefit of implementing this prediction model. CONCLUSIONS The predictive model developed in this study can forecast the risk of postoperative acute bleeding within the hematoma cavity, thus aiding clinicians in selecting the optimal treatment approach for patients with CSDH.
Collapse
Affiliation(s)
- Zejun Wu
- Department of Neurosurgery, Taihe Hospital, Jinzhou Medical University Union Training Base, Shiyan, China; Department of Neurosurgery, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Hui Wang
- Department of Neurosurgery, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Junshuang Zhao
- Department of Neurosurgery, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Chaobin Wang
- Department of Neurosurgery, Taihe Hospital, Jinzhou Medical University Union Training Base, Shiyan, China
| | - Haodong Liu
- The First Clinical College, Hubei University of Medicine, Shiyan, China
| | - Chaojia Wang
- Department of Neurosurgery, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Anrong Li
- Department of Neurosurgery, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Juntao Hu
- Department of Neurosurgery, Taihe Hospital, Hubei University of Medicine, Shiyan, China; Hubei KeyLaboratory of Embryonic Stem Cell Research, Tai-He Hospital, Hubei University of Medicine, Shiyan, China.
| |
Collapse
|
30
|
Ben-Shoshan SD, Lolansen SD, Mathiesen TI, MacAulay N. CSF hypersecretion versus impaired CSF absorption in posthemorrhagic hydrocephalus: a systematic review. Acta Neurochir (Wien) 2023; 165:3271-3287. [PMID: 37642688 DOI: 10.1007/s00701-023-05746-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 07/31/2023] [Indexed: 08/31/2023]
Abstract
BACKGROUND The molecular mechanisms underlying development of posthemorrhagic hydrocephalus (PHH) remain elusive. The aim of this systematic review was to evaluate existing literature on increased CSF secretion and impaired CSF absorption as pathogenic contributors to CSF accumulation in neonatal and adult PHH. METHODS The systematic review was conducted in accordance with the PRISMA guidelines. Relevant studies published before March 11th, 2023, were identified from PubMed and reference lists. Studies were screened for eligibility using predefined inclusion and exclusion criteria. Data from eligible studies were extracted and potential sources of bias were evaluated. RESULTS Nineteen studies quantified CSF production rates and/or CSF absorption capacity in human patients with PHH or animals with experimentally induced PHH. Increased CSF production was reported as early as 24 h and as late as 28 days post ictus in six out of eight studies quantifying CSF production rates in animals with experimentally induced PHH. Impaired CSF absorption was reported in all four studies quantifying CSF absorption capacity in human patients with PHH and in seven out of nine studies quantifying CSF absorption capacity in animals with experimentally induced PHH. Impaired CSF absorption was reported as early as 30 min and as late as 10 months post ictus. CONCLUSIONS The pathological CSF accumulation in PHH likely arises from a combination of increased CSF secretion and impaired CSF absorption, which may manifest at different time scales following a hemorrhagic event. Emergent evidence on increased CSF secretion by the choroid plexus may herald a paradigm shift in our understanding of PHH.
Collapse
Affiliation(s)
- Shai David Ben-Shoshan
- Department of Neuroscience, University of Copenhagen, Blegdamsvej 3B, DK-2200, Copenhagen, Denmark
| | - Sara Diana Lolansen
- Department of Neuroscience, University of Copenhagen, Blegdamsvej 3B, DK-2200, Copenhagen, Denmark
- Department of Neurosurgery, University Hospital of Copenhagen - Rigshospitalet, Copenhagen, Denmark
| | - Tiit Illimar Mathiesen
- Department of Neurosurgery, University Hospital of Copenhagen - Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Nanna MacAulay
- Department of Neuroscience, University of Copenhagen, Blegdamsvej 3B, DK-2200, Copenhagen, Denmark.
| |
Collapse
|
31
|
Li Q, Huang L, Ding Y, Sherchan P, Peng W, Zhang JH. Recombinant Slit2 suppresses neuroinflammation and Cdc42-mediated brain infiltration of peripheral immune cells via Robo1-srGAP1 pathway in a rat model of germinal matrix hemorrhage. J Neuroinflammation 2023; 20:249. [PMID: 37899442 PMCID: PMC10613398 DOI: 10.1186/s12974-023-02935-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 10/17/2023] [Indexed: 10/31/2023] Open
Abstract
BACKGROUND Germinal matrix hemorrhage (GMH) is a devastating neonatal stroke, in which neuroinflammation is a critical pathological contributor. Slit2, a secreted extracellular matrix protein, plays a repulsive role in axon guidance and leukocyte chemotaxis via the roundabout1 (Robo1) receptor. This study aimed to explore effects of recombinant Slit2 on neuroinflammation and the underlying mechanism in a rat model of GMH. METHODS GMH was induced by stereotactically infusing 0.3 U of bacterial collagenase into the germinal matrix of 7-day-old Sprague Dawley rats. Recombinant Slit2 or its vehicle was administered intranasally at 1 h after GMH and daily for 3 consecutive days. A decoy receptor recombinant Robo1 was co-administered with recombinant Slit2 after GMH. Slit2 siRNA, srGAP1 siRNA or the scrambled sequences were administered intracerebroventricularly 24 h before GMH. Neurobehavior, brain water content, Western blotting, immunofluorescence staining and Cdc42 activity assays were performed. RESULTS The endogenous brain Slit2 and Robo1 expressions were increased after GMH. Robo1 was expressed on neuron, astrocytes and infiltrated peripheral immune cells in the brain. Endogenous Slit2 knockdown by Slit2 siRNA exacerbated brain edema and neurological deficits following GMH. Recombinant Slit2 (rSlit2) reduced neurological deficits, proinflammatory cytokines, intercellular adhesion molecules, peripheral immune cell markers, neuronal apoptosis and Cdc42 activity in the brain tissue after GMH. The anti-neuroinflammation effects were reversed by recombinant Robo1 co-administration or srGAP1 siRNA. CONCLUSIONS Recombinant Slit2 reduced neuroinflammation and neuron apoptosis after GMH. Its anti-neuroinflammation effects by suppressing onCdc42-mediated brain peripheral immune cells infiltration was at least in part via Robo1-srGAP1 pathway. These results imply that recombinant Slit2 may have potentials as a therapeutic option for neonatal brain injuries.
Collapse
Affiliation(s)
- Qian Li
- Department of Pediatrics, Army Medical Center, Army Medical University, 10 Changjiang Access Rd, Yuzhong District, Chongqing, 400042, China
- Women and Children's Hospital of Chongqing Medical University, 120 Longshan Access Rd, Yubei District, Chongqing, 400010, China
| | - Lei Huang
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, 11041 Campus Street, Loma Linda, CA, 92354, USA
- Department of Neurosurgery, School of Medicine, Loma Linda University, 11234 Anderson Street, Loma Linda, CA, 92354, USA
| | - Yan Ding
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, 11041 Campus Street, Loma Linda, CA, 92354, USA
| | - Prativa Sherchan
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, 11041 Campus Street, Loma Linda, CA, 92354, USA
| | - Wenjie Peng
- Department of Pediatrics, Army Medical Center, Army Medical University, 10 Changjiang Access Rd, Yuzhong District, Chongqing, 400042, China
| | - John H Zhang
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, 11041 Campus Street, Loma Linda, CA, 92354, USA.
- Department of Neurosurgery, School of Medicine, Loma Linda University, 11234 Anderson Street, Loma Linda, CA, 92354, USA.
| |
Collapse
|
32
|
Paez-Gonzalez P, Lopez-de-San-Sebastian J, Ceron-Funez R, Jimenez AJ, Rodríguez-Perez LM. Therapeutic strategies to recover ependymal barrier after inflammatory damage: relevance for recovering neurogenesis during development. Front Neurosci 2023; 17:1204197. [PMID: 37397456 PMCID: PMC10308384 DOI: 10.3389/fnins.2023.1204197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 05/22/2023] [Indexed: 07/04/2023] Open
Abstract
The epithelium covering the surfaces of the cerebral ventricular system is known as the ependyma, and is essential for maintaining the physical and functional integrity of the central nervous system. Additionally, the ependyma plays an essential role in neurogenesis, neuroinflammatory modulation and neurodegenerative diseases. Ependyma barrier is severely affected by perinatal hemorrhages and infections that cross the blood brain barrier. The recovery and regeneration of ependyma after damage are key to stabilizing neuroinflammatory and neurodegenerative processes that are critical during early postnatal ages. Unfortunately, there are no effective therapies to regenerate this tissue in human patients. Here, the roles of the ependymal barrier in the context of neurogenesis and homeostasis are reviewed, and future research lines for development of actual therapeutic strategies are discussed.
Collapse
Affiliation(s)
- Patricia Paez-Gonzalez
- Department of Cell Biology, Genetics and Physiology, University of Malaga, Málaga, Spain
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Málaga, Spain
| | | | - Raquel Ceron-Funez
- Department of Cell Biology, Genetics and Physiology, University of Malaga, Málaga, Spain
| | - Antonio J. Jimenez
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Málaga, Spain
| | - Luis Manuel Rodríguez-Perez
- Department of Cell Biology, Genetics and Physiology, University of Malaga, Málaga, Spain
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Málaga, Spain
- Department of Human Physiology, Human Histology, Pathological Anatomy and Sports, University of Malaga, Málaga, Spain
| |
Collapse
|
33
|
Alshareef M, Hatchell D, Vasas T, Mallah K, Shingala A, Cutrone J, Alawieh A, Guo C, Tomlinson S, Eskandari R. Complement Drives Chronic Inflammation and Progressive Hydrocephalus in Murine Neonatal Germinal Matrix Hemorrhage. Int J Mol Sci 2023; 24:10171. [PMID: 37373319 PMCID: PMC10299267 DOI: 10.3390/ijms241210171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/01/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
Germinal matrix hemorrhage (GMH) is a pathology that occurs in infancy, with often devastating long-term consequences. Posthemorrhagic hydrocephalus (PHH) can develop acutely, while periventricular leukomalacia (PVL) is a chronic sequala. There are no pharmacological therapies to treat PHH and PVL. We investigated different aspects of the complement pathway in acute and chronic outcomes after murine neonatal GMH induced at postnatal day 4 (P4). Following GMH-induction, the cytolytic complement membrane attack complex (MAC) colocalized with infiltrating red blood cells (RBCs) acutely but not in animals treated with the complement inhibitor CR2-Crry. Acute MAC deposition on RBCs was associated with heme oxygenase-1 expression and heme and iron deposition, which was reduced with CR2-Crry treatment. Complement inhibition also reduced hydrocephalus and improved survival. Following GMH, there were structural alterations in specific brain regions linked to motor and cognitive functions, and these changes were ameliorated by CR2-Crry, as measured at various timepoints through P90. Astrocytosis was reduced in CR2-Crry-treated animals at chronic, but not acute, timepoints. At P90, myelin basic protein and LAMP-1 colocalized, indicating chronic ongoing phagocytosis of white matter, which was reduced by CR2-Crry treatment. Data indicate acute MAC-mediated iron-related toxicity and inflammation exacerbated the chronic effects of GMH.
Collapse
Affiliation(s)
- Mohammed Alshareef
- Department of Neurological Surgery, Children’s Hospital Colorado, University of Colorado School of Medicine, Aurora, CO 80045, USA;
| | - Devin Hatchell
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC 29425, USA; (D.H.); (K.M.); (C.G.)
| | - Tyler Vasas
- College of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA; (T.V.); (A.S.)
| | - Khalil Mallah
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC 29425, USA; (D.H.); (K.M.); (C.G.)
| | - Aakash Shingala
- College of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA; (T.V.); (A.S.)
| | - Jonathan Cutrone
- Department of Family Medicine, AnMed Health Medical Center, Anderson, SC 29621, USA;
| | - Ali Alawieh
- Department of Neurological Surgery, Emory University School of Medicine, Atlanta, GA 30322, USA;
| | - Chunfang Guo
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC 29425, USA; (D.H.); (K.M.); (C.G.)
| | - Stephen Tomlinson
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC 29425, USA; (D.H.); (K.M.); (C.G.)
- Ralph Johnson VA Medical Center, Charleston, SC 29401, USA
| | - Ramin Eskandari
- Department of Neurological Surgery, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
34
|
Li Y, Liu C, Wang G, Wang H, Liu X, Huang C, Chen Y, Fan L, Zhou L, Tong A. HDAC3 inhibitor (BRD3308) modulates microglial pyroptosis and neuroinflammation through PPARγ/NLRP3/GSDMD to improve neurological function after intraventricular hemorrhage in mice. Neuropharmacology 2023:109633. [PMID: 37327970 DOI: 10.1016/j.neuropharm.2023.109633] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 05/01/2023] [Accepted: 06/06/2023] [Indexed: 06/18/2023]
Abstract
Neuroinflammation plays a vital role in intraventricular hemorrhage (IVH). Excessive neuroinflammation after IVH can activate the inflammasome in the cell and accelerate the occurrence of pyroptosis in cells, produce more inflammatory mediators, increase cell death, and lead to neurological deficits. Previous studies have reported that BRD3308 (BRD), an inhibitor of histone deacetylation by histone deacetylase 3 (HDAC3), suppresses inflammation-induced apoptosis and exhibits anti-inflammatory properties. However, it is unclear how BRD reduces the occurrence of the inflammatory cascade. In this study, we stereotactically punctured the ventricles of male C57BL/6J mice and injected autologous blood via the tail vein to simulate ventricular hemorrhage. Magnetic resonance imaging was used to detect ventricular hemorrhage and enlargement. Our findings demonstrated that BRD treatment significantly improved neurobehavioral performance and decreased neuronal loss, microglial activation, and pyroptosis in the hippocampus after IVH. At the molecular level, this treatment upregulated the expression of peroxisome proliferator-activated receptor γ (PPARγ) and inhibited NLRP3-mediated pyroptosis and inflammatory cytokines. Therefore, we concluded that BRD reduced pyroptosis and neuroinflammation and improve nerve function in part by activating the PPARγ/NLRP3/GSDMD signaling pathway. Our findings suggest a potential preventive role for BRD in IVH.
Collapse
Affiliation(s)
- Yuanyou Li
- Department of Neurosurgery, West China Medical School, West China Hospital, Sichuan University, Chengdu, China
| | - Chang Liu
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Guoqing Wang
- Department of Neurosurgery, West China Medical School, West China Hospital, Sichuan University, Chengdu, China
| | - Haoxiang Wang
- Department of Neurosurgery, West China Medical School, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoyin Liu
- Department of Neurosurgery, West China Medical School, West China Hospital, Sichuan University, Chengdu, China
| | - Cheng Huang
- State Key Laboratory of Biotherapy, West China Medical School, Sichuan University, Chengdu, China
| | - Yaxing Chen
- Department of Neurosurgery, West China Medical School, West China Hospital, Sichuan University, Chengdu, China
| | - Lingjie Fan
- College of Computer Science, Sichuan University, Chengdu, China
| | - Liangxue Zhou
- Department of Neurosurgery, West China Medical School, West China Hospital, Sichuan University, Chengdu, China.
| | - Aiping Tong
- State Key Laboratory of Biotherapy, West China Medical School, Sichuan University, Chengdu, China.
| |
Collapse
|
35
|
Shi Y, Keep RF. Fluid movement in the healthy and diseased brain. Neurobiol Dis 2023:106168. [PMID: 37230181 DOI: 10.1016/j.nbd.2023.106168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023] Open
Affiliation(s)
- Yejie Shi
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, United States of America
| | - Richard F Keep
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI 48109, United States of America.
| |
Collapse
|
36
|
Kaliuzhka V, Tkachenko A, Myasoedov V, Markevych M, Onishchenko A, Babalyan I, Piatykop V. The Prognostic Value of Eryptosis Parameters in the Cerebrospinal Fluid for Cerebral Vasospasm and Delayed Cerebral Ischemia Formation. World Neurosurg 2023; 173:e578-e585. [PMID: 36842532 DOI: 10.1016/j.wneu.2023.02.096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/19/2023] [Accepted: 02/20/2023] [Indexed: 02/26/2023]
Abstract
BACKGROUND Delayed cerebral ischemia (DCI) and cerebral vasospasm (VS.) contribute to poor outcomes in patients with aneurysmal subarachnoid hemorrhage (aSAH). The pathophysiology of DCI is not fully understood, and this has hindered the adoption of a uniform definition. Reliable diagnostic tests and effective evidence-based treatment are lacking. This study explored the possibility of using eryptosis parameters in the cerebrospinal fluid (CSF) as a marker for early detection of VS and DCI. METHODS Twenty-one SAH patients were recruited and treated at Kharkiv Regional Hospital. The occurrences of DCI and VS were also recorded. Flow cytometry was used to assess eryptosis indices in the CSF by analyzing phosphatidylserine externalization in erythrocytes using annexin V staining and evaluating reactive oxygen species generation using 2,7-dichlorodihydrofluorescein (DCF) diacetate staining. RESULTS The percentage of annexin-positive red blood cells (RBCs) in the VS group was significantly higher than that in the non-VS group (P = 0.0017). Furthermore, higher values of this index were significantly associated with DCI formation (P < 0.0001). Patients with VS had higher mean fluorescence intensity values of DCF in RBCs compared to patients without VS (P = 0.0258). Patients with DCI also had higher mean fluorescence intensity values of DCF in RBCs (P = 0.0282). A higher percentage of annexin-positive RBCs following 3 days of aSAH was correlated with poor 3-month neurological outcomes (r = 0.7). CONCLUSIONS Our findings indicate a strong correlation between eryptosis level and DCI in a sizable series of patients with aSAH. Correlations between eryptosis indicators in the CSF and clinical and radiological manifestations suggest that eryptosis parameters are promising diagnostic biomarkers for DCI.
Collapse
Affiliation(s)
- Vladyslav Kaliuzhka
- Department of Neurosurgery, Kharkiv National Medical University, Kharkiv, Ukraine; Communal Non-Commercial Enterprise of Kharkiv Regional Council "Regional Clinical Hospital", Kharkiv, Ukraine.
| | - Anton Tkachenko
- Research Institute of Experimental and Clinical Medicine, Kharkiv National Medical University, Kharkiv, Ukraine
| | - Valeriy Myasoedov
- Department of Medical Biology, Kharkiv National Medical University, Kharkiv, Ukraine
| | - Mykyta Markevych
- Department of Internal Medicine and Endocrinology, Kharkiv National Medical University, Kharkiv, Ukraine; Communal Non-Commercial Enterprise of Kharkiv Regional Council "Regional Clinical Hospital", Kharkiv, Ukraine
| | - Anatolii Onishchenko
- Research Institute of Experimental and Clinical Medicine, Kharkiv National Medical University, Kharkiv, Ukraine
| | - Iurii Babalyan
- Department of Neurosurgery, Kharkiv National Medical University, Kharkiv, Ukraine; Communal Non-Commercial Enterprise of Kharkiv Regional Council "Regional Clinical Hospital", Kharkiv, Ukraine
| | - Volodymyr Piatykop
- Department of Neurosurgery, Kharkiv National Medical University, Kharkiv, Ukraine; Communal Non-Commercial Enterprise of Kharkiv Regional Council "Regional Clinical Hospital", Kharkiv, Ukraine
| |
Collapse
|
37
|
Keep RF, Jones HC, Hamilton MG, Drewes LR. A year in review: brain barriers and brain fluids research in 2022. Fluids Barriers CNS 2023; 20:30. [PMID: 37085841 PMCID: PMC10120509 DOI: 10.1186/s12987-023-00429-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Indexed: 04/23/2023] Open
Abstract
This aim of this editorial is to highlight progress made in brain barrier and brain fluid research in 2022. It covers studies on the blood-brain, blood-retina and blood-CSF barriers (choroid plexus and meninges), signaling within the neurovascular unit and elements of the brain fluid systems. It further discusses how brain barriers and brain fluid systems are impacted in CNS diseases, their role in disease progression and progress being made in treating such diseases.
Collapse
Affiliation(s)
- Richard F Keep
- Department of Neurosurgery, University of Michigan, R5018 BSRB 109 Zina Pitcher Place, Ann Arbor, MI, 48109-2200, USA.
| | | | - Mark G Hamilton
- Department of Clinical Neurosciences, Division of Neurosurgery, University of Calgary, Alberta, Canada
| | - Lester R Drewes
- Department of Biomedical Sciences, University of Minnesota Medical School Duluth, Duluth, MN, 55812, USA
| |
Collapse
|
38
|
Rostgaard N, Olsen MH, Capion T, MacAulay N, Juhler M. Inflammatory Markers as Predictors of Shunt Dependency and Functional Outcome in Patients with Aneurysmal Subarachnoid Hemorrhage. Biomedicines 2023; 11:biomedicines11040997. [PMID: 37189615 DOI: 10.3390/biomedicines11040997] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/16/2023] [Accepted: 03/20/2023] [Indexed: 03/28/2023] Open
Abstract
The mechanisms underlying post-hemorrhagic hydrocephalus (PHH) development following subarachnoid hemorrhage (SAH) are not fully understood, which complicates informed clinical decisions regarding the duration of external ventricular drain (EVD) treatment and prevents the prediction of shunt-dependency in the individual patient. The aim of this study was to identify potential inflammatory cerebrospinal fluid (CSF) biomarkers of PHH and, thus, shunt-dependency and functional outcome in patients with SAH. This study was a prospective observational study designed to evaluate inflammatory markers in ventricular CSF. In total, 31 Patients with SAH who required an EVD between June 2019 and September 2021 at the Department of Neurosurgery, Rigshospitalet, Copenhagen, Denmark, were included. CSF samples were collected twice from each patient and analyzed for 92 inflammatory markers via proximity extension assay (PEA), and the prognostic ability of the markers was investigated. In total, 12 patients developed PHH, while 19 were weaned from their EVD. Their 6-month functional outcome was determined with the modified Rankin Scale. Of the 92 analyzed inflammatory biomarkers, 79 were identified in the samples. Seven markers (SCF, OPG, LAP TGFβ1, Flt3L, FGF19, CST5, and CSF1) were found to be predictors of shunt dependency, and four markers (TNFα, CXCL5, CCL20, and IL8) were found to be predictors of functional outcome. In this study, we identified promising inflammatory biomarkers that are able to predict (i) the functional outcome in patients with SAH and (ii) the development of PHH and, thus, the shunt dependency of the individual patients. These inflammatory markers may have the potential to be employed as predictive biomarkers of shunt dependency and functional outcome following SAH and could, as such, be applied in the clinic.
Collapse
|
39
|
NLRP3-dependent lipid droplet formation contributes to posthemorrhagic hydrocephalus by increasing the permeability of the blood-cerebrospinal fluid barrier in the choroid plexus. Exp Mol Med 2023; 55:574-586. [PMID: 36869068 PMCID: PMC10073156 DOI: 10.1038/s12276-023-00955-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 12/14/2022] [Accepted: 12/20/2022] [Indexed: 03/05/2023] Open
Abstract
Hydrocephalus is a severe complication that can result from intracerebral hemorrhage, especially if this hemorrhage extends into the ventricles. Our previous study indicated that the NLRP3 inflammasome mediates cerebrospinal fluid hypersecretion in the choroid plexus epithelium. However, the pathogenesis of posthemorrhagic hydrocephalus remains unclear, and therapeutic strategies for prevention and treatment are lacking. In this study, an Nlrp3-/- rat model of intracerebral hemorrhage with ventricular extension and primary choroid plexus epithelial cell culture were used to investigate the potential effects of NLRP3-dependent lipid droplet formation and its role in the pathogenesis of posthemorrhagic hydrocephalus. The data indicated that NLRP3-mediated dysfunction of the blood-cerebrospinal fluid barrier (B-CSFB) accelerated neurological deficits and hydrocephalus, at least in part, through the formation of lipid droplets in the choroid plexus; these lipid droplets interacted with mitochondria and increased the release of mitochondrial reactive oxygen species that destroyed tight junctions in the choroid plexus after intracerebral hemorrhage with ventricular extension. This study broadens the current understanding of the relationship among NLRP3, lipid droplets and the B-CSFB and provides a new therapeutic target for the treatment of posthemorrhagic hydrocephalus. Strategies to protect the B-CSFB may be effective therapeutic approaches for posthemorrhagic hydrocephalus.
Collapse
|
40
|
Huang K, Ran Y, Deng Z, Liu Y, Zhou L. Letter to the Editor Regarding "A Predictive Nomogram for Postoperative Hydrocephalus After Intra- and Paraventricular Tumor Resection: A Retrospective Study of 196 Patients". World Neurosurg 2023; 170:252-253. [PMID: 36782412 DOI: 10.1016/j.wneu.2022.10.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 02/10/2023]
Affiliation(s)
- Keru Huang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Yang Ran
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Ziang Deng
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Yu Liu
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Liangxue Zhou
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
41
|
Torelli G, Severino R, Caggiano C, Torelli M, de Martino L, Russo G. Hydrocephalus As Possible Prodromal Manifestation of COVID-19: A Report of Two Cases. Cureus 2023; 15:e34371. [PMID: 36874689 PMCID: PMC9975901 DOI: 10.7759/cureus.34371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/29/2023] [Indexed: 02/03/2023] Open
Abstract
Although the etiopathology of normal pressure hydrocephalus (NPH) is still not completely defined, several studies in recent years have highlighted the role of neuro-inflammation mediators in its development. During COVID-19, the infected host develops a multifaceted inflammatory syndrome, that may lead to an uncontrolled immune system response also localized in the host nervous system. In fact, the target of the viral Spike protein, the angiotensin-converting enzyme 2 (ACE2) receptors, is widely expressed in different areas of CNS such as the olfactory epithelium, and the choroid plexus. As for idiopathic NPH, the massive release of inflammatory mediators may result in altered CSF dynamics and consequent sudden clinical decompensation. We report the cases of two patients with a known iNPH condition, in which neurological symptoms suddenly worsened, requiring hospitalization, without any evident precipitating cause. Both patients tested positive for the COVID-19 virus shortly after the neurological impairment, which had occurred, therefore, during the incubation period of the infection. On the basis of our experience we advise, in cases of NPH patients with sudden neurological worsening, to perform a molecular COVID-19 swab at the moment of clinical impairment. We, therefore, recommend considering SARS-CoV-2 infection in the differential diagnosis of a sudden and otherwise unexplainable impairment of hydrocephalic patients. Furthermore, we believe clinicians should invite NPH patients to adopt adequate preventive measures to protect them from SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Giovanni Torelli
- Neurosurgery, Azienda Ospedaliera Universitaria (AOU) San Giovanni e Ruggi d'Aragona, Salerno, ITA
| | - Rocco Severino
- Neurosurgery, Azienda Ospedaliera Universitaria (AOU) San Giovanni e Ruggi d'Aragona, Salerno, ITA
| | - Chiara Caggiano
- Neurosurgery, Azienda Ospedaliera di Rilievo Nazionale Antonio Cardarelli, Naples, ITA
| | | | - Luca de Martino
- Neurosurgery, Azienda Ospedaliera Universitaria (AOU) San Giovanni e Ruggi d'Aragona, Salerno, ITA
| | - Giuseppe Russo
- Neurosurgery, Azienda Ospedaliera Universitaria (AOU) San Giovanni e Ruggi d'Aragona, Salerno, ITA
| |
Collapse
|
42
|
Fang M, Xia F, Chen Y, Shen Y, Ma L, You C, Tao C, Hu X. Role of Eryptosis in Hemorrhagic Stroke. Front Mol Neurosci 2022; 15:932931. [PMID: 35966018 PMCID: PMC9371462 DOI: 10.3389/fnmol.2022.932931] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 06/21/2022] [Indexed: 11/16/2022] Open
Abstract
Erythrocytes undergo certain morphological changes resembling apoptosis during senescence or in an abnormal state/site, which is termed eryptosis. This process is characterized by phosphatidylserine (PS) exposure, membrane blebbing, and cell shrinkage. Eryptotic erythrocytes are subsequently removed via macrophage-mediated efferocytosis. In hemorrhagic stroke (HS), blood within an artery rapidly bleeds into the brain tissue or the subarachnoid space, resulting in severe neurological deficits. A hypoxic, over-oxidative, and pro-inflammatory microenvironment in the hematoma leads to oxidative stress, hyperosmotic shock, energy depletion, and Cl– removal in erythrocytes, which eventually triggers eryptosis. In addition, eryptosis following intracerebral hemorrhage favors hematoma clearance, which sheds light on a common mechanism of intrinsic phagocytosis. In this review, we summarized the canonical mechanisms of eryptosis and discussed its pathological conditions associated with HS. Understanding the role of eryptosis in HS may uncover additional potential interventions for further translational clinical research.
Collapse
Affiliation(s)
- Mei Fang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Fan Xia
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Yuqi Chen
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Yuke Shen
- West China School of Public Health, Sichuan University, Chengdu, China
| | - Lu Ma
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Chao You
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Chuanyuan Tao
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Chuanyuan Tao,
| | - Xin Hu
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
- Xin Hu,
| |
Collapse
|
43
|
Zeng J, Bao T, Yang K, Zhu X, Wang S, Xiang W, Ge A, Zeng L, Ge J. The mechanism of microglia-mediated immune inflammation in ischemic stroke and the role of natural botanical components in regulating microglia: A review. Front Immunol 2022; 13:1047550. [PMID: 36818470 PMCID: PMC9933144 DOI: 10.3389/fimmu.2022.1047550] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 12/05/2022] [Indexed: 02/05/2023] Open
Abstract
Ischemic stroke (IS) is one of the most fatal diseases. Neuroimmunity, inflammation, and oxidative stress play important roles in various complex mechanisms of IS. In particular, the early proinflammatory response resulting from the overactivation of resident microglia and the infiltration of circulating monocytes and macrophages in the brain after cerebral ischemia leads to secondary brain injury. Microglia are innate immune cells in the brain that constantly monitor the brain microenvironment under normal conditions. Once ischemia occurs, microglia are activated to produce dual effects of neurotoxicity and neuroprotection, and the balance of the two effects determines the fate of damaged neurons. The activation of microglia is defined as the classical activation (M1 type) or alternative activation (M2 type). M1 type microglia secrete pro-inflammatory cytokines and neurotoxic mediators to exacerbate neuronal damage, while M2 type microglia promote a repairing anti-inflammatory response. Fine regulation of M1/M2 microglial activation to minimize damage and maximize protection has important therapeutic value. This review focuses on the interaction between M1/M2 microglia and other immune cells involved in the regulation of IS phenotypic characteristics, and the mechanism of natural plant components regulating microglia after IS, providing novel candidate drugs for regulating microglial balance and IS drug development.
Collapse
Affiliation(s)
- Jinsong Zeng
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Tingting Bao
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Kailin Yang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
| | | | - Shanshan Wang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
| | - Wang Xiang
- Department of Rheumatology, The First People's Hospital Changde City, Changde, Hunan, China
| | - Anqi Ge
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Liuting Zeng
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
| | - Jinwen Ge
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China.,Hunan Academy of Chinese Medicine, Changsha, Hunan, China
| |
Collapse
|