1
|
Zhang Y, Zhang Z, Mo Y, Zhang Y, Yuan J, Zhang Q. MMP-3 mediates copper oxide nanoparticle-induced pulmonary inflammation and fibrosis. J Nanobiotechnology 2024; 22:428. [PMID: 39030581 PMCID: PMC11264740 DOI: 10.1186/s12951-024-02707-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 07/05/2024] [Indexed: 07/21/2024] Open
Abstract
BACKGROUND The increasing production and usage of copper oxide nanoparticles (Nano-CuO) raise human health concerns. Previous studies have demonstrated that exposure to Nano-CuO could induce lung inflammation, injury, and fibrosis. However, the potential underlying mechanisms are still unclear. Here, we proposed that matrix metalloproteinase-3 (MMP-3) might play an important role in Nano-CuO-induced lung inflammation, injury, and fibrosis. RESULTS Exposure of mice to Nano-CuO caused acute lung inflammation and injury in a dose-dependent manner, which was reflected by increased total cell number, neutrophil count, macrophage count, lactate dehydrogenase (LDH) activity, and CXCL1/KC level in bronchoalveolar lavage fluid (BALF) obtained on day 3 post-exposure. The time-response study showed that Nano-CuO-induced acute lung inflammation and injury appeared as early as day 1 after exposure, peaked on day 3, and ameliorated over time. However, even on day 42 post-exposure, the LDH activity and macrophage count were still higher than those in the control group, suggesting that Nano-CuO caused chronic lung inflammation. The Nano-CuO-induced pulmonary inflammation was further confirmed by H&E staining of lung sections. Trichrome staining showed that Nano-CuO exposure caused pulmonary fibrosis from day 14 to day 42 post-exposure with an increasing tendency over time. Increased hydroxyproline content and expression levels of fibrosis-associated proteins in mouse lungs were also observed. In addition, Nano-CuO exposure induced MMP-3 overexpression and increased MMP-3 secretion in mouse lungs. Knocking down MMP-3 in mouse lungs significantly attenuated Nano-CuO-induced acute and chronic lung inflammation and fibrosis. Moreover, Nano-CuO exposure caused sustained production of cleaved osteopontin (OPN) in mouse lungs, which was also significantly decreased by knocking down MMP-3. CONCLUSIONS Our results demonstrated that short-term Nano-CuO exposure caused acute lung inflammation and injury, while long-term exposure induced chronic pulmonary inflammation and fibrosis. Knocking down MMP-3 significantly ameliorated Nano-CuO-induced pulmonary inflammation, injury, and fibrosis, and also attenuated Nano-CuO-induced cleaved OPN level. Our study suggests that MMP-3 may play important roles in Nano-CuO-induced pulmonary inflammation and fibrosis via cleavage of OPN and may provide a further understanding of the mechanisms underlying Nano-CuO-induced pulmonary toxicity.
Collapse
Affiliation(s)
- Yuanbao Zhang
- Department of Epidemiology and Population Health, School of Public Health and Information Sciences, University of Louisville, 485 E. Gray Street, Louisville, KY, 40202, USA
- Beijing Key Laboratory of Occupational Safety and Health, Institute of Urban Safety and Environmental Science, Beijing Academy of Science and Technology, Beijing, 100054, China
| | - Zhenyu Zhang
- Department of Emergency, Xiang'An Hospital of Xiamen University, Xiamen, 361104, Fujian, China
| | - Yiqun Mo
- Department of Epidemiology and Population Health, School of Public Health and Information Sciences, University of Louisville, 485 E. Gray Street, Louisville, KY, 40202, USA
| | - Yue Zhang
- Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Jiali Yuan
- Department of Epidemiology and Population Health, School of Public Health and Information Sciences, University of Louisville, 485 E. Gray Street, Louisville, KY, 40202, USA
| | - Qunwei Zhang
- Department of Epidemiology and Population Health, School of Public Health and Information Sciences, University of Louisville, 485 E. Gray Street, Louisville, KY, 40202, USA.
| |
Collapse
|
2
|
Zhou W, Yuan W, Chen Y, Li C, Hu L, Li Q, Wang J, Xue R, Sun Y, Xia Q, Hu L, Wei Y, He M. Single-cell transcriptomics reveals the pulmonary inflammation induced by inhalation of subway fine particles. JOURNAL OF HAZARDOUS MATERIALS 2024; 463:132896. [PMID: 37951166 DOI: 10.1016/j.jhazmat.2023.132896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/28/2023] [Accepted: 10/28/2023] [Indexed: 11/13/2023]
Abstract
People generally take the subway and inevitably inhale the fine particles (PM2.5) on subway platforms. This study revealed whether and how subway PM2.5 causes lung inflammation. Herein, the pulmonary inflammatory response to subway PM2.5 was observed in mice, manifesting as the inflammatory cells infiltration and collagen deposition in tissue, inflammatory cytokine enhancement in bronchoalveolar lavage fluid and Toll-like receptors signal pathway activation in the lungs. Furthermore, single-cell RNA sequencing unearthed subway PM2.5-induced cell-specific responses in the lungs. Twenty immune subsets were identified by the molecular and functional properties. Specific cell populations of CD4+ T and γδ T cells were regarded as the predominant sources of pneumonitis induced by subway PM2.5. Moreover, we demonstrated that the lung inflammatory injury was significantly more attenuated in Rag1-/- mice lacking functional T cells and B cells than that in wild type mice. We proved the slight inflammation of lung tissue in Rag1-/- mice may be dependent on monocytes and neutrophils by activation of the intracellular molecular network. This is the first experimental study on subway PM2.5 causing pulmonary inflammatory damage. It will set an alarm for people who usually travel by subway and efficient measures to reduce PM2.5 should be developed in subway stations.
Collapse
Affiliation(s)
- Weilai Zhou
- Liaoning Key Laboratory of Environmental Health Damage Research and Assessment, Department of Environmental Health, School of Public Health, China Medical University, Shenyang 110122, China
| | - Wenke Yuan
- Liaoning Key Laboratory of Environmental Health Damage Research and Assessment, Department of Environmental Health, School of Public Health, China Medical University, Shenyang 110122, China
| | - Yuwei Chen
- Liaoning Key Laboratory of Environmental Health Damage Research and Assessment, Department of Environmental Health, School of Public Health, China Medical University, Shenyang 110122, China
| | - Chao Li
- Division of Pneumoconiosis, School of Public Health, China Medical University, Shenyang 110122, China
| | - Liwen Hu
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-Sen University, Guangzhou 510275, China
| | - Qidian Li
- Liaoning Key Laboratory of Environmental Health Damage Research and Assessment, Department of Environmental Health, School of Public Health, China Medical University, Shenyang 110122, China
| | - Jiawei Wang
- Liaoning Key Laboratory of Environmental Health Damage Research and Assessment, Department of Environmental Health, School of Public Health, China Medical University, Shenyang 110122, China
| | - Rou Xue
- Liaoning Key Laboratory of Environmental Health Damage Research and Assessment, Department of Environmental Health, School of Public Health, China Medical University, Shenyang 110122, China
| | - Yuan Sun
- Liaoning Key Laboratory of Environmental Health Damage Research and Assessment, Department of Environmental Health, School of Public Health, China Medical University, Shenyang 110122, China
| | - Qing Xia
- Liaoning Key Laboratory of Environmental Health Damage Research and Assessment, Department of Environmental Health, School of Public Health, China Medical University, Shenyang 110122, China
| | - Longji Hu
- Liaoning Key Laboratory of Environmental Health Damage Research and Assessment, Department of Environmental Health, School of Public Health, China Medical University, Shenyang 110122, China
| | - Yuan Wei
- Liaoning Key Laboratory of Environmental Health Damage Research and Assessment, Department of Environmental Health, School of Public Health, China Medical University, Shenyang 110122, China
| | - Miao He
- Liaoning Key Laboratory of Environmental Health Damage Research and Assessment, Department of Environmental Health, School of Public Health, China Medical University, Shenyang 110122, China; Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, China.
| |
Collapse
|
3
|
Deng R, Zhu Y, Wu X, Wang M. Toxicity and Mechanisms of Engineered Nanoparticles in Animals with Established Allergic Asthma. Int J Nanomedicine 2023; 18:3489-3508. [PMID: 37404851 PMCID: PMC10317527 DOI: 10.2147/ijn.s411804] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 06/19/2023] [Indexed: 07/06/2023] Open
Abstract
Asthma is a chronic respiratory disease that is highly sensitive to environmental pollutants, including engineered nanoparticles (NPs). Exposure to NPs has become a growing concern for human health, especially for susceptible populations. Toxicological studies have demonstrated strong associations between ubiquitous NPs and allergic asthma. In this review, we analyze articles that focus on adverse health effects induced by NPs in animal models of allergic asthma to highlight their critical role in asthma. We also integrate potential mechanisms that could stimulate and aggravate asthma by NPs. The toxic effects of NPs are influenced by their physicochemical properties, exposure dose, duration, route, as well as the exposure order between NPs and allergens. The toxic mechanisms involve oxidative stress, various inflammasomes, antigen presenting cells, immune cells, and signaling pathways. We suggest that future research should concentrate on establishing standardized models, exploring mechanistic insights at the molecular level, assessing the combined effects of binary exposures, and determining safe exposure levels of NPs. This work provides concrete evidence of the hazards posed by NPs in animals with compromised respiratory health and supports the modifying role of NPs exposure in allergic asthma.
Collapse
Affiliation(s)
- Rui Deng
- Joint International Research Laboratory of Green Buildings and Built Environments (Ministry of Education), School of Civil Engineering, Chongqing University, Chongqing, 400045, People’s Republic of China
| | - Ya Zhu
- The Affiliated Kangning Hospital, Wenzhou Medical University, Wenzhou, 325035, People’s Republic of China
| | - Xinyue Wu
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou, 310058, People’s Republic of China
| | - Mingpu Wang
- Joint International Research Laboratory of Green Buildings and Built Environments (Ministry of Education), School of Civil Engineering, Chongqing University, Chongqing, 400045, People’s Republic of China
| |
Collapse
|
4
|
Uskoković V. Lessons from the history of inorganic nanoparticles for inhalable diagnostics and therapeutics. Adv Colloid Interface Sci 2023; 315:102903. [PMID: 37084546 DOI: 10.1016/j.cis.2023.102903] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 04/04/2023] [Accepted: 04/10/2023] [Indexed: 04/23/2023]
Abstract
The respiratory tract is one of the most accessible ones to exogenous nanoparticles, yet drug delivery by their means to it is made extraordinarily challenging because of the plexus of aerodynamic, hemodynamic and biomolecular factors at cellular and extracellular levels that synergistically define the safety and efficacy of this process. Here, the use of inorganic nanoparticles (INPs) for inhalable diagnostics and therapies of the lung is viewed through the prism of the history of studies on the interaction of INPs with the lower respiratory tract. The most conceptually and methodologically innovative and illuminative studies are referred to in the chronological order, as they were reported in the literature, and the trends in the progress of understanding this interaction of immense therapeutic and toxicological significance are being deduced from it. The most outstanding actual trends delineated include the diminishment of toxicity via surface functionalization, cell targeting, tagging and tracking via controlled binding and uptake, hybrid INP treatments, magnetic guidance, combined drug and gene delivery, use as adjuvants in inhalable vaccines, and other. Many of the understudied research directions, which have been accomplished by the nanostructured organic polymers in the pulmonary niche, are discussed. The progress in the use of INPs as inhalable diagnostics or therapeutics has been hampered by their well-recognized inflammatory potential and toxicity in the respiratory tract. However, the annual numbers of methodologically innovative studies have been on the rise throughout the past two decades, suggesting that this is a prolific direction of research, its comparatively poor commercial takings notwithstanding. Still, the lack of consensus on the effects of many INP compositions at low but therapeutically effective doses, the plethora of contradictory reports on ostensibly identical chemical compositions and NP properties, and the many cases of antagonism in combinatorial NP treatments imply that the rational design of inhalable medical devices based on INPs must rely on qualitative principles for the most part and embrace a partially stochastic approach as well. At the same time, the fact that the most studied INPs for pulmonary applications have been those with some of the thickest records of pulmonary toxicity, e.g., carbon, silver, gold, silica and iron oxide, is a silent call for the expansion of the search for new inorganic compositions for use in inhalable therapies to new territories.
Collapse
Affiliation(s)
- Vuk Uskoković
- Advanced Materials and Nanobiotechnology Laboratory, TardigradeNano LLC, 7 Park Vista, Irvine, CA 92604, USA; Department of Mechanical Engineering, San Diego State University, 5500 Campanile Dr., San Diego, CA 92182, USA.
| |
Collapse
|
5
|
Solorio-Rodriguez SA, Williams A, Poulsen SS, Knudsen KB, Jensen KA, Clausen PA, Danielsen PH, Wallin H, Vogel U, Halappanavar S. Single-Walled vs. Multi-Walled Carbon Nanotubes: Influence of Physico-Chemical Properties on Toxicogenomics Responses in Mouse Lungs. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13061059. [PMID: 36985953 PMCID: PMC10057402 DOI: 10.3390/nano13061059] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/09/2023] [Accepted: 03/09/2023] [Indexed: 05/27/2023]
Abstract
Single-walled carbon nanotubes (SWCNTs) and multi-walled carbon nanotubes (MWCNTs) are nanomaterials with one or multiple layers of carbon sheets. While it is suggested that various properties influence their toxicity, the specific mechanisms are not completely known. This study was aimed to determine if single or multi-walled structures and surface functionalization influence pulmonary toxicity and to identify the underlying mechanisms of toxicity. Female C57BL/6J BomTac mice were exposed to a single dose of 6, 18, or 54 μg/mouse of twelve SWCNTs or MWCNTs of different properties. Neutrophil influx and DNA damage were assessed on days 1 and 28 post-exposure. Genome microarrays and various bioinformatics and statistical methods were used to identify the biological processes, pathways and functions altered post-exposure to CNTs. All CNTs were ranked for their potency to induce transcriptional perturbation using benchmark dose modelling. All CNTs induced tissue inflammation. MWCNTs were more genotoxic than SWCNTs. Transcriptomics analysis showed similar responses across CNTs at the pathway level at the high dose, which included the perturbation of inflammatory, cellular stress, metabolism, and DNA damage responses. Of all CNTs, one pristine SWCNT was found to be the most potent and potentially fibrogenic, so it should be prioritized for further toxicity testing.
Collapse
Affiliation(s)
| | - Andrew Williams
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON K1A0K9, Canada; (S.A.S.-R.); (A.W.)
| | - Sarah Søs Poulsen
- National Research Centre for the Working Environment, DK-2100 Copenhagen, Denmark; (S.S.P.); (K.B.K.); (K.A.J.); (P.A.C.); (P.H.D.); (H.W.); (U.V.)
| | - Kristina Bram Knudsen
- National Research Centre for the Working Environment, DK-2100 Copenhagen, Denmark; (S.S.P.); (K.B.K.); (K.A.J.); (P.A.C.); (P.H.D.); (H.W.); (U.V.)
| | - Keld Alstrup Jensen
- National Research Centre for the Working Environment, DK-2100 Copenhagen, Denmark; (S.S.P.); (K.B.K.); (K.A.J.); (P.A.C.); (P.H.D.); (H.W.); (U.V.)
| | - Per Axel Clausen
- National Research Centre for the Working Environment, DK-2100 Copenhagen, Denmark; (S.S.P.); (K.B.K.); (K.A.J.); (P.A.C.); (P.H.D.); (H.W.); (U.V.)
| | - Pernille Høgh Danielsen
- National Research Centre for the Working Environment, DK-2100 Copenhagen, Denmark; (S.S.P.); (K.B.K.); (K.A.J.); (P.A.C.); (P.H.D.); (H.W.); (U.V.)
| | - Håkan Wallin
- National Research Centre for the Working Environment, DK-2100 Copenhagen, Denmark; (S.S.P.); (K.B.K.); (K.A.J.); (P.A.C.); (P.H.D.); (H.W.); (U.V.)
- Department of Public Health, University of Copenhagen, 1353 Copenhagen, Denmark
- National Institute of Occupational Health, 0304 Oslo, Norway
| | - Ulla Vogel
- National Research Centre for the Working Environment, DK-2100 Copenhagen, Denmark; (S.S.P.); (K.B.K.); (K.A.J.); (P.A.C.); (P.H.D.); (H.W.); (U.V.)
| | - Sabina Halappanavar
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON K1A0K9, Canada; (S.A.S.-R.); (A.W.)
- Department of Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| |
Collapse
|
6
|
Brunelli A, Foscari A, Basei G, Lusvardi G, Bettiol C, Semenzin E, Marcomini A, Badetti E. Colloidal stability classification of TiO 2 nanoparticles in artificial and in natural waters by cluster analysis and a global stability index: Influence of standard and natural colloidal particles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 829:154658. [PMID: 35307445 DOI: 10.1016/j.scitotenv.2022.154658] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 03/14/2022] [Accepted: 03/14/2022] [Indexed: 06/14/2023]
Abstract
In the field of exposure-driven risk assessment of engineered nanoparticles (NPs), the highly complex interactions of NPs with natural components in surface waters are considered key factors to understand their fate and behavior in the environment. However, since experimental approaches aiming at imitating environmentally relevant conditions include many parameters and lead to a high number of outcomes, statistical tools can be extremely useful to support the results' interpretation. In this context, a multimethod approach was applied to investigate the colloidal behavior of TiO2 NPs in both artificial waters and natural brackish water (from the Venice lagoon, Italy), in the presence of standard kaolinite and natural organic matter (NOM), or of the fine fraction of natural colloidal particles (NCPs) from the lagoon sediment. In detail, the experimental data obtained, i.e. hydrodynamic size, surface charge and sedimentation velocity values, were i) statistically treated by hierarchical clustering and ii) merged into a global stability index (IG). The hierarchical clustering allowed to group the dispersions into three colloidal stability classes, where the main discriminant was the medium composition (i.e. ionic strength and presence of NOM), while the IG allowed to establish a colloidal stability ranking of the dispersions within each class. Moreover, the comparison among the different dispersions suggested that kaolinite could be considered as a suitable surrogate for NCPs, to estimate the colloidal behavior and environmental fate of TiO2 NPs in natural aqueous media.
Collapse
Affiliation(s)
- Andrea Brunelli
- DAIS - Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via Torino 155, 30170 Venice Mestre, Italy
| | - Aurelio Foscari
- DAIS - Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via Torino 155, 30170 Venice Mestre, Italy
| | - Gianpietro Basei
- DAIS - Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via Torino 155, 30170 Venice Mestre, Italy; GreenDecision Srl, Via Torino 155, 30170 Venice Mestre, Italy
| | - Gigliola Lusvardi
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, Via Campi 103, Modena, Italy
| | - Cinzia Bettiol
- DAIS - Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via Torino 155, 30170 Venice Mestre, Italy
| | - Elena Semenzin
- DAIS - Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via Torino 155, 30170 Venice Mestre, Italy
| | - Antonio Marcomini
- DAIS - Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via Torino 155, 30170 Venice Mestre, Italy
| | - Elena Badetti
- DAIS - Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via Torino 155, 30170 Venice Mestre, Italy.
| |
Collapse
|
7
|
Connolly M, Little S, Hartl MGJ, Fernandes TF. An Integrated Testing Strategy for Ecotoxicity (ITS-ECO) Assessment in the Marine Environmental Compartment using Mytilus spp.: A Case Study using Pristine and Coated CuO and TiO 2 Nanomaterials. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2022; 41:1390-1406. [PMID: 35226375 PMCID: PMC9321938 DOI: 10.1002/etc.5313] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/21/2021] [Accepted: 02/16/2022] [Indexed: 06/14/2023]
Abstract
An integrated testing strategy for ecotoxicity assessment (ITS-ECO) was developed to aid in the hazard and fate assessment of engineered nanomaterials (ENMs) deposited in marine environments using the bivalve Mytilus spp. as a test species. The ENMs copper(II) oxide (CuO) and titanium dioxide (TiO2 ), either in pristine form (core) or with functionalized coatings (polyethylene glycol [PEG], carboxyl [COOH], and ammonia [NH3 ]) were selected as case study materials based on their production levels and use. High-throughput in vitro testing in Tier 1 of the ITS-ECO revealed CuO ENMs to elicit cytotoxic effects on lysosomes of hemocytes of mussels, with the hazard potential CuO PEG > CuO COOH > CuO NH3 > CuO core, whereas TiO2 ENMs were not cytotoxic. Genotoxicity in hemocytes as well as gill cells of mussels following in vivo exposure (48 h) to CuO ENMs was also seen. Longer in vivo exposures in Tier 2 (48 h-21 days) revealed subacute and chronic oxidative effects for both CuO and TiO2 ENMs, in some cases leading to lipid peroxidation (core TiO2 ENMs). In Tier 3 bioaccumulation studies, distinct patterns of uptake for Cu (predominantly in gills) and Ti (predominantly in digestive glands) and between the different core and coated ENMs were found. Clear NM-specific and coating-dependent effects on hazard and fate were seen. Overall, using a tiered testing approach, the ITS-ECO was able to differentiate the hazard (acute, subacute, and chronic effects) posed by ENMs of different compositions and coatings and to provide information on fate for environmental risk assessment of these ENMs. Environ Toxicol Chem 2022;41:1390-1406. © 2022 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Mona Connolly
- Institute of Life and Earth SciencesHeriot‐Watt UniversityEdinburghUnited Kingdom
| | - Simon Little
- Institute of Life and Earth SciencesHeriot‐Watt UniversityEdinburghUnited Kingdom
| | - Mark G. J. Hartl
- Institute of Life and Earth SciencesHeriot‐Watt UniversityEdinburghUnited Kingdom
| | - Teresa F. Fernandes
- Institute of Life and Earth SciencesHeriot‐Watt UniversityEdinburghUnited Kingdom
| |
Collapse
|
8
|
Adeyemi JO, Onwudiwe DC, Oyedeji AO. Biogenic Synthesis of CuO, ZnO, and CuO-ZnO Nanoparticles Using Leaf Extracts of Dovyalis caffra and Their Biological Properties. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27103206. [PMID: 35630680 PMCID: PMC9144262 DOI: 10.3390/molecules27103206] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/20/2022] [Accepted: 04/28/2022] [Indexed: 01/03/2023]
Abstract
Biogenic metal oxide nanoparticles (NPs) have emerged as a useful tool in biology due to their biocompatibility properties with most biological systems. In this study, we report the synthesis of copper oxide (CuO), zinc oxide (ZnO) nanoparticles (NPs), and their nanocomposite (CuO–ZnO) prepared using the phytochemical extracts from the leaves of Dovyalis caffra (kei apple). The physicochemical properties of these nanomaterials were established using some characterization techniques including X-ray diffraction analysis (XRD), ultraviolet-visible spectroscopy (UV-vis), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and energy-dispersive X-ray spectroscopy (EDX). The XRD result confirmed the presence of a monoclinic CuO (Tenorite), and a hexagonal ZnO (Zincite) nanoparticles phase, which were both confirmed in the CuO–ZnO composite. The electron microscopy of the CuO–ZnO, CuO, and ZnO NPs showed a mixture of nano-scale sizes and spherical/short-rod morphologies, with some agglomeration. In the constituent’s analysis (EDX), no unwanted peak was found, which showed the absence of impurities. Antioxidant properties of the nanoparticles was studied, which confirmed that CuO–ZnO nanocomposite exhibited better scavenging potential than the individual metal oxide nanoparticles (CuO, and ZnO), and ascorbic acid with respect to their minimum inhibitory concentration (IC50) values. Similarly, the in vitro anticancer studies using MCF7 breast cancer cell lines indicated a concentration-dependent profile with the CuO–ZnO nanocomposite having the best activity over the respective metal oxides, but slightly lower than the standard 5-Fluorouracil drug.
Collapse
Affiliation(s)
- Jerry O. Adeyemi
- Department of Chemical and Physical Sciences, Faculty of Natural Sciences, Walter Sisulu University, Mthatha 5099, South Africa;
- Correspondence:
| | - Damian C. Onwudiwe
- Department of Chemistry, Faculty of Natural and Agricultural Science, North-West University, Private Bag X2046, Mmabatho 2735, South Africa;
- Material Science Innovation and Modelling (MaSIM) Research Focus Area, Faculty of Natural and Agricultural Science, North-West University, Mafikeng Campus, Private Bag X2046, Mmabatho 2735, South Africa
| | - Adebola O. Oyedeji
- Department of Chemical and Physical Sciences, Faculty of Natural Sciences, Walter Sisulu University, Mthatha 5099, South Africa;
| |
Collapse
|
9
|
Gupta G, Cappellini F, Farcal L, Gornati R, Bernardini G, Fadeel B. Copper oxide nanoparticles trigger macrophage cell death with misfolding of Cu/Zn superoxide dismutase 1 (SOD1). Part Fibre Toxicol 2022; 19:33. [PMID: 35538581 PMCID: PMC9088059 DOI: 10.1186/s12989-022-00467-w] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 03/29/2022] [Indexed: 01/05/2023] Open
Abstract
Background Copper oxide (CuO) nanoparticles (NPs) are known to trigger cytotoxicity in a variety of cell models, but the mechanism of cell death remains unknown. Here we addressed the mechanism of cytotoxicity in macrophages exposed to CuO NPs versus copper chloride (CuCl2). Methods The mouse macrophage cell line RAW264.7 was used as an in vitro model. Particle uptake and the cellular dose of Cu were investigated by transmission electron microscopy (TEM) and inductively coupled plasma mass spectrometry (ICP-MS), respectively. The deposition of Cu in lysosomes isolated from macrophages was also determined by ICP-MS. Cell viability (metabolic activity) was assessed using the Alamar Blue assay, and oxidative stress was monitored by a variety of methods including a luminescence-based assay for cellular glutathione (GSH), and flow cytometry-based detection of mitochondrial superoxide and mitochondrial membrane potential. Protein aggregation was determined by confocal microscopy using an aggresome-specific dye and protein misfolding was determined by circular dichroism (CD) spectroscopy. Lastly, proteasome activity was investigated using a fluorometric assay. Results We observed rapid cellular uptake of CuO NPs in macrophages with deposition in lysosomes. CuO NP-elicited cell death was characterized by mitochondrial swelling with signs of oxidative stress including the production of mitochondrial superoxide and cellular depletion of GSH. We also observed a dose-dependent accumulation of polyubiquitinated proteins and loss of proteasomal function in CuO NP-exposed cells, and we could demonstrate misfolding and mitochondrial translocation of superoxide dismutase 1 (SOD1), a Cu/Zn-dependent enzyme that plays a pivotal role in the defense against oxidative stress. The chelation of copper ions using tetrathiomolybdate (TTM) prevented cell death whereas inhibition of the cellular SOD1 chaperone aggravated toxicity. Moreover, CuO NP-triggered cell death was insensitive to the pan-caspase inhibitor, zVAD-fmk, and to wortmannin, an inhibitor of autophagy, implying that this was a non-apoptotic cell death. ZnO NPs, on the other hand, triggered autophagic cell death. Conclusions CuO NPs undergo dissolution in lysosomes leading to copper-dependent macrophage cell death characterized by protein misfolding and proteasomal insufficiency. Specifically, we present novel evidence for Cu-induced SOD1 misfolding which accords with the pronounced oxidative stress observed in CuO NP-exposed macrophages. These results are relevant for our understanding of the consequences of inadvertent human exposure to CuO NPs. Supplementary Information The online version contains supplementary material available at 10.1186/s12989-022-00467-w.
Collapse
Affiliation(s)
- Govind Gupta
- Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Nobels väg 13, Stockholm, Sweden
| | - Francesca Cappellini
- Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Nobels väg 13, Stockholm, Sweden.,Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Lucian Farcal
- Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Nobels väg 13, Stockholm, Sweden
| | - Rosalba Gornati
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Giovanni Bernardini
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Bengt Fadeel
- Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Nobels väg 13, Stockholm, Sweden.
| |
Collapse
|
10
|
Tulinska J, Mikusova ML, Liskova A, Busova M, Masanova V, Uhnakova I, Rollerova E, Alacova R, Krivosikova Z, Wsolova L, Dusinska M, Horvathova M, Szabova M, Lukan N, Stuchlikova M, Kuba D, Vecera Z, Coufalik P, Krumal K, Alexa L, Vrlikova L, Buchtova M, Dumkova J, Piler P, Thon V, Mikuska P. Copper Oxide Nanoparticles Stimulate the Immune Response and Decrease Antioxidant Defense in Mice After Six-Week Inhalation. Front Immunol 2022; 13:874253. [PMID: 35547729 PMCID: PMC9082266 DOI: 10.3389/fimmu.2022.874253] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 03/29/2022] [Indexed: 11/13/2022] Open
Abstract
Copper oxide nanoparticles (CuO NPs) are increasingly used in various industry sectors. Moreover, medical application of CuO NPs as antimicrobials also contributes to human exposure. Their toxicity, including toxicity to the immune system and blood, raises concerns, while information on their immunotoxicity is still very limited. The aim of our work was to evaluate the effects of CuO NPs (number concentration 1.40×106 particles/cm3, geometric mean diameter 20.4 nm) on immune/inflammatory response and antioxidant defense in mice exposed to 32.5 µg CuO/m3 continuously for 6 weeks. After six weeks of CuO NP inhalation, the content of copper in lungs and liver was significantly increased, while in kidneys, spleen, brain, and blood it was similar in exposed and control mice. Inhalation of CuO NPs caused a significant increase in proliferative response of T-lymphocytes after mitogenic stimulation and basal proliferative activity of splenocytes. CuO NPs significantly induced the production of IL-12p70, Th1-cytokine IFN-γ and Th2-cytokines IL-4, IL-5. Levels of TNF-α and IL-6 remained unchanged. Immune assays showed significantly suppressed phagocytic activity of granulocytes and slightly decreased respiratory burst. No significant differences in phagocytosis of monocytes were recorded. The percentage of CD3+, CD3+CD4+, CD3+CD8+, and CD3-CD19+ cell subsets in spleen, thymus, and lymph nodes did not differ between exposed and control animals. No changes in hematological parameters were found between the CuO NP exposed and control groups. The overall antioxidant protection status of the organism was expressed by evaluation of GSH and GSSG concentrations in blood samples. The experimental group exposed to CuO NPs showed a significant decrease in GSH concentration in comparison to the control group. In summary, our results indicate that sub-chronic inhalation of CuO NPs can cause undesired modulation of the immune response. Stimulation of adaptive immunity was indicated by activation of proliferation and secretion functions of lymphocytes. CuO NPs elicited pro-activation state of Th1 and Th2 lymphocytes in exposed mice. Innate immunity was affected by impaired phagocytic activity of granulocytes. Reduced glutathione was significantly decreased in mice exposed to CuO NPs.
Collapse
Affiliation(s)
- Jana Tulinska
- Faculty of Medicine, Slovak Medical University, Bratislava, Slovakia
| | | | - Aurelia Liskova
- Faculty of Medicine, Slovak Medical University, Bratislava, Slovakia
| | - Milena Busova
- Institute of Hygiene and Epidemiology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czechia
| | - Vlasta Masanova
- Faculty of Medicine, Slovak Medical University, Bratislava, Slovakia
| | - Iveta Uhnakova
- Faculty of Medicine, Slovak Medical University, Bratislava, Slovakia
| | - Eva Rollerova
- Faculty of Public Health, Slovak Medical University, Bratislava, Slovakia
| | - Radka Alacova
- Faculty of Public Health, Slovak Medical University, Bratislava, Slovakia
| | - Zora Krivosikova
- Faculty of Medicine, Slovak Medical University, Bratislava, Slovakia
| | - Ladislava Wsolova
- Faculty of Public Health, Slovak Medical University, Bratislava, Slovakia
| | - Maria Dusinska
- Health Effects Laboratory, Norwegian Institute for Air Research, Kjeller, Norway
| | - Mira Horvathova
- Faculty of Medicine, Slovak Medical University, Bratislava, Slovakia
| | - Michaela Szabova
- Faculty of Medicine, Slovak Medical University, Bratislava, Slovakia
| | - Norbert Lukan
- Faculty of Medicine, Slovak Medical University, Bratislava, Slovakia
| | | | - Daniel Kuba
- National Transplant Organization, Bratislava, Slovakia
| | - Zbynek Vecera
- Department of Environmental Analytical Chemistry, Institute of Analytical Chemistry of the Czech Academy of Sciences, Brno, Czechia
| | - Pavel Coufalik
- Department of Environmental Analytical Chemistry, Institute of Analytical Chemistry of the Czech Academy of Sciences, Brno, Czechia
| | - Kamil Krumal
- Department of Environmental Analytical Chemistry, Institute of Analytical Chemistry of the Czech Academy of Sciences, Brno, Czechia
| | - Lukas Alexa
- Department of Environmental Analytical Chemistry, Institute of Analytical Chemistry of the Czech Academy of Sciences, Brno, Czechia
| | - Lucie Vrlikova
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czechia
| | - Marcela Buchtova
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czechia
| | - Jana Dumkova
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Pavel Piler
- RECETOX, Faculty of Science, Masaryk University, Brno, Czechia
| | - Vojtech Thon
- RECETOX, Faculty of Science, Masaryk University, Brno, Czechia
| | - Pavel Mikuska
- Department of Environmental Analytical Chemistry, Institute of Analytical Chemistry of the Czech Academy of Sciences, Brno, Czechia
| |
Collapse
|
11
|
Tulinska J, Mikusova ML, Liskova A, Busova M, Masanova V, Uhnakova I, Rollerova E, Alacova R, Krivosikova Z, Wsolova L, Dusinska M, Horvathova M, Szabova M, Lukan N, Stuchlikova M, Kuba D, Vecera Z, Coufalik P, Krumal K, Alexa L, Vrlikova L, Buchtova M, Dumkova J, Piler P, Thon V, Mikuska P. Copper Oxide Nanoparticles Stimulate the Immune Response and Decrease Antioxidant Defense in Mice After Six-Week Inhalation. Front Immunol 2022. [PMID: 35547729 DOI: 10.3389/2022.874253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2023] Open
Abstract
Copper oxide nanoparticles (CuO NPs) are increasingly used in various industry sectors. Moreover, medical application of CuO NPs as antimicrobials also contributes to human exposure. Their toxicity, including toxicity to the immune system and blood, raises concerns, while information on their immunotoxicity is still very limited. The aim of our work was to evaluate the effects of CuO NPs (number concentration 1.40×106 particles/cm3, geometric mean diameter 20.4 nm) on immune/inflammatory response and antioxidant defense in mice exposed to 32.5 µg CuO/m3 continuously for 6 weeks. After six weeks of CuO NP inhalation, the content of copper in lungs and liver was significantly increased, while in kidneys, spleen, brain, and blood it was similar in exposed and control mice. Inhalation of CuO NPs caused a significant increase in proliferative response of T-lymphocytes after mitogenic stimulation and basal proliferative activity of splenocytes. CuO NPs significantly induced the production of IL-12p70, Th1-cytokine IFN-γ and Th2-cytokines IL-4, IL-5. Levels of TNF-α and IL-6 remained unchanged. Immune assays showed significantly suppressed phagocytic activity of granulocytes and slightly decreased respiratory burst. No significant differences in phagocytosis of monocytes were recorded. The percentage of CD3+, CD3+CD4+, CD3+CD8+, and CD3-CD19+ cell subsets in spleen, thymus, and lymph nodes did not differ between exposed and control animals. No changes in hematological parameters were found between the CuO NP exposed and control groups. The overall antioxidant protection status of the organism was expressed by evaluation of GSH and GSSG concentrations in blood samples. The experimental group exposed to CuO NPs showed a significant decrease in GSH concentration in comparison to the control group. In summary, our results indicate that sub-chronic inhalation of CuO NPs can cause undesired modulation of the immune response. Stimulation of adaptive immunity was indicated by activation of proliferation and secretion functions of lymphocytes. CuO NPs elicited pro-activation state of Th1 and Th2 lymphocytes in exposed mice. Innate immunity was affected by impaired phagocytic activity of granulocytes. Reduced glutathione was significantly decreased in mice exposed to CuO NPs.
Collapse
Affiliation(s)
- Jana Tulinska
- Faculty of Medicine, Slovak Medical University, Bratislava, Slovakia
| | | | - Aurelia Liskova
- Faculty of Medicine, Slovak Medical University, Bratislava, Slovakia
| | - Milena Busova
- Institute of Hygiene and Epidemiology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czechia
| | - Vlasta Masanova
- Faculty of Medicine, Slovak Medical University, Bratislava, Slovakia
| | - Iveta Uhnakova
- Faculty of Medicine, Slovak Medical University, Bratislava, Slovakia
| | - Eva Rollerova
- Faculty of Public Health, Slovak Medical University, Bratislava, Slovakia
| | - Radka Alacova
- Faculty of Public Health, Slovak Medical University, Bratislava, Slovakia
| | - Zora Krivosikova
- Faculty of Medicine, Slovak Medical University, Bratislava, Slovakia
| | - Ladislava Wsolova
- Faculty of Public Health, Slovak Medical University, Bratislava, Slovakia
| | - Maria Dusinska
- Health Effects Laboratory, Norwegian Institute for Air Research, Kjeller, Norway
| | - Mira Horvathova
- Faculty of Medicine, Slovak Medical University, Bratislava, Slovakia
| | - Michaela Szabova
- Faculty of Medicine, Slovak Medical University, Bratislava, Slovakia
| | - Norbert Lukan
- Faculty of Medicine, Slovak Medical University, Bratislava, Slovakia
| | | | - Daniel Kuba
- National Transplant Organization, Bratislava, Slovakia
| | - Zbynek Vecera
- Department of Environmental Analytical Chemistry, Institute of Analytical Chemistry of the Czech Academy of Sciences, Brno, Czechia
| | - Pavel Coufalik
- Department of Environmental Analytical Chemistry, Institute of Analytical Chemistry of the Czech Academy of Sciences, Brno, Czechia
| | - Kamil Krumal
- Department of Environmental Analytical Chemistry, Institute of Analytical Chemistry of the Czech Academy of Sciences, Brno, Czechia
| | - Lukas Alexa
- Department of Environmental Analytical Chemistry, Institute of Analytical Chemistry of the Czech Academy of Sciences, Brno, Czechia
| | - Lucie Vrlikova
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czechia
| | - Marcela Buchtova
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czechia
| | - Jana Dumkova
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Pavel Piler
- RECETOX, Faculty of Science, Masaryk University, Brno, Czechia
| | - Vojtech Thon
- RECETOX, Faculty of Science, Masaryk University, Brno, Czechia
| | - Pavel Mikuska
- Department of Environmental Analytical Chemistry, Institute of Analytical Chemistry of the Czech Academy of Sciences, Brno, Czechia
| |
Collapse
|
12
|
Zhang Y, Mo Y, Yuan J, Zhang Y, Mo L, Zhang Q. MMP-3 activation is involved in copper oxide nanoparticle-induced epithelial-mesenchymal transition in human lung epithelial cells. Nanotoxicology 2021; 15:1380-1402. [PMID: 35108494 PMCID: PMC9484543 DOI: 10.1080/17435390.2022.2030822] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Copper oxide nanoparticles (Nano-CuO) are widely used in medical and industrial fields and our daily necessities. However, the biosafety assessment of Nano-CuO is far behind their rapid development. Here, we investigated the adverse effects of Nano-CuO on normal human bronchial epithelial BEAS-2B cells, especially determined whether Nano-CuO exposure would cause dysregulation of MMP-3, an important mediator in pulmonary fibrosis, and its potential role in epithelial-mesenchymal transition (EMT). Our results showed that exposure to Nano-CuO, but not Nano-TiO2, caused increased ROS generation, MAPKs activation, and MMP-3 upregulation. Nano-CuO-induced ROS generation was not observed in mitochondrial DNA-depleted BEAS-2B ρ0 cells, indicating that mitochondria may be the main source of Nano-CuO-induced ROS generation. Pretreatment of the cells with ROS scavengers or inhibitors or depleting mitochondrial DNA significantly attenuated Nano-CuO-induced MAPKs activation and MMP-3 upregulation, and pretreatment of cells with MAPKs inhibitors abolished Nano-CuO-induced MMP-3 upregulation, suggesting Nano-CuO-induced MMP-3 upregulation is through Nano-CuO-induced ROS generation and MAPKs activation. In addition, exposure of the cells to Nano-CuO for 48 h resulted in decreased E-cadherin expression and increased expression of vimentin, α-SMA, and fibronectin, which was ameliorated by MMP-3 siRNA transfection, suggesting an important role of MMP-3 in Nano-CuO-induced EMT. Taken together, our study demonstrated that Nano-CuO exposure caused mitochondrial ROS generation, MAPKs activation, and MMP-3 upregulation. Nano-CuO exposure also caused cells to undergo EMT, which was through Nano-CuO-induced dysregulation of ROS/MAPKs/MMP-3 pathway. Our findings will provide further understanding of the potential mechanisms involved in metal nanoparticle-induced various toxic effects including EMT and pulmonary fibrosis.
Collapse
Affiliation(s)
- Yuanbao Zhang
- Department of Environmental and Occupational Health Sciences, School of Public Health and Information Sciences, University of Louisville, Louisville, KY, USA
| | - Yiqun Mo
- Department of Environmental and Occupational Health Sciences, School of Public Health and Information Sciences, University of Louisville, Louisville, KY, USA
| | - Jiali Yuan
- Department of Environmental and Occupational Health Sciences, School of Public Health and Information Sciences, University of Louisville, Louisville, KY, USA
| | - Yue Zhang
- Department of Environmental and Occupational Health Sciences, School of Public Health and Information Sciences, University of Louisville, Louisville, KY, USA
| | - Luke Mo
- Department of Environmental and Occupational Health Sciences, School of Public Health and Information Sciences, University of Louisville, Louisville, KY, USA
| | - Qunwei Zhang
- Department of Environmental and Occupational Health Sciences, School of Public Health and Information Sciences, University of Louisville, Louisville, KY, USA
| |
Collapse
|
13
|
Li S, Qiu Y, Chang M, Sun Z, He F, Li H. Effect of Soil Properties and Aging Time on Oral and Inhalation Bioaccessibility of Copper Oxide Nanoparticles in Soils. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 107:967-974. [PMID: 34132817 DOI: 10.1007/s00128-021-03287-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 06/09/2021] [Indexed: 06/12/2023]
Abstract
In this study, soils spiked with copper oxide nanoparticles (CuO NPs) or Cu(NO3)2 and aged as long as 90 days were utilized to investigate effect of soil properties and aging on oral and inhalation bioaccessibility of CuO NPs. Results showed that oral bioaccessibility of CuO NPs in gastric phase (GP) ranged from 70% to 84%, it significantly decreased to 50%-70% in intestinal phase (IP). The inhalation bioaccessibility of CuO NPs in artificial lysosomal fluid (ALF) ranged from 66% to 85%, and much higher than that in Gamble's solution (GS, 3.3%-23%). By comparing CuO NPs to Cu(NO3)2 bioaccessibility, insignificant difference was found. The aging time (D15 and D90) had limited effect on their oral and inhalation bioaccessibility. CEC and free Al were positively and clay content was negatively correlated with CuO NPs inhalation bioaccessibility, while Cu(NO3)2 inhalation bioaccessibility decreased with increasing soil clay content and pH. Our findings provide an essential basis to evaluate the human health risks of CuO NPs.
Collapse
Affiliation(s)
- Shiwei Li
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China
| | - Yanhua Qiu
- College of Resources and Environment, University of the Chinese Academy of Sciences, Beijing, 101408, China
| | - Minghui Chang
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China
| | - Zongquan Sun
- Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Fang He
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China
| | - Helian Li
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China.
| |
Collapse
|
14
|
Balasubramanian S, Perumal E. Integrated in silico analysis for the identification of key genes and signaling pathways in copper oxide nanoparticles toxicity. Toxicology 2021; 463:152984. [PMID: 34627989 DOI: 10.1016/j.tox.2021.152984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 10/02/2021] [Accepted: 10/04/2021] [Indexed: 11/24/2022]
Abstract
Copper oxide nanoparticles (CuO-NPs) are used in various industrial and commercial products due to their enhanced physicochemical properties. The vast consumption increases their exposure in the environment, thereby affecting the ecosystem. Even with the rise in research towards understanding their toxicity, the major signaling cascades and key genes involved in CuO-NPs remain elusive due to the various attributes involved (size, shape, charge, coating in terms of nanoparticles, and dose, duration, and species used in the experiment). The focus of the study is to identify the key signaling cascades and genes involved in CuO-NPs toxicity irrespective of these attributes. CuO-NPs related microarray expression profiles were screened from GEO database and were subjected to toxicogenomic analysis to elucidate the toxicity mechanism. In silico tools were used to obtain the DEGs, followed by GO and KEGG functional enrichment analysis. The identified DEGs were then analyzed to determine major signaling pathways and key genes. Module and centrality parameter analysis was performed to identify the key genes. Further, the miRNAs and transcription factors involved in regulating the genes were predicted, and their interactive pathways were constructed. A total of 44 DEGs were commonly present in all the analysed datasets and all of them were downregulated. GO analysis reveals that most of the genes were enriched in functions related to cell division and chemotaxis. Cell-cycle, chemokine, cytokine-cytokine receptor interaction, and p53 signaling pathways were the key pathways with Cdk1 as the major biomarker altered irrespective of the variables (dosage, duration, species used, and surface coating). Overall, our integrated toxicogenomic analysis reveal that Cdk1 regulated cell cycle and cytokine-cytokine signaling cascades might be responsible for CuO-NPs toxicity. These findings will help us in understanding the mechanisms involved in NPs toxicity.
Collapse
Affiliation(s)
- Satheeswaran Balasubramanian
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, 641 046, India.
| | - Ekambaram Perumal
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, 641 046, India.
| |
Collapse
|
15
|
Profiling Non-Coding RNA Changes Associated with 16 Different Engineered Nanomaterials in a Mouse Airway Exposure Model. Cells 2021; 10:cells10051085. [PMID: 34062913 PMCID: PMC8147388 DOI: 10.3390/cells10051085] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/19/2021] [Accepted: 04/25/2021] [Indexed: 12/19/2022] Open
Abstract
Perturbations in cellular molecular events and their associated biological processes provide opportunities for hazard assessment based on toxicogenomic profiling. Long non-coding RNAs (lncRNAs) are transcribed from DNA but are typically not translated into full-length proteins. Via epigenetic regulation, they play important roles in organismal response to environmental stress. The effects of nanoparticles on this important part of the epigenome are understudied. In this study, we investigated changes in lncRNA associated with hazardous inhalatory exposure of mice to 16 engineered nanomaterials (ENM)–4 ENM (copper oxide, multi-walled carbon nanotubes, spherical titanium dioxide, and rod-like titanium dioxide particles) with 4 different surface chemistries (pristine, COOH, NH2, and PEG). Mice were exposed to 10 µg of ENM by oropharyngeal aspiration for 4 consecutive days, followed by cytological analyses and transcriptomic characterization of whole lung tissues. The number of significantly altered non-coding RNA transcripts, suggestive of their degrees of toxicity, was different for each ENM type. Particle surface chemistry and shape also had varying effects on lncRNA expression. NH2 and PEG caused the strongest and weakest responses, respectively. Via correlational analyses to mRNA expression from the same samples, we could deduce that significantly altered lncRNAs are potential regulators of genes involved in mitotic cell division and DNA damage response. This study sheds more light on epigenetic mechanisms of ENM toxicity and also emphasizes the importance of the lncRNA superfamily as toxicogenomic markers of adverse ENM exposure.
Collapse
|
16
|
Kinaret PAS, Ndika J, Ilves M, Wolff H, Vales G, Norppa H, Savolainen K, Skoog T, Kere J, Moya S, Handy RD, Karisola P, Fadeel B, Greco D, Alenius H. Toxicogenomic Profiling of 28 Nanomaterials in Mouse Airways. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2004588. [PMID: 34026454 PMCID: PMC8132046 DOI: 10.1002/advs.202004588] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 01/26/2021] [Indexed: 05/04/2023]
Abstract
Toxicogenomics opens novel opportunities for hazard assessment by utilizing computational methods to map molecular events and biological processes. In this study, the transcriptomic and immunopathological changes associated with airway exposure to a total of 28 engineered nanomaterials (ENM) are investigated. The ENM are selected to have different core (Ag, Au, TiO2, CuO, nanodiamond, and multiwalled carbon nanotubes) and surface chemistries (COOH, NH2, or polyethylene glycosylation (PEG)). Additionally, ENM with variations in either size (Au) or shape (TiO2) are included. Mice are exposed to 10 µg of ENM by oropharyngeal aspiration for 4 consecutive days, followed by extensive histological/cytological analyses and transcriptomic characterization of lung tissue. The results demonstrate that transcriptomic alterations are correlated with the inflammatory cell infiltrate in the lungs. Surface modification has varying effects on the airways with amination rendering the strongest inflammatory response, while PEGylation suppresses toxicity. However, toxicological responses are also dependent on ENM core chemistry. In addition to ENM-specific transcriptional changes, a subset of 50 shared differentially expressed genes is also highlighted that cluster these ENM according to their toxicity. This study provides the largest in vivo data set currently available and as such provides valuable information to be utilized in developing predictive models for ENM toxicity.
Collapse
Affiliation(s)
- Pia A. S. Kinaret
- Institute of Biotechnology, Helsinki Institute of Life ScienceUniversity of HelsinkiHelsinki00790Finland
- Faculty of Medicine and Health TechnologyTampere UniversityTampere33720Finland
| | - Joseph Ndika
- Human Microbiome Research Program (HUMI)University of HelsinkiHelsinki00014Finland
| | - Marit Ilves
- Human Microbiome Research Program (HUMI)University of HelsinkiHelsinki00014Finland
| | - Henrik Wolff
- Finnish Institute of Occupational HealthHelsinki00250Finland
| | - Gerard Vales
- Finnish Institute of Occupational HealthHelsinki00250Finland
| | - Hannu Norppa
- Finnish Institute of Occupational HealthHelsinki00250Finland
| | - Kai Savolainen
- Finnish Institute of Occupational HealthHelsinki00250Finland
| | - Tiina Skoog
- Department of Biosciences and NutritionKarolinska InstitutetStockholm141 83Sweden
| | - Juha Kere
- Department of Biosciences and NutritionKarolinska InstitutetStockholm141 83Sweden
| | - Sergio Moya
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE)Basque Research and Technology Alliance (BRTA)Donostia‐San Sebastián20014Spain
| | - Richard D. Handy
- School of Biological & Marine SciencesUniversity of PlymouthPlymouthPL4 8AAUK
| | - Piia Karisola
- Human Microbiome Research Program (HUMI)University of HelsinkiHelsinki00014Finland
| | - Bengt Fadeel
- Institute of Environmental MedicineKarolinska InstitutetStockholm171 77Sweden
| | - Dario Greco
- Institute of Biotechnology, Helsinki Institute of Life ScienceUniversity of HelsinkiHelsinki00790Finland
- Faculty of Medicine and Health TechnologyTampere UniversityTampere33720Finland
- BioMediTech InstituteTampere UniversityTampere33520Finland
- Finnish Center for Alternative Methods (FICAM)Tampere33520Finland
| | - Harri Alenius
- Human Microbiome Research Program (HUMI)University of HelsinkiHelsinki00014Finland
- Institute of Environmental MedicineKarolinska InstitutetStockholm171 77Sweden
| |
Collapse
|
17
|
Gosens I, Costa PM, Olsson M, Stone V, Costa AL, Brunelli A, Badetti E, Bonetto A, Bokkers BGH, de Jong WH, Williams A, Halappanavar S, Fadeel B, Cassee FR. Pulmonary toxicity and gene expression changes after short-term inhalation exposure to surface-modified copper oxide nanoparticles. NANOIMPACT 2021; 22:100313. [PMID: 35559970 DOI: 10.1016/j.impact.2021.100313] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 03/13/2021] [Accepted: 03/18/2021] [Indexed: 06/15/2023]
Abstract
Copper oxide nanoparticles (CuO NPs) have previously been shown to cause dose-dependent pulmonary toxicity following inhalation. Here, CuO NPs (10 nm), coated with polyethylenimine (PEI) or ascorbate (ASC) resulting in positively or negatively charged NPs, respectively, were evaluated. Rats were exposed nose-only to similar exposure dose levels of ASC or PEI coated CuO NPs for 5 consecutive days. On day 6 and day 27 post-exposure, pulmonary toxicity markers in bronchoalveolar lavage fluid (BALF), lung histopathology and genome-wide transcriptomic changes in lungs, were assessed. BALF analyses showed a dose-dependent pulmonary inflammation and cell damage, which was supported by the lung histopathological findings of hypertrophy/hyperplasia of bronchiolar and alveolar epithelium, interstitial and alveolar inflammation, and paracortical histiocytosis in mediastinal lymph nodes for both types of CuO NPs. Transcriptomics analysis showed that pathways related to inflammation and cell proliferation were significantly activated. Additionally, we found evidence for the dysregulation of drug metabolism-related genes, especially in rats exposed to ASC-coated CuO NPs. Overall, no differences in the type of toxic effects and potency between the two surface coatings could be established, except with respect to the (regional) dose that initiates bronchiolar and alveolar hypertrophy. This disproves our hypothesis that differences in surface coatings affect the pulmonary toxicity of CuO NPs.
Collapse
Affiliation(s)
- Ilse Gosens
- National Institute for Public Health and the Environment, Bilthoven, the Netherlands.
| | - Pedro M Costa
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden; UCIBIO - Applied molecular Biosciences Unit, Department of Life Sciences, School of Science and Technology, NOVA University of Lisbon, Caparica, Portugal
| | - Magnus Olsson
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Vicki Stone
- Heriot-Watt University, School of Life Sciences, Edinburgh, UK
| | - Anna L Costa
- National Research Council, Institute of Science and Technology for Ceramics, Faenza, Italy
| | - Andrea Brunelli
- Department of Environmental Sciences, Informatics and Statistics, University of Venice Ca' Foscari, Venice, Italy
| | - Elena Badetti
- Department of Environmental Sciences, Informatics and Statistics, University of Venice Ca' Foscari, Venice, Italy
| | - Alessandro Bonetto
- Department of Environmental Sciences, Informatics and Statistics, University of Venice Ca' Foscari, Venice, Italy
| | - Bas G H Bokkers
- National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | - Wim H de Jong
- National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | - Andrew Williams
- Environmental and Radiation Health Sciences Directorate, Health Canada, Ottawa, Ontario, Canada
| | - Sabina Halappanavar
- Environmental and Radiation Health Sciences Directorate, Health Canada, Ottawa, Ontario, Canada; Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Bengt Fadeel
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Flemming R Cassee
- National Institute for Public Health and the Environment, Bilthoven, the Netherlands; Institute for Risk Assessment Studies, Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
18
|
Saarimäki LA, Federico A, Lynch I, Papadiamantis AG, Tsoumanis A, Melagraki G, Afantitis A, Serra A, Greco D. Manually curated transcriptomics data collection for toxicogenomic assessment of engineered nanomaterials. Sci Data 2021; 8:49. [PMID: 33558569 PMCID: PMC7870661 DOI: 10.1038/s41597-021-00808-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 12/16/2020] [Indexed: 02/07/2023] Open
Abstract
Toxicogenomics (TGx) approaches are increasingly applied to gain insight into the possible toxicity mechanisms of engineered nanomaterials (ENMs). Omics data can be valuable to elucidate the mechanism of action of chemicals and to develop predictive models in toxicology. While vast amounts of transcriptomics data from ENM exposures have already been accumulated, a unified, easily accessible and reusable collection of transcriptomics data for ENMs is currently lacking. In an attempt to improve the FAIRness of already existing transcriptomics data for ENMs, we curated a collection of homogenized transcriptomics data from human, mouse and rat ENM exposures in vitro and in vivo including the physicochemical characteristics of the ENMs used in each study.
Collapse
Affiliation(s)
- Laura Aliisa Saarimäki
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- BioMediTech Institute, Tampere University, Tampere, Finland
| | - Antonio Federico
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- BioMediTech Institute, Tampere University, Tampere, Finland
| | - Iseult Lynch
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, B15 2TT, Birmingham, United Kingdom
| | - Anastasios G Papadiamantis
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, B15 2TT, Birmingham, United Kingdom
- NovaMechanics Ltd, P.O Box 26014 1666, Nicosia, Cyprus
| | | | | | | | - Angela Serra
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- BioMediTech Institute, Tampere University, Tampere, Finland
| | - Dario Greco
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.
- BioMediTech Institute, Tampere University, Tampere, Finland.
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland.
- Finnish Centre for Alternative Methods (FICAM), Faculty of Medicine and Heath Technology, Tampere University, Tampere, Finland.
| |
Collapse
|
19
|
Lenders V, Koutsoumpou X, Sargsian A, Manshian BB. Biomedical nanomaterials for immunological applications: ongoing research and clinical trials. NANOSCALE ADVANCES 2020; 2:5046-5089. [PMID: 36132021 PMCID: PMC9418019 DOI: 10.1039/d0na00478b] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 08/22/2020] [Indexed: 05/04/2023]
Abstract
Research efforts on nanomaterial-based therapies for the treatment of autoimmune diseases and cancer have spiked and have made rapid progress over the past years. Nanomedicine has been shown to contribute significantly to overcome current therapeutic limitations, exhibiting advantages compared to conventional therapeutics, such as sustained drug release, delayed drug degradation and site-specific drug delivery. Multiple nanodrugs have reached the clinic, but translation is often hampered by either low targeting efficiency or undesired side effects. Nanomaterials, and especially inorganic nanoparticles, have gained criticism due to their potential toxic effects, including immunological alterations. However, many strategies have been attempted to improve the therapeutic efficacy of nanoparticles and exploit their unique properties for the treatment of inflammation and associated diseases. In this review, we elaborate on the immunomodulatory effects of nanomaterials, with a strong focus on the underlying mechanisms that lead to these specific immune responses. Nanomaterials to be discussed include inorganic nanoparticles such as gold, silica and silver, as well as organic nanomaterials such as polymer-, dendrimer-, liposomal- and protein-based nanoparticles. Furthermore, various approaches for tuning nanomaterials in order to enhance their efficacy and attenuate their immune stimulation or suppression, with respect to the therapeutic application, are described. Additionally, we illustrate how the acquired insights have been used to design immunotherapeutic strategies for a variety of diseases. The potential of nanomedicine-based therapeutic strategies in immunotherapy is further illustrated by an up to date overview of current clinical trials. Finally, recent efforts into enhancing immunogenic cell death through the use of nanoparticles are discussed.
Collapse
Affiliation(s)
- Vincent Lenders
- NanoHealth and Optical Imaging Group, Department of Imaging and Pathology, KU Leuven B-3000 Leuven Belgium
| | - Xanthippi Koutsoumpou
- NanoHealth and Optical Imaging Group, Department of Imaging and Pathology, KU Leuven B-3000 Leuven Belgium
| | - Ara Sargsian
- NanoHealth and Optical Imaging Group, Department of Imaging and Pathology, KU Leuven B-3000 Leuven Belgium
| | - Bella B Manshian
- NanoHealth and Optical Imaging Group, Department of Imaging and Pathology, KU Leuven B-3000 Leuven Belgium
| |
Collapse
|
20
|
Gallud A, Delaval M, Kinaret P, Marwah VS, Fortino V, Ytterberg J, Zubarev R, Skoog T, Kere J, Correia M, Loeschner K, Al‐Ahmady Z, Kostarelos K, Ruiz J, Astruc D, Monopoli M, Handy R, Moya S, Savolainen K, Alenius H, Greco D, Fadeel B. Multiparametric Profiling of Engineered Nanomaterials: Unmasking the Surface Coating Effect. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2002221. [PMID: 33240770 PMCID: PMC7675037 DOI: 10.1002/advs.202002221] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/29/2020] [Indexed: 05/02/2023]
Abstract
Despite considerable efforts, the properties that drive the cytotoxicity of engineered nanomaterials (ENMs) remain poorly understood. Here, the authors inverstigate a panel of 31 ENMs with different core chemistries and a variety of surface modifications using conventional in vitro assays coupled with omics-based approaches. Cytotoxicity screening and multiplex-based cytokine profiling reveals a good concordance between primary human monocyte-derived macrophages and the human monocyte-like cell line THP-1. Proteomics analysis following a low-dose exposure of cells suggests a nonspecific stress response to ENMs, while microarray-based profiling reveals significant changes in gene expression as a function of both surface modification and core chemistry. Pathway analysis highlights that the ENMs with cationic surfaces that are shown to elicit cytotoxicity downregulated DNA replication and cell cycle responses, while inflammatory responses are upregulated. These findings are validated using cell-based assays. Notably, certain small, PEGylated ENMs are found to be noncytotoxic yet they induce transcriptional responses reminiscent of viruses. In sum, using a multiparametric approach, it is shown that surface chemistry is a key determinant of cellular responses to ENMs. The data also reveal that cytotoxicity, determined by conventional in vitro assays, does not necessarily correlate with transcriptional effects of ENMs.
Collapse
Affiliation(s)
- Audrey Gallud
- Institute of Environmental MedicineKarolinska InstitutetStockholm171 77Sweden
| | - Mathilde Delaval
- Institute of Environmental MedicineKarolinska InstitutetStockholm171 77Sweden
| | - Pia Kinaret
- Faculty of Medicine and Health TechnologyTampere UniversityTampere33720Finland
- Institute of BiotechnologyUniversity of HelsinkiHelsinki00790Finland
| | - Veer Singh Marwah
- Faculty of Medicine and Health TechnologyTampere UniversityTampere33720Finland
- Institute of BiotechnologyUniversity of HelsinkiHelsinki00790Finland
| | - Vittorio Fortino
- Institute of BiomedicineUniversity of Eastern FinlandKuopio70211Finland
| | - Jimmy Ytterberg
- Department of Medical Biochemistry & BiophysicsKarolinska InstitutetStockholm171 77Sweden
| | - Roman Zubarev
- Department of Medical Biochemistry & BiophysicsKarolinska InstitutetStockholm171 77Sweden
| | - Tiina Skoog
- Department of Biosciences & NutritionKarolinska InstitutetHuddinge141 83Sweden
| | - Juha Kere
- Department of Biosciences & NutritionKarolinska InstitutetHuddinge141 83Sweden
| | - Manuel Correia
- National Food InstituteTechnical University of DenmarkKongens Lyngby2800Denmark
| | - Katrin Loeschner
- National Food InstituteTechnical University of DenmarkKongens Lyngby2800Denmark
| | - Zahraa Al‐Ahmady
- Faculty of BiologyMedicine & HealthUniversity of ManchesterManchesterM20 4GJUK
- School of Science & TechnologyNottingham Trent UniversityNottinghamNG1 8NSUK
| | - Kostas Kostarelos
- Faculty of BiologyMedicine & HealthUniversity of ManchesterManchesterM20 4GJUK
- Catalan Institute of Nanoscience and Nanotechnology (ICN2)Barcelona08193Spain
| | - Jaime Ruiz
- ISMUMR CNRS No. 5255University of BordeauxTalence33 405France
| | - Didier Astruc
- ISMUMR CNRS No. 5255University of BordeauxTalence33 405France
| | - Marco Monopoli
- Department of Pharmaceutical & Medicinal ChemistryRoyal College of Surgeons in Ireland (RCSI)Dublin2Ireland
| | - Richard Handy
- School of Biological & Marine SciencesUniversity of PlymouthPlymouthPL4 8AAUK
| | - Sergio Moya
- Soft Matter Nanotechnology LaboratoryCIC biomaGUNEDonostia‐San Sebastián20014Spain
| | - Kai Savolainen
- Finnish Institute of Occupational HealthHelsinki00032Finland
| | - Harri Alenius
- Institute of Environmental MedicineKarolinska InstitutetStockholm171 77Sweden
- Institute of BiotechnologyUniversity of HelsinkiHelsinki00790Finland
| | - Dario Greco
- Faculty of Medicine and Health TechnologyTampere UniversityTampere33720Finland
- Institute of BiotechnologyUniversity of HelsinkiHelsinki00790Finland
| | - Bengt Fadeel
- Institute of Environmental MedicineKarolinska InstitutetStockholm171 77Sweden
| |
Collapse
|
21
|
Ndika J, Ilves M, Kooter IM, Gröllers-Mulderij M, Duistermaat E, Tromp PC, Kuper F, Kinaret P, Greco D, Karisola P, Alenius H. Mechanistic Similarities between 3D Human Bronchial Epithelium and Mice Lung, Exposed to Copper Oxide Nanoparticles, Support Non-Animal Methods for Hazard Assessment. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2000527. [PMID: 32351023 DOI: 10.1002/smll.202000527] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/23/2020] [Accepted: 03/24/2020] [Indexed: 06/11/2023]
Abstract
The diversity and increasing prevalence of products derived from engineered nanomaterials (ENM), warrants implementation of non-animal approaches to health hazard assessment for ethical and practical reasons. Although non-animal approaches are becoming increasingly popular, there are almost no studies of side-by-side comparisons with traditional in vivo assays. Here, transcriptomics is used to investigate mechanistic similarities between healthy/asthmatic models of 3D air-liquid interface (ALI) cultures of donor-derived human bronchial epithelia cells, and mouse lung tissue, following exposure to copper oxide ENM. Only 19% of mouse lung genes with human orthologues are not expressed in the human 3D ALI model. Despite differences in taxonomy and cellular complexity between the systems, a core subset of matching genes cluster mouse and human samples strictly based on ENM dose (exposure severity). Overlapping gene orthologue pairs are highly enriched for innate immune functions, suggesting an important and maybe underestimated role of epithelial cells. In conclusion, 3D ALI models based on epithelial cells, are primed to bridge the gap between traditional 2D in vitro assays and animal models of airway exposure, and transcriptomics appears to be a unifying dose metric that links in vivo and in vitro test systems.
Collapse
Affiliation(s)
- Joseph Ndika
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, 00290, Finland
| | - Marit Ilves
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, 00290, Finland
| | - Ingeborg M Kooter
- The Netherlands Organization for Applied Scientific, Research TNO, P.O. Box 80015, Utrecht, 3584 CB, The Netherlands
| | - Mariska Gröllers-Mulderij
- The Netherlands Organization for Applied Scientific, Research TNO, P.O. Box 80015, Utrecht, 3584 CB, The Netherlands
| | - Evert Duistermaat
- The Netherlands Organization for Applied Scientific, Research TNO, P.O. Box 80015, Utrecht, 3584 CB, The Netherlands
| | - Peter C Tromp
- The Netherlands Organization for Applied Scientific, Research TNO, P.O. Box 80015, Utrecht, 3584 CB, The Netherlands
| | - Frieke Kuper
- The Netherlands Organization for Applied Scientific, Research TNO, P.O. Box 80015, Utrecht, 3584 CB, The Netherlands
| | - Pia Kinaret
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Helsinki, 00790, Finland
| | - Dario Greco
- Faculty of Medicine and Health Technology, Tampere University, Tampere, FI-33014, Finland
| | - Piia Karisola
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, 00290, Finland
| | - Harri Alenius
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, 00290, Finland
- Institute of Environmental Medicine, Karolinska Institutet, P.O. Box 210, Stockholm, SE-17176, Sweden
| |
Collapse
|
22
|
Kubo AL, Vasiliev G, Vija H, Krishtal J, Tõugu V, Visnapuu M, Kisand V, Kahru A, Bondarenko OM. Surface carboxylation or PEGylation decreases CuO nanoparticles' cytotoxicity to human cells in vitro without compromising their antibacterial properties. Arch Toxicol 2020; 94:1561-1573. [PMID: 32253467 PMCID: PMC7261733 DOI: 10.1007/s00204-020-02720-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 03/26/2020] [Indexed: 11/28/2022]
Abstract
Clinical use of CuO nanoparticles (NPs) as antibacterials can be hampered by their toxicity to human cells. We hypothesized that certain surface functionalizations of CuO NPs may render NPs toxic to bacteria, but still be relatively harmless to human cells. To control this hypothesis, the toxicity of differently functionalized CuO NPs to bacteria Escherichia coli vs human cells (THP-1 macrophages and HACAT keratinocytes) was compared using similar conditions and end points. CuO NPs functionalized with polyethylene glycol (CuO-PEG), carboxyl (CuO-COOH, anionic), ammonium (CuO-NH4+, cationic) and unfunctionalized CuO NPs and CuSO4 (controls) were tested. In general, the toxicity of Cu compounds decreased in the following order: CuO-NH4+ > unfunctionalized CuO > CuSO4 > CuO-COOH > CuO-PEG. Positively charged unfunctionalized CuO and especially CuO-NH4+ proved most toxic (24-h EC50 = 21.7-47 mg/l) and had comparable toxicity to bacterial and mammalian cells. The multivariate analysis revealed that toxicity of these NPs was mostly attributed to their positive zeta potential, small hydrodynamic size, high Cu dissolution, and induction of reactive oxygen species (ROS) and TNF-α. In contrast, CuO-COOH and CuO-PEG NPs had lower toxicity to human cells compared to bacteria despite efficient uptake of these NPs by human cells. In addition, these NPs did not induce TNF-α and ROS. Thus, by varying the NP functionalization and Cu form (soluble salt vs NPs), it was possible to "target" the toxicity of Cu compounds, whereas carboxylation and PEGylation rendered CuO NPs that were more toxic to bacteria than to human cells envisaging their use in medical antibacterial products.
Collapse
Affiliation(s)
- Anna-Liisa Kubo
- Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, Tallinn, Estonia
| | - Grigory Vasiliev
- Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, Tallinn, Estonia
- Department of Chemistry and Biotechnology, School of Science, TalTech, Akadeemia tee 15, Tallinn, Estonia
| | - Heiki Vija
- Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, Tallinn, Estonia
| | - Jekaterina Krishtal
- Department of Chemistry and Biotechnology, School of Science, TalTech, Akadeemia tee 15, Tallinn, Estonia
| | - Vello Tõugu
- Department of Chemistry and Biotechnology, School of Science, TalTech, Akadeemia tee 15, Tallinn, Estonia
| | - Meeri Visnapuu
- Institute of Physics, University of Tartu, W. Ostwaldi 1, Tartu, Estonia
| | - Vambola Kisand
- Institute of Physics, University of Tartu, W. Ostwaldi 1, Tartu, Estonia
| | - Anne Kahru
- Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, Tallinn, Estonia.
- Estonian Academy of Sciences, Kohtu 6, Tallinn, Estonia.
| | - Olesja M Bondarenko
- Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, Tallinn, Estonia.
| |
Collapse
|
23
|
Afantitis A, Melagraki G, Isigonis P, Tsoumanis A, Varsou DD, Valsami-Jones E, Papadiamantis A, Ellis LJA, Sarimveis H, Doganis P, Karatzas P, Tsiros P, Liampa I, Lobaskin V, Greco D, Serra A, Kinaret PAS, Saarimäki LA, Grafström R, Kohonen P, Nymark P, Willighagen E, Puzyn T, Rybinska-Fryca A, Lyubartsev A, Alstrup Jensen K, Brandenburg JG, Lofts S, Svendsen C, Harrison S, Maier D, Tamm K, Jänes J, Sikk L, Dusinska M, Longhin E, Rundén-Pran E, Mariussen E, El Yamani N, Unger W, Radnik J, Tropsha A, Cohen Y, Leszczynski J, Ogilvie Hendren C, Wiesner M, Winkler D, Suzuki N, Yoon TH, Choi JS, Sanabria N, Gulumian M, Lynch I. NanoSolveIT Project: Driving nanoinformatics research to develop innovative and integrated tools for in silico nanosafety assessment. Comput Struct Biotechnol J 2020; 18:583-602. [PMID: 32226594 PMCID: PMC7090366 DOI: 10.1016/j.csbj.2020.02.023] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 02/18/2020] [Accepted: 02/29/2020] [Indexed: 01/26/2023] Open
Abstract
Nanotechnology has enabled the discovery of a multitude of novel materials exhibiting unique physicochemical (PChem) properties compared to their bulk analogues. These properties have led to a rapidly increasing range of commercial applications; this, however, may come at a cost, if an association to long-term health and environmental risks is discovered or even just perceived. Many nanomaterials (NMs) have not yet had their potential adverse biological effects fully assessed, due to costs and time constraints associated with the experimental assessment, frequently involving animals. Here, the available NM libraries are analyzed for their suitability for integration with novel nanoinformatics approaches and for the development of NM specific Integrated Approaches to Testing and Assessment (IATA) for human and environmental risk assessment, all within the NanoSolveIT cloud-platform. These established and well-characterized NM libraries (e.g. NanoMILE, NanoSolutions, NANoREG, NanoFASE, caLIBRAte, NanoTEST and the Nanomaterial Registry (>2000 NMs)) contain physicochemical characterization data as well as data for several relevant biological endpoints, assessed in part using harmonized Organisation for Economic Co-operation and Development (OECD) methods and test guidelines. Integration of such extensive NM information sources with the latest nanoinformatics methods will allow NanoSolveIT to model the relationships between NM structure (morphology), properties and their adverse effects and to predict the effects of other NMs for which less data is available. The project specifically addresses the needs of regulatory agencies and industry to effectively and rapidly evaluate the exposure, NM hazard and risk from nanomaterials and nano-enabled products, enabling implementation of computational 'safe-by-design' approaches to facilitate NM commercialization.
Collapse
Key Words
- (quantitative) Structure–activity relationships
- AI, Artificial Intelligence
- AOPs, Adverse Outcome Pathways
- API, Application Programming interface
- CG, coarse-grained (model)
- CNTs, carbon nanotubes
- Computational toxicology
- Engineered nanomaterials
- FAIR, Findable Accessible Inter-operable and Re-usable
- GUI, Graphical Processing Unit
- HOMO-LUMO, Highest Occupied Molecular Orbital Lowest Unoccupied Molecular Orbital
- Hazard assessment
- IATA, Integrated Approaches to Testing and Assessment
- Integrated approach for testing and assessment
- KE, key events
- MIE, molecular initiating events
- ML, machine learning
- MOA, mechanism (mode) of action
- MWCNT, multi-walled carbon nanotubes
- Machine learning
- NMs, nanomaterials
- Nanoinformatics
- OECD, Organisation for Economic Co-operation and Development
- PBPK, Physiologically Based PharmacoKinetics
- PC, Protein Corona
- PChem, Physicochemical
- PTGS, Predictive Toxicogenomics Space
- Predictive modelling
- QC, quantum-chemical
- QM, quantum-mechanical
- QSAR, quantitative structure-activity relationship
- QSPR, quantitative structure-property relationship
- RA, risk assessment
- REST, Representational State Transfer
- ROS, reactive oxygen species
- Read across
- SAR, structure-activity relationship
- SMILES, Simplified Molecular Input Line Entry System
- SOPs, standard operating procedures
- Safe-by-design
- Toxicogenomics
Collapse
Affiliation(s)
| | | | | | | | | | - Eugenia Valsami-Jones
- School of Geography, Earth and Environmental Sciences, University of Birmingham, B15 2TT Birmingham, UK
| | - Anastasios Papadiamantis
- School of Geography, Earth and Environmental Sciences, University of Birmingham, B15 2TT Birmingham, UK
| | - Laura-Jayne A. Ellis
- School of Geography, Earth and Environmental Sciences, University of Birmingham, B15 2TT Birmingham, UK
| | - Haralambos Sarimveis
- School of Chemical Engineering, National Technical University of Athens, 157 80 Athens, Greece
| | - Philip Doganis
- School of Chemical Engineering, National Technical University of Athens, 157 80 Athens, Greece
| | - Pantelis Karatzas
- School of Chemical Engineering, National Technical University of Athens, 157 80 Athens, Greece
| | - Periklis Tsiros
- School of Chemical Engineering, National Technical University of Athens, 157 80 Athens, Greece
| | - Irene Liampa
- School of Chemical Engineering, National Technical University of Athens, 157 80 Athens, Greece
| | - Vladimir Lobaskin
- School of Physics, University College Dublin, Belfield, Dublin 4, Ireland
| | - Dario Greco
- Faculty of Medicine and Health Technology, University of Tampere, FI-33014, Finland
| | - Angela Serra
- Faculty of Medicine and Health Technology, University of Tampere, FI-33014, Finland
| | | | | | - Roland Grafström
- Misvik Biology OY, Itäinen Pitkäkatu 4, 20520 Turku, Finland
- Karolinska Institute, Institute of Environmental Medicine, Nobels väg 13, 17177 Stockholm, Sweden
| | - Pekka Kohonen
- Misvik Biology OY, Itäinen Pitkäkatu 4, 20520 Turku, Finland
- Karolinska Institute, Institute of Environmental Medicine, Nobels väg 13, 17177 Stockholm, Sweden
| | - Penny Nymark
- Misvik Biology OY, Itäinen Pitkäkatu 4, 20520 Turku, Finland
- Karolinska Institute, Institute of Environmental Medicine, Nobels väg 13, 17177 Stockholm, Sweden
| | - Egon Willighagen
- Department of Bioinformatics – BiGCaT, School of Nutrition and Translational Research in Metabolism, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, the Netherlands
| | - Tomasz Puzyn
- QSAR Lab Ltd., Aleja Grunwaldzka 190/102, 80-266 Gdansk, Poland
- University of Gdansk, Faculty of Chemistry, Wita Stwosza 63, 80-308 Gdansk, Poland
| | | | - Alexander Lyubartsev
- Institutionen för material- och miljökemi, Stockholms Universitet, 106 91 Stockholm, Sweden
| | - Keld Alstrup Jensen
- The National Research Center for the Work Environment, Lersø Parkallé 105, 2100 Copenhagen, Denmark
| | - Jan Gerit Brandenburg
- Interdisciplinary Center for Scientific Computing, Heidelberg University, Germany
- Chief Digital Organization, Merck KGaA, Frankfurter Str. 250, 64293 Darmstadt, Germany
| | - Stephen Lofts
- UK Centre for Ecology and Hydrology, Library Ave, Bailrigg, Lancaster LA1 4AP, UK
| | - Claus Svendsen
- UK Centre for Ecology and Hydrology, MacLean Bldg, Benson Ln, Crowmarsh Gifford, Wallingford OX10 8BB, UK
| | - Samuel Harrison
- UK Centre for Ecology and Hydrology, Library Ave, Bailrigg, Lancaster LA1 4AP, UK
| | - Dieter Maier
- Biomax Informatics AG, Robert-Koch-Str. 2, 82152 Planegg, Germany
| | - Kaido Tamm
- Department of Chemistry, University of Tartu, Ülikooli 18, 50090 Tartu, Estonia
| | - Jaak Jänes
- Department of Chemistry, University of Tartu, Ülikooli 18, 50090 Tartu, Estonia
| | - Lauri Sikk
- Department of Chemistry, University of Tartu, Ülikooli 18, 50090 Tartu, Estonia
| | - Maria Dusinska
- NILU-Norwegian Institute for Air Research, Instituttveien 18, 2002 Kjeller, Norway
| | - Eleonora Longhin
- NILU-Norwegian Institute for Air Research, Instituttveien 18, 2002 Kjeller, Norway
| | - Elise Rundén-Pran
- NILU-Norwegian Institute for Air Research, Instituttveien 18, 2002 Kjeller, Norway
| | - Espen Mariussen
- NILU-Norwegian Institute for Air Research, Instituttveien 18, 2002 Kjeller, Norway
| | - Naouale El Yamani
- NILU-Norwegian Institute for Air Research, Instituttveien 18, 2002 Kjeller, Norway
| | - Wolfgang Unger
- Federal Institute for Material Testing and Research (BAM), Unter den Eichen 44-46, 12203 Berlin, Germany
| | - Jörg Radnik
- Federal Institute for Material Testing and Research (BAM), Unter den Eichen 44-46, 12203 Berlin, Germany
| | - Alexander Tropsha
- Eschelman School of Pharmacy, University of North Carolina at Chapel Hill, 100K Beard Hall, CB# 7568, Chapel Hill, NC 27955-7568, USA
| | - Yoram Cohen
- Samueli School Of Engineering, University of California, Los Angeles, 5531 Boelter Hall, Los Angeles, CA 90095, USA
| | - Jerzy Leszczynski
- Interdisciplinary Nanotoxicity Center, Jackson State University, 1400 J. R. Lynch Street, Jackson, MS 39217, USA
| | - Christine Ogilvie Hendren
- Center for Environmental Implications of Nanotechnologies, Duke University, 121 Hudson Hall, Durham, NC 27708-0287, USA
| | - Mark Wiesner
- Center for Environmental Implications of Nanotechnologies, Duke University, 121 Hudson Hall, Durham, NC 27708-0287, USA
| | - David Winkler
- La Trobe Institute of Molecular Sciences, La Trobe University, Plenty Rd & Kingsbury Dr, Bundoora, VIC 3086, Australia
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, Australia
- CSIRO Data61, Clayton 3168, Australia
- School of Pharmacy, University of Nottingham, Nottingham, UK
| | - Noriyuki Suzuki
- National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-0053, Japan
| | - Tae Hyun Yoon
- Department of Chemistry, College of Natural Sciences, Hanyang University, Seoul 04763, Republic of Korea
- Institute of Next Generation Material Design, Hanyang University, Seoul 04763, Republic of Korea
| | - Jang-Sik Choi
- Institute of Next Generation Material Design, Hanyang University, Seoul 04763, Republic of Korea
| | - Natasha Sanabria
- National Health Laboratory Services, 1 Modderfontein Rd, Sandringham, Johannesburg 2192, South Africa
| | - Mary Gulumian
- National Health Laboratory Services, 1 Modderfontein Rd, Sandringham, Johannesburg 2192, South Africa
- Haematology and Molecular Medicine, University of the Witwatersrand, Johannesburg, South Africa
| | - Iseult Lynch
- School of Geography, Earth and Environmental Sciences, University of Birmingham, B15 2TT Birmingham, UK
| |
Collapse
|
24
|
Abstract
Liposomes are one of the most widely investigated carriers for CRISPR/Cas9 delivery. The surface properties of liposomal carriers, including the surface charge, PEGylation, and ligand modification can significantly affect the gene silencing efficiency. Three barriers of systemic CRISPR/Cas9 delivery (long blood circulation, efficient tumor penetration, and efficient cellular uptake/endosomal escape) are analyzed on liposomal carriers with different surface charges, PEGylations, and ligand modifications. Cationic formulations dominate CRISPR/Cas9 delivery and neutral formulations also have good performance while anionic formulations are generally not proper for CRISPR/Cas9 delivery. The PEG dilemma (prolonged blood circulation vs. reduced cellular uptake/endosomal escape) and the side effect of repeated PEGylated formulation (accelerated blood clearance) were discussed. Effects of ligand modification on cationic and neutral formulations were analyzed. Finally, we summarized the achievements in liposomal CRISPR/Cas9 delivery, outlined existing problems, and provided some future perspectives. Liposomes are one of the most widely investigated carriers for CRISPR/Cas9 delivery. The surface properties of liposomal carriers, including the surface charge, PEGylation, and ligand modification can significantly affect the gene silencing efficiency. Three barriers of systemic siRNA delivery (long blood circulation, efficient tumor penetration, and efficient cellular uptake/endosomal escape) are analyzed on liposomal carriers with different surface charges, PEGylations, and ligand modifications. Cationic formulations dominate CRISPR/Cas9 delivery and neutral formulations also have good performance while anionic formulations are generally not proper for CRISPR/Cas9 delivery. The PEG dilemma (prolonged blood circulation vs. reduced cellular uptake/endosomal escape) and the side effect of repeated PEGylated formulation (accelerated blood clearance) were discussed. Effects of ligand modification on cationic and neutral formulations were analyzed. Finally, we summarized the achievements in liposomal CRISPR/Cas9 delivery, outlined existing problems, and provided some future perspectives.
Collapse
|