1
|
Xiang M, Chen C, Chen Y, Zhang Y, Shi L, Chen Y, Li J, Li B, Zeng B, Xing HR, Wang J, Zou Z. Unexpected Inhibitory Role of Silica Nanoparticles on Lung Cancer Development by Promoting M1 Polarization of Macrophages. Int J Nanomedicine 2024; 19:11087-11104. [PMID: 39502640 PMCID: PMC11537155 DOI: 10.2147/ijn.s472796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 10/19/2024] [Indexed: 11/08/2024] Open
Abstract
Introduction Inhalation exposure to silica nanoparticles (SiNPs) is frequently inevitable in modern times. Although the impact of SiNPs on the ecological niche of the lungs has been extensively explored, the role and mechanism of SiNPs in the microenvironment of lung tumors remain elusive. Methods In this investigation, Lewis lung carcinoma (LLC) was implanted into the left lung in situ after 28 days of intratracheal SiNPs injection into the lungs of mice. This study evaluates the effects of SiNPs on the tumor immune microenvironment both in vitro and in vivo. Our findings indicate that SiNPs can suppress lung cancer by modulating the immune microenvironment of tumors. Results SiNPs treatment promotes macrophage M1 polarization by activating both NF-κB pathway and glycolytic mechanisms. This phenomenon may be associated with lung inflammation and fluctuation in the pre-metastatic and metastatic microenvironments induced by SiNPs exposure in mice. Additionally, we have shown for the first time that SiNPs have an inhibitory effect on lung carcinogenesis and its progression. Conclusion This study uniquely demonstrates that SiNPs suppress lung cancer by promoting M1 polarization of macrophages in the immune microenvironment of lung tumors. Our findings are critical in exploring the interaction between SiNPs and lung cancer.
Collapse
Affiliation(s)
- Meng Xiang
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, People’s Republic of China
| | - Chengzhi Chen
- Molecular Biology Laboratory of Respiratory Disease, Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, People’s Republic of China
| | - Yuting Chen
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, People’s Republic of China
| | - Yuhan Zhang
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, People’s Republic of China
| | - Lei Shi
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, People’s Republic of China
| | - Yan Chen
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, People’s Republic of China
| | - Jie Li
- Molecular Biology Laboratory of Respiratory Disease, Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, People’s Republic of China
| | - Bowen Li
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, People’s Republic of China
| | - Bin Zeng
- Molecular Biology Laboratory of Respiratory Disease, Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, People’s Republic of China
| | - H Rosie Xing
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, People’s Republic of China
| | - Jianyu Wang
- Molecular Biology Laboratory of Respiratory Disease, Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, People’s Republic of China
| | - Zhen Zou
- Molecular Biology Laboratory of Respiratory Disease, Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, People’s Republic of China
| |
Collapse
|
2
|
del Giudice G, Migliaccio G, D’Alessandro N, Saarimäki LA, Torres Maia M, Annala ME, Leppänen J, Mӧbus L, Pavel A, Vaani M, Vallius A, Ylä‐Outinen L, Greco D, Serra A. Advancing chemical safety assessment through an omics-based characterization of the test system-chemical interaction. FRONTIERS IN TOXICOLOGY 2023; 5:1294780. [PMID: 38026842 PMCID: PMC10673692 DOI: 10.3389/ftox.2023.1294780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 10/25/2023] [Indexed: 12/01/2023] Open
Abstract
Assessing chemical safety is essential to evaluate the potential risks of chemical exposure to human health and the environment. Traditional methods relying on animal testing are being replaced by 3R (reduction, refinement, and replacement) principle-based alternatives, mainly depending on in vitro test methods and the Adverse Outcome Pathway framework. However, these approaches often focus on the properties of the compound, missing the broader chemical-biological interaction perspective. Currently, the lack of comprehensive molecular characterization of the in vitro test system results in limited real-world representation and contextualization of the toxicological effect under study. Leveraging omics data strengthens the understanding of the responses of different biological systems, emphasizing holistic chemical-biological interactions when developing in vitro methods. Here, we discuss the relevance of meticulous test system characterization on two safety assessment relevant scenarios and how omics-based, data-driven approaches can improve the future generation of alternative methods.
Collapse
Affiliation(s)
- Giusy del Giudice
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Finnish Hub for Development and Validation of Integrated Approaches (FHAIVE), Tampere, Finland
- BioMediTech Unit, Tampere University, Tampere, Finland
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Giorgia Migliaccio
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Finnish Hub for Development and Validation of Integrated Approaches (FHAIVE), Tampere, Finland
- BioMediTech Unit, Tampere University, Tampere, Finland
| | - Nicoletta D’Alessandro
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Finnish Hub for Development and Validation of Integrated Approaches (FHAIVE), Tampere, Finland
- BioMediTech Unit, Tampere University, Tampere, Finland
| | - Laura Aliisa Saarimäki
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Finnish Hub for Development and Validation of Integrated Approaches (FHAIVE), Tampere, Finland
- BioMediTech Unit, Tampere University, Tampere, Finland
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Marcella Torres Maia
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Finnish Hub for Development and Validation of Integrated Approaches (FHAIVE), Tampere, Finland
- BioMediTech Unit, Tampere University, Tampere, Finland
| | - Maria Emilia Annala
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Finnish Hub for Development and Validation of Integrated Approaches (FHAIVE), Tampere, Finland
- BioMediTech Unit, Tampere University, Tampere, Finland
| | - Jenni Leppänen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Finnish Hub for Development and Validation of Integrated Approaches (FHAIVE), Tampere, Finland
- BioMediTech Unit, Tampere University, Tampere, Finland
| | - Lena Mӧbus
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Finnish Hub for Development and Validation of Integrated Approaches (FHAIVE), Tampere, Finland
- BioMediTech Unit, Tampere University, Tampere, Finland
| | - Alisa Pavel
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Finnish Hub for Development and Validation of Integrated Approaches (FHAIVE), Tampere, Finland
- BioMediTech Unit, Tampere University, Tampere, Finland
| | - Maaret Vaani
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Finnish Hub for Development and Validation of Integrated Approaches (FHAIVE), Tampere, Finland
- BioMediTech Unit, Tampere University, Tampere, Finland
| | - Anna Vallius
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Finnish Hub for Development and Validation of Integrated Approaches (FHAIVE), Tampere, Finland
- BioMediTech Unit, Tampere University, Tampere, Finland
| | - Laura Ylä‐Outinen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Finnish Hub for Development and Validation of Integrated Approaches (FHAIVE), Tampere, Finland
- BioMediTech Unit, Tampere University, Tampere, Finland
| | - Dario Greco
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Finnish Hub for Development and Validation of Integrated Approaches (FHAIVE), Tampere, Finland
- BioMediTech Unit, Tampere University, Tampere, Finland
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Angela Serra
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Finnish Hub for Development and Validation of Integrated Approaches (FHAIVE), Tampere, Finland
- BioMediTech Unit, Tampere University, Tampere, Finland
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
- Tampere Institute for Advanced Study, Tampere University, Tampere, Finland
| |
Collapse
|
3
|
Högberg J, Järnberg J. Approaches for the setting of occupational exposure limits (OELs) for carcinogens. Crit Rev Toxicol 2023:1-37. [PMID: 37366107 DOI: 10.1080/10408444.2023.2218887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/12/2023] [Accepted: 05/22/2023] [Indexed: 06/28/2023]
Abstract
This article addresses issues of importance for occupational exposure limits (OELs) and chemical carcinogens with a focus on non-threshold carcinogens. It comprises scientific as well as regulatory issues. It is an overview, not a comprehensive review. A central topic is mechanistic research and insights, and its implications for cancer risk assessment. Alongside scientific advancements, the approaches of hazard identification and qualitative and quantitative risk assessment have developed over the years. The key steps in a quantitative risk assessment are outlined, with special attention given to the dose-response assessment and the derivation of an OEL using risk calculations or default assessment factors. The work procedures of several bodies performing cancer hazard identifications and quantitative risk assessments, as well as regulatory procedures to derive OELs for non-threshold carcinogens, are presented. Non-threshold carcinogens for which the European Union (EU) introduced binding OELs in 2017-2019 serve as illustrations together with some currently used strategies in the EU and elsewhere. Available knowledge supports the derivation of health-based OELs (Hb-OELs) for non-threshold carcinogens, and the use of a risk-based approach with low-dose linear extrapolation (linear non-threshold, LNT) as the default for non-threshold carcinogens. However, there is a need to develop methods that allow recent years' advances in cancer research to be used for improving risk estimates. It is recommended that defined risk levels (terminology and numerical values) are harmonised, and that both collective and individual risks are considered and clearly communicated. Socioeconomic aspects should be dealt with transparently and separated from the scientific health risk assessment.
Collapse
Affiliation(s)
- Johan Högberg
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | | |
Collapse
|
4
|
Nayak D, Chopra H, Chakrabartty I, Saravanan M, Barabadi H, Mohanta YK. Opportunities and challenges for bioengineered metallic nanoparticles as future nanomedicine. BIOENGINEERED NANOMATERIALS FOR WOUND HEALING AND INFECTION CONTROL 2023:517-540. [DOI: 10.1016/b978-0-323-95376-4.00012-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
5
|
Koivisto AJ, Altin M, Furxhi I, Eliat M, Trabucco S, Blosi M, Lopez de Ipiña J, Belosi F, Costa A. Burden of Disease (BoD) Assessment to Estimate Risk Factors Impact in a Real Nanomanufacturing Scenario. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4089. [PMID: 36432374 PMCID: PMC9696424 DOI: 10.3390/nano12224089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 06/16/2023]
Abstract
An industrial nanocoating process air emissions impact on public health was quantified by using the burden of disease (BoD) concept. The health loss was calculated in Disability Adjusted Life Years (DALYs), which is an absolute metric that enables comparisons of the health impacts of different causes. Here, the health loss was compared with generally accepted risk levels for air pollution. Exposure response functions were not available for Ag nanoform. The health loss for TiO2 nanoform emissions were 0.0006 DALYs per 100,000 persons per year. Moreover, the exposure risk characterization was performed by comparing the ground level air concentrations with framework values. The exposure levels were ca. 3 and 18 times lower than the derived limit values of 0.1 μg-TiO2/m3 and 0.01 μg-Ag/m3 for the general population. The accumulations of TiO2 and Ag nanoforms on the soil top layer were estimated to be up to 85 μg-TiO2/kg and 1.4 μg-Ag/kg which was considered low as compared to measured elemental TiO2 and Ag concentrations. This assessment reveals that the spray coating process air emissions are adequately controlled. This study demonstrated how the BoD concept can be applied to quantify health impacts of nanoform outdoor air emissions from an industrial site.
Collapse
Affiliation(s)
- Antti Joonas Koivisto
- Air Pollution Management APM, Mattilanmäki 38, 33610 Tampere, Finland
- Institute for Atmospheric and Earth System Research (INAR), University of Helsinki, PL 64, 00014 Helsinki, Finland
- ARCHE Consulting, Liefkensstraat 35D, 9032 Wondelgem, Belgium
| | - Marko Altin
- Witek s.r.l., Via Siena 47, 50142 Firenze, Italy
| | - Irini Furxhi
- Transgero Limited, Cullinagh, Newcastle West, Co. Limerick, V42 V384 Limerick, Ireland
- Department of Accounting and Finance, Kemmy Business School, University of Limerick, V94 T9PX Limerick, Ireland
| | - Maxime Eliat
- ARCHE Consulting, Liefkensstraat 35D, 9032 Wondelgem, Belgium
| | - Sara Trabucco
- CNR-ISAC, Institute of Atmospheric Sciences and Climate, National Research Council of Italy, Via Gobetti, 101, 40129 Bologna, Italy
| | - Magda Blosi
- ISTEC-CNR, Institute of Science and Technology for Ceramics, CNR, National Research Council, Via Granarolo 64, 48018 Faenza, Italy
| | - Jesús Lopez de Ipiña
- TECNALIA, Basque Research and Technology Alliance (BRTA), Parque Tecnológico de Alava, Leonardo Da Vinci 11, 01510 Miñano, Spain
| | - Franco Belosi
- CNR-ISAC, Institute of Atmospheric Sciences and Climate, National Research Council of Italy, Via Gobetti, 101, 40129 Bologna, Italy
| | - Anna Costa
- ISTEC-CNR, Institute of Science and Technology for Ceramics, CNR, National Research Council, Via Granarolo 64, 48018 Faenza, Italy
| |
Collapse
|
6
|
Nanomedicine for targeting the lung cancer cells by interpreting the signaling pathways. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
7
|
Visser M, Gosens I, Bard D, van Broekhuizen P, Janer G, Kuempel E, Riediker M, Vogel U, Dekkers S. Towards health-based nano reference values (HNRVs) for occupational exposure: Recommendations from an expert panel. NANOIMPACT 2022; 26:100396. [PMID: 35560294 PMCID: PMC10617652 DOI: 10.1016/j.impact.2022.100396] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/23/2022] [Accepted: 03/11/2022] [Indexed: 06/15/2023]
Abstract
Unique physicochemical characteristics of engineered nanomaterials (ENMs) suggest the need for nanomaterial-specific occupational exposure limits (OELs). Setting these limits remains a challenge. Therefore, the aim of this study was to set out a framework to evaluate the feasibility of deriving advisory health-based occupational limit values for groups of ENMs, based on scientific knowledge. We have used an expert panel approach to address three questions: 1) What ENM-categories should be distinguished to derive advisory health-based occupational limit values (or health-based Nano Reference Values, HNRVs) for groups of ENMs? 2) What evidence would be needed to define values for these categories? And 3) How much effort would it take to achieve this? The panel experts distinguished six possible categories of HNRVs: A) WHO-fiber-like high aspect ratio ENMs (HARNs), B) Non-WHO-fiber-like HARNs and other non-spheroidal ENMs, C) readily soluble spheroidal ENMs, D) biopersistent spheroidal ENMs with unknown toxicity, E) biopersistent spheroidal ENMs with substance-specific toxicity and F) biopersistent spheroidal ENMs with relatively low substance-specific toxicity. For category A, the WHO-fiber-like HARNs, agreement was reached on criteria defining this category and the approach of using health-based risk estimates for asbestos to derive the HNRV. For category B, a quite heterogeneous category, more toxicity data are needed to set an HNRV. For category C, readily soluble spheroidal ENMs, using the OEL of their molecular or ionic counterpart would be a good starting point. For the biopersistent ENMs with unknown toxicity, HNRVs cannot be applied as case-by-case testing is required. For the other biopersistent ENMs in category E and F, we make several recommendations that can facilitate the derivation of these HNRVs. The proposed categories and recommendations as outlined by this expert panel can serve as a reference point for derivation of HNRVs when health-based OELs for ENMs are not yet available.
Collapse
Affiliation(s)
- Maaike Visser
- National Institute for Public Health and the Environment, Bilthoven, the Netherlands.
| | - Ilse Gosens
- National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | - Delphine Bard
- Health and Safety Executive (HSE) Science and Research Centre, Buxton, United Kingdom
| | | | - Gemma Janer
- Leitat Technological Center, Barcelona, Spain
| | - Eileen Kuempel
- National Institute for Occupational Safety and Health, Cincinnati, OH, USA
| | - Michael Riediker
- Swiss Centre for Occupational and Environmental Health, Winterthur, Switzerland
| | - Ulla Vogel
- National Research Centre for the Working Environment, Copenhagen, Denmark
| | - Susan Dekkers
- National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| |
Collapse
|
8
|
Di Ianni E, Møller P, Vogel UB, Jacobsen NR. Pro-inflammatory response and genotoxicity caused by clay and graphene nanomaterials in A549 and THP-1 cells. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2021; 872:503405. [PMID: 34798932 DOI: 10.1016/j.mrgentox.2021.503405] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 09/02/2021] [Accepted: 09/11/2021] [Indexed: 10/20/2022]
Abstract
Nanoclays and graphene oxide nanomaterials represent a class of materials sharing similar shapes constituted of high aspect ratio platelets. The increased production of these materials for various industrial applications increases the risk of occupational exposure, consequently with elevated risk of adverse reactions and development of pulmonary diseases, including lung cancer. In this study, pro-inflammatory responses and genotoxicity were assessed in alveolar epithelial cells (A549) and activated THP-1 macrophages (THP-1a) after exposure to three nanoclays; a pristine (Bentonite) and two surface modified (benzalkonium chloride-coated Nanofil9, and dialkyldimethyl-ammonium-coated NanofilSE3000); graphene oxide (GO) and reduced graphene oxide (r-GO) nanomaterials. The pro-inflammatory response in terms of IL-8 expression was strongest in cells exposed to Bentonite, whereas surface modification resulted in decreased toxicity in both cell lines when exposed to Nanofil9 and NanofilSE3000. GO and r-GO induced a pro-inflammatory response in A549 cells, while no effect was detected with the two nanomaterials on THP-1a cells. The pro-inflammatory response was strongly correlated with in vivo inflammation in mice after intra-tracheal instillation when doses were normalized against surface area. Genotoxicity was assessed as DNA strand breaks, using the alkaline comet assay. In A549 cells, an increase in DNA strand breaks was detected only in cells exposed to Bentonite, whereas Bentonite, NanofilSE3000 and GO caused an increased level of genotoxicity in THP-1a cells. Genotoxicity in THP-1a cells was concordant with the DNA damage in bronchoalveolar lavage fluid cells following 1 and 3 days after intra-tracheal instillation in mice. In conclusion, this study shows that surface modification of pristine nanoclays reduces the inflammatory and genotoxic response in A549 and THP-1a cells, and these in vitro models show comparable toxicity to what seen in previous mouse studies with the same materials.
Collapse
Affiliation(s)
- Emilio Di Ianni
- National Research Centre for the Working Environment, Copenhagen, Denmark
| | - Peter Møller
- Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Ulla Birgitte Vogel
- National Research Centre for the Working Environment, Copenhagen, Denmark; National Food Institute, Technical University of Denmark, Kgs.Lyngby, Denmark
| | | |
Collapse
|
9
|
Nymark P, Karlsson HL, Halappanavar S, Vogel U. Adverse Outcome Pathway Development for Assessment of Lung Carcinogenicity by Nanoparticles. FRONTIERS IN TOXICOLOGY 2021; 3:653386. [PMID: 35295099 PMCID: PMC8915843 DOI: 10.3389/ftox.2021.653386] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 03/26/2021] [Indexed: 12/13/2022] Open
Abstract
Lung cancer, one of the most common and deadly forms of cancer, is in some cases associated with exposure to certain types of particles. With the rise of nanotechnology, there is concern that some engineered nanoparticles may be among such particles. In the absence of epidemiological evidence, assessment of nanoparticle carcinogenicity is currently performed on a time-consuming case-by-case basis, relying mainly on animal experiments. Non-animal alternatives exist, including a few validated cell-based methods accepted for regulatory risk assessment of nanoparticles. Furthermore, new approach methodologies (NAMs), focused on carcinogenic mechanisms and capable of handling the increasing numbers of nanoparticles, have been developed. However, such alternative methods are mainly applied as weight-of-evidence linked to generally required animal data, since challenges remain regarding interpretation of the results. These challenges may be more easily overcome by the novel Adverse Outcome Pathway (AOP) framework, which provides a basis for validation and uptake of alternative mechanism-focused methods in risk assessment. Here, we propose an AOP for lung cancer induced by nanosized foreign matter, anchored to a selection of 18 standardized methods and NAMs for in silico- and in vitro-based integrated assessment of lung carcinogenicity. The potential for further refinement of the AOP and its components is discussed in relation to available nanosafety knowledge and data. Overall, this perspective provides a basis for development of AOP-aligned alternative methods-based integrated testing strategies for assessment of nanoparticle-induced lung cancer.
Collapse
Affiliation(s)
- Penny Nymark
- Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden
| | - Hanna L. Karlsson
- Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden
| | - Sabina Halappanavar
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada
| | - Ulla Vogel
- National Research Centre for the Working Environment, Copenhagen, Denmark
- DTU Health Tech, Technical University of Denmark, Kgs. Lyngby, Denmark
| |
Collapse
|
10
|
Jagiello K, Halappanavar S, Rybińska-Fryca A, Willliams A, Vogel U, Puzyn T. Transcriptomics-Based and AOP-Informed Structure-Activity Relationships to Predict Pulmonary Pathology Induced by Multiwalled Carbon Nanotubes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2003465. [PMID: 33502096 DOI: 10.1002/smll.202003465] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/31/2020] [Indexed: 06/12/2023]
Abstract
This study presents a novel strategy that employs quantitative structure-activity relationship models for nanomaterials (Nano-QSAR) for predicting transcriptomic pathway level response using lung tissue inflammation, an essential key event (KEs) in the existing adverse outcome pathway (AOP) for lung fibrosis, as a model response. Transcriptomic profiles of mouse lungs exposed to ten different multiwalled carbon nanotubes (MWCNTs) are analyzed using statistical and bioinformatics tools. Three pathways "agranulocyte adhesion and diapedesis," "granulocyte adhesion and diapedesis," and "acute phase signaling," that (1) are commonly perturbed across the MWCNTs panel, (2) show dose response (Benchmark dose, BMDs), and (3) are anchored to the KEs identified in the lung fibrosis AOP, are considered in modelling. The three pathways are associated with tissue inflammation. The results show that the aspect ratio (κ) of MWCNTs is directly correlated with the pathway BMDs. The study establishes a methodology for QSAR construction based on canonical pathways and proposes a MWCNTs grouping strategy based on the κ-values of the specific pathway associated genes. Finally, the study shows how the AOP framework can help guide QSAR modelling efforts; conversely, the outcome of the QSAR modelling can aid in refining certain aspects of the AOP in question (here, lung fibrosis).
Collapse
Affiliation(s)
- Karolina Jagiello
- QSAR Lab Ltd., Aleja Grunwaldzka 190/102, Gdansk, 80-266, Poland
- Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, Gdansk, 80-308, Poland
| | - Sabina Halappanavar
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, K1A 0K9, Canada
- Department of Biology, University of Ottawa, Ottawa, Ontario, K1N 9A7, Canada
| | | | - Andrew Willliams
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, K1A 0K9, Canada
| | - Ulla Vogel
- The National Research Centre for the Working Environment, Copenhagen, DK-2100, Denmark
| | - Tomasz Puzyn
- QSAR Lab Ltd., Aleja Grunwaldzka 190/102, Gdansk, 80-266, Poland
- Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, Gdansk, 80-308, Poland
| |
Collapse
|
11
|
Halappanavar S, Nymark P, Krug HF, Clift MJD, Rothen-Rutishauser B, Vogel U. Non-Animal Strategies for Toxicity Assessment of Nanoscale Materials: Role of Adverse Outcome Pathways in the Selection of Endpoints. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2007628. [PMID: 33559363 DOI: 10.1002/smll.202007628] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/08/2021] [Indexed: 06/12/2023]
Abstract
Faster, cheaper, sensitive, and mechanisms-based animal alternatives are needed to address the safety assessment needs of the growing number of nanomaterials (NM) and their sophisticated property variants. Specifically, strategies that help identify and prioritize alternative schemes involving individual test models, toxicity endpoints, and assays for the assessment of adverse outcomes, as well as strategies that enable validation and refinement of these schemes for the regulatory acceptance are needed. In this review, two strategies 1) the current nanotoxicology literature review and 2) the adverse outcome pathways (AOPs) framework, a systematic process that allows the assembly of available mechanistic information concerning a toxicological response in a simple modular format, are presented. The review highlights 1) the most frequently assessed and reported ad hoc in vivo and in vitro toxicity measurements in the literature, 2) various AOPs of relevance to inhalation toxicity of NM that are presently under development, and 3) their applicability in identifying key events of toxicity for targeted in vitro assay development. Finally, using an existing AOP for lung fibrosis, the specific combinations of cell types, exposure and test systems, and assays that are experimentally supported and thus, can be used for assessing NM-induced lung fibrosis, are proposed.
Collapse
Affiliation(s)
- Sabina Halappanavar
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, K1A0K9, Canada
- Department of Biology, University of Ottawa, Ottawa, K1N6N5, Canada
| | - Penny Nymark
- Institute of Environmental Medicine, Karolinska Institute, Nobels väg 13, Stockholm, 17177, Sweden
| | - Harald F Krug
- NanoCASE GmbH, St. Gallerstr. 58, Engelburg, 9032, Switzerland
| | - Martin J D Clift
- Institute of Life Science, Swansea University Medical School, Swansea University, Singleton Park, Swansea, Wales, SA2 8PP, UK
| | | | - Ulla Vogel
- National Research Centre for the Working Environment, Lersø Parkallé 105, Copenhagen, DK-2100, Denmark
- DTU Health Tech, Technical University of Denmark, Lyngby, DK-2800 Kgs., Denmark
| |
Collapse
|
12
|
Halappanavar S, Ede JD, Mahapatra I, Krug HF, Kuempel ED, Lynch I, Vandebriel RJ, Shatkin JA. A methodology for developing key events to advance nanomaterial-relevant adverse outcome pathways to inform risk assessment. Nanotoxicology 2020; 15:289-310. [PMID: 33317378 DOI: 10.1080/17435390.2020.1851419] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Significant advances have been made in the development of Adverse Outcome Pathways (AOPs) over the last decade, mainly focused on the toxicity mechanisms of chemicals. These AOPs, although relevant to manufactured nanomaterials (MNs), do not currently capture the reported roles of size-associated properties of MNs on toxicity. Moreover, some AOs of relevance to airborne exposures to MNs such as lung inflammation and fibrosis shown in animal studies may not be targeted in routine regulatory decision making. The primary objective of the present study was to establish an approach to advance the development of AOPs of relevance to MNs using existing, publicly available, nanotoxicology literature. A systematic methodology was created for curating, organizing and applying the available literature for identifying key events (KEs). Using a case study approach, the study applied the available literature to build the biological plausibility for 'tissue injury', a KE of regulatory relevance to MNs. The results of the analysis reveal the various endpoints, assays and specific biological markers used for assessing and reporting tissue injury. The study elaborates on the limitations and opportunities of the current nanotoxicology literature and provides recommendations for the future reporting of nanotoxicology results that will expedite not only the development of AOPs for MNs but also aid in application of existing data for decision making.
Collapse
Affiliation(s)
- Sabina Halappanavar
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Canada
| | | | - Indrani Mahapatra
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, UK
| | - Harald F Krug
- Retired International Research Cooperation Manager, Empa - Swiss Federal Laboratories for Science and Materials Technology, St. Gallen, Switzerland.,NanoCASE GmbH, Engelburg, Switzerland
| | - Eileen D Kuempel
- National Institute for Occupational Safety and Health, Nanotechnology Research Center, Cincinnati, OH, USA
| | - Iseult Lynch
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, UK
| | - Rob J Vandebriel
- National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | | |
Collapse
|
13
|
Particle characterization and toxicity in C57BL/6 mice following instillation of five different diesel exhaust particles designed to differ in physicochemical properties. Part Fibre Toxicol 2020; 17:38. [PMID: 32771016 PMCID: PMC7414762 DOI: 10.1186/s12989-020-00369-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 07/22/2020] [Indexed: 02/01/2023] Open
Abstract
Background Diesel exhaust is carcinogenic and exposure to diesel particles cause health effects. We investigated the toxicity of diesel exhaust particles designed to have varying physicochemical properties in order to attribute health effects to specific particle characteristics. Particles from three fuel types were compared at 13% engine intake O2 concentration: MK1 ultra low sulfur diesel (DEP13) and the two renewable diesel fuels hydrotreated vegetable oil (HVO13) and rapeseed methyl ester (RME13). Additionally, diesel particles from MK1 ultra low sulfur diesel were generated at 9.7% (DEP9.7) and 17% (DEP17) intake O2 concentration. We evaluated physicochemical properties and histopathological, inflammatory and genotoxic responses on day 1, 28, and 90 after single intratracheal instillation in mice compared to reference diesel particles and carbon black. Results Moderate variations were seen in physical properties for the five particles: primary particle diameter: 15–22 nm, specific surface area: 152–222 m2/g, and count median mobility diameter: 55–103 nm. Larger differences were found in chemical composition: organic carbon/total carbon ratio (0.12–0.60), polycyclic aromatic hydrocarbon content (1–27 μg/mg) and acid-extractable metal content (0.9–16 μg/mg). Intratracheal exposure to all five particles induced similar toxicological responses, with different potency. Lung particle retention was observed in DEP13 and HVO13 exposed mice on day 28 post-exposure, with less retention for the other fuel types. RME exposure induced limited response whereas the remaining particles induced dose-dependent inflammation and acute phase response on day 1. DEP13 induced acute phase response on day 28 and inflammation on day 90. DNA strand break levels were not increased as compared to vehicle, but were increased in lung and liver compared to blank filter extraction control. Neutrophil influx on day 1 correlated best with estimated deposited surface area, but also with elemental carbon, organic carbon and PAHs. DNA strand break levels in lung on day 28 and in liver on day 90 correlated with acellular particle-induced ROS. Conclusions We studied diesel exhaust particles designed to differ in physicochemical properties. Our study highlights specific surface area, elemental carbon content, PAHs and ROS-generating potential as physicochemical predictors of diesel particle toxicity.
Collapse
|
14
|
Driscoll KE, Borm PA, Chaudhuri I, Levy L, Yong M, Warheit D, McCunney R, Oberdörster G. Comment on Saber et al. (2019), "Commentary: the chronic inhalation study in rats for assessing lung cancer risk may be better than its reputation". Part Fibre Toxicol 2020; 17:33. [PMID: 32678050 PMCID: PMC7367332 DOI: 10.1186/s12989-020-00365-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 07/08/2020] [Indexed: 11/10/2022] Open
Abstract
In their Commentary Saber et al. (Part Fibre Toxicol 16: 44, 2019) argue that chronic inhalation studies in rats can be used for assessing the lung cancer risk of insoluble nanomaterials. The authors make several significant errors in their interpretation and representation of the underlying science. In this Letter to the Editor we discuss these inaccuracies to correct the scientific record. When the science is recounted accurately it does not support Saber et al's statements and conclusions.
Collapse
Affiliation(s)
- Kevin E Driscoll
- Ernest Mario School of Pharmacy, Rutgers, New Brunswick, NY, 07046, USA.
| | - Paul A Borm
- Nanoconsult, Meerssen, Netherlands
- Düsseldorf University, Düsseldorf, Germany
| | | | - Len Levy
- Cranfield University, Cranfield, UK
| | - Mei Yong
- MY EpiConsulting, Düsseldorf, Germany
| | | | - Robert McCunney
- Pulmonary Division, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, USA
| | - Günter Oberdörster
- School of Medicine and Dentistry, University of Rochester, Rochester, NY, USA
| |
Collapse
|
15
|
Saber AT, Poulsen SS, Hadrup N, Jacobsen NR, Vogel U. A response to the letter to the editor by Driscoll et al. Part Fibre Toxicol 2020; 17:32. [PMID: 32677973 PMCID: PMC7367251 DOI: 10.1186/s12989-020-00364-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 07/08/2020] [Indexed: 05/30/2023] Open
Abstract
In response to the Letter to the Editor by Kevin Driscoll et al., we certainly agree that particle clearance halftimes are increased with increasing lung burden in rats, hamsters and mice, whereas complete inhibition of particle clearance has only been observed in rats, and only at high particle concentrations (50 mg/m3). Where we disagree with Kevin Driscoll and colleagues, is on the implications of the increased clearance halftimes observed at higher lung burden. We argue that it does not hamper the extrapolations from relatively high dose levels to lower dose levels.Furthermore, we highlight, again, the challenges of detecting particle-induced lung cancer in epidemiological studies where occupational, particle-induced lung cancer has to be detected on top of the background lung cancer incidence. Almost all available epidemiological studies on carbon black and titanium dioxide suffer from a number of limitations, including lack of control for smoking, the use of background population cancer rates as reference in the US studies, lack of information regarding particle size of the exposure, and incomplete follow-up for cause of death of the study population.
Collapse
Affiliation(s)
- Anne T Saber
- National Research Centre for the Working Environment, Copenhagen, Denmark
| | - Sarah S Poulsen
- National Research Centre for the Working Environment, Copenhagen, Denmark
| | - Niels Hadrup
- National Research Centre for the Working Environment, Copenhagen, Denmark
| | - Nicklas R Jacobsen
- National Research Centre for the Working Environment, Copenhagen, Denmark
| | - Ulla Vogel
- National Research Centre for the Working Environment, Copenhagen, Denmark.
| |
Collapse
|
16
|
Carriere M, Arnal ME, Douki T. TiO 2 genotoxicity: An update of the results published over the last six years. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2020; 854-855:503198. [PMID: 32660822 DOI: 10.1016/j.mrgentox.2020.503198] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 04/22/2020] [Accepted: 04/24/2020] [Indexed: 12/12/2022]
Abstract
TiO2 particles are broadly used in daily products, including cosmetics for their UV-absorbing property, food for their white colouring property, water and air purification systems, self-cleaning surfaces and photoconversion electrical devices for their photocatalytic properties. The toxicity of TiO2 nano- and microparticles has been studied for decades, and part of this investigation has been dedicated to the identification of their potential impact on DNA, i.e., their genotoxicity. This review summarizes data retrieved from their genotoxicity testing during the past 6 years, encompassing both in vitro and in vivo studies, mostly performed on lung and intestinal models. It shows that TiO2 particles, both nano- and micro-sized, produce genotoxic damage to a variety of cell types, even at low, realistic doses.
Collapse
Affiliation(s)
- Marie Carriere
- Univ. Grenoble Grenoble Alpes, CEA, CNRS, IRIG-SyMMES, CIBEST, 38000, Grenoble, France.
| | - Marie-Edith Arnal
- Univ. Grenoble Grenoble Alpes, CEA, CNRS, IRIG-SyMMES, CIBEST, 38000, Grenoble, France.
| | - Thierry Douki
- Univ. Grenoble Grenoble Alpes, CEA, CNRS, IRIG-SyMMES, CIBEST, 38000, Grenoble, France.
| |
Collapse
|
17
|
Ede JD, Lobaskin V, Vogel U, Lynch I, Halappanavar S, Doak SH, Roberts MG, Shatkin JA. Translating Scientific Advances in the AOP Framework to Decision Making for Nanomaterials. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1229. [PMID: 32599945 PMCID: PMC7353114 DOI: 10.3390/nano10061229] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 02/07/2023]
Abstract
Much of the current innovation in advanced materials is occurring at the nanoscale, specifically in manufactured nanomaterials (MNs). MNs display unique attributes and behaviors, and may be biologically and physically unique, making them valuable across a wide range of applications. However, as the number, diversity and complexity of MNs coming to market continue to grow, assessing their health and environmental risks with traditional animal testing approaches is too time- and cost-intensive to be practical, and is undesirable for ethical reasons. New approaches are needed that meet current requirements for regulatory risk assessment while reducing reliance on animal testing and enabling safer-by-design product development strategies to be implemented. The adverse outcome pathway (AOP) framework presents a sound model for the advancement of MN decision making. Yet, there are currently gaps in technical and policy aspects of AOPs that hinder the adoption and use for MN risk assessment and regulatory decision making. This review outlines the current status and next steps for the development and use of the AOP framework in decision making regarding the safety of MNs. Opportunities and challenges are identified concerning the advancement and adoption of AOPs as part of an integrated approach to testing and assessing (IATA) MNs, as are specific actions proposed to advance the development, use and acceptance of the AOP framework and associated testing strategies for MN risk assessment and decision making. The intention of this review is to reflect the views of a diversity of stakeholders including experts, researchers, policymakers, regulators, risk assessors and industry representatives on the current status, needs and requirements to facilitate the future use of AOPs in MN risk assessment. It incorporates the views and feedback of experts that participated in two workshops hosted as part of an Organization for Economic Cooperation and Development (OECD) Working Party on Manufactured Nanomaterials (WPMN) project titled, "Advancing AOP Development for Nanomaterial Risk Assessment and Categorization", as well as input from several EU-funded nanosafety research consortia.
Collapse
Affiliation(s)
| | - Vladimir Lobaskin
- School of Physics, University College Dublin, Belfield, Dublin 4, Ireland;
| | - Ulla Vogel
- National Research Centre for the Working Environment, DK-2100 Copenhagen, Denmark;
| | - Iseult Lynch
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK;
| | - Sabina Halappanavar
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON K1A 0K9, Canada;
| | - Shareen H. Doak
- Institute of Life Sciences, Swansea University Medical School, Singleton Park, Swansea SA2 8PP, UK;
| | - Megan G. Roberts
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada;
| | | |
Collapse
|
18
|
Hadrup N, Zhernovkov V, Jacobsen NR, Voss C, Strunz M, Ansari M, Schiller HB, Halappanavar S, Poulsen SS, Kholodenko B, Stoeger T, Saber AT, Vogel U. Acute Phase Response as a Biological Mechanism-of-Action of (Nano)particle-Induced Cardiovascular Disease. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1907476. [PMID: 32227434 DOI: 10.1002/smll.201907476] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 01/29/2020] [Accepted: 01/31/2020] [Indexed: 05/15/2023]
Abstract
Inhaled nanoparticles constitute a potential health hazard due to their size-dependent lung deposition and large surface to mass ratio. Exposure to high levels contributes to the risk of developing respiratory and cardiovascular diseases, as well as of lung cancer. Particle-induced acute phase response may be an important mechanism of action of particle-induced cardiovascular disease. Here, the authors review new important scientific evidence showing causal relationships between inhalation of particle and nanomaterials, induction of acute phase response, and risk of cardiovascular disease. Particle-induced acute phase response provides a means for risk assessment of particle-induced cardiovascular disease and underscores cardiovascular disease as an occupational disease.
Collapse
Affiliation(s)
- Niels Hadrup
- National Research Centre for the Working Environment, Copenhagen, DK-2100, Denmark
| | - Vadim Zhernovkov
- Systems Biology Ireland, University College Dublin, Dublin 4, Ireland
| | | | - Carola Voss
- Comprehensive Pneumology Center (CPC)/Institute of Lung Biology and Disease (ILBD), Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Neuherberg, D-85764, Germany
| | - Maximilian Strunz
- Comprehensive Pneumology Center (CPC)/Institute of Lung Biology and Disease (ILBD), Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Neuherberg, D-85764, Germany
| | - Meshal Ansari
- Comprehensive Pneumology Center (CPC)/Institute of Lung Biology and Disease (ILBD), Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Neuherberg, D-85764, Germany
| | - Herbert B Schiller
- Comprehensive Pneumology Center (CPC)/Institute of Lung Biology and Disease (ILBD), Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Neuherberg, D-85764, Germany
| | - Sabina Halappanavar
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, K1A 0K9, Canada
| | - Sarah S Poulsen
- National Research Centre for the Working Environment, Copenhagen, DK-2100, Denmark
| | - Boris Kholodenko
- Systems Biology Ireland, University College Dublin, Dublin 4, Ireland
| | - Tobias Stoeger
- Comprehensive Pneumology Center (CPC)/Institute of Lung Biology and Disease (ILBD), Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Neuherberg, D-85764, Germany
| | - Anne Thoustrup Saber
- National Research Centre for the Working Environment, Copenhagen, DK-2100, Denmark
| | - Ulla Vogel
- National Research Centre for the Working Environment, Copenhagen, DK-2100, Denmark
- DTU Health, Technical University of Denmark, Kgs. Lyngby, DK-2800, Denmark
| |
Collapse
|
19
|
Response to letter to editor "Pulmonary toxicity in rats following inhalation exposure to poorly soluble particles of low toxicity: Testing at excessive concentrations overwhelming lung clearance"? Regul Toxicol Pharmacol 2020; 112:104593. [PMID: 32007437 DOI: 10.1016/j.yrtph.2020.104593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 01/27/2020] [Indexed: 10/25/2022]
|