1
|
Yang X, He M, Tang Q, Cao J, Wei Z, Li T, Sun M. Metabolomics as a promising technology for investigating external therapy of traditional Chinese medicine: A review. Medicine (Baltimore) 2024; 103:e40719. [PMID: 39612392 DOI: 10.1097/md.0000000000040719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2024] Open
Abstract
To demonstrate the potential for connecting metabolomics with traditional Chinese medicine (TCM) external therapies such as acupuncture and moxibustion, we conducted a literature review on metabolomics as a measurement tool for determining the efficacy of various TCM external therapies. Human research and animal models published in the last 10 years were summarized. The investigation can be classified as follows: Using metabolomics to study metabolic profile changes produced by stimulation of a specific acupoint ST36 indicates the perturbation of metabolites produced by stimulation of acupoints by external TCM treatments can be characterized by metabolomics; and Using metabolomics to reveal the molecular mechanism of various TCM external therapy methods to treat specific diseases such as digestive system disease, cardiovascular disease, neurological disorder, bone disease, and muscle fatigue. We conclude that metabolomics has considerable potential for comprehending TCM external treatment interventions, particularly from a systems perspective. Linking TCM external therapy research with metabolomics can further bridge detailed biological mechanisms with the systematic effect of TCM external therapy, hence providing new paths for gaining a deeper knowledge of the importance of TCM in the treatment and maintenance of health.
Collapse
Affiliation(s)
- Xinyue Yang
- School of Medicine, Lishui University, Lishui, China
- Department of Acupuncture and Tuina, Changchun University of Chinese Medicine, Changchun, China
| | - Min He
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Qingqing Tang
- Department of Acupuncture and Tuina, Changchun University of Chinese Medicine, Changchun, China
| | - Jiazhen Cao
- Department of Acupuncture and Tuina, Changchun University of Chinese Medicine, Changchun, China
| | - Zhe Wei
- School of Medicine, Lishui University, Lishui, China
| | - Tie Li
- Department of Acupuncture and Tuina, Changchun University of Chinese Medicine, Changchun, China
| | - Mengmeng Sun
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
2
|
Gao Y, Ding P, Wang J, Zhang C, Ji G, Wu T. Application of metabolomics in irritable bowel syndrome in recent 5 years. Int Immunopharmacol 2023; 124:110776. [PMID: 37603947 DOI: 10.1016/j.intimp.2023.110776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 08/02/2023] [Accepted: 08/06/2023] [Indexed: 08/23/2023]
Abstract
Irritable bowel syndrome (IBS) is one of the most common functional gastrointestinal disorders worldwide, characterized by chronic abdominal pain or discomfort and altered bowel habits. To date, the exact pathogenesis of IBS remains elusive, but is clearly multifactorial, including environmental and host factors. However, the management of patients with IBS is challenging and the current diagnostic and therapeutic modalities have unsatisfactory outcomes. Therefore, it is important to develop more effective methods to diagnose IBS early. Metabolomics studies the metabolites most closely related to patient characteristics, which can provide useful clinical biomarkers that can be applied to IBS and may open up new diagnostic approaches. Traditional Chinese medicine (TCM) can play a role in improving symptoms and protecting target organs, but its mechanism needs to be studied in depth. In this review, based on PubMed/MEDLINE and other databases, we searched metabolomics studies related to IBS in the past 5 years, including those related to clinical studies and animal studies, as well as literatures on TCM interventions in IBS, to provide an updated overview of the application of metabolomics to the diagnosis and treatment of IBS and the improvement of IBS by TCM.
Collapse
Affiliation(s)
- Ying Gao
- Institute of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China; Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Peilun Ding
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Junmin Wang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Caiyun Zhang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Guang Ji
- Institute of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China.
| | - Tao Wu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
3
|
Characteristics of Zusanli Dorsal Root Ganglion Neurons in Rats and Their Receptor Mechanisms in Response to Adenosine. THE JOURNAL OF PAIN 2022; 23:1564-1580. [PMID: 35472520 DOI: 10.1016/j.jpain.2022.04.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 03/27/2022] [Accepted: 04/05/2022] [Indexed: 12/19/2022]
Abstract
Neural systems play important roles in the functions of acupuncture. But the unclear structure and mechanism of acupoints hinder acupuncture standardization and cause the acupuncture effects to be varying or even paradoxical. It has been broadly assumed that the efficacy of acupuncture depends on the biological signals triggered at acupoints and passed up along neural systems. However, as the first station to transmit such signals, the characters of the dorsal root ganglia (DRG) neurons innervating acupoints are still not well elucidated. We adopted Zusanli (ST36) as a representative acupoint and found most DRG neurons innervating ST36 acupoint are middle-size neurons with a single spike firing pattern. This suggests that proprioceptive neurons take on greater possibility than small size nociceptive neurons do to mediate the acupuncture signals. Moreover, we found that adenosine injected into ST36 acupoints could dose- and acupoint-dependently mimic the analgesic effect of acupuncture. However, adenosine could not elicit action potentials in the acutely isolated ST36 DRG neurons, but it inhibited ID currents and increased the areas of overshoots. Further, we found that 4 types of adenosine receptors were all expressed by ST36 DRG neurons, and A1, A2b, and A3 receptors were the principal reactors to adenosine. PERSPECTIVE: This study provides the major characteristics of ST36 DRG neurons, which will help to analyze the neural pathway of acupuncture signals. At the same time, these findings could provide a new possible therapy for pain relief, such as injecting adenosine or corresponding agonists into acupoints.
Collapse
|
4
|
Li W, Liu J, Chen A, Dai D, Zhao T, Liu Q, Song J, Xiong L, Gao XF. Shared nociceptive dorsal root ganglion neurons participating in acupoint sensitization. Front Mol Neurosci 2022; 15:974007. [PMID: 36106140 PMCID: PMC9465389 DOI: 10.3389/fnmol.2022.974007] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 07/26/2022] [Indexed: 11/13/2022] Open
Abstract
When the body is under pathological stress (injury or disease), the status of associated acupoints changes, including decreased pain threshold. Such changes in acupoint from a “silent” to an “active” state are considered “acupoint sensitization,” which has become an important indicator of acupoint selection. However, the mechanism of acupoint sensitization remains unclear. In this study, by retrograde tracing, morphological, chemogenetic, and behavioral methods, we found there are some dorsal root ganglion (DRG) neurons innervating the ST36 acupoint and ipsilateral hind paw (IHP) plantar simultaneously. Inhibition of these shared neurons induced analgesia in the complete Freund’s adjuvant (CFA) pain model and obstruction of nociceptive sensation in normal mice, and elevated the mechanical pain threshold (MPT) of ST36 acupoint in the CFA model. Excitation of shared neurons induced pain and declined the MPT of ST36 acupoint. Furthermore, most of the shared DRG neurons express TRPV1, a marker of nociceptive neurons. These results indicate that the shared nociceptive DRG neurons participate in ST36 acupoint sensitization in CFA-induced chronic pain. This raised a neural mechanism of acupoint sensitization at the level of primary sensory transmission.
Collapse
Affiliation(s)
- Wanrong Li
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- Clinical Research Center for Anesthesiology and Perioperative Medicine, Tongji University, Shanghai, China
- Department of Anesthesiology and Perioperative Medicine, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Shanghai, China
| | - Jia Liu
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Aiwen Chen
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- Clinical Research Center for Anesthesiology and Perioperative Medicine, Tongji University, Shanghai, China
- Department of Anesthesiology and Perioperative Medicine, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Shanghai, China
| | - Danqing Dai
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- Clinical Research Center for Anesthesiology and Perioperative Medicine, Tongji University, Shanghai, China
- Department of Anesthesiology and Perioperative Medicine, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Shanghai, China
| | - Tiantian Zhao
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- Clinical Research Center for Anesthesiology and Perioperative Medicine, Tongji University, Shanghai, China
- Department of Anesthesiology and Perioperative Medicine, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Shanghai, China
| | - Qiong Liu
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- Clinical Research Center for Anesthesiology and Perioperative Medicine, Tongji University, Shanghai, China
- Department of Anesthesiology and Perioperative Medicine, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Shanghai, China
| | - Jianren Song
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Lize Xiong
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- Clinical Research Center for Anesthesiology and Perioperative Medicine, Tongji University, Shanghai, China
- Department of Anesthesiology and Perioperative Medicine, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Shanghai, China
- *Correspondence: Lize Xiong,
| | - Xiao-Fei Gao
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- Clinical Research Center for Anesthesiology and Perioperative Medicine, Tongji University, Shanghai, China
- Department of Anesthesiology and Perioperative Medicine, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Shanghai, China
- Xiao-Fei Gao,
| |
Collapse
|
5
|
Role of Bile Acids and Nuclear Receptors in Acupuncture in Improving Crohn's Disease. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:5814048. [PMID: 35600949 PMCID: PMC9122672 DOI: 10.1155/2022/5814048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/13/2021] [Accepted: 04/15/2022] [Indexed: 11/30/2022]
Abstract
Nuclear receptors (NRs) are ligand-dependent transcription factors that regulate the transcription of target genes. Bile acids (BAs) can be used as effector molecules to regulate physiological processes in the gut, and NRs are important receptors for bile acid signaling. Relevant studies have shown that NRs are closely related to the occurrence of Crohn's disease (CD). Although the mechanism of NRs in CD has not been clarified completely, growing evidence shows that NRs play an important role in regulating intestinal immunity, mucosal barrier, and intestinal flora. NRs can participate in the progress of CD by mediating inflammation, immunity, and autophagy. As the important parts of traditional Chinese medicine (TCM) therapy, acupuncture and moxibustion in the treatment of CD curative mechanism can get a lot of research support. At the same time, acupuncture and moxibustion can regulate the changes of related NRs. Therefore, to explore whether acupuncture can regulate BA circulation and NRs expression and then participate in the disease progression of CD, a new theoretical basis for acupuncture treatment of CD is provided.
Collapse
|
6
|
Wang Z, Xu M, Shi Z, Bao C, Liu H, Zhou C, Yan Y, Wang C, Li G, Zhang W, Gao A, Wu H. Mild moxibustion for Irritable Bowel Syndrome with Diarrhea (IBS-D): A randomized controlled trial. JOURNAL OF ETHNOPHARMACOLOGY 2022; 289:115064. [PMID: 35114338 DOI: 10.1016/j.jep.2022.115064] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 11/30/2021] [Accepted: 01/29/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Moxibustion therapy is a traditional Chinese medicine external treatment method, which involves crushing dried herb Artemisia argyi H. Lév. & Vanio and rolling it into a long cigarette-like strip, igniting it and using its warmth to stimulate specific acupuncture points for a certain period of time. It is often used in Asia to treat various diseases, especially abdominal pain. Clinical reports suggest that acupuncture and moxibustion are the effective treatment for Irritable Bowel Syndrome with Diarrhea (IBS-D). However, there is no placebo-controlled study to prove its safety and efficacy. OBJECTIVE To evaluate the effects of mild moxibustion (MM) for the treatment of irritable bowel syndrome with diarrhea (IBS-D) through comparisons with those of placebo moxibustion. PATIENTS AND METHODS This was a single-site, randomized controlled trial was conducted at Shanghai Research Institute of Acupuncture and Meridian in China and enrolled 76 participants who met the Rome IV diagnostic criteria for IBS-D between May 2017 and December 2019. 76 participants were randomized to either mild moxibustion (MM) or placebo moxibustion group (PM) in a 1:1 ratio. 18 sessions of MM or PM were implemented over the course of 6 weeks (3 times per week). The primary outcome was adequate relief after 6 weeks of treatment. RESULTS Of 76 patients with IBS-D who were randomized (38 in the MM group and 38 in the PM group) were included in the intention-to-treat (ITT) analysis set. After treatment at week 6, the response rate was significantly higher in the MM group than the PM group (81.58% vs. 36.84%) with an estimated difference of 44.74 (95% CI, 23.46 to 66.02, P < 0.001). No participant reported severe adverse effects. CONCLUSION The findings suggest that mild moxibustion may be more effective than placebo moxibustion for the treatment of IBS-D, with effects lasting up to 12 weeks. TRIAL REGISTRATION ChiCTR, ChiCTR2100046852. Registered 29 May 2021 - Retrospectively registered, URL: http://www.chictr.org.cn/showproj.aspx?proj=127000.
Collapse
Affiliation(s)
- Zhaoqin Wang
- Department of Aeronautics and Astronautics, Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, Fudan University, Shanghai, 200433, China.
| | - Manwen Xu
- Department of Integrated Traditional Chinese and Western Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China.
| | - Zheng Shi
- Shanghai Research Institute of Acupuncture and Meridian, Shanghai University of Traditional Chinese Medicine, Shanghai, 200030, China.
| | - Chunhui Bao
- Shanghai Research Institute of Acupuncture and Meridian, Shanghai University of Traditional Chinese Medicine, Shanghai, 200030, China.
| | - Huirong Liu
- Shanghai Research Institute of Acupuncture and Meridian, Shanghai University of Traditional Chinese Medicine, Shanghai, 200030, China.
| | - Cili Zhou
- Shanghai Research Institute of Acupuncture and Meridian, Shanghai University of Traditional Chinese Medicine, Shanghai, 200030, China.
| | - Yilu Yan
- Shanghai Research Institute of Acupuncture and Meridian, Shanghai University of Traditional Chinese Medicine, Shanghai, 200030, China; Yueyang Hospital of Integrative Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China.
| | - Chunye Wang
- Shanghai Research Institute of Acupuncture and Meridian, Shanghai University of Traditional Chinese Medicine, Shanghai, 200030, China; Yueyang Hospital of Integrative Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China.
| | - Guona Li
- Shanghai Research Institute of Acupuncture and Meridian, Shanghai University of Traditional Chinese Medicine, Shanghai, 200030, China; Yueyang Hospital of Integrative Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China.
| | - Wei Zhang
- Department of Biostatistics, School of Public Health, Fudan University, Shanghai, 200032, China.
| | - Anqi Gao
- Shanghai Research Institute of Acupuncture and Meridian, Shanghai University of Traditional Chinese Medicine, Shanghai, 200030, China; Yueyang Hospital of Integrative Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China.
| | - Huangan Wu
- Shanghai Research Institute of Acupuncture and Meridian, Shanghai University of Traditional Chinese Medicine, Shanghai, 200030, China.
| |
Collapse
|
7
|
Artemisinin Alleviates Intestinal Inflammation and Metabolic Disturbance in Ulcerative Colitis Rats Induced by DSS. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:6211215. [PMID: 35497913 PMCID: PMC9042626 DOI: 10.1155/2022/6211215] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 03/08/2022] [Indexed: 12/11/2022]
Abstract
Objective This study is aimed to reveal the possible mechanisms of artemisinin in the treatment of ulcerative colitis (UC) through bioinformatics analysis and experimental verification in UC model rats. Methods Firstly, we searched two microarray data of the Gene Expression Omnibus (GEO) database to explore the differentially expressed genes (DEGs) between UC samples and normal samples. Then, we selected DEGs for gene ontology (GO) function enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. The acute UC model of rats was established by using 3.5% dextran sulfate sodium (DSS) for 10 days to verify the core pathway. Finally, we evaluated the therapeutic effect of artemisinin at the molecular level and used metabonomics to study the endogenous metabolites in the rat serum. Results We screened in the GEO database and selected two eligible microarray datasets, GSE36807 and GSE9452. We performed GO function and KEGG pathway enrichment analyses of DEGs and found that these DEGs were mainly enriched in the inflammatory response, immune response, and IL-17 and NF-κB signaling pathways. Finally, we verified the IL-17 signaling pathway and key cytokines, and ELISA and immunohistochemical results showed that artemisinin could downregulate the expression of proinflammatory cytokines such as IL-1β and IL-17 in the IL-17 signaling pathway and upregulate the expression of the anti-inflammatory cytokine PPAR-γ. Metabolomics analysis showed that 33 differential metabolites were identified in the artemisinin group (AG) compared to the model group (MG). Differential metabolites were mainly involved in alanine, aspartate, and glutamate metabolism and synthesis and degradation of ketone bodies. Conclusion In this study, we found that artemisinin can significantly inhibit the inflammatory response in UC rats and regulate metabolites and related metabolic pathways. This study provides a foundation for further research on the mechanism of artemisinin in the treatment of UC.
Collapse
|
8
|
|
9
|
Islam J, Tanimizu M, Shimizu Y, Goto Y, Ohtani N, Sugiyama K, Tatezaki E, Sato M, Makino E, Shimada T, Ueda C, Matsuo A, Suyama Y, Sakai Y, Furukawa M, Usami K, Yoneyama H, Aso H, Tanaka H, Nochi T. Development of a rational framework for the therapeutic efficacy of fecal microbiota transplantation for calf diarrhea treatment. MICROBIOME 2022; 10:31. [PMID: 35184756 PMCID: PMC8858662 DOI: 10.1186/s40168-021-01217-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 12/20/2021] [Indexed: 05/30/2023]
Abstract
BACKGROUND Establishing fecal microbiota transplantation (FMT) to prevent multifactorial diarrhea in calves is challenging because of the differences in farm management practices, the lack of optimal donors, and recipient selection. In this study, the underlying factors of successful and unsuccessful FMT treatment cases are elucidated, and the potential markers for predicting successful FMT are identified using fecal metagenomics via 16S rRNA gene sequencing, fecal metabolomics via capillary electrophoresis time-of-flight mass spectrometry, and machine learning approaches. RESULTS Specifically, 20 FMT treatment cases, in which feces from healthy donors were intrarectally transferred into recipient diarrheal calves, were conducted with a success rate of 70%. Selenomonas was identified as a microorganism genus that showed significant donor-recipient compatibility in successful FMT treatments. A strong positive correlation between the microbiome and metabolome data, which is a prerequisite factor for FMT success, was confirmed by Procrustes analysis in successful FMT (r = 0.7439, P = 0.0001). Additionally, weighted gene correlation network analysis confirmed the positively or negatively correlated pairs of bacterial taxa (family Veillonellaceae) and metabolomic features (i.e., amino acids and short-chain fatty acids) responsible for FMT success. Further analysis aimed at establishing criteria for donor selection identified the genus Sporobacter as a potential biomarker in successful donor selection. Low levels of metabolites, such as glycerol 3-phosphate, dihydroxyacetone phosphate, and isoamylamine, in the donor or recipients prior to FMT, are predicted to facilitate FMT. CONCLUSIONS Overall, we provide the first substantial evidence of the factors related to FMT success or failure; these findings could improve the design of future microbial therapeutics for treating diarrhea in calves. Video abstract.
Collapse
Affiliation(s)
- Jahidul Islam
- International Education and Research Center for Food and Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, 468-1 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi, 980-8572, Japan
| | - Masae Tanimizu
- East Veterinary Clinical Center, Chiba Prefectural Federation of Agricultural Mutual Aid Association, 1533 Naruto, Sanmu, Chiba, 289-1326, Japan
| | - Yu Shimizu
- East Veterinary Clinical Center, Chiba Prefectural Federation of Agricultural Mutual Aid Association, 1533 Naruto, Sanmu, Chiba, 289-1326, Japan
| | - Yoshiaki Goto
- North Veterinary Clinical Center, Chiba Prefectural Federation of Agricultural Mutual Aid Association, 99-1 Nira, Katori, Chiba, 289-0407, Japan
| | - Natsuki Ohtani
- North Veterinary Clinical Center, Chiba Prefectural Federation of Agricultural Mutual Aid Association, 99-1 Nira, Katori, Chiba, 289-0407, Japan
| | - Kentaro Sugiyama
- North Veterinary Clinical Center, Chiba Prefectural Federation of Agricultural Mutual Aid Association, 99-1 Nira, Katori, Chiba, 289-0407, Japan
| | - Eriko Tatezaki
- North Veterinary Clinical Center, Chiba Prefectural Federation of Agricultural Mutual Aid Association, 99-1 Nira, Katori, Chiba, 289-0407, Japan
| | - Masumi Sato
- West Veterinary Clinical Center, Chiba Prefectural Federation of Agricultural Mutual Aid Association, 154-11, Shisui-machi, Imba-gun, Chiba, 285-0902, Japan
| | - Eiji Makino
- West Veterinary Clinical Center, Chiba Prefectural Federation of Agricultural Mutual Aid Association, 154-11, Shisui-machi, Imba-gun, Chiba, 285-0902, Japan
| | - Toru Shimada
- Central Veterinary Clinical Center, Chiba Prefectural Federation of Agricultural Mutual Aid Association, 736 Amoda, Ichihara, Chiba, 299-0126, Japan
| | - Chise Ueda
- Central Veterinary Clinical Center, Chiba Prefectural Federation of Agricultural Mutual Aid Association, 736 Amoda, Ichihara, Chiba, 299-0126, Japan
| | - Ayumi Matsuo
- International Education and Research Center for Food and Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, 468-1 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi, 980-8572, Japan
| | - Yoshihisa Suyama
- International Education and Research Center for Food and Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, 468-1 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi, 980-8572, Japan
| | - Yoshifumi Sakai
- International Education and Research Center for Food and Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, 468-1 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi, 980-8572, Japan
| | - Mutsumi Furukawa
- International Education and Research Center for Food and Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, 468-1 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi, 980-8572, Japan
| | - Katsuki Usami
- International Education and Research Center for Food and Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, 468-1 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi, 980-8572, Japan
| | - Hiroshi Yoneyama
- International Education and Research Center for Food and Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, 468-1 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi, 980-8572, Japan
| | - Hisashi Aso
- International Education and Research Center for Food and Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, 468-1 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi, 980-8572, Japan
| | - Hidekazu Tanaka
- North Veterinary Clinical Center, Chiba Prefectural Federation of Agricultural Mutual Aid Association, 99-1 Nira, Katori, Chiba, 289-0407, Japan.
| | - Tomonori Nochi
- International Education and Research Center for Food and Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, 468-1 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi, 980-8572, Japan.
- Division of Mucosal Vaccines, International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan.
| |
Collapse
|
10
|
Chen M, He QD, Guo JJ, Wu QB, Zhang Q, Yau YM, Xie YF, Guo ZY, Tong ZY, Yang ZB, Xiao L. Electro-Acupuncture Regulates Metabolic Disorders of the Liver and Kidney in Premature Ovarian Failure Mice. Front Endocrinol (Lausanne) 2022; 13:882214. [PMID: 35957829 PMCID: PMC9359440 DOI: 10.3389/fendo.2022.882214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 05/31/2022] [Indexed: 11/26/2022] Open
Abstract
As per the theory of traditional Chinese medicine (TCM), the liver and kidney dysfunction are important pathogenies for premature ovarian failure (POF). POF is a common gynecological disease that reduced the pregnancy rate. Electro-acupuncture (EA) is a useful non-pharmaceutical therapy that supposedly regulates the function of the liver and kidney in the treatment of POF with TCM. However, the underlying mechanism of EA in the treatment of POF has not been adequately studied through metabonomics with reference to the theory of TCM. Accordingly, we investigated the effect of EA on the liver and kidney metabolites in POF mice through metabolomics. POF mice were established via intraperitoneal injection of cisplatin. Both Sanyinjiao (SP6) and Guanyuan (CV4) were stimulated by EA for 3 weeks. The biological samples (including the serum and the ovary, liver, and kidney tissues) were evaluated by histopathology, molecular biology, and hydrogen-1 nuclear magnetic resonance (1HNMR)-based metabolomics to assess the efficacy of EA. 1HNMR data were analyzed by the orthogonal partial least squares discriminant analysis (OPLS-DA). The results revealed that EA was beneficial to ovarian function and the menstrual cycle of POF. Both the energy metabolism and neurotransmitter metabolism in the liver and kidney were regulated by EA. Notably, EA played an important role in regulating energy-related metabolism in the kidney, and the better effect of neurotransmitter-related metabolism in the liver was regulated by EA. These findings indicated that the ovarian functions could be improved and the metabolic disorder of the liver and kidney caused by POF could be regulated by EA. Our study results thus suggested that the EA therapy, based on the results for the liver and kidney, were related to POF in TCM, as preliminarily confirmed through metabolomics.
Collapse
Affiliation(s)
- Min Chen
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, Macau SAR, China
- Department of Chinese Medicine, The Fifth Affiliated Hospital of Zunyi Medical University, Zhuhai, China
- *Correspondence: Min Chen, ; Zong-bao Yang, ; Lu Xiao,
| | - Qi-da He
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, Macau SAR, China
| | - Jing-jing Guo
- Department of Traditional Chinese Medicine, School of Medicine, Xiamen University, Xiamen, China
| | - Qi-biao Wu
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, Macau SAR, China
- Zhuhai MUST Science and Technology Research Institute, Zhuhai, China
| | - Qi Zhang
- Department of Traditional Chinese Medicine, School of Medicine, Xiamen University, Xiamen, China
| | - Yuen-ming Yau
- Department of Traditional Chinese Medicine, School of Medicine, Xiamen University, Xiamen, China
| | - Yu-feng Xie
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, Macau SAR, China
| | - Zi-yi Guo
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, Macau SAR, China
| | - Zi-yan Tong
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, Macau SAR, China
| | - Zong-bao Yang
- Department of Traditional Chinese Medicine, School of Medicine, Xiamen University, Xiamen, China
- *Correspondence: Min Chen, ; Zong-bao Yang, ; Lu Xiao,
| | - Lu Xiao
- Department of Basic Medicine, Zunyi Medical University, Zhuhai, China
- *Correspondence: Min Chen, ; Zong-bao Yang, ; Lu Xiao,
| |
Collapse
|
11
|
A Comparison Study of the Effect on IBS-D Rats among Ginger-Partitioned Moxibustion, Mild Moxibustion, and Laser Moxibustion. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:4296216. [PMID: 34840586 PMCID: PMC8612783 DOI: 10.1155/2021/4296216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/08/2021] [Accepted: 10/11/2021] [Indexed: 01/30/2023]
Abstract
Background Diarrhea-predominant irritable bowel syndrome (IBS-D) is a functional gastrointestinal disorder that severely affects patients' life. Moxibustion is believed to be an effective way to treat IBS-D. However, the therapeutic effects and the underlying mechanisms in symptom management of IBS-D by different moxibustion therapies remain unclear. Methods IBS-D model rats were divided into groups and treated with ginger-partitioned moxibustion (GPM), mild moxibustion (MM), and laser moxibustion (LM) at a temperature of 43°C, respectively. The temperature curves of acupoints were recorded during interventions. The therapeutic effects were evaluated on the basis of general condition, stool, and hematoxylin-eosin staining of the colon tissue. Moreover, the expression of transient receptor potential vanilloid 1 (TRPV1) receptors in both acupoint tissue and colon tissue was analyzed by immunohistochemistry. Results After moxibustion treatment, the symptoms were improved. The expression of TRPV1 was increased in acupoint tissue and decreased in colon tissue. GPM and MM showed a more significant influence on IBS-D rats compared with LM. The temperature profile of GPM and MM was wave-like, while LM had an almost stable temperature curve. Conclusion GPM, MM, and LM could improve the symptoms in IBS-D rats. Moxibustion might activate TRPV1 channels in the acupoint tissue and induce acupoint functions, which in turn inhibit the pathological activation state of the colon's TRPV1, followed by improvements in abdominal pain and diarrheal symptoms. LM with stable temperature might lead to the desensitization of TRPV1 receptors and the tolerance of acupoint. GPM and MM provided dynamic and repetitive thermal stimulations that perhaps induced acupoint sensitization to increase efficacy. Therefore, dynamic and repetitive thermal stimulation is recommended in the application of moxibustion.
Collapse
|
12
|
Guan Z, Zhao Q, Huang Q, Zhao Z, Zhou H, He Y, Li S, Wan S. Modified Renshen Wumei Decoction Alleviates Intestinal Barrier Destruction in Rats with Diarrhea. J Microbiol Biotechnol 2021; 31:1295-1304. [PMID: 34319258 PMCID: PMC9706012 DOI: 10.4014/jmb.2106.06037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/01/2021] [Accepted: 07/19/2021] [Indexed: 12/15/2022]
Abstract
Modified Renshen Wumei decoction (MRWD), a famous traditional Chinese medicine, is widely used for treating persistent diarrhea. However, as the mechanism by which MRWD regulates diarrhea remains unknown, we examined the protective effects of MRWD on intestinal barrier integrity in a diarrhea model. In total, 48 male rats were randomly distributed to four treatment groups: the blank group (CK group), model group (MC group), Medilac-Vita group (MV group) and Chinese herb group (MRWD group). After a 21-day experiment, serum and colon samples were assessed. The diarrhea index, pathological examination findings and change in D-lactate and diamine oxidase (DAO) contents illustrated that the induction of diarrhea caused intestinal injury, which was ameliorated by MV and MRWD infusion. Metabolomics analysis identified several metabolites in the serum. Some critical metabolites, such as phosphoric acid, taurine, cortisone, leukotriene B4 and calcitriol, were found to be significantly elevated by MRWD infusion. Importantly, these differences correlated with mineral absorption and metabolism and peroxisome proliferator-activated receptor (PPAR) pathways. Moreover, it significantly increased the expression levels of TLR4, MyD88 and p-NF-κB p65 proteins and the contents of IL-1 and TNF-α, while the expression levels of occludin, claudin-1 and ZO-1 proteins decreased. These deleterious effects were significantly alleviated by MV and MRWD infusion. Our findings indicate that MRWD infusion helps alleviate diarrhea, possibly by maintaining electrolyte homeostasis, improving the intestinal barrier integrity, and inhibiting the TLR4/NF-κB axis.
Collapse
Affiliation(s)
- Zhiwei Guan
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, P.R. China,The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou 450000, P.R. China
| | - Qiong Zhao
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, P.R. China,Corresponding author E-mail:
| | - Qinwan Huang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, P.R. China
| | - Zhonghe Zhao
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, P.R. China
| | - Hongyun Zhou
- The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou 450000, P.R. China
| | - Yuanyuan He
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, P.R. China
| | - Shanshan Li
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, P.R. China
| | - Shifang Wan
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, P.R. China
| |
Collapse
|
13
|
Wang X, Lan Y, Zeng Z, Ge L. Therapeutic mechanism of steaming umbilical cord therapy with Chinese herbal medicine on a rat model of IBS-D via the PAR-2/TRVP1 pathway. Am J Transl Res 2021; 13:6288-6296. [PMID: 34306368 PMCID: PMC8290801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 03/19/2021] [Indexed: 06/13/2023]
Abstract
OBJECTIVE This study aimed to investigate the PAR-2/TRVP1-based mechanism of steaming umbilical cord therapy with Chinese Herbal Medicine (SUCT-CHM) in IBS-D rat models. METHODS Sixty-two IBS-D modeled rats were established, and were randomly assigned to the control group (n = 31) and the experimental group (n = 31). The model group did not receive intervention measures, and the experimental group was treated with SUCT-CHM. After 14 days of intervention, the two groups of rats were compared in terms of body weight, gastrointestinal function, Bristol stool score, wet/dry weight ratio of rat stool, and abdominal withdrawal reflex scores. The transient receptor potential vanilloid receptor 1 (TRPV1), protease-activated receptors-2 (PAR-2), calcitonin gene related peptide (CGRP) and Substance P (SP) protein expression were detected using ELISA. RESULTS After 14 d of intervention, compared to the control group, the rats in the experimental group showed a significant increase in body mass indexes (P < 0.05); decreased Bristol stool scores (P < 0.05); less stagnation of the intestinal contents and greater intestine propulsion rate (P < 0.05), lower wet/dry weight ratio of rat stool (P < 0.05), abdominal withdrawal reflex scores (P < 0.05) as well as PAR-2, TRVP1, CGRP and SP expression levels (P < 0.05). CONCLUSION SUCT-CHM was effective in treating IBS-D in rats. It improved gastrointestinal function and reduced visceral hypersensitivity in rats possibly via the PAR-2/TRVP1 pathway.
Collapse
Affiliation(s)
- Xiaohui Wang
- Department of Gastroenterology, The Second Affiliated Hospital of Jiangxi University of TCMNanchang, Jiangxi, China
| | - Yang Lan
- Jiangxi University of Traditional Chinese MedicineNanchang, Jiangxi, China
| | - Zhongping Zeng
- Department of Gastroenterology, The Second Affiliated Hospital of Jiangxi University of TCMNanchang, Jiangxi, China
| | - Laian Ge
- Department of Hepatology, The Affiliated Hospital of Jiangxi University of TCMNanchang, Jiangxi, China
| |
Collapse
|
14
|
Xu X, Shi YN, Wang RY, Ding CY, Zhou X, Zhang YF, Sun ZL, Sun ZQ, Sun QH. Metabolomic analysis of biochemical changes in the tissue and urine of proteoglycan-induced spondylitis in mice after treatment with moxibustion. Integr Med Res 2021; 10:100428. [PMID: 32953451 PMCID: PMC7486606 DOI: 10.1016/j.imr.2020.100428] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 05/12/2020] [Accepted: 05/12/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Moxibustion is widely used in East Asian countries to manage the symptom of rheumatic diseases. The aim of this study was to identify potential metabolic profiles of moxibustion on relieving ankylosing spondylitis (AS) mice through UHPLC-Q-TOF/MS metabolomic study. METHODS Thirty-two female Balb/c mice were randomized into healthy control (HC), AS model, moxibustion at acupuncture points (MA) in AS model, and moxibustion at non-acupuncture points (MNA) AS model groups. Moxibustion was administered daily at GV4, bilateral BL23 and bilateral ST36 acupuncture points for four weeks in the MA group. The overall health status, the thickness of hind paws and the tissue concentrations of IL-1β, PGE2, IL-6 and TNF-α were assessed. The UHPLC-Q-TOF/MS was used to explore the perturbations of endogenous metabolites in tissue and urine of AS model mice intervened by moxibustion. RESULTS Compared with the AS group, the overall health status was significantly improved after 4-week moxibustion intervention (p < 0.05). The results also showed that MA significantly reduced the levels of paw thickness and decreased the levels of four cytokines in the tissue (p < 0.01). Thirty-seven endogenous metabolites identified by the OPLS-DA were considered to be contributing to therapeutic effects of moxibustion. Moreover, metabolic pathway analysis further revealed that the identified metabolites were mainly involved in TCA cycle, Lipid metabolism, Amino Acid metabolism, Intestinal flora metabolism and Purine metabolism. CONCLUSIONS UHPLC-Q-TOF/MS based metabolomics approach, as a novel and powerful tool, can help us to gain the insights into potential mechanisms of action of moxibustion for AS.
Collapse
Affiliation(s)
- Xiao Xu
- School of Nursing, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| | - Ya-Nan Shi
- School of Nursing, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| | - Rong-Yun Wang
- School of Nursing, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| | - Cai-Yan Ding
- Department of Nursing, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu Province, China
| | - Xiao Zhou
- Department of Nursing, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu Province, China
| | - Yu-Fei Zhang
- School of Nursing, Changzhou University, Changzhou, Jiangsu Province, China
| | - Zhi-Ling Sun
- School of Nursing, Nanjing university of Chinese Medicine, Nanjing, Jiangsu Province, China
| | - Zhi-Qin Sun
- Department of Nursing, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu Province, China
| | - Qiu-Hua Sun
- School of Nursing, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| |
Collapse
|
15
|
Yaklai K, Pattanakuhar S, Chattipakorn N, Chattipakorn SC. The Role of Acupuncture on the Gut-Brain-Microbiota Axis in Irritable Bowel Syndrome. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2021; 49:285-314. [PMID: 33622207 DOI: 10.1142/s0192415x21500154] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Irritable bowel syndrome (IBS) is a chronic dysfunction of the gastrointestinal tract, commonly characterized by abdominal pain or abdominal discomfort. These symptoms can substantially reduce the quality of life and work productivity of the patients. The exact pathogenesis of IBS remains unclear, as it has become apparent that multiple pathways are activated in the condition, including inflammation, immunology, neurology and psychology. Recent evidence has shown that symptoms in IBS are related to the dysfunction of the nervous system, particularly the viscerosomatic pathway, through immune-to-brain communication. The potential link between brain-gut relationships is gut microbiota. The management of IBS mostly focuses on symptomatically treating the patients. There are a wide range of standard treatments, including pharmacological to psychological interventions which are effective in some patients. Therefore, a combination of therapies including both standard and complimentary treatments, including Traditional Chinese Medicine (TCM) such as acupuncture, have been used in treating IBS patients. Several in vivo and clinical studies have demonstrated the efficacy of acupuncture in treating IBS. Increasing attention has been paid to research regarding the action mechanisms of acupuncture for IBS. This paper summarizes and discusses the possible mechanisms associated with acupuncture on the pathophysiology of IBS, including gastrointestinal (GI) motility, visceral hypersensitivity, the immune system, neurotransmitters, and the brain-gut axis. The results fromin vivo and clinical studies have been included. In addition, the effects of acupuncture on gut microbiota in IBS are included and any contradictory findings are deliberated.
Collapse
Affiliation(s)
- Kiangyada Yaklai
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Chiang Mai University, Chiang Mai, Thailand.,Sriphat Medical Center, Chiang Mai University, Chiang Mai, Thailand
| | - Sintip Pattanakuhar
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Chiang Mai University, Chiang Mai, Thailand.,Department of Rehabilitation Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Nipon Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Chiang Mai University, Chiang Mai, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Siriporn C Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Chiang Mai University, Chiang Mai, Thailand.,Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
16
|
Abdallah HM, Ammar NM, Abdelhameed MF, Gendy AENGE, Ragab TIM, Abd-ElGawad AM, Farag MA, Alwahibi MS, Elshamy AI. Protective Mechanism of Acacia saligna Butanol Extract and Its Nano-Formulations against Ulcerative Colitis in Rats as Revealed via Biochemical and Metabolomic Assays. BIOLOGY 2020; 9:E195. [PMID: 32751448 PMCID: PMC7463518 DOI: 10.3390/biology9080195] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 07/25/2020] [Accepted: 07/27/2020] [Indexed: 12/20/2022]
Abstract
Ulcerative colitis (UC) is a relapsing inflammatory disease of unknown etiology. The increased risk of cancer in UC patients warrants for the development of novel drug treatments. Herein, this work concerns with the investigation of the protective effects of Acacia saligna butanol extract (ASBE) and its nanoformulations on UC in a rat model and its underlying mechanism. Colitis was induced by slow intrarectal infusion of 2 mL of 4% (v/v in 0.9% saline) acetic acid. Colon samples were evaluated macroscopically, microscopically, and assayed for pro-inflammatory cytokine levels. To monitor associated metabolic changes in acetic acid-induced UC model, serum samples were analyzed for primary metabolites using GC-MS followed by multivariate data analyses. Treatment with ASBE attenuated acetic acid-induced UC as revealed by reduction of colon weight, ulcer area, and ulcer index. ASBE treatment also reduced Cyclooxygenase-2 (COX-2), Prostaglandin E2 (PGE2) & Interleukin-1β (IL-1β) levels in the inflamed colon. The nano-formulation of ASBE showed better protection than the crude extract against ulcer indices, increased PGE2 production, and histopathological alterations such as intestinal mucosal lesions and inflammatory infiltration. Distinct metabolite changes were recorded in colitis rats including a decrease in oleamide and arachidonic acid along with increased levels of lactic acid, fructose, and pyroglutamic acid. Treatment with nano extract restored metabolite levels to normal and suggests that cytokine levels were regulated by nano extract in UC. Conclusion: ASBE nano extract mitigated against acetic acid-induced colitis in rats, and the underlying mechanism could be attributed to the modulatory effects of ASBE on the inflammatory cascades. The applicability of metabolomics developed in this rat model seems to be crucial for evaluating the anti-inflammatory mechanisms of new therapeutics for acute colitis.
Collapse
Affiliation(s)
- Heba M.I. Abdallah
- Pharmacology Department, Medical Research Division, National Research Centre, Dokki, Giza 12622, Egypt;
| | - Naglaa M. Ammar
- Therapeutic Chemistry Department, National Research Centre, Dokki, Giza 12622, Egypt;
| | - Mohamed F. Abdelhameed
- Pharmacology Department, Medical Research Division, National Research Centre, Dokki, Giza 12622, Egypt;
| | - Abd El-Nasser G. El Gendy
- Medicinal and Aromatic Plants Research Department, National Research Center, Dokki, Giza 12622, Egypt;
| | - Tamer I. M. Ragab
- Chemistry of Natural and Microbial Products Department, National Research Centre, Dokki, Giza 12622, Egypt;
| | - Ahmed M. Abd-ElGawad
- Plant Production Department, College of Food & Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
- Department of Botany, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
| | - Mohamed A. Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Kasr el Aini St., P.B., Cairo 11562, Egypt;
- Chemistry Department, School of Sciences & Engineering, The American University in Cairo, New Cairo 11835, Egypt
| | - Mona S. Alwahibi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Abdelsamed I. Elshamy
- Department of Natural Compounds Chemistry, National Research Center, Dokki, Giza 12622, Egypt
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima 770-8514, Japan
| |
Collapse
|
17
|
Yang YY, Wu ZY, Zhang H, Yin SJ, Xia FB, Zhang Q, Wan JB, Gao JL, Yang FQ. LC-MS-based multivariate statistical analysis for the screening of potential thrombin/factor Xa inhibitors from Radix Salvia Miltiorrhiza. Chin Med 2020; 15:38. [PMID: 32351617 PMCID: PMC7183602 DOI: 10.1186/s13020-020-00320-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 04/20/2020] [Indexed: 02/03/2023] Open
Abstract
Background The dry root and rhizome of Salvia miltiorrhiza Bunge, or Danshen, is a well-known traditional Chinese medicine with anticoagulant activity. Taking into account that thrombin (THR) and factor Xa (FXa) play crucial roles in the coagulation cascade, it is reasonable and meaningful to screening THR and/or FXa inhibitors from Danshen. Methods Four extracts [butanol (BA), ethyl acetate (EA) and remained extract (RE) from 75% ethanol extract, and water extract (WE)] of Danshen were prepared, and their THR/FXa inhibitory activities were assessed in vitro. Then, the active EA extract was further separated by silica-gel column chromatography (SC), and its fractions (SC1–SC5) were analyzed by LC–MS. The principal component analysis (PCA) and orthogonal partial least squares discriminate analysis (OPLS-DA) were employed for predicting the specific marker compounds. The chemical structures of targeted compounds were identified by LC–MS/MS and their interactions with THR/FXa were analyzed by the molecular docking analysis. Results Danshen EA extract showed strong activity against THR and FXa, and its fractions (SC1–SC5) exhibited obvious difference in inhibitory activity against these two enzymes. Furthermore, four marker compounds with potential THR/FXa inhibitory activity were screened by PCA and OPLS-DA, and were identified as cryptotanshinone, tanshinone I, dihydrotanshinone I and tanshinone IIA. The molecular docking study showed that all these four tanshinones can interact with some key amino acid residues of the THR/FXa active cavities, such as HIS57 and SER195, which were considered to be promising candidates targeting THR and/or FXa with low binding energy (< − 7 kcal mol−1). Conclusions LC–MS combined with multivariate statistical analysis can effectively screen potential THR/FXa inhibitory components in Danshen.
Collapse
Affiliation(s)
- Yi-Yao Yang
- 1School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331 People's Republic of China
| | - Zhao-Yu Wu
- 1School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331 People's Republic of China
| | - Hao Zhang
- 1School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331 People's Republic of China
| | - Shi-Jun Yin
- 1School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331 People's Republic of China
| | - Fang-Bo Xia
- 3State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, People's Republic of China
| | - Qian Zhang
- 1School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331 People's Republic of China
| | - Jian-Bo Wan
- 3State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, People's Republic of China
| | - Jian-Li Gao
- 2Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053 People's Republic of China
| | - Feng-Qing Yang
- 1School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331 People's Republic of China
| |
Collapse
|
18
|
Liu Z, Fu Q, Lv J, Wang F, Ding K. Prognostic implication of p27Kip1, Skp2 and Cks1 expression in renal cell carcinoma: a tissue microarray study. J Exp Clin Cancer Res 2008; 27:51. [PMID: 18922157 DOI: 10.1007/s11726-022-1321-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2008] [Accepted: 10/15/2008] [Indexed: 10/15/2022] Open
Abstract
BACKGROUND p27Kip1 plays a major role as a negative regulator of the cell cycle. The regulation of p27Kip1 degradation is mediated by its specific ubiquitin ligase subunits S-phase kinase protein (Skp) 2 and cyclin-dependent kinase subunit (Cks) 1. However, little is known regarding the prognostic utility of p27Kip1, Skp2 and Cks1 expression in renal cell carcinoma. METHODS Immunohistochemistry was performed for p27Kip1, Skp2 and Cks1 in tissue microarrays of 482 renal cell carcinomas with follow-up. The data were correlated with clinicopathological features. The univariate and multivariate survival analyses were also performed to determine their prognostic significance. RESULTS Immunoreactivity of p27Kip1, Skp2 and Cks1 was noted in 357, 71 and 82 patients, respectively. Skp2 and Cks1 expression were not noted in chromophobe cancers. A strong correlation was found between Skp2 and Cks1 expression (P < 0.001), both of which were inversely related to p27Kip1 levels (P = 0.006 and P < 0.001), especially in primary and clear-cell cancers. Low p27Kip1 expression and Skp2 expression were correlated with larger tumor size and higher stage, as well as tumor necrosis. Cks1 expression was only correlated with tumor size. In univariate analysis, low p27Kip1 expression, Skp2 and Cks1 expression were all associated with a poor prognosis, while in multivariate analysis, only low p27Kip1 expression were independent prognostic factors for both cancer specific survival and recurrence-free survival in patients with RCC. CONCLUSION Our results suggest that immunohistochemical expression levels of p27Kip1, Skp2 and Cks1 may serve as markers with prognostic value in renal cell carcinoma.
Collapse
Affiliation(s)
- Zheng Liu
- Department of Urology, Shandong Provincial Hospital, Shandong University, 324# Jingwu Weiqi road, Jinan, 250021, PR China.
| | | | | | | | | |
Collapse
|